Science.gov

Sample records for active sonar hfas

  1. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to 705 hours over the course of 5 years...

  2. 50 CFR 216.270 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or...) (estimated amounts below): (i) AN/SQS-53 (hull-mounted active sonar)—up to 9885 hours over the course of 5 years (an average of 1977 hours per year) (ii) AN/SQS-56 (hull-mounted active sonar)—up to 2470...

  3. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to 705 hours over the course of 5 years...

  4. 50 CFR 216.270 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or...) (estimated amounts below): (i) AN/SQS-53 (hull-mounted active sonar)—up to 9885 hours over the course of 5 years (an average of 1977 hours per year) (ii) AN/SQS-56 (hull-mounted active sonar)—up to 2470...

  5. 50 CFR 216.270 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or...) (estimated amounts below): (i) AN/SQS-53 (hull-mounted active sonar)—up to 9885 hours over the course of 5 years (an average of 1977 hours per year) (ii) AN/SQS-56 (hull-mounted active sonar)—up to 2470...

  6. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to 705 hours over the course of 5 years...

  7. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources... below: (i) AN/SQS-53 (hull-mounted active sonar)—up to 215 hours over the course of 5 years (an average of 43 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 325 hours over the course...

  8. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 215 hours over the course of 5 years (an average of 43 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 325 hours over the course of 5 years...

  9. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 215 hours over the course of 5 years (an average of 43 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 325 hours over the course of 5 years...

  10. 50 CFR 216.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources for U.S. Navy anti-submarine warfare (ASW) training in the amounts indicated below (±10 percent): (i) AN/SQS-53 (hull-mounted sonar)—up...-mounted sonar)—up to 1915 hours over the course of 5 years (an average of 383 hours per year) (iii)...

  11. 50 CFR 216.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incidental to the following activities: (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training activities (estimated amounts below): (1) The use of the following mid-frequency active sonar (MFAS) and high frequency...

  12. 50 CFR 216.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... incidental to the following activities: (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training activities (estimated amounts below): (1) The use of the following mid-frequency active sonar (MFAS) and high frequency...

  13. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  14. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  15. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  16. Enhanced multistatic active sonar signal processing.

    PubMed

    Zhao, Kexin; Liang, Junli; Karlsson, Johan; Li, Jian

    2013-07-01

    Multistatic active sonar systems involve the transmission and reception of multiple probing sequences and can achieve significantly enhanced performance of target detection and localization through exploiting spatial diversity. This paper mainly focuses on two signal processing aspects of such systems, namely, enhanced range-Doppler imaging and improved target parameter estimation. The main contributions of this paper are (1) a hybrid dense-sparse method is proposed to generate range-Doppler images with both low sidelobe levels and high accuracy; (2) a generalized K-Means clustering (GKC) method for target association is developed to associate the range measurements from different transmitter-receiver pairs, which is actually a range fitting procedure; (3) the extended invariance principle-based weighted least-squares method is developed for accurate target position and velocity estimation. The effectiveness of the proposed multistatic active sonar signal processing techniques is verified using numerical examples.

  17. Demonstration of the invariance principle for active sonar.

    PubMed

    Quijano, Jorge E; Zurk, Lisa M; Rouseff, Daniel

    2008-03-01

    Active sonar systems can provide good target detection potential but are limited in shallow water environments by the high level of reverberation produced by the interaction between the acoustic signal and the ocean bottom. The nature of the reverberation is highly variable and depends critically on the ocean and seabed properties, which are typically poorly known. This has motivated interest in techniques that are invariant to the environment. In passive sonar, a scalar parameter termed the waveguide invariant, has been introduced to describe the slope of striations observed in lofargrams. In this work, an invariant for active sonar is introduced. This active invariant is shown to be present in the time-frequency structure observed in sonar data from the Malta Plateau, and the structure agrees with results produced from normal mode simulations. The application of this feature in active tracking algorithms is discussed.

  18. Delphinid behavioral responses to incidental mid-frequency active sonar.

    PubMed

    Henderson, E Elizabeth; Smith, Michael H; Gassmann, Martin; Wiggins, Sean M; Douglas, Annie B; Hildebrand, John A

    2014-10-01

    Opportunistic observations of behavioral responses by delphinids to incidental mid-frequency active (MFA) sonar were recorded in the Southern California Bight from 2004 through 2008 using visual focal follows, static hydrophones, and autonomous recorders. Sound pressure levels were calculated between 2 and 8 kHz. Surface behavioral responses were observed in 26 groups from at least three species of 46 groups out of five species encountered during MFA sonar incidents. Responses included changes in behavioral state or direction of travel, changes in vocalization rates and call intensity, or a lack of vocalizations while MFA sonar occurred. However, 46% of focal groups not exposed to sonar also changed their behavior, and 43% of focal groups exposed to sonar did not change their behavior. Mean peak sound pressure levels when a behavioral response occurred were around 122 dB re: 1 μPa. Acoustic localizations of dolphin groups exhibiting a response gave insight into nighttime movement patterns and provided evidence that impacts of sonar may be mediated by behavioral state. The lack of response in some cases may indicate a tolerance of or habituation to MFA sonar by local populations; however, the responses that occur at lower received levels may point to some sensitization as well.

  19. Active sonar, beaked whales and European regional policy.

    PubMed

    Dolman, Sarah J; Evans, Peter G H; Notarbartolo-di-Sciara, Giuseppe; Frisch, Heidrun

    2011-01-01

    Various reviews, resolutions and guidance from international and regional fora have been produced in recent years that acknowledge the significance of marine noise and its potential impacts on cetaceans. Within Europe, ACCOBAMS and ASCOBANS have shown increasing attention to the issue. The literature highlights concerns surrounding the negative impacts of active sonar on beaked whales in particular, where concerns primarily relate to the use of mid-frequency active sonar (1-10kHz), as used particularly in military exercises. The authors review the efforts that European regional policies have undertaken to acknowledge and manage possible negative impacts of active sonar and how these might assist the transition from scientific research to policy implementation, including effective management and mitigation measures at a national level.

  20. Trading detection for resolution in active sonar receivers.

    PubMed

    Sharma, Nabin S; Buck, John R; Simmons, James A

    2011-09-01

    This paper proposes an active sonar receivers that offers a smooth trade-off between detection and resolution. A matched filter is the optimal detector of known signals in white Gaussian noise but may fail to resolve the targets if the time separation of targets is less than the mainlobe width of the autocorrelation function of the transmitted signal. An inverse filter achieves optimal resolution performance for multiple targets in the absence of noise, but amplifies the noise outside the signal bandwidth in a manner that makes it impractical in many realistic scenarios. The proposed active sonar receiver, the variable resolution and detection receiver (VRDR) combines the matched and inverse filter properties to achieve a smooth trade-off between detection and resolution. Simulated receiver operating characteristics demonstrate that for a range of dipole sonar targets, the performance of the VRDR is superior to the matched and inverse filter, as well as another previously proposed bandlimited inverse filter.

  1. Probing waveforms and adaptive receivers for active sonar.

    PubMed

    Ling, Jun; Li, Jian; Stoica, Petre; Datum, Michael

    2011-06-01

    Active sonar systems involve the transmission and reception of one or more probing sequences, which provide a basis for extraction of target information in a region of interest. The probing sequences at the transmitter and signal processing at the receiver play crucial roles in the overall system performance. In this paper, CAN (cyclic algorithm-new) is employed to synthesize probing sequences with good aperiodic autocorrelation properties. The performance of the CAN sequences will be compared with those of pseudo random noise and random phase sequences. Two adaptive receiver designs, namely the iterative adaptive approach (IAA) and the sparse learning via iterative minimization (SLIM) method, will also be considered. IAA and SLIM will be compared with the conventional matched filter method. The performances of the algorithms will be illustrated via numerical examples, which show that CAN, IAA, and SLIM can contribute to the overall performance improvement of the active sonar systems.

  2. Object classification and acoustic imaging with active sonar.

    PubMed

    Kelly, J G; Carpenter, R N; Tague, J A

    1992-04-01

    The theoretical underpinnings of underwater acoustic classification and imaging using high-frequency active sonar are studied. All essential components of practical classification systems are incorporated in a Bayesian theoretic framework. The optimum decision rules and array processing are presented and evaluated. A systematic performance evaluation methodology is derived. New results quantify the relationship between classifier performance and object geometry, acoustic imaging, and the accuracy of a priori knowledge infused into the processor.

  3. Digital sonar system

    DOEpatents

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal. 4 figs.

  4. Digital sonar system

    DOEpatents

    Young, Kenneth K.; Wilkes, R. Jeffrey

    1995-01-01

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal.

  5. Matched-field depth estimation for active sonar.

    PubMed

    Hickman, Granger; Krolik, Jeffrey L

    2004-02-01

    This work concerns the problem of estimating the depth of a submerged scatterer in a shallow-water ocean by using an active sonar and a horizontal receiver array. As in passive matched-field processing (MFP) techniques, numerical modeling of multipath propagation is used to facilitate localization. However, unlike passive MFP methods where estimation of source range is critically dependent on relative modal phase modeling, in active sonar source range is approximately known from travel-time measurements. Thus the proposed matched-field depth estimation (MFDE) method does not require knowledge of the complex relative multipath amplitudes which also depend on the unknown scatterer characteristics. Depth localization is achieved by modeling depth-dependent relative delays and elevation angle spreads between multipaths. A maximum likelihood depth estimate is derived under the assumption that returns from a sequence of pings are uncorrelated and the scatterer is at constant depth. The Cramér-Rao lower bound on depth estimation mean-square-error is computed and compared with Monte Carlo simulation results for a typical range-dependent, shallow-water Mediterranean environment. Depth estimation performance to within 10% of the water column depth is predicted at signal-to-noise ratios of greater than 10 dB. Real data results are reported for depth estimation of an echo repeater to within 10-m accuracy in this same shallow water environment.

  6. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology... of High Frequency (HF) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology... in the January 17, 2008, issue of the Federal Register (73 FR 3316). Background and Purpose...

  7. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology...) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology and Finding of No... less than two weeks; however, for environmental disasters such as the Deepwater Horizon oil...

  8. Active Fish Tracking Sonar (AFTS) for Assessing Fish Behavior

    SciTech Connect

    Hedgepeth, J; Johnson, Gary E. ); Skalski, John R.; Burczynski, J

    2002-11-01

    Active fish tracking sonars (AFTS) were used in 2001 to study fish movement in response to intake occlusion plates at The Dalles Dam on the Columbia River. AFTS provides three-dimensional fish tracks by aligning the axis of a split-beam transducer with a fish target. High-speed stepper motors move the transducer so that a tracked target remains on-axis. Occlusion plates with lateral extensions covered the top half of the turbine intakes to produce a fish friendly near-dam environment. Two AFTS were positioned at the center of Main Unit 1, one each for monitoring installed and removed plate conditions. A regression analysis showed that occlusion plates had pronounced effects on fish movement along the dam. The plates appeared to inhibit movement toward the spillway, movement toward the dam (especially in front of the turbine intake), and movement downward toward the turbines. Fish fate (as opposed to movement directions from regression slopes) into particular areas was determined using Markov-chain analysis. The sluiceway (a safer passage route above the turbine intake) zone of influence was larger with the occlusion plates installed, contrary to the regression results. In addition, the probability of passage out the near turbine and bottom sides of the sample volume was about 50% lower with occlusion plates installed.

  9. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar.

    PubMed

    DeRuiter, Stacy L; Southall, Brandon L; Calambokidis, John; Zimmer, Walter M X; Sadykova, Dinara; Falcone, Erin A; Friedlaender, Ari S; Joseph, John E; Moretti, David; Schorr, Gregory S; Thomas, Len; Tyack, Peter L

    2013-08-23

    Most marine mammal- strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89-127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78-106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.

  10. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar

    PubMed Central

    DeRuiter, Stacy L.; Southall, Brandon L.; Calambokidis, John; Zimmer, Walter M. X.; Sadykova, Dinara; Falcone, Erin A.; Friedlaender, Ari S.; Joseph, John E.; Moretti, David; Schorr, Gregory S.; Thomas, Len; Tyack, Peter L.

    2013-01-01

    Most marine mammal­ strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89–127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78–106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency. PMID:23825085

  11. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  12. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active... Array Sensor System Low Frequency Active (SURTASS LFA) sonar systems with certain...

  13. Perception-based automatic classification of impulsive-source active sonar echoes.

    PubMed

    Young, Victor W; Hines, Paul C

    2007-09-01

    Impulsive-source active sonar systems are often plagued by false alarm echoes resulting from the presence of naturally occurring clutter objects in the environment. Sonar performance could be improved by a technique for discriminating between echoes from true targets and echoes from clutter. Motivated by anecdotal evidence that target echoes sound very different than clutter echoes when auditioned by a human operator, this paper describes the implementation of an automatic classifier for impulsive-source active sonar echoes that is based on perceptual signal features that have been previously identified in the musical acoustics literature as underlying timbre. Perceptual signal features found in this paper to be particularly useful to the problem of active sonar classification include: the centroid and peak value of the perceptual loudness function, as well as several features based on subband attack and decay times. This paper uses subsets of these perceptual signal features to train and test an automatic classifier capable of discriminating between target and clutter echoes with an equal error rate of roughly 10%; the area under the receiver operating characteristic curve corresponding to this classifier is found to be 0.975.

  14. Patterns of Occurrence and Marine Mammal Acoustic Behavior in Relation to Navy Sonar Activity Off Jacksonville, Florida.

    PubMed

    Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel

    2016-01-01

    Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.

  15. Patterns of Occurrence and Marine Mammal Acoustic Behavior in Relation to Navy Sonar Activity Off Jacksonville, Florida.

    PubMed

    Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel

    2016-01-01

    Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar. PMID:26611034

  16. Waveguide invariant active sonar target detection and depth classification in shallow water

    NASA Astrophysics Data System (ADS)

    Goldhahn, Ryan A.

    Reverberation and clutter are two of the principle obstacles to active sonar target detection in shallow water. Diffuse seabed backscatter can obscure low energy target returns, while clutter discretes, specific features of the sea floor, produce temporally compact returns which may be mistaken for targets of interest. Detecting weak targets in the presence of reverberation and discriminating water column targets from bottom clutter are thus critical to good performance in active sonar. Both problems are addressed in this thesis using the time-frequency interference pattern described by a constant known as the waveguide invariant which summarizes in a scalar parameter the dispersive properties of the ocean environment. Conventional active sonar detection involves constant false alarm rate (CFAR) normalization of the reverberation return which does not account for the frequency-selective fading in a wideband pulse caused by multipath propagation. An alternative to conventional reverberation estimation is presented, motivated by striations observed in time-frequency analysis of active sonar data. A mathematical model for these reverberation striations is derived using waveguide invariant theory. This model is then used to motivate waveguide invariant reverberation estimation which involves averaging the time-frequency spectrum along these striations. An evaluation of this reverberation estimate using real Mediterranean data is given and its use in a generalized likelihood ratio test (GLRT) based CFAR detector is demonstrated. CFAR detection using waveguide invariant reverberation estimates is shown to out-perform conventional cell-averaged and frequency-invariant CFAR detection methods in shallow water environments producing strong reverberation returns which exhibit the described striations. Results are presented on simulated and real Mediterranean data from the SCARAB98 experiment. The ability to discriminate between water column targets and clutter discretes is

  17. The effects of high-intensity, low-frequency active sonar on rainbow trout.

    PubMed

    Popper, Arthur N; Halvorsen, Michele B; Kane, Andrew; Miller, Diane L; Smith, Michael E; Song, Jiakun; Stein, Peter; Wysocki, Lidia E

    2007-07-01

    This study investigated the effects on rainbow trout (Oncorhynchus mykiss) of exposure to high-intensity, low-frequency sonar using an element of the standard Surveillance Towed Array Sensor System Low Frequency Active (LFA) sonar source array. Effects of the LFA sonar on hearing were tested using auditory brainstem responses. Effects were also examined on inner ear morphology using scanning electron microscopy and on nonauditory tissues using general pathology and histopathology. Animals were exposed to a maximum received rms sound pressure level of 193 dB re 1 microPa(2) for 324 or 648 s, an exposure that is far in excess of any exposure a fish would normally encounter in the wild. The most significant effect was a 20-dB auditory threshold shift at 400 Hz. However, the results varied with different groups of trout, suggesting developmental and/or genetic impacts on how sound exposure affects hearing. There was no fish mortality during or after exposure. Sensory tissue of the inner ears did not show morphological damage even several days post-sound exposure. Similarly, gross- and histopathology observations demonstrated no effects on nonauditory tissues.

  18. A risk function for behavioral disruption of Blainville's beaked whales (Mesoplodon densirostris) from mid-frequency active sonar.

    PubMed

    Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald

    2014-01-01

    There is increasing concern about the potential effects of noise pollution on marine life in the world's oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville's beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville's beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville's beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150 dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function. PMID:24465477

  19. A risk function for behavioral disruption of Blainville's beaked whales (Mesoplodon densirostris) from mid-frequency active sonar.

    PubMed

    Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald

    2014-01-01

    There is increasing concern about the potential effects of noise pollution on marine life in the world's oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville's beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville's beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville's beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150 dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.

  20. A Risk Function for Behavioral Disruption of Blainville’s Beaked Whales (Mesoplodon densirostris) from Mid-Frequency Active Sonar

    PubMed Central

    Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald

    2014-01-01

    There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function. PMID:24465477

  1. 24 CFR 266.215 - Functions delegated by HUD to HFAs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Functions delegated by HUD to HFAs. 266.215 Section 266.215 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MORTGAGE...

  2. Striation-based beamforming for active sonar with a horizontal line array.

    PubMed

    Zurk, Lisa M; Rouseff, Daniel

    2012-10-01

    A physics-based method for beamforming signals measured on a horizontal array is developed with an application to underwater active sonar systems. The proposed striation-based beamformer coherently combines the pressure from each element in the array at different frequencies, and these frequencies are selected based on a striation hypothesis. The linear frequency shift and corresponding phase term introduced in the array weight vector accounts for multipath-induced fading, producing beam output with increased signal gain. The method is demonstrated using data collected on an array towed in the North Atlantic. The combination of the striation-based beamformer with the waveguide invariant concept to improve tracker performance is discussed.

  3. Coordination of bat sonar activity and flight for the exploration of three-dimensional objects.

    PubMed

    Genzel, Daria; Geberl, Cornelia; Dera, Thomas; Wiegrebe, Lutz

    2012-07-01

    The unique combination of flight and echolocation has opened the nocturnal air space as a rich ecological niche for bats. By analysing echoes of their sonar emissions, bats discriminate and recognize three-dimensional (3-D) objects. However, in contrast to vision, the 3-D information that can be gained by ensonifying an object from only one observation angle is sparse. To date, it is unclear how bats synchronize echolocation and flight activity to explore the 3-D shape of ensonified objects. We have devised an experimental design that allows creating 3-D virtual echo-acoustic objects by generating in real-time echoes from the bat's emissions that depend on the bat's position relative to the virtual object. Bats were trained to evaluate these 3-D virtual objects differing in their azimuthal variation of either echo amplitude or spectral composition. The data show that through a very effective coordination of sonar and flight activity, bats analyse an azimuthal variation of echo amplitude with a resolution of approximately 16 dB and a variation of echo centre frequency of approximately 19%. Control experiments show that the bats can detect not only these variations but also perturbations in the spatial arrangement of these variations. The current experimental paradigm shows that echolocating bats assemble echo-acoustic object information - acquired sequentially in flight - to reconstruct the 3-D shape of the ensonified object. Unlike previous approaches, the recruitment of virtual objects allows for a direct quantification of this reconstruction success in a highly controlled experimental approach.

  4. A waveguide invariant adaptive matched filter for active sonar target depth classification.

    PubMed

    Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey

    2011-04-01

    This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions. PMID:21476638

  5. A waveguide invariant adaptive matched filter for active sonar target depth classification.

    PubMed

    Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey

    2011-04-01

    This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions.

  6. 76 FR 4637 - Taking and Importing Marine Mammals; U.S. Navy's Atlantic Fleet Active Sonar Training

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ...&E) activities to be conducted within the Atlantic Fleet Active Sonar Training (AFAST) Study Area for... Integrated Comprehensive Management Program (ICMP) Plan, which is intended for use as a planning tool to... contacts listed here. The mailbox address for providing e-mail comments on the ICMP Plan is...

  7. 75 FR 5055 - Taking and Importing Marine Mammals; U.S. Navy's Atlantic Fleet Active Sonar Training (AFAST)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... to AFAST training, maintenance, and RDT&E became effective on January 22, 2009 (74 FR 4843, January... conducted within the AFAST Study Area under regulations issued on January 22, 2009 (74 FR 4843, January 27.... Navy's Atlantic Fleet Active Sonar Training (AFAST) AGENCY: National Marine Fisheries Service...

  8. The Subarray MVDR Beamformer: A Space-Time Adaptive Processor Applied to Active Sonar

    NASA Astrophysics Data System (ADS)

    Bezanson, Leverett Guidroz

    The research for this thesis was mainly performed at the NATO Underwater Research Center, now named the Center for Maritime Research and Experimentation (CMRE). The purpose of the research was to improve the detection of underwater targets in the littoral ocean when using active sonar. Currently these detections are being made by towed line arrays using a delay and sum beamformer for bearing measurements and noise suppression. This method of beamforming has can suffer from reverberation that commonly is present in the littoral environment. A proposed solution is to use an adaptive beamformer which can attenuate reverberation and increase the bearing resolution. The adaptive beamforming algorithms have existed for a long time and typically are not used in the active case due to limited amount of observable data that is needed for adaptation. This deficiency is caused by the conflicting requirements for high Doppler resolution for target detection and small time windows for building up full-rank covariance estimates. The algorithms also are sensitive to bearing estimate errors that commonly occur in active sonar systems. Recently it has been proposed to overcome these limitations through the use of reduced beamspace adaptive beamforming. The Subarray MVDR beamformer is analyzed, both against simulated data and against experimental data collected by CMRE during the GLINT/NGAS11 experiment in 2011. Simulation results indicate that the Subarray MVDR beamformer rejects interfering signals that are not effectively attenuated by conventional beamforming. The application of the Subarray MVDR beamformer to the experimental data shows that the Doppler spread of the reverberation ridge is reduced, and the bearing resolution improved. The signal to noise ratio is calculated at the target location and also shows improvement. These calculated and observed performance metrics indicate an improvement of detection in reverberation noise.

  9. A theoretical model of linearly filtered reverberation for pulsed active sonar in shallow water.

    PubMed

    Murray, John J

    2014-11-01

    This paper presents a statistical model useful for characterizing pulsed active sonar reverberation in shallow water. The model is based on the fundamental assumption that reverberation consists of echoes from point scatterers having random positions, strengths, and Doppler dilations. Receive array beam patterns, simple propagation losses, and planar bistatic geometry are included. The probability distribution of uniformly dense scatterers as a function of echo delay and bearing is explicitly related to the change in the area from which scatterer echoes contribute to the reverberation, and is presented in closed form. The cross Q-function of the transmitted waveform and the linear filter applied to the received signal arises naturally from the development. This function, along with environmental spreading, determines the shape of the reverberation along the Doppler axis. The assumptions and simplifications under which the reverberation decouples into independent spatial (delay and bearing) and Doppler terms are presented.

  10. Potential Population Consequences of Active Sonar Disturbance in Atlantic Herring: Estimating the Maximum Risk.

    PubMed

    Sivle, Lise Doksæter; Kvadsheim, Petter Helgevold; Ainslie, Michael

    2016-01-01

    Effects of noise on fish populations may be predicted by the population consequence of acoustic disturbance (PCAD) model. We have predicted the potential risk of population disturbance when the highest sound exposure level (SEL) at which adult herring do not respond to naval sonar (SEL(0)) is exceeded. When the population density is low (feeding), the risk is low even at high sonar source levels and long-duration exercises (>24 h). With densely packed populations (overwintering), a sonar exercise might expose the entire population to levels >SEL(0) within a 24-h exercise period. However, the disturbance will be short and the response threshold used here is highly conservative. It is therefore unlikely that naval sonar will significantly impact the herring population.

  11. Potential Population Consequences of Active Sonar Disturbance in Atlantic Herring: Estimating the Maximum Risk.

    PubMed

    Sivle, Lise Doksæter; Kvadsheim, Petter Helgevold; Ainslie, Michael

    2016-01-01

    Effects of noise on fish populations may be predicted by the population consequence of acoustic disturbance (PCAD) model. We have predicted the potential risk of population disturbance when the highest sound exposure level (SEL) at which adult herring do not respond to naval sonar (SEL(0)) is exceeded. When the population density is low (feeding), the risk is low even at high sonar source levels and long-duration exercises (>24 h). With densely packed populations (overwintering), a sonar exercise might expose the entire population to levels >SEL(0) within a 24-h exercise period. However, the disturbance will be short and the response threshold used here is highly conservative. It is therefore unlikely that naval sonar will significantly impact the herring population. PMID:26610962

  12. The effect of active sonar for the protection of moored and anchored warships on the human hearing.

    PubMed

    Salami, Angelo; Dellepiane, Massimo; Barbierato, Mauro; Freda, Pierluigi; Crippa, Barbara; Guastini, Luca; Mora, Renzo

    2010-02-01

    This study wants to show the effects of active middle frequency sonar on a selected group of Italian Navy divers. Ten male divers with normal hearing were exposed to active sonar of the Italian Navy for more than 100 exposures, each of at least 1-h duration, in the course of 6 months. Before, at the end, and six months after the end of noise exposure, we performed pure-tone audiometry, Carhart test, Peyser test, thresholds of discomfort test (TDT), tympanometry, transient evoked otoacoustic emissions (TEOAE), distortion product otoacoustic emissions (DPOAE), and auditory brainstem response (ABR). At the end of the noise exposure, the audiological tests showed a worsening of the mean air and bone audiometric thresholds at the 2,000 (1/10), 4,000 (7/10), and 8,000 Hz (6/10); a fail status of the TEOAE and DPOAE, which were previously present, in all the divers; temporary threshold shift, at the Peyser test, in 9/10 divers; discomfort for pulse tone presented at the TDT test, in all the divers; no post exposure significant differences at the Carhart and ABR tests, in any of the divers. Six months after the end of noise exposure, all the divers presented a complete recovery of their audio-vestibular functions. Our results show the temporary negative effects of repeated and lasting exposure to active sonar (Hull MF) on the divers; the last control demonstrate the absence of permanent noise-induced hearing loss in divers exposed to active sonar. PMID:19597738

  13. The effect of active sonar for the protection of moored and anchored warships on the human hearing.

    PubMed

    Salami, Angelo; Dellepiane, Massimo; Barbierato, Mauro; Freda, Pierluigi; Crippa, Barbara; Guastini, Luca; Mora, Renzo

    2010-02-01

    This study wants to show the effects of active middle frequency sonar on a selected group of Italian Navy divers. Ten male divers with normal hearing were exposed to active sonar of the Italian Navy for more than 100 exposures, each of at least 1-h duration, in the course of 6 months. Before, at the end, and six months after the end of noise exposure, we performed pure-tone audiometry, Carhart test, Peyser test, thresholds of discomfort test (TDT), tympanometry, transient evoked otoacoustic emissions (TEOAE), distortion product otoacoustic emissions (DPOAE), and auditory brainstem response (ABR). At the end of the noise exposure, the audiological tests showed a worsening of the mean air and bone audiometric thresholds at the 2,000 (1/10), 4,000 (7/10), and 8,000 Hz (6/10); a fail status of the TEOAE and DPOAE, which were previously present, in all the divers; temporary threshold shift, at the Peyser test, in 9/10 divers; discomfort for pulse tone presented at the TDT test, in all the divers; no post exposure significant differences at the Carhart and ABR tests, in any of the divers. Six months after the end of noise exposure, all the divers presented a complete recovery of their audio-vestibular functions. Our results show the temporary negative effects of repeated and lasting exposure to active sonar (Hull MF) on the divers; the last control demonstrate the absence of permanent noise-induced hearing loss in divers exposed to active sonar.

  14. Using McDaniel's model to represent non-Rayleigh active sonar reverberation

    NASA Astrophysics Data System (ADS)

    Gu, Ming

    Reverberation in active sonar systems has often been observed to follow non-Rayleigh distributions. Current statistical models tend to be either too restrictive, leading to significant mismatch error, or too general, leading to large estimation error. McDaniel's model has shown promise as having reasonably tight representation in terms of skewness and kurtosis for reverberation from a variety of sonar systems. This dissertation intensively explores capability and effectiveness of the generalized McDaniel's model in representing non-Rayleigh reverberation when minimal data are available. Three major topics are covered in this dissertation. First, derivation and computation of the cumulative distribution function of McDaniel's model is addressed. Two approaches, one based on direct integration and the other via characteristic function inversion, are both shown to achieve adequate precision with the former leading to a closed-form solution and the latter requiring significantly less computational effort. Second, parameter estimators using both method of moments (MM) and maximum likelihood (ML) algorithms are developed. The MM estimator has the advantage of a simple and rapid implementation, but the disadvantage of a non- zero probability of a solution not existing. Bootstrap/pruning techniques are proposed to partially deal with the failure of this method. The ML estimator will always provide a solution; however, it requires multivariate optimization. The expectation-maximization (EM) algorithm iteration is also derived for obtaining the ML estimates and compared with the simplex method and quasi-Newton multivariate optimization routines. Furthermore, the ability of various statistical models to represent the probability of false alarm is evaluated as a function of sample size. It is demonstrated that when minimal data are available, McDaniel's model can more accurately represent non-Rayleigh reverberation than the K or Rayleigh mixture models. Third, detection

  15. Effects of surveillance towed array sensor system (SURTASS) low frequency active sonar on fish

    NASA Astrophysics Data System (ADS)

    Popper, Arthur N.; Halvorsen, Michele B.; Miller, Diane; Smith, Michael E.; Song, Jiakun; Wysocki, Lidia E.; Hastings, Mardi C.; Kane, Andrew S.; Stein, Peter

    2005-04-01

    We investigated the effects of exposure to Low Frequency Active (LFA) sonar on rainbow trout (a hearing non-specialist related to several endangered salmonids) and channel catfish (a hearing specialist), using an element of the standard SURTASS LFA source array. We measured hearing sensitivity using auditory brainstem response, effects on inner ear structure using scanning electron microscopy, effects on non-auditory tissues using general pathology and histopathology, and behavioral effects with video monitoring. Exposure to 193 dB re 1 microPa (rms received level) in the LFA frequency band for 324 seconds resulted in a TTS of 20 dB at 400 Hz in rainbow trout, with less TTS at 100 and 200 Hz. TTS in catfish ranged from 6 to 12 dB at frequencies from 200 to 1000 Hz. Both species recovered from hearing loss in several days. Inner ears sensory tissues appeared unaffected by acoustic exposure. Gross pathology indicated no damage to non-auditory tissues, including the swim bladder. Both species showed consistent startle responses at sound onsets and changed their position relative to the sound source during exposures. There was no fish death attributable to sound exposure even up to four days post-exposure. [Work supported by Chief of Naval Operations.

  16. Digitally controlled sonars

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1983-01-01

    Sonars are usually designed and constructed as stand alone instruments. That is, all elements or subsystems of the sonar are provided: power conditioning, displays, intercommunications, control, receiver, transmitter, and transducer. The sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP) represent a departure from this manner of implementation and are configured more like an instrumentation system. Only the transducer, transmitter, and receiver which are unique to a particular sonar function; Up, Down, Side Scan, exist as separable subsystems. The remaining functions are reserved to the AOTDP and serve all sonars and other instrumentation in a shared manner. The organization and functions of the common AOTDP elements were described and then the interface with the sonars discussed. The techniques for software control of the sonar parameters were explained followed by the details of the realization of the sonar functions and some discussion of the performance of the side scan sonars.

  17. Active part of Charlie--Gibbs fracture zone: A study using sonar and other geophysical techniques

    SciTech Connect

    Searle, R.

    1981-01-10

    A short survey with Gloria side-scan sonar and other geophysical instruments has revealed new information about Charlie--Gibbs fracture zone between 29/sup 0/ and 36 /sup 0/W. The traces of two transform faults have been clearly delineated. They fit small circles about the pole of rotation with an rms error of only about 1 km, but they do not always follow the deepest parts of the transform valleys. The transforms are joined by a short spreading center at 31 /sup 0/45 'W. The median transverse ridge appears to have been produced by normal seafloor spreading at this center and bears identifiable Vine-Matthews magnetic anomalies. A transverse ridge along the eastern inactive part of the northern transform may be an intrusive feature. Considerable thickness of sediment appear to have been deposited in the northern transform valley from Norwegian Sea overflow water passing through the fracture zone, but transverse ridges have prevented the sediment reaching the southern valley.

  18. Effects of mid-frequency active sonar on hearing in fish.

    PubMed

    Halvorsen, Michele B; Zeddies, David G; Ellison, William T; Chicoine, David R; Popper, Arthur N

    2012-01-01

    Caged fish were exposed to sound from mid-frequency active (MFA) transducers in a 5 × 5 planar array which simulated MFA sounds at received sound pressure levels of 210 dB SPL(re 1 μPa). The exposure sound consisted of a 2 s frequency sweep from 2.8 to 3.8 kHz followed by a 1 s tone at 3.3 kHz. The sound sequence was repeated every 25 s for five repetitions resulting in a cumulative sound exposure level (SEL(cum)) of 220 dB re 1 μPa(2) s. The cumulative exposure level did not affect the hearing sensitivity of rainbow trout, a species whose hearing range is lower than the frequencies in the presented MFA sound. In contrast, one cohort of channel catfish showed a statistically significant temporary threshold shift of 4-6 dB at 2300 Hz, but not at lower tested frequencies, whereas a second cohort showed no change. It is likely that this threshold shift resulted from the frequency spectrum of the MFA sound overlapping with the upper end of the hearing frequency range of the channel catfish. The observed threshold shifts in channel catfish recovered within 24 h. There was no mortality associated with the MFA sound exposure used in this test.

  19. Behavioral responses by grey seals (Halichoerus grypus) to high frequency sonar.

    PubMed

    Hastie, Gordon D; Donovan, Carl; Götz, Thomas; Janik, Vincent M

    2014-02-15

    The use of high frequency sonar is now commonplace in the marine environment. Most marine mammals rely on sound to navigate, and for detecting prey, and there is the potential that the acoustic signals of sonar could cause behavioral responses. To investigate this, we carried out behavioral response tests with grey seals to two sonar systems (200 and 375 kHz systems). Results showed that both systems had significant effects on the seals behavior; when the 200 kHz sonar was active, seals spent significantly more time hauled out and, although seals remained swimming during operation of the 375 kHz sonar, they were distributed further from the sonar. The results show that although peak sonar frequencies may be above marine mammal hearing ranges, high levels of sound can be produced within their hearing ranges that elicit behavioral responses; this has clear implications for the widespread use of sonar in the marine environment.

  20. Gain control in the sonar of odontocetes.

    PubMed

    Ya Supin, Alexander; Nachtigall, Paul E

    2013-06-01

    The sonar of odontocetes processes echo-signals within a wide range of echo levels. The level of echoes varies widely by tens of decibels depending on the level of the emitted sonar pulse, the target strength, the distance to the target, and the sound absorption by the water media. The auditory system of odontocetes must be capable of effective perception, analysis, and discrimination of echo-signals within all this variability. The sonar of odontocetes has several mechanisms to compensate for the echo-level variation (gain control). To date, several mechanisms of the biosonar gain control have been revealed in odontocetes: (1) adjustment of emitted sonar pulse levels (the longer the distance to the target, the higher the level of the emitted pulse), (2) short-term variation of hearing sensitivity based on forward masking of the echo by the preceding self-heard emitted pulse and subsequent release from the masking, and (3) active long-term control of hearing sensitivity. Recent investigations with the use of the auditory evoked-potential technique have demonstrated that these mechanisms effectively minimize the variation of the response to the echo when either the emitted sonar pulse level, or the target distance, or both vary within a wide range. A short review of these data is presented herein.

  1. Pathology: whales, sonar and decompression sickness.

    PubMed

    Piantadosi, Claude A; Thalmann, Edward D

    2004-04-15

    We do not yet know why whales occasionally strand after sonar has been deployed nearby, but such information is important for both naval undersea activities and the protection of marine mammals. Jepson et al. suggest that a peculiar gas-forming disease afflicting some stranded cetaceans could be a type of decompression sickness (DCS) resulting from exposure to mid-range sonar. However, neither decompression theory nor observation support the existence of a naturally occurring DCS in whales that is characterized by encapsulated, gas-filled cavities in the liver. Although gas-bubble formation may be aggravated by acoustic energy, more rigorous investigation is needed before sonar can be firmly linked to bubble formation in whales.

  2. Miniature sonar fish tag

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1975-01-01

    Self-powered sonar device may be implanted in body of fish. It transmits signal that can be detected with portable tracking gear or by automatic detection-and-tracking system. Operating life of over 4000 hours may be expected. Device itself may be used almost indefinitely.

  3. Protocols for calibrating multibeam sonar.

    PubMed

    Foote, Kenneth G; Chu, Dezhang; Hammar, Terence R; Baldwin, Kenneth C; Mayer, Larry A; Hufnagle, Lawrence C; Jech, J Michael

    2005-04-01

    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.

