Science.gov

Sample records for active solar thermal

  1. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  2. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  3. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  4. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Measurements of Non-thermal Line Widths in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  6. Sandia Laboratories in-house activities in support of solar thermal large power applications

    NASA Technical Reports Server (NTRS)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  7. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  8. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-02-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  9. Solar thermal cost goals

    NASA Astrophysics Data System (ADS)

    Edelstein, R. B.

    The development of cost goals for the DOE solar thermal program by the solar thermal cost goals committee (STCGC) is described. The objective of the STCGC is to determine a consistent set of time-related cost and performance goals for concentrating collector systems based on market value and intermediate goals based on attainable cost levels. Accomplishments thus far include: definition on cost goals and their function in program planning, delineation of competing energy systems costs, development of a breakeven costing methodology for assessing market value, determination of attainable costs for solar thermal systems, setting financial and economic parameters, and calculation of market value as a function of each competing fuel type, application, and region.

  10. Benchmark Test of Differential Emission Measure Codes and Multi-thermal Energies in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Boerner, Paul; Caspi, Amir; McTiernan, James M.; Ryan, Daniel; Warren, Harry

    2015-10-01

    We compare the ability of 11 differential emission measure (DEM) forward-fitting and inversion methods to constrain the properties of active regions and solar flares by simulating synthetic data using the instrumental response functions of the Solar Dynamics Observatory/ Atmospheric Imaging Assembly (SDO/AIA) and EUV Variability Experiment (SDO/EVE), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and the Geostationary Operational Environmental Satellite/ X-ray Sensor (GOES/XRS). The codes include the single-Gaussian DEM, a bi-Gaussian DEM, a fixed-Gaussian DEM, a linear spline DEM, the spatial-synthesis DEM, the Monte-Carlo Markov Chain DEM, the regularized DEM inversion, the Hinode/ X-Ray Telescope (XRT) method, a polynomial spline DEM, an EVE+GOES, and an EVE+RHESSI method. Averaging the results from all 11 DEM methods, we find the following accuracies in the inversion of physical parameters: the EM-weighted temperature Tw^{fit}/Tw^{sim}=0.9±0.1, the peak emission measure EMp^{fit}/EMp^{sim}=0.6±0.2, the total emission measure EMt^{fit}/EMt^{sim}=0.8±0.3, and the multi-thermal energies E_{th}^{fit}/EM_{th}^{approx}=1.2±0.4. We find that the AIA spatial-synthesis, the EVE+GOES, and the EVE+RHESSI method yield the most accurate results.

  11. Solar thermal financing guidebook

    SciTech Connect

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  12. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  13. Solar Thermal Power.

    ERIC Educational Resources Information Center

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  14. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  15. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  16. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept. PMID:23816910

  17. Solar thermal plasma chamber

    NASA Astrophysics Data System (ADS)

    Bonometti, Joseph; Buchele, Donald R.; Castle, Charles H.; Gregory, Don A.

    2001-11-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and highest temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 Kelvin. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlining theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74-meter (9 foot) focal length. A quartz lens focuses a smaller sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole, and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is 'suspended in space' 7.1cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  18. Solar Thermal Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Bonometti, Joseph A.

    1995-01-01

    Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations

  19. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  20. Solar thermal electric hybridization issues

    SciTech Connect

    Williams, T A; Bohn, M S; Price, H W

    1994-10-01

    Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.

  1. Solar thermal power plant

    SciTech Connect

    Oplatka, G.

    1983-08-30

    A solar thermal power plant is disclosed containing a heliostat field and a collector system mounted upon a tower or column, the radiation receivers of the collector system being structured to be elongate, preferably circular ring sector-shaped and extending over part of the circumference of the crown or top of the tower. The removal of steam is accomplished directly or indirectly from a hot water storage which is alternately or overlappingly charged and discharged. According to one embodiment there are provided three heat receivers, two of which serve for charging and discharging the hot water storage, whereas in the third receiver there is directly generated steam for the compensation of time periods devoid of sun.

  2. USAF solar thermal applications overview

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.; Simpson, J. A.

    1981-01-01

    Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.

  3. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  4. Solar Thermal Demonstration Project

    SciTech Connect

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  5. Scattering Solar Thermal Concentrators

    SciTech Connect

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  6. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  7. Solar mechanics thermal response capabilities.

    SciTech Connect

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  8. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  9. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  10. THERMAL FRONTS IN SOLAR FLARES

    SciTech Connect

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  11. Thermal Fronts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  12. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  13. Refractive Secondary Concentrators for Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  14. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  15. Solar thermal repowering

    SciTech Connect

    1980-08-01

    Solar central receiver technology is developing steadily with a promise of becoming a real commercial alternative for energy generation in the late 1980s. Significant potential markets have been identified, research and development of important components is proceeding well, and the first full-system verification experiment at Barstow, California, is under construction. However, much work still lies ahead. A big step toward the realization of large-scale commercial use of solar energy was taken when the Department of Energy (DOE) issued a solicitation in March 1979 for utility repowering/industrial retrofit system conceptual design studies employing solar central receivers. Twenty-two responses were evaluated, and twelve were selected for funding. The results of the twelve studies, plus one study completed earlier and one privately funded, are sufficiently encouraging to warrant proceeding to the next stage of the program: cost-shared projects chosen through open competition. Eight of he fourteen studies are for electric utility repowering of existing oil or natural gas generating plants. The other six are the first site-specific studies of the use of solar central receiver systems for industrial process heat. The industrial processes include gypsum board drying, oil refining, enhanced oil recovery, uranium ore processing, natural gas processing, and ammonia production. Site descriptions, project summaries, conceptual designs, and functional descriptions are given for each of these 14 studies.

  16. Solar-thermal engine testing

    NASA Astrophysics Data System (ADS)

    Tucker, Stephen; Salvail, Pat

    2002-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle, collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 °F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (Isp). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemically vapor deposited (CVD) rhenium. The engine ``module'' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine Isp. In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects

  17. Solar Thermal Reactor Materials Characterization

    SciTech Connect

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  18. More Efficient Solar Thermal-Energy Receiver

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  19. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  20. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  1. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  2. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  3. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  4. Recombination activity associated with thermal donor generation in monocrystalline silicon and effect on the conversion efficiency of heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Tomassini, M.; Veirman, J.; Varache, R.; Letty, E.; Dubois, S.; Hu, Y.; Nielsen, Ø.

    2016-02-01

    The recombination properties of the carrier lifetime-limiting center formed during the generation of oxygen-related thermal donors (so called "old" thermal donors) in n-type Czochralski silicon were determined over a wide range of thermal donors' concentrations. The procedure involved (1) determining the various energy levels associated with dopants with the help of temperature Hall effect measurements, (2) clarifying which energy level limits the carrier lifetime by temperature lifetime spectroscopy, and (3) determining the recombination parameters of the involved defect from room-temperature carrier lifetime curves. Our results support the fact that a deep energy level in the range of 0.2-0.3 eV below the conduction band limits the carrier lifetime. The second family of thermal donors, featuring bistable properties, was tentatively identified as the corresponding defect. From the obtained experimental data, the influence of the defect on the amorphous/crystalline silicon heterojunction solar cell conversion efficiency was simulated. It is observed that for extended donor generation, the carrier lifetime is reduced by orders-of-magnitude, leading to unacceptable losses in photovoltaic conversion efficiency. A key result is that even for samples with thermal donor concentrations of 1015 cm-3—often met in seed portions of commercial ingots—simulations reveal efficiency losses greater than 1% absolute for state-of-the-art cells, in agreement with recent experimental studies from our group. This result indicates to crystal growers the importance to mitigate the formation of thermal donors or to develop cost-effective processes to suppress them at the ingot/wafer scale. This is even more critical as ingot cool-down is likely to be slower for future larger ingots, thus promoting the formation of thermal donors.

  5. Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    NASA Technical Reports Server (NTRS)

    Lucas, J. W. (Editor)

    1984-01-01

    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.

  6. Hybrid energy harvesting using active thermal backplane

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  7. Thermally Activated Driver

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Murray, Robert C.; Walsh, Robert F.

    1987-01-01

    Space-qualified, precise, large-force, thermally activated driver (TAD) developed for use in space on astro-physics experiment to measure abundance of rare actinide-group elements in cosmic rays. Actinide cosmic rays detected using thermally activated driver as heart of event-thermometer (ET) system. Thermal expansion and contraction of silicone oil activates driver. Potential applications in fluid-control systems where precise valve controls are needed.

  8. Solar-thermal jet pumping for irrigation

    NASA Astrophysics Data System (ADS)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  9. Preliminary requirements for thermal storage subsystems in solar thermal applications

    SciTech Connect

    Copeland, R.J.

    1980-04-01

    Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

  10. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage

    SciTech Connect

    Durgun, E; Grossman, JC

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  11. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    PubMed

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  12. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  13. Place of solar thermal rockets in space

    SciTech Connect

    Selph, C.C.

    1981-05-01

    The harnessing of sunlight for propulsive energy is a recurring theme in space propulsion, particularly for applications requiring large velocity increments, such as planetary exploration or comet rendezvous. Characteristically, it is viewed in terms of the solar sail and the solar cell, but for operations in Earth orbit these approaches are less desirable because the very low thrust leads to undesirably long maneuver times. Thrust levels several orders of magnitude higher are available with solar thermal rockets, while preserving a specific impulse advantage over chemical systems. The performance advantages, penalties, technological problems, and approaches were examined for solar thermal rockets. Its suitability in several Earth orbit missions is assessed. The peculiarities of vehicle design, the nature of the thruster and the solar concentrator are presented, and AF plans to implement the development of solar rockets are outlined.

  14. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  15. PV/thermal solar power assembly

    DOEpatents

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  16. Angular solar absorptance of absorbers used in solar thermal collectors.

    PubMed

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  17. National Solar Thermal Test Facility

    SciTech Connect

    Cameron, C.P.

    1989-12-31

    This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

  18. USAF solar thermal applications case studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.

  19. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  20. Solar Thermal Propulsion Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  1. Long-term performance and cost goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.

    1985-04-01

    Long term performance and cost goals recently developed for the solar thermal technology are described. These goals were developed in support of the draft 1985 to 1989 National Solar Thermal Technology Program Five Year Research and Development Plan, and are intended to aid in planning research activities needed to make solar thermal energy an option which is both technically and economically attractive (DOE 1984). Goals were developed for both utility electric applications and for industrial process heat applications. Solar thermal technology goals are intended to provide targets, which when met, would result in the widespread usage of solar thermal technologies in the marketplace. The goals described include system goals and component goals. System goals are energy price targets which must be met for solar thermal to be economically viable in a given market. Component goals are performance and cost targets for the primary elements of a solar thermal plant (concentrators, receivers, etc.) which would allow achievement of the system level goal.

  2. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  3. Origins of Solar Activity

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    1996-05-01

    Work under the subject grant began in August 1992, when Mr. J. J. Blanchette began study and data analysis in the area of solar flare research. Mr. Blanchette passed all requirements toward a Ph.D., except for the thesis. Mr. Blanchette worked with the APL Flare Genesis Experiment team to build a balloon-borne solar vector magnetograph. Other work on the magnetograph was partially supported by AFOSR grant F49620-94-1-0079. Mr. Blanchette assisted the Flare Genesis team prepare the telescope and focal plane optical elements for a test flight. He participated in instrument integ ration and in launch preparations for the flight, which took place on January 23, 1994. Mr. Blanchette was awarded a Masters Degree in Astrophysics by the Johns Hopkins University in recognition of his achievements. Mr. Blanchette indicated a desire to suspend work on the Ph.D. degree, and he left the AASERT program on August 31, 1994. Under the guidance of his advisor at JHU/APL, Dr. David M. Rust, Mr. Blanchette gained enough background in solar physics so that he can contribute to observational, analytical, and presentation efforts in solar research. Beginning in August 1995, Mr. Ashok Kumar was supported by the grant. Mr. Kumar demonstrated remarkable theoretical insight into the problems of solar activity. He developed the concept of intrinsic scale magnetic flux ropes in the solar atmosphere and interplanetary space. His model can explain the heating of interplanetary magnetic clouds. Recently, his idea has been extended to explain solar wind heating. If the idea is confirmed by further comparison with observations, it will be a major breakthrough in space physics and it may lead to an explanation for why the solar corona's temperature is over a million degrees.

  4. Solar thermal electric power information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  5. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  6. Studying the thermal/non-thermal crossover in solar flares

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1994-01-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  7. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  8. Components of the Solar Thermal Propulsion Engine

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  9. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  10. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  11. Thermal Design of a Solar Thermal Thruster for Piggyback Satellites

    NASA Astrophysics Data System (ADS)

    Iwaki, Yuuki; Totani, Tsuyoshi; Nagata, Harunori

    A method of thermal analysis for a solar thermal thruster was created to aid in the thermal design of the thruster. The method consists of two types of thermal analysis: an analysis program for propellant flow, and an analysis of the temperature distribution of the thruster wall using Pro/Engineer. The numerical results were compared with experimental results to confirm the validity of the method, and there was good agreement between them. A thermal design was created using this thermal analysis method to estimate the performance of a solar thermal thruster for the orbital transfer of piggyback satellites mounted on an H2A rocket. When the thruster is made from heat-resistant steel and the propellant is water, the analytical results showed that the Isp is 203 s, the thrust is 16.6 mN, and the maximum temperature of the thruster is 1088 K. The diameter of the concentrator also was calculated, and it was found to be small enough for the concentrator to be mounted on piggyback satellites.

  12. MultiUse solar thermal power generators

    NASA Astrophysics Data System (ADS)

    Abbott, Russell

    2001-02-01

    This paper describes Ontario Engineering International, Inc. (OEI) approach to a solar thermal power generation system using a number of thermal power generation technologies for possible applications to Mars exploration, material processing and for power generation on Earth. The latest power stage and generator design presented here were the culmination of studies covering a wide variety of generator configurations and operating parameters. The many steps and rationale leading to OEI's design evolution and materials selection will not be repeated here except for a description of OEI's latest design, including a heat source support scheme and power stage configuration. OEI's performance predictions were based on its techniques for the thermal analyses of thermal power generators. The analytical results indicate that the OEI power system design, operating within the stipulated solar input and temperature limits and well within its mass goals, can yield power outputs and system efficiencies that substantially exceed existing solar power generation technologies. The calculated efficiency for a cascaded power generation system is estimated to be 42% for a DC output or 37% for an AC power output. With the addition of a thermal storage medium power can be provided on a continuous basis during any shadow period. Recent advances in thermal power generation technologies have now progressed to the point where a solar thermal power generation system can be fabricated. This system can provide terrestrial power generation capacity in remote areas and provide a means for load leveling in the commercial power grid. This system is also adaptable for material processing and/or life-support on Mars. .

  13. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  14. Solar steam generation: Steam by thermal concentration

    NASA Astrophysics Data System (ADS)

    Shang, Wen; Deng, Tao

    2016-09-01

    The solar-driven generation of water steam at 100 °C under one sun normally requires the use of optical concentrators to provide the necessary energy flux. Now, thermal concentration is used to raise the vapour temperature to 100 °C without the need for costly optical concentrators.

  15. The solar thermal report. Volume 3, Number 5

    SciTech Connect

    1982-09-01

    This report is published by the Jet Propulsion Laboratory for the DOE Solar Thermal Technology Division to provide an account of work sponsored by the Division and to aid the community of people interested in solar thermal technology in gaining access to technical information. Contents include articles entitled the following: Solar system supplies thermal energy for producing chemicals at USS plant; Solar thermal power module designed for small community market; Roof-mounted trough system supplies process heat for Caterpillar plant; Solar thermal update -- 10 MW(e) pilot plant and 3-MW(t) total energy system; Solar steam processes crude oil; New York investigates solar ponds as a source of thermal energy; On-farm solar -- Finding new uses for the sun; and Topical index of solar thermal report articles.

  16. Solar thermal plant impact analysis and requirements definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The technology and economics of solar thermal electric systems (STES) for electric power production is discussed. The impacts of and requirements for solar thermal electric power systems were evaluated.

  17. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  18. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  19. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    SciTech Connect

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  20. Flexible thermal cycle test equipment for concentrator solar cells

    DOEpatents

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  1. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  2. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  3. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date; concentrator development and progress; economic analyses; and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  4. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  5. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  6. Value of solar thermal industrial process heat

    SciTech Connect

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  7. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  8. Results of Evaluation of Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave

    2003-01-01

    The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.

  9. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  10. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  11. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  12. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  13. Proceeding of the DOE Solar Thermal Technology Program planning Workshop

    NASA Astrophysics Data System (ADS)

    Radosevich, L. G.

    1982-03-01

    The workshop reviewed several strategies for solar thermal technology program planning. After the strategy options were presented to the workshop participants, each committee (user/supplier, system test and evaluation, technology development, and research) was asked to address the following issues: which strategy shows the best potential for meeting the objectives of the solar thermal program; is there an obvious imbalance in the program in terms of emphasis in various areas; are there any activities which should be added or deleted; and, if a funding cut occurs, how should the cut be made. The strategy options are briefly discussed. Summary reports from each committee follow, and a compilation of the committee findings highlights major similarities and differences.