  4. Target detection from dual disparate sonar platforms using canonical correlations

    NASA Astrophysics Data System (ADS)

    Azimi-Sadjdadi, Mahmood R.; Tucker, J. Derek

    2008-04-01

    In this paper a new coherence-based feature extraction method for sonar imagery generated from two disparate sonar systems is developed. Canonical correlation analysis (CCA) is employed to identify coherent information from co-registered regions of interest (ROI's) that contain target activities, while at the same time extract useful coherent features from both images. The extracted features can be used for simultaneous detection and classification of target and non-target objects in the sonar images. In this study, a side-scan sonar that provides high resolution images with good target definition and a broadband sonar that generates low resolution images, but with reduced background clutter. The optimum Neyman-Pearson detector will be presented and then extended to the dual sensor platform scenarios. Test results of the proposed methods on a dual sonar imagery data set provided by the Naval Surface Warfare Center (NSWC) Panama City, FL will be presented. This database contains co-registered pair of images over the same target field with varying degree of detection difficulty and bottom clutter. The effectiveness of CCA as the optimum detection tool is demonstrated in terms of probability of detection and false alarm rate.

  5. Tiger moth jams bat sonar.

    PubMed

    Corcoran, Aaron J; Barber, Jesse R; Conner, William E

    2009-07-17

    In response to sonar-guided attacking bats, some tiger moths make ultrasonic clicks of their own. The lepidopteran sounds have previously been shown to alert bats to some moths' toxic chemistry and also to startle bats unaccustomed to sonic prey. The moth sounds could also interfere with, or "jam," bat sonar, but evidence for such jamming has been inconclusive. Using ultrasonic recording and high-speed infrared videography of bat-moth interactions, we show that the palatable tiger moth Bertholdia trigona defends against attacking big brown bats (Eptesicus fuscus) using ultrasonic clicks that jam bat sonar. Sonar jamming extends the defensive repertoire available to prey in the long-standing evolutionary arms race between bats and insects.

  6. Security sonar for water intakes

    SciTech Connect

    Rothenbuhler, D.E.

    1987-07-01

    The security of the water approaches to nuclear facilities has been largely neglected because of the lack of solutions to the intrusion problem. This paper reviews underwater scanning sonar in general, highlights a number of problems encountered in a threat detection system using sonar and suggests some procedures that can help make such a system workable. Information is drawn from recent experience with several security projects in the governmental and private sectors, one of which was a nuclear facility.

  7. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    PubMed

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632

  8. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    PubMed

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment.

  9. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    PubMed Central

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632

  10. Sonar equations for planetary exploration.

    PubMed

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  11. Sonar equations for planetary exploration.

    PubMed

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus. PMID:27586766

  12. Mobile robot localization using sonar.

    PubMed

    Drumheller, M

    1987-02-01

    This correspondence describes a method by which range data from a sonar rangefinder can be used to determine the two-dimensional position and orientation of a mobile robot inside a room. The plan of the room is modeled as a list of segments indicating the positions of walls. The algorithm works by correlating straight segments in the range data against the room model, then eliminating implausible configurations using the sonar barrier test, which exploits physical constraints on sonar data. The approach is extremely tolerant of noise and clutter. Transient objects such as furniture and people need not be included in the room model, and very noisy, low-resolution sensors can be used. The algorithm's performance is demonstrated using a Polaroid Ultrasonic Rangefinder.

  13. AGU Sonar Data Restriction Panel

    NASA Astrophysics Data System (ADS)

    The AGU Council accepted the report of the panel set up in February to study the issue of restriction by the U.S. Navy of access to high-resolution sonar data for the U.S. Exclusive Economic Zone. Panel chairman John Bossier announced that “the Navy has acted in the best interests of the nation” in lifting the restriction order. Only two areas, egress routes to two submarine bases (see “Navy Defines Areas Under Sonar Ban,” in News, this issue), remain restricted.Panel members were Bruce Douglas, Alexander Malahoff, Donald Piepgras, Paul Richards, David Smith and Manik Talwani.

  14. Limpet mine imaging sonar (LIMIS)

    NASA Astrophysics Data System (ADS)

    Belcher, Edward O.; Dinh, Hien Q.

    1999-07-01

    When divers search for limpet mines on ship hulls in turbid or dark water, they must resort to tactile examination. Acoustic systems that detect objects in turbid water typically suffer from low resolution, a low image refresh rate, a large size, and/or high power consumption. This paper discusses the design, fabrication, and testing of a small, prototype diver-held sonar that generates near- photographic quality images at a fast frame rate. Its weight in air is 7.7 kg, and it is 100 g buoyant in seawater. It is 18 cm wide, 20 cm high, and 35 cm long, including a 10-cm handle. The sonar sues acoustic lenses made from polymethylpentene to form 64 beams, each of which has a beamwidth of 0.3 degrees yielding a 1.6 cm cross-range resolution at 3-m range. The sector display has a 19.2 degree field of view. The frame rate varies with range, going from 5.5 frame/s at 15 m to 12.5 frames/s at ranges less than 4 m. The sonar consumes 25 W. The internal batteries provide 3 hours of operation between charges. External packs and cabled power provide additional power options. The images are seen on a mask-mounted video display and can also be cabled topside to a video monitor. The sonar operates at 2 MHz and has a maximum range of 15 m. This sonar allows divers to sweep hulls more efficiency and with greater safety than possible with current methods.

  15. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. PMID:27481189

  16. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map.

  17. Quantifying seabed properties in shelf waters using a parametric sonar

    NASA Astrophysics Data System (ADS)

    Hines, Paul C.

    1999-12-01

    Defence Research Establishment Atlantic is developing a bottom-tethered, wide-band sonar for collecting acoustic data in the open ocean. The transmitter, a parametric array, offers three advantages: a wide bandwidth (1-10 kHz), a narrow beamwidth (icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>3°) and virtually no sidelobes. These features allow direct measurement of seabed parameters in shallow water. Direct in this context means the absence of complications resulting from unwanted interactions of the acoustic pulse with ocean boundaries. This makes the parametric sonar an ideal tool with which to interrogate the seabed in shelf waters and quantify several geo-acoustic properties. To complement the narrow-beam active sonar, a six-channel superdirective/intensity array has been developed for the receiver. The superdirective receiver obtains a significantly narrower beam for a given array aperture than that obtained using a conventional acoustic receiver. A 900 MHz rf command link is used to steer the array to any combination of azimuth and tilt angle. Together with control over azimuth and tilt angle, the sonar frame is instrumented to monitor depth, roll and vertical acceleration to ensure quality control of the data. Data transmission back to the ship is accomplished via a 2.3 GHz rf data link capable of a data-transfer rate of up to 8 Mbits s-1. This paper describes the system's technical functionality, its acoustic principles of operation and its measurement application.

  18. Minehunting sonar system research and development

    NASA Astrophysics Data System (ADS)

    Ferguson, Brian

    2002-05-01

    Sea mines have the potential to threaten the freedom of the seas by disrupting maritime trade and restricting the freedom of maneuver of navies. The acoustic detection, localization, and classification of sea mines involves a sequence of operations starting with the transmission of a sonar pulse and ending with an operator interpreting the information on a sonar display. A recent improvement to the process stems from the application of neural networks to the computed aided detection of sea mines. The advent of ultrawideband sonar transducers together with pulse compression techniques offers a thousandfold increase in the bandwidth-time product of conventional minehunting sonar transmissions enabling stealth mines to be detected at longer ranges. These wideband signals also enable mines to be imaged at safe standoff distances by applying tomographic image reconstruction techniques. The coupling of wideband transducer technology with synthetic aperture processing enhances the resolution of side scan sonars in both the cross-track and along-track directions. The principles on which conventional and advanced minehunting sonars are based are reviewed and the results of applying novel sonar signal processing algorithms to high-frequency sonar data collected in Australian waters are presented.

  19. Sonar Probing in Narragansett Bay.

    PubMed

    Edgerton, H E; Payson, H; Yules, J; Dillon, W

    1964-12-11

    A 12-kilocycle pulsed transducer, with a 0.1 millisecond duration, is used for tracing a sub-bottom rock profile in Narragansett Bay. The short sonar pulse of high energy is produced by a capacitor discharge. Over-the-side installation of the transducer permits the use of any boat or ship for the survey work. Coherent presentation of the data on a wet paper recorder gives an instantaneous visual record. A cross a north-south rock formation, a recurring rise and fall of the rock is shown throughout the sedimentary deposit.

  20. Computers improves sonar seabed maps

    SciTech Connect

    Not Available

    1984-05-01

    A software package for computer aided mapping of sonar (CAMOS) has been developed in Norway. It has automatic mosaic presentation, which produces fully scale-rectified side scan sonograms automatically plotted on geographical and UTM map grids. The program is the first of its kind in the world. The maps produced by this method are more accurate and detailed than those produced by conventional methods. The main applications of CAMOS are: seafloor mapping; pipeline route surveys; pipeline inspection surveys; platform site surveys; geological mapping and geotechnical investigations. With the aerial-photograph quality of the CAMOS maps, a more accurate and visual representation of the seabed is achieved.

  1. Sonar Locator Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An underwater locator device called a Pinger is attached to an airplane's flight recorder for recovery in case of a crash. Burnett Electronics Pinger Model 512 resulted from a Burnett Electronics Laboratory, Inc./Langley Research Center contract for development of a search system for underwater mines. The Pinger's battery-powered transmitter is activated when immersed in water, and sends multidirectional signals for up to 500 hours. When a surface receiver picks up the signal, a diver can retrieve the pinger and the attached airplane flight recorder. Other pingers are used to track whales, mark underwater discoveries and assist oil drilling vessels.

  2. Multiband space time processing for torpedo alert sonar

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhao, Anbang

    2013-12-01

    A space time processing technology using harmonic CW wave is introduced to enhance the detecting performance of motion target based on active towed sonar based on CW wave. The detecting ability of CW wave and harmonic CW wave in multi-path channel is analyzed comparatively. The simulation results indicate that in multi-path channel harmonic CW wave is provided with a better performance.

  3. Place recognition using batlike sonar

    PubMed Central

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. DOI: http://dx.doi.org/10.7554/eLife.14188.001 PMID:27481189

  4. Selective attention skills of experienced sonar operators.

    PubMed

    Merrill, L L; Lewandowski, L J; Kobus, D A

    1994-06-01

    This study investigated the influence of sonar training and experience on the selective attention of experienced and inexperienced operators. The Stroop task was selected as a measure of general selective attention, similar in certain task requirements (attentional allocation) to sonar operation. Across two samples (ns = 32 and 36) and four repeated test sessions groups did not differ significantly in speed or accuracy of Stroop performance. The data suggest that experienced operators do not seem to have developed extraordinary attentional skills and that any attentional skills developed through sonar experience do not generalize to other tasks such as the Stroop.

  5. Evolution: Fossil Ears and Underwater Sonar.

    PubMed

    Lambert, Olivier

    2016-08-22

    A key innovation in the history of whales was the evolution of a sonar system together with high-frequency hearing. Fossils of an archaic toothed whale's inner ear bones provide clues for a stepwise emergence of underwater echolocation ability.

  6. Analysis of the "Sonar Hopf" cochlea.

    PubMed

    Kern, Albert; Martignoli, Stefan; Mathis, Wolfgang; Steeb, Willi-Hans; Stoop, Ralph Lukas; Stoop, Ruedi

    2011-01-01

    The "Sonar Hopf" cochlea is a recently much advertised engineering design of an auditory sensor. We analyze this approach based on a recent description by its inventors Hamilton, Tapson, Rapson, Jin, and van Schaik, in which they exhibit the "Sonar Hopf" model, its analysis and the corresponding hardware in detail. We identify problems in the theoretical formulation of the model and critically examine the claimed coherence between the described model, the measurements from the implemented hardware, and biological data.

  7. Remote characterizing diffuse hydrothermal flows using multi-beam sonar

    NASA Astrophysics Data System (ADS)

    Ivakin, A. N.; Jackson, D. R.; Bemis, K. G.; Xu, G.

    2015-12-01

    Multi-beam sonars are normally used for bottom bathymetry and backscatter intensity measurements, which provide a base for remotely characterizing the seabed. If not only sonar echo intensity (squared magnitude of acoustic pressure) but also the cross-correlation between successive echoes is measured, then temporal changes in sound speed in the near-bottom environment can be determined. This, in turn, allows estimation of the change of environmental parameters, e.g. temperature variations, as there is a simple linear relationship between sound speed and temperature changes. Stochastic modeling shows that the dependence of the echo decorrelation on the lag time has a relationship with the statistics of temperature variations above the seabed that determine their spatial and temporal scales, power spectra, and structure functions. This approach has been applied to quantify the bottom diffuse hydrothermal flow activity at the Main Endeavour Field on the Juan de Fuca Ridge using the Cabled Observatory Vent Imaging Sonar (COVIS) connected to the Ocean Network Canada's NEPTUNE observatory. In contrast to our previous work, which was focused on spatial imaging of acoustic decorrelation at fixed lag, here the lag dependence of the acoustic structure function is measured and analyzed. This allows extraction of additional parameters of temperature fluctuation statistics. A potential to map diffuse flow using a ROV/HOV is discussed.

  8. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  9. Imaging sonar development for mine countermeasure applications

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce

    2002-05-01

    Over the past decade the Office of Naval Research (ONR) has sponsored research to improve the mine countermeasures (MCM) community's ability to detect, classify, reacquire, and identify mines. In the first stage of wide area detection and classification, the single biggest problem is the ability to distinguish mines from clutter with side-scan sonar assets. In the reacquire-identify stage, divers employ a single-beam aural sonar for guidance to close proximity for visual identification of targets. Current sonar research efforts in wide-area search focus on clutter rejection through high-resolution imaging by synthetic aperture processing and cuing from broadband response characteristics. For reacquisition and identification, research has focused on compact, multibeam imagers. ONR's focus on transition from towbodies and divers to numbers of small, unmanned underwater vehicles (UUVs) to improve MCM clearance rates has had a major impact on sensor development as well. The presentation will provide an introduction to the session by providing a brief history of the development of navy imaging sonars, how they are employed, and an overview of the current thrusts that will lead to the next generation of Navy MCM sonars.

  10. An autocorrelation model of bat sonar.

    PubMed

    Wiegrebe, Lutz

    2008-06-01

    Their sonar system allows echolocating bats to navigate with high skill through a complex, three- dimensional environment at high speed and low light. The auditory analysis of the echoes of their ultrasonic sounds requires a detailed comparison of the emission and echoes. Here an auditory model of bat sonar is introduced and evaluated against a set of psychophysical phantom-target, echo-acoustic experiments. The model consists of a relatively detailed simulation of auditory peripheral processing in the bat, Phyllostomus discolor, followed by a functional module consisting of a strobed, normalised, autocorrelation in each frequency channel. The model output is accumulated in a sonar image buffer. The model evaluation is based on the comparison of the image-buffer contents generated in individually simulated psychophysical trials. The model provides reasonably good predictions for both temporal and spectral behavioural sonar processing in terms of sonar delay-, roughness, and phase sensitivity and in terms of sensitivity to the temporal separations in two-front targets and the classification of spectrally divergent phantom targets.

  11. Coherent-based method for detection of underwater objects from sonar imagery

    NASA Astrophysics Data System (ADS)

    Tucker, James D.; Azimi-Sadjadi, Mahmood R.; Dobeck, Gerry J.

    2007-04-01

    Detection and classification of underwater objects in sonar imagery are challenging problems. In this paper, a new coherent-based method for detecting potential targets in high-resolution sonar imagery is developed using canonical correlation analysis (CCA). Canonical coordinate decomposition allows us to quantify the changes between the returns from the bottom and any target activity in sonar images and at the same time extract useful features for subsequent classification without the need to perform separate detection and feature extraction. Moreover, in situations where any visual analysis or verification by human operators is required, the detected/classified objects can be reconstructed from the coherent features. In this paper, underwater target detection using the canonical correlations extracted from regions of interest within the sonar image is considered. Test results of the proposed method on underwater side-scan sonar images provided by the Naval Surface Warfare Center (NSWC) in Panama City, FL is presented. This database contains synthesized targets in real background varying in degree of difficulty and bottom clutter. Results illustrating the effectiveness of the CCA based detection method are presented in terms of probability of detection, and false alarm rates for various densities of background clutter.

  12. An auditory event related potential evaluation of sonar task experience and age.

    PubMed

    Merrill, L L; Kobus, D A; McGuigan, F J

    1995-06-01

    To gauge the interaction of real-world sonar-task experience and age on brain electrical activity, the effect of sonar experience and age on event related potentials (ERP) was examined. A three-group design was used and the results suggest that sonar experience and age affect the amplitude and distribution of the ERP component. The results concerning age and ERPs support and extend the results of previous studies and suggest that age-related differences occur at a much younger age than is reported elsewhere. Attentional and stimulus evaluation processes which have been linked to parameters of the ERP component may be enhanced with real-world auditory task experience. Research on ERP should control for the possible confounds of auditory-task experience and age.

  13. Vocal control of acoustic information for sonar discriminations by the echolocating bat, Eptesicus fuscus.

    PubMed

    Wadsworth, J; Moss, C F

    2000-04-01

    This study aimed to determine whether bats using frequency modulated (FM) echolocation signals adapt the features of their vocalizations to the perceptual demands of a particular sonar task. Quantitative measures were obtained from the vocal signals produced by echolocating bats (Eptesicus fuscus) that were trained to perform in two distinct perceptual tasks, echo delay and Doppler-shift discriminations. In both perceptual tasks, the bats learned to discriminate electronically manipulated playback signals of their own echolocation sounds, which simulated echoes from sonar targets. Both tasks utilized a single-channel electronic target simulator and tested the bat's in a two-alternative forced choice procedure. The results of this study demonstrate changes in the features of the FM bats' sonar sounds with echolocation task demands, lending support to the notion that this animal actively controls the echo information that guides its behavior.

  14. Sonar array processing borrows from geophysics

    SciTech Connect

    Chen, K.

    1989-09-01

    The author reports a recent advance in sonar signal processing that has potential military application. It improves signal extraction by modifying a technique devised by a geophysicist. Sonar signal processing is used to track submarine and surface targets, such as aircraft carriers, oil tankers, and, in commercial applications, schools of fish or sunken treasure. Similar signal-processing techniques help radio astronomers track galaxies, physicians see images of the body interior, and geophysicists map the ocean floor or find oil. This hydrid technique, applied in an experimental system, can help resolve strong signals as well as weak ones in the same step.

  15. Sonar investigations in the Laghi di Monticchio (Mt. Vúlture, Italy)

    NASA Astrophysics Data System (ADS)

    Hansen, Ralph B.

    Sonar profiles across the Lago Grande and Lago Piccolo di Monticchio (two lakes in southern Italy, 20 km S of Melfi) were recorded to get knowledge on the lake basins an their surface prior coring. The combination of echo-graph data with digital landscape modelling was suitable for the detection and interpretation of complex structures of the lake bottom. The interpretation of the model shows the distortion of an old continuous sedimentation by younger tectonic events. The presence of terraces above and below the present-day lake level are interpreted as response to paleoclimatic fluctuations and human activities.

  16. Sonar pulse wave form optimization in cluttered environments.

    PubMed

    Weichman, Peter B

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity.

  17. Sonar pulse wave form optimization in cluttered environments

    NASA Astrophysics Data System (ADS)

    Weichman, Peter B.

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity.

  18. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    PubMed Central

    Sivle, L. D.; Kvadsheim, P. H.; Fahlman, A.; Lam, F. P. A.; Tyack, P. L.; Miller, P. J. O.

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1–2 kHz and mid frequency active sonar (MFAS): 6–7 kHz] during three field seasons (2006–2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals. PMID:23087648

  19. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales.

    PubMed

    Sivle, L D; Kvadsheim, P H; Fahlman, A; Lam, F P A; Tyack, P L; Miller, P J O

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2006-2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals.

  20. Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels.

  1. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas).

    PubMed

    Antunes, R; Kvadsheim, P H; Lam, F P A; Tyack, P L; Thomas, L; Wensveen, P J; Miller, P J O

    2014-06-15

    The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources. PMID:24820645

  2. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas).

    PubMed

    Antunes, R; Kvadsheim, P H; Lam, F P A; Tyack, P L; Thomas, L; Wensveen, P J; Miller, P J O

    2014-06-15

    The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources.

  3. Automatic seagrass pattern identification on sonar images

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Rahman, Abdullah

    2016-05-01

    Natural and human-induced disturbances are resulting in degradation and loss of seagrass. Freshwater flooding, severe meteorological events and invasive species are among the major natural disturbances. Human-induced disturbances are mainly due to boat propeller scars in the shallow seagrass meadows and anchor scars in the deeper areas. Therefore, there is a vital need to map seagrass ecosystems in order to determine worldwide abundance and distribution. Currently there is no established method for mapping the pothole or scars in seagrass. One of the most precise sensors to map the seagrass disturbance is side scan sonar. Here we propose an automatic method which detects seagrass potholes in sonar images. Side scan sonar images are notorious for having speckle noise and uneven illumination across the image. Moreover, disturbance presents complex patterns where most segmentation techniques will fail. In this paper, by applying mathematical morphology technique and calculating the local standard deviation of the image, the images were enhanced and the pothole patterns were identified. The proposed method was applied on sonar images taken from Laguna Madre in Texas. Experimental results show the effectiveness of the proposed method.

  4. Evolution: Fossil Ears and Underwater Sonar.

    PubMed

    Lambert, Olivier

    2016-08-22

    A key innovation in the history of whales was the evolution of a sonar system together with high-frequency hearing. Fossils of an archaic toothed whale's inner ear bones provide clues for a stepwise emergence of underwater echolocation ability. PMID:27554653

  5. How do tiger moths jam bat sonar?

    PubMed

    Corcoran, Aaron J; Barber, Jesse R; Hristov, Nickolay I; Conner, William E

    2011-07-15

    The tiger moth Bertholdia trigona is the only animal in nature known to defend itself by jamming the sonar of its predators - bats. In this study we analyzed the three-dimensional flight paths and echolocation behavior of big brown bats (Eptesicus fuscus) attacking B. trigona in a flight room over seven consecutive nights to determine the acoustic mechanism of the sonar-jamming defense. Three mechanisms have been proposed: (1) the phantom echo hypothesis, which states that bats misinterpret moth clicks as echoes; (2) the ranging interference hypothesis, which states that moth clicks degrade the bats' precision in determining target distance; and (3) the masking hypothesis, which states that moth clicks mask the moth echoes entirely, making the moth temporarily invisible. On nights one and two of the experiment, the bats appeared startled by the clicks; however, on nights three through seven, the bats frequently missed their prey by a distance predicted by the ranging interference hypothesis (∼15-20 cm). Three-dimensional simulations show that bats did not avoid phantom targets, and the bats' ability to track clicking prey contradicts the predictions of the masking hypothesis. The moth clicks also forced the bats to reverse their stereotyped pattern of echolocation emissions during attack, even while bats continued pursuit of the moths. This likely further hinders the bats' ability to track prey. These results have implications for the evolution of sonar jamming in tiger moths, and we suggest evolutionary pathways by which sonar jamming may have evolved from other tiger moth defense mechanisms.

  6. Motion compensation on synthetic aperture sonar images

    NASA Astrophysics Data System (ADS)

    Heremans, R.; Acheroy, M.; Dupont, Y.

    2006-09-01

    High resolution sonars are required to detect and classify mines on the sea-bed. Synthetic aperture sonar increases the sonar cross range resolution by several orders of magnitudes while maintaining or increasing the area search rate. The resolution is however strongly dependent on the precision with which the motion errors of the platform can be estimated. The term micro-navigation is used to describe this very special requirement for sub-wavelength relative positioning of the platform. Therefore algorithms were designed to estimate those motion errors and to correct for them during the (ω, k)-reconstruction phase. To validate the quality of the motion estimation algorithms a single transmitter/multiple receiver simulator was build, allowing to generate multiple point targets with or without surge and/or sway and/or yaw motion errors. The surge motion estimation is shown on real data, which were taken during a sea trial in November of 2003 with the low frequency (12 kHz) side scan sonar (LFSS) moving on a rail positioned on the sea-bed near Marciana Marina on the Elba Island, Italy.

  7. Spatial perception and adaptive sonar behavior.

    PubMed

    Aytekin, Murat; Mao, Beatrice; Moss, Cynthia F

    2010-12-01

    Bat echolocation is a dynamic behavior that allows for real-time adaptations in the timing and spectro-temporal design of sonar signals in response to a particular task and environment. To enable detailed, quantitative analyses of adaptive sonar behavior, echolocation call design was investigated in big brown bats, trained to rest on a stationary platform and track a tethered mealworm that approached from a starting distance of about 170 cm in the presence of a stationary sonar distracter. The distracter was presented at different angular offsets and distances from the bat. The results of this study show that the distance and the angular offset of the distracter influence sonar vocalization parameters of the big brown bat, Eptesicus fuscus. Specifically, the bat adjusted its call duration to the closer of two objects, distracter or insect target, and the magnitude of the adjustment depended on the angular offset of the distracter. In contrast, the bat consistently adjusted its call rate to the distance of the insect, even when this target was positioned behind the distracter. The results hold implications for understanding spatial information processing and perception by echolocation.

  8. Introduction to Sonar, Navy Training Course.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of sonar systems are presented in this book, prepared for both regular navy and naval reserve personnel who are seeking advancement in rating. An introductory description is first made of submarines and antisubmarine units. Determination of underwater targets is analyzed from the background of true and relative bearings, true and…

  9. Study of Natural Health Product Adverse Reactions (SONAR): Active Surveillance of Adverse Events Following Concurrent Natural Health Product and Prescription Drug Use in Community Pharmacies

    PubMed Central

    Vohra, Sunita; Cvijovic, Kosta; Boon, Heather; Foster, Brian C.; Jaeger, Walter; LeGatt, Don; Cembrowski, George; Murty, Mano; Tsuyuki, Ross T.; Barnes, Joanne; Charrois, Theresa L.; Arnason, John T.; Necyk, Candace; Ware, Mark; Rosychuk, Rhonda J.

    2012-01-01

    Background Many consumers use natural health products (NHPs) concurrently with prescription medications. As NHP-related harms are under-reported through passive surveillance, the safety of concurrent NHP-drug use remains unknown. To conduct active surveillance in participating community pharmacies to identify adverse events related to concurrent NHP-prescription drug use. Methodology/Principal Findings Participating pharmacists asked individuals collecting prescription medications about (i) concurrent NHP/drug use in the previous three months and (ii) experiences of adverse events. If an adverse event was identified and if the patient provided written consent, a research pharmacist conducted a guided telephone interview to gather additional information after obtaining additional verbal consent and documenting so within the interview form. Over a total of 112 pharmacy weeks, 2615 patients were screened, of which 1037 (39.7%; 95% CI: 37.8% to 41.5%) reported concurrent NHP and prescription medication use. A total of 77 patients reported a possible AE (2.94%; 95% CI: 2.4% to 3.7%), which represents 7.4% of those using NHPs and prescription medications concurrently (95%CI: 6.0% to 9.2%). Of 15 patients available for an interview, 4 (26.7%: 95% CI: 4.3% to 49.0%) reported an AE that was determined to be “probably” due to NHP use. Conclusions/Significance Active surveillance markedly improves identification and reporting of adverse events associated with concurrent NHP-drug use. Although not without challenges, active surveillance is feasible and can generate adverse event data of sufficient quality to allow for meaningful adjudication to assess potential harms. PMID:23028841

  10. Object detection in side scan sonar

    NASA Astrophysics Data System (ADS)

    Wang, Wenwu; Cheng, Binbin; Chen, Yao

    2015-12-01

    Automatic target detection is a challenging task as the response from an underwater target may vary greatly depending on its configuration, sonar parameters and the environment. We propose a Z- test algorithm for target detection in side scan sonar image which avoids this problem that covers the variation in the target response. A Z-test is performed on the means of the pixel gray levels within and outside the window area, a detection being called when the value of test statistic feature exceeds a certain threshold. The algorithm is formulated for real-time execution on limited memory commercial-of-the-shelf platforms and is capable of detection objects on the seabed-bottom.

  11. Standardization of sonar cephalometry and gestational age.

    PubMed

    Sabbagha, R E; Hughey, M

    1978-10-01

    At present a large number of different charts are used for prediction of gestational age from sonar biparietal diameter (BPD). In this report the reasons for these observed differences are presented. Additionally, the usefulness of all these charts is questioned because a) the mean differences in 7059 BPDs derived by the B-scan from four large fetal population studies are not significantly different from zero and b) BPDs obtained by B scan are statistically comparable to gray-scale or real-time BPDs if medium gain is used. Thus, it is our suggestion that a chart showing the composite mean BPD values of all four studies be used universally for prediction of fetal age. Finally, the guidelines of using sonar BPD as an index of gestational age are presented and the role of the obstetrician in interpreting BPD data is emphasized.

  12. Color and Grey Scale in Sonar Displays

    NASA Technical Reports Server (NTRS)

    Kraiss, K. F.; Kuettelwesch, K. H.

    1984-01-01

    In spite of numerous publications 1 it is still rather unclear, whether color is of any help in sonar displays. The work presented here deals with a particular type of sonar data, i.e., LOFAR-grams (low frequency analysing and recording) where acoustic sensor data are continuously written as a time-frequency plot. The question to be answered quantitatively is, whether color coding does improve target detection when compared with a grey scale code. The data show significant differences in receiver-operating characteristics performance for the selected codes. In addition it turned out, that the background noise level affects the performance dramatically for some color codes, while others remain stable or even improve. Generally valid rules are presented on how to generate useful color scales for this particular application.

  13. Sonar Signals of the Sea Lion.

    PubMed

    Poulter, T C

    1963-02-22

    Tape recordings were made of the underwater noises of captive sea lions swimming in a concrete pool at night. When approaching pieces of fish that were thrown into the water, the sea lions emitted trains of sound signals like those of the bat and the porpoise. A detailed analysis of these noises shows that they meet the criteria of a pulse-modulated sonar system and, in fact, reveal an amazing sophistication so far as echo ranging is concerned. PMID:17829121

  14. Sonar Signals of the Sea Lion.

    PubMed

    Poulter, T C

    1963-02-22

    Tape recordings were made of the underwater noises of captive sea lions swimming in a concrete pool at night. When approaching pieces of fish that were thrown into the water, the sea lions emitted trains of sound signals like those of the bat and the porpoise. A detailed analysis of these noises shows that they meet the criteria of a pulse-modulated sonar system and, in fact, reveal an amazing sophistication so far as echo ranging is concerned.

  15. Mapping with side-scan sonar

    SciTech Connect

    Prior, D.B.; Coleman, J.M.; Roberts, H.H.

    1981-04-01

    The use of sideways scanning sonar as a technique for detailed sea-floor mapping is described in this article. Sea-floor mapping of the continental shelf is becoming increasingly necessary for the development of oil and gas resources. More recently attempts are being made to extend the survey capabilities to deeper water shelf margins, slopes, and basins. Conventional systems, digital systems, survey ranges, data processing, mosaics, and applications are discussed. (DMC)

  16. Sonar Sensor Models and Their Application to Mobile Robot Localization

    PubMed Central

    Burguera, Antoni; González, Yolanda; Oliver, Gabriel

    2009-01-01

    This paper presents a novel approach to mobile robot localization using sonar sensors. This approach is based on the use of particle filters. Each particle is augmented with local environment information which is updated during the mission execution. An experimental characterization of the sonar sensors used is provided in the paper. A probabilistic measurement model that takes into account the sonar uncertainties is defined according to the experimental characterization. The experimental results quantitatively evaluate the presented approach and provide a comparison with other localization strategies based on both the sonar and the laser. Some qualitative results are also provided for visual inspection. PMID:22303171

  17. Sonar sensor models and their application to mobile robot localization.

    PubMed

    Burguera, Antoni; González, Yolanda; Oliver, Gabriel

    2009-01-01

    This paper presents a novel approach to mobile robot localization using sonar sensors. This approach is based on the use of particle filters. Each particle is augmented with local environment information which is updated during the mission execution. An experimental characterization of the sonar sensors used is provided in the paper. A probabilistic measurement model that takes into account the sonar uncertainties is defined according to the experimental characterization. The experimental results quantitatively evaluate the presented approach and provide a comparison with other localization strategies based on both the sonar and the laser. Some qualitative results are also provided for visual inspection.

  18. The sonar aperture and its neural representation in bats.

    PubMed

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  19. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, M.; Seitz, H.; Scott, J.

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies. ?? 1998 John Wiley & Sons, Ltd.

  20. Human Face Classification Using Ultrasonic Sonar Imaging

    NASA Astrophysics Data System (ADS)

    Miao, Zhenwei; Ji, Wei; Xu, Yong; Yang, Jun

    2009-07-01

    In this paper, human face classification using ultrasonic sonar imaging is investigated. On the basis of Freedman's “image pulse” model, the scattering centers model is employed to simplify the complex geometry of the human face into a series of scattering centers. A chirp signal is utilized to detect the human face for its high range resolution and large signal-to-noise ratio. Ultrasonic sonar images, also named high-resolution range profiles, are obtained by demodulating the echoes with a reference chirp signal. Features directly related to the geometry of the human face are extracted from ultrasonic sonar images and verified in the experiments designed with different configurations of transmitter-receiver (TR) pairs. Experimental results indicate that the improved feature extraction method can achieve a high recognition rate of over 99% in the case of ultrasonic transmitters angled at 45° above and orthogonal to the face, and this method improves the performance of ultrasonic face recognition compared with our previous result.

  1. Phase sensitivity in bat sonar revisited.

    PubMed

    Schörnich, Sven; Wiegrebe, Lutz

    2008-01-01

    An echolocating bat produces echoes consisting of the convolution of echolocation call and the impulse response (IR) of the ensonified object. A crucial question in animal sonar is whether bats are able to extract this IR from the echo. The bat inner ear generates a frequency representation of call and echo and IR extraction in the frequency domain requires accurate analysis of both magnitude and phase information. Previous studies investigating the phase sensitivity of bats using a jitter paradigm reported a temporal acuity down to 10 ns, suggesting perfect sonar phase representation. In a phantom-target playback experiment, we investigate the perceptual phase sensitivity of the bat Phyllostomus discolor using a novel approach: instead of manipulating IR phase by changing IR delay (jitter paradigm), we randomized IR phase and thus lengthened the IR over time, leaving the magnitude spectrum unchanged. Our results show that phase sensitivity, as reflected in the analysis of signal duration, appears to be much lower than phase sensitivity, as reflected in the analysis of signal onset. The current data indicate that different temporal aspects of sonar processing are encoded with very different temporal resolution and thus an overall claim of "phase sensitivity" as such cannot be maintained.

  2. Radar and sonar probing of rocks

    SciTech Connect

    Unterberger, R.R.

    1983-03-01

    The purpose of this paper is to summarize the research of the past sixteen years on methods of probing into solid rock. For these purposes, there are three completely different systems: radar, sonar, and nonlinear sonar. In dry salt all of the systems work. Five radar systems of different frequencies have been used to probe salt for different purposes and with different resolutions. Distances penetrated were from almost 2000 meters to under one 1 meter. With some moisture in the rock, the low frequency Alpha radar system is best because it operates at the frequency of the minimum in loss tangent for water. Sonar systems are used for even more water in the rock. Ranges of one to 300 meters have been obtained in salt with the lower ranges (to 100m) being obtainable is salt with the most water in it. Using one or more of the probing systems, the authors have detected, and ranged to, salt dome flanks, the top of salt, sandstone, anhydrite and sylvite stringers in salt, fractures in salt and water-filled fractures. We have also detected old boreholes in salt pillars, and measured the range and direction to them.

  3. Timing matters: sonar call groups facilitate target localization in bats

    PubMed Central

    Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509

  4. Timing matters: sonar call groups facilitate target localization in bats.

    PubMed

    Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.

  5. Processing of SeaMARC swath sonar imagery

    SciTech Connect

    Pratson, L.; Malinverno, A.; Edwards, M.; Ryan, W. )

    1990-05-01

    Side-scan swath sonar systems have become an increasingly important means of mapping the sea floor. Two such systems are the deep-towed, high-resolution SeaMARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution SeaMARC II sonar, which has a swath width of 10 km. The sea-floor imagery of acoustic backscatter output by the SeaMARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the sea-floor imagery is greatly facilitated by image processing. Image processing of the digital backscatter data involves removal of noise by median filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of sea-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces sea-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the processes shaping formerly hidden subsea terrains.

  6. Introduction to Sonar, Naval Education and Training Command. Revised Edition.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    This Rate Training Manual (RTM) and Nonresident Career Course form a self-study package for those U.S. Navy personnel who are seeking advancement in the Sonar Technician Rating. Among the requirements of the rating are the abilities to obtain and interpret underwater data, operate and maintain upkeep of sonar equipment, and interpret target and…

  7. Offshore exploration and platform siting by imaging Sonar

    SciTech Connect

    Feder, A.M.

    1986-03-17

    Sonar, an acronym for sonic azimuth and ranging (some say ''sonic detection and ranging''), is the name of a type of remote sensor that was developed in World War II for antisubmarine warfare purposes. The principles of the sensor system are simple in that it broadcasts a focused (shaped) sonic pulse through the water (transmission medium), then receives the echo of that pulse and processes this signal for its information content. Hence, Sonar system principles are highly analagous to those of radar. Post-World War II saw development of Sonar probes that provided some success in determining sea floor materials composition and condition (e.g., subbottom profilers). The major advance, however, was with the advent of digital computation systems. These permitted the coupling of Sonar azimuth and range components to provide ''x'' and ''y'' coordinates for each echo location, or ''z'' value. This advance is seeing a proliferation of different types of imaging Sonar systems and performances.