  14. Proceedings of the DOE solar thermal technology program planning workshop

    SciTech Connect

    Radosevich, L.G.

    1982-03-01

    The workshop reviewed several strategies for solar thermal technology program planning. After the strategy options were presented to the workshop participants, each committee (user/supplier, system test and evaluation, technology development, and research) was asked to address the following issues: which strategy shows the best potential for meeting the objectives of the solar thermal program; is there an obvious imbalance in the program in terms of emphasis in various areas; are there any activities which should be added or deleted; and, if a funding cut occurs, how should the cut be made. The strategy options are briefly discussed. Summary reports from each committee follow, and a compilation of the committee findings highlights major similarities and differences. (LEW)

  15. Facility level thermal systems for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Fraser, Mark; Climent, Tània

    2012-09-01

    The management and control of the local aero-thermal environment is critical for success of the Advanced Technology Solar Telescope (ATST). In addition to minimizing disturbances to local seeing, the facility thermal systems must meet stringent energy efficiency requirements to minimize impact on the surrounding environment and meet federal requirements along with operational budgetary constraints. This paper describes the major facility thermal equipment and systems to be implemented along with associated energy management features. The systems presented include the central plant, the climate control systems for the computer room and coudé laboratory, the carousel cooling system which actively controls the surface temperature of the rotating telescope enclosure, and the systems used for active and passive ventilation of the telescope chamber.

  16. A numerical study of transient, thermally-conductive solar wind

    NASA Technical Reports Server (NTRS)

    Han, S. M.; Wu, S. T.; Dryer, M.

    1987-01-01

    A numerical analysis of transient solar wind starting at the solar surface and arriving at 1 AU is performed by an implicit numerical method. The model hydrodynamic equations include thermal conduction terms for both steady and unsteady simulations. Simulation results show significant influence of thermal conduction on both steady and time-dependent solar wind. Higher thermal conduction results in higher solar wind speed, higher temperature, but lower plasma density at 1 AU. Higher base temperature at the solar surface gives lower plasma speed, lower temperature, but higher density at 1 AU. Higher base density, on the other hand, gives lower velocity, lower temperature, but higher density at 1 AU.

  17. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  18. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  19. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  20. Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph

    1997-01-01

    Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).

  1. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  2. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1974-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar interplanetary magnetic sector structure in future investigations is suggested to perhaps add an element of cohesiveness and interaction to these investigations.

  3. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    Attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given, and several recent investigations are summarized. Use of the solar-interplanetary magnetic sector structure in future investigations may add an element of cohesiveness and interaction to these investigations.

  4. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  5. STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994

    SciTech Connect

    1994-12-31

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  6. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  7. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  8. General theme report: Working session 2, solar thermal systems

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Kolb, G. J.

    1991-01-01

    Currently, over 90 percent of the world's large-scale solar electric energy is generated with concentrating solar thermal power plants. Such plants have the potential to meet many of the world's future energy needs. Research efforts are generally focused on generating electricity, though a variety of other applications are being pursued. Today, the technology for using solar thermal energy is well developed, cost competitive, and in many cases, ready for widespread application. The current state of each of the solar thermal technologies and their applications is reviewed, and recommendations for increasing their use are presented. The technologies reviewed in detail are: parabolic trough systems, central tower systems, and parabolic dish systems.

  9. Solar and thermal radiation in the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Ekonomov, A. P.; Moshkin, B. E.; Revercomb, H. E.; Sromovsky, L. A.; Schofield, J. T.

    1985-01-01

    Attention is given to the solar and thermal radiation fields of Venus. Direct measurements and the results of numerical models based on direct measurements are presented. Radiation outside the atmosphere is considered with emphasis placed on global energy budget parameters, spectral and angular dependences, spatial distribution, and temporal variations of solar and thermal radiation. Radiation fluxes inside the atmosphere below 90 km are also considered with attention given to the solar flux at the surface, solar and thermal radiation fluxes from 100 km to the surface, and radiative heating and cooling below 100 km.

  10. Rankline-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. Rankine-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  12. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  13. The small community solar thermal power experiment

    NASA Astrophysics Data System (ADS)

    Kiceniuk, T.

    1981-05-01

    Contractors were asked to develop a preferred system concept, to perform sensitivity analyses, and to outline recommended approaches for the follow-on design program of a one-megawatt solar thermal demonstration plant. The systems recommended by the contractors in each of the categories were: (1) McDonnell-Douglas Astronautics Company: Central tower with field of south-facing heliostats; (2) General Electric Company: Field of parabolic dishes with steam piped to a central turbine-generator unit; and (3) Ford Aerospace and Communications Corporation: Field of parabolic dishes with a Stirling cycle engine/generator unit at the focus of each dish. A description of each of the proposed experimental plants is given.

  14. The small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1981-01-01

    Contractors were asked to develop a preferred system concept, to perform sensitivity analyses, and to outline recommended approaches for the follow-on design program of a one-megawatt solar thermal demonstration plant. The systems recommended by the contractors in each of the categories were: (1) McDonnell-Douglas Astronautics Company: Central tower with field of south-facing heliostats; (2) General Electric Company: Field of parabolic dishes with steam piped to a central turbine-generator unit; and (3) Ford Aerospace and Communications Corporation: Field of parabolic dishes with a Stirling cycle engine/generator unit at the focus of each dish. A description of each of the proposed experimental plants is given.

  15. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  16. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  17. Solar-thermal fluid-wall reaction processing

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  18. Solar-Thermal Fluid-Wall Reaction Processing

    DOEpatents

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  19. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  20. Thermally-induced structural motions of satellite solar arrays

    NASA Astrophysics Data System (ADS)

    Johnston, John Dennis

    1999-11-01

    Satellites have experienced attitude disturbances resulting from thermally. induced structural motions of flexible appendages since the early days of the space program. Thermally-induced structural motions are typically initiated during orbital eclipse transitions when a satellite exits from or enters into the Earth's shadow. The accompanying rapid changes in thermal loading may lead to time-varying temperature differences through the cross-section of appendages resulting in differential thermal expansion and corresponding structural deformations. Since the total angular momentum of the system must be conserved, motions of flexible appendages such as booms and solar arrays result in rigid body rotations of the entire satellite. These potentially large attitude disturbances may violate satellite pointing and jitter requirements. This research investigates thermally-induced structural motions of rigid panel solar arrays (solar panels) through analytical and experimental studies. Orbital eclipse transition heating and thermal analyses were completed to study solar panel thermal behavior and provide results for input to dynamics analyses. A hybrid coordinate dynamical model was utilized to study the planar dynamics of a simple satellite consisting of a rigid hub with a cantilevered flexible solar panel undergoing thermally-induced structural motions. Laboratory experimental studies were carried out to gain new insight into thermal-structural behavior and to validate analytical models. The experimental studies investigated the thermal-structural performance of honeycomb sandwich panels and satellite solar panel hardware subject to simulated eclipse transition heating. Results from the analytical and experimental studies illustrate the importance of the through-the-thickness temperature difference and its time derivatives as well as the ratio of the characteristic thermal and structural response times in solar panel thermally-induced structural motions. The thermal

  1. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  2. Fine thermal structure of a coronal active region.

    PubMed

    Reale, Fabio; Parenti, Susanna; Reeves, Kathy K; Weber, Mark; Bobra, Monica G; Barbera, Marco; Kano, Ryouhei; Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro; Peres, Giovanni; Golub, Leon

    2007-12-01

    The determination of the fine thermal structure of the solar corona is fundamental to constraining the coronal heating mechanisms. The Hinode X-ray Telescope collected images of the solar corona in different passbands, thus providing temperature diagnostics through energy ratios. By combining different filters to optimize the signal-to-noise ratio, we observed a coronal active region in five filters, revealing a highly thermally structured corona: very fine structures in the core of the region and on a larger scale further away. We observed continuous thermal distribution along the coronal loops, as well as entangled structures, and variations of thermal structuring along the line of sight.

  3. Remote Thermal IR Spectroscopy of our Solar System

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    containing hydrocarbons such as methane and ethane. Spectroscopic information on extrasolar planets thus can permit their classification. Spectra and spectral lines contain information on the temperature structure of the atmosphere. Line and band spectra can be used to identify the molecular constituents and retrieve species abundances, thereby classifying and characterizing the planet. At high enough spectral resolution characteristic planetary atmospheric dynamics and unique phenomena such as failure of local thermodynamic equilibrium can be identified. Dynamically induced effects such as planetary rotation and orbital velocity shift and change the shape of spectral features and must be modeled in detailed spectral studies. We will use our knowledge of the compositional, thermal and dynamical characteristics of planetary atmospheres in our own solar system to model spectra observed remotely on similar planets in extrasolar planetary systems. We will use a detailed radiative transfer and beam integration program developed for the modeling and interpretation of thermal infrared spectra measured from nearby planet planets to generate models of an extra-solar "Earth" and "Jupiter". From these models we will show how key spectral features distinguish between terrestrial and gaseous planets, what information can be obtained with different spectral resolution, what spectral features can be used to search for conditions for biogenic activity, and how dynamics and distance modify the observed spectra. We also will look at unique planetary phenomena such as atmospheric lasing and discuss their utility as probes for detection and identification of planets. Results of such studies will provide information to constrain design for instrumentation needed to directly detect extrasolar planets.

  4. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  5. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  6. Thermally activated technologies: Technology Roadmap

    SciTech Connect

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  7. Applicability of advanced automotive heat engines to solar thermal power

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    1981-01-01

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  8. Understanding thermal equilibrium through activities

    NASA Astrophysics Data System (ADS)

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-03-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education pp 169-72) we found that students in India have a rather unsatisfactory understanding of thermal equilibrium. We have designed and developed a module of five activities, which are presented in succession to the students. These activities address the students’ alternative conceptions that underlie their lack of understanding of thermal equilibrium and aim at enhancing their understanding of the concept.

  9. Five Year Research and Development Plan, 1986-1990. National Solar Thermal Technology Program

    NASA Astrophysics Data System (ADS)

    1986-09-01

    This Solar Thermal Technology Program Five Year Research and Development Plan discusses the planning process and describes in more detail the first five years of the long term strategy for the development of solar thermal technology. The overall strategy is to focus and structure the activities which should lead to broad economic competitiveness for solar thermal. The state of each of the technologies is first assessed to determine the characteristics of the next system which could be built. These are referred to as current capabilities. Cost/performance goals are then determined which would allow solar thermal technology to compete in the free marketplace for electricity and heat production and appear to be technically achievable in the 1990's. The critical advanced components and development decisions are identified and finally, tasks addressing each of these are delineated.

  10. A learning curve for solar thermal power

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.; Dinter, Frank

    2016-05-01

    Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.

  11. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  12. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  13. Implications of environmental externalities assessments for solar thermal powerplants

    NASA Astrophysics Data System (ADS)

    Lee, A. D.; Baechler, M. C.

    1991-03-01

    Externalities are those impacts of one activity on other activities that are not priced in the marketplace. An externality is said to exist when two conditions hold: (1) the utility or operations of one economic agent, A, include nonmonetary variables whose values are chosen by another economic agent, B, without regard to the effects on A, and (2) B does not pay A compensation equal to the incremental costs inflicted on A. Electricity generation involves a wide range of potential and actual environmental impacts. Legislative, permitting, and regulatory requirements directly or indirectly control certain environmental impacts, implicitly causing them to become internalized in the cost of electricity generation. Electricity generation, however, often produces residual environmental impacts that meet the definition of an externality. Mechanisms have been developed by several states to include the costs associated with externalities in the cost-effectiveness analyses of new powerplants. This paper examines these costs for solar thermal plants and applies two states' scoring methodologies to estimate how including externalities would affect the levelized costs of power from a solar plant in the Pacific Northwest. It concludes that including externalities in the economics can reduce the difference between the levelized cost of a coal and solar plant by between 0.74 and 2.42 cents/kWh.

  14. Solar thermal power generation. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.

  15. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  16. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  17. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  18. STATISTICAL ANALYSES ON THERMAL ASPECTS OF SOLAR FLARES

    SciTech Connect

    Li, Y. P.; Gan, W. Q.; Feng, L.

    2012-03-10

    The frequency distribution of flare energies provides a crucial diagnostic to calculate the overall energy residing in flares and to estimate the role of flares in coronal heating. It often takes a power law as its functional form. We have analyzed various variables, including the thermal energies E{sub th} of 1843 flares at their peak time. They were recorded by both Geostationary Operational Environmental Satellites and Reuven Ramaty High-Energy Solar Spectroscopic Imager during the time period from 2002 to 2009 and are classified as flares greater than C 1.0. The relationship between different flare parameters is investigated. It is found that fitting the frequency distribution of E{sub th} to a power law results in an index of -2.38. We also investigate the corrected thermal energy E{sub cth}, which represents the flare total thermal energy including the energy loss in the rising phase. Its corresponding power-law slope is -2.35. Compilation of the frequency distributions of the thermal energies from nanoflares, microflares, and flares in the present work and from other authors shows that power-law indices below -2.0 have covered the range from 10{sup 24} to 10{sup 32} erg. Whether this frequency distribution can provide sufficient energy to coronal heatings in active regions and the quiet Sun is discussed.

  19. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  20. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  1. Solar thermal energy: abstracts of a special seminar for industry

    SciTech Connect

    Alvis, R.L.

    1981-03-01

    The abstracts of the papers presented at the Modular Industrial Solar Retrofit (MISR) Conference in Albuquerque, New Mexico are compiled. The papers discuss the technology status of line-focus solar thermal systems and the solar industrial process heat field test program, MISR market survey and land use, MISR system specifications, guidelines, contracting plans, site selection/field experiments, data acquisition and results reporting, and supplier/user system evaluation. (LEW)

  2. Evaluation of thermal-storage concepts for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Hughes, P. J.; Morehouse, J. H.; Choi, M. K.; White, N. M.; Scholten, W. B.

    1981-10-01

    Various configuration concepts for utilizing thermal energy storage to improve the thermal and economic performance of solar cooling systems for buildings were analyzed. The storge concepts evaluated provide short-term thermal storge via the bulk containment of water or salt hydrates. The evaluations were made for both residential-size cooling systems (3-ton) and small commercial-size cooling systems (25-ton). The residential analysis considers energy requirements for space heating, space cooling and water heating, while the commercial building analysis is based only on energy requirements for space cooling. The commercial building analysis considered a total of 10 different thermal storage/solar systems, 5 each for absorption and Rankine chiller concepts. The residential analysis considered 4 thermal storage/solar systems, all utilizing an absorption chiller. The trade-offs considered include: cold-side versus hot-side storage, single vs multiple stage storage, and phase-change vs sensible heat storage.

  3. Solar-thermal experimental projects on the Spanish Plataforma Solar

    NASA Astrophysics Data System (ADS)

    Grasse, W.

    1981-11-01

    The Plataforma Solar with an area of 1,000,000 sq m is located in Spain at a distance of approximately 50 km from the Mediterranean. In May 1979, nine members of the International Energy Agency (IEA) decided to support the construction of Small Solar Power Systems (SSPS). The countries involved include West Germany, the U.S., Spain, and Italy. The SSPS are to demonstrate the operational feasibility of solar technologies which have been mainly developed in Germany and the U.S. In addition, data are to be obtained regarding the relative competitive position of two different operational concepts for SSPS. The concepts are related to the central receiver system (solar tower) and the distributed collector system. Attention is also given to the Spanish solar power station CESA-1 and the German-Spanish technology program GAST, which is to explore the technological limits of solar-energy systems.

  4. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    SciTech Connect

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-10-15

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  5. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  6. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1973-01-01

    Some evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 31/2 days after the passage of a sector boundary the maximum effect is seen: apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary, it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure, but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  7. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1974-01-01

    Some new evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 3 1/2 days after the passage of a sector boundary the maximum effect is seen; apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  8. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  9. Solar thermal upper stage: Economic advantage and development status

    NASA Technical Reports Server (NTRS)

    Adams, Alan M.

    1995-01-01

    A solar thermal upper stage (STUS) is envisioned as a propulsive concept for the future. The STUS will be used for low Earth orbit (LEO) to geostationary-Earth orbit (GEO) transfer and for planetary exploration missions. The STUS offers significant performance gains over conventional chemical propulsion systems. These performance gains translate into a more economical, more efficient method of placing useful payloads in space and maximizing the benefits derived from space activity. This paper will discuss the economical advantages of an STUS compared to conventional chemical propulsion systems, the potential market for an STUS, and the recent activity in the development of an STUS. The results of this assessment combined with the performance gains, will provide a strong justification for the development of an STUS.

  10. Potential benefits from a successful solar thermal program

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1982-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs.

  11. Increasing the efficiency of solar thermal panels

    NASA Astrophysics Data System (ADS)

    Dobrnjac, M.; Latinović, T.; Dobrnjac, S.; Živković, P.

    2016-08-01

    The popularity of solar heating systems is increasing for several reasons. These systems are reliable, adaptable and pollution-free, because the renewable solar energy is used. There are many variants of solar systems in the market mainly constructed with copper pipes and absorbers with different quality of absorption surface. Taking into account the advantages and disadvantages of existing solutions, in order to increase efficiency and improve the design of solar panel, the innovative solution has been done. This new solar panel presents connection of an attractive design and the use of constructive appropriate materials with special geometric shapes. Hydraulic and thermotechnical tests that have been performed on this panel showed high hydraulic and structural stability. Further development of the solar panel will be done in the future in order to improve some noticed disadvantages.