  8. Detecting Atlantic herring by parametric sonar.

    PubMed

    Godo, Olav Rune; Foote, Kenneth G; Dybedal, Johnny; Tenningen, Eirik; Patel, Ruben

    2010-04-01

    The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1-6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described. PMID:20369983

  9. Detecting Atlantic herring by parametric sonar.

    PubMed

    Godo, Olav Rune; Foote, Kenneth G; Dybedal, Johnny; Tenningen, Eirik; Patel, Ruben

    2010-04-01

    The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1-6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described.

  10. Mechanical charactization of sonar window materials

    SciTech Connect

    DeTeresa, S.J.; Groves, S.E.; Harwood, P.J.; Sanchez, R.J.

    1996-03-25

    The three-dimensional mechanical behavior of thick Spectra/epoxy sonar window materials containing various special materials is summarized in this report. Three different materials, which were fabricated by two companies known as `A` and `B` were received from the Naval Warfare Center. The three materials designated `A with microspheres (A micron),` `A without microspheres (A),` and `B` were measured for all properties. The total number of tests was reduced through the assumption that the two orthogonal, in-place directions were identical. Consequently, these materials should have only six independent elastic variables. The measured constants and strengths are given.

  11. Spawning behaviour of Allis shad Alosa alosa: new insights based on imaging sonar data.

    PubMed

    Langkau, M C; Clavé, D; Schmidt, M B; Borcherding, J

    2016-06-01

    Spawning behaviour of Alosa alosa was observed by high resolution imaging sonar. Detected clouds of sexual products and micro bubbles served as a potential indicator of spawning activity. Peak spawning time was between 0130 and 0200 hours at night. Increasing detections over three consecutive nights were consistent with sounds of mating events (bulls) assessed in hearing surveys in parallel to the hydro acoustic detection. In 70% of the analysed mating events there were no additional A. alosa joining the event whilst 70% of the mating events showed one or two A. alosa leaving the cloud. In 31% of the analysed mating events, however, three or more A. alosa were leaving the clouds, indicating that matings are not restricted to a pair. Imaging sonar is suitable for monitoring spawning activity and behaviour of anadromous clupeids in their spawning habitats. PMID:27126879

  12. Spawning behaviour of Allis shad Alosa alosa: new insights based on imaging sonar data.

    PubMed

    Langkau, M C; Clavé, D; Schmidt, M B; Borcherding, J

    2016-06-01

    Spawning behaviour of Alosa alosa was observed by high resolution imaging sonar. Detected clouds of sexual products and micro bubbles served as a potential indicator of spawning activity. Peak spawning time was between 0130 and 0200 hours at night. Increasing detections over three consecutive nights were consistent with sounds of mating events (bulls) assessed in hearing surveys in parallel to the hydro acoustic detection. In 70% of the analysed mating events there were no additional A. alosa joining the event whilst 70% of the mating events showed one or two A. alosa leaving the cloud. In 31% of the analysed mating events, however, three or more A. alosa were leaving the clouds, indicating that matings are not restricted to a pair. Imaging sonar is suitable for monitoring spawning activity and behaviour of anadromous clupeids in their spawning habitats.

  13. Detection of buried mines with seismic sonar

    NASA Astrophysics Data System (ADS)

    Muir, Thomas G.; Baker, Steven R.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Hall, Patrick W.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of the target strengths of buried test targets as well as targets of interest, and has also examined detection and confirmatory classification of these, all using arrays of seismic sources and receivers as well as signal processing techniques to enhance target recognition. The target strengths of two test targets (one a steel gas bottle, the other an aluminum powder keg), buried in a sand beach, were examined as a function of internal mass load, to evaluate theory developed for seismic sonar target strength [J. Acoust. Soc. Am. 103, 2344-2353 (1998)]. The detection of buried naval and military targets of interest was achieved with an array of 7 shaker sources and 5, three-axis seismometers, at a range of 5 m. Vector polarization filtering was the main signal processing technique for detection. It capitalizes on the fact that the vertical and horizontal components in Rayleigh wave echoes are 90 deg out of phase, enabling complex variable processing to obtain the imaginary component of the signal power versus time, which is unique to Rayleigh waves. Gabor matrix processing of this signal component was the main technique used to determine whether the target was man-made or just a natural target in the environment. [Work sponsored by ONR.

  14. Enhanced detection with bimodal sonar displays.

    PubMed

    Doll, T J; Hanna, T E

    1989-10-01

    Signal-to-noise ratios (SNRs) required to detect narrow-band signals in white noise were compared for bimodal and single-modality sonar displays at two levels of signal uncertainty and two degrees of spatial compatibility between the auditory and visual displays. In bimodal test conditions the auditory and visual signals were equated in detectability for each subject. An adaptive, two-alternative, forced-choice procedure was used to maintain a constant percentage of correct responses. The decrement in performance with increased signal uncertainty was significantly greater for visual than for auditory displays, suggesting that auditory displays offer advantages for real-world sonar operations. Bimodal displays produced a reliable advantage in SNR required for detection over single-modality displays. Increased compatibility between the visual and auditory displays did not increase the advantage of bimodal presentation, nor did increased signal uncertainty. It was concluded that bimodal displays enhance operators' perceptual sensitivity. The magnitude of the enhancement was consistent with optimal integration of information in the two modalities.

  15. Sonar beam dynamics in leaf-nosed bats

    PubMed Central

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-01-01

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats’ nose leaf. PMID:27384865

  16. Sonar beam dynamics in leaf-nosed bats.

    PubMed

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-01-01

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf. PMID:27384865

  17. Sonar beam dynamics in leaf-nosed bats.

    PubMed

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-01-01

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf.

  18. The effect of preceding sonar emission on temporal integration in the bat, Megaderma lyra.

    PubMed

    Weissenbacher, Petra; Wiegrebe, Lutz; Kössl, Manfred

    2002-03-01

    The present study investigated whether and to which extent temporal integration in bats is influenced by echolocation behavior. One way to quantify temporal integration is to measure the detection threshold for a pair of short tone pips as a function of the temporal separation between the pips. To asses the effect of preceding sonar emission on temporal integration in the bat, Megaderma lyra, the detection thresholds of identical subjects were measured in a passive as well as in an active paradigm. In the passive paradigm, the presentation of the pip pairs was independent of the bats' sonar emissions; in the active paradigm, the presentation was triggered by the bats' sonar emissions. In both cases, the bats showed a very short integration time in the range of 100-200 micros. Moreover, the comparison of the active and passive results within each bat revealed no systematic differences in the two measuring paradigms. These results indicate that temporal integration is not influenced by echolocation. Simulations with a computer model of cochlear filtering based on measurements of M. lyra cochlear tuning suggest that the perceptual temporal integration is dominated by the integration of the cochlear filters.

  19. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  20. Automated change detection for synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    G-Michael, Tesfaye; Marchand, Bradley; Tucker, J. D.; Sternlicht, Daniel D.; Marston, Timothy M.; Azimi-Sadjadi, Mahmood R.

    2014-05-01

    In this paper, an automated change detection technique is presented that compares new and historical seafloor images created with sidescan synthetic aperture sonar (SAS) for changes occurring over time. The method consists of a four stage process: a coarse navigational alignment; fine-scale co-registration using the scale invariant feature transform (SIFT) algorithm to match features between overlapping images; sub-pixel co-registration to improves phase coherence; and finally, change detection utilizing canonical correlation analysis (CCA). The method was tested using data collected with a high-frequency SAS in a sandy shallow-water environment. By using precise co-registration tools and change detection algorithms, it is shown that the coherent nature of the SAS data can be exploited and utilized in this environment over time scales ranging from hours through several days.

  1. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor.

  2. Application of mobile robot localization using sonar

    SciTech Connect

    Byrd, J.S.; Hill, K.H.

    1994-12-31

    A sonar-based mobile robot has been developed for inspection of low-level radioactive waste drums. An algorithm was developed which gives the robot the ability to refence itself to cylindrical objects. The drum-following algorithm has been demonstrated in 4-ft drum aisles at the Mobile Robotics Laboratory at the University of South Carolina. The final version has proven to be robust through extensive long-term navigation tests. Future enhancements will employ a narrow-aisle version of the Nav-master to allow navigation in 3-ft drum aisles. The final version of the inspection robot will include the drum-navigation algorithm as a low-level primitive instruction. The onboard management system will be dedicated to more of the high-level functions, such as planning, now provided by the offboard supervisory system.

  3. Dolphin sonar--modelling a new receiver concept.

    PubMed

    Dobbins, Peter

    2007-03-01

    Observations suggest that dolphin sonars function well in the very shallow, reverberant, near-shore region of the ocean, and significantly out-perform man-made systems under such conditions. The echolocation characteristics of many small cetaceans have been measured directly and the high performance of biosonar systems is not in question, but explanations for their resolution, target detection, localization and tracking abilities are inadequate and deserve further investigation. The dolphin's lower jaw has been identified as part of an echo-receptor, and several hypotheses have been proposed to explain this. In one of these, the regularity of dolphin teeth was considered as a sonar array. This paper explores the physics of such systems with models based on established radar and sonar principles, and using data from various dolphin species. The insights gained from this modelling then lead to speculative proposals for new sonar receiver concepts that may have advantages over more conventional designs in shallow water operation.

  4. Beaked whales respond to simulated and actual navy sonar.

    PubMed

    Tyack, Peter L; Zimmer, Walter M X; Moretti, David; Southall, Brandon L; Claridge, Diane E; Durban, John W; Clark, Christopher W; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L

    2011-03-14

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define

  5. Beaked Whales Respond to Simulated and Actual Navy Sonar

    PubMed Central

    Tyack, Peter L.; Zimmer, Walter M. X.; Moretti, David; Southall, Brandon L.; Claridge, Diane E.; Durban, John W.; Clark, Christopher W.; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L.

    2011-01-01

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define

  6. Improved continuous wave frequency modulated sonars with aural displays.

    PubMed

    Boys, J T; Mason, J L; Hodgson, R M

    1978-05-01

    This paper discusses methods for reducing the effects of the reset hiatus and wavelength related variations in received signal strength on the aural displays produced by simple continuous wave frequency modulated sonars. Two techniques that have been developed for reducing the effects of signal phase and amplitude discontinuities are described. As a practical example of the improved performance afforded by one of these techniques, a novel short range sonar for examining cardiovascular structures is discussed in detail.

  7. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  8. Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

    PubMed

    Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas

    2013-10-01

    The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.

  9. Validity of the sonar equation and Babinet's principle for scattering in a stratified medium.

    PubMed

    Ratilal, Purnima; Lai, Yisan; Makris, Nicholas C

    2002-11-01

    The sonar equation rests on the assumption that received sound pressure level after scattering can be written in decibels as a sum of four terms: source level, transmission loss from the source to the target, target strength, and transmission loss from the target to the receiver. This assumption is generally not valid for scattering in a shallow water waveguide and can lead to large errors and inconsistencies in estimating a target's scattering properties as well as its limiting range of detection. By application of coherent waveguide scattering theory, the sonar equation is found to become approximately valid in a shallow water waveguide when the object's complex scatter function is roughly constant over the equivalent horizontal grazing angles +/- delta psi spanned by the dominant waveguide modes. This is approximately true (1) for all objects of spatial extent L and wavelength lambda when 2delta psisonar equation may be made valid by lowering the active frequency of operation in a waveguide. This is often desirable because it greatly simplifies the analysis necessary for target classification and localization. Similarly, conditions are given for when Babinet's principle becomes approximately valid in a shallow water waveguide.

  10. Phase calibration of sonar systems using standard targets and dual-frequency transmission pulses.

    PubMed

    Islas-Cital, Alan; Atkins, Philip R; Foo, Kae Y; Picó, Ruben

    2011-10-01

    The phase angle component of the complex frequency response of a sonar system operating near transducer resonance is usually distorted. Interpretation and classification of the received sonar signal benefits from the preservation of waveform fidelity over the full bandwidth. A calibration process that measures the phase response in addition to the amplitude response is thus required. This paper describes an extension to the standard-target calibration method to include phase angle, without affecting the experimental apparatus, by using dual-frequency transmission pulses and frequency-domain data processing. This approach reduces the impact of unknown range and sound speed parameters upon phase calibration accuracy, as target phase is determined from the relationship of the two frequency components instead of relying on a local phase reference. Tungsten carbide spheres of various sizes were used to simultaneously calibrate the amplitude and phase response of an active sonar system in a laboratory tank. Experimental measurements of target phase spectra are in good agreement with values predicted from a theoretical model based upon full-wave analysis, over an operating frequency of 50-125 kHz.

  11. Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

    PubMed

    Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas

    2013-10-01

    The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance. PMID:23924412

  12. BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar

    PubMed Central

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647

  13. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    PubMed

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647

  14. Sonar image segmentation using an unsupervised hierarchical MRF model.

    PubMed

    Mignotte, M; Collet, C; Perez, P; Bouthemy, P

    2000-01-01

    This paper is concerned with hierarchical Markov random field (MRP) models and their application to sonar image segmentation. We present an original hierarchical segmentation procedure devoted to images given by a high-resolution sonar. The sonar image is segmented into two kinds of regions: shadow (corresponding to a lack of acoustic reverberation behind each object lying on the sea-bed) and sea-bottom reverberation. The proposed unsupervised scheme takes into account the variety of the laws in the distribution mixture of a sonar image, and it estimates both the parameters of noise distributions and the parameters of the Markovian prior. For the estimation step, we use an iterative technique which combines a maximum likelihood approach (for noise model parameters) with a least-squares method (for MRF-based prior). In order to model more precisely the local and global characteristics of image content at different scales, we introduce a hierarchical model involving a pyramidal label field. It combines coarse-to-fine causal interactions with a spatial neighborhood structure. This new method of segmentation, called the scale causal multigrid (SCM) algorithm, has been successfully applied to real sonar images and seems to be well suited to the segmentation of very noisy images. The experiments reported in this paper demonstrate that the discussed method performs better than other hierarchical schemes for sonar image segmentation.

  15. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    PubMed

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.

  16. Statistically normalized coherent change detection for synthetic aperture sonar imagery

    NASA Astrophysics Data System (ADS)

    G-Michael, Tesfaye; Tucker, J. D.; Roberts, Rodney G.

    2016-05-01

    Coherent Change Detection (CCD) is a process of highlighting an area of activity in scenes (seafloor) under survey and generated from pairs of synthetic aperture sonar (SAS) images of approximately the same location observed at two different time instances. The problem of CCD and subsequent anomaly feature extraction/detection is complicated due to several factors such as the presence of random speckle pattern in the images, changing environmental conditions, and platform instabilities. These complications make the detection of weak target activities even more difficult. Typically, the degree of similarity between two images measured at each pixel locations is the coherence between the complex pixel values in the two images. Higher coherence indicates little change in the scene represented by the pixel and lower coherence indicates change activity in the scene. Such coherence estimation scheme based on the pixel intensity correlation is an ad-hoc procedure where the effectiveness of the change detection is determined by the choice of threshold which can lead to high false alarm rates. In this paper, we propose a novel approach for anomalous change pattern detection using the statistical normalized coherence and multi-pass coherent processing. This method may be used to mitigate shadows by reducing the false alarms resulting in the coherent map due to speckles and shadows. Test results of the proposed methods on a data set of SAS images will be presented, illustrating the effectiveness of the normalized coherence in terms statistics from multi-pass survey of the same scene.

  17. "Gas and fat embolic syndrome" involving a mass stranding of beaked whales (family Ziphiidae) exposed to anthropogenic sonar signals.

    PubMed

    Fernández, A; Edwards, J F; Rodríguez, F; Espinosa de los Monteros, A; Herráez, P; Castro, P; Jaber, J R; Martín, V; Arbelo, M

    2005-07-01

    A study of the lesions of beaked whales (BWs) in a recent mass stranding in the Canary Islands following naval exercises provides a possible explanation of the relationship between anthropogenic, acoustic (sonar) activities and the stranding and death of marine mammals. Fourteen BWs were stranded in the Canary Islands close to the site of an international naval exercise (Neo-Tapon 2002) held on 24 September 2002. Strandings began about 4 hours after the onset of midfrequency sonar activity. Eight Cuvier's BWs (Ziphius cavirostris), one Blainville's BW (Mesoplodon densirostris), and one Gervais' BW (Mesoplodon europaeus) were examined postmortem and studied histopathologically. No inflammatory or neoplastic processes were noted, and no pathogens were identified. Macroscopically, whales had severe, diffuse congestion and hemorrhage, especially around the acoustic jaw fat, ears, brain, and kidneys. Gas bubble-associated lesions and fat embolism were observed in the vessels and parenchyma of vital organs. In vivo bubble formation associated with sonar exposure that may have been exacerbated by modified diving behavior caused nitrogen supersaturation above a threshold value normally tolerated by the tissues (as occurs in decompression sickness). Alternatively, the effect that sonar has on tissues that have been supersaturated with nitrogen gas could be such that it lowers the threshold for the expansion of in vivo bubble precursors (gas nuclei). Exclusively or in combination, these mechanisms may enhance and maintain bubble growth or initiate embolism. Severely injured whales died or became stranded and died due to cardiovascular collapse during beaching. The present study demonstrates a new pathologic entity in cetaceans. The syndrome is apparently induced by exposure to mid-frequency sonar signals and particularly affects deep, long-duration, repetitive-diving species like BWs.

  18. Implementation and testing of a Deep Water Correlation Velocity Sonar

    SciTech Connect

    Dickey, F.R.; Bookheimer, W.C.; Rhoades, K.W.

    1983-05-01

    The paper describes a new sonar designated the Magnavox MX 810 Deep Water Correlation Sonar which is under development by the General Electric Company and the Magnavox Advanced Products and Systems Company. The sonar measures ship's velocity relative to the bottom but instead of using the conventional doppler effect, it uses the correlation method described by Dickey and Edward in 1978. In this method, the narrow beams required for doppler are not needed and a low frequency that penetrates to the bottom in deep water is used. The sonar was designed with the constraint that it use a transducer that mounts through a single 12 inch gate valve. Most offshore geophysical surveys at present make use of an integrated navigation system with bottom referenced velocity input from a doppler sonar which, because of limitations on the sonar bottomtracking range, has difficulty in areas where the water depth is greater than about 500 meters. The MX 810 provides bottom tracking in regions of much greater water depth. It also may be applied as an aid in continuous positioning of a vessel over a fixed location. It also should prove useful as a more general navigation aid. The sonar is undergoing a series of tests using Magnavox's facilities for the purpose of verifying the performance and obtaining data to support and quantify planned improvements in both software and hardware. A prototype transducer of only 5 watts power output was used, but in spite of this low power, successful operation to depths of 1900 meters was obtained. Extrapolation to system parameters to be implemented in production models predicts operation to depths of 5000 meters.

  19. MHT tracking for crossing sonar targets

    NASA Astrophysics Data System (ADS)

    Willett, Peter; Luginbuhl, Tod; Giannopoulos, Evangelos

    2007-09-01

    Sometimes radar targets cross and become unresolved; this is a concern, but with a reasonable track depth and an appropriate merged-measurement model the concern is considerably mitigated. Sonar targets, however, can become merged (in the same beam) for considerably longer, particularly with bearing-only measurements. In such cases the crossing times can be 100 scans long, and no reasonable depth exists for an multi-frame tracker that can "see" both ends of the merged period. Further, there is a demonstrable tendency for estimated targets to repel each other as they are being tracked. In this paper we explore the hypothesis-oriented multi-hypothesis tracker (HO-MHT), an MHT approach that uses the new "rollout" optimization insight and the to give an appropriate and cost-effective means to rank hypotheses, and also the PMHT tracker that operates on batches of scans with linear computational complexity in most quantities. We show results in terms of estimation error (RMSE), consistency (NEES) and computational effort in both linear and beam-space tracking scenarios.

  20. Modeling interface roughness scattering in a layered seabed for normal-incident chirp sonar signals.

    PubMed

    Tang, Dajun; Hefner, Brian T

    2012-04-01

    Downward looking sonar, such as the chirp sonar, is widely used as a sediment survey tool in shallow water environments. Inversion of geo-acoustic parameters from such sonar data precedes the availability of forward models. An exact numerical model is developed to initiate the simulation of the acoustic field produced by such a sonar in the presence of multiple rough interfaces. The sediment layers are assumed to be fluid layers with non-intercepting rough interfaces.

  1. The diagnosis of early pregnancy failure by sonar.

    PubMed

    Robinson, H P

    1975-11-01

    In a series of 425 consecutive patients examined by sonar in the first half of pregnancy 176 ultimately aborted. On analysis of the sonar and post-abortion findings it was found that the aborted pregnancies fell into five clearly defined groups; blighted ova or anembryonic pregnancies, missed abortions, hydatidiform moles and early and late live abortions. The blighted ova and the missed abortions comprised by far the largest and the early live abortions the smallest groups. Strict diagnostic sonar criteria of abnormality, independent of menstrual or clinical histories, were established for the first three of the groups, and an absolute diagnosis could be made at the time of the first examination in all cases of missed abortion and hydatidiform mole and in just over half of the cases of blighted ovum, the remainder requiring a second and occasionally a third examination. In the first half of the study the majority of the patients were allowed to abort spontaneously but with increasing confidence in the techniques patients were offered termination whenever the diagnosis of an abortive pregnancy was made. Anticipation of fetal death in utero or impending abortion of a live fetus proved to be a much more difficult problem, and in only those patients who aborted a live fetus before the tenth week of pregnancy did the sonar examination reveal any significant abnormality. Possible aetiological backgrounds to these groups of abortions are discussed in the light of the sonar findings.

  2. Sonar-induced temporary hearing loss in dolphins.

    PubMed

    Mooney, T Aran; Nachtigall, Paul E; Vlachos, Stephanie

    2009-08-23

    There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals' interactions with naval 'mid-frequency' sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin (Tursiops truncatus). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 microPa(2) s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects.

  3. Ultrasonic bistatic Doppler sonar in air for personnel motion detection

    NASA Astrophysics Data System (ADS)

    Ekimov, Alexander; Hickey, Craig J.

    2012-06-01

    The National Center for Physical Acoustics (NCPA) at the University of Mississippi is working on the application of ultrasonic Doppler sonars in air for personnel motion detection. Two traditional Doppler sonar configurations, a monostatic and a bistatic, are being studied. In the monostatic configuration, the distance between the transmitter and the receiver is small. The proximity of the source to the receiver places a limitation on the system associated with the overloading of the receivers' input due to acoustic energy leakage from the transmitters' output. The maximum range of detection is therefore limited by the dynamic range of the acquisition system. In a bistatic Doppler ultrasonic sonar, the source and receiver are spaced apart and the acoustic energy along the direct path does not constrain the maximum acoustic power level output of the transmitter. In a monostatic configuration the acoustic signal suffers from beam spreading and natural absorption during propagation from the transmitter to the target and from the target back to the receiver. In a bistatic configuration the acoustic propagation is in one direction only and theoretically the detection distance can be twice the monostatic distance. For comparison the experiments of a human walking in a building hallway using the bistatic and monostaic Doppler sonars in air were conducted. The experimental results for human signatures from these Doppler sonars are presented and discussed.

  4. 78 FR 68091 - Certain Marine Sonar Imaging Devices, Products Containing the Same, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... COMMISSION Certain Marine Sonar Imaging Devices, Products Containing the Same, and Components Thereof... importation, and the sale within the United States after importation of certain marine sonar imaging devices... sale within the United States after importation of certain marine sonar imaging devices,...

  5. Quantification of Diffuse Hydrothermal Flows Using Multibeam Sonar

    NASA Astrophysics Data System (ADS)

    Ivakin, A. N.; Jackson, D. R.; Bemis, K. G.; Xu, G.

    2014-12-01

    The Cabled Observatory Vent Imaging Sonar (COVIS) deployed at the Main Endeavour node of the NEPTUNE Canada observatory has provided acoustic time series extending over 2 years. This includes 3D images of plume scattering strength and Doppler velocity measurements as well as 2D images showing regions of diffuse flow. The diffuse-flow images display the level of decorrelation between sonar echos with transmissions separated by 0.2 s. The present work aims to provide further information on the strength of diffuse flows. Two approaches are used: Measurement of the dependence of decorrelation on lag and measurement of phase shift of sonar echos, with lags in 3-hour increments up to several days. The phase shifts and decorrelation are linked to variations of temperature above the seabed, which allows quantification of those variations, their magnitudes, spatial and temporal scales, and energy spectra. These techniques are illustrated using COVIS data obtained near the Grotto vent complex.

  6. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection. PMID:24437766

  7. Perception of echo phase information in bat sonar.

    PubMed

    Simmons, J A

    1979-06-22

    Echolocating bats (Eptesicus fuscus) can detect changes as small as 500 nanoseconds in the arrival time of sonar echoes when these changes appear as jitter or alternations in arrival time from one echo to the next. The psychophysical function relating the bat's performance to the magnitude of the jitter corresponds to the half-wave rectified cross-correlation function between the emitted sonar signals and the echoes. The bat perceives the phase or period structure of the sounds, which cover the 25- to 100-kilohertz frequency range, as these are represented in the auditory system after peripheral transformation. The acoustic image of a sonar target is apparently derived from time-domain or periodicity information processing by the nervous system.

  8. Multiresolution 3-D reconstruction from side-scan sonar images.

    PubMed

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  9. Sonar surveys used in gas-storage cavern analysis

    SciTech Connect

    Crossley, N.G.

    1998-05-04

    Natural-gas storage cavern internal configuration, inspection information, and cavern integrity data can be obtained during high-pressure operations with specialized gas-sonar survey logging techniques. TransGas Ltd., Regina, Sask., has successfully performed these operations on several of its deepest and highest pressurized caverns. The data can determine gas-in-place inventory and assess changes in spatial volumes. These changes can result from cavern creep, shrinkage, or closure or from various downhole abnormalities such as fluid infill or collapse of the sidewall or roof. The paper discusses conventional surveys with sonar, running surveys in pressurized caverns, accuracy of the sonar survey, initial development of Cavern 5, a roof fall, Cavern 4 development, and a damaged string.

  10. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    PubMed

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound. PMID:27039511

  11. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    PubMed

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  12. High-resolution imaging of the Okinawa Trough deep-tow sonar WADATSUMI exploration

    NASA Astrophysics Data System (ADS)

    Okino, K.; Tokuyama, H.; Takeuchi, A.; Sibuet, J. C.; Lee, C. S.

    2003-04-01

    High-resolution deep-tow side scan sonar data collected in the Okinawa Trough reveal details of the volcanic and tectonic features occurring along an active backarc rift zone, including an active hydrothermal vent site. Our new system, the deep-tow vector sidescan sonar WADATSUMI, is a 100 kHz system, which provides not only high-resolution backscattering images but also phase bathymetry. The system also includes a 3-6 kHz chirp sonar to investigate sub-bottom structure. The swath width for this survey is 1 km for a towing altitude of 100 to 350 m. The pixel size of the collected images is 50 cm. The towfish positioning is based on the ISBL (inverted short baseline) system, in which the signal transmitted from the ship is received at the towfish and all information is sent to the onboard control unit using co-axial cable. Four MAPRs (Miniature Autonomous Plume Recorder / provided by NOAA) were also equipped on the deep-tow system to detect hydrothermal activity using its thermometer and nephelometer. The Okinawa Trough, located between Japan and Taiwan, is an incipient backarc basin formed by extension within continental lithosphere behind the Ryukyu trench-arc system. The continuous formation of new oceanic crust has not yet occurred, however, crustal thinning and rifting is ongoing and many normal faults have developed. The southwestern part of the trough is most active and contains many interesting features, such as numerous volcanoes crossing the rift zone, high heat flow, and active hydrothermal site. The WADATSUMI images revealed the detailed volcanic and tectonic structure of the axial rift and a hydrothermal site. In the western area seafloor is dominated by volcanic construction, including hummocks, sheet flows, and blocky lava terrains. Small volcanic cones with crater pits are aligned along an E-W direction, which may constitute an elongated volcanic ridge within the graben. On the other hand, the eastern part of the survey area is a sedimented, deep

  13. Hydrothermal fountains imaged by high resolution side-scan sonar equipped on a cruising AUV, URASHIMA

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Tsukioka, S.; Yamamoto, H.; Shitashima, K.; Yamamoto, F.; Sawa, T.; Hyakudome, T.; Kasaya, T.; Kinoshita, M.

    2007-12-01

    Mapping of an area and intensities of activity at a particular hydrothermal field has required huge effort so far, typically several tens of dives of manned submersibles and/or ROVs to obtain detailed locality map with needed resolutions. Thus, appropriate remote sensing techniques have been desired since the discovery of seafloor hydrothermal field. A series of successful trials has been performed by ABE of WHOI equipped with a Eh-sensor (Yoerger et al., Oceanography, 2007). A 100kHz side-scan sonar (SSS) equipped on a cruising AUV, URASHIMA, caught detailed structural image of hydrothermal fountains rooting active chimneys during YK07-07 Cruise off Okinawa Isl. (May 6-18, 2007). The URASHIMA AUV is a 10-m-length cylindrical-shaped one that originally optimized to long distance cruise. In the expedition, she cruised near the sea floor with 50-100 m altitude, at the area of 1000-1500 m in WD. She has currently basic oceanographic/CTD sensors, a 400kHz echo-sounder and sonars of 100400 kHz side-scan sonar and up to 6 kHz sub-bottom profiler. In this operation, pH and ORP sensors (CRIEPI) were also attached in front of AUV. On the pre-processing image of SSS, numbers of filament-shape echoes were recorded within water column zone. The reason why they should be the echo from hydrothermal plumes are as folows; 1) the echoes in the water column were limitedly recorded above the active hydrothermal field; 2) CTD and pH sensors show temperature and pH anomaly corresponding to the record of echoes; 3) some of the root of the filament-shape echoes correspond to the hydrothermal mound recognized in the detailed bathymetry obtained with SeaBat7125 MNBES. This-like technique should revolute the mapping work prior to the sampling at the particular hydrothermal site.

  14. Quantification of a multibeam sonar for fisheries assessment applications

    NASA Astrophysics Data System (ADS)

    Cochrane, N. A.; Li, Y.; Melvin, G. D.

    2003-08-01

    The acoustic theory is developed for a multibeam fisheries-type sonar employing a circular arc of transducer elements. Specifically, numerical relations for transmit and receive beam patterns are derived and methodologies set forth for the derivation of appropriately scaled acoustic target strength and acoustic volume backscattering strength from an ideally performing multibeam device. Predicted and measured beam characteristics of a realizable multibeam sonar, a Kongsberg Simrad-Mesotech SM 2000, are compared. Practical techniques for the extraction of calibrated acoustic volume backscattering strength from real systems are advanced.

  15. Quantification of a multibeam sonar for fisheries assessment applications.

    PubMed

    Cochrane, N A; Li, Y; Melvin, G D

    2003-08-01

    The acoustic theory is developed for a multibeam fisheries-type sonar employing a circular arc of transducer elements. Specifically, numerical relations for transmit and receive beam patterns are derived and methodologies set forth for the derivation of appropriately scaled acoustic target strength and acoustic volume backscattering strength from an ideally performing multibeam device. Predicted and measured beam characteristics of a realizable multibeam sonar, a Kongsberg Simrad-Mesotech SM 2000, are compared. Practical techniques for the extraction of calibrated acoustic volume backscattering strength from real systems are advanced.

  16. The sonar equation and the definitions of propagation loss.

    PubMed

    Ainslie, Michael A

    2004-01-01

    A rigorous application of the traditional definition of sonar equation terms leads to the appearance of an unexpected factor, not routinely included, equal to the ratio of the characteristic impedance at the receiver to that at the source. An omission of this factor can lead to non-negligible errors for realistic conditions. It is further argued that a gradual change in the de facto definition of propagation loss occurred between 1965 and 1980. Two alternatives to the traditional sonar equation are suggested, each using one of the two propagation loss definitions and both eliminating the unwanted impedance ratio.

  17. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  18. Hulu Sungai Perak Bed Sediment Mapping Using Underwater Acoustic Sonar

    NASA Astrophysics Data System (ADS)

    Arriafdi, N.; Zainon, O.; Din, U.; Rasid, A. W.; Mat Amin, Z.; Othman, R.; Mardi, A. S.; Mahmud, R.; Sulaiman, N.

    2016-09-01

    Development in acoustic survey techniques in particular side scan sonar have revolutionized the way we are able to image, map and understand the riverbed environment. It is now cost effective to image large areas of the riverbed using these techniques and the backscatter image created from surveys provides base line data from which thematic maps of the riverbed environment including maps of morphological geology, can be derived when interpreted in conjunction with in situ sampling data. This article focuses on investigation characteristics of sediments and correlation of side scan backscatter image with signal strength. The interpretation of acoustic backscatter rely on experienced interpretation by eye of grey scale images produced from the data. A 990F Starfish Side Scan Sonar was used to collect and develop a series of sonar images along 6 km of Hulu Sungai Perak. Background sediments could be delineated accurately and the image textures could be linked to the actual river floor appearance through grab sampling. A major difference was found in the acoustic returns from the two research area studies: the upstream area shows much rougher textures. This is due to an actual differences in riverbed roughness, caused by a difference in bottom currents and sediment dynamics in the two areas. The highest backscatter correlates with coarsest and roughness sediment. Result suggest that image based backscatter classification shows considerable promise for interpretation of side scan sonar data for the production of geological maps.

  19. Robust feature detection using sonar sensors for mobile robots

    NASA Astrophysics Data System (ADS)

    Choi, Jinwoo; Ahn, Sunghwan; Chung, Wan Kyun

    2005-12-01

    Sonar sensor is an attractive tool for the SLAM of mobile robot because of their economic aspects. This cheap sensor gives relatively accurate range readings if disregarding angular uncertainty and specular reflections. However, these defects make feature detection difficult for the most part of the SLAM. This paper proposed a robust sonar feature detection algorithm. This algorithm gives feature detection methods for both point features and line features. The point feature detection method was based on the TBF scheme. Moreover, three additional processes improved the performance of feature detection as follows; 1) stable intersections, 2) efficient sliding window update and 3) removal of the false point features on the wall. The line feature detection method was based on the basic property of adjacent sonar sensors. Along the line feature, three adjacent sonar sensors gave similar range readings. Using this sensor property, it proposed a novel algorithm for line feature detection, which is simple and the feature can be obtained by using only current sensor data. The proposed feature detection algorithm gives a good solution for the SLAM of mobile robots because it gives accurate feature information for both the point and line features even with sensor errors. Furthermore, a sufficient number of features are available to correct mobile robot pose. Experimental results for point feature and line feature detection demonstrate the performance of the proposed algorithm in a home-like environment.

  20. Enhanced Sidescan-Sonar Imagery Offshore of Southeastern Massachusetts

    USGS Publications Warehouse

    Poppe, Lawrence J.; McMullen, Kate Y.; Williams, S. Jeffress; Ackerman, Seth D.; Glomb, K.A.; Forfinski, N.A.

    2008-01-01

    The U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), and Massachusetts Office of Coastal Zone Management (CZM) have been working cooperatively to map and study the coastal sea floor. The sidescan-sonar imagery collected during NOAA hydrographic surveys has been included as part of these studies. However, the original sonar imagery contains tonal artifacts from environmental noise (for example, sea state), equipment settings (for example, power and gain changes), and processing (for example, inaccurate cross-track and line-to-line normalization), which impart a quilt-like patchwork appearance to the mosaics. These artifacts can obscure the normalized backscatter properties of the sea floor. To address this issue, sidescan-sonar imagery from surveys H11076 and H11079 offshore of southeastern Massachusetts was enhanced by matching backscatter tones of adjacent sidescan-sonar lines. These mosaics provide continuous grayscale perspectives of the backscatter, more accurately reveal the sea-floor geologic trends, and minimize the environment-, acquisition-, and processing-related noise.

  1. Reliability of fish size estimates obtained from multibeam imaging sonar

    USGS Publications Warehouse

    Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.

    2013-01-01

    Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄  =  −8.34, SE  =  2.39) and white perch (x̄  = 14.48, SE  =  3.99) but not striped bass (x̄  =  3.71, SE  =  2.58) or channel catfish (x̄  = 3.97, SE  =  5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of

  2. High resolution sea floor bathymetry using high frequency multibeam sonar and structured light laser imaging

    NASA Astrophysics Data System (ADS)

    Roman, C.; Inglis, G.; Smart, C.; Vaughn, I.; Carey, S.

    2011-12-01

    Detailed bathymetric maps of the sea floor with centimeter level resolution can be produced by underwater vehicles using multibeam sonars and structured light laser imaging. Over spatial scales up to tens of thousands of square meters it is possible to produce maps gridded to sub centimeter levels. This level of accuracy demands detailed treatments of the sensor relative data, the vehicle navigation data and the vehicle to sensor position and rotational offsets. The presented results will show comparisons between these two sensor modalities. Data have a been collected during recent field programs to the Kolumbo volcanic crater and the Southern Aegean Sea. Our data processing and map making technique is based on the Simultaneous Localization and Mapping (SLAM) concept, which is an active research area in both the marine and land robotics communities. The SLAM method provides a common framework for addressing both sensor and navigation errors in a self consistent manner. Using automated patch registration and filter techniques both the multibeam and laser data can be processed by the same algorithm. Structured light imaging has been a common machine vision technique for 3D shape estimation in industrial applications, but has had limited use underwater. By using a camera to image a projected laser line on the sea floor it is possible to determine the 3D profile of the bottom with sub centimeter resolution. Sequential images taken during a survey can be processed and merged into a bathymetric map in a similar manner as individual multibeam sonar pings. The resulting maps can be gridded down to 2.5 millimeter resolution and clearly show objects just a few centimeters in size. The structured light data have been compared to multibeam sonar data taken with BlueView Technologies sonars operating at both 1375 kHz and 2250 kHz. Such high frequency sonars offer centimeter resolution over ranges to 30 and 10 meters respectively. The difference between the broader footprint

  3. Estimated Tissue and Blood N(2) Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar.

    PubMed

    Kvadsheim, P H; Miller, P J O; Tyack, P L; Sivle, L D; Lam, F P A; Fahlman, A

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N(2) gas bubbles. Increased tissue and blood N(2) levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N(2) tension [Formula: see text], but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N(2) tension [Formula: see text] from dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked, and Cuvier's beaked whales before and during exposure to Low- (1-2 kHz) and Mid- (2-7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N(2) levels, with deep diving generally resulting in higher end-dive [Formula: see text] as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N(2) levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination

  4. Estimated Tissue and Blood N2 Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar

    PubMed Central

    Kvadsheim, P. H.; Miller, P. J. O.; Tyack, P. L.; Sivle, L. D.; Lam, F. P. A.; Fahlman, A.

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N2 gas bubbles. Increased tissue and blood N2 levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N2 tension PN2, but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N2 tension PN2 from dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked, and Cuvier’s beaked whales before and during exposure to Low- (1–2 kHz) and Mid- (2–7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N2 levels, with deep diving generally resulting in higher end-dive PN2 as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N2 levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar

  5. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1-2 kHz and 6-7 kHz bands) mimicking naval sonar signals.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F

    2011-05-01

    The distance at which active naval sonar signals can be heard by harbor porpoises depends, among other factors, on the hearing thresholds of the species for those signals. Therefore the hearing sensitivity of a harbor porpoise was determined for 1 s up-sweep and down-sweep signals, mimicking mid-frequency and low-frequency active sonar sweeps (MFAS, 6-7 kHz band; LFAS, 1-2 kHz band). The 1-2 kHz sweeps were also tested with harmonics, as sonars sometimes produce these as byproducts of the fundamental signal. The hearing thresholds for up-sweeps and down-sweeps within each sweep pair were similar. The 50% detection threshold sound pressure levels (broadband, averaged over the signal duration) of the 1-2 kHz and 6-7 kHz sweeps were 75 and 67 dB re 1 μPa(2), respectively. Harmonic deformation of the 1-2 kHz sweeps reduced the threshold to 59 dB re 1 μPa(2). This study shows that the presence of harmonics in sonar signals can increase the detectability of a signal by harbor porpoises, and that tonal audiograms may not accurately predict the audibility of sweeps. LFAS systems, when designed to produce signals without harmonics, can operate at higher source levels than MFAS systems, at similar audibility distances for porpoises.

  6. 3D Chirp Sonar Images on Fluid Migration Pathways and Their Implications on Seafloor Stability East of the Fangliao Submarine Canyon Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Y. W.; Liu, C. S.; Su, C. C.; Hsu, H. H.; Chen, Y. H.

    2015-12-01

    This study utilizes both chirp sonar images and coring results to investigate the unstable seafloor strata east of the Fangliao Submarine Canyon offshore southwestern Taiwan. We have constructed 3D chirp sonar images from a densely surveyed block to trace the attitude of an acoustic transparent layer and features caused by fluid activities. Based on the distribution of this transparent layer and fluid-related features, we suggest that this transparent layer forms a pathway for fluid migration which induces fluid-related characters such as acoustic blanking and fluid chimneys in the 3D chirp sonar images. Cored seafloor samples are used in this study to investigate the sediment compositions. The 210Pb activity profiles of the cores show oscillating and unsteady values at about 20~25 cm from core top. The bulk densities of the core samples in the same section (about 20~25 cm from core top) give values lower than those at deeper parts of the cores. These results indicate that the water content is much higher in the shallow sediments than in the deeper strata. From core sample analyses, we deduce that the local sediments are disturbed by liquefaction. From the analyses of 3D chirp sonar images and core data, we suggest that the seafloor east of the Fangliao Submarine Canyon is in an unstable condition, if disturbed by earthquakes, submarine landslides and gravity flows could be easily triggered and cause some geohazards, like breaking submarine cables during the 2006 Pingtung earthquake event.

  7. Acoustic and foraging behavior of a Baird's beaked whale, Berardius bairdii, exposed to simulated sonar.

    PubMed

    Stimpert, A K; DeRuiter, S L; Southall, B L; Moretti, D J; Falcone, E A; Goldbogen, J A; Friedlaender, A; Schorr, G S; Calambokidis, J

    2014-11-13

    Beaked whales are hypothesized to be particularly sensitive to anthropogenic noise, based on previous strandings and limited experimental and observational data. However, few species have been studied in detail. We describe the underwater behavior of a Baird's beaked whale (Berardius bairdii) from the first deployment of a multi-sensor acoustic tag on this species. The animal exhibited shallow (23 ± 15 m max depth), intermediate (324 ± 49 m), and deep (1138 ± 243 m) dives. Echolocation clicks were produced with a mean inter-click interval of approximately 300 ms and peak frequency of 25 kHz. Two deep dives included presumed foraging behavior, with echolocation pulsed sounds (presumed prey capture attempts) associated with increased maneuvering, and sustained inverted swimming during the bottom phase of the dive. A controlled exposure to simulated mid-frequency active sonar (3.5-4 kHz) was conducted 4 hours after tag deployment, and within 3 minutes of exposure onset, the tagged whale increased swim speed and body movement, and continued to show unusual dive behavior for each of its next three dives, one of each type. These are the first data on the acoustic foraging behavior in this largest beaked whale species, and the first experimental demonstration of a response to simulated sonar.

  8. Deployment of a WLCG network monitoring infrastructure based on the perfSONAR-PS technology

    NASA Astrophysics Data System (ADS)

    Campana, S.; Brown, A.; Bonacorsi, D.; Capone, V.; De Girolamo, D.; Casani, A. F.; Flix, J.; Forti, A.; Gable, I.; Gutsche, O.; Hesnaux, A.; Liu, S.; Lopez Munoz, F.; Magini, N.; McKee, S.; Mohammed, K.; Rand, D.; Reale, M.; Roiser, S.; Zielinski, M.; Zurawski, J.

    2014-06-01

    The WLCG infrastructure moved from a very rigid network topology, based on the MONARC model, to a more relaxed system, where data movement between regions or countries does not necessarily need to involve T1 centres. While this evolution brought obvious advantages, especially in terms of flexibility for the LHC experiment's data management systems, it also opened the question of how to monitor the increasing number of possible network paths, in order to provide a global reliable network service. The perfSONAR network monitoring system has been evaluated and agreed as a proper solution to cover the WLCG network monitoring use cases: it allows WLCG to plan and execute latency and bandwidth tests between any instrumented endpoint through a central scheduling configuration, it allows archiving of the metrics in a local database, it provides a programmatic and a web based interface exposing the tests results; it also provides a graphical interface for remote management operations. In this contribution we will present our activity to deploy a perfSONAR based network monitoring infrastructure, in the scope of the WLCG Operations Coordination initiative: we will motivate the main choices we agreed in terms of configuration and management, describe the additional tools we developed to complement the standard packages and present the status of the deployment, together with the possible future evolution.

  9. Acoustic and foraging behavior of a Baird's beaked whale, Berardius bairdii, exposed to simulated sonar.

    PubMed

    Stimpert, A K; DeRuiter, S L; Southall, B L; Moretti, D J; Falcone, E A; Goldbogen, J A; Friedlaender, A; Schorr, G S; Calambokidis, J

    2014-01-01

    Beaked whales are hypothesized to be particularly sensitive to anthropogenic noise, based on previous strandings and limited experimental and observational data. However, few species have been studied in detail. We describe the underwater behavior of a Baird's beaked whale (Berardius bairdii) from the first deployment of a multi-sensor acoustic tag on this species. The animal exhibited shallow (23 ± 15 m max depth), intermediate (324 ± 49 m), and deep (1138 ± 243 m) dives. Echolocation clicks were produced with a mean inter-click interval of approximately 300 ms and peak frequency of 25 kHz. Two deep dives included presumed foraging behavior, with echolocation pulsed sounds (presumed prey capture attempts) associated with increased maneuvering, and sustained inverted swimming during the bottom phase of the dive. A controlled exposure to simulated mid-frequency active sonar (3.5-4 kHz) was conducted 4 hours after tag deployment, and within 3 minutes of exposure onset, the tagged whale increased swim speed and body movement, and continued to show unusual dive behavior for each of its next three dives, one of each type. These are the first data on the acoustic foraging behavior in this largest beaked whale species, and the first experimental demonstration of a response to simulated sonar. PMID:25391309

  10. Acoustic and foraging behavior of a Baird's beaked whale, Berardius bairdii, exposed to simulated sonar

    PubMed Central

    Stimpert, A. K.; DeRuiter, S. L.; Southall, B. L.; Moretti, D. J.; Falcone, E. A.; Goldbogen, J. A.; Friedlaender, A.; Schorr, G. S.; Calambokidis, J.

    2014-01-01

    Beaked whales are hypothesized to be particularly sensitive to anthropogenic noise, based on previous strandings and limited experimental and observational data. However, few species have been studied in detail. We describe the underwater behavior of a Baird's beaked whale (Berardius bairdii) from the first deployment of a multi-sensor acoustic tag on this species. The animal exhibited shallow (23 ± 15 m max depth), intermediate (324 ± 49 m), and deep (1138 ± 243 m) dives. Echolocation clicks were produced with a mean inter-click interval of approximately 300 ms and peak frequency of 25 kHz. Two deep dives included presumed foraging behavior, with echolocation pulsed sounds (presumed prey capture attempts) associated with increased maneuvering, and sustained inverted swimming during the bottom phase of the dive. A controlled exposure to simulated mid-frequency active sonar (3.5–4 kHz) was conducted 4 hours after tag deployment, and within 3 minutes of exposure onset, the tagged whale increased swim speed and body movement, and continued to show unusual dive behavior for each of its next three dives, one of each type. These are the first data on the acoustic foraging behavior in this largest beaked whale species, and the first experimental demonstration of a response to simulated sonar. PMID:25391309

  11. Multiple ping sonar accuracy improvement using robust motion estimation and ping fusion.

    PubMed

    Yu, Lian; Neretti, Nicola; Intrator, Nathan

    2006-04-01

    Noise degrades the accuracy of sonar systems. We demonstrate a practical method for increasing the effective signal-to-noise ratio (SNR) by fusing time delay information from a burst of multiple sonar pings. This approach can be useful when there is no relative motion between the sonar and the target during the burst of sonar pinging. Otherwise, the relative motion degrades the fusion and therefore, has to be addressed before fusion can be used. In this paper, we present a robust motion estimation algorithm which uses information from multiple receivers to estimate the relative motion between pings in the burst. We then compensate for motion, and show that the fusion of information from the burst of motion compensated pings improves both the resilience to noise and sonar accuracy, consequently increasing the operating range of the sonar system.

  12. Technology Infusion of CodeSonar into the Space Network Ground Segment

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2009-01-01

    This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.

  13. Percentile ranks of sonar fetal abdominal circumference measurements.

    PubMed

    Tamura, R K; Sabbagha, R E

    1980-11-01

    We present the percentile ranks of sonar fetal abdominal circumference (AC) measurements from 18 to 41 weeks' gestation. The ACs are derived from both longitudinal and cross-sectional ultrasonic studies of 200 low-risk pregnant women. The reproducibility of sonar AC falls within 2% of the mean value; this variation permits antenatal distinction of the fetus with a small AC (less than twenty-fifth percentile) or large (greater than eightieth percentile) reading. The fetal AC measurements add another dimension to the interpretation of cephalic growth, particularly in identifying macrosomic fetuses as well as those who are either asymmetrically or symmetrically undergrown. Additionally fetal AC measurements are useful as adjuncts to the diagnosis of hydrocephalus by quantitating the difference between cephalic and body size. In the presence of fetal ascites the AC also can be used to assess the severity and progression of the abnormality.

  14. Neural networks for improved target differentiation and localization with sonar.

    PubMed

    Ayrulu, B; Barshan, B

    2001-04-01

    This study investigates the processing of sonar signals using neural networks for robust differentiation of commonly encountered features in indoor robot environments. Differentiation of such features is of interest for intelligent systems in a variety of applications. Different representations of amplitude and time-of-flight measurement patterns acquired from a real sonar system are processed. In most cases, best results are obtained with the low-frequency component of the discrete wavelet transform of these patterns. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. Neural networks can differentiate more targets employing only a single sensor node, with a higher correct differentiation percentage (99%) than achieved with previously reported methods (61-90%) employing multiple sensor nodes. A sensor node is a pair of transducers with fixed separation, that can rotate and scan the target to collect data. Had the number of sensing nodes been reduced in the other methods, their performance would have been even worse. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate all target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems.

  15. Extraction of 3D information from sonar image sequences.

    PubMed

    Trucco, A; Curletto, S

    2003-01-01

    This paper describes a set of methods that make it possible to estimate the position of a feature inside a three-dimensional (3D) space by starting from a sequence of two-dimensional (2D) acoustic images of the seafloor acquired with a sonar system. Typical sonar imaging systems are able to generate just 2D images, and the acquisition of 3D information involves sharp increases in complexity and costs. The front-scan sonar proposed in this paper is a new equipment devoted to acquiring a 2D image of the seafloor to sail over, and allows one to collect a sequence of images showing a specific feature during the approach of the ship. This fact seems to make it possible to recover the 3D position of a feature by comparing the feature positions along the sequence of images acquired from different (known) ship positions. This opportunity is investigated in the paper, where it is shown that encouraging results have been obtained by a processing chain composed of some blocks devoted to low-level processing, feature extraction and analysis, a Kalman filter for robust feature tracking, and some ad hoc equations for depth estimation and averaging. A statistical error analysis demonstrated the great potential of the proposed system also if some inaccuracies affect the sonar measures and the knowledge of the ship position. This was also confirmed by several tests performed on both simulated and real sequences, obtaining satisfactory results on both the feature tracking and, above all, the estimation of the 3D position.

  16. Novel sonar signal processing tool using Shannon entropy

    SciTech Connect

    Quazi, A.H.

    1996-06-01

    Traditionally, conventional signal processing extracts information from sonar signals using amplitude, signal energy or frequency domain quantities obtained using spectral analysis techniques. The object is to investigate an alternate approach which is entirely different than that of traditional signal processing. This alternate approach is to utilize the Shannon entropy as a tool for the processing of sonar signals with emphasis on detection, classification, and localization leading to superior sonar system performance. Traditionally, sonar signals are processed coherently, semi-coherently, and incoherently, depending upon the a priori knowledge of the signals and noise. Here, the detection, classification, and localization technique will be based on the concept of the entropy of the random process. Under a constant energy constraint, the entropy of a received process bearing finite number of sample points is maximum when hypothesis H{sub 0} (that the received process consists of noise alone) is true and decreases when correlated signal is present (H{sub 1}). Therefore, the strategy used for detection is: (I) Calculate the entropy of the received data; then, (II) compare the entropy with the maximum value; and, finally, (III) make decision: H{sub 1} is assumed if the difference is large compared to pre-assigned threshold and H{sub 0} is otherwise assumed. The test statistics will be different between entropies under H{sub 0} and H{sub 1}. Here, we shall show the simulated results for detecting stationary and non-stationary signals in noise, and results on detection of defects in a Plexiglas bar using an ultrasonic experiment conducted by Hughes. {copyright} {ital 1996 American Institute of Physics.}

  17. Assessment of Marine Mammal Impact Zones for Use of Military Sonar in the Baltic Sea.

    PubMed

    Andersson, Mathias H; Johansson, Torbjörn

    2016-01-01

    Military sonars are known to have caused cetaceans to strand. Navies in shallow seas use different frequencies and sonar pulses, commonly frequencies between 25 and 100 kHz, compared with most studied NATO sonar systems that have been evaluated for their environmental impact. These frequencies match the frequencies of best hearing in the harbor porpoises and seals resident in the Baltic Sea. This study uses published temporary and permanent threshold shifts, measured behavioral response thresholds, technical specifications of a sonar system, and environmental parameters affecting sound propagation common for the Baltic Sea to estimate the impact zones for harbor porpoises and seals.

  18. Assessment of Marine Mammal Impact Zones for Use of Military Sonar in the Baltic Sea.

    PubMed

    Andersson, Mathias H; Johansson, Torbjörn

    2016-01-01

    Military sonars are known to have caused cetaceans to strand. Navies in shallow seas use different frequencies and sonar pulses, commonly frequencies between 25 and 100 kHz, compared with most studied NATO sonar systems that have been evaluated for their environmental impact. These frequencies match the frequencies of best hearing in the harbor porpoises and seals resident in the Baltic Sea. This study uses published temporary and permanent threshold shifts, measured behavioral response thresholds, technical specifications of a sonar system, and environmental parameters affecting sound propagation common for the Baltic Sea to estimate the impact zones for harbor porpoises and seals. PMID:26610942

  19. Blue whales respond to simulated mid-frequency military sonar.

    PubMed

    Goldbogen, Jeremy A; Southall, Brandon L; DeRuiter, Stacy L; Calambokidis, John; Friedlaender, Ari S; Hazen, Elliott L; Falcone, Erin A; Schorr, Gregory S; Douglas, Annie; Moretti, David J; Kyburg, Chris; McKenna, Megan F; Tyack, Peter L

    2013-08-22

    Mid-frequency military (1-10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.

  20. Estimation and simulation of multi-beam sonar noise.

    PubMed

    Holmin, Arne Johannes; Korneliussen, Rolf J; Tjøstheim, Dag

    2016-02-01

    Methods for the estimation and modeling of noise present in multi-beam sonar data, including the magnitude, probability distribution, and spatial correlation of the noise, are developed. The methods consider individual acoustic samples and facilitate compensation of highly localized noise as well as subtraction of noise estimates averaged over time. The modeled noise is included in an existing multi-beam sonar simulation model [Holmin, Handegard, Korneliussen, and Tjøstheim, J. Acoust. Soc. Am. 132, 3720-3734 (2012)], resulting in an improved model that can be used to strengthen interpretation of data collected in situ at any signal to noise ratio. Two experiments, from the former study in which multi-beam sonar data of herring schools were simulated, are repeated with inclusion of noise. These experiments demonstrate (1) the potentially large effect of changes in fish orientation on the backscatter from a school, and (2) the estimation of behavioral characteristics such as the polarization and packing density of fish schools. The latter is achieved by comparing real data with simulated data for different polarizations and packing densities. PMID:26936566

  1. Blue whales respond to simulated mid-frequency military sonar.

    PubMed

    Goldbogen, Jeremy A; Southall, Brandon L; DeRuiter, Stacy L; Calambokidis, John; Friedlaender, Ari S; Hazen, Elliott L; Falcone, Erin A; Schorr, Gregory S; Douglas, Annie; Moretti, David J; Kyburg, Chris; McKenna, Megan F; Tyack, Peter L

    2013-08-22

    Mid-frequency military (1-10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health. PMID:23825206

  2. Blue whales respond to simulated mid-frequency military sonar

    PubMed Central

    Goldbogen, Jeremy A.; Southall, Brandon L.; DeRuiter, Stacy L.; Calambokidis, John; Friedlaender, Ari S.; Hazen, Elliott L.; Falcone, Erin A.; Schorr, Gregory S.; Douglas, Annie; Moretti, David J.; Kyburg, Chris; McKenna, Megan F.; Tyack, Peter L.

    2013-01-01

    Mid-frequency military (1–10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health. PMID:23825206

  3. Seafloor Characterisation and Imaging Using Multibeam Sonar Data

    NASA Astrophysics Data System (ADS)

    Łubniewski, Zbigniew; Bruniecki, Krzysztof

    The approach to seafloor characterisation and imaging is presented. It relies on the combined, concurrent use of several techniques of multibeam sonar data processing. The first one is based on constructing the grey-level sonar images of seabed using the backscattering strength calculated for the echoes received in the consecutive beams. Then, the set of parameters describing the local region of sonar image is calculated. The second technique utilises the 3D model of the seabed surface, which is constructed as a set of (x, y, z) points using the detected bottom range for each beam in the multibeam system seafloor imaging procedure. For the local region of seabed surface, the descriptors like rms height and autocorrelation slope are calculated. The third technique assumes the use of a set of parameters of the multibeam echo envelope. Then, for selected parameters, the characteristic features quantitatively describing their dependence on seafloor incident angle, like slope, or range, are calculated. Finally, the features obtained by these three techniques are combined together. The proposed method has been tested using multibeam data records acquired from several bottom types in the Gulf of Gdańsk region. The obtained preliminary results show that application of the proposed combined approach improves the classification performance in comparison with those of using only the one scheme of seafloor multibeam data processing.

  4. Application of acoustic reflection tomography to sonar imaging.

    PubMed

    Ferguson, Brian G; Wyber, Ron J

    2005-05-01

    Computer-aided tomography is a technique for providing a two-dimensional cross-sectional view of a three-dimensional object through the digital processing of many one-dimensional views (or projections) taken at different look directions. In acoustic reflection tomography, insonifying the object and then recording the backscattered signal provides the projection information for a given look direction (or aspect angle). Processing the projection information for all possible aspect angles enables an image to be reconstructed that represents the two-dimensional spatial distribution of the object's acoustic reflectivity function when projected on the imaging plane. The shape of an idealized object, which is an elliptical cylinder, is reconstructed by applying standard backprojection, Radon transform inversion (using both convolution and filtered backprojections), and direct Fourier inversion to simulated projection data. The relative merits of the various reconstruction algorithms are assessed and the resulting shape estimates compared. For bandpass sonar data, however, the wave number components of the acoustic reflectivity function that are outside the passband are absent. This leads to the consideration of image reconstruction for bandpass data. Tomographic image reconstruction is applied to real data collected with an ultra-wideband sonar transducer to form high-resolution acoustic images of various underwater objects when the sonar and object are widely separated.

  5. Calibration sphere for low-frequency parametric sonars.

    PubMed

    Foote, Kenneth G; Francis, David T I; Atkins, Philip R

    2007-03-01

    The problem of calibrating parametric sonar systems at low difference frequencies used in backscattering applications is addressed. A particular parametric sonar is considered: the Simrad TOPAS PS18 Parametric Sub-bottom Profiler. This generates difference-frequency signals in the band 0.5-6 kHz. A standard target is specified according to optimization conditions based on maximizing the target strength consistent with the target strength being independent of orientation and the target being physically manageable. The second condition is expressed as the target having an immersion weight less than 200 N. The result is a 280-mm-diam sphere of aluminum. Its target strength varies from -43.4 dB at 0.5 kHz to -20.2 dB at 6 kHz. Maximum excursions in target strength over the frequency band due to uncertainty in material properties of the sphere are of order +/-0.1 dB. Maximum excursions in target strength due to variations in mass density and sound speed of the immersion medium are larger, but can be eliminated by attention to the hydrographic conditions. The results are also applicable to the standard-target calibration of conventional sonars operating at low-kilohertz frequencies.

  6. A miniature high resolution 3-D imaging sonar.

    PubMed

    Josserand, Tim; Wolley, Jason

    2011-04-01

    This paper discusses the design and development of a miniature, high resolution 3-D imaging sonar. The design utilizes frequency steered phased arrays (FSPA) technology. FSPAs present a small, low-power solution to the problem of underwater imaging sonars. The technology provides a method to build sonars with a large number of beams without the proportional power, circuitry and processing complexity. The design differs from previous methods in that the array elements are manufactured from a monolithic material. With this technique the arrays are flat and considerably smaller element dimensions are achievable which allows for higher frequency ranges and smaller array sizes. In the current frequency range, the demonstrated array has ultra high image resolution (1″ range×1° azimuth×1° elevation) and small size (<3″×3″). The design of the FSPA utilizes the phasing-induced frequency-dependent directionality of a linear phased array to produce multiple beams in a forward sector. The FSPA requires only two hardware channels per array and can be arranged in single and multiple array configurations that deliver wide sector 2-D images. 3-D images can be obtained by scanning the array in a direction perpendicular to the 2-D image field and applying suitable image processing to the multiple scanned 2-D images. This paper introduces the 3-D FSPA concept, theory and design methodology. Finally, results from a prototype array are presented and discussed.

  7. Effects of environmental uncertainties on sonar detection performance prediction.

    PubMed

    Sha, Liewei; Nolte, Loren W

    2005-04-01

    The development of effective passive sonar systems depends upon the ability to accurately predict the performance of sonar detection algorithms in realistic ocean environments. Such environments are typically characterized by a high degree of uncertainty, thus limiting the usefulness of performance prediction approaches that assume a deterministic environment. Here we derive closed-form receiver operating characteristic (ROC) expressions for an optimal Bayesian detector and for several typical suboptimal detectors, based on a statistical model of environmental uncertainty. Various scenarios extended from an NRL benchmark shallow-water model were used to check the analytical ROC expressions and to illustrate the effect of environmental uncertainty on detection performance. The results showed that (1) optimal detection performance in an uncertain environment in diffuse noise depends primarily on the signal-to-noise ratio at the receivers and the rank of the signal matrix, where the rank is an effective representation of the scale of environmental uncertainty; (2) the ROC expression for the optimal Bayesian detector provides a more realistic performance upper bound than that obtained from conventional sonar equations that do not incorporate environmental uncertainty; and (3) detection performance predictions can be performed much faster than with commonly used numerical methods such as Monte Carlo performance evaluations.

  8. Estimation and simulation of multi-beam sonar noise.

    PubMed

    Holmin, Arne Johannes; Korneliussen, Rolf J; Tjøstheim, Dag

    2016-02-01

    Methods for the estimation and modeling of noise present in multi-beam sonar data, including the magnitude, probability distribution, and spatial correlation of the noise, are developed. The methods consider individual acoustic samples and facilitate compensation of highly localized noise as well as subtraction of noise estimates averaged over time. The modeled noise is included in an existing multi-beam sonar simulation model [Holmin, Handegard, Korneliussen, and Tjøstheim, J. Acoust. Soc. Am. 132, 3720-3734 (2012)], resulting in an improved model that can be used to strengthen interpretation of data collected in situ at any signal to noise ratio. Two experiments, from the former study in which multi-beam sonar data of herring schools were simulated, are repeated with inclusion of noise. These experiments demonstrate (1) the potentially large effect of changes in fish orientation on the backscatter from a school, and (2) the estimation of behavioral characteristics such as the polarization and packing density of fish schools. The latter is achieved by comparing real data with simulated data for different polarizations and packing densities.

  9. Qualitative and quantitative processing of side-scan sonar data

    SciTech Connect

    Dwan, F.S.; Anderson, A.L.; Hilde, T.W.C. )

    1990-06-01

    Modern side-scan sonar systems allow vast areas of seafloor to be rapidly imaged and quantitatively mapped in detail. The application of remote sensing image processing techniques can be used to correct for various distortions inherent in raw sonography. Corrections are possible for water column, slant-range, aspect ratio, speckle and striping noise, multiple returns, power drop-off, and for georeferencing. The final products reveal seafloor features and patterns that are geometrically correct, georeferenced, and have improved signal/noise ratio. These products can be merged with other georeferenced data bases for further database management and information extraction. In order to compare data collected by different systems from a common area and to ground truth measurements and geoacoustic models, quantitative correction must be made for calibrated sonar system and bathymetry effects. Such data inversion must account for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area, and grazing angle effects. Seafloor classification can then be performed on the calculated back-scattering strength using Lambert's Law and regression analysis. Examples are given using both approaches: image analysis and inversion of data based on the sonar equation.

  10. Range compensation for backscattering measurements in the difference-frequency nearfield of a parametric sonar.

    PubMed

    Foote, Kenneth G

    2012-05-01

    Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6 kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.

  11. Navy sonar and cetaceans: just how much does the gun need to smoke before we act?

    PubMed

    Parsons, E C M; Dolman, Sarah J; Wright, Andrew J; Rose, Naomi A; Burns, W C G

    2008-07-01

    Cetacean mass stranding events associated with naval mid-frequency sonar use have raised considerable conservation concerns. These strandings have mostly involved beaked whales, with common pathologies, including "bubble lesions" similar to decompression sickness symptoms and acoustic traumas. However, other cetacean species have also stranded coincident with naval exercises. Possible mechanisms for the strandings include a behavioral response that causes deep divers to alter their diving behavior, which then results in decompression sickness-like impacts. Current mitigation measures during military exercises are focused on preventing auditory damage (hearing loss), but there are significant flaws with this approach. Behavioral responses, which occur at lower sound levels than those that cause hearing loss, may be more critical. Thus, mitigation measures should be revised. A growing number of international bodies recognize this issue and have urged increasing scrutiny of sound-producing activities, but many national jurisdictions have resisted calls for increased protection.

  12. Coherent broadband sonar signal processing with the environmentally corrected matched filter

    NASA Astrophysics Data System (ADS)

    Camin, Henry John, III

    The matched filter is the standard approach for coherently processing active sonar signals, where knowledge of the transmitted waveform is used in the detection and parameter estimation of received echoes. Matched filtering broadband signals provides higher levels of range resolution and reverberation noise suppression than can be realized through narrowband processing. Since theoretical processing gains are proportional to the signal bandwidth, it is typically desirable to utilize the widest band signals possible. However, as signal bandwidth increases, so do environmental effects that tend to decrease correlation between the received echo and the transmitted waveform. This is especially true for ultra wideband signals, where the bandwidth exceeds an octave or approximately 70% fractional bandwidth. This loss of coherence often results in processing gains and range resolution much lower than theoretically predicted. Wiener filtering, commonly used in image processing to improve distorted and noisy photos, is investigated in this dissertation as an approach to correct for these environmental effects. This improved signal processing, Environmentally Corrected Matched Filter (ECMF), first uses a Wiener filter to estimate the environmental transfer function and then again to correct the received signal using this estimate. This process can be viewed as a smarter inverse or whitening filter that adjusts behavior according to the signal to noise ratio across the spectrum. Though the ECMF is independent of bandwidth, it is expected that ultra wideband signals will see the largest improvement, since they tend to be more impacted by environmental effects. The development of the ECMF and demonstration of improved parameter estimation with its use are the primary emphases in this dissertation. Additionally, several new contributions to the field of sonar signal processing made in conjunction with the development of the ECMF are described. A new, nondimensional wideband

  13. Bedload Hysteresis and Bedform Deformation Rates Investigated with Physical Samples, Multibeam Sonar, and Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Gaeuman, D.; Schmandt, B.; Stewart, R. L.; Pryor, C.

    2015-12-01

    Field and laboratory observations indicate that bedload transport frequently exhibits clockwise hysteresis. Several grain-scale mechanisms could account for this, including increases in the median surface particle size, development of stable particle arrangements on the bed surface, or reductions in the sediment supply. Alternatively, bedload hysteresis at steady flow could occur if the bed configuration stabilizes as bedforms approach a configuration that is in quasi-equilibrium with prevailing hydraulic conditions. The roles of bedform development and changes in coarse sediment availability as potential causes of hysteresis are investigated with a unique dataset obtained during a high flow release in the Trinity River, a regulated gravel-bed river in California. Physical bedload samples were obtained over the release hydrograph along with continuous seismic monitoring with 3-component broadband seismometers at four locations along the river. At one location, changes in bed topography during the peak of the release were monitored with repeated multibeam sonar surveys over a channel length of about 1 km. In addition, a network of 80 vertical-component seismometers was deployed adjacent to the channel to support development of a time series of maps showing local variations in seismic energy production on the stream bed. Finally, a gravel augmentation operation was being implemented at the upstream end of the reach during the release peak, permitting evaluation of how changes in sediment supply affect downstream transport rates. Sampled bedload transport rates were found to increase briefly during gravel augmentation operations, but return to pre-augmentation levels within a few hours after augmentation activities stop and generally decline over a period of peak flow lasting about 3 days. The sonar data indicate that most of the topographic change observed during the peak flow period occurred in the first several hours of the period, supporting the hypothesis that

  14. Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification.

    PubMed

    Kuc, Roman

    2002-10-01

    Electronic travel aids (ETAs) for the blind commonly employ conventional time-of-flight sonars to provide range measurements, but their wide beams prevent accurate determination of object bearing. We describe a binaural sonar that detects objects over a wider bearing interval compared with a single transducer and also determines if the object lies to the left or right of the sonar axis in a robust manner. The sonar employs a pair of Polaroid 6500 ranging modules connected to Polaroid 7000 transducers operating simultaneously in a binaural array configuration. The sonar determines which transducer detects the echo first. An outward vergence angle between the transducers improves the first-echo detection reliability by increasing the delay between the two detected echoes, a consequence of threshold detection. We exploit this left/right detection capability in an ETA that provides vibrotactile feedback. Pager motors mount on both sides of the sonar, possibly worn on the user's wrists. The motor on the same side as the reflecting object vibrates with speed inversely related to range. As the sonar or object moves, vibration patterns provide landmark, motion and texture cues. Orienting the sonar at 45 degrees relative to the travel direction and passing a right-angle corner produces a characteristic vibrational pattern. When pointing the sonar at a moving object, such as a fluttering flag, the motors alternate in a manner to give the user a perception of the object motion. When the sonar translates or rotates to scan a foliage surface, the vibrational patterns are related to the surface scatterer distribution, allowing the user to identify the foliage.

  15. Static analysis of a sonar dome rubber window

    NASA Technical Reports Server (NTRS)

    Lai, J. L.

    1978-01-01

    The application of NASTRAN (level 16.0.1) to the static analysis of a sonar dome rubber window (SDRW) was demonstrated. The assessment of the conventional model (neglecting the enclosed fluid) for the stress analysis of the SDRW was made by comparing its results to those based on a sophisticated model (including the enclosed fluid). The fluid was modeled with isoparametric linear hexahedron elements with approximate material properties whose shear modulus was much smaller than its bulk modulus. The effect of the chosen material property for the fluid is discussed.

  16. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.

  17. Morphology-Induced Information Transfer in Bat Sonar

    NASA Astrophysics Data System (ADS)

    Reijniers, Jonas; Vanderelst, Dieter; Peremans, Herbert

    2010-10-01

    It has been argued that an important part of understanding bat echolocation comes down to understanding the morphology of the bat sound processing apparatus. In this Letter we present a method based on information theory that allows us to assess target localization performance of bat sonar, without a priori knowledge on the position, size, or shape of the reflecting target. We demonstrate this method using simulated directivity patterns of the frequency-modulated bat Micronycteris microtis. The results of this analysis indicate that the morphology of this bat’s sound processing apparatus has evolved to be a compromise between sensitivity and accuracy with the pinnae and the noseleaf playing different roles.

  18. Sonar and its Use in Kidney Disease in Children

    PubMed Central

    Lyons, E. A.; Murphy, A. V.; Arneil, G. C.

    1972-01-01

    The basic principles of diagnostic ultrasound or sonar are given, together with the special technique required for scanning newborn infants and small children for kidney abnormalities. Illustrative examples of the potential of this procedure, both in diagnosis and in monitoring changes include a normal neonatal and preadolescent kidney, unilateral renal agenesis, duplex kidney, renal cyst, polycystic disease, nephroblastoma, and examples of mild and severe hydronephrosis. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9FIG. 10FIG. 11FIG. 12 PMID:4343783

  19. Sonar biparietal diameter growth standards in the rhesus monkey.

    PubMed

    Sabbagha, R E; Turner, J H; Chez, R A

    1975-02-01

    Serial sonar fetal cephalometry was performed on 67 pregnant monkeys (Macaca ulatta) with known breeding dates. A normal biparietal diameter (BPD) growth curve was constructed along four percentile divisions; namely, the 10th to the 24th, 25th to the 49th, 50th to the 74th, and the 75th to the 90th. It is shown that under normal conditions fetuses initially positioned in any one of these divisions will continue to grow within the confines of that same percentile range. This biologic phenomenon has not been previously reported. It is significant because it leads to a more precise separation of normal vs. suboptimal intrauterine growth.

  20. [Microsurgical removal of deep vascular malformations using sonar-stereometry].

    PubMed

    Reinhardt, H F; Horstmann, G A; Gratzl, O

    1991-04-01

    The advantages of a new, dynamic sonar technology in open stereotactic microsurgery are demonstrated by means of three surgical procedures for deep-seated vascular malformations that are not easy of access. With this method, targets can be aimed at without using rigid, obstructive pointing devices as in conventional stereotaxy. On the contrary, it is possible to take advantage of preformed anatomical spaces reaching the lesion most carefully by means of light-weight, free-hand on-target instruments. The spatial information, correlated with a CT data set, is displayed in real time with an accuracy of +/- 1 mm. Additional image data from MR and digital angiography can be used interactively.

  1. Morphology-induced information transfer in bat sonar.

    PubMed

    Reijniers, Jonas; Vanderelst, Dieter; Peremans, Herbert

    2010-10-01

    It has been argued that an important part of understanding bat echolocation comes down to understanding the morphology of the bat sound processing apparatus. In this Letter we present a method based on information theory that allows us to assess target localization performance of bat sonar, without a priori knowledge on the position, size, or shape of the reflecting target. We demonstrate this method using simulated directivity patterns of the frequency-modulated bat Micronycteris microtis. The results of this analysis indicate that the morphology of this bat's sound processing apparatus has evolved to be a compromise between sensitivity and accuracy with the pinnae and the noseleaf playing different roles.