  12. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  13. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy. PMID:27430282

  14. Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  15. Transient Thermal Analysis of a Refractive Secondary Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Macosko, Robert P.

    1999-01-01

    A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application. To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for analyzing and testing the materials for their ability to survive thermal shock and stress.

  16. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  17. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  18. Solar thermal bowl concepts and economic comparisons for electricity generation

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

    1988-04-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

  19. Measurements of thermal parameters of solar modules

    NASA Astrophysics Data System (ADS)

    Górecki, K.; Krac, E.

    2016-04-01

    In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed.

  20. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  1. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  2. High temperature solar thermal technology: The North Africa Market

    SciTech Connect

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  3. Comparison of selective transmitters for solar thermal applications.

    PubMed

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent

  4. Comparison of selective transmitters for solar thermal applications.

    PubMed

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent

  5. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  6. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  7. Interfacial thermal degradation in inverted organic solar cells

    SciTech Connect

    Greenbank, William; Hirsch, Lionel; Wantz, Guillaume; Chambon, Sylvain

    2015-12-28

    The efficiency of organic photovoltaic (OPV) solar cells is constantly improving; however, the lifetime of the devices still requires significant improvement if the potential of OPV is to be realised. In this study, several series of inverted OPV were fabricated and thermally aged in the dark in an inert atmosphere. It was demonstrated that all of the devices undergo short circuit current-driven degradation, which is assigned to morphology changes in the active layer. In addition, a previously unreported, open circuit voltage-driven degradation mechanism was observed that is highly material specific and interfacial in origin. This mechanism was specifically observed in devices containing MoO{sub 3} and silver as hole transporting layers and electrode materials, respectively. Devices with this combination were among the worst performing devices with respect to thermal ageing. The physical origins of this mechanism were explored by Rutherford backscattering spectrometry and atomic force microscopy and an increase in roughness with thermal ageing was observed that may be partially responsible for the ageing mechanism.

  8. Tehachapi solar thermal system first annual report

    SciTech Connect

    Rosenthal, A.

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  9. Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimovic, M.; Issautier, K.; Meyer-Vernet, N.; Perche, C.; Moncuquet, M.; Zouganelis, I.; Bale, S. D.; Vilmer, N.; Bougeret, J.-L.

    The measurement of the solar wind electron temperature in the unexplored region between 1 and 45 Rs is of prime importance for understanding the solar wind acceleration. Solar Orbiter's location, combined with the fact that the spacecraft will nearly co-rotate with the sun on some portions of its orbit, will furnish observations placing constraints on solar wind models. We discuss the implementation of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total electron density and electron temperature and to correct the spacecraft charging effects which affect the electron analyzers.

  10. Solar wind electron temperature and density measurements for the Solar Orbiter using the thermal noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimovic, M.; Issautier, K.; Moncuquet, M.; Meyer-Vernet, N.; Zouganelis, I.; Bale, S. D.; Vilmer, N.; Bougeret, J.-L.

    The measurement of the solar wind electron temperature radial profile in the unexplored region between 1 and 45 R_s is of prime importance for understanding the solar wind acceleration. Solar Orbiter's location, combined with its ability to observe the corona in co-rotation, will furnish strong observational constraints on solar wind models. We discuss the implementation of the plasma thermal noise analysis for the Solar Orbiter, in order (i) to get accurate measurements of the total electron density and core electron temperature and (ii) to allow direct determination of the spacecraft charging effects which affect the electron analyzers.

  11. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  12. Long-term goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.; Dirks, J. A.; Brown, D. R.

    1985-05-01

    Long-term performance and cost goals for three solar thermal technologies are discussed. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of 0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  13. Long-term goals for solar thermal technology

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  14. Thermal analysis of five outdoor swimming pools heated by unglazed solar collectors

    SciTech Connect

    Molineaux, B.; Lachal, B.; Guisan, O. )

    1994-07-01

    We have analysed measurement from five outdoor swimming pools located in Switzerland and heated by unglazed solar collectors. The main contributions to the daily energy balance of the swimming pools are evaluated. They include the active and passive solar gains, as well as the heat losses related to radiation, evaporation, convection, and water renewal (in order of importance). Coherent results are obtained using multilinear regressions in order to determine the best fitting values of the empirical parameters involved in the thermal equations.

  15. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  16. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  17. Parametric study of solar thermal rocket nozzle performance

    SciTech Connect

    Pearson, J.B.; Landrum, D.B.; Hawk, C.W.

    1996-08-01

    Continued exploration and exploitation of space will require the development of more efficient and economical systems for access to and transportation through space. Solar thermal propulsion has emerged as a potential candidate to fill this role. A solar thermal rocket using hydrogen (H{sub 2}) propellant has a theoretical I{sub sp} of 700--1,100 seconds based on typical temperatures in the absorber/heat exchanger of 3,500--6,500 {degree}R (1,944--3,611 K). This note describes the significant results of a fundamental study of the potential causes of I{sub sp} reduction in low thrust, solar thermal rocket nozzles. The main emphasis is an analytical/numerical study of how nozzle geometry impacts the viscous and thermochemical losses. The results are applicable to optimizing nozzle geometry for maximum performance.

  18. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. PMID:27253462

  19. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release.

  20. Thermal performance of evacuated tube heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  1. Phase change fluids for solar thermal systems

    SciTech Connect

    Sama, D.A.; Sladek, K.J.

    1981-01-01

    This study explores the use, for storage of solar energy, of phase change materials which are suspended or emulsified in an immiscible carrier fluid. Emulsions of up to 50 weight % paraffin wax in water were found to be very fluid, highly stable, and quite flame resistant. Such easily pumped emulsions allow for an increase in stored energy density while avoiding the severe heat transfer rate problems normally encountered with phase change storage. Since the suspended phase change materials can be used both to collect and store solar energy, a heat transfer step is eliminated and the energy may be stored at a higher average temperature. This in turn results in a higher thermodynamic availability which is shown to be particularly advantageous in the storage of solar energy for refrigeration or heat pump systems. 6 refs.

  2. A thermal control surface for the Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin A. J.; Carton, James G.; Norman, Andrew; McCaul, Terry; Twomey, Barry; Stanton, Kenneth T.

    2015-12-01

    A high-absorptivity/high-emissivity (flat absorber) bone char-based thermal control surface known as SolarBlack has been developed for use on rigid and flexible metallic substrates, including titanium, aluminium, copper, stainless steel, Inconel and magnesium alloys. This work describes the thermo-optical properties, stability, and qualification of this surface for use on the European Space Agency's Solar Orbiter mission. SolarBlack is deposited using a proprietry coating technique known as CoBlast and currently stands as the baseline coating for the spacecraft's front surface heat-shield, which is composed of 50 μm titanium foils (1.3×0.3 m) that have been constructed to cover the 3.1×2.4 m2 shield. The heat shield makes use of the material's highly stable ratio of solar absorptance to near-normal thermal emissivity (αs/εN) as well as its low electrical resistivity to regulate both temperature and electrostatic dissipation in service. SolarBlack also currently stands as the baseline surface for the High-gain and Medium-gain antennae as well as a number of other components on the spacecraft. The thermo-optical stability of SolarBlack was determined using the STAR Facility space environment simulator in ESTEC., Material characterisation was carried out using: SEM, UV/Vis/NIR spectrometry, and IR emissometry. The coating performance was verified on the Structural Thermal Model using ESA's Large Space Simulator.

  3. Solar thermal energy contract list, fiscal year 1990

    SciTech Connect

    Not Available

    1991-09-01

    The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

  4. Analysis of dynamic effects in solar thermal energy conversion systems

    NASA Technical Reports Server (NTRS)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  5. A study of thermal radiation transfer in a solar thruster

    SciTech Connect

    Venkateswaran, S.; Thynell, S.T.; Merkle, C.L. )

    1991-11-01

    Combined convective and radiative heat transfer in an axisymmetric solar thruster is analyzed. In a solar thruster, focused solar energy is converted into thermal energy by volumetric absorption, resulting in a significant increase in the temperature of the propellant gas. The heated gas is then expanded through a propulsive nozzle in order to generate thrust. In the present theoretical analysis, submicron size particles are employed for providing the mechanism of solar energy absorption. The two-dimensional radiation problem is solved using both an exact integral method and the P{sub 1}-approximation. The overall energy transfer is solved iteratively by numerical means. The computational model is used to perform parametric studies of the effects of Boltzmann number, optical dimensions of the medium, and wall emissivity. The overall performance of the solar thruster is assessed by determining the thrust levels and the specific impulses of the device under different operating conditions.

  6. Coronal Streamers and Solar Activity

    NASA Astrophysics Data System (ADS)

    Delone, A. B.; Porfir'eva, G. A.; Smirnova, O. B.; Yakunina, G. V.

    2013-03-01

    We analyze the structure of the streamer belt and plasma ejection dynamics during the last two solar minima (1996-1997 and 2006-2009) using white light observations by SOHO and STEREO space observatories. We consider the role of activity centers and of the sectorial structure of the Sun's global magnetic field in the streamer belt topology. During the last minimum plasma was ejected from the streamer belt at a velocity several tens of km/s higher than that during the preceding minimum. We have used the data from Internet and papers published in science journals.

  7. An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds is reported. A FORTRAN computer program was written for the computation of the thermal performance of solar thermal collector arrays with and without external manifolds. Arrays constructed from two example solar thermal collectors are computated. Typical external manifold sizes and thermal insulations are presented graphically and are compared with the thermal performance of the collector alone.

  8. Solar wind thermally induced magnetic fluctuations.

    PubMed

    Navarro, R E; Moya, P S; Muñoz, V; Araneda, J A; F-Viñas, A; Valdivia, J A

    2014-06-20

    A kinetic description of Alfvén-cyclotron magnetic fluctuations for anisotropic electron-proton quasistable plasmas is studied. An analytical treatment, based on the fluctuation-dissipation theorem, consistently shows that spontaneous fluctuations in plasmas with stable distributions significantly contribute to the observed magnetic fluctuations in the solar wind, as seen, for example, in [S. D. Bale et al., Phys. Rev. Lett. 103, 211101 (2009)], even far below from the instability thresholds. Furthermore, these results, which do not require any adjustable parameters or wave excitations, are consistent with the results provided by hybrid simulations. It is expected that this analysis contributes to our understanding of the nature of magnetic fluctuations in the solar wind.

  9. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    1982-01-01

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  10. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  11. Panel results of the solar thermal program research requirement assessment review. Final report

    SciTech Connect

    1983-11-01

    The objectives of the assessment were to identify: research needs by topic and activity, relative priority of research needs, options for performing needed research, potential performers, costs and duration of R and D activities, gaps and duplications within the R and D program, and activities underway that appear to be of low priority. To achieve these objectives, research programs of the Division of Solar Thermal Technologies within the Office of Renewable Energy and Conservation and the Materials and Advanced Energy Programs of the Office of Basic Energy Sciences were reviewed. Several recent assessments of solar thermal research needs made within the past two years by various groups were also reviewed, and the key research issues and needs were extracted. The primary results from the assessment are a set of prioritized activities to meet the most important research needs for solar thermal technologies. These activities belong to four disciplines: materials science, thermal science, thermochemistry, and engineering. Further, priorities associated with the needs for research result from the various activities allow the recommended activities to be grouped into two categories; a core group which should be at the heart of any future program developed by the department, and a set of important needs that should, at least, find their way into a program at some time during its existence. The recommended research program is outlined, and the complete set of ranked research needs is listed.

  12. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  13. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  14. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  15. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  16. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  17. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  18. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  19. Thermal control of the solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Ruttner, L. E.

    1973-01-01

    The thermal control requirements consist of functional requirements related to the various mission phase natural environments, operational requirements of induced power loadings by the solar electric propulsion stage subsystems, and design temperature limits for performance and reliability. The design approach utilizes passive thermal control techniques combining insulation, surface coatings, and sunshields with thermostatically controlled louvers. Heaters are used to regulate certain temperatures for extreme conditions. Details regarding the thruster array thermal control design are discussed, giving attention to the parameters used in the mathematical model, questions of conductive coupling, and thruster estimated power distribution.

  20. Thermal effects in the Solar Disk Sextant telescope

    NASA Astrophysics Data System (ADS)

    Spagnesi, Chiara; Vannoni, Maurizio; Molesini, Giuseppe; Righini, Alberto

    2004-02-01

    The Solar Disk Sextant (SDS) is an instrument conceived to monitor the diameter of the Sun and its oscillations. A key component of the SDS is the Beam Splitting Wedge (BSW), whose function is to provide calibration to the geometry of the focal plane. The thermal behavior of the BSW is critical, as it affects the overall performance of the instrument. Modeling the elements of the BSW and the basic thermal processes is shown to account for experimental evidences of defocusing observed in early measurements with a balloon borne prototype. Basic requirements for accurate thermal stabilization on board of the final instrument are derived.

  1. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  2. Terrestrial Solar Thermal Power Plants: On the Verge of Commercialization

    NASA Astrophysics Data System (ADS)

    Romero, M.; Martinez, D.; Zarza, E.

    2004-12-01

    Solar Thermal Power Plants (STPP) with optical concentration technologies are important candidates for providing the bulk solar electricity needed within the next few decades, even though they still suffer from lack of dissemination and confidence among citizens, scientists and decision makers. Concentrating solar power is represented nowadays at pilot-scale and demonstration-scale by four technologies, parabolic troughs, linear Fresnel reflector systems, power towers or central receiver systems, and dish/engine systems, which are ready to start up in early commercial/demonstration plants. Even though, at present those technologies are still three times more expensive than intermediate-load fossil thermal power plants, in ten years from now, STPP may already have reduced production costs to ranges competitive. An important portion of this reduction (up to 42%) will be obtained by R&D and technology advances in materials and components, efficient integration schemes with thermodynamic cycles, highly automated control and low-cost heat storage systems.

  3. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  4. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  5. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    SciTech Connect

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  6. Italy trials solar-thermal power plant

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2008-08-01

    It was in the Sicilian port of Syracuse that in 213 BC the Greek mathematician Archimedes was reputed to have torched an invading Roman fleet by concentrating the Sun's rays onto the enemy ships using large mirrors. Now, on a site very close to where Archimedes set up his putative solar weapon, engineers are building an array of parabolic mirrors to convert the Sun's energy into electricity. It is claimed that the technology, which uses molten salt to transfer energy to turbines, could be competitive with fossil fuels if it is deployed on a large enough scale in sunny climates.

  7. Solar Activities and Space Weather Hazards

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-03-01

    Geomagnetic storms have a good correlation with solar activity and solar radiation variability. Many proton events and geomagnetic storms have occurred during solar cycles21, 22, and 23. The solar activities during the last three cycles, gave us a good indication of the climatic change and its behavior during the 21st century. High energetic eruptive flares were recorded during the decline phase of the last three solar cycles. The appearances of the second peak on the decline phase of solar cycles have been detected. Halloween storms during Nov. 2003 and its effects on the geomagnetic storms have been studied analytically. The data of amplitude and phase of most common indicators of geomagnetic activities during solar cycle 23 have been analyzed.

  8. A thermal/nonthermal approach to solar flares

    NASA Technical Reports Server (NTRS)

    Benka, Stephen G.

    1991-01-01

    An approach for modeling solar flare high-energy emissions is developed in which both thermal and nonthermal particles coexist and contribute to the radiation. The thermal/nonthermal distribution function is interpreted physically by postulating the existence of DC sheets in the flare region. The currents then provide both primary plasma heating through Joule dissipation, and runaway electron acceleration. The physics of runaway acceleration is discussed. Several methods are presented for obtaining approximations to the thermal/nonthermal distribution function, both within the current sheets and outside of them. Theoretical hard x ray spectra are calculated, allowing for thermal bremsstrahlung from the heated plasma electrons impinging on the chromosphere. A simple model for hard x ray images of two-ribbon flares is presented. Theoretical microwave gyrosynchrotron spectra are calculated and analyzed, uncovering important new effects caused by the interplay of thermal and nonthermal particles. The theoretical spectra are compared with observed high resolution spectra of solar flares, and excellent agreement is found, in both hard x rays and microwaves. The future detailed application of this approach to solar flares is discussed, as are possible refinements to this theory.