  2. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    USGS Publications Warehouse

    Twichell, David C.; Schwab, William C.; Nelson, C. Hans; Kenyon, Neil H.; Lee, Homa J.

    1992-01-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  3. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    SciTech Connect

    Twichell, D.C.; Schwab, W.C. ); Nelson, C.H.; Lee, H.J. ); Kenyon, N.H. )

    1992-08-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  4. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Lake, Andrew; Laurens, Philippe; Severini, Horst; Wlodek, Tomasz; Wolff, Stephen; Zurawski, Jason

    2012-12-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  5. Controllable Sonar Lenses and Prisms Based on ERFs

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Chang, Zensheu; Bao, Xiaoqi; Paustian, Iris; Lopes, Joseph; Folds, Donald

    2004-01-01

    Sonar-beam-steering devices of the proposed type would contain no moving parts and would be considerably smaller and less power-hungry, relative to conventional multiple-beam sonar arrays. The proposed devices are under consideration for installation on future small autonomous underwater vehicles because the sizes and power demands of conventional multiple-beam arrays are excessive, and motors used in single-beam mechanically scanned systems are also not reliable. The proposed devices would include a variety of electrically controllable acoustic prisms, lenses, and prism/lens combinations both simple and compound. These devices would contain electrorheological fluids (ERFs) between electrodes. An ERF typically consists of dielectric particles floating in a dielectric fluid. When an electric field is applied to the fluid, the particles become grouped into fibrils aligned in rows, with a consequent increase in the viscosity of the fluid and a corresponding increase in the speed of sound in the fluid. The change in the speed of sound increases with an increase in the applied electric field. By thus varying the speed of sound, one varies the acoustic index of refraction, analogously to varying the index of refraction of an optical lens or prism. In the proposed acoustic devices, this effect would be exploited to control the angles of refraction of acoustic beams, thereby steering the beams and, in the case of lenses, controlling focal lengths.

  6. Cognitive Adaptation of Sonar Gain Control in the Bottlenose Dolphin

    PubMed Central

    Kloepper, Laura N.; Smith, Adam B.; Nachtigall, Paul E.; Buck, John R.; Simmons, James A.; Pacini, Aude F.

    2014-01-01

    Echolocating animals adjust the transmit intensity and receive sensitivity of their sonar in order to regulate the sensation level of their echoes; this process is often termed automatic gain control. Gain control is considered not to be under the animal's cognitive control, but previous investigations studied animals ensonifying targets or hydrophone arrays at predictable distances. To test whether animals maintain gain control at a fixed level in uncertain conditions, we measured changes in signal intensity for a bottlenose dolphin (Tursiops truncatus) detecting a target at three target distances (2.5, 4 and 7 m) in two types of sessions: predictable and unpredictable. Predictable sessions presented the target at a constant distance; unpredictable sessions moved the target randomly between the three target positions. In the predictable sessions the dolphin demonstrated intensity distance compensation, increasing the emitted click intensity as the target distance increased. Additionally, as trials within sessions progressed, the animal adjusted its click intensity even from the first click in a click train, which is consistent with the animal expecting a target at a certain range. In the unpredictable sessions there was no significant difference of intensity with target distance until after the 7th click in a click train. Together, these results demonstrate that the bottlenose dolphin uses learning and expectation for sonar gain control. PMID:25153530

  7. Processing of AUV Sidescan Sonar Images for Enhancement and Classification

    NASA Astrophysics Data System (ADS)

    Honsho, C.; Asada, A.; Ura, T.; Kim, K.

    2014-12-01

    An arc volcano hosting a hydrothermal field was surveyed by using an autonomous underwater vehicle equipped with a sidescan sonar system and a multibeam echo sounder. The survey area is relatively small in area but has large variations in bathymetry and geology. To correct large geometric distortions in sidescan images, actual topographic cross sections cut by fan beams were taken into consideration instead of assuming flat bottoms. Beam pattern corrections were cautiously performed in combination with theoretical radiometric corrections for slant range and incident angle. These detailed geometric and radiometric corrections were efficient to patch neighboring images and build a complete picture of the whole survey area. Three textural attributes were computed from the corrected images by means of grey level co-occurrence matrices and used for the seafloor classification. As no ground truth data were available to us, we used a cluster analysis for the classification and obtained a result that seems relevant to the geological features suggested by the topography. Moreover, slopes of the caldera wall and of the central cones are clearly differentiated in the classification result, though the difference is not immediately obvious to our eyes. As one of the classes clearly delineates a known hydrothermal field, we expect by analogy that this class will highlight hydrothermal features in the survey area, helping to detect potential targets to be specifically investigated for mineral exploration. Numerical processing of sonar images effectively complements their visual inspection with human eyes and is helpful in providing a different perspective.

  8. Insights into dolphin sonar discrimination capabilities from human listening experiments.

    PubMed

    Au, W W; Martin, D W

    1989-11-01

    A variety of dolphin sonar discrimination experiments have been conducted, yet little is known about the cues utilized by dolphins in making fine target discriminations. In order to gain insights on cues available to echolocating dolphins, sonar discrimination experiments were conducted with human subjects using the same targets employed in dolphin experiments. When digital recordings of echoes from targets ensonified with a dolphinlike signal were played back at a slower rate to human subjects, they could also make fine target discriminations under controlled laboratory conditions about as well as dolphins under less controlled conditions. Subjects reported that time-separation-pitch and duration cues were important. They also reported that low-amplitude echo components 32 dB below the maximum echo component were usable. The signal-to-noise ratio had to be greater than 10 dB above the detection threshold for simple discrimination and 30 dB for difficult discrimination. Except for two cases in which spectral cues in the form of "click pitch" were important, subjects indicated that time-domain rather than frequency-domain processing seemed to be more relevant in analyzing the echoes.

  9. High reliability outdoor sonar prototype based on efficient signal coding.

    PubMed

    Alvarez, Fernando J; Ureña, Jesús; Mazo, Manuel; Hernández, Alvaro; García, Juan J; de Marziani, Carlos

    2006-10-01

    Many mobile robots and autonomous vehicles designed for outdoor operation have incorporated ultrasonic sensors in their navigation systems, whose function is mainly to avoid possible collisions with very close obstacles. The use of these systems in more precise tasks requires signal encoding and the incorporation of pulse compression techniques that have already been used with success in the design of high-performance indoor sonars. However, the transmission of ultrasonic encoded signals outdoors entails a new challenge because of the effects of atmospheric turbulence. This phenomenon causes random fluctuations in the phase and amplitude of traveling acoustic waves, a fact that can make the encoded signal completely unrecognizable by its matched receiver. Atmospheric turbulence is investigated in this work, with the aim of determining the conditions under which it is possible to assure the reliable outdoor operation of an ultrasonic pulse compression system. As a result of this analysis, a novel sonar prototype based on complementary sequences coding is developed and experimentally tested. This encoding scheme provides the system with very useful additional features, namely, high robustness to noise, multi-mode operation capability (simultaneous emissions with minimum cross talk interference), and the possibility of applying an efficient detection algorithm that notably decreases the hardware resource requirements.

  10. Cognitive adaptation of sonar gain control in the bottlenose dolphin.

    PubMed

    Kloepper, Laura N; Smith, Adam B; Nachtigall, Paul E; Buck, John R; Simmons, James A; Pacini, Aude F

    2014-01-01

    Echolocating animals adjust the transmit intensity and receive sensitivity of their sonar in order to regulate the sensation level of their echoes; this process is often termed automatic gain control. Gain control is considered not to be under the animal's cognitive control, but previous investigations studied animals ensonifying targets or hydrophone arrays at predictable distances. To test whether animals maintain gain control at a fixed level in uncertain conditions, we measured changes in signal intensity for a bottlenose dolphin (Tursiops truncatus) detecting a target at three target distances (2.5, 4 and 7 m) in two types of sessions: predictable and unpredictable. Predictable sessions presented the target at a constant distance; unpredictable sessions moved the target randomly between the three target positions. In the predictable sessions the dolphin demonstrated intensity distance compensation, increasing the emitted click intensity as the target distance increased. Additionally, as trials within sessions progressed, the animal adjusted its click intensity even from the first click in a click train, which is consistent with the animal expecting a target at a certain range. In the unpredictable sessions there was no significant difference of intensity with target distance until after the 7th click in a click train. Together, these results demonstrate that the bottlenose dolphin uses learning and expectation for sonar gain control.

  11. Shallow water imaging sonar system for environmental surveying. Final report

    SciTech Connect

    1998-05-01

    The scope of this research is to develop a shallow water sonar system designed to detect and map the location of objects such as hazardous wastes or discarded ordnance in coastal waters. The system will use high frequency wide-bandwidth imaging sonar, mounted on a moving platform towed behind a boat, to detect and identify objects on the sea bottom. Resolved images can be obtained even if the targets are buried in an overlayer of silt. The specific technical objective of this research was to develop and test a prototype system that is capable of (1) scan at high speeds (up to 10m/s), even in shallow water (depth to ten meters), without motion blurring or loss of resolution; (2) produce images of the bottom structure that are detailed enough for unambiguous detection of objects as small as 15cm, even if they are buried up to 30cm deep in silt or sand. The critical technology involved uses an linear FM (LFM) or similar complex waveform, which has a high bandwidth for good range resolution, with a long pulse length for similar Dopper resolution. The lone duration signal deposits more energy on target than a narrower pulse, which increases the signal-to-noise ratio and signal-to-clutter ratio. This in turn allows the use of cheap, lightweight, low power, piezoelectric transducers at the 30--500 kHz range.

  12. A Systolic Array Architecture For Processing Sonar Narrowband Signals

    NASA Astrophysics Data System (ADS)

    Mintzer, L.

    1988-07-01

    Modern sonars relay more upon visual rather than aural contacts. Lofargrams presenting a time history of hydrophone spectral content are standard means of observing narrowband signals. However, the frequency signal "tracks" are often embedded in noise, sometimes rendering their detection difficult and time consuming. Image enhancement algorithms applied to the 'grams can yield improvements in target data presented to the observer. A systolic array based on the NCR Geometric Arithmetic Parallel Processor (GAPP), a CMOS chip that contains 72 single bit processors controlled in parallel, has been designed for evaluating image enhancement algorithms. With the processing nodes of the GAPP bearing a one-to-one correspondence with the pixels displayed on the 'gram, a very efficient SIMD architecture is realized. The low data rate of sonar displays, i.e., one line of 1000-4000 pixels per second, and the 10-MHz control clock of the GAPP provide the possibility of 107 operations per pixel in real time applications. However, this architecture cannot handle data-dependent operations efficiently. To this end a companion processor capable of efficiently executing branch operations has been designed. A simple spoke filter is simulated and applied to laboratory data with noticeable improvements in the resulting lofargram display.

  13. Optimal sonar tactics over uncertain sediments

    NASA Astrophysics Data System (ADS)

    Delbalzo, Donald R.; Powers, William J.; Cole, Bernie F.

    2005-09-01

    Tactical patterns for monostatic sensors were developed during the Cold War for deep, uniform underwater environments, where a simple median detection range defined a fixed spacing between search ladder legs. Acoustic conditions in littoral environments are so complex that spatial variability of bottom sediment properties destroys the simple homogeneous assumption associated with standard tactical search concepts. Genetic algorithms (GAs) have been applied to this problem to produce near-optimal, non-standard search tracks for monostatic mobile sensors that maximize probability of detection in such inhomogeneous environments. The present work describes a new capability called SPEAR (search planning with environmentally adaptive response) that adds tactical adaptation to search paths in a complex, littoral environment, as new in situ backscattering and bottom loss information becomes available. This presentation reviews the GA approach and discusses tactical adaptation to uncertain bottom sediment properties. The results show that easily implemented dynamic changes in active pulse depression angles and frequencies can produce significant improvement in detection performance in a complex littoral area. [Work supported by NAVSEA.

  14. Simulation, manufacturing, and evaluation of a sonar for a miniaturized submersible explorer.

    PubMed

    Jonsson, Jonas; Edqvist, Erik; Kratz, Henrik; Almqvist, Monica; Thornell, Greger

    2010-01-01

    Single-beam side-scan sonar elements, to be fitted on a miniaturized submersible, are here simulated, manufactured, and evaluated. Finite element analysis simulations are compared with measurements, and an overall observation is that the agreement between simulations and measurements deviates from the measured values of 1.5 to 2 degrees, for the narrow lobe angle, by less than 10% for most models. An overall finding is that the lobe width along the track direction can be accurately simulated and, hence, the resolution of the sonars can be predicted. This paper presents, to the authors' knowledge, the world's smallest side-scan sonars.

  15. An underwater ship fault detection method based on Sonar image processing

    NASA Astrophysics Data System (ADS)

    Hong, Shi; Fang-jian, Shan; Bo, Cong; Wei, Qiu

    2016-02-01

    For the research of underwater ship fault detection method in conditions of sailing on the ocean especially in poor visibility muddy sea, a fault detection method under the assist of sonar image processing was proposed. Firstly, did sonar image denoising using the algorithm of pulse coupled neural network (PCNN); secondly, edge feature extraction for the image after denoising was carried out by morphological wavelet transform; Finally, interested regions Using relevant tracking method were taken, namely fault area mapping. The simulation results presented here proved the feasibility and effectiveness of the sonar image processing in underwater fault detection system.

  16. Simulation, manufacturing, and evaluation of a sonar for a miniaturized submersible explorer.

    PubMed

    Jonsson, Jonas; Edqvist, Erik; Kratz, Henrik; Almqvist, Monica; Thornell, Greger

    2010-01-01

    Single-beam side-scan sonar elements, to be fitted on a miniaturized submersible, are here simulated, manufactured, and evaluated. Finite element analysis simulations are compared with measurements, and an overall observation is that the agreement between simulations and measurements deviates from the measured values of 1.5 to 2 degrees, for the narrow lobe angle, by less than 10% for most models. An overall finding is that the lobe width along the track direction can be accurately simulated and, hence, the resolution of the sonars can be predicted. This paper presents, to the authors' knowledge, the world's smallest side-scan sonars. PMID:20178915

  17. Early Results from the IMI-30 Towed Sonar System

    NASA Astrophysics Data System (ADS)

    Edwards, M. H.; Rognstad, M. R.; Tottori, S. N.; Davis, R. B.; Appelgate, T. B.; Johnson, P. D.; Kevis-Stirling, A.

    2006-12-01

    The Hawaii Mapping Research Group (HMRG) of the University of Hawaii has designed and built a 30 kHz deep-towed sonar, the IMI-30, which simultaneously collects interferometric bathymetry and backscatter data. The sonar is capable of being deployed to 6000 m water depth, where it is towed 100-500 m above the seafloor yielding a total swath width of 1-5 km for sidescan and somewhat less than that for bathymetry. The across-track resolution is <10 m for bathymetry depending on towing geometry and substrate type, and 0.3- 3 m for sidescan, depending on the selected transmit pulse length and tow vehicle altitude. The along-track resolution, which is dependent on vehicle speed and pulse repetition rate, varies between 0.6 and 3 meters. Here we report on data collected by the system during two different deployments in the Pacific: the IMI-30's initial field program in the Lau Basin in 2004 and the most recent survey using the system, south of Oahu in June of 2006. Between the 2004 Lau program and the June 2006 survey, several engineering improvements were made including: 1) changing the housings of the side-looking transducers from cast polyurethane to oil- filled polyethylene; 2) adding syntactic foam baffling to reduce surface bounce; 3) synchronizing sound velocimeter measurements with sonar transmit; 4) adding sub-bottom transducers and associated electronics to the tow vehicle; 5) adding two additional side-looking transducer rows per side, and 6) upgrading the surface and subsurface power supplies. This engineering effort has improved reliability of the system by eliminating transducer failures caused by seawater leakage and power supply over-temperature shutdown in tropical waters. Reducing the system noise - electrical, hydrodynamic, and acoustic - has improved data quality and extended the swath width. The addition of sub-bottom data acquisition further increases the utility of the IMI-30 system. Our presentation will document the engineering effort and

  18. Range detection for AGV using a rotating sonar sensor

    NASA Astrophysics Data System (ADS)

    Chiang, Wen-chuan; Ramamurthy, Dhyana Chandra; Mundhenk, Terrell N.; Hall, Ernest L.

    1998-10-01

    A single rotating sonar element is used with a restricted angle of sweep to obtain readings to develop a range map for the unobstructed path of an autonomous guided vehicle (AGV). A Polaroid ultrasound transducer element is mounted on a micromotor with an encoder feedback. The motion of this motor is controlled using a Galil DMC 1000 motion control board. The encoder is interfaced with the DMC 1000 board using an intermediate IMC 1100 break-out board. By adjusting the parameters of the Polaroid element, it is possible to obtain range readings at known angles with respect to the center of the robot. The readings are mapped to obtain a range map of the unobstructed path in front of the robot. The idea can be extended to a 360 degree mapping by changing the assembly level programming on the Galil Motion control board. Such a system would be compact and reliable over a range of environments and AGV applications.

  19. Electromechanical nonlinearities and losses in piezoelectric sonar transducer materials.

    PubMed

    Sherlock, Nevin P; Meyer, Richard J

    2012-08-01

    Next-generation sonar projectors rely on piezoelectric single crystals such as lead magnesium niobate-lead titanate to induce mechanical strain and generate ever greater acoustic output, but the performance of these materials under high-power operation is not well understood. As the electrical driving force increases, the linear piezoelectric relationships give way to nonlinear, amplitude-dependent properties. Such behavior is impossible to predict solely from small signal, linear measurements. This work has characterized the behavior of single crystals by examining the dynamic relaxation from initial strain levels of 0.1 to 0.2%. Strain-dependent values of the mechanical quality factor and resonance frequency are reported for single crystals, and these properties are compared with conventional high-power piezoceramics.

  20. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  1. Interactive sonar-operated device for stereotactic and open surgery.

    PubMed

    Reinhardt, H F; Zweifel, H J

    1990-01-01

    An accuracy of +/- 1 mm in surgical localization of brain targets was reliably attained with a new sonar-operated system, provided that air turbulence was minimized. Since a conventional frame construction with coordinate settings has been disposed of, apart from a halo ring head holder, free access to the operating site is guaranteed. Using offset probes, measurements in depth can be realized with a relatively simple hardware arrangement. A small, 'floating' locator probe can be attached to all kinds of surgical instruments; its spatial position is computed in real time and immediately referred to computed tomography/magnetic resonance imaging scans. Although this work is still in progress, promising applications both in stereotactic and in open surgery are envisaged.

  2. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  3. First results of a deep tow CHIRP sonar seafloor imaging system

    USGS Publications Warehouse

    Parent, M.; Fang, Changle; O'Brien, Thomas F.; Danforth, William W.

    1993-01-01

    The latest and most innovative technology has been applied towards the development of a full-ocean depth multi-sensor sonar system using linear swept-FM (Chirp) technology. The seafloor imaging system (SIS- 7000) described herein uses Chirp sidescan sonar to provide high resolution imagery at long range, and Chirp subbottom sonar to provide high resolution profiles in both the near bottom and deeper subbottom. The tow vehicle contains a suite of full-ocean depth instrumentation for measuring various oceanographic parameters and for monitoring vehicle status. Top side systems include a sonar display and data logging system as well as real-time sensor status display and tow vehicle control system. This paper will present an overview of this system, describe its technology and capabilities, and present some initial results. 

  4. AUTOMATED PRODUCTION OF SEAGRASS MAPS FROM SIDESCAN SONAR IMAGERY: ACCURACY, VARIABILITY AND PATCH RESOLUTION

    EPA Science Inventory

    Maps of seagrass beds are useful for monitoring estuarine condition, managing habitats, and modeling estuarine processes. We recently developed inexpensive methods for collecting and classifying sidescan sonar (SSS) imagery for seagrass presence in turbid waters as shallow as 1-...

  5. Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats

    PubMed Central

    Hulgard, Katrine; Ratcliffe, John M.

    2016-01-01

    More difficult tasks are generally regarded as such because they demand greater attention. Echolocators provide rare insight into this relationship because biosonar signals can be monitored. Here we show that bats produce longer terminal buzzes and more sonar sound groups during their approach to prey under presumably more difficult conditions. Specifically, we found Daubenton’s bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking stationary prey. Buzz duration and sonar sound groups have been suggested to be independent means by which bats attend to would-be targets and other objects of interest. We suggest that for attacking bats both should be considered as indicators of task difficulty and that the buzz is, essentially, an extended sonar sound group. PMID:26857019

  6. Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats.

    PubMed

    Hulgard, Katrine; Ratcliffe, John M

    2016-01-01

    More difficult tasks are generally regarded as such because they demand greater attention. Echolocators provide rare insight into this relationship because biosonar signals can be monitored. Here we show that bats produce longer terminal buzzes and more sonar sound groups during their approach to prey under presumably more difficult conditions. Specifically, we found Daubenton's bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking stationary prey. Buzz duration and sonar sound groups have been suggested to be independent means by which bats attend to would-be targets and other objects of interest. We suggest that for attacking bats both should be considered as indicators of task difficulty and that the buzz is, essentially, an extended sonar sound group. PMID:26857019

  7. Object detection and discrimination in side-scan sonar by means of intensity contouring

    NASA Astrophysics Data System (ADS)

    Slater, Richard R.; Robinson, C.; Lingsch, Stephen

    1999-08-01

    A method of automatically locating mine-like objects in side scan sonar images has been used for building data bases which contain clutter density estimates as a function of geographic location. Such data bases are useful for both operations planning and for subsequent analysis of later side scan surveys of the same area. Since traditional side scan sonar object detection is focused on individual objects rather than a more general description of collections of objects, it is not immediately useful for the problem addressed here. For that reason, we have developed an approach that uses intensity contouring, followed by a simple geometric analysis of the contours, to find clutter. Discrimination is based upon object shape, area, and the presence of nearby shadows. We describe the incorporation of such an algorithm into a processing package known as the Unified Sonar Image Processing System, and we give examples of dummy mine detection and of clutter estimation in a number of side scan sonar images.

  8. Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats.

    PubMed

    Hulgard, Katrine; Ratcliffe, John M

    2016-01-01

    More difficult tasks are generally regarded as such because they demand greater attention. Echolocators provide rare insight into this relationship because biosonar signals can be monitored. Here we show that bats produce longer terminal buzzes and more sonar sound groups during their approach to prey under presumably more difficult conditions. Specifically, we found Daubenton's bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking stationary prey. Buzz duration and sonar sound groups have been suggested to be independent means by which bats attend to would-be targets and other objects of interest. We suggest that for attacking bats both should be considered as indicators of task difficulty and that the buzz is, essentially, an extended sonar sound group.

  9. A critical evaluation of sonar "crown-rump length" measurements.

    PubMed

    Robinson, H P; Fleming, J E

    1975-09-01

    In a study to evaluate the reproducibility and accuracy of the sonar technique of measurement of the in vivo fetal crown-rump length (Robinson, 1973), a series of in vivo and in vitro experiments was performed in which the random and systematic errors inherent in the technique were assessed. The potential sources of random error were those of operator judgement, movement of the fetus and mother, machine sensitivity settings and measurement from the photograph; while the sources of systematic error were those of oscilloscope scale factor, and velocity calibration inaccuracies, and the effect of beam width. The overall effect of the random errors, that is, the reproducibility of the technique, was assessed in an in vivo blind trial in which three independent measurements were made of the fetus. In a series of 30 experiments the average standard deviation of the three readings was found to be 1.2 mm. Evaluation of the systematic errors by in vivo experimentation, on the other hand, showed that the basic sonar measurements were in error by an overestimate of 1 mm for the beam width effect and 3.7 per cent for the scale factor and velocity calibration errors. A weighted non-linear regression analysis of 334 measurements was performed in order to obtain a "curve of best fit" for the period covering 6 to 14 weeks of menstrual age. The values obtained were corrected for the systematic errors and compared with widely quoted anatomical figures. In the second part of this investigation the original data was further analyzed to determine on a statistical basis the accuracy of the technique as a method of estimating maturity. It was shown that such an estimate could be made to within 4.7 days with a 95 per cent probability on the basic of a single measurement, and to within 2.7 days if three independent measurements were made.

  10. Scanning sonar of rolling porpoises during prey capture dives.

    PubMed

    Akamatsu, T; Wang, D; Wang, K; Li, S; Dong, S

    2010-01-01

    Dolphins and porpoises have excellent biosonar ability, which they use for navigation, ranging and foraging. However, the role of biosonar in free-ranging small cetaceans has not been fully investigated. The biosonar behaviour and body movements of 15 free-ranging finless porpoises (Neophocaena phocaenoides) were observed using electronic tags attached to the animals. The porpoises often rotated their bodies more than 60 deg., on average, around the body axis in a dive bout. This behaviour occupied 31% of the dive duration during 186 h of effective observation time. Rolling dives were associated with extensive searching effort, and 23% of the rolling dive time was phonated, almost twice the phonation ratio of upright dives. Porpoises used short inter-click interval sonar 4.3 times more frequently during rolling dives than during upright dives. Sudden speed drops, which indicated that an individual turned around, occurred 4.5 times more frequently during rolling dives than during upright dives. Together, these data suggest that the porpoises searched extensively for targets and rolled their bodies to enlarge the search area by changing the narrow beam axis of the biosonar. Once a possible target was detected, porpoises frequently produced short-range sonar sounds. Continuous searching for prey and frequent capture trials appeared to occur during rolling dives of finless porpoises. In contrast, head movements ranging +/-2 cm, which can also change the beam axis, were regularly observed during both dives. Head movements might assist in instant assessment of the arbitrary direction by changing the beam axis rather than prey searching and pursuit.

  11. Digital processing of side-scan sonar data with the Woods Hole image processing system software

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    Since 1985, the Branch of Atlantic Marine Geology has been involved in collecting, processing and digitally mosaicking high and low-resolution side-scan sonar data. Recent development of a UNIX-based image-processing software system includes a series of task specific programs for processing side-scan sonar data. This report describes the steps required to process the collected data and to produce an image that has equal along- and across-track resol

  12. Side-scan sonar imaging of the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Anima, Roberto; Wong, Florence L.; Hogg, David; Galanis, Peter

    2007-01-01

    This paper presents data collection methods and side-scan sonar data collected along the Colorado River in Grand Canyon in August and September of 2000. The purpose of the data collection effort was to image the distribution of sand between Glen Canyon Dam and river mile 87.4 before and after the 31,600 cfs flow of September 6-8. The side-scan sonar imaging focused on pools between rapids but included smaller rapids where possible.

  13. Bats' avoidance of real and virtual objects: implications for the sonar coding of object size.

    PubMed

    Goerlitz, Holger R; Genzel, Daria; Wiegrebe, Lutz

    2012-01-01

    Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats' calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size.

  14. A novel approach to surveying sturgeon using side-scan sonar and occupancy modeling

    USGS Publications Warehouse

    Flowers, H. Jared; Hightower, Joseph E.

    2013-01-01

    Technological advances represent opportunities to enhance and supplement traditional fisheries sampling approaches. One example with growing importance for fisheries research is hydroacoustic technologies such as side-scan sonar. Advantages of side-scan sonar over traditional techniques include the ability to sample large areas efficiently and the potential to survey fish without physical handling-important for species of conservation concern, such as endangered sturgeons. Our objectives were to design an efficient survey methodology for sampling Atlantic Sturgeon Acipenser oxyrinchus by using side-scan sonar and to developmethods for analyzing these data. In North Carolina and South Carolina, we surveyed six rivers thought to contain varying abundances of sturgeon by using a combination of side-scan sonar, telemetry, and video cameras (i.e., to sample jumping sturgeon). Lower reaches of each river near the saltwater-freshwater interface were surveyed on three occasions (generally successive days), and we used occupancy modeling to analyze these data.We were able to detect sturgeon in five of six rivers by using these methods. Side-scan sonar was effective in detecting sturgeon, with estimated gear-specific detection probabilities ranging from 0.2 to 0.5 and river-specific occupancy estimates (per 2-km river segment) ranging from 0.0 to 0.8. Future extensions of this occupancy modeling framework will involve the use of side-scan sonar data to assess sturgeon habitat and abundance in different river systems.

  15. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana.

    SciTech Connect

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  16. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    SciTech Connect

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  17. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana.

    SciTech Connect

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-10-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  18. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas.

    SciTech Connect

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  19. Performances of human listeners and an automatic aural classifier in discriminating between sonar target echoes and clutter.

    PubMed

    Allen, Nancy; Hines, Paul C; Young, Victor W

    2011-09-01

    Human listening tests were conducted to investigate if participants could distinguish between samples of target echoes and clutter obtained from a broadband active sonar experiment. For each echo, the listeners assigned a rating based on how confident they were that it was a target echo or clutter. The measure of performance was the area under the binormal receiver-operating-characteristic (ROC) curve, A(z). The mean performance was A(z)=0.95 ± 0.04 when signals were presented with their full available acoustic bandwidth of approximately 0-2 kHz. It was A(z)=0.77 ± 0.08 when the bandwidth was reduced to 0.5-2 kHz. The error bounds are stated as 95% confidence intervals. These results show that the listeners could definitely hear differences, but their performance was significantly degraded when the low-frequency signal information was removed. The performance of an automatic aural classifier was compared against this human-performance baseline. Results of statistical tests showed that it outperformed 2 of 13 listeners and 5 of 9 human listeners in the full-bandwidth and reduced-bandwidth tests, respectively, and performed similarly to the other listeners. Given its performance, the automatic aural classifier may prove beneficial to Navy sonar systems.

  20. Sidescan-sonar mapping of benthic trawl marks on the shelf and slope off Eureka, California

    USGS Publications Warehouse

    Friedlander, A.M.; Boehlert, G.W.; Field, M.E.; Mason, J.E.; Gardner, J.V.; Dartnell, P.

    1999-01-01

    The abundance and orientation of trawl marks was quantified over an extensive portion (>2700 km2) of the Eureka, California, outer shelf and slope, an important commercial bottom trawling ground for such high-value species as rockfish, sole, and sablefish. Fishing logbook data indicate that the entire reporting area was trawled about one and a half times on an average annual basis and that some areas were trawled over three times annually. High-resolution sidescan-sonar images of the study area revealed deep gouges on the seafloor, caused by heavy steel trawl doors that act to weigh down and spread open the bottom trawls. These trawl marks are commonly oriented parallel to bathymetric contours and many could be traced for several kilometers. Trawl marks showed a quadratic relationship in relation to water depth, with the greatest number of trawl marks observed at ~400 m. There was a significant positive correlation between the number of trawl marks observed on the sidescan images and the number of annual trawl hours logged within reporting areas. This finding indicates that acoustic remote sensing is a promising independent approach to evaluate fishing effort on a scale consistent with commercial fishing activities. Bottom trawling gear is known to modify seafloor habitats by altering benthic habitat complexity and by removing or damaging infauna and sessile organisms. Identifying the extent of trawling in these areas may help determine the effects of this type of fishing gear on the benthos and develop indices of habitat disturbance caused by fishing activities.

  1. Sidescan sonar imagery and surficial geologic interpretation of the sea floor off Branford, Conneticut

    USGS Publications Warehouse

    Poppe, L.J.; Paskevich, V.F.; Moser, M.S.; DiGiacomo-Cohen, M. L.; Christman, E.B.

    2004-01-01

    distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The sidescan sonar mosaic also serves as a base map for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for appropriate interpretation of point measurements.

  2. The paradox of drowned reefs: A Caribbean example mapped using SeaMARC II side-scan sonar

    SciTech Connect

    Grote, D.; Mann, P. )

    1990-05-01

    Three models for the drowning of carbonate platforms and associated fringing coral reefs include (1) rapid submergence below the euphotic zone by tectonic subsidence and sea level rise; (2) excess nutrients in the water; and (3) burial by prograding marine siliclastic sediments. To examine these mechanisms on a regional scale, the authors mapped drowned barrier reef tracts around the active carbonate banks of the Nicaraguan Rise using SeaMARC II sidescan sonar, 3.5 KHz, and digital single channel reflection techniques. The reef tracts exhibited high sonar backscatter and were prominently displayed on sidescan images. Characteristic features of the reef tracts include (1) uneroded and slightly sinuous mounds that crop out on the sea floor and closely following bathymetric contours; (2) reef mounds that typically occur in stairstep sets of two to three terraces; (3) water depths at the crest of the reef mounds that range from 1,050 to 1,500 m; and (4) reef mounds that extend for 1,200 km around the base of the slope (depth 1,300 m) of an active carbonate platform in a moderately active, intraplate setting (Pedro Bank) and along the crest of a submerged fault block in a highly active, interplate setting (Bay Islands Ridge, ridge crest depth at 1,600 m). Because these newly discovered reef tracts have not been dredged, their ages and compositions remain unknown. Based on the observed sea floor outcrop, regional extent, and approximate correlation in water depth of the reef tracts, mechanisms 1 and 2 appear to be the most likely drowning mechanisms.

  3. An improved processing sequence for uncorrelated Chirp sonar data

    NASA Astrophysics Data System (ADS)

    Baradello, Luca

    2014-12-01

    Chirp sonar systems can be used to obtain high resolution seismic reflection images of the sub-seafloor during marine surveys. The exact knowledge of the Chirp signature allows the use of deterministic algorithms to process the data, similarly to that applied to Vibroseis data on land. Here, it is described an innovative processing sequence to be applied to uncorrelated Chirp data, which can improve vertical and lateral resolution compared to conventional methods. It includes application of a Wiener filter to transform a frequency-modulated sweep into a minimum-phase pulse sequence. In this way, the data become causal and can undergo predictive deconvolution to reduce ringing and enhance vertical resolution. Afterwards, FX-deconvolution and Stolt migration can be applied to obtain an improved imaging of the subsurface. The result of this procedure is a seismic reflection image with higher resolution than traditional ones, which are normally represented using the envelope function of the signal. This technique can be particularly useful for engineering-geotechnical surveys and archaeological investigations that require a fine detail imaging of the uppermost meters of the sub-seafloor.

  4. High-Resolution Underwater Mapping Using Side-Scan Sonar.

    PubMed

    Burguera, Antoni; Oliver, Gabriel

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  5. Dolphin and bat sonar: Convergence, divergence, or parallelism

    NASA Astrophysics Data System (ADS)

    Ketten, Darlene R.; Simmons, James; Hubbard, Allyn E.; Mountain, David A.

    2001-05-01

    During the explosive period of mammalian radiation, two groups emerged with highly effective biosonar systems, bats and toothed whales. In the intervening 50 million years, these groups evolutionarily honed their hearing for operation in radically different media. This paper addresses what functional aspects the media influenced in the biosonar receptors of bats versus dolphins by comparing the auditory peripheries of these groups. Data were obtained using thin-section microscopy, CT imaging, and inner-ear models. Inner-ear anatomy is fundamentally similar in these animals, although differences exist in both neural density and distribution in each group. Specialist ears are present in both groups, suggesting at least one odontocete species has cochlear specializations consistent with CF-FM bats, including specialized basilar-membrane regions and high-frequency neural foveal areas. Cochlear specializations in both groups are primarily linked to peak spectra of sonar signals, may expand frequency representation, and may enhance tuning in adjacent ear segments by generating standing wave phenomena. Most differences, such as the soft-tissue external ear analogs in odontocetes, are clearly media driven. Other differences among species within each group are correlated with signal type or habitat complexity. [Work supported by Mellon Foundation; Seaver Institute; ONR.

  6. Clutter reduction using Doppler sonar in a harbor environment.

    PubMed

    Yang, T C; Schindall, J; Huang, Chen-Fen; Liu, Jin-Yuan

    2012-11-01

    A high frequency experiment was conducted in the Woods Hole Harbor in Massachusetts to evaluate the effectiveness of Doppler sonar for discriminating targets from reverberation. Using a pulsed linear frequency modulated signal, one finds that the matched filtered outputs are filled with high-level discrete backscattered returns, referred to as clutter, which are often confused with the target echo. The high level non-target returns have an amplitude distribution that is heavy-tailed. Using a Doppler-sensitive binary-phase-shift-keying signal coded with an m-sequence, the target echo and clutter can be separated by Doppler and delay, and tracked using the Doppler spectrogram (Dopplergram). The Doppler filtered time series show a background reverberation with a Rayleigh-like amplitude distribution, with an improved signal-to-(peak) reverberation ratio compared with that without Doppler filtering. The reduced reverberation level with Doppler processing decreases the probability of false alarm (Pfa) for a given threshold level. Conversely, for a given Pfa, the higher signal-to-(peak) reverberation ratio implies a higher probability of detection. Transmission loss measurement was conducted to estimate some of the system parameters, e.g., the source level and target strength relative to the noise level.

  7. Sources of uncertainty in Doppler sonar measurements of fish speed

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2001-05-01

    A 250-kHz, 30-kHz bandwidth coherent Doppler sonar was evaluated to determine sources of uncertainty in fish speed measurements. Three separate tests were undertaken: (1) towtank tests using styrofoam balls to simulate fish, (2) tank tests with live free-swimming fish, and (3) field tests with wild free-swimming fish. The standard deviation in a single speed estimate was 9 cms-1 for styrofoam balls, 10-11 cms-1 for swimming fish observed from a dorsal aspect, and 19 cms-1 for swimming fish observed from a caudal aspect. The variation in precision was primarily due to the different signal-to-noise ratio (SNR) in each test: a larger SNR resulted in a smaller standard deviation. Doppler speed estimates were compared with independent estimates of target speed where possible. An accuracy of +/-4 cms-1 was typical of Doppler speed estimates in all the experiments.