  9. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  10. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  11. Thermal Cameras in School Laboratory Activities

    ERIC Educational Resources Information Center

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal cameras offer real-time visual access to otherwise invisible thermal phenomena, which are conceptually demanding for learners during traditional teaching. We present three studies of students' conduction of laboratory activities that employ thermal cameras to teach challenging thermal concepts in grades 4, 7 and 10-12. Visualization of…

  12. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2001-01-01

    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  13. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  14. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  15. Determination of Thermal State of Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  16. Thermal design of spacecraft solar arrays using a polyimide foam

    NASA Astrophysics Data System (ADS)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  17. Energy-dependent timing of thermal emission in solar flares

    NASA Astrophysics Data System (ADS)

    Jain, Rajmal; Rajpurohit, Arvind; Awasthi, Arun; Aschwanden, Markus

    A study of thermal emission in solar flares using high-resolution X-ray spectra observed by the Si detector onboard "Solar X-ray Spectrometer" (SOXS) has been conducted. The SOXS onboard GSAT-2 Indian spacecraft was launched by GSLV-D2 rocket on 08 May 2003. With this we investigate the energy dependent timing of thermal emission in solar flares. Firstly we model the spectral-temporal evolution of the X-ray flux F(e,t) assuming multi-temperature plasma governed by thermal conduction cooling. This model is found in agreement with the temperature and emission measure derived from the fitting of the spectra observed by the Si detector. We investigate 10 M-class flares and found that the emission in the energy range e=6 -20 keV is dominated by temperatures T=15 -50 MK while the power-law index (gamma) of the thermal spectrum varies over 2.7 -4.3. The temperature-dependent cooling time varies between 22 and 310 s. The electron density (ne) obtained for the flares under investigation ranges between 0.03 and 5X1011 cm-3 suggests that conduction cooling of thermal X-ray plasma dominates over radiative cooling in the initial phase of the flare. The current study also provides an alternative method for separating thermal from non-thermal spectra, which enables us to measure the break-energy point to be varying between 17 and 220.7 keV.

  18. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  19. Solar power tower design guide: Solar thermal central receiver power systems. A source of electricity and/or process heat

    NASA Astrophysics Data System (ADS)

    Battleson, K. W.

    1981-04-01

    Preliminary evaluations of whether a solar thermal central receiver plant is technically and economically feasible and desirable, for the potential user's application are reported. The cost elements, performance, and operation of solar central receiver systems are described.

  20. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  1. Photovoltaics and solar thermal conversion to electricity - Status and prospects

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1979-01-01

    Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.

  2. Value of thermal storage in solar IPH systems

    SciTech Connect

    Hock, S.M.; Karpuk, M.E.

    1980-12-01

    The value of thermal storage for three solar industrial process heat systems has been determined for storage capacities of 3 to 4000 hours. The dominant source of storage value is backup fuel savings with additional value derived from increased capital equipment utilization and elimination. A computer simulation was used to model the operation of the solar IPH system and predict the amount of fuel saved by heat delivered from storage. Sensitivity of storage value to process temperature, collector cost, load profile, insolation, and storage efficiency have been calculated. Storage values ranged from near zero to as high as $42/kWh of storage capacity.

  3. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  4. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  5. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  6. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  7. Forecasting the solar activity cycle: new insights

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Karak, Bidya Binay

    2013-07-01

    Having advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.

  8. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  9. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  10. Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka

    2016-05-01

    The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy

  11. Thermal properties of carbon black aqueous nanofluids for solar absorption

    PubMed Central

    2011-01-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency. PMID:21767359

  12. A survey of manufacturers of solar thermal energy systems

    NASA Technical Reports Server (NTRS)

    Levine, N.; Slonski, M. L.

    1982-01-01

    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.

  13. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  14. THERMALIZATION OF HEAVY IONS IN THE SOLAR WIND

    SciTech Connect

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-20

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1–5.5 amu/e and were collected in the time range of 1998–2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H{sup +}) and alpha particles (He{sup 2+}). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He{sup 2+} and C{sup 6+} follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O{sup 6+} shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O{sup 6+} occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  15. Solar thermal plant impact analysis and requirements definition

    NASA Technical Reports Server (NTRS)

    Gupta, Y. P.

    1980-01-01

    Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.

  16. Dish concentrators for solar thermal energy: Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  17. POLARIZATION OF THE THERMAL RADIO EMISSION FROM OUTER SOLAR CORONA

    SciTech Connect

    Sastry, Ch. V.

    2009-06-01

    The Haselgrove equations for radio-ray propagation in an anisotropic medium are used to determine the degree of circular polarization (dcp) of the low-frequency thermal radio emission from the outer solar corona with a magnetic field. The variation of dcp with frequency and magnetic field strength is investigated. It is found that weak magnetic fields can be detected by measuring the dcp at low frequencies.

  18. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  19. Exergetic analysis of parabolic trough solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  20. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  1. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  2. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  3. History and Forecast of Solar Activity

    NASA Astrophysics Data System (ADS)

    Mikushina, O. V.; Klimenko, V. V.; Dovgalyuk, V. V.

    From a new reconstruction of the radiocarbon production rate in the atmosphere we obtain a long history of maximum Wolf sunspot numbers. Based on this reconstruction as well as on the history of other indicators of solar activity (10Be, aurora borealis), we derive a long-period trend which together with the results of spectral analysis of maximum Wolf numbers series (1506-1993) form a basis for prediction of solar activity up to 2100. The resulting trigonometric trend points to an essential decrease in solar activity in the coming decades.

  4. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  5. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  6. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  7. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  8. Combined solar thermal and photovoltaic power plants - An approach to 24h solar electricity?

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.

    2016-05-01

    Solar thermal power plants have the advantage of being able to provide dispatchable renewable electricity even when the sun is not shining. Using thermal energy strorage (TES) they may increase the capacity factor (CF) considerably. However in order to increase the operating hours one has to increase both, thermal storage capacity and solar field size, because the additional solar field is needed to charge the storage. This increases investment cost, although levelised electricity cost (LEC) may decrease due to the higher generation. Photovoltaics as a fluctuating source on the other side has arrived at very low generation costs well below 10 ct/kWh even for Central Europe. Aiming at a capacity factor above 70% and at producing dispatchable power it is shown that by a suitable combination of CSP and PV we can arrive at lower costs than by increasing storage and solar field size in CSP plants alone. Although a complete baseload power plant with more than 90% full load hours may not be the most economic choice, power plants approaching a full 24h service in most days of the year seem to be possible at reasonably low tariffs.

  9. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  10. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  11. Heat engine development for solar thermal power systems

    NASA Astrophysics Data System (ADS)

    Pham, H. Q.; Jaffe, L. D.

    The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).

  12. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  13. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  14. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  15. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various

  16. Electric utility solar energy activities: 1980 survey

    NASA Astrophysics Data System (ADS)

    Wentworth, M. C.

    1980-12-01

    Brief descriptions of 839 projects being conducted by 236 utility companies are given. Also included are an index of projects by category, a statistical summary, a list of participating utilities with information contacts and addresses, a list of utilities with projects designated by category, a list of utilities organized by state, a list of available reports on utility sponsored projects, and a list of projects having multiple utility participants. Project categories include solar heating and cooling of buildings, wind energy conversion, solar thermal electric power, photovoltaics, biomass conversion, process heat, and ocean energy conversion.

  17. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  18. Thermal State-of-Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., Jr.; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  19. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  20. Advanced component research in the solar thermal program

    NASA Astrophysics Data System (ADS)

    Brown, C. T.

    The capabilities, equipment, and programs of the DoE advanced components test facility (ACTF) for developing solar thermal technologies are reviewed. The ACTF has a heliostat field, a rigid structural steel test tower at the geometric center of the heliostat field, an experiment platform on the tower, a heat rejection system, and computerized instrumentation. Tests have been performed on a directly-heated fluidized-bed solar receiver, a high pressure single-pass-to-superheat steam generator, a liquid Na heat pipe receiver, a flash pyrolysis biomass gasifier, and a grid-connected Stirling engine powered electrical generator. Helium served as the 720 C working fluid in the Stirling engine, and 18.8 kWe continuous was produced for the grid. Verified components qualified for further development are subjected to larger scale testing at a 5 MW facility in Albuquerque, NM.

  1. A dish-Stirling solar-thermal power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Clark, T. B.

    1980-01-01

    This paper presents results of a preliminary design/economic study of a first-generation point focusing distributed receiver solar-thermal electric system optimized for application to industrial and small community power plants at power levels up to 10 MWe. Power conversion is provided by small Stirling cycle engines mounted at the focus of paraboloidal solar concentrators. The output of multiple power modules (concentrator, receiver, engine, and electric generator) is collected by means of a conventional electrical system and interfaced with a utility grid. Based on the United Stirling P-75 engine, a 1 MWe system employing mass-produced components (100,000 modules/year) could produce electricity at costs competitive with those projected for electricity generated by more conventional means, e.g. with fossil fuels.

  2. An Analysis of Solar Global Activity

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2013-02-01

    This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

  3. Solar Thermal Propulsion Improvements at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P.

    2003-01-01

    Solar Thermal Propulsion (STP) is a concept which operates by transferring solar energy to a propellant, which thermally expands through a nozzle. The specific impulse performance is about twice that of chemical combustions engines, since there is no need for an oxidizer. In orbit, an inflatable concentrator mirror captures sunlight and focuses it inside an engine absorber cavity/heat exchanger, which then heats the propellant. The primary application of STP is with upperstages taking payloads from low earth orbit to geosynchronous earth orbit or earth escape velocities. STP engines are made of high temperature materials since heat exchanger operation requires temperatures greater than 2500K. Refractory metals such as tungsten and rhenium have been examined. The materials must also be compatible with hot hydrogen propellant. MSFC has three different engine designs, made of different refractory metal materials ready to test. Future engines will be made of high temperature carbide materials, which can withstand temperatures greater than 3000K, hot hydrogen, and provide higher performance. A specific impulse greater than 1000 seconds greatly reduces the amount of required propellant. A special 1 OkW solar ground test facility was made at MSFC to test various STP engine designs. The heliostat mirror, with dual-axis gear drive, tracks and reflects sunlight to the 18 ft. diameter concentrator mirror. The concentrator then focuses sunlight through a vacuum chamber window to a small focal point inside the STP engine. The facility closely simulates how the STP engine would function in orbit. The flux intensity at the focal point is equivalent to the intensity at a distance of 7 solar radii from the sun.

  4. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  5. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  6. Nano-manufactured catalyst for the production of hydrogen via solar thermal water splitting

    NASA Astrophysics Data System (ADS)

    Clower, William; Wilson, Chester G.

    2016-05-01

    This paper reports on the creation of nano-manufactured catalyst for the production of hydrogen fuel via the solar thermal water splitting process. The solar thermal water splitting process is considered the holy grail of green energy as the process produces zero carbon emissions. This is made possible by focusing solar energy as the heating source, while the only reactant consumed in the process is water. For this work we are investigating the reaction dynamics of cobalt ferrite catalyst supported on an aluminum oxide support. Solar thermal water splitting occurs in two steps: reduction and oxidation reactions. The reduction step occurs by heating the catalyst, which produces oxygen and converts the cobalt ferrite/aluminum oxide to metal aluminates. The oxidation step begins by flowing water over the newly created metal aluminates. The metal aluminates react with the oxygen creating the original cobalt ferrite/aluminum oxide catalyst as well as hydrogen gas. The catalyst created for this work was done utilizing an electrospinning technique. In a one-step process the aluminum oxide support material can be incorporated with cobalt ferrite catalyst into a single nanofiber. With this technique nanofiber catalyst can be created with diameters ranging from 20 to 80 nm. Nanostructured materials allow for large surface areas >50 m2/g and surface area to volume ratios >9e7/m. The large surface area creates the opportunity for more active sites where the reactions can occur. An increase in reactivity has the potential to move fuel production rate for solar thermal water splitting closer to large-scale commercialization.

  7. Climatic variables as indicators of solar activity

    NASA Astrophysics Data System (ADS)

    Balybina, A. S.; Karakhanyan, A. A.

    2012-12-01

    Tree-ring analysis is used successfully in studies of solar-terrestrial relations. We consider a linear dependence between the radial increment in conifers in Eastern Siberia and solar activity parameters: the length and amplitude of an 11-year solar cycle in the 20th century. It is shown that the increment in conifers in the region is larger in a longer and lower solar cycle than in a short and high one. A correlation between the increment in the width of annual rings of Pinus sylvestris and Siberian pine and the length of the ascending phase of an 11-year cycle is revealed: the longer the ascending phase, the larger the radial increment in conifers. The dynamics of the annual increment in conifers in the region is inversely related to the cycle amplitude and magnetic disturbances in the main solar cycle.

  8. SPS market analysis. [small solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Goff, H. C.

    1980-01-01

    A market analysis task included personal interviews by GE personnel and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective small solar thermal power systems (SPS) users. Over 500 firms were contacted, including three ownership classes of electric utilities, industrial firms in the top SIC codes for energy consumption, and design engineering firms. A market demand model was developed which utilizes the data base developed by personal interviews and surveys, and projected energy price and consumption data to perform sensitivity analyses and estimate potential markets for SPS.

  9. Electrochemical energy storage systems for solar thermal applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  10. Solar-thermal-energy collection/storage-pond system

    DOEpatents

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  11. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    PubMed

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  12. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  13. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  14. Thermal stability analysis of the fine structure of solar prominences

    NASA Technical Reports Server (NTRS)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  15. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Technical Reports Server (NTRS)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  16. The interaction of active comets with the solar wind

    SciTech Connect

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  17. Effective medium analysis of thermally evaporated Ag nanoparticle films for plasmonic enhancement in organic solar cell

    NASA Astrophysics Data System (ADS)

    Haidari, Gholamhosain; Hajimahmoodzadeh, Morteza; Fallah, Hamid Reza; Varnamkhasti, Mohsen Ghasemi

    2015-09-01

    Films of silver nanoparticles have optical properties that are useful for applications such as plasmonic light trapping in solar cells. We report on the simple fabrication of Ag nanoparticle films via thermal evaporation, with and without subsequent annealing. These films result in a random array of particles of various shapes and sizes. The modeling of such a vast collection of particles is still beyond reach of the modern computers. We show that it is possible to represent the silver island films by the Bergman effective mediums with the same optical properties. The effective medium method provides us with deep insight about the shape, the size and the distribution of nanoparticles. The far field simulations of solar cells, in which the silver island film is replaced with an effective medium layer, show a reduction in the absorption of active layer. Besides, the near field simulations based on finite-difference time-domain technique demonstrate that the near field effects on active layer absorption are negligible and this method highlights the importance of nanoparticles shapes. The PCPDTBT:PCBM solar cells with embedded silver island films are fabricated, and it is found that their performances show the similar trend. This insight can be used for the optical analysis of thermally evaporated Ag nanoparticle films for the improvement of organic solar cells.

  18. CYCLIC THERMAL SIGNATURE IN A GLOBAL MHD SIMULATION OF SOLAR CONVECTION

    SciTech Connect

    Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.

    2013-11-10

    Global magnetohydrodynamical simulations of the solar convection zone have recently achieved cyclic large-scale axisymmetric magnetic fields undergoing polarity reversals on a decadal time scale. In this Letter, we show that these simulations also display a thermal convective luminosity that varies in-phase with the magnetic cycle, and trace this modulation to deep-seated magnetically mediated changes in convective flow patterns. Within the context of the ongoing debate on the physical origin of the observed 11 yr variations in total solar irradiance, such a signature supports the thesis according to which all, or part, of the variations on decadal time scales and longer could be attributed to a global modulation of the Sun's internal thermal structure by magnetic activity.

  19. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  20. Interaction of a solar space heating system with the thermal behavior of a building

    NASA Astrophysics Data System (ADS)

    Vilmer, C.; Warren, M., L.; Auslander, D.

    1980-12-01

    The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time and off-time of a heat cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior was developed and verified. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes.

  1. Interaction of a solar space heating system with the thermal behavior of a building

    SciTech Connect

    Vilmer, C.; Warren, M.L.; Auslander, D.

    1980-12-01

    The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

  2. Understanding Thermal Equilibrium through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  3. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  4. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  5. Prediciting Solar Activity: Today, Tomorrow, Next Year

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  6. Proceedings of the Annual Solar Thermal Technology Research and Development Conference

    NASA Astrophysics Data System (ADS)

    Couch, W. A.

    1989-02-01

    The Annual Solar Thermal Technology Research and Development Conference is being held at the Holiday Inn Crowne Plaza in Arlington, Virgina, March 8 and 9, 1989. This year the conference is meeting in conjunction with SOLTECH '89. SOLTECH '89 is a jointly sponsored meeting of the Solar Energy Industries Association, Interstate Solar Coordination Council, Sandia National Laboratories and the Solar Energy Research Institute. This report contains the agenda, extended abstracts and most significant visual aids used by the speakers during the Solar Thermal Technology research and development sessions. The program is divided into three sessions: Solar Electric Technology, Non-Electric Research and Development and Applications, and Concentrators.

  7. Second-law efficiency of solar-thermal cavity receivers

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1983-01-01

    Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. An equation for the Second Law efficiency of a cavity receiver is derived from the definition of available energy, which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding environment. The fundamental concepts of the entropy and availability of radiation were explored from which a workable relationship among the reflected cone half-angle, the insolation, and the concentrator geometric characteristics was developed as part of the derivation of the Second Law efficiency. First and Second Law efficiencies were compared for data collected from two receivers that were designed for different purposes. A Second Law approach to quantifying the performance of a solar-thermal cavity receiver lends greater insight into the total performance than does the conventional First Law method.

  8. Solar Thermal Vacuum Test of Deployable Astromesh Reflector

    NASA Technical Reports Server (NTRS)

    Stegman, Matthew D.