  8. Location and Characterization of Underwater Ordnance using Resonance Scattered Sonar

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Korneev, V. A.

    2009-12-01

    Unexploded ordnance (UXO) present a worldwide hazard in locations of previous military confrontations and at military training facilities. In particular, the presence of unexploded ordinance in coastal regions poses a severe risk that must be addressed before sites can be turned over to the public or coastal areas made available for commercial traffic. Although progress has been made in detecting UXO in underwater areas, there still exists a need for technologies that can detect and locate UXO buried in seafloor sediments and reliably distinguish munitions from clutter. We are investigating a method based on resonance scattering using small data sets in a controlled pond environment. The use of resonance scattering allows for deeper bottom penetration than in the case of the generally used acoustic imaging, because in the former case the wavelengths are longer than the latter. Furthermore, in the resonance scattering regime the geometry is independent of the target orientation. The sonar data sets were acquired during 2006 and 2007 by the Applied Physics Laboratory, University of Washington, at the Surface Warfare Center, Panama City, FL, and included an aluminum cylinder and sphere, as well as artillery shells and mortar rounds buried in the sandy pond bottom. Our results show that resonance scattered waves, although smaller in amplitude than the specular reflected signal, dominate much of the recorded traces in time. These signals can be used to determine the propagation velocities in the pond sediments, to locate the UXO in the subsurface and to characterize the UXO type by its size and filler velocities.

  9. Neural network modeling of a dolphin's sonar discrimination capabilities.

    PubMed

    Au, W W; Andersen, L N; Rasmussen, A R; Roitblat, H L; Nachtigall, P E

    1995-07-01

    The capability of an echolocating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information from the echoes. In this study, both time and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer mounted on the dolphin's pen. The echoes were filtered by a bank of continuous constant-Q digital filters and the energy from each filter was computed in time increments of 1/bandwidth. Echo features of the standard and each comparison target were analyzed in pairs by a counterpropagation neural network, a backpropagation neural network, and a model using Euclidean distance measures. The backpropagation network performed better than both the counterpropagation network, and the Euclidean model, using either spectral-only features or combined temporal and spectral features. All models performed better using features containing both temporal and spectral information. The backpropagation network was able to perform better than the dolphins for noise-free echoes with Q values as low as 2 and 3. For a Q of 2, only temporal information was available. However, with noisy data, the network required a Q of 8 in order to perform as well as the dolphin.

  10. Bi-static sonar applications of intensity processing.

    PubMed

    Naluai, Nathan K; Lauchle, Gerald C; Gabrielson, Thomas B; Joseph, John H

    2007-04-01

    Acoustic intensity processing of signals from directional sonobuoy acoustic subsystems is used to enhance the detection of submerged bodies in bi-static sonar applications. In some directions, the scattered signals may be completely dominated by the incident blast from the source, depending upon the geometry, making the object undetectable by traditional pressure measurements. Previous theoretical derivations suggest that acoustic vector intensity sensors, and the associated intensity processing, are a potential solution to this problem. Deep water experiments conducted at Lake Pend Oreille in northern Idaho are described. A large, hollow cylindrical body is located between a source and a number of SSQ-53D sonobuoys positioned from 5 to 30 body lengths away from the scattering body. Measurements show changes in the acoustic pressure of less than 0.5 dB when the scattering body is inserted in the field. However, the phase of the acoustic intensity component formed between the acoustic pressure and particle velocity component orthogonal to the direction of incident wave propagation varies by as much as 55 degrees. This metric is shown to be a repeatable and strong indicator of the presence of the scattering body.

  11. High-Resolution Underwater Mapping Using Side-Scan Sonar

    PubMed Central

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  12. Graphical derivations of radar, sonar, and communication signals

    NASA Technical Reports Server (NTRS)

    Altes, R. A.; Titlebaum, E. L.

    1975-01-01

    The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i.e., the generation of an impulse equivalent code.

  13. High-Resolution Underwater Mapping Using Side-Scan Sonar.

    PubMed

    Burguera, Antoni; Oliver, Gabriel

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region.

  14. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge

  15. AUV SLAM and Experiments Using a Mechanical Scanning Forward-Looking Sonar

    PubMed Central

    He, Bo; Liang, Yan; Feng, Xiao; Nian, Rui; Yan, Tianhong; Li, Minghui; Zhang, Shujing

    2012-01-01

    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods. PMID:23012549

  16. AUV SLAM and experiments using a mechanical scanning forward-looking sonar.

    PubMed

    He, Bo; Liang, Yan; Feng, Xiao; Nian, Rui; Yan, Tianhong; Li, Minghui; Zhang, Shujing

    2012-01-01

    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods. PMID:23012549

  17. AUV SLAM and experiments using a mechanical scanning forward-looking sonar.

    PubMed

    He, Bo; Liang, Yan; Feng, Xiao; Nian, Rui; Yan, Tianhong; Li, Minghui; Zhang, Shujing

    2012-01-01

    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods.

  18. Bayesian data fusion of multiview synthetic aperture sonar imagery for seabed classification.

    PubMed

    Williams, David P

    2009-06-01

    A Bayesian data fusion approach for seabed classification using multiview synthetic aperture sonar (SAS) imagery is proposed. The principled approach exploits all available information and results in probabilistic predictions. Each data point, corresponding to a unique 10 m x 10 m area of seabed, is represented by a vector of wavelet-based features. For each seabed type, the distribution of these features is then modeled by a unique Gaussian mixture model. When multiple views of the same data point (i.e., area of seabed) are available, the views are combined via a joint likelihood calculation. The end result of this Bayesian formulation is the posterior probability that a given data point belongs to each seabed type. It is also shown how these posterior probabilities can be exploited in a form of entropy-based active-learning to determine the most useful additional data to acquire. Experimental results of the proposed multiview classification framework are shown on a large data set of real, multiview SAS imagery spanning more than 2 km (2) of seabed.

  19. Neuro-computational processing of moving sonar echoes classifies and localizes foliage

    NASA Astrophysics Data System (ADS)

    Kuc, Roman

    2004-09-01

    Echoes from in situ tree trunks, similar to those observed by flying bats, are processed. A moving sonar converts echoes into spike sequences and applies neural-computational methods to classify objects and estimate passing range. Two classes of tree trunks act as retro-reflectors that generate strong echoes (SEs), identified by a locally dense spike pattern. Linear drive-by sonar trajectories cause SEs to follow hyperbolic curves specified by passing range. A glint is a collection of consecutive range readings matching expected values on a specific hyperbolic curve. Passing-range detectors compare successive SE data with expected values in a table and tally coincidences. Counters increment when coincidences occur and decrement when they do not. A glint terminates after tallying a sufficient number of coincidences and coincidence failure occurs in the maximum-count detector. Reflector roughness, deviations in sonar trajectory, and echo jitter necessitate a coincidence window to define matches. Short windows identify small glints over piecewise linear sonar trajectories, while long windows accommodate deviations in sonar speed and trajectory, and associate multiple glints observed with shorter windows. The minimum coincidence window size yielding glints classify smooth and rough retro-reflectors.

  20. Deploying perfSONAR-based End-2-End monitoring for production US CMS networking

    SciTech Connect

    Grigoriev, Maxim; Bobyshev, Andrey; Crawford, Matt; DeMar, Phil; Grigaliunas, Vyto; Petravick, Don; /Fermilab

    2007-09-01

    Fermilab is the US Tier-1 Center for CMS data storage and analysis. End-2-End (E2E) circuits are utilized to support high impact data movement into and out of the Tier-1 Center. E2E circuits have been implemented to facilitate the movement of raw experiment data from the Tier-0 Center at CERN, as well as processed data to a number of the US Tier-2 sites. Troubleshooting and monitoring of those circuits presents a significant challenge, since the circuits typically cross multiple research & education networks, each with its own management domain and customized monitoring capabilities. The perfSONAR Monitoring Project was established to facilitate development and deployment of a common monitoring infrastructure across multiple network management domains. Fermilab has deployed perfSONAR across its E2E circuit infrastructure and enhanced the product with several tools that ease the monitoring and management of those circuits. This paper will present the current state of perfSONAR monitoring at Fermilab and detail our experiences using perfSONAR to manage our current E2E circuit infrastructure. We will describe how production network circuits are monitored by perfSONAR E2E Monitoring Points (MPs), and the benefits it has brought to production US CMS networking support.

  1. Neuro-computational processing of moving sonar echoes classifies and localizes foliage.

    PubMed

    Kuc, Roman

    2004-09-01

    Echoes from in situ tree trunks, similar to those observed by flying bats, are processed. A moving sonar converts echoes into spike sequences and applies neural-computational methods to classify objects and estimate passing range. Two classes of tree trunks act as retro-reflectors that generate strong echoes (SEs), identified by a locally dense spike pattern. Linear drive-by sonar trajectories cause SEs to follow hyperbolic curves specified by passing range. A glint is a collection of consecutive range readings matching expected values on a specific hyperbolic curve. Passing-range detectors compare successive SE data with expected values in a table and tally coincidences. Counters increment when coincidences occur and decrement when they do not. A glint terminates after tallying a sufficient number of coincidences and coincidence failure occurs in the maximum-count detector. Reflector roughness, deviations in sonar trajectory, and echo jitter necessitate a coincidence window to define matches. Short windows identify small glints over piecewise linear sonar trajectories, while long windows accommodate deviations in sonar speed and trajectory, and associate multiple glints observed with shorter windows. The minimum coincidence window size yielding glints classify smooth and rough retro-reflectors.

  2. Enhanced Sidescan-Sonar Imagery, North-Central Long Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Schattgen, P.T.; Doran, E.F.

    2008-01-01

    The U.S. Geological Survey, National Oceanic and Atmospheric Administration (NOAA), and Connecticut Department of Environmental Protection have been working cooperatively to map the sea-floor geology within Long Island Sound. Sidescan-sonar imagery collected during three NOAA hydrographic surveys (H11043, H11044, and H11045) was used to interpret the surficial-sediment distribution and sedimentary environments within the Sound. The original sidescan-sonar imagery generated by NOAA was used to evaluate hazards to navigation, which does not require consistent tonal matching throughout the survey. In order to fully utilize these data for geologic interpretation, artifacts within the imagery, primarily due to sidescan-system settings (for example, gain changes), processing techniques (for example, lack of across-track normalization) and environmental noise (for example, sea state), need to be minimized. Sidescan-sonar imagery from surveys H11043, H11044, and H11045 in north-central Long Island Sound was enhanced by matching the grayscale tones between adjacent sidescan-sonar lines to decrease the patchwork effect caused by numerous artifacts and to provide a more coherent sidescan-sonar image for use in geologic interpretation.

  3. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    PubMed

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  4. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    PubMed

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test. PMID:26611089

  5. Controlled Sonar Exposure Experiments on Cetaceans in Norwegian Waters: Overview of the 3S-Project.

    PubMed

    Lam, Frans-Peter A; Kvadsheim, Petter H; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A; Curé, Charlotte; Kleivane, Lars; Sivle, Lise Doksæter; van Ijsselmuide, Sander P; Visser, Fleur; von Benda-Beckmann, Alexander M; Wensveen, Paul J; Dekeling, René P A

    2016-01-01

    In mitigating the risk of sonar operations, the behavioral response of cetaceans is one of the major knowledge gaps that needs to be addressed. The 3S-Project has conducted a number of controlled exposure experiments with a realistic sonar source in Norwegian waters from 2006 to 2013. In total, the following six target species have been studied: killer, long-finned pilot, sperm, humpback, minke, and northern bottlenose whales. A total of 38 controlled sonar exposures have been conducted on these species. Responses from controlled and repeated exposure runs have been recorded using acoustic and visual observations as well as with electronic tags on the target animal. So far, the first dose-response curves as well as an overview of the scored severity of responses have been revealed. In this paper, an overview is presented of the approach for the study, including the results so far as well as the current status of the ongoing analysis.

  6. Controlled Sonar Exposure Experiments on Cetaceans in Norwegian Waters: Overview of the 3S-Project.

    PubMed

    Lam, Frans-Peter A; Kvadsheim, Petter H; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A; Curé, Charlotte; Kleivane, Lars; Sivle, Lise Doksæter; van Ijsselmuide, Sander P; Visser, Fleur; von Benda-Beckmann, Alexander M; Wensveen, Paul J; Dekeling, René P A

    2016-01-01

    In mitigating the risk of sonar operations, the behavioral response of cetaceans is one of the major knowledge gaps that needs to be addressed. The 3S-Project has conducted a number of controlled exposure experiments with a realistic sonar source in Norwegian waters from 2006 to 2013. In total, the following six target species have been studied: killer, long-finned pilot, sperm, humpback, minke, and northern bottlenose whales. A total of 38 controlled sonar exposures have been conducted on these species. Responses from controlled and repeated exposure runs have been recorded using acoustic and visual observations as well as with electronic tags on the target animal. So far, the first dose-response curves as well as an overview of the scored severity of responses have been revealed. In this paper, an overview is presented of the approach for the study, including the results so far as well as the current status of the ongoing analysis. PMID:26611008

  7. Testing of a Composite Wavelet Filter to Enhance Automated Target Recognition in SONAR

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.

    2011-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low resolution SONAR and camera videos taken from Unmanned Underwater Vehicles (UUVs). These SONAR images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both SONAR and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this report.

  8. Detecting submerged bodies: controlled research using side-scan sonar to detect submerged proxy cadavers.

    PubMed

    Healy, Carrie A; Schultz, John J; Parker, Kenneth; Lowers, Bim

    2015-05-01

    Forensic investigators routinely deploy side-scan sonar for submerged body searches. This study adds to the limited body of literature by undertaking a controlled project to understand how variables affect detection of submerged bodies using side-scan sonar. Research consisted of two phases using small and medium-sized pig (Sus scrofa) carcasses as proxies for human bodies to investigate the effects of terrain, body size, frequency, swath width, and state of decomposition. Results demonstrated that a clear, flat, sandy pond floor terrain was optimal for detection of the target as irregular terrain and/or vegetation are major limitations that can obscure the target. A higher frequency towfish was preferred for small bodies, and a 20 m swath width allowed greater visibility and easier maneuverability of the boat in this environment. Also, the medium-sized carcasses were discernable throughout the 81-day study period, indicating that it is possible to detect bodies undergoing decomposition with side-scan sonar.

  9. Mud Volcanism and Fluid Venting In The Eastern Mediterranean Sea: Observations From Sidescan Sonar and Submersible Surveys

    NASA Astrophysics Data System (ADS)

    Zitter, T. A. C.; Huguen, C.; Woodside, J. M.; Mascle, J.; Scientific Party, Medineth/Medinaut

    Mud volcanoes in the eastern Mediterranean Sea have been identified by their distinctive acoustic signature as well as their morphology and sedimentology. They appear as circular regions of high backscatter believed to be caused principally by the clast content of the mud flows forming the mud volcano. Both the MEDINAUT and MEDINETH expeditions, conducted in 1998 and 1999 over two mud fields, the Olimpi field and the Anaximander Mountains area, in Eastern Mediterranean Sea, studied mud volcanism using a multidisciplinary approach in order to determine the relationships between the activity of the mud volcanoes (importance of degassing, associated fauna) and their geophysical signature. Mud volcanoes in Eastern Mediterranean Sea vary from conical and dome-shaped reliefs from 500m to 2km wide and 100 to 200m high to large "mud pie" types up to 6km wide. Sidescan sonar records give a very high resolution of the acoustic response, enabling to distinguish several mud flows, often flowing along tectonic lineations. A clear relationship between the occurrence of mud volcanism and cold seeps and both thrust and transcurrent faulting has been observed in both mud fields, although the tectonic settings vary from purely compressional to a more transpressional stress field. The faults are inferred to provide pathways for over- pressured fluids, and secondary faulting (transcurrent and extensional faults) may facilitate mud ascension. On the basis of sidescan sonar interpretation, other typical features have been inferred such as main feeder channels, eruptive cone centers, or brine pools. The in situ observations have been used to characterize the seafloor over numerous mud volcanoes and ground-truth the sonar data. They reveal an abundance of fluid seeps, mainly methane and methane-rich brines, as well as associated specific fauna such as tube worms, clams and chemosynthetic bacteria, and specific diagenetic phenomenon i.e. carbonate crusts. Video observations proved that

  10. Automated detection of submerged navigational obstructions in freshwater impoundments with hull mounted sidescan sonar

    NASA Astrophysics Data System (ADS)

    Morris, Phillip A.

    The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.

  11. Multibeam Sonar Backscatter Data Acquisition and Processing: Guidelines and Recommendations from the GEOHAB Backscatter Working Group

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T.

    2015-12-01

    Backscatter data acquired with multibeam sonars are now commonly used for the remote geological interpretation of the seabed. The systems hardware, software, and processing methods and tools have grown in numbers and improved over the years, yet many issues linger: there are no standard procedures for acquisition, poor or absent calibration, limited understanding and documentation of processing methods, etc. A workshop organized at the GeoHab (a community of geoscientists and biologists around the topic of marine habitat mapping) annual meeting in 2013 was dedicated to seafloor backscatter data from multibeam sonars and concluded that there was an overwhelming need for better coherence and agreement on the topics of acquisition, processing and interpretation of data. The GeoHab Backscatter Working Group (BSWG) was subsequently created with the purpose of documenting and synthetizing the state-of-the-art in sensors and techniques available today and proposing methods for best practice in the acquisition and processing of backscatter data. Two years later, the resulting document "Backscatter measurements by seafloor-mapping sonars: Guidelines and Recommendations" was completed1. The document provides: An introduction to backscatter measurements by seafloor-mapping sonars; A background on the physical principles of sonar backscatter; A discussion on users' needs from a wide spectrum of community end-users; A review on backscatter measurement; An analysis of best practices in data acquisition; A review of data processing principles with details on present software implementation; and finally A synthesis and key recommendations. This presentation reviews the BSWG mandate, structure, and development of this document. It details the various chapter contents, its recommendations to sonar manufacturers, operators, data processing software developers and end-users and its implication for the marine geology community. 1: Downloadable at https://www.niwa.co.nz/coasts-and-oceans/research-projects/backscatter-measurement-guidelines

  12. A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera

    SciTech Connect

    Moursund, Russell A.; Carlson, Thomas J.; Peters, Rock D.

    2003-06-01

    The uses of an acoustic camera in fish passage research at hydropower facilities are being explored by the U.S. Army Corps of Engineers. The Dual-Frequency Identification Sonar (DIDSON) is a high-resolution imaging sonar that obtains near video-quality images for the identification of objects underwater. Developed originally for the Navy by the University of Washington?s Applied Physics Laboratory, it bridges the gap between existing fisheries assessment sonar and optical systems. Traditional fisheries assessment sonars detect targets at long ranges but cannot record the shape of targets. The images within 12 m of this acoustic camera are so clear that one can see fish undulating as they swim and can tell the head from the tail in otherwise zero-visibility water. In the 1.8 MHz high-frequency mode, this system is composed of 96 beams over a 29-degree field of view. This high resolution and a fast frame rate allow the acoustic camera to produce near video-quality images of objects through time. This technology redefines many of the traditional limitations of sonar for fisheries and aquatic ecology. Images can be taken of fish in confined spaces, close to structural or surface boundaries, and in the presence of entrained air. The targets themselves can be visualized in real time. The DIDSON can be used where conventional underwater cameras would be limited in sampling range to < 1 m by low light levels and high turbidity, and where traditional sonar would be limited by the confined sample volume. Results of recent testing at The Dalles Dam, on the lower Columbia River in Oregon, USA, are shown.

  13. Recent ATR and fusion algorithm improvements for multiband sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2009-05-01

    An improved automatic target recognition processing string has been developed. The overall processing string consists of pre-processing, subimage adaptive clutter filtering, normalization, detection, data regularization, feature extraction, optimal subset feature selection, feature orthogonalization and classification processing blocks. The objects that are classified by the 3 distinct ATR strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution three-frequency band sonar imagery. The ATR processing strings were individually tuned to the corresponding three-frequency band data, making use of the new processing improvement, data regularization; this improvement entails computing the input data mean, clipping the data to a multiple of its mean and scaling it, prior to feature extraction and resulted in a 3:1 reduction in false alarms. Two significant fusion algorithm improvements were made. First, a nonlinear exponential Box-Cox expansion (consisting of raising data to a to-be-determined power) feature LLRT fusion algorithm was developed. Second, a repeated application of a subset Box-Cox feature selection / feature orthogonalization / LLRT fusion block was utilized. It was shown that cascaded Box-Cox feature LLRT fusion of the ATR processing strings outperforms baseline "summing" and single-stage Box-Cox feature LLRT algorithms, yielding significant improvements over the best single ATR processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate.

  14. Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming.

    PubMed

    Chiu, Chen; Xian, Wei; Moss, Cynthia F

    2008-09-01

    Although it has been recognized that echolocating bats may experience jamming from the signals of conspecifics, research on this problem has focused exclusively on time-frequency adjustments in the emitted signals to minimize interference. Here, we report a surprising new strategy used by bats to avoid interference, namely silence. In a quantitative study of flight and vocal behavior of the big brown bat (Eptesicus fuscus), we discovered that the bat spends considerable time in silence when flying with conspecifics. Silent behavior, defined here as at least one bat in a pair ceasing vocalization for more than 0.2 s (200 ms), occurred as much as 76% of the time (mean of 40% across 7 pairs) when their separation was shorter than 1 m, but only 0.08% when a single bat flew alone. Spatial separation, heading direction, and similarity in call design of paired bats were related to the prevalence of this silent behavior. Our data suggest that the bat uses silence as a strategy to avoid interference from sonar vocalizations of its neighbor, while listening to conspecific-generated acoustic signals to guide orientation. Based on previous neurophysiological studies of the bat's auditory midbrain, we hypothesize that environmental sounds (including vocalizations produced by other bats) and active echolocation evoke neural activity in different populations of neurons. Our findings offer compelling evidence that the echolocating bat switches between active and passive sensing to cope with a complex acoustic environment, and these results hold broad implications for research on navigation and communication throughout the animal kingdom.

  15. Effects of low-frequency naval sonar exposure on three species of fish.

    PubMed

    Halvorsen, Michele B; Zeddies, David G; Chicoine, David; Popper, Arthur N

    2013-08-01

    To address growing concern over the impact of anthropogenic sound on fishes, a series of experiments was conducted that exposed several fish species to high-intensity low-frequency naval sonar. This study extends auditory findings by adding largemouth bass, yellow perch, and channel catfish. No effects on hearing were found in largemouth bass and yellow perch and only small effects in channel catfish (a fish with morphological adaptations for enhanced pressure reception). Together with prior findings, these results suggest limited impact on hearing from high-intensity sonar. Susceptibility may be due to genetic stock, developmental conditions, seasonal variation, and/or buoyancy during exposure.

  16. Effects of low-frequency naval sonar exposure on three species of fish.

    PubMed

    Halvorsen, Michele B; Zeddies, David G; Chicoine, David; Popper, Arthur N

    2013-08-01

    To address growing concern over the impact of anthropogenic sound on fishes, a series of experiments was conducted that exposed several fish species to high-intensity low-frequency naval sonar. This study extends auditory findings by adding largemouth bass, yellow perch, and channel catfish. No effects on hearing were found in largemouth bass and yellow perch and only small effects in channel catfish (a fish with morphological adaptations for enhanced pressure reception). Together with prior findings, these results suggest limited impact on hearing from high-intensity sonar. Susceptibility may be due to genetic stock, developmental conditions, seasonal variation, and/or buoyancy during exposure. PMID:23927226

  17. Underwater simultaneous localization and mapping based on forward-looking sonar

    NASA Astrophysics Data System (ADS)

    Zhang, Tiedong; Zeng, Wenjing; Wan, Lei

    2011-09-01

    A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigation error.

  18. More than the Bottom: Multibeam Sonars and Water-column Imaging (Invited)

    NASA Astrophysics Data System (ADS)

    Mayer, L. A.; Weber, T.; Gardner, J. V.; Malik, M.; Doucet, M.; Beaudoin, J.

    2010-12-01

    The past ten years have seen remarkable advances in our ability to rapidly and accurately map the seafloor. Improvements in sonar design and signal processing have dramatically increased both the spatial and temporal resolution of seafloor mapping systems as well as provided the opportunity to extract information about seafloor character through the concomitant mapping of seafloor backscatter. The latest generation of multibeam sonars, however, can now provide acoustic returns from the water-column as well as from the seafloor. When combined with powerful new visualization tools, the ability to acoustically map large volumes of the water-column opens up vast new areas of application for multibeam sonar data. When applied to the most traditional use of multibeam sonar data (seafloor mapping in support of safe navigation), water-column data afford the opportunity to see small, high-standing targets (like ship’s masts) and offer a powerful tool for critically needed, least-depth detection. Water-column data collected from multibeam sonars also provide numerous opportunities for fisheries research ranging from qualitative descriptions of fish school behavior and vessel avoidance studies (the systems can make measurements well beyond the limited, normal-incidence view of traditional fisheries sonars), to the eventual quantitative measurements of volume backscatter (as systems become more calibrated). Increases in system bandwidth will also open opportunities for target identification studies. With increased bandwith will also come the potential for tuning the systems for the mapping of watermass boundaries, offering a powerful tool for a range of physical oceanographic applications. Finally, the ability to map the water-column has great potential for quantifying the flux of methane into the ocean from natural (and un-natural) seeps. Water-column mapping has already proven a valuable asset in monitoring the Deepwater Horizon well-site for potential blow-outs or gas

  19. Sonar cephalometry in twin pregnancy: discordancy of the biparietal diameter after 28 weeks' gestation.

    PubMed

    Leveno, K J; Santos-Ramos, R; Duenhoelter, J H; Reisch, J S; Whalley, P J

    1980-11-15

    Sonar measured biparietal diameter (BPD) differences of twin paires were examined in 123 twin pregnancies at or beyond 28 weeks' gestation. Among 117 liveborn sets, the risk of a twin infant being small for gestational age was threefold greater when paired BPD differences were 5 mm or more compared to 4 mm or less. The incidence of fetal death increased from 2.7% for twin pairs with 0 to 6 mm BPD differences to 20% when the difference was 7 mm or more. Sonar cephalometry may be helpful in the antepartum evaluation of twin pregnancies, although detection of BPD discordancy does not preclude normal twin outcome.

  20. Sonar biparietal diameter. I. Analysis of percentile growth differences in two normal populations using same methodology.

    PubMed

    Sabbagha, R E; Barton, F B; Barton, B A

    1976-10-15

    BPD measurements were obtained from 107 white and 91 black normal gravid women, with established dates, between weeks 16 to 40 of pregnancy. The sonar methodology used is uniform, employing nonpersistent image scanning with electronic calipers. It is noted that the BPD percentile growth patterns derived from these racially different fetuses are alike. Similarly, the fetal age distributions corresponding to white vs. black fetal BPD's show minor differences. From a clinical standpoint, therefore, one percentile curve is constructed for both populations. It is concluded that the BPD differences observed in the currently used growth curves, reported by different investigators, are related to nonuniformity in sonar BPD methodology.

  1. Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals.

    PubMed

    Von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2014-02-01

    Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the effectiveness of ramp-up procedures in reducing the area within which changes in hearing thresholds can occur. We modeled the level of sound killer whales (Orcinus orca) were exposed to from a generic sonar operation preceded by different ramp-up schemes. In our model, ramp-up procedures reduced the risk of killer whales receiving sounds of sufficient intensity to affect their hearing. The effectiveness of the ramp-up procedure depended strongly on the assumed response threshold and differed with ramp-up duration, although extending the duration of the ramp up beyond 5 min did not add much to its predicted mitigating effect. The main factors that limited effectiveness of ramp up in a typical antisubmarine warfare scenario were high source level, rapid moving sonar source, and long silences between consecutive sonar transmissions. Our exposure modeling approach can be used to evaluate and optimize mitigation procedures. PMID:24471782

  2. An investigation of acoustic beam patterns for the sonar localization problem using a beam based method.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony; Harvey, Gerald

    2013-06-01

    Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

  3. 28. SONAR CONTROL ROOM FORWARD LOOKING AFT SHOWING AN/SQS23G ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SONAR CONTROL ROOM - FORWARD LOOKING AFT SHOWING AN/SQS-23G DETECTING-RANGING SET, MARK & CONTROL PANEL, CAN-55134 RECORDER, SPEED INDICATOR, VARIOUS ALARMS AND INTERNAL COMMUNICATION CIRCUITS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  4. Model-based approach to the detection and classification of mines in sidescan sonar.

    PubMed

    Reed, Scott; Petillot, Yvan; Bell, Judith

    2004-01-10

    This paper presents a model-based approach to mine detection and classification by use of sidescan sonar. Advances in autonomous underwater vehicle technology have increased the interest in automatic target recognition systems in an effort to automate a process that is currently carried out by a human operator. Current automated systems generally require training and thus produce poor results when the test data set is different from the training set. This has led to research into unsupervised systems, which are able to cope with the large variability in conditions and terrains seen in sidescan imagery. The system presented in this paper first detects possible minelike objects using a Markov random field model, which operates well on noisy images, such as sidescan, and allows a priori information to be included through the use of priors. The highlight and shadow regions of the object are then extracted with a cooperating statistical snake, which assumes these regions are statistically separate from the background. Finally, a classification decision is made using Dempster-Shafer theory, where the extracted features are compared with synthetic realizations generated with a sidescan sonar simulator model. Results for the entire process are shown on real sidescan sonar data. Similarities between the sidescan sonar and synthetic aperture radar (SAR) imaging processes ensure that the approach outlined here could be made applied to SAR image analysis.

  5. EFFECTS OF GREEN MACROALGAE ON CLASSIFICATION OF SEAGRASS IN SIDE SCAN SONAR IMAGERY

    EPA Science Inventory

    High resolution maps of seagrass beds are useful for monitoring estuarine condition, managing fish habitats, and modeling estuarine processes. Side scan sonar (SSS) is one method for producing spatially accurate seagrass maps, although it has not been used widely. Our team rece...

  6. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.

    PubMed

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F

    2015-11-01

    Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. PMID:26582935

  7. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats

    PubMed Central

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F.

    2015-01-01

    ABSTRACT Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. PMID:26582935

  8. Model-based approach to the detection and classification of mines in sidescan sonar.

    PubMed

    Reed, Scott; Petillot, Yvan; Bell, Judith

    2004-01-10

    This paper presents a model-based approach to mine detection and classification by use of sidescan sonar. Advances in autonomous underwater vehicle technology have increased the interest in automatic target recognition systems in an effort to automate a process that is currently carried out by a human operator. Current automated systems generally require training and thus produce poor results when the test data set is different from the training set. This has led to research into unsupervised systems, which are able to cope with the large variability in conditions and terrains seen in sidescan imagery. The system presented in this paper first detects possible minelike objects using a Markov random field model, which operates well on noisy images, such as sidescan, and allows a priori information to be included through the use of priors. The highlight and shadow regions of the object are then extracted with a cooperating statistical snake, which assumes these regions are statistically separate from the background. Finally, a classification decision is made using Dempster-Shafer theory, where the extracted features are compared with synthetic realizations generated with a sidescan sonar simulator model. Results for the entire process are shown on real sidescan sonar data. Similarities between the sidescan sonar and synthetic aperture radar (SAR) imaging processes ensure that the approach outlined here could be made applied to SAR image analysis. PMID:14735943

  9. Approach to the side-scan sonar data storage based on spatial database technology

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Liu, Renyi; Yin, Tianhe; Liu, Nan

    2009-10-01

    Side-scan sonar is a remote sensing technology for submarine geological and geomorphological information detection, which provides acoustic imaging of the bottom at rates of up to several thousand square kilometers a day. How to manage so abundant and tremendous data has become a new problem, urgently needs to be resolved. As side-scan sonar image, also known as sonograph has an inherent geometric distortion which is so-called slant-range effect. Otherwise, the original side-scan sonar image is characterized as an order of scanning lines, without geographical position integrity and scalability. All this requirements and factors are considered and the correction of slant range distortions is outlined. This approach provides a management mechanism of raster catalog for series of sonar images of a surveying zone. Against the efficiency problem of massive image data storage, a spatial database engine is improved from such aspects as tile size setting, image resampling also called pyramid creation and spatial index establishment and so on, so as to enhance performance and improve access rate. The fact is that it archived an ideal response time and is proved to be more effective.

  10. Adaptive filter for mine detection and classification in side-scan sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Antoni, Diana; Fernandez, Manuel F.; Dobeck, Gerald J.

    1995-06-01

    A need exists to develop robust automatic techniques for discriminating between minelike target and clutter returns in sonar imagery. To address this need, an adaptive clutter suppression linear FIR filtering technique has been developed and applied to side scan sonar imagery data. The adaptive filtering procedure consists of four stages. First, a normalized average target signature (shape) within the filter window is computed using training set data. Second, the background clutter covariance matrix is computed by scanning the filter window over the data. Third, following substitutions of the average target signature and covariance expressions into a set of normal equations, an adaptive filter is computed which simultaneously suppresses the background clutter while preserving the peak of the average target signature. Finally, the data is filtered using the 2D adaptive range-crossrange filter. The overall mine detection processing string includes automatic gain control, data decimation, adaptive clutter filtering (ACF), 2D normalization, thresholding, exceedance clustering, limiting the number of exceedances and secondary thresholding processing blocks. The utility of the ACF processing string was demonstrated with three side scan sonar datasets. The ACF algorithm provided average probability of detection and false alarm rate performance similar to that obtained when utilizing an expert sonar operator.

  11. [Shape acoustical recognition and characteristics of sonar signals by the dolphin T. truncatus].

    PubMed

    Dziedzic, A; Alcuri, G

    1977-10-17

    During the shape acoustical recognition process, the signal processing reveals two phases in the T. truncatus sonar emission. In the course of the first phase, the wide-band signals are invariant, during the second phase, near the end of the approach, their temporal and spectral characteristics change along with the shape of the objects to identify.

  12. Measuring the target strength spectra of fish using dolphin-like short broadband sonar signals.

    PubMed

    Imaizumi, Tomohito; Furusawa, Masahiko; Akamatsu, Tomonari; Nishimori, Yasushi

    2008-12-01

    Dolphins identify their prey using broadband sonar signals. The broadband spectrum of the target strength (TS) of fish is believed to be a key factor in target discrimination. In this study, the TS spectrum was measured using sonar signals generated by two different dolphin species: finless porpoise and bottlenose dolphin. First, the broadband form functions of a tungsten carbide sphere and a copper sphere were measured in a water tank, and a close agreement between measurements and theoretical values was confirmed. Second, the TS spectra of anesthetized fish from three species were measured in a water tank. Although the results showed characteristics similar to previous measurements, they varied among species, individuals, and tilt angles. Third, the TS spectra of live fish suspended and tethered by nylon monofilament lines were measured at sea. The dolphin-like sonar signals were effective in obtaining the broadband TS spectra of the fish. Cross-correlation processing of the echo from a tungsten carbide sphere showed a further advantage of using the dolphin-like sonar signals: the signal-to-noise ratio increased by more than 10 dB. The variation of TS spectra with fish behavior provides useful information for target identification.

  13. Bayesian sonar detection performance prediction in the presence of interference in uncertain environments.

    PubMed

    Sha, Liewei; Nolte, Loren W

    2005-04-01

    The detection performance of sonar systems can be greatly limited by the presence of interference and environmental uncertainty. The classic sonar equation does not take into account these two limiting factors and is inaccurate in predicting sonar detection performance. Here we have developed closed-form receiver operating characteristic (ROC) performance expressions for the Bayesian detector in the presence of interference in uncertain environments. Various scenarios extended from a NRL benchmark shallow-water model were used to test the analytical ROC expressions and to analyze the effects of interference and environmental uncertainty on detection performance. The results show that (1) the degradation on detection performance due to interference is greatly magnified by the presence of environmental uncertainty; (2) Bayesian sonar detection performance depends on the following fundamental parameters: the signal-to-noise ratio, the rank of the signal matrix, and the signal-to-interference coefficient; (3) the proposed analytical ROC performance predictions can be computed much faster than performance evaluations with commonly used Monte Carlo techniques.

  14. The use of multidimensional perceptual models in the selection of sonar echo features.

    PubMed

    Gorman, R P; Sawatari, T

    1985-03-01

    The development of an accurate and efficient sonar-target classification system depends upon the identification of a set of signal features which may be used to discriminate important classes of signals. Feature selection can be facilitated through the identification of perceptual features used by human listeners in discriminating relevant sonar echoes. This study was conducted to establish a more reliable means of identifying perceptual features in terms of physical signal parameters as an initial step toward the development of an automatic sonar-target classification system. The results of an experiment involving eight subjects and six sonar echoes are presented. A model of the perceptual structure of these echoes was derived from subject similarity judgments using a multidimensional scaling (MDS) technique. It was found that three perceptual features accounted for the similarity judgments made by the human listeners. Echoes modified along candidate physical dimensions were employed to aid in the identification of perceptual dimensions in terms of physical signal parameters. The three perceptual features could be associated with signal parameters involving the amplitude envelope of the echoes.

  15. "Gestation sac" volumes as determined by sonar in the first trimester of pregnancy.