    2009-01-01

    On September 10, 2008, a 36-hour Solar Thermal Vacuum Test of a 5m deployable mesh reflector was completed in JPL's 25' Space Simulator by the Advanced Deployable Structures Group at JPL. The testing was performed under NASA's Innovative Partnership Program (IPP) as a risk reduction effort for two JPL Decadal Survey Missions: DESDynI and SMAP. The 5.0 m aperture Astromesh reflector was provided by Northrop Grumman Aerospace Systems (NGAS) Astro Aerospace, our IPP industry partner. The testing utilized a state-of-the-art photogrammetry system to measure deformation of the reflector under LN2 cold soak, 0.25 Earth sun, 0.5 sun and 1.0 sun. An intricate network of thermocouples (approximately 200 in total) was used to determine the localized temperature across the mesh as well as on the perimeter truss of the reflector. Half of the reflector was in a fixed shadow to maximize thermal gradients. A mobility system was built for remotely actuating the cryo-vacuum capable photogrammetry camera around the circumference of the Solar Simulator. Photogrammetric resolution of 0.025 mm RMS (0.001") was achieved over the entire 5 meter aperture for each test case. The data will be used for thermo-elastic model correlation and validation, which will benefit the planned Earth Science Missions.

  9. Identification and analysis of factors affecting thermal shock resistance of ceramic materials in solar receivers

    NASA Astrophysics Data System (ADS)

    Hasselman, D. P. H.; Singh, J. P.; Satyamurthy, K.

    1980-07-01

    An analysis was conducted of the possible modes of thermal stress failure of brittle ceramics for potential use in point-focussing solar receivers. The pertinent materials properties which control thermal stress resistance were identified for conditions of steady-state and transient heat flow, convective and radiative heat transfer, thermal buckling and thermal fatigue as well as catastrophic crack propagation. Selection rules for materials with optimum thermal stress resistance for a particular thermal environment were identified. Recommendations for materials for particular components were made. The general requirements for a thermal shock testing program quantitatively meaningful for point-focussing solar receivers were outlined. Recommendations for follow-on theoretical analyses were made.

  10. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  11. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  12. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  13. Nonimaging concentrators for solar thermal energy. Final report

    SciTech Connect

    Winston, R.

    1980-03-21

    A small experimental solar collector test facility has been established on the campus of the University of Chicago. This capability has been used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: (1) a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), (2) a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and (3) moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems have been designed, built and tested. The performance characteristics are presented. In addition a 73 m/sup 2/ experimental array of 3X non-evacuated CPC's has been installed in a school heating system on the Navajo Indian Reservation in New Mexico. The full array has a peak noon time efficiency of approx. 50% at ..delta..T = 50/sup 0/C above ambient and has supplied about half the school's heat load for the past two heating seasons. Several theoretical features of nonimaging concentration have been investigated including their long term energy collecting behavior. The measured performance of the different systems shows clearly that non-tracking concentrators can provide solar thermal energy from moderately high low temperature regimes (> 50/sup 0/C above ambient) up into the mid-temperature region (well above 200/sup 0/C above ambient). The measured efficiency at 220/sup 0/C for the 5.25X CPC was as high or higher than that for any of the commercial tracking systems tested.

  14. Thermal Activation in Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Bance, S.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Reichel, F.; Schrefl, T.

    2015-06-01

    The coercive field of permanent magnets decays with temperature. At non-zero temperatures, the system can overcome a finite energy barrier through thermal fluctuations. Using finite element micromagnetic simulations, we quantify this effect, which reduces coercivity in addition to the decrease of the coercive field associated with the temperature dependence of the anisotropy field, and validate the method through comparison with existing experimental data.

  15. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  16. Solar electric propulsion system thermal analysis. [including heat pipes and multilayer insulation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Thermal control elements applicable to the solar electric propulsion stage are discussed along with thermal control concepts. Boundary conditions are defined, and a thermal analysis was conducted with special emphasis on the power processor and equipment compartment thermal control system. Conclusions and recommendations are included.

  17. Solar activity; weather and climate: a review

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. I.

    2003-04-01

    In the proposed review, experimental evidences on a close relationship between the solar activity and the weather are discussed. Solar radiation variations associated with various manifestation of the solar activity on the Sun's surface (sunspots, flocculae) during both the short-term disturbances and 11-year solar cycles are considered. A conclusion is arrived on the intensity of those variations to be insufficient to produce observed disturbances in the lower atmosphere state (Foukal, Lin and others). Changes of the atmosphere transmittance and cloudiness associated with solar flares and geomagnetic disturbances are discussed. There is shown that variations of the solar radiation observed at the Earth's surface during the disturbances mentioned above may explain quantitatively the observed changes in the lower atmosphere state. There is supposed that the observed variations of the cloudiness and atmosphere transparency may be caused by the intensity variations of the cosmic rays flux of the galactic and cosmic origin (Tinsley, Scherrer, Hilis, Deer, Pudovkin, Veretenenko, Friis-Christensen, Svensmark and others). Various mechanisms of the cosmic rays influence on the atmospheric transparency and cloudiness variations are considered. Some numerical models describing the state and dynamics of the lower atmosphere are discussed and the possibility of incorporating in them as input parameters the observed variations of the cloudiness and atmosphere's transparency is analyzed.

  18. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  19. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  20. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  1. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    PubMed

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years.

  2. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  3. Thermal Evolution of Solar Flares During the First Year of SDO as Seen by the EVE Instrument

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.

    2011-01-01

    It is very evident during the first year of the Solar Dynamics Observatory (SDO) that the Sun awoke from its prolonged minimum and is well into solar cycle 24. There has been tens of moderate M-class flares and a large X-class event (as of abstract submission), with more surely to come as the solar cycle activity increases. With SDO's 24/7 observations, every single flare has been observed through their entire evolution, providing new insights in the thermal evolution of every flare. It is evident that this evolution is extremely different for many of the flares, even for flares with similar X-ray magnitude classifications. Presented and discussed will be these different flares with their varying thermal evolution profiles as observed by the Extreme ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO).

  4. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  5. Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.

  6. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  7. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  8. Solar activity geomagnetic field and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Sturrock, P. A.

    1976-01-01

    Spectral analysis is used as an independent test of the reported association between interplanetary-magnetic-field structure and terrestrial weather. Spectra of the Ap geomagnetic activity index and the vorticity area index for the years from 1964 to 1970 are examined for common features that may be associated with solar-related phenomena, specifically for peaks in the power spectra of both time series with periods near 27.1 days. The spectra are compared in three ways, and the largest peak with the smallest probability estimate is found to occur at a period of 27.49 days. This result is considered to be statistically significant at the 98% level. It is concluded that the period derived from the Ap spectrum is related to solar rotation and that the analysis provides supporting evidence for a connection between the vorticity area index and solar activity.

  9. High temperature underground thermal energy storage system for solar energy

    NASA Technical Reports Server (NTRS)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  10. Investigating the Thermal Evolution of Solar Prominence Formation

    NASA Astrophysics Data System (ADS)

    Kucera, Therese A.; Viall, Nicholeen M.; Karpen, Judith T.

    2015-04-01

    We present a study of prominence formation using time series analysis of Solar Dynamics Observatory’s Atmospheric Imaging Assembly (SDO/AIA) data. In evaporation-condensation models of prominence formation, heating at the foot-points of sheared coronal flux-tubes results in evaporation of hot (a few MK) material into the corona and subsequent catastrophic cooling of the hot material to form the cool (~10,000 K) prominence material. We present the results of a time-lag analysis that tracks the thermal evolution using emission formed at different temperatures. This analysis is made possible by AIA's many wavebands and high time resolution, and it allows us to look for signs of the evaporation-condensation process and to study the heating time scales involved. Supported by NASA’s Living with a Star program.

  11. Aerospatiale industrial thermal plasma activities

    NASA Astrophysics Data System (ADS)

    Labrot, Maxime

    Details of nontransferred arc torches, plasma systems in industrial use and operational plasma applications are listed. A plasma application on a foundry cupola is detailed. The setting up of a plasma system is described. Research and development activities are summarized.

  12. SolSTUS: Solar Source Thermal Upper Stage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This paper was written by members of the Utah State University (USU) Space Systems Design class, fall quarter 1993. The class is funded by NASA and administered by the University Space Research Association (USRA). The focus of the class is to give students some experience in design of space systems and as a source of original ideas for NASA. This paper is a summary of the work done by members of the Space Systems Design class during the opening phase of the course. The class was divided into groups to work on different areas of the Solar Thermal Rocket (STR) booster in order to produce a design reference mission that would identify the key design issues. The design reference mission focused upon a small satellite mission to Mars. There are several critical components in a Solar Thermal Rocket. STR's produce a very low thrust, but have a high specific impulse, meaning that they take longer to reach the desired orbit, but use a lot less fuel in doing it. The complexity of the rocket is discussed in this paper. Some of the more critical design problems discussed are: (1) the structural and optical complexity of collecting and focusing sunlight onto a specific point, (2) long term storage of fuel (liquid hydrogen), (3) attitude control while thrusting in an elliptical orbit and orienting the mirrors to collect sunlight, and (4) power and communications for the rocket and it's internal systems. The design reference mission discussed here is a very general mission to Mars. A first order trajectory design has been done and a possible basic science payload for Mars has been suggested. This paper summarizes the design reference mission (DRM) formulated by the USU students during fall quarter and identifies major design challenges that will confront the design team during the next two quarters here at USU.

  13. A solar thermal electric power plant for small communities

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  14. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    SciTech Connect

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  15. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  16. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  17. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  18. Solar thermal technologies as a bridge from fossil fuels to renewables

    NASA Astrophysics Data System (ADS)

    Dalvi, Vishwanath Haily; Panse, Sudhir V.; Joshi, Jyeshtharaj B.

    2015-11-01

    Integrating solar thermal systems into Rankine-cycle power plants can be done with minimal modification to the existing infrastructure. This presents an opportunity to introduce these technologies into the commercial space incrementally, to allow engineers to build familiarity with the systems before phasing out fossil-fuel energy with solar electricity. This paper shows that there is no thermodynamic barrier to injecting solar thermal heat into Rankine-cycle plants to offset even up to 50% fossil-fuel combustion with existing technology: with better solar-to-electricity efficiencies than conventionally deployed solar-thermal power plants. This strategy is economically preferable to installing carbon-capture and compression equipment for mitigating an equivalent amount of greenhouse-gas emissions. We suggest that such projects be encouraged by extending the same subsidy/incentives to the solar-thermal fraction of a `solar-aided’ plant that would be offered to a conventionally deployed solar-thermal power plant of similar capacity. Such a policy would prepare the ground for an incremental solar-thermal takeover of fossil-fuel power plants.

  19. Treatment of Solar and Thermal Radiation in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.; Oinas, V.

    2015-12-01

    It is the interaction of solar and thermal radiation with the climate system constituents that determines the prevailing climate on Earth. The principal radiative constituents of the climate system are clouds, aerosols, greenhouse gases, and the ground surface. Accurate rendering of their interaction with the incident solar radiation and the outgoing thermal radiation is required if a climate model is to be capable of simulating and predicting the complex changes that take place in the terrestrial climate system. In the GISS climate model, these radiative tasks are accomplished with a GCM radiation model that utilizes the correlated k-distribution treatment that closely matches Line-by-Line accuracy (Lacis and Oinas, 1991) for the gaseous absorbers, and an adaptation of the doubling/adding method (Lacis and Hansen, 1974) to compute multiple scattering by clouds and aerosols. The radiative parameters to model the spectral dependence of solar and longwave radiation (UV to microwave) utilizes Mie scattering and T-matrix calculations covering the broad range of particle sizes and compositions encountered in the climate system. Cloud treatment also incorporates an empirical representation of sub-grid inhomogeneity and space-time variability of cloud optical properties (derived from ISCCP data) that utilizes a Monte Carlo-based re-scaling parameterization of the cloud plane-parallel radiative parameters (Cairns et al, 2001). The longwave calculations compute correlated k-distribution radiances at three quadrature points (without scattering), and include the effects of cloud scattering in parameterized form for the outgoing and downwelling LW fluxes. For hygroscopic aerosols (e.g., sulfates, nitrates, sea salt), the effects of changing relative humidity on particle size and refractive index are explicitly taken into account. In this way, the GISS GCM radiation model calculates the SW and LW radiative fluxes, and the corresponding radiative heating and cooling rates in

  20. Non-thermal line-broadening in solar prominences

    NASA Astrophysics Data System (ADS)

    Stellmacher, G.; Wiehr, E.

    2015-09-01

    Aims: We show that the line broadening in quiescent solar prominences is mainly due to non-thermal velocities. Methods: We have simultaneously observed a wide range of optically thin lines in quiescent prominences, selected for bright and narrow Mg b emission without line satellites from macro-shifts. Results: We find a ratio of reduced widths, ΔλD/λ0, of Hγ and Hδ of 1.05 ± 0.03, which can hardly be attributed to saturation, since both are optically thin for the prominences observed: τγ ≤ 0.3, τδ ≤ 0.15. We confirm the ratio of reduced widths of He 4772 (triplet) and He 5015 (singlet) of 1.1 ± 0.05 at higher significance and detect a width ratio of Mg b2 and Mg 4571 (both from the triplet system) of 1.3 ± 0.1. Conclusions: The discrepant widths of lines from different atoms, and even from the same atom, cannot be represented by a unique pair [Tkin; Vnth]. Values of Tkin deduced from observed line radiances using models indicate low temperatures down to Tkin ≈ 5000 K. Non-thermal velocities, related to different physical states of the respective emitting prominence region, seem to be the most important line broadening mechanism.

  1. Catawba Science Center solar activities. Final report

    SciTech Connect

    1983-01-01

    Two demonstration solar water heaters were built. One was to be used at the Science Center and the other with traveling programs. This was completed and both units are being used for these programs which continue. We were able to build a library of 99 solar energy books and booklets that are available to the public for reference. We also conducted programs for 683 students of all ages. The culminating activity was the planned Energy Awareness Festival. This was held on September 26, 1981 and attracted 450 area citizens. We offered free exhibit space and hosted 17 exhibitors.

  2. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    PubMed

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-01

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency. PMID:27537862

  3. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    PubMed

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-01

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  4. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  5. Solar selective black cobalt: preparation, structure, and thermal stability

    SciTech Connect

    Smith, G.B.; Ignatiev, A.; Zajac, G.

    1980-08-01

    In the quest for an electroplated selective black coating stable to 500 /sup 0/C in air, black cobalts have been prepared by three techniques to yield (a) plated cobalt sulphides, (b) plated cobalt oxide-hydroxide, and (c) cobalt oxide prepared by thermal oxidation of electropolated cobalt metal. The optical properties of the various coatings are analyzed before and after exposure to air for extended periods of time at temperatures in the 300 /sup 0/--500 /sup 0/C range. The sulfide black cobalt is not acceptable as a high-temperature selective absorber due to severe thermal degradation. The plated oxide is a good selective absorber to about 400 /sup 0/C, and the thermally oxidized black to a slightly higher temperature, but degrades at 500 /sup 0/C. Structure studies via scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and x-ray photoemission spectroscopy (XPS) are reported which yield a full account of the coating chemistry before and after heating. The studies reveal that the high solar absorptance of the acceptable black cobalt coatings is due to a continuation of a porous outer layer grading into nondense oxides of cobalt; either CoO or Co/sub 3/O/sub 4/, depending on the film. Absorption is intrinsic but not due to metal particles as in black chrome. A limited amount of optical degradation occurs upon heating the oxide black cobalt in air due to oxidation of hydroxide. However, the major degradation problem is shown to be substrate oxidation in contrast to black chrome where film oxidation is the principal problem.

  6. Resonant Rossby waves and solar activity

    NASA Technical Reports Server (NTRS)

    Krivolutsky, A. A.; Loshkova, O. A.

    1989-01-01

    Large scale transient waves are an essential part of atmospheric dynamics. Some of these waves (like 27 day waves) could have a solar nature. The contribution of the 27 day planetary waves to a total long period spectrum of the atmospheric processes during one solar cycle was investigated. Ivanovsky and Krivolutsky proposed that the 27 day wave has a resonant nature. The real atmospheric processes were investigated. The method of 2-D wave analysis used is described by Krivolutsky. It was concluded that the resonant nature of the 27 day wave is not unicum. There are long periods waves (50 day wave) in stratosphere which belong to the resonant waves, too. It is a very interesting fact for the solar activity-weather problem.

  7. Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    NASA Technical Reports Server (NTRS)

    Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe

    2008-01-01

    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.

  8. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  9. Solar thermal power plants in small utilities - An economic impact analysis

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Ferber, R. R.; Mayo, L. G.

    1979-01-01

    A study was performed to assess the potential economic impact of small solar thermal electric power systems in statistically representative synthetic small utilities of the Southwestern United States. Power supply expansion plans were compared on the basis of present worth of future revenue requirements for 1980-2000 with and without solar thermal plants. Coal-fired and oil-fired municipal utility expansion plans with 5 percent solar penetration were 0.5 percent and 2.25 percent less expensive, respectively, than the corresponding conventional plan. At $969/kWe, which assumes the same low cost solar equipment but no improvement in site development costs, solar penetration of 5 percent in the oil-fired municipal reduced revenue requirements 0.88 percent. The paper concludes that some solar thermal plants are potentially economic in small community utilities of the Southwest.

  10. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-01

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  11. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  12. Cyclic thermal signature in a global MHD simulation of solar convection

    NASA Astrophysics Data System (ADS)

    Cossette, J.; Charbonneau, P.; Smolarkiewicz, P. K.

    2013-12-01

    Space-based observations have clearly established that total solar irradiance (TSI) varies on time scales from minutes to days and months as well as on the longer time scale of the 11-year solar cycle. The most conspicuous of these variations is arguably the slight increase of TSI (0.1%) at solar maxima relative to solar minima. Models that include contributions from surface solar magnetism alone (i.e. sunspots, faculae and magnetic network) have been very successful at reproducing the observed TSI fluctuations on time scales shorter than a year, but leave some doubts as to the origin of the longer decadal fluctuations. In particular, one school of thought argues that surface magnetism alone can explain the entire TSI variance; see (Lean & al. 1998, ApJ, 492, 390), whereas; the other emphasizes on taking into account the effect of a global modulation of solar thermal structure by magnetic activity; see (Li & al. 2003, ApJ, 591, 1267). Observationally, the potential for the occurrence of magnetically-modulated global structural changes is supported by a positive correlation between p-mode oscillation frequencies and the TSI cycle as well as by recent evidence for a long-term trend in the TSI record that is not seen in indicators of surface magnetism; see (Bhatnagar & al. 1999, ApJ, 521, 885; Fröhlich 2013, Space Sci Rev,176, 237). Additionally, 1D structural solar models have demonstrated that the inclusion of a magnetically-modulated turbulent mechanism could explain the observed p-mode oscillation frequency changes with great accuracy. However, these models relied upon an ad-hoc parametrization of the alleged process and therefore obtaining a complete physical picture of the modulating mechanism requires solving the equations governing the self-consistent evolution of the solar plasma. Here we present a global magnetohydrodynamical (MHD) simulation of solar convection extending over more than a millennium that produces large-scale solar-like axisymmetric magnetic

  13. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  14. SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Thermal energy storage tests

    SciTech Connect

    Not Available

    1987-04-01

    The solar-powered water desalination pilot plant at Yanbu in the Kingdom of Saudi Arabia is a unique project in terms of its size, purpose, objectives, and scope. The plant uses a combination of solar thermal energy and fossil-fuel energy to provide the shaft horsepower necessary to operate the indirect heat-transfer freeze desalination process developed and patented by Chicago Bridge and Iron Inc. (CBandI) to produce potable water. The thermal storage acts as a buffer between the energy collection subsystem and the energy delivery subsystem. This report describes the thermal storage subsystem. One of the objectives of the desalination research project is to publish a series of reports on the performance of its various subsystems. The authors of this report do not claim that it is exhaustive and complete in all respects, for more than one reason. Any research activity is like an open-ended problem and during the tenure of its investigation it raises more problems than can be solved. However, the authors believe that the storage system behavior has posed no serious problem and that the report adequately covers all the facets of the investigation. 3 refs., 5 figs., 3 tabs.

  15. Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  16. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  17. Space exploration with a solar sail coated by materials that undergo thermal desorption

    NASA Astrophysics Data System (ADS)

    Kezerashvili, Roman Ya.

    2015-12-01

    For extrasolar space exploration it is suggested to use space environmental effects such as solar radiation heating to accelerate a solar sail coated by materials that undergo thermal desorption at a particular temperature. The developed approach allows the perihelion of the solar sail orbits to be determined based on the temperature requirement for the solar sail materials. Our study shows that the temperature of a solar sail increases as r - 2 / 5 when the heliocentric distance r decreases. The proposed sail has two coats of the materials that undergo desorption at different solar sail temperatures depending on the heliocentric distance. The first desorption occurs at the Earth orbit and provides the thrust needed to propel the solar sail toward the Sun. When the solar sail approaches the Sun, its temperature increases, and the second coat undergoes desorption at the perihelion of the heliocentric escape orbit. This provides a second thrust and boosts the solar sail to its escape velocity.

  18. Interaction of a solar space heating system with the thermal behavior of a building

    NASA Astrophysics Data System (ADS)

    Vilmer, C.; Warren, M. L.; Auslander, D.

    The thermal behavior of a building in response to heat input from an active solar space heating system is analysed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements. The results indicate that to maintain room temperatures within comfort limits by minimizing both swing and droop, a hydronic solar space heating system requires a control system that adjusts anticipation and setpoints in relation to the outdoor and the storage tank temperatures.

  19. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  20. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  1. Midtemperature solar systems test facility predictions for thermal performance based on test data: solar kinetics T-600 solar collector with FEK 244 reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-04-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics T-600 solar line-focusing parabolic trough collector are presented for three output temperatures at five cities in the US. (WHK)

  2. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  3. The Little Ice Age and Solar Activity

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela

    We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.

  4. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  5. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  6. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  7. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  8. Geothermal reservoir characterization through active thermal testing

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Klepikova, Maria; Jalali, Mohammadreza; Fisch, Hansruedi; Loew, Simon; Amann, Florian

    2016-04-01

    Development and deployment of Enhanced Geothermal Systems (EGS) as renewable energy resources are part of the Swiss Energy Strategy 2050. To pioneer further EGS projects in Switzerland, a decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been launched at the Grimsel Test Site (GTS). The experiments are hosted in a low fracture density volume of the Grimsel granodiorite, similar to those expected at the potential enhanced geothermal system sites in the deep basement rocks of Northern Switzerland. One of the key goals of this multi-disciplinary experiment is to provide a pre- and post-stimulation characterization of the hydraulic and thermal properties of the stimulated fracture network with high resolution and to determine natural structures controlling the fluid flow and heat transport. Active thermal tests including thermal dilution tests and heat tracer tests allow for investigation of groundwater fluid flow and heat transport. Moreover, the spatial and temporal integrity of distributed temperature sensing (DTS) monitoring upgrades the potential and applicability of thermal tests in boreholes (e.g. Read et al., 2013). Here, we present active thermal test results and discuss the advantages and limitations of this method compared to classical approaches (hydraulic packer tests, solute tracer tests, flowing fluid electrical conductivity logging). The experimental tests were conducted in two boreholes intersected by a few low to moderately transmissive fault zones (fracture transmissivity of about 1E-9 m2/s - 1E-7 m2/s). Our preliminary results show that even in low-permeable environments active thermal testing may provide valuable insights into groundwater and heat transport pathways. Read T., O. Bour, V. Bense, T. Le Borgne, P. Goderniaux, M.V. Klepikova, R. Hochreutener, N. Lavenant, and V. Boschero (2013), Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing

  9. High voltage thermally diffused p(+)n solar cells

    NASA Technical Reports Server (NTRS)

    Faur, M.; Faur, M.; Flood, D. J.; Brinker, D. J.; Weinberg, I.; Goradia, C.; Fatemi, N.; Goradia, M.; Thesling, W.

    1991-01-01

    The possibility of fabricating thermally diffused p(+)n InP solar-cells with high open-circuit voltage without sacrificing the short circuit current is discussed. The p(+)n InP junctions were formed by Cd and Zn diffusion through a 3-5-nm-thick anodic or chemical phosphorus-rich oxide cap layer grown on n:InP:S (with ND-NA = 3.5 x 10 exp 16 and 4.5 x 10 exp 17/cu cm) Czochralski LEC-grown substrates. After thinning the emitter from its initial thickness of 1 to 2.5 micron down to 0.06-0.15 micron, the maximum efficiency was found when the emitter was 0.2 to 0.3 micron thick. Typical AM0, 25 C values of 854-860 mV were achieved for Voc, Jsc values were from 25.9 to 29.1 mA/sq cm using only the P-rich passivating layer left after the thinning process as an antireflection coating.

  10. A novel application of concentrated solar thermal energy in foundries.

    PubMed

    Selvaraj, J; Harikesavan, V; Eshwanth, A

    2016-05-01

    Scrap preheating in foundries is a technology that saves melting energy, leading to economic and environmental benefits. The proposed method in this paper utilizes solar thermal energy for preheating scrap, effected through a parabolic trough concentrator that focuses sunlight onto a receiver which carries the metallic scrap. Scraps of various thicknesses were placed on the receiver to study the heat absorption by them. Experimental results revealed the pattern with which heat is gained by the scrap, the efficiency of the process and how it is affected as the scrap gains heat. The inferences from them gave practical guidelines on handling scraps for best possible energy savings. Based on the experiments conducted, preheat of up to 160 °C and a maximum efficiency of 70 % and a minimum efficiency of 40 % could be achieved across the time elapsed and heat gained by the scrap. Calculations show that this technology has the potential to save around 8 % of the energy consumption in foundries. Cumulative benefits are very encouraging: 180.45 million kWh of energy savings and 203,905 t of carbon emissions cut per year across the globe. This research reveals immense scope for this technology to be adopted by foundries throughout the world.

  11. Active space heating and hot water supply with solar energy

    SciTech Connect

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  12. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition.

    PubMed

    Jaramillo, Rafael; Steinmann, Vera; Yang, Chuanxi; Hartman, Katy; Chakraborty, Rupak; Poindexter, Jeremy R; Castillo, Mariela Lizet; Gordon, Roy; Buonassisi, Tonio

    2015-05-22

    Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm(2). Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.

  13. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition.

    PubMed

    Jaramillo, Rafael; Steinmann, Vera; Yang, Chuanxi; Hartman, Katy; Chakraborty, Rupak; Poindexter, Jeremy R; Castillo, Mariela Lizet; Gordon, Roy; Buonassisi, Tonio

    2015-01-01

    Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm(2). Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices. PMID:26067454

  14. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  15. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  16. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  17. Thermal performance of a new solar air heater

    SciTech Connect

    Tiris, C.; Ozbalta, N.; Tiris, M.; Dincer, I.

    1995-05-01

    A solar air heater, part of a food drying system using solar energy as a renewable energy source for heat, was developed and tested for several agricultural products (i.e., sultana grapes, green beans, sweet peppers, chili peppers). Drying processes were conducted in the chamber with forced natural air heated partly by solar energy. Solar air heater performances were discussed along with estimates of energy efficiency of the system. The obtained results indicate that the present system is efficiency and effective.

  18. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  19. Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the Sun, motion of the concentrator may stop. As the Sun moves relative to the Earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  20. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  1. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  2. Monitoring solar-thermal systems: An outline of methods and procedures

    SciTech Connect

    Rosenthal, A.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  3. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  4. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  5. Development of a consensus standard for determining thermal performance of high-concentration-ratio solar collectors

    NASA Astrophysics Data System (ADS)

    Blackmon, J. B.; Linskens, M. C.; Reed, K. A.

    1982-12-01

    Consensus standard test method, for determining the thermal performance of concentrating solar collectors is described. The method applies to outdoor testing of one or two axis concentrating collectors with heat fluids for use in thermal systems and whose design is such that the effects of diffuse sky irradiance is negligible. The procedures determine the optical response of the collector for various angles of incidence of solar radiation, and the thermal performance of the collector at various operating temperatures for the condition of maximum optical response. The method requires quasi steady state conditions, measurement of enviromental parameters, and determination of the fluidmass flow rate specific heat product and temperature difference of the heat transfer fluid between the inlet and outlet of the collector. These quantities determine the rate of heat gain for the solar irradiance condition encountered. Thermal performance is determined as the rate of heat gain of the collector relative to the solar power incident on the plane of the collector aperture.

  6. Handbook of data on selected engine components for solar thermal applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A data base on developed and commercially available power conversion system components for Rankine and Brayton cycle engines, which have potential application to solar thermal power-generating systems is presented. The status of the Stirling engine is discussed.

  7. Thermal cycle testing of Space Station Freedom solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Schieman, David A.

    1991-01-01

    Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.

  8. Thermal stabilisation of polymer-fullerene bulk heterojunction morphology for efficient photovoltaic solar cells.

    PubMed

    Derue, Lionel; Dautel, Olivier; Tournebize, Aurélien; Drees, Martin; Pan, Hualong; Berthumeyrie, Sébastien; Pavageau, Bertrand; Cloutet, Eric; Chambon, Sylvain; Hirsch, Lionel; Rivaton, Agnès; Hudhomme, Piétrick; Facchetti, Antonio; Wantz, Guillaume

    2014-09-01

    A novel stable bisazide molecule that can freeze the bulk heterojunction morphology at its optimized layout by specifically bonding to fullerenes is reported. The concept is demonstrated with various polymers: fullerene derivatives systems enable highly thermally stable polymer solar cells.

  9. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  10. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  11. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  12. Thermal optical surface properties and high-temperature solar energy conversion

    NASA Technical Reports Server (NTRS)

    Wen, L.

    1978-01-01

    The effects of thermal surface properties on the performance of representative point focusing solar power plants are assessed in this paper. The tradeoff relationships are presented in terms of normalized system performance as a function of thermal optical design parameters. Crucial surface properties include solar reflectance, specular spreading due to microscopic roughness, surface error due to manufacturing slope tolerance or waviness and concentrator pointing accuracy. Two representative power conversion systems, a Rankine steam cycle and an open air Brayton cycle, are considered.

  13. Thermal power systems small power systems application project: Siting issues for solar thermal power plants with small community applications

    NASA Technical Reports Server (NTRS)

    Holbeck, H. J.; Ireland, S. J.

    1979-01-01

    The siting issues associated with small, dispersed solar thermal power plants for utility/small community applications of less than 10 MWe are reported. Some specific requirements are refered to the first engineering experiment for the Small Power Systems Applications (SPSA) Project. The background for the subsequent issue discussions is provided. The SPSA Project and the requirements for the first engineering experiment are described, and the objectives and scope for the report as a whole. A overview of solar thermal technologies and some technology options are discussed.

  14. Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage

    PubMed Central

    2016-01-01

    Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can vary dramatically depending on the chosen substituents. The molecular design of optimal compounds therefore requires a detailed understanding of the effect of individual substituents as well as their interplay. Here, we model absorption spectra, potential energy storage, and thermal barriers for back-conversion of several substituted systems using both single-reference (density functional theory using PBE, B3LYP, CAM-B3LYP, M06, M06-2x, and M06-L functionals as well as MP2 calculations) and multireference methods (complete active space techniques). Already the diaryl substituted compound displays a strong red-shift compared to the unsubstituted system, which is shown to result from the extension of the conjugated π-system upon substitution. Using specific donor/acceptor groups gives rise to a further albeit relatively smaller red-shift. The calculated storage energy is found to be rather insensitive to the specific substituents, although solvent effects are likely to be important and require further study. The barrier for thermal back-conversion exhibits strong multireference character and as a result is noticeably correlated with the red-shift. Two possible reaction paths for the thermal back-conversion of diaryl substituted quadricyclane are identified and it is shown that among the compounds considered the path via the acceptor side is systematically favored. Finally, the present study establishes the basis for high-throughput screening of norbornadiene-quadricyclane compounds as it provides guidelines for the level of accuracy that can be expected for key properties from

  15. Development of Proposed Standards for Testing Solar Collectors and Thermal Storage Devices. NBS Technical Note 899.

    ERIC Educational Resources Information Center

    Hill, James E.; And Others

    A study has been made at the National Bureau of Standards of the different techniques that are or could be used for testing solar collectors and thermal storage devices that are used in solar heating and cooling systems. This report reviews the various testing methods and outlines a recommended test procedure, including apparatus and…

  16. Solar thermal electric and biomass power: Program overviews, fiscal years 1990-1991

    NASA Astrophysics Data System (ADS)

    1992-06-01

    This document highlights progress made in the U.S. Department of Energy's Solar Thermal Electric and Biomass Power Programs during FY 1990-FY 1991. A broad outline is offered of program goals, overview of the technologies, performance of existing solar plants, and prospects for future development of the technology.

  17. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  18. Design of solar thermal dryers for 24-hour food drying processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solar drying is a method that has been adopted for many years as a food preservation method. To this date, significant advancements have been made in this field with the adoption of a multitude of solar thermal dryer designs for single-layer and multi-layer drying of fruit and vegetables e.g. cabine...

  19. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County

    SciTech Connect

    Kuver, Walt

    2009-11-10

    The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

  20. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  1. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  2. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  3. Solar thermal energy for supplemental heat to process tea in Sri Lanka

    SciTech Connect

    Ariyaratne, A.R.

    1987-01-01

    In tea processing, the subprocesses of withering and drying require thermal energy for dehydration of tea leaves. At present, the Sri Lankan tea industry depends mostly on imported fossil fuels for its thermal energy needs. The economic pressure has forced the industry to investigate energy alternatives. In this study solar thermal energy, heat recovery from fluidized-bed dryers, and a combination of solar system with heat recovery were analyzed. The /phi/, f-chart general design method was used to design solar systems to match thermal energy needs in tea processing. The analysis was extended to the f-chart economic analysis to select economically optimum systems. On the basis of highest life-cycle savings, flat-plate solar-collector area and storage tank were sized. Results showed that solar thermal systems require a high investment,but can provide 42, 52, and 63% of the energy needs for high, mid and low tea growing regions, respectively. Combination of solar thermal systems with heat recovery from a fluidized-bed dryer decreases the amount of energy required by another 7 to 12% yet requires only a small increase in investment.