    PubMed

    Robinson, H P

    1975-02-01

    Sonar estimates of "gestation sac" volumes in the first trimester of pregnancy were made from a series of 319 measurements; the volumes estimated included the amniotic fluid, the extraembryonic coelom and the fetus. The technique employed involved the use of parallel section scans taken in series from one end of the gestation sac to the other, followed by planimetric measurements of the sac areas so produced. The potential errors which may be incurred in these measurements are discussed, and it is considered that the technique carries an overall possible error in the order of plus or minus 10 per cent. Growth curves produced from the measurements in this series show that the sac increases in volume from a mean of 1 ml. at 6 weeks to a mean of 100 ml. at 13 weeks, initially in an exponential fashion but latterly in a more linear manner. The mean values of the sonar gestation sac fluid volumes (after subtraction of the estimated fetal volume) in the 10 to 13 week range, show good correlation with those amniotic fluid values reported in the literature where direct measurements were made at the time of hysterotomy. As a method of assessing the maturity of a pregnancy this technique is of lesser value than the sonar measurement of fetal crown-rump length because of the relatively wider scatter of results. It has, however, found a useful place in clinical practice in the early sonar diagnosis of blighted ova or anembryonic pregnancies.

  16. Use of sonar in diagnosis and management of invasive gestational trophoblastic tumors.

    PubMed

    Tsai, W S

    1974-01-01

    Use of sonar in differential diagnosis between normal and molar pregnancies is well established. In this study, invasive trophoblastic tumors were investigated. Intrauterine masses were demonstrated sonographically in all 4 cases, As well as H.C.G. assay and chest X-ray, sonographic follow-up also seems to be of value in evaluating the effectiveness of the chemotherapy.

  17. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.

    PubMed

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F

    2015-11-01

    Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture.

  18. Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals.

    PubMed

    Von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2014-02-01

    Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the effectiveness of ramp-up procedures in reducing the area within which changes in hearing thresholds can occur. We modeled the level of sound killer whales (Orcinus orca) were exposed to from a generic sonar operation preceded by different ramp-up schemes. In our model, ramp-up procedures reduced the risk of killer whales receiving sounds of sufficient intensity to affect their hearing. The effectiveness of the ramp-up procedure depended strongly on the assumed response threshold and differed with ramp-up duration, although extending the duration of the ramp up beyond 5 min did not add much to its predicted mitigating effect. The main factors that limited effectiveness of ramp up in a typical antisubmarine warfare scenario were high source level, rapid moving sonar source, and long silences between consecutive sonar transmissions. Our exposure modeling approach can be used to evaluate and optimize mitigation procedures.

  19. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  20. Case Study of Using Resources about Sonar Operators To Teach Instructional Design.

    ERIC Educational Resources Information Center

    Mclellan, Hilary

    1993-01-01

    Describes a fictional account of the work of a submarine sonar operator ("The Hunt for Red October" by Tom Clancy) that captures the practitioner in a complex real-world work context featuring sophisticated electronic technologies. Describes how fiction can be adapted for and used as a basis for instructional design students to explore problem…

  1. Final report of DOE project "Detection, Localization and Diagnosis of Performance Problems Using PerfSONAR"

    SciTech Connect

    Dovrolis, Konstantinos

    2014-04-15

    We present the development of a middleware service, called Pythia, that is able to detect, localize, and diagnose performance problems in the network paths that interconnect research sites that are of interest to DOE. The proposed service can analyze perfSONAR data collected from all participating sites.

  2. Making Accurate Topographic Maps of the Schoolyard Using Ideas and Techniques Learned and Adapted from Multi-beam Sonar Mapping of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fuerst, S. I.; Roberts, J. D.

    2010-12-01

    Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds

  3. Sonar backscatter differentiation of dominant macrohabitat types in a hydrothermal vent field.

    PubMed

    Durand, Sébastien; Legendre, Pierre; Juniper, S Kim

    2006-08-01

    Over the past 20 years, sonar remote sensing has opened ways of acquiring new spatial information on seafloor habitat and ecosystem properties. While some researchers are presently working to improve sonar methods so that broad-scale high-definition surveys can be effectively conducted for management purposes, others are trying to use these surveying techniques in more local areas. Because ecosystem management is scale-dependent, there is a need to acquire spatiotemporal knowledge over various scales to bridge the gap between already-acquired point-source data and information available at broader scales. Using a 675-kHz single-pencil-beam sonar mounted on the remotely operated vehicle ROPOS, 2200 m deep on the Juan de Fuca Ridge, East Pacific Rise, five dominant habitat types located in a hydrothermal vent field were identified and characterized by their sonar signatures. The data, collected at different altitudes from 1 to 10 m above the seafloor, were depth-normalized. We compared three ways of handling the echoes embedded in the backscatters to detect and differentiate the five habitat types; we examined the influence of footprint size on the discrimination capacity of the three methods; and we identified key variables, derived from echoes that characterize each habitat type. The first method used a set of variables describing echo shapes, and the second method used as variables the power intensity values found within the echoes, whereas the last method combined all these variables. Canonical discriminant analysis was used to discriminate among the five habitat types using the three methods. The discriminant models were constructed using 70% of the data while the remaining 30% were used for validation. The results showed that footprints 20-30 cm in diameter included a sufficient amount of spatial variation to make the sonar signatures sensitive to the habitat types, producing on average 82% correct classification. Smaller footprints produced lower percentages of

  4. Applications of Fresnel-Kirchhoff diffraction theory in the analysis of human-motion Doppler sonar grams.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2010-11-01

    Observed human-gait features in Doppler sonar grams are explained by using the Boulic-Thalmann (BT) model to predict joint angle time histories and the temporal displacements of the body center of mass. Body segments are represented as ellipsoids. Temporally dependent velocities at the proximal and distal end of key body segments are determined from BT. Doppler sonar grams are computed by mapping velocity-time dependent spectral acoustic-cross sections for the body segments onto time-velocity space, mimicking the Short Time Fourier Transform used in the Doppler sonar processing. Comparisons to measured data indicate that dominant returns come from trunk, thigh and lower leg.

  5. Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona

    PubMed Central

    Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686

  6. Geomorphic features off southern California as seen by GLORIA side-scan sonar system

    SciTech Connect

    Edwards, B.D.; Field, M.E.; Carlson, P.R.; Kenyon, N.H.

    1985-02-01

    Approximately 165,000 km/sup 2/ of the sea floor off southern California was mapped during May 1984, as part of a USGS/IOS cooperative program to study the newly proclaimed Exclusive Economic Zone (EEZ) of the US Pacific margin. The area was insonified using the Geological Long-Range Inclined Asdic (GLORIA), a long-range side-scan sonar system. Images were corrected for water-column velocity anomalies, for along-track distortions caused by acoustic ray travel paths. A photomosaic of the overlapping sonographs has been compiled at a scale of 1:375,000. The basins of the inner California continental borderland are characterized by both sinuous channel and fan complexes and by feathery acoustic patterns indicating active sediment transport. In contrast, outer borderland basins appear to be more sediment starved, exhibit large areas of sediment failure, and show significant structural influence. West of Patton Escarpment, the sonographs are dominated by acoustic patterns showing volcanic ridges and seamounts and by deposits of the Monterey and Arguello fans. Arguello fan, for example, exhibits multiple sinuous channels that have transported sediment 60 km south from the canyon mouth. These channels coalesce into a single 100-km long, westward-meandering channel that terminates in a 600-m deep box canyon. A zone of sediment failure is identifiable on the north levee of an upper fan channel. Tectonic trends associated with oceanic basement are highlighted by the terminus of the west-trending Murray Fracture Zone and by the prevailing northeast trend of volcanic ridge and seamount chains.

  7. Optimal predator risk assessment by the sonar-jamming arctiine moth Bertholdia trigona.

    PubMed

    Corcoran, Aaron J; Wagner, Ryan D; Conner, William E

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator--the echolocating bat--whose active biosonar reveals its stage of attack. We used a prey defense--clicking used for sonar jamming by the tiger moth Bertholdia trigona--that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation--the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack.

  8. An adaptively generated feature set for low-resolution multifrequency sonar images

    NASA Astrophysics Data System (ADS)

    Arrieta, Rodolfo; Arrieta, Lisa L.; Stack, Jason R.

    2006-05-01

    Many small Unmanned Underwater Vehicles (UUVs) currently utilize inexpensive, low resolution sonars that are either mechanically or electronically steered as their main sensors. These sonars do not provide high quality images and are quite dissimilar from the broad area search sonars that will most likely be the source of the localization data given to the UUV in a reacquisition scenario. Therefore, the acoustic data returned by the UUV in its attempt to reacquire the target will look quite different from the original wide area image. The problem then becomes how to determine that the UUV is looking at the same object. Our approach is to exploit the maneuverability of the UUV and currently unused information in the echoes returned from these Commercial-Off-The-Shelf (COTS) sonars in order to classify a presumptive target as an object of interest. The approach hinges on the ability of the UUV to maneuver around the target in order to insonify the target at different frequencies of insonification, ranges, and aspects. We show how this approach would allow the UUV to extract a feature set derived from the inversion of simple physics-based models. These models predict echo time-of-arrival and inversion of these models using the echo data allows effective classification based on estimated surface and bulk material properties. We have simulated UUV maneuvers by positioning targets at different ranges and aspects to the sonar and have then interrogated the target at different frequencies. The properties that have been extracted include longitudinal, and shear speeds of the bulk, as well as longitudinal speed, Rayleigh speed, and density of the surface. The material properties we have extracted using this approach match the tabulated material values within 8%. We also show that only a few material properties are required to effectively segregate many classes of materials.

  9. Robust morphological detection of sea mines in side-scan sonar images

    NASA Astrophysics Data System (ADS)

    Batman, Sinan; Goutsias, John I.

    2001-10-01

    The automated detection of sea mines remains an increasingly important humanitarian and military task. In recent years, research efforts have been concentrated on developing algorithms that detect mines in complicated littoral environments. Acquired high-resolution side-looking sonar images are often heavily infested with artifacts from natural and man-made clutter. As a consequence, automated detection algorithms, designed for high probability of detection, suffer from a large number of false alarms. To remedy this situation, sophisticated feature extraction and pattern classification techniques are commonly used after detection. In this paper, we propose a nonlinear detection algorithm, based on mathematical morphology, for the robust detection of sea mines. The proposed algorithm is fast and performs well under a variety of sonar modalities and operating conditions. Our approach is based on enhancing potential mine signatures by extracting highlight peaks of appropriate shape and size and by boosting the amplitude of the peaks associated with a potential shadow prior to detection. Signal amplitudes over highlight peaks are extracted using a flat morphological top-hat by reconstruction operator. The contribution of a potential shadow to the detection image is incorporated by increasing the associated highlight amplitude by an amount proportional to the relative contrast between highlight and shadow signatures. The detection image is then thresholded at mid-gray level. The largest p targets from the resulting binary image are then labelled as potential targets. The number of false alarms in the detection image is subsequently reduced to an acceptable level by a feature extraction and classification module. The detection algorithm is tested on two side-scan sonar databases provided by the Coastal Systems Station, Panama City, Florida: SONAR-0 and SONAR-3.

  10. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions

    PubMed Central

    Jarvis, Jenna; Jackson, William; Smotherman, Michael

    2013-01-01

    How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat's echoes, but additional mechanisms are needed to explain the bat sonar system's exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other's pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat's emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group. PMID:23781208

  11. Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques

    SciTech Connect

    Danforth, W.W.; Schwab, W.C.; O'Brien, T.F. ); Karl, H. )

    1990-05-01

    The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred to a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.

  12. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    PubMed

    Jarvis, Jenna; Jackson, William; Smotherman, Michael

    2013-01-01

    How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat's echoes, but additional mechanisms are needed to explain the bat sonar system's exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other's pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat's emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  13. Time-series measurements of hydrothermal plume volume flux with imaging sonar

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2012-12-01

    COVIS (Cabled Observatory Vent Imaging Sonar) is an innovative sonar system designed to quantitatively monitor the outputs of deep-sea hydrothermal vent clusters for both high-temperature focused vents and diffuse flows. In September 2010, COVIS was connected to the NEPTUNE Canada underwater ocean observatory network (http://www.NEPTUNEcanada.ca) at the Grotto vent cluster at the Main Endeavour Field on the Endeavour Segment of the Juan de Fuca Ridge. Since then, COVIS has been monitoring the hydrothermal plumes above Grotto by transmitting high-frequency (400 kHz), pulsed acoustic waves towards the plumes and recording the backscattered signals from each pulse, except for a one-year hiatus due to the power-off of the NEPTUNE Canada network between November 2010 and September 2011. The received backscatter signals are transmitted via the NEPTUNE Canada network to the land-based servers in real time, where a combination of automatic and manual data analyses produces a plume volume-flux and flow-rate time series using both the intensity and Doppler shift of the backscatter signals. The initial 30-day time series (Sep-Oct 2010) was presented in AGU Fall meeting, 2011. Evident short-term temporal variations (< 2 days) have been observed, which indicates significant interaction between the plume and the ambient tidal current oscillations. To further investigate such interaction and capture long-term patterns of the system, we present a 10-month time series (since the resumption of COVIS in September 2011 until present) of the volume flux and flow rate of the plume discharging from the North Tower of Grotto. The new time series, with a 3-hour sampling rate and long duration, can reveal the variations of the plume on a wide range of time scales (< 2 days ~ months). Compared with its predecessor, the new time series provides a better chance to capture the episodic events (e.g. geologically driven), low-frequency periodic (e.g. seasonal) oscillations, and long-term trend in

  14. Sidescan Sonar Imagery of the Escanaba Trough, Southern Gorda Ridge, Offshore Northern California

    USGS Publications Warehouse

    Ross, Stephanie L.; Zierenberg, Robert A.

    2009-01-01

    This map features sidescan imagery of the northern Escanaba (NESCA) site at the Escanaba Trough, southern Gorda Ridge, offshore northern California. The Escanaba Trough, a largely sediment-covered seafloor spreading center, contains at least six large massive sulfide deposits. It is a slow spreading center (2.5 cm/yr) with axial depths locally exceeding 3,300 m. Discrete igneous centers occur at 5- to 10-km intervals along this slow-spreading ridge. Basaltic magma intrudes the sediment fill of the axial valley, creating uplifted sediment hills, and, in some areas, erupts onto the sea floor. Large massive sulfide deposits occur along the margins of the uplifted sediment hills. The only active hydrothermal system is located on Central Hill where 220 deg C fluids construct anhydrite chimneys on pyrrhotite-rich massive sulfide mounds (Campbell and others, 1994). Central Hill is bounded by both ridge-parallel basement faults and a concentric set of faults that rim the top of the hill and may be associated with sill intrusion. Central Hill was one of the primary drill sites for Ocean Drilling Program (ODP) Leg 169. The sidescan sonar data (mosaics A, B, C, D) were collected aboard the National Oceanic and Atmospheric Administration (NOAA) research vessel Discoverer in the summer of 1996 with a 60-kHz system towed 100 to 200 m above the sea floor. Major faults and contacts are interpreted from the sidescan mosaics and 4.5-kHz seismic profiles collected simultaneously, as well as from previously conducted camera transects and submersible dives. The seismic profiles (lines 9, 11, 13) provide high-resolution subbottom structure and stratigraphy to a depth of about 50 m. In the sidescan images (mosaics A, B, C, D), bright areas denote high-energy returns from hard reflectors such as volcanic flows, sulfide deposits, or seafloor scarps. Dark areas denote low-energy returns and generally signify relatively undisturbed surface sediment. The grid lines mark one-minute intervals

  15. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT01 offshore of Cat Island, Gulf Islands National Seashore, Mississippi, March 2010

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.

    2010-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi (fig. 1). The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and provide protection for the historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, surface images, and x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 10CCT01 tells us the data were collected in 2010 for the Coastal Change and Transport (CCT) study and the data were collected during the first field

  16. Optimized passive sonar placement to allow improved interdiction

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce A.; Matthews, Cameron

    2016-05-01

    footprint. The resulting coverage optimizes the likelihood of encounter given an arbitrary sensor profile and threat from a free field statistical model approach. The free field statistical model is particularly applicable to worst case scenario modeling in open ocean operational profiles where targets to do not follow a particular pattern in any of the modeled dimensions. We present an algorithmic testbed which shows how to achieve approximately optimal solutions to the AGP for a network of underwater sensor nodes with or without effector systems for engagement while operating under changing environmental circumstances. The means by which we accomplish this goal are three-fold: 1) Develop a 3D model for the sonar signal propagating through the underwater environment 2) Add rigorous physics-based modeling of environmental events which can affect sensor information acquisition 3) Provide innovative solutions to the AGP which account for the environmental circumstances affecting sensor performance.

  17. Exploration and discovery in Yellowstone Lake: Results from high-resolution sonar imaging, seismic reflection profiling, and submersible studies

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lovalvo, D.A.; Johnson, S.Y.; Stephenson, W.J.; Pierce, K.L.; Harlan, S.S.; Finn, C.A.; Lee, G.; Webring, M.; Schulze, B.; Duhn, J.; Sweeney, R.; Balistrieri, L.

    2003-01-01

    Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (???1-200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem. Published by Elsevier Science B.V.

  18. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for helicopter dipping sonar signals (1.43-1.33 kHz) (L).

    PubMed

    Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F

    2011-08-01

    Helicopter long range active sonar (HELRAS), a "dipping" sonar system used by lowering transducer and receiver arrays into water from helicopters, produces signals within the functional hearing range of many marine animals, including the harbor porpoise. The distance at which the signals can be heard is unknown, and depends, among other factors, on the hearing sensitivity of the species to these particular signals. Therefore, the hearing thresholds of a harbor porpoise for HELRAS signals were quantified by means of a psychophysical technique. Detection thresholds were obtained for five 1.25 s simulated HELRAS signals, varying in their harmonic content and amplitude envelopes. The 50% hearing thresholds for the different signals were similar: 76 dB re 1 μPa (broadband sound pressure level, averaged over the signal duration). The detection thresholds were similar to those found in the same porpoise for tonal signals in the 1-2 kHz range measured in a previous study. Harmonic distortion, which occurred in three of the five signals, had little influence on their audibility. The results of this study, combined with information on the source level of the signal, the propagation conditions and ambient noise levels, allow the calculation of accurate estimates of the distances at which porpoises can detect HELRAS signals.

  19. Effect of level, duration, and inter-pulse interval of 1-2 kHz sonar signal exposures on harbor porpoise hearing.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; Gransier, Robin; Rambags, Martijn; Claeys, Naomi

    2014-07-01

    Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1-2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144-179 dB re 1 μPa), exposure durations (1.9-240 min), and duty cycles (5%-100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SELcum) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SELcum but with different inter-pulse intervals do not result in the same induced TTS.

  20. Development of a fresh-water tank facility for calibrating multibeam sonar

    NASA Astrophysics Data System (ADS)

    Baldwin, Kenneth C.; Mayer, Larry; McLeod, Andrew; Foote, Kenneth G.; Chu, Dezhang; Beaudoin, Jonathan; Weber, Tom

    2003-10-01

    Multibeam sonars are being used increasingly to image fish. To realize their quantitative potential for measuring the numerical density of fish and other aquatic organisms, it is essential that they be calibrated. This can be done by the use of standard targets or reference hydrophones. The calibration of narrow beam acoustic arrays requires precision angular positioning of the transducer under test. This precision is defined as 0.1 deg of angular position control. This degree of control is achievable with the use of a precision rotary table typically used in CNC machining. This presentation describes: system specifications and the LABVIEW program used to control and coordinate position and acoustic data acquisition, the initial evaluation of the rotary table for repeatability and possible backlash, and representative acoustic measurements made with multibeam sonars using the new system. [Work supported by NSF Contract No. OCE 0002842.

  1. Digital mapping of side-scan sonar data with the Woods Hole Image Processing System software

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    Since 1985, the Branch of Atlantic Marine Geology has been involved in collecting, processing and digitally mosaicking high and low resolution sidescan sonar data. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. Recent development of a UNIX-based image-processing software system includes a series of task specific programs for pre-processing sidescan sonar data. To extend the capabilities of the UNIX-based programs, development of digital mapping techniques have been developed. This report describes the initial development of an automated digital mapping procedure. Included is a description of the programs and steps required to complete the digital mosaicking on a UNIXbased computer system, and a comparison of techniques that the user may wish to select.

  2. Clutter suppression and classification using twin inverted pulse sonar in ship wakes.

    PubMed

    Leighton, T G; Finfer, D C; Chua, G H; White, P R; Dix, J K

    2011-11-01

    Twin inverted pulse sonar (TWIPS) is here deployed in the wake of a moored rigid inflatable boat (RIB) with propeller turning, and then in the wake of a moving tanker of 4580 dry weight tonnage (the Whitchallenger). This is done first to test its ability to distinguish between scatter from the wake and scatter from the seabed, and second to test its ability to improve detectability of the seabed through the wake, compared to conventional sonar processing techniques. TWIPS does this by distinguishing between linear and nonlinear scatterers and has the further property of distinguishing those nonlinear targets which scatter energy at the even-powered harmonics from those which scatter in the odd-powered harmonics. TWIPS can also, in some manifestations, require no range correction (and therefore does not require the a priori environment knowledge necessary for most remote detection technologies).

  3. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures. PMID:26611087

  4. Sidescan-sonar surveys of critical habitats in Long Island Sound, Connecticut

    USGS Publications Warehouse

    Poppe, L.J.; Lewis, R.S.; Zajac, Roman; Twichell, D.C.; Knebel, H. J.

    1995-01-01

    The Long Island Sound estuary is located in the most densely populated region of the U.S.. Due to the enormous surrounding population, large inputs of anthropogenic wastes and toxic chemicals, benthic habitats were degraded. To address this environmental problem, sidescan-sonar mosaics are being developed within specific areas of critical concern. Detailed bathymetric and high-resolution seismic-reflection data assist in interpretations of relief, to relate bottom features to the underlying stratigraphy, and to estimate thicknesses of surficial sediments. To date, several continuous-coverage sidescan-sonar surveys have been completed. These surveys show that the sedimentary environments and benthic habitats in Long Island Sound vary spatially over short distances.

  5. The sonar beam pattern of a flying bat as it tracks tethered insects.

    PubMed

    Ghose, Kaushik; Moss, Cynthia F

    2003-08-01

    This paper describes measurements of the sonar beam pattern of flying echolocating bats, Eptesicus fuscus, performing various insect capture tasks in a large laboratory flight room. The beam pattern is deduced using the signal intensity across a linear array of microphones. The positions of the bat and insect prey are obtained by stereoscopic reconstruction from two camera views. Results are reported in the form of beam-pattern plots and estimated direction of the beam axis. The bat centers its beam axis on the selected target with a standard deviation (sigma) of 3 degrees. The experimental error is +/- 1.4 degrees. Trials conducted with two targets show that the bat consistently tracks one of the targets with its beam. These findings suggest that the axis of the bat sonar beam is a good index of selective tracking of targets, and in this respect is analogous to gaze in predominantly visual animals.

  6. A model for sonar interrogation of complex bottom and surface targets in shallow-water waveguides.

    PubMed

    Giddings, Thomas E; Shirron, Joseph J

    2008-04-01

    Many problems of current interest in underwater acoustics involve low-frequency broadband sonar interrogation of objects near the sea surface or sea floor of a shallow-water environment. When the target is situated near the upper or lower boundary of the water column the acoustic interactions with the target objects are complicated by interactions with the nearby free surface or fluid-sediment interface, respectively. A practical numerical method to address such situations is presented. The model provides high levels of accuracy with the flexibility to handle complex, three-dimensional targets in range-independent environments. The model is demonstrated using several bottom target scenarios, with and without locally undulating seabeds. The impact of interface and boundary interactions is considered with an eye toward using the sonar return signal as the basis for acoustic imaging or spectral classification.

  7. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  8. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.

  9. Vocal premotor activity in the superior colliculus.

    PubMed

    Sinha, Shiva R; Moss, Cynthia F

    2007-01-01

    Chronic neural recordings were taken from the midbrain superior colliculus (SC) of echolocating bats while they were engaged in one of two distinct behavioral tasks: virtual target amplitude discrimination (VTAD) and real oscillating target tracking (ROTT). In the VTAD task, bats used a limited range of sonar call features to discriminate the amplitude category of echoes, whereas in the ROTT task, the bat produced dynamically modulated sonar calls to track a moving target. Newly developed methods for chronic recordings in unrestrained, behaving bats reveal two consistent bouts of SC neural activity preceding the onset of sonar vocalizations in both tasks. A short lead bout occurs tightly coupled to vocal onset (VTAD, -5.1 to -2.2 ms range, -3.6 +/- 0.7 ms mean lead time; ROTT, -3.0 to + 0.4 ms range, -1.2 +/- 1.3 ms mean lead time), and this activity may play a role in marking the time of each sonar emission. A long lead bout in SC activity occurs earlier and spreads over a longer interval (VTAD, -40.6 to -8.4 ms range, -22.2 +/- 3.9 ms mean lead time; ROTT, -29.8 to -7.1 ms range, -17.5 +/- 9.1 ms mean lead time) when compared with short lead events. In the goal-directed ROTT task, the timing of long lead event times vary with the bat's sonar call duration. This finding, along with behavioral studies demonstrating that bats adjust sonar call duration as they track targets at changing distance, suggests the bat SC contributes to range-dependent adjustments of sonar call duration. PMID:17202477

  10. Vocal premotor activity in the superior colliculus.

    PubMed

    Sinha, Shiva R; Moss, Cynthia F

    2007-01-01

    Chronic neural recordings were taken from the midbrain superior colliculus (SC) of echolocating bats while they were engaged in one of two distinct behavioral tasks: virtual target amplitude discrimination (VTAD) and real oscillating target tracking (ROTT). In the VTAD task, bats used a limited range of sonar call features to discriminate the amplitude category of echoes, whereas in the ROTT task, the bat produced dynamically modulated sonar calls to track a moving target. Newly developed methods for chronic recordings in unrestrained, behaving bats reveal two consistent bouts of SC neural activity preceding the onset of sonar vocalizations in both tasks. A short lead bout occurs tightly coupled to vocal onset (VTAD, -5.1 to -2.2 ms range, -3.6 +/- 0.7 ms mean lead time; ROTT, -3.0 to + 0.4 ms range, -1.2 +/- 1.3 ms mean lead time), and this activity may play a role in marking the time of each sonar emission. A long lead bout in SC activity occurs earlier and spreads over a longer interval (VTAD, -40.6 to -8.4 ms range, -22.2 +/- 3.9 ms mean lead time; ROTT, -29.8 to -7.1 ms range, -17.5 +/- 9.1 ms mean lead time) when compared with short lead events. In the goal-directed ROTT task, the timing of long lead event times vary with the bat's sonar call duration. This finding, along with behavioral studies demonstrating that bats adjust sonar call duration as they track targets at changing distance, suggests the bat SC contributes to range-dependent adjustments of sonar call duration.

  11. Investigation of measureable parameters that correlate with automatic target recognition performance in synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    Gazagnaire, Julia; Cobb, J. T.; Isaacs, Jason

    2015-05-01

    There is a desire in the Mine Counter Measure community to develop a systematic method to predict and/or estimate the performance of Automatic Target Recognition (ATR) algorithms that are detecting and classifying mine-like objects within sonar data. Ideally, parameters exist that can be measured directly from the sonar data that correlate with ATR performance. In this effort, two metrics were analyzed for their predictive potential using high frequency synthetic aperture sonar (SAS) images. The first parameter is a measure of contrast. It is essentially the variance in pixel intensity over a fixed partition of relatively small size. An analysis was performed to determine the optimum block size for this contrast calculation. These blocks were then overlapped in the horizontal and vertical direction over the entire image. The second parameter is the one-dimensional K-shape parameter. The K-distribution is commonly used to describe sonar backscatter return from range cells that contain a finite number of scatterers. An Ada-Boosted Decision Tree classifier was used to calculate the probability of classification (Pc) and false alarm rate (FAR) for several types of targets in SAS images from three different data sets. ROC curves as a function of the measured parameters were generated and the correlation between the measured parameters in the vicinity of each of the contacts and the ATR performance was investigated. The contrast and K-shape parameters were considered separately. Additionally, the contrast and K-shape parameter were associated with background texture types using previously labeled high frequency SAS images.

  12. Transform preprocessing for neural networks for object recogniition and localization with sonar

    NASA Astrophysics Data System (ADS)

    Barshan, Billur; Ayrulu, Birsel

    2003-04-01

    We investigate the pre-processing of sonar signals prior to using neural networks for robust differentiation of commonly encountered features in indoor environments. Amplitude and time-of-flight measurement patterns acquired from a real sonar system are pre-processed using various techniques including wavelet transforms, Fourier and fractional Fourier transforms, and Kohonen's self-organizing feature map. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. The use of neural networks trained with the back-propagation algorithm, usually with fractional Fourier transform or wavelet pre-processing results in near perfect differentiation, around 85% correct range estimation and around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications. Neural networks can differentiate more targets, employing only a single sensor node, with a higher correct differentiation percentage than achieved with previously reported methods employing multiple sensor nodes. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate a considerable number of target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems.

  13. Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images

    USGS Publications Warehouse

    Chavez, P.S.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, S.L.; Velasco, M.G.

    2002-01-01

    Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.

  14. Fish heart rate telemetry in the open sea using sector scanning sonar.

    PubMed

    Storeton West, T J; Mitson, R B; Greer Walker, M G

    1978-01-01

    Real time monitoring of heart rate from free-swimming fish in the open sea has been used in conjunction with high resolution sonar to track plaice and observed the variation in heart rate in relation to environmental parameters. The heart rate can be observed at the same time as the acoustic picture of the sea bed or the midwater volume of sea surrounding the fish.

  15. Signal-to-symbol transformation: a summary of HASP/SIAP case study (sonar data)

    SciTech Connect

    Penny Nii, H.

    1983-01-01

    In the past fifteen years, ai scientists have built several signal interpretation, or understanding, programs. HASP/SIAP is one such program which tries to interest the meaning of sonar data in a particular context. An attempt is made to present a methodology for understanding signal data and to show that the traditional signal processing is but one part of the interpretation task. HASP/SIAP is also an expert system. 12 references.

  16. Sidescan-sonar data collected during May 1978 from the southern New England continental shelf

    USGS Publications Warehouse

    McClennen, Charles E.

    1981-01-01

    Sidescan-sonar data were collected aboard R/V WESTWARD (Cruise W-39-4) during May 1978 by the U.S. Geological Survey using an Ocean Research Equipment System. Navigation in the study area was by Loran C. The 368 kilometers of survey were conducted in Block Island Sound, in Rhode Island Sound, and over the mid-Continental Shelf south of Block Island and Martha's Vineyard (Fig. 1).

  17. Recommendations for the use of ultrasound in rheumatoid arthritis: literature review and SONAR score experience.

    PubMed

    Zufferey, Pascal; Tamborrini, Giorgio; Gabay, Cem; Krebs, Andreas; Kyburz, Diego; Michel, Beat; Moser, Urs; Villiger, Peter M; So, Alexander; Ziswiler, Hans Rudolf

    2013-12-20

    Ultrasound (US) has become a useful tool in the detection of early disease, differential diagnosis, guidance of treatment decisions and treatment monitoring of rheumatoid arthritis (RA). In 2008, the Swiss Sonography in Arthritis and Rheumatism (SONAR) group was established to promote the use of US in inflammatory arthritis in clinical practice. A scoring system was developed and taught to a large number of Swiss rheumatologists who already contributed to the Swiss Clinical Quality Management (SCQM) database, a national patient register. This paper intends to give a Swiss consensus about best clinical practice recommendations for the use of US in RA on the basis of the current literature knowledge and experience with the Swiss SONAR score. Literature research was performed to collect data on current evidence. The results were discussed among specialists of the Swiss university centres and private practice, following a structured procedure. Musculoskelatal US was found to be very helpful in establishing the diagnosis and monitoring the evolution of RA, and to be a reliable tool if used by experienced examiners. It influences treatment decisions such as continuing, intensifying or stepping down therapy. The definite modalities of integrating US into the diagnosis and monitoring of RA treatments will be defined within a few years. There are, however, strong arguments to use US findings as of today in daily clinical care. Some practical recommendations about the use of US in RA, focusing on the diagnosis and the use of the SONAR score, are proposed.

  18. Building a 3d Reference Model for Canal Tunnel Surveying Using Sonar and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Moisan, E.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Koehl, M.

    2015-04-01

    Maintaining canal tunnels is not only a matter of cultural and historical preservation, but also a commercial necessity and a security issue. This contribution adresses the problem of building a full 3D reference model of a canal tunnel by merging SONAR (for underwater data recording) and LASER data (for the above-water parts). Although both scanning devices produce point clouds, their properties are rather different. In particular, SONAR data are very noisy and their processing raises several issues related to the device capacities, the acquisition setup and the tubular shape of the tunnel. The proposed methodology relies on a denoising step by meshing, followed by the registration of SONAR data with the geo-referenced LASER data. Since there is no overlap between point clouds, a 3-step procedure is proposed to robustly estimate the registration parameters. In this paper, we report a first experimental survey, which concerned the entrance of a canal tunnel. The obtained results are promising and the analysis of the method raises several improvement directions that will help obtaining more accurate models, in a more automated fashion, in the limits of the involved technology.

  19. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    PubMed

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-01-01

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low. PMID:26561817

  20. Detecting submerged objects: the application of side scan sonar to forensic contexts.

    PubMed

    Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim

    2013-09-10

    Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object. PMID:23890654

  1. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    PubMed

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  2. Multibeam sonar (DIDSON) assessment of American shad (Alosa sapidissima) approaching a hydroelectric dam

    USGS Publications Warehouse

    Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph; Hightower, Joseph E.

    2014-01-01

    We investigated the fish community approaching the Veazie Dam on the Penobscot River, Maine, prior to implementation of a major dam removal and river restoration project. Multibeam sonar (dual-frequency identification sonar, DIDSON) surveys were conducted continuously at the fishway entrance from May to July in 2011. A 5% subsample of DIDSON data contained 43 793 fish targets, the majority of which were of Excellent (15.7%) or Good (73.01%) observation quality. Excellent quality DIDSON targets (n = 6876) were apportioned by species using a Bayesian mixture model based on four known fork length distributions (river herring (alewife,Alosa psuedoharengus, and blueback herring, Alosa aestivalis), American shad, Alosa sapidissima) and two size classes (one sea-winter and multi-sea-winter) of Atlantic salmon (Salmo salar). 76.2% of targets were assigned to the American shad distribution; Atlantic salmon accounted for 15.64%, and river herring 8.16% of observed targets. Shad-sized (99.0%) and salmon-sized (99.3%) targets approached the fishway almost exclusively during the day, whereas river herring-sized targets were observed both during the day (51.1%) and at night (48.9%). This approach demonstrates how multibeam sonar imaging can be used to evaluate community composition and species-specific movement patterns in systems where there is little overlap in the length distributions of target species.

  3. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation.

    PubMed

    Kawahara, Akito Y; Barber, Jesse R

    2015-05-19

    The bat-moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼ 26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18-14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack.

  4. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter

    PubMed Central

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-01-01

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low. PMID:26561817

  5. Detecting submerged objects: the application of side scan sonar to forensic contexts.

    PubMed

    Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim

    2013-09-10

    Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object.

  6. TS-MRF sonar image segmentation based on the levels feature information

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Xia, Ping; Liu, Xiaomei; Lei, Bangjun

    2015-12-01

    According to traditional methods of image segmentation on sonar image processing with less robustness and the problem of low accuracy, we propose the method of sonar image segmentation based on Tree-Structured Markov Random Field(TS-MRF), the algorithm shows better ability in using spatial information. First, using a tree structure constraint two-valued MRF sequences to model sonar image, through the node to describe local information of image, hierarchy information establish interconnected relationships through nodes, at the same time when we describe the hierarchical structure information of the image, we can preserve an image's local information effectively. Then, we define split gain coefficients to reflect the ratio that marking posterior probability division before and after the splitting on the assumption of the known image viewing features, and viewing gain coefficients of judgment as the basis for determining binary tree of node split to reduce the complexity of solving a posterior probability. Finally, during the process of image segmentation, continuing to split the leaf nodes with the maximum splitting gain, so we can get the splitting results. We add merge during the process of segmentation. Using the methods of region splitting and merging to reduce the error division, so we can obtain the final segmentation results. Experimental results show that this approach has high segmentation accuracy and robustness.

  7. The fusion of large scale classified side-scan sonar image mosaics.

    PubMed

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach. PMID:16830923

  8. A new multibeam echo sounder/sonar for fishery research applications

    NASA Astrophysics Data System (ADS)

    Andersen, Lars Nonboe; Berg, Sverre; Stenersen, Erik; Gammelsaeter, Ole Bernt; Lunde, Even Borte

    2003-10-01

    Fisheries scientists have for many years been requesting a calibrated multibeam echo sounder/sonar specially designed for fishery research applications. Simrad AS has, in cooperation with IFREMER, France, agreed on specifications for a multibeam echo sounder and with IMR, Norway for a multibeam sonar, and contracts were signed for development of such systems in January 2003. The systems have 800 transmitting and receiving channels with similar hardware, but different software, and are characterized by narrow beams, low-sidelobe levels, and operate in the frequency range 70-120 kHz. The echo sounder is designed for high operating flexibility, with 1 to 47 beams of approximately 2°, covering a maximum sector of 60°. In addition, normal split beam mode on 70 and 120 kHz with 7° beams for comparison with standard system is available. The sonar will be mounted on a drop keel, looking horizontally, covering a horizontal sector of +/-30°, and a vertical sector of 45°. Total number of beams is 500, 25 beams horizontally with a resolution of ~3°, and 20 beams vertically with a resolution of ~4°. Both systems are designed for accurate fish-stock assessment and fish-behavior studies.