  4. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  5. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  6. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  7. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  8. Assessment of the potential of solar thermal small power systems in small utilities

    NASA Technical Reports Server (NTRS)

    Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.

    1978-01-01

    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.

  9. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  10. New materials for thermal energy storage in concentrated solar power plants

    NASA Astrophysics Data System (ADS)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  11. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect

    Williams, T.A.; Burch, G.D.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US Department of Energy (DOE) to develop a long-term strategy for the development of STE technologies (DOE, 1996). The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun-Lab (the cooperative Sandia National Laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capacity by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  12. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  13. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    PubMed Central

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-01-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions. PMID:26468676

  14. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-10-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  15. Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Montijo, Guillermo; Hauth, David

    2014-08-01

    Analyses have shown that even a white-painted enclosure requires active exterior skin-cooling systems to mitigate dome seeing which is driven by thermal nonuniformities that change the refractive index of the air. For the Daniel K. Inouye Solar Telescope (DKIST) Enclosure, this active surface temperature control will take the form of a system of water cooled plate coils integrated into the enclosure cladding system. The main objective of this system is to maintain the surface temperature of the enclosure as close as possible to, but always below, local ambient temperature in order to mitigate this effect. The results of analyses using a multi-layer cladding temperature model were applied to predict the behavior of the plate coil cladding system and ultimately, with safety margins incorporated into the resulting design thermal loads, the detailed designs. Construction drawings and specifications have been produced. Based on these designs and prior to procurement of the system components, a test system was constructed in order to measure actual system behavior. The data collected during seasonal test runs at the DKIST construction site on Haleakalā are used to validate and/or refine the design models and construction documents as appropriate. The test fixture was also used to compare competing hardware, software, components, control strategies, and configurations. This paper outlines the design, construction, test protocols, and results obtained of the plate coil thermal test bench for the DKIST carousel cooling system.

  16. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE PAGESBeta

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  17. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  18. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  19. Solar thermal technologies - Potential benefits to U.S. utilities and industry

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1983-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs. Previously announced in STAR as N83-10547

  20. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  1. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  2. Effect of water turbidity on thermal performance of a salt-gradient solar pond

    SciTech Connect

    Wang, J.; Seyed-Yagoobi, J.

    1995-05-01

    The effect of water turbidity on the thermal performance of a salt-gradient solar pond is studied using a one-dimensional theoretical model. The theoretical model uses an empirical correlation that includes the effect of water turbidity on solar radiation penetration in water. The correlation is based on a uniform turbidity distribution in water; however, the correlation is extended to include a non-uniform turbidity distribution with respect to depth of water. The results indicate that water clarity plays a significant role on thermal performance for salt gradient solar ponds. 24 refs., 11 figs., 1 tab.

  3. Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware

    NASA Technical Reports Server (NTRS)

    Class, C. R.; Presta, G.; Trucks, H.

    1975-01-01

    A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.

  4. Ground truth data for test sites (SL-4). [thermal radiation brightness temperature and solar radiation measurments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.

  5. Realistic thermal evolution models for Superearth Exo-solar planets

    NASA Astrophysics Data System (ADS)

    van den Berg, A.; Yuen, D.; Umemoto, K.; Wentzcovitch, R.; Jacobs, M.

    2012-04-01

    -Rayleigh number relationships. We show that deep mantle rheology parameterized through an activation volume of the dominant creep mechanism as well as a pseudo-brittle lid controlling stagnant behavior are important factors determining the thermal state.

  6. Thermal control system and method for a passive solar storage wall

    DOEpatents

    Ortega, Joseph K. E.

    1984-01-01

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  7. Thermoclines: a solar thermal energy resource for enhanced hydroelectric power production.

    PubMed

    McNichols, J L; Ginell, W S; Cory, J S

    1979-01-12

    The solar thermal energy stored in hydroelectric reservoir thermoclines is very large and greatly exceeds the gravitational hydroenergy of the surface water, even after limitations arising from the second law of thermodynamics have been taken into account. Greatly enhanced power production can be obtained at present hydroelectric facilities if heat engines are adapted to exploit this large thermal energy resource.

  8. Background solar velocity spectrum at high and low phases of solar activity cycle

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.; Vázquez Ramió, H.

    2002-12-01

    Using GOLF/SOHO data a detailed analysis of the solar background spectrum has been performed at high and low phases of solar activity cycle. The analysis includes not only the non-periodic components of the background power spectrum but also the periodic ones. Apart from the solar activity, other causes produce similar effects in the data, particularly the different depths in the solar atmosphere where the measurements are done, because due to the sun-satellite relative velocity, we are observing at different positions in the line profile. Another effect is that different line wings are used in the observation at two different epochs, before and after SOHO loss and recovery which, unfortunately, coincide with minimum and maximum of solar activity. In this work we have tried to separate all these effects in order to really understand what is being seen in the data and ultimately extract the effects of solar activity on the acoustic background solar spectrum.

  9. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  10. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    PubMed

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. PMID:22025216

  11. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  12. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. PMID:21532584

  13. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S.; Sacksteder, K.; Wegeng, R.; Suzuki, N.

    2011-01-01

    The realization of the renewed exploration of the moon presents many technical challenges; among them is the survival of lunar-surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an analysis of the performance of thermal wadis based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis has been performed for the lunar equatorial region and for a potential outpost location near the lunar south pole. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.

  14. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S. A.; Sacksteder, K. R.; Wegeng, R.; Suzuki, N.

    2011-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar-surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an analysis of the performance of thermal wadis based on the known solar illumination of the Moon and estimates of producible thermal properties of modified lunar regolith. Analysis has been performed for the lunar equatorial region and for a potential outpost location near the Lunar South Pole. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.

  15. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  16. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.

    PubMed

    Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-07-21

    Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems.

  17. Siting Issues for Solar Thermal Power Plants with Small Community Applications

    NASA Technical Reports Server (NTRS)

    Holbeck, J. J.; Ireland, S. J.

    1978-01-01

    Technologies for solar thermal plants are being developed to provide energy alternatives for the future. Implementation of these plants requires consideration of siting issues as well as power system technology. While many conventional siting considerations are applicable, there is also a set of unique siting issues for solar thermal plants. Early experimental plants will have special siting considerations. The siting issues associated with small, dispersed solar thermal power plants in the 1 to 10 MWe power range for utility/small community applications are considered. Some specific requirements refer to the first 1 MWe engineering experiment for the Small Power Systems Applications (SPSA) Project. The siting issues themselves are discussed in three categories: (1) system resource requirements, (2) environmental effects on the system, and (3) potential impact of the plant on the environment. Within these categories, specific issues are discussed in a qualitative manner. Examples of limiting factors for some issues are taken from studies of other solar systems.

  18. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.

    PubMed

    Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-07-21

    Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. PMID:27254282

  19. Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

  20. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  1. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  2. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  3. Bulk Velocity and Thermal Properties of the Solar Wind in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Weberg, M. J.; Raines, J. M.; Gershman, D. J.; Lepri, S. T.; Zurbuchen, T.

    2015-12-01

    Despite over 50 years of satellite exploration beyond near-Earth space, only sparse in-situ observations have been made of the solar wind in the inner heliosphere (distances of less than 1 AU). In recent years, the Fast Imaging Plasma Spectrometer (FIPS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was able to measure the bulk and thermal speeds of protons in the solar wind at distances of 0.3 - 0.5 AU. Using data from FIPS, we build upon the work of Gershman et al. (2012) and present a detailed study of the bulk velocity and thermal properties of the solar wind for the time period of March 2011 to March 2015. We compare and contrast the FIPS observations at 0.3 - 0.5 AU with measurements from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) satellite at 1 AU. Of particular interest is the radial evolution of proton thermal speeds inside Corotating Interaction Regions (CIRs), Interplanetary Coronal Mass Ejections (ICMEs), and quiescent solar wind. This study represents the most complete survey of solar wind plasma inside 0.5 AU since the Helios mission in the early 1980's. Furthermore, our results provide a preview of the exciting science possible with the upcoming launches of Solar Orbiter and Solar Probe Plus in 2018.

  4. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Astrophysics Data System (ADS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-12-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  5. Solar thermal electric power plants - Their performance characteristics and total social costs

    NASA Technical Reports Server (NTRS)

    Caputo, R. S.; Truscello, V. C.

    1976-01-01

    The central receiver (power tower) concept as a thermal conversion approach to the conversion of solar energy into electricity is compared to other solar power plant designs which feature distributed solar collection and use other types of solar collector configurations. A variety of solar thermal storage concepts are discussed and their impacts on system performance are assessed. Although a good deal of quantification is possible in a comparative study, the subjective judgments carry enormous weight in a socio-economic decision, the ultimate choice of central power plant being more a social than an economic or technical decision. Major elements of the total social cost of each type of central plant are identified as utility economic costs, R&D funds, health costs, and other relevant social impacts.

  6. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  7. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  8. Ground truth data for test sites (SL-3). [solar radiation and thermal radiation brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneously with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. The solar radiation region from 400 to 1300 nanometers and the thermal radiation region from 8 to 14 micrometer region were investigated. The measurements of direct solar radiation were analyzed for atmospheric optical depth; the total and reflected solar radiation were analyzed for target reflectivity. These analyses were used in conjunction with a radiative transfer computer program in order to calculate the amount and spectral distribution of solar radiation at the apertures of the EREP sensors. The instrumentation and techniques employed, calibrations and analyses performed, and results obtained are discussed.

  9. Numerical study of 1-D, 3-vector component, thermally-conductive MHD solar wind

    NASA Technical Reports Server (NTRS)

    Han, S.; Wu, S. T.; Dryer, M.

    1993-01-01

    In the present study, transient, 1-dimensional, 3-vector component MHD equations are used to simulate steady and unsteady, thermally conductive MHD solar wind expansions between the solar surface and 1 AU (astronomical unit). A variant of SIMPLE numerical method was used to integrate the equations. Steady state solar wind properties exhibit qualitatively similar behavior with the known Weber-Davies Solutions. Generation of Alfven shock, in addition to the slow and fast MHD shocks, was attempted by the boundary perturbations at the solar surface. Property changes through the disturbance were positively correlated with the fast and slow MHD shocks. Alfven shock was, however, not present in the present simulations.

  10. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  11. Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy

    NASA Astrophysics Data System (ADS)

    Tzouganatos, N.; Matter, R.; Wieckert, C.; Antrekowitsch, J.; Gamroth, M.; Steinfeld, A.

    2013-12-01

    The dominating Zn recycling process is the so-called Waelz process. Waelz oxide (WOX), containing 55-65% Zn in oxidic form, is mainly derived from electric arc furnace dust produced during recycling of galvanized steel. After its wash treatment to separate off chlorides, WOX is used as feedstock along with ZnS concentrates for the electrolytic production of high-grade zinc. Novel and environmentally cleaner routes for the purification of WOX and the production of Zn are investigated using concentrated solar energy as the source of high-temperature process heat. The solar-driven clinkering of WOX and its carbothermal reduction were experimentally demonstrated using a 10 kWth packed-bed solar reactor. Solar clinkering at above 1265°C reduced the amount of impurities below 0.1 wt.%. Solar carbothermal reduction using biocharcoal as reducing agent in the 1170-1320°C range yielded 90 wt.% Zn.

  12. Solar array thermal snap and the characteristics of its effect on UARS

    NASA Technical Reports Server (NTRS)

    Lambertson, M.; Rohrbaugh, D.; Garrick, J.

    1993-01-01

    The single solar array on the Upper Atmosphere Research Satellite (UARS) is subjected to a thermal distortion when the spacecraft enters and exits the Earth's shadow. The distortion results in a torque that alters the spacecraft attitude. Due to the sudden nature of the attitude discontinuity, the effect has been termed 'thermal snap'. Thermal snap has also been experienced by Landsats 4 and 5. Analyses by the spacecraft builder addressed the impact of the resultant torque on the onboard control system. This paper discusses the results of comparisons between the predicted effects of thermal snap on UARS and actual attitude solutions from UARS telemetry data. In addition, this paper describes the characteristics of the thermal snap on UARS in terms of maximum displacement, solar beta angle, and solar array drive angle. Comparisons are made between the actual times of thermal snaps and the predicted spacecraft sunrise and sunset times. The effects of the UARS thermal snap are summarized and a general comment is made relating possible effects of thermal snap on other satellites. Also, an analysis of UARS attitude solutions that span periods of thermal snap was performed to determine whether the gyro sampling time of 1/8 second is sufficient to properly model the resulting spacecraft attitude without compromising the accuracy requirements. The results of this analysis are discussed.

  13. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  14. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  15. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  16. Solar photo-thermal catalytic reactions to produce high value chemicals

    SciTech Connect

    Prengle, H.W. Jr.; Wentworth, W.E. )

    1992-04-01

    This report presents a summary of the research work accomplished to date on the utilization of solar photo-thermal energy to convert low cost chemical feedstocks into high $-value chemical products. The rationale is that the solar IR-VIS-UV spectrum is unique, supplying endothermic reaction energy as well as VIS-UV for photochemical activation. Chemical market analysis and product price distribution focused attention on speciality chemicals with prices >$1.00/lb, and a synthesis sequence of n-paraffins to aromatics to partial oxidized products. The experimental work has demonstrated that enhanced reaction effects result from VIS-UV irradiation of catalytically active V2O5/SiO2. Experiments of the past year have been on dehydrogenation and dehydrocyclization of n-paraffins to olefins and aromatics with preference for the latter. Recent results using n-hexane produced 95% conversion with 56% benzene; it is speculated that aromatic yield should reach {approximately}70% by further optimization. Pilot- and commercial-scale reactor configurations have been examined; the odds-on-favorite being a shallow fluid-bed of catalyst with incident radiation from the top. Sequencing for maximum cost effectiveness would be day-time endothermic followed by night-time exothermic reactions to produce the products.

  17. Sizing and Pointing of Solar Panels and for Solar Thermal Applications

    Atmospheric Science Data Center

    2014-09-25

    ... (kWh/m2/day) Amount of electromagnetic energy (solar radiation) incident on the surface of the earth. Also referred to as total or global solar radiation. The average and percent difference minimum and maximum are ...

  18. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  19. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  20. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  1. Thermal analysis of solar biomass hybrid co-generation plants

    NASA Astrophysics Data System (ADS)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  2. Integrated photovoltaic-thermal solar energy conversion systems

    NASA Technical Reports Server (NTRS)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  3. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  4. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  5. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  6. The transient thermal response of a tubular solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1976-01-01

    A special analytical solution is provided for the timewise response of the circulating fluid temperatures when a sudden step change of the input solar radiation is imposed and remains constant thereafter. An example which demonstrates the transient temperatures at the exit section of a single collector with two different flow patterns is presented. This study is used to supplement some numerical solutions to provide a fairly complete coverage for this type of solar collector.

  7. Thermal Mechanical Stability of Single-Crystal-Oxide Refractive Concentrators Evaluated for High-Temperature Solar-Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.

  8. Metal removal by thermally activated clay marl.

    PubMed

    Stefanova, R Y

    2001-01-01

    A sorption active product has been obtained from Bulgarian clay marl by thermal activation at 750 degrees C. The modified aluminosilicate material is characterized, as well as its use for the removal of metal ions. The effect of the initial metal ion concentration, the contact time, pH, the solution temperature and the ionic strength on the uptake of lead, copper and zinc ions from aqueous solutions were studied in batch experiments. The kinetics of removal of metal ions on modified clay marl appears dependent on the sorbate/sorbent ratio. At low cation concentrations sorption follows a Langmuir isotherm, while at higher sorbate/sorbent ratios the sorption isotherms of metal ions are described by Freundlich's equation. At the pH region of the sorption edge the removal of metal ions by surface complexation and surface precipitation mechanisms is indistinguishable. It is observed that the influence of temperature on the uptake ability of the clay marl is most considerable up to 40 degrees C. These studies show that the thermally modified clay marl can be successfully used for removal of metal ions from water solutions in a wide range of concentrations.

  9. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  10. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  11. Aeroheating Thermal Model Correlation for Mars Global Surveyor (MGS) Solar Array

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.

    2003-01-01

    The Mars Global Surveyor (MGS) Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time dependent aerodynamic heating. Also, the thermal model itself needed to accurately capture the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar cell assembly properties, and adding detail to radiation and heat flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar array aeroheating analysis, which were used during onorbit operations.

  12. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  13. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  14. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  15. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  16. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    PubMed

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  17. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    PubMed

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs). PMID:23199138

  18. Military markets for solar thermal electric power systems

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.

    1980-01-01

    The Department of Defense maintains an inventory of over 1,800 MW of engine-generators 15 KW and larger, with an estimated procurement rate of over 140 MW/year. Nearly the entire requirement could be met by advanced heat engines of the types being developed as point-focussing, distributed receiver power plants. A conceptual system consisting of a heat engine which efficiently burns liquid fossil or synthetic fuels, with a 'solarization kit' for conversion to hybrid solar operation could meet existing DOD requirements for new systems which are quieter, lighter, and multi-fueled. An estimated 24 percent (33 MW/year) or more could operationally benefit from the solar option. Baseline cost projections indicate levelized energy cost goals of 210 to 120 mills/KWh (15 to 1000 KW systems). Fuel cost escalation is the major factor affecting the value of the solar option. A baseline calculation for fuel at $0.59/gal in spring, 1979, escalating at 8 percent above general inflation indicates a value of $2700/KWe for a solarization kit.

  19. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    NASA Technical Reports Server (NTRS)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  20. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater.

    PubMed

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2014-03-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  1. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  2. Economic evaluations of solar thermal energy systems using a levelized energy cost approach

    SciTech Connect

    Williams, T.A.; Dirks, J.A.

    1985-11-01

    This paper discusses a Levelized Energy Cost (LEC) approach to economic evaluations of solar thermal power plants. Levelized Energy Costs are life cycle costs that include a plant's capital cost, total operation and maintenance cost, taxes, interest, and return on investment. A LEC approach provides an economically correct treatment of these costs and allows an evaluation of alternative solar thermal power systems. In this paper, general economic principals relating to LEC calculations such as the time value of money, discount rate, net present value, and annualized cost are defined and explained. The use of LEC analyses in choosing between alternatives is discussed. Then the simplified approach for calculating an LEC using the standard economic assumptions for solar thermal applications is presented. Finally, a way to easily carry out the LEC calculation on a microcomputer is given.

  3. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  4. Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar-Thermal Energy Storage

    SciTech Connect

    Kanai, Y; Srinivasan, V; Meier, S K; Vollhardt, K P; Grossman, J C

    2010-02-18

    In the currently intensifying quest to harness solar energy for the powering of our planet, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small molecule activation, and biologically inspired photosynthetic systems. In contrast, direct collection of heat from sunlight has received much less diversified attention, its bulk devoted to the development of concentrating solar thermal power plants, in which mirrors are used to focus the sun beam on an appropriate heat transfer material. An attractive alternative strategy would be to trap solar energy in the form of chemical bonds, ideally through the photoconversion of a suitable molecule to a higher energy isomer, which, in turn, would release the stored energy by thermal reversal. Such a system would encompass the essential elements of a rechargeable heat battery, with its inherent advantages of storage, transportability, and use on demand. The underlying concept has been explored extensively with organic molecules (such as the norbornadiene-quadricyclane cycle), often in the context of developing photoswitches. On the other hand, organometallic complexes have remained relatively obscure in this capacity, despite a number of advantages, including expanded structural tunability and generally favorable electronic absorption regimes. A highly promising organometallic system is the previously reported, robust photo-thermal fulvalene (Fv) diruthenium couple 1 {l_reversible} 2 (Scheme 1). However, although reversible and moderately efficient, lack of a full, detailed atom-scale understanding of its key conversion and storage mechanisms have limited our ability to improve on its performance or identify optimal variants, such as substituents on the Fv, ligands other than CO, and alternative metals. Here we present a theoretical investigation, in conjunction with corroborating experiments, of the mechanism for the heat releasing step of 2 {yields} 1 and

  5. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  6. A thermal vacuum-UV solar simulator test system for assessing microbiological viability

    NASA Technical Reports Server (NTRS)

    Ross, D. S.; Wardle, M. D.; Taylor, D. M.

    1975-01-01

    Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.

  7. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect

    Not Available

    1980-05-01

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  8. Phase II experiment test plan: solar photovoltaic/thermal residential experiment

    SciTech Connect

    Sheldon, D. B.

    1980-01-23

    The Solar Photovoltaic/Thermal Energy Project being carried out by the Massachusetts Institute of Technology Lincoln Laboratory under US Department of Energy funding requires a Phase II test plan for its Solar Energy Research Facility (SERF) located at the University of Texas at Arlington. This Phase II test plan is provided. The purpose of the research being conducted at the SERF is reviewed, and references describing Phase I work are listed.

  9. Performance of a hybrid photovoltaic thermal solar collector

    SciTech Connect

    Sopian, K.; Liu, H.T.; Kakac, S.; Veziroglu, T.N.

    1996-12-31

    Closed form solutions have been obtained for both a single-pass and a double-pass collectors and, for a passively cooled photovoltaic panel. The mean plate temperature, photovoltaic cell, thermal, and combined efficiencies have been obtained. The results show that the double-pass photovoltaic thermal collector has a more productive cooling effect compared to the single-pass photovoltaic thermal collector, and thus has better photovoltaic cells performance. The effect of the mass flow rate, duct depth, and packing factor on the photovoltaic cell performance are also discussed.

  10. Thermally Activated Decay of Magnetic Vortices

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob; Grombacher, Denys; Fortin, David; Davis, John; Freeman, Mark

    2010-03-01

    We experimentally probe thermally activated decay of magnetic vortices, by observing annihilations within an array of Ni80Fe20 discs through hysteresis measurements. Specifically, the statistics of vortex annihilation are mapped as a function of the magnitude of, and the dwell time at, the peak fields applied during hysteresis scans. Magnetic vortices in micro- and nano-scale thin film ferromagnetic elements exhibit interesting and complex behavior. Demagnetization interactions make understanding processes like the annihilation of a vortex during magnetic switching challenging. Recent work has shown that the annihilation process can take place over an extended period of timefootnotetextZ. Liu, R.D. Sydora and M.R. Freeman, PRB 77, 174410 (2008). implying that there is a characteristic decay process, likely thermally governed. Through application of an Arrhenius model we extract information about the energy barrier preventing decay, and hence information about the energetic contributions of the demagnetization effects. We anticipate that this information will be useful in extending analytical models of magnetic vortices.

  11. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal

  12. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    NASA Astrophysics Data System (ADS)

    Kucharski, Timothy J.; Ferralis, Nicola; Kolpak, Alexie M.; Zheng, Jennie O.; Nocera, Daniel G.; Grossman, Jeffrey C.

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol-1, and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  13. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain. PMID:24755597

  14. Comparison of Thermal Performances Predicted and Experimental of Solar Air Collector

    NASA Astrophysics Data System (ADS)

    Sencan, Arzu; Ozdemir, Gokhan

    In this study, thermal performance of solar air collector system which was experimentally constructed was obtained for different operating conditions. Experiments were conducted under Turkey/Mersin climatic conditions. Then, Neural Network (NN) models have been developed for the prediction the thermal performance of solar air collectors. Experimental data were used for training and testing of the networks. The inputs of the network are inlet and outlet air temperature to collector, solar radiation and air mass flow rate and the output is thermal performance of solar air collector. Using the weights obtained from the trained network a new formulation is presented for the calculation of the performance; the use of NN is proliferating with high speed in simulation. The R2-values obtained when unknown data were used to the networks was 0.9985 which is very satisfactory. The use of this new formulation, which can be employed with any programming language or spreadsheet program for the estimation of the thermal performance of solar air collectors, as described in this paper, may make the use of dedicated NN software unnecessary.

  15. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  16. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    SciTech Connect

    Kucharski, TJ; Ferralis, N; Kolpak, AM; Zheng, JO; Nocera, DG; Grossman, JC

    2014-04-13

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  17. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Wegeng, R. S.; Gokoglu, S. A.; Suzuki, N. H.; Sacksteder, K. R.

    2010-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can enable the operation of lightweight robotic rovers or other assets in cold, dark environments without incurring potential mass, cost, and risk penalties associated with various onboard sources of thermal energy. Thermal wadi-assisted lunar rovers can conduct a variety of long-duration missions including exploration site surveys; teleoperated, crew-directed, or autonomous scientific expeditions; and logistics support for crewed exploration. This paper describes a thermal analysis of thermal wadi performance based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis was performed for the lunar equatorial region and for a potential Outpost location near the lunar south pole. The results are presented in some detail in the paper and indicate that thermal wadis can provide the desired thermal energy reserve, with significant margin, for the survival of rovers or other equipment during periods of darkness.

  18. Electron-collecting oxide layers in inverted polymer solar cells via oxidation of thermally evaporated titanium

    NASA Astrophysics Data System (ADS)

    Zampetti, A.; Salamandra, L.; Brunetti, F.; Reale, A.; Di Carlo, A.; Brown, T. M.

    2016-10-01

    A simple and intuitive deposition technique is discussed to obtain titanium oxide used as an electron collecting layer in polymer solar cells based on the thermal evaporation of pristine titanium and further thermal treatment to convert the metal in oxide. Since the degradation of indium-doped tin oxide at high temperatures is an issue, we demonstrate that the combination of glass/fluorine tin oxide and high temperatures represents a promising approach in the fabrication of inverted polymer solar cells with such a titanium oxide electron collecting layer.

  19. The design of a vehicle-mounted test system for the thermal performance of solar collector

    NASA Astrophysics Data System (ADS)

    Wen, S. R.; Wu, X. H.; Zhou, L.; Zheng, W.; Liu, L.; Yan, J. C.

    2016-08-01

    To increase the test efficiency of thermal performance of solar collector, a vehicle- mounted test system with high automation, simple operation, good mobility and stability is proposed in this paper. By refitting a medium bus, design of mechanical system and test loop, and using PC control technology, we implemented the vehicle-mounted system and realized effective integration between vehicle and test equipment. A number of tests have been done, and the results show that the vehicle-mounted test system has good parameters and performance and can be widely used to provide door-to-door testing services in the field of solar thermal application.

  20. Thermal tracking in mobile robots for leak inspection activities.

    PubMed

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  1. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    PubMed Central

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-01-01

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684

  2. Thermal tracking in mobile robots for leak inspection activities.

    PubMed

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-01-01

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684

  3. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rohitash; Kumar, Ravindra; Dixit, Ambesh

    2016-05-01

    Thermal properties of Acetamide (AM) - Benzoic acid (BA) and Benzoic acid (BA) - Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  4. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces

  5. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  6. Solar Sail Topology Variations Due to On-Orbit Thermal Effects

    NASA Technical Reports Server (NTRS)

    Banik, Jeremy A.; Lively, Peter S.; Taleghani, Barmac K.; Jenkins, Chrostopher H.

    2006-01-01

    The objective of this research was to predict the influence of non-uniform temperature distribution on solar sail topology and the effect of such topology variations on sail performance (thrust, torque). Specifically considered were the thermal effects due to on orbit attitude control maneuvers. Such maneuvers are expected to advance the sail to a position off-normal to the sun by as much as 35 degrees; a solar sail initially deformed by typical pre-tension and solar pressure loads may suffer significant thermally induced strains due to the non-uniform heating caused by these maneuvers. This on-orbit scenario was investigated through development of an automated analytical shape model that iterates many times between sail shape and sail temperature distribution before converging on a final coupled thermal structural affected sail topology. This model utilizes a validated geometrically non-linear finite element model and a thermal radiation subroutine. It was discovered that temperature gradients were deterministic for the off-normal solar angle cases as were thermally induced strains. Performance effects were found to be moderately significant but not as large as initially suspected. A roll torque was detected, and the sail center of pressure shifted by a distance that may influence on-orbit sail control stability.

  7. Indoor test for thermal performance evaluation of seven Elcam fin-tube solar collector configurations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on seven Elcam fin-tube solar collector configurations under simulated conditions are described. These tests were made using the Marshall Space Flight Center solar facilities. The Elcam fin-tube (liquid) solar collectors each consist of an absorber plate 5.9 inches wide by 83 inches long and a type M copper tube of 0.569 inch nominal inside diameter. No cover plate was used with any of the specimens. The uniqueness of each of the seven configurations is described, and tests were performed on each separate configuration.

  8. Economics of scale in the production of steam with solar thermal-fossil boiler hybrid systems

    NASA Astrophysics Data System (ADS)

    Hansen, F. R.; Lindner, D. L.; Vitko, J., Jr.

    1983-03-01

    Levelized energy costs for steam plants in the size range 15 MM Btu/h to 400 MM Btu/h were estimated for steam produced by several different technologies, including stand alone oil and coal burning plants and solar central receiver fossil boiler hybrid plants. Models for the costs of plant subsystems used in these calculations are presented. Designs of the solar fossil hybrids examined were optimized for solar fraction and amount of thermal storage used by simulation of plant operation. The resulting levelized energy costs and their sensitivity to various modelling parameters are discussed.

  9. By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.

  10. Solar Thermal Energy Exploitation: An Opportunity to Enhance Conceptual Learning in Physics

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. A.; Cravino, J. P.; Liberato, M. L. R.

    2010-05-01

    In a society mainly driven by Science and Technology it is becoming consensual the idea that scientific education should include three components: Education in Science, Education about Science and Education through Science. Some authors suggest that, in education, everyday objects should be used to illustrate scientific issues (e.g. Andrée, 2005). Thus the goal of this study is two-fold: first, to develop a teaching and learning strategy, in the framework of Education for Sustainable Development (ESD), concerning the renewable energy issue, while showing the importance of using everyday situations in the improvement of students' motivation in Physics learning. Energy is the core concept in this study. Energy conservation includes the concepts applied to sustainable balance between environment and the energy availability and use. Dias et al. (2004) stress that education is one of the best ways to transform the human behavior for the rational use of energy, which represents a long-term investment. In this work students become aware and recognize the importance and value of energy in everyday life, they identify energy transfer and transformation processes, confirm energy availability, relating these topics to present human needs and climate change issues. A didactic model of a solar thermal panel has thus been built, using cheap, common materials, by 15-16 year-old Physics students, from a Portuguese secondary school. Students had to plan the experiments, in small groups, to identify and estimate physical magnitudes and to explore how to maximize the solar thermal panel efficiency. The experimental activities took place in the school's playground, in a place where there were no obstacles to capturing solar radiation. Finally, students had to deal with experimental data acquisition and analysis, they had to prepare a report, as well as to answer a survey, to evaluate their learning success. Results show that students appreciated the proposed themes and activities

  11. Thermal comparison among several beverage can solar collectors

    SciTech Connect

    Chen, P.Y.S.

    1984-01-01

    Four air-heated solar collectors were built using four different configurations of aluminum beverage cans. The collectors were then tested for four consecutive seasons for their daily efficiencies. One of the collectors was also evaluated for one season for the effect of air velocity on efficiency, temperature rise, and power consumption of the collector.

  12. Conversion of concentrated solar thermal energy into chemical energy.

    PubMed

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  13. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  14. Thermal performance evaluation of the Suncatcher SH-11 (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures used and the results obtained during the evaluation test program on the Solar Unlimited, Inc., Suncatcher SH-11 (liquid) solar collector are presented. The flat-plate collector case assembly is made of .08 inch aluminum 3003 H14 riveted with fiberglass board insulation. The absorber consists of collared aluminum fins mechanically bonded to 3/8 inch copper tubing and coated with 3M Nextel black. Water is used as the working fluid. The glazing is made of a single glass, 1/8 inch water white, tempered and antireflective. The collector weight is 85 pounds with overall external dimensions of about 35.4 in x 82.0 in x 4.0 in. Thermal performance data on the Solar Unlimited Suncatcher SH-11 solar collector under simulated conditions were conducted using the MSFC Solar Simulator.

  15. Systems analysis techniques for annual cycle thermal energy storage solar systems

    SciTech Connect

    Baylin, F.; Sillman, S.

    1980-07-01

    Community-scale annual cycle thermal energy storage (ACTES) solar systems are promising options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is first examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented next. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently being used to examine the economic trade-off between collector field area and storage capacity. Finally, programs in the US Department of Energy directed toward developing either other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.

  16. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  17. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  18. Persulfate persistence under thermal activation conditions.

    PubMed

    Johnson, Richard L; Tratnyek, Paul G; Johnson, Reid O'Brien

    2008-12-15

    Contaminant destruction with in situ chemical oxidation (ISCO) using persulfate (peroxydisulfate, S2O8(2-)) can be enhanced by activation, which increases the rate of persulfate decomposition to sulfate radicals (SO4*-). This step initiates a chain of radical reactions involving species (including SO4*- and OH*) that oxidize contaminants more rapidly than persulfate does directly. Among current activation methods, thermal activation is the least well studied. Combining new data for environmentally relevant conditions with previously published data, we have computed three sets of Arrhenius parameters (In A and Eact) that describe the rate of persulfate decomposition in homogeneous solutions over a wide range of temperature and pH. The addition of soil increases the decomposition rate of persulfate due to reactions with organic matter and possibly mineral surfaces, but the kinetics are still pseudo-first-order in persulfate and conform to the Arrhenius model. A series of respike experiments with soil at 70 degrees C demonstrate that once the oxidant demand is met, reaction rates return to values near those observed in the homogeneous solution case. However, even after the oxidant demand is met, the relatively short lifetime of the persulfate at elevated temperatures (e.g., >50 degrees C) will limit the delivery time over which persulfate can be effective. PMID:19174915

  19. Thermal assisted oxygen annealing for high efficiency planar CH₃NH₃PbI₃ perovskite solar cells.

    PubMed

    Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurišić, Aleksandra B; Leung, Wallace Woon-fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles

    2014-01-01

    We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH₃NH₃PbI₃)-based planar solar cells. The prepared films were stored in pure N₂ at room temperature or annealed in pure O₂ at room temperature, 45°C, 65°C and 85°C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O₂ leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O₂ into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O₂ annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm(2), and fill factor 0.64 had been achieved for our champion device.

  20. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-01

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of ˜ 470 m2/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film "peel off," thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.