  9. Development of a handheld bistatic imaging sonar system for underwater search and survey

    NASA Astrophysics Data System (ADS)

    Chiang, Alice; Broadstone, Steven; Impagliazzo, John

    2003-10-01

    A high resolution, handheld imaging sonar system is under development by Teratech Corporation for the U.S. Navy. This is a 192 channel, dual frequency bistatic sonar for Navy divers performing search and survey missions for underwater explosives. Our goal is to provide the most compact and energy efficient imaging system for the divers. The system consists of a self-contained handheld unit and a head mounted display integrated into the divers mask. The low power and small volume are a result of the development of Teratechs Charge Domain Processing (CDP) technology. This technology has led to the development of a low power 64-channel beamformer chip. As a result, only three beamformer chips will be required for the 192 channels. Until now, the implementation of small, low power sonar systems containing this many elements and forming enough beams to create an image was considered impossible. Progress in the development of this product will be presented. In-water testing is planned for late summer 2003. Experimental results and test images available will be presented at the conference. [Work sponsored by ONR and OSD Small Business Innovative Research Program, Program manager, Mr. Bruce Johnson, Naval Explosive Ordnance Disposal Technology Division.

  10. Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment.

    PubMed

    Holmin, Arne Johannes; Handegard, Nils Olav; Korneliussen, Rolf J; Tjøstheim, Dag

    2012-12-01

    A model is developed and demonstrated for simulating echosounder and sonar observations of fish schools with specified shapes and composed of individuals having specified target strengths and behaviors. The model emulates the performances of actual multi-frequency echosounders and multi-beam echosounders and sonars and generates synthetic echograms of fish schools that can be compared with real echograms. The model enables acoustic observations of large in situ fish schools to be evaluated in terms of individual and aggregated fish behaviors. It also facilitates analyses of the sensitivity of fish biomass estimates to different target strength models and their parameterizations. To demonstrate how this tool may facilitate objective interpretations of acoustically estimated fish biomass and behavior, simulated echograms of fish with different spatial and orientation distributions are compared with real echograms of herring collected with a multi-beam sonar aboard the research vessel "G.O. Sars." Results highlight the important effects of fish-backscatter directivity, particularly when sensing with small acoustic wavelengths relative to the fish length. Results also show that directivity is both a potential obstacle to estimating fish biomass accurately and a potential source of information about fish behavior.

  11. The fusion of large scale classified side-scan sonar image mosaics.

    PubMed

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.

  12. Real-time synthetic aperture sonar imaging using a parallel architecture.

    PubMed

    Riyait, V S; Lawlor, M A; Adams, A E; Hinton, O; Sharif, B

    1995-01-01

    This paper describes a parallel architecture that has been developed to perform real-time synthetic aperture sonar imaging as part of the Acoustical Imaging Development (ACID) project. The project has successfully developed a synthetic aperture sonar system for producing high resolution images of the sea floor and that has been tested during a series of sea trials in May 1993 off the south coast of France. This paper describes the synthetic aperture processing system developed by the University of Newcastle upon Tyne and its use of transputer modules and associated devices in order to obtain real-time imaging performance, the software structure of the processing system and the load balancing techniques that have been developed in order to provide efficient processing. The use of a parallel distributed architecture has also allowed a processing system that can readily be extended to deliver greater computational power in the future. Images produced by the synthetic aperture processor from data collected from around the Toulon coastal region are presented. These images highlight the improvement in azimuth resolution that can be obtained from synthetic aperture processing over conventional sidescan sonars.

  13. Exposure of fish to high-intensity sonar does not induce acute pathology.

    PubMed

    Kane, A S; Song, J; Halvorsen, M B; Miller, D L; Salierno, J D; Wysocki, L E; Zeddies, D; Popper, A N

    2010-05-01

    This study investigated immediate effects of intense sound exposure associated with low-frequency (170-320 Hz) or with mid-frequency (2.8-3.8 kHz) sonars on caged rainbow trout Oncorhynchus mykiss, channel catfish Ictalurus punctatus and hybrid sunfish Lepomis sp. in Seneca Lake, New York, U.S.A. This study focused on potential effects on inner ear tissues using scanning electron microscopy and on non-auditory tissues using gross and histopathology. Fishes were exposed to low-frequency sounds for 324 or 628 s with a received peak signal level of 193 dB re 1 microPa (root mean square, rms) or to mid-frequency sounds for 15 s with a received peak signal level of 210 dB re 1 microPa (rms). Although a variety of clinical observations from various tissues and organ systems were described, no exposure-related pathologies were observed. This study represents the first investigation of the effects of high-intensity sonar on fish tissues in vivo. Data from this study indicate that exposure to low and midfrequency sonars, as described in this report, might not have acute effects on fish tissues.

  14. Higher Order Combination Tones Applied To Sonar Waveform Design And Underwater Digital Communications

    NASA Astrophysics Data System (ADS)

    Fogg, Stephen L.

    2006-05-01

    Nonlinear `parametric' sonar is distinguished by highly predictable in-water formations of identifiable von Helmholtz spectral energies produced directly as a result of two or more preselected primaries simultaneously contained in a transmit waveform. In the nearly half-century of scientific endeavors within the field of parametric sonar, the methodical investigation into formulation techniques and practical applications using higher-order combination tones has been noticeably lagging the attention received by their more commonly recognized kin of second-order sum and difference frequencies. Generalized mathematical and graphical viewing techniques are presented for elucidating the abundance of cross-band complexities and facilitating preliminary design efforts specifically employing any of these higher-order parametric frequency components on operational systems. Recent sonar experiments implementing pulsed parametric transmit waveforms intended to fully exploit their intrinsic broadband nonlinear energy have demonstrated the potential for improved underwater target detection and classification in acoustically harsh environments. However, research efforts could benefit from more efficient and universal tools for predetermining all of the desired in-water spectral-temporal characteristics. New developments utilizing this methodology have led to unique approaches for designing stepped CW, LFM and hyperbolic FM detection waveforms incorporating enhanced signal processing qualities and constructing coding schemes for reliable underwater acoustic digital communications.

  15. SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts

    PubMed Central

    Schramm, Chaim A.; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R.; Kwong, Peter D.; Shapiro, Lawrence

    2016-01-01

    The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity–divergence plots and longitudinal phylogenetic “birthday” trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/. PMID:27708645

  16. Mudflows in the Southwest Pass Region of the Mississippi River Delta: Results From Multibeam, Sidescan Sonar, and Subbottom Profiler Data

    NASA Astrophysics Data System (ADS)

    Henning, A. T.; Garcia-Garcia, A.; Orange, A.; Orange, D.

    2007-12-01

    The offshore portion of the active Mississippi delta is characterized by frequent submarine mudflows, which have caused extensive damage to offshore infrastructure in the area. The slopes in this area are very gentle (typically < 1.5°) and the mudflows are thought to be triggered by deep waves during storms. The 2005 hurricane season in particular caused unprecedented levels of damage in the Gulf of Mexico. Post-hurricane surveys carried out by the industry determined that much of the damage was caused by mudflows that originated on the upper portions of the Mississippi birdsfoot delta, just outboard of Southwest Pass. Mudflows generally consist of a source area, a chute (or gully), and a downslope depositional lobe. Large erratic blocks are characteristic of the mudflow gully floor, and recently emplaced mudflow lobes show a more irregular and blocky surface topography. Gullies often form natural levees, which can give the gully a perched topographic expression. A June 2007 survey aboard the UNOLS vessel R/V Pelican focused on the upslope portion of the mudflow area with the goal of imaging the source of the mudflows. Multibeam echosounder, sidescan sonar, and subbottom profiler data were acquired over an 8 km by 2 km grid at a 100 m line spacing in order to study the possible sources of the mudflows. Multibeam and sidescan sonar data imaged the upslope portions of eight separate mudflows, including the origin of one of the flows. The five westernmost flows originate at a known dredge dump site and appear significantly wider than the three flows to the east. The eastern flows are more clearly delineated on the seafloor data and follow more tortuous downslope paths. This suggests a possible anthropogenic component to mudflow sourcing in this area. The subbottom profiler data show large blocks of material containing intact stratigraphy located within the mudflow gullies. High dips were observed in numerous blocks in both the strike and dip directions. The base of

  17. Sonar-based iceberg-relative navigation for autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Kimball, Peter; Rock, Stephen

    2011-06-01

    Iceberg-relative navigation for autonomous underwater vehicles (AUVs) will enable a new mode of data collection for studies of free-floating icebergs. Compared to current data collection methods, autonomous underwater vehicles offer substantially expanded coverage area and continuous sampling. However, because icebergs translate and rotate through inertial space, standard vehicle navigation methods which rely on inertial sensors are unable to provide iceberg-relative position estimates. Presented here is a new iceberg-relative vehicle navigation technique which is an extension of existing work in terrain-relative navigation. The technique comprises a mapping step and localization step, each of which is modified here to account for the translation and the rotation of free-floating icebergs. In the mapping step, the AUV circumnavigates the iceberg at a sequence of constant depths, collecting multibeam sonar imagery of the iceberg's submerged surface. A map is then generated in post-processing by projecting these sonar data from their corresponding vehicle positions (accounting for iceberg motion) in a frame that is fixed to the iceberg. Overlapping sonar data from the beginning and end of a circumnavigation provide the information necessary to enforce self-consistency of the iceberg map. In the localization step, the AUV uses the previously generated map to determine its position and orientation with respect to the iceberg by correlating incoming sonar ranges with the map. The estimator works by maintaining explicit estimates not only of the vehicle position and orientation, but also of the iceberg translation and rotation rates through inertial space. Results from a proof-of-concept field demonstration of this new iceberg-relative AUV navigation technique prove the feasibility of both generating a self-consistent three-dimensional map of a moving iceberg and localizing a vehicle's position with respect to that iceberg. The data for the experiment were collected

  18. Enhanced echolocation via robust statistics and super-resolution of sonar images

    NASA Astrophysics Data System (ADS)

    Kim, Kio

    Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust

  19. Mid-water Software Tools and the Application to Processing and Analysis of the Latest Generation Multibeam Sonars

    NASA Astrophysics Data System (ADS)

    Gee, L.; Doucet, M.

    2010-12-01

    The latest generation of multibeam sonars now has the ability to map the water-column, along with the seafloor. Currently, the users of these sonars have a limited view of the mid-water data in real-time, and if they do store the data, they are restricted to replaying it only, with no ability for further analysis. The water-column data has the potential to address a number of research areas including detection of small targets (wrecks, etc.) above the seabed, mapping of fish and marine mammals and a wide range of physical oceanographic processes. However, researchers have been required to develop their own in-house software tools before they can even begin their study of the water column data. This paper describes the development of more general software tools for the full processing of raw sonar data (bathymetry, backscatter and water-column) to yield output products suitable for visualization in a 4D time-synchronized environment. The huge water-column data volumes generated by the new sonars, combined with the variety of data formats from the different sonar manufacturers, provides a significant challenge in the design and development of tools that can be applied to the wide variety of applications. The development of the mid-water tools on this project addressed this problem by using a unified way of storing the water column data in a generic water column format (GWC). The sonar data are converted into the GWC by re-integrating the water column packets with time-based navigation and attitude, such that downstream in the workflow, the tools will have access to all relevant data of any particular ping. Dependent on the application and the resolution requirements, the conversion process also allows simple sub-sampling. Additionally, each file is indexed to enable fast non-linear lookup and extraction of any packet type or packet type collection in the sonar file. These tools also fully exploit multi-core and hyper-threading technologies to maximize the throughput

  20. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus.

    PubMed

    Chiu, Chen; Reddy, Puduru Viswanadha; Xian, Wei; Krishnaprasad, Perinkulam S; Moss, Cynthia F

    2010-10-01

    Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were recorded by a microphone array and two high-speed cameras, respectively. Bats often remained in nearly classical pursuit (CP) states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific's movement and to track the prey. Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the same food source with conspecifics.

  1. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    PubMed

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-12-11

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  2. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    PubMed

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology. PMID:26690444

  3. Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?

    PubMed

    Lee, Wu-Jung; Moss, Cynthia F

    2016-05-01

    It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency modulated chirp signals from all angles of orientation and across the wingbeat cycle. High-speed stereo videography was combined with pulse compression sonar processing to characterize the echo information available to foraging bats. Contrary to previous suggestions, the results show that the tail echoes are weak and do not dominate the sonar returns, compared to the large, planar wings and the moth body. However, the distinctive twisted morphology of the tails create persistent echoes across all angles of orientation, which may induce erroneous sonar target localization and disrupt accurate tracking by echolocating bats. These findings thus suggest a refinement of the false target hypothesis to emphasize sonar localization errors induced by the twisted tails, and highlight the importance of physics-based approaches to study the sensory information involved in the evolutionary arms race between moths and their bat predators. PMID:27250152

  4. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel †

    PubMed Central

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology. PMID:26690444

  5. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus

    PubMed Central

    Chiu, Chen; Reddy, Puduru Viswanadha; Xian, Wei; Krishnaprasad, Perinkulam S.; Moss, Cynthia F.

    2010-01-01

    Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were recorded by a microphone array and two high-speed cameras, respectively. Bats often remained in nearly classical pursuit (CP) states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific's movement and to track the prey. Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the same food source with conspecifics. PMID:20833928

  6. Assessing a dual-frequency identification sonars' fish-counting accuracy, precision, and turbid river range capability.

    PubMed

    Maxwell, Suzanne L; Gove, Nancy E

    2007-12-01

    Accurately assessing migrating salmon populations in turbid rivers with hydroacoustics is challenging. Using single, dual, or split-beam sonars, difficulties occur fitting acoustic beams between the river's narrow boundaries, distinguishing fish from nonfish echoes, and resolving individual fish at high densities. To address these issues, the fish-counting capability of a dual-frequency identification sonar (DIDSON), which produces high resolution, video-like images, was assessed. In a clear river, fish counts generated from a DIDSON, an echo counter, split-beam sonar, and video were compared to visual counts from a tower, a method frequently used to ground-truth sonars. The DIDSON and tower counts were very similar and showed the strongest agreement and least variability compared to the other methods. In a highly turbid river, the DIDSON's maximum detection range for a 10.16 cm spherical target was 17 m, less than absorption and wave spreading losses predict, and 26 m in clear water. Unlike tower and video methods, the DIDSON was not limited by surface disturbances or turbidity. DIDSON advantages over other sonars include: better target resolution; wider viewing angle; better coverage of the water column; accurate direction of travel; and simpler to aim and operate.

  7. Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?

    PubMed

    Lee, Wu-Jung; Moss, Cynthia F

    2016-05-01

    It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency modulated chirp signals from all angles of orientation and across the wingbeat cycle. High-speed stereo videography was combined with pulse compression sonar processing to characterize the echo information available to foraging bats. Contrary to previous suggestions, the results show that the tail echoes are weak and do not dominate the sonar returns, compared to the large, planar wings and the moth body. However, the distinctive twisted morphology of the tails create persistent echoes across all angles of orientation, which may induce erroneous sonar target localization and disrupt accurate tracking by echolocating bats. These findings thus suggest a refinement of the false target hypothesis to emphasize sonar localization errors induced by the twisted tails, and highlight the importance of physics-based approaches to study the sensory information involved in the evolutionary arms race between moths and their bat predators.

  8. Evaluating the use of side-scan sonar for detecting freshwater mussel beds in turbid river environments

    USGS Publications Warehouse

    Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas

    2015-01-01

    Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.

  9. Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Lafferty, Kevin D.

    2002-01-01

    Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.

  10. Teaching real-time ultrasonic imaging with a 4-channel sonar array, TI C6711 DSK and MATLAB.

    PubMed

    York, George W P; Welch, Thad B; Wright, Cameron H G

    2005-01-01

    Ultrasonic medical imaging courses often stop at the theory or MATLAB simulation level, since professors find it challenging to give the students the experience of designing a real-time ultrasonic system. Some of the practical problems of working with real-time data from the ultrasonic transducers can be avoided by working at lower frequencies (sonar to low ultrasound) range. To facilitate this, we have created a platform using the ease of MATLAB programming with the real-time processing capability of the low-cost Texas Instruments C6711 DSP starter kit and a 4-channel sonar array. With this platform students can design a B-mode or Color-Mode sonar system in the MATLAB environment. This paper will demonstrate how the platform can be used in the classroom to demonstrate the real-time signal processing stages including beamforming, multi-rate sampling, demodulation, filtering, image processing, echo imaging, and Doppler frequency estimation. PMID:15850134

  11. Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California

    USGS Publications Warehouse

    Cochrane, G.R.; Lafferty, K.D.

    2002-01-01

    Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand coverihg bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping. ?? 2002 Elsevier Science Ltd. All rights reserved.

  12. Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California

    NASA Astrophysics Data System (ADS)

    Cochrane, Guy R.; Lafferty, Kevin D.

    2002-03-01

    Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.

  13. Teaching real-time ultrasonic imaging with a 4-channel sonar array, TI C6711 DSK and MATLAB.

    PubMed

    York, George W P; Welch, Thad B; Wright, Cameron H G

    2005-01-01

    Ultrasonic medical imaging courses often stop at the theory or MATLAB simulation level, since professors find it challenging to give the students the experience of designing a real-time ultrasonic system. Some of the practical problems of working with real-time data from the ultrasonic transducers can be avoided by working at lower frequencies (sonar to low ultrasound) range. To facilitate this, we have created a platform using the ease of MATLAB programming with the real-time processing capability of the low-cost Texas Instruments C6711 DSP starter kit and a 4-channel sonar array. With this platform students can design a B-mode or Color-Mode sonar system in the MATLAB environment. This paper will demonstrate how the platform can be used in the classroom to demonstrate the real-time signal processing stages including beamforming, multi-rate sampling, demodulation, filtering, image processing, echo imaging, and Doppler frequency estimation.

  14. Prognosis in threatened abortion: a comparison between predictions made by sonar urinary hormone assays and clinical judgement.

    PubMed

    Duff, G B

    1975-11-01

    One hundred patients admitted to hospital with a diagnosis of threatened abortion were assessed by means of sonar, urinary oestrogen, pregnanediol and human chorionic gonadotrophin (HCG) assays and clinical examination. Assay of oestrogen excretion was the most accurate (86-5 per cent) in predicting the ultimate outcome of pregnancy, but did not give as much information as sonar examination which gave an accurate prognosis in 84 per cent of cases and was much quicker to perform The reasons for the sonar failures are discussed. Assay of urinary pregnanediol excretion gave an accurate indication of outcome in 74 per cent of cases and 24-hour urinary HCG in 70 per cent although random urinary HCG estimations provided an accurate prediciton in only 54-5 per cent of cases. Clinical examination presented the usual difficulties in assessing uterine size and predicting abortion from the amount of bleeding and pain.

  15. Navy sonar, cetaceans and the US Supreme Court: a review of cetacean mitigation and litigation in the US.

    PubMed

    Zirbel, K; Balint, P; Parsons, E C M

    2011-01-01

    One source of anthropogenic noise in the oceans which has attracted much concern is naval sonar. As a result of possible impacts of such sonar, several environmental NGOs have pursued legal cases in the United States criticizing environmental assessments conducted prior to exercises and proposed mitigation measures. Cases have been brought using the US National Environmental Protection Act, Marine Mammal Protection Act, Endangered Species Act, Coastal Zone Management Act and other statutes. This paper reviews the chronology and results of these various cases. During the G.W. Bush presidential administration, the legal battle went to the US Supreme Court in the case Winter vs. Natural Resources Defense Council. This case however, did not address the potential impacts of sonar on cetaceans or the effectiveness of mitigation measures. During the Obama administration, mitigation measures for naval exercises have been revised, and working groups planned, in an attempt to resolve conflict between parties.

  16. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    SciTech Connect

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.; Eichel, P.H.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why such correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.

  17. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation

    PubMed Central

    Kawahara, Akito Y.; Barber, Jesse R.

    2015-01-01

    The bat–moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18–14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack. PMID:25941377

  18. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation.

    PubMed

    Kawahara, Akito Y; Barber, Jesse R

    2015-05-19

    The bat-moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼ 26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18-14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack. PMID:25941377

  19. Technology Infusion of CodeSonar into the Space Network Ground Segment (RII07): Software Assurance Symposium Technical Summary

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2008-01-01

    Presents a source code analysis tool (CodeSonar) for use in the Space Network Ground Segment. The Space Network requires 99.9% proficiency and 97.0% availability of systems. Software has historically accounted for an annual average of 28% of the Space Network loss of availability and proficiency. CSCI A and CSCI B account for 42% of the previous eight months of software data loss. The technology infusion of CodeSonar into the Space Network Ground segment is meant to aid in determining the impact of the technology on the project both in the expenditure of effort and the technical results of the technology. Running a CodeSonar analysis and performing a preliminary review of the results averaged 3.5 minutes per finding (approximately 20 hours total). An additional 40 hours is estimated to analyze the 37 findings deemed too complex for the initial review. Using CodeSonar's tools to suppress known non-problems, delta tool runs will not repeat findings that have been marked as non-problems, further reducing the time needed for review. The 'non-interesting' finding rate of 70% is a large number, but filtering, search, and detailed contextual features of CodeSonar reduce the time per finding. Integration of the tool into the build process may also provide further savings by preventing developers from having to configure and operate the tool separately. These preliminary results show the tool to be easy to use and incorporate into the engineering process. These findings also provide significant potential improvements in proficiency and availability on the part of the software. As time-to-fix data become available a better cost trade can be made on person hours saved versus tool cost. Selective factors may be necessary to determine where best to apply CodeSonar to balance cost and benefits.

  20. Students Soar at DECA's SoNAR Conference

    ERIC Educational Resources Information Center

    Fiscus, Lyn

    2007-01-01

    Career and Technical Student organizations (CTSOs) are an effective mechanism for achieving the goals of education in the 21st century and No Child Left Behind. Through their hands-on approach to learning, CTSOs provide students with many opportunities to become actively involved in their learning and apply classroom knowledge to real-life…

  1. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  2. Risk Functions of Dolphins and Sea Lions Exposed to Sonar Signals.

    PubMed

    Houser, Dorian S; Martin, Steven W; Finneran, James J

    2016-01-01

    Acoustic dose-response functions have been recommended as a means of predicting behavioral impacts on marine mammals from anthropogenic noise exposure. Thirty bottlenose dolphins and fifteen sea lions participated in a controlled exposure study to explore dose-response relationships to the received level of a simulated sonar signal. Both species showed an increase in the probability of response and in the severity of response with increased received levels. Differences in species sensitivity were noted in habituation and the impact of age on responsiveness. PMID:26610994

  3. Side-scan sonar assessment of gray whale feeding in the Bering Sea

    USGS Publications Warehouse

    Johnson, K.R.; Nelson, C.H.

    1984-01-01

    Side-scan sonar was used to map and measure feeding pits of the California gray whale over 22,000 square kilometers of the northeastern Bering Sea floor. The distribution of pits, feeding whales, ampeliscid amphipods (whale prey), and a fine-sand substrate bearing the amphipods were all closely correlated. The central Chirikov Basin and nearshore areas of Saint Lawrence Island supply at least 6.5 percent of the total gray whale food resource in summer. While feeding, the whales resuspend at least 1.2 x 108 cubic meters of sediment annually; this significantly affects the geology and biology of the region.

  4. The UspIC: Performing Scan Matching Localization Using an Imaging Sonar

    PubMed Central

    Burguera, Antoni; Gonzàlez, Yolanda; Oliver, Gabriel

    2012-01-01

    This paper presents a novel approach to localize an underwater mobile robot based on scan matching using a Mechanically Scanned Imaging Sonar (MSIS). When used to perform scan matching, this sensor presents some problems such as significant uncertainty in the measurements or large scan times, which lead to a motion induced distortion. This paper presents the uspIC, which deals with these problems by adopting a probabilistic scan matching strategy and by defining a method to strongly alleviate the motion induced distortion. Experimental results evaluating our approach and comparing it to previously existing methods are provided. PMID:22969375

  5. Robust real-time mine classification based on side-scan sonar imagery

    NASA Astrophysics Data System (ADS)

    Bello, Martin G.

    2000-08-01

    We describe here image processing and neural network based algorithms for detection and classification of mines in side-scan sonar imagery, and the results obtained from their application to two distinct image data bases. These algorithms evolved over a period from 1994 to the present, originally at Draper Laboratory, and currently at Alphatech Inc. The mine-detection/classification system is partitioned into an anomaly screening stage followed by a classification stage involving the calculation of features on blobs, and their input into a multilayer perceptron neural network. Particular attention is given to the selection of algorithm parameters, and training data, in order to optimize performance over the aggregate data set.

  6. Unknown-terrains navigation of a mobile robot using an array of sonars

    SciTech Connect

    Rao, N.S.V.

    1994-09-01

    A mobile robot equipped with an array of sonars is required to navigate to a destination through a planar terrain populated by polygonal obstacles whose locations and shapes are unknown. A navigation method is proposed based on a trapezoidal decomposition of tile terrain for an abstract formulation, where elementary navigational steps consist of following the obstacle edges and turning around the corners. The convergence of an abstract version of the algorithm is first analytically established. Then experimental results on implementing the algorithm on an experimental mobile robot are reported.

  7. Sonar tracking of horizontally moving targets by the big brown bat Eptesicus fuscus.

    PubMed

    Masters, W M; Moffat, A J; Simmons, J A

    1985-06-14

    When following a moving target, echolocating bats (Eptesicus fuscus) keep their heads aimed at the target's position. This tracking behavior seems not to involve predicting the target's trajectory, but is achieved by the bat's pointing its head at the target's last known position. The bat obtains frequent position updates by emitting sonar signals at a high rate. After the lag between head and target positions and the nonunity tracking gain were corrected for, bats' tracking accuracy in the horizontal plane was +/- 1.6 degree.

  8. Ultra-wide sensor arcs for low frequency sonar detection with a baffled cylindrical array.

    PubMed

    Bertilone, Derek C; Bao, Chaoying; Travaglione, Ben C; Killeen, Damien S

    2009-11-01

    Passive detection with a baffled cylindrical array can potentially be improved at low frequencies by exploiting signal diffraction around the baffle. A model based on infinite rigid cylinder scattering suggests that large gains in signal-to-noise ratio are potentially available to adaptive beamformers if the sensor arc is widened to include sensors in the acoustic shadow. However, elastic scatter effects become increasingly important as frequency decreases, so the gains obtained in practice are unknown. The gains in detection performance are examined in this letter by analyzing data recorded at sea from a platform-mounted sonar array.

  9. Side-scan sonar assessment of gray whale feeding in the bering sea.

    PubMed

    Johnson, K R; Nelson, C H

    1984-09-14

    Side-scan sonar was used to map and measure feeding pits of the California gray whale over 22,000 square kilometers of the northeastern Bering Sea floor. The distribution of pits, feeding whales, ampeliscid amphipods (whale prey), and a fine-sand substrate bearing the amphipods were all closely correlated. The central Chirikov Basin and nearshore areas of Saint Lawrence Island supply at least 6.5 percent of the total gray whale food resource in summer. While feeding, the whales resuspend at least 1.2 x 10(8) cubic meters of sediment annually; this significantly affects the geology and biology of the region.

  10. Striation-based beamforming for estimating the waveguide invariant with passive sonar.

    PubMed

    Rouseff, Daniel; Zurk, Lisa M

    2011-08-01

    The waveguide invariant summarizes the pattern of constructive and destructive interference between acoustic modes propagating in the ocean waveguide. For many sonar signal-processing schemes, it is essential to know the correct numerical value for the waveguide invariant. While conventional beamforming can estimate the ratio between the waveguide invariant and the range to the source, it cannot unambiguously separate the two terms. In the present work, striation-based beamforming is developed. It is shown that the striation-based beamformer can be used to produce an estimate for the waveguide invariant that is independent of the range. Simulation results are presented.

  11. Directionality of sperm whale sonar clicks and its relation to piston radiation theory.

    PubMed

    Beedholm, Kristian; Møhl, Bertel

    2006-02-01

    This paper investigates the applicability to sperm whales of the theory of sound radiating from a piston. The theory is applied to a physical model and to a series of sperm whale clicks. Results show that wave forms of off-axis signals can be reproduced by convolving an on-axis signal with the spatial impulse response of a piston. The angle of a recorded click can be estimated as the angle producing the spatial impulse response that gives the best match with the observation when convolved with the on-axis wave form. It is concluded that piston theory applies to sperm whale sonar click emission.

  12. The uspIC: performing scan matching localization using an imaging sonar.

    PubMed

    Burguera, Antoni; Gonzàlez, Yolanda; Oliver, Gabriel

    2012-01-01

    This paper presents a novel approach to localize an underwater mobile robot based on scan matching using a Mechanically Scanned Imaging Sonar (MSIS). When used to perform scan matching, this sensor presents some problems such as significant uncertainty in the measurements or large scan times, which lead to a motion induced distortion. This paper presents the uspIC, which deals with these problems by adopting a probabilistic scan matching strategy and by defining a method to strongly alleviate the motion induced distortion. Experimental results evaluating our approach and comparing it to previously existing methods are provided.

  13. Risk Functions of Dolphins and Sea Lions Exposed to Sonar Signals.

    PubMed

    Houser, Dorian S; Martin, Steven W; Finneran, James J

    2016-01-01

    Acoustic dose-response functions have been recommended as a means of predicting behavioral impacts on marine mammals from anthropogenic noise exposure. Thirty bottlenose dolphins and fifteen sea lions participated in a controlled exposure study to explore dose-response relationships to the received level of a simulated sonar signal. Both species showed an increase in the probability of response and in the severity of response with increased received levels. Differences in species sensitivity were noted in habituation and the impact of age on responsiveness.

  14. Application of high-temperature superconducting wires to magnetostrictive transducers for underwater sonar

    SciTech Connect

    Voccio, J.P.; Joshi, C.H.; Lindberg, J.F.

    1994-07-01

    Recently discovered cryogenic magnetostrictive materials show maximum strains greater than any room temperature materials. These cryogenic magnetostrictors can be combined with high-temperature superconducting (HTS) coils to create a sonar transducer with high efficiency and high acoustic power density. A prototype low-frequency (< 1,000 Hz) magnetostrictive transducer is described. This transducer uses a terbium-dysprosium (TbDy) magnetostrictor rod with HTS coils cooled to 50--80 K using a single-stage cryocooler. The device is designed for operation at water depths of 100 m and is believed to be the first fully integrated prototype demonstration of HTS.

  15. Ice/berm interaction study using rotary sidescan sonar and acoustic profiling systems

    SciTech Connect

    Good, R.R.; Anderson, K.G.; Lanzier, H.H.

    1984-05-01

    Tarsiut Island, in the Canadian Beaufort Sea, was the first dredged caisson retained island built for exploration drilling operations in the Arctic offshore. Due to the island's configuration location, a large first-year ice rubble pile would result from the ice/structure interaction. This paper outlines how a rotary side-scan sonar and a mechanically scanning, narrow-beam acoustic profiling system were used to determine the geometry and the contact area of the underside of heavily rubbled first-year ice. The results of this study are to be used to further the understanding of the nature and mechanism of the ice/structure interaction in Arctic offshore structures.

  16. Sonar measurement of fetal crown-rump length as means of assessing maturity in first trimester of pregnancy.

    PubMed

    Robinson, H P

    1973-10-01

    A method is reported by which the "in utero" crown-rump length of the fetus may be determined by sonar in the first trimester of pregnancy. The accuracy of the technique was assessed by comparing the sonar and the direct postabortum measurements of fetuses in cases of missed abortion. A normal curve of fetal crown-rump length was derived from 214 examinations on 80 patients and by using these values in a further "blind" series it was found possible to predict the maturity of pregnancy to within three days, between the sixth and the 14th weeks of pregnancy.

  17. Bats jamming bats: food competition through sonar interference.

    PubMed

    Corcoran, Aaron J; Conner, William E

    2014-11-01

    Communication signals are susceptible to interference ("jamming") from conspecifics and other sources. Many active sensing animals, including bats and electric fish, alter the frequency of their emissions to avoid inadvertent jamming from conspecifics. We demonstrated that echolocating bats adaptively jam conspecifics during competitions for food. Three-dimensional flight path reconstructions and audio-video field recordings of foraging bats (Tadarida brasiliensis) revealed extended interactions in which bats emitted sinusoidal frequency-modulated ultrasonic signals that interfered with the echolocation of conspecifics attacking insect prey. Playbacks of the jamming call, but not of control sounds, caused bats to miss insect targets. This study demonstrates intraspecific food competition through active disruption of a competitor's sensing during food acquisition.

  18. Pockmarks, fluid flow, and sediments outboard of the deformation front at the Cascadia Subduction Zone from analysis of multi-channel seismic and multi-beam sonar data

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Carbotte, S. M.; Han, S.; Carton, H. D.; Canales, P.; Nedimovic, M. R.

    2013-12-01

    Evidence of active fluid flow and the nature of the sediment section near the Cascadia deformation front are explored using multi-channel (MCS) seismic and multi-beam sonar data collected in summer 2012 using the R/V Marcus G. Langseth during the Juan de Fuca Ridge to Trench Survey. The MCS data were collected along two full plate transects (the 'Oregon' and 'Washington' transects) and one trench parallel line using a 6600 cubic inch source, and an 8 km streamer with 636 channels (12.5 m spacing). The MCS data pre-stack processing sequence includes geometry definition, trace editing, F-K filter, and deconvolution. Velocity analysis is performed via semblance and constant velocity stacks in order to create a velocity model of the sediments and upper oceanic crust. The traces are then stacked, and post-stack time migrated. The sonar data were collected using the R/V Langseth's Kongsberg EM122 1°x1° multi-beam sonar with 288 beams and 432 total soundings across track. Using MB-system the sonar data are cleaned, and the bathymetry data are then gridded at 35 m, while the backscatter data are gridded at 15 m. From the high-resolution mapping data 48 pockmarks varying in diameter from 50 m - 1 km are identified within 60 km outboard of the deformation front. The surface expression of these large features in an area of heavy sedimentation is likely indicative of active fluid flow. In order to gain sub-seafloor perspective on these features the MCS data are draped below the bathymetry/backscatter grids using QPS Fledermaus. From this perspective, specific locations for detailed velocity and attribute analysis of the sediment section are chosen. Sediment velocity and attribute analysis also provide insight into apparent differences in the sediment section and décollement formation along the Oregon and Washington plate transects. While both lines intersect areas of dense pockmark concentration, the area around the Oregon transect has been shown to contain a continuous

  19. Side-Scan Sonar Survey Operations in Support of KauaiEx

    NASA Astrophysics Data System (ADS)

    Caruthers, Jerald W.; Quiroz, Erik; Fisher, Craig; Meredith, Roger; Sidorovskaia, Natalia A.

    2004-11-01

    In support of the high-frequency channel characterization experiment (KauaiEx), three days of Side-Scan Sonar (SSS) surveys were conducted off the northwest coast of Kauai, Hawaii. The SSS used in this survey was a specially modified Marine Sonic Technology, Ltd, system operating alternately at 150 and 300 kHz and producing high-resolution digital data as well as standard tiff images of the seafloor. This paper is, in part, a summary of work reported as the initial report "Side-Scan Sonar Survey: Narrative of Operations and Initial Data Report" which was based on analyses of the standard image data, and can be found at ftp://moray.dms.usm.edu/Caruthers/sidescan/Kauai/. Along the primary paths of transmission of the underwater-communication experiment there appears to be no obstructions or outcroppings, such as coral, at scales smaller than the KauaiEx multibeam bathymetry. However, several small-scale variations in the texture of the bottom are present, e.g., sand ripples with crests running approximately parallel to the depth contours and wavelengths of about 1 m and globular-like inhomogeneities with a scale near 3 m. In the southeast corner, some larger, more rugged, ridge-like structures are suggested. (This work is supported by the Ocean Acoustics Program of the Office of Naval Research.)

  20. Autofocusing circular synthetic aperture sonar imagery using phase corrections modeled as generalized cones.

    PubMed

    Marston, Timothy M; Kennedy, Jermaine L; Marston, Philip L

    2014-08-01

    Circular synthetic aperture sonar (CSAS) is a coherent aperture synthesis technique that utilizes backscattered acoustic information from an encircled scene to generate information rich, high-resolution imagery. The aperture length required for image synthesis is much longer than in its linear synthetic aperture sonar counterpart and can result in challenging phase delay and navigation estimation constraints. Residual uncorrected phase errors manifest as focus aberrations in reconstructed CSAS imagery. This paper demonstrates that phase error in image patches can be approximated as an aspect variant linear phase shift representable as a generalized cone in wave-number space. If the geometry of the generalized cone is known, it can be applied as the spectral phase of an inverse filter for aberration correction. A method is derived for reconstructing the error cone geometry from independent estimates of its local curvatures, which are found via a series of one-dimensional line searches that maximize the focus of CSAS sub-aperture images. This approach is applied to real and simulated CSAS data containing aperture distortions, and the results successfully demonstrate estimation and correction of the underlying focus aberrations.

  1. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed. PMID:24180764

  2. Assessment of a Static Multibeam Sonar Scanner for 3d Surveying in Confined Subaquatic Environments

    NASA Astrophysics Data System (ADS)

    Moisan, E.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Samat, O.; Pagès, C.

    2016-06-01

    Mechanical Scanning Sonar (MSS) is a promising technology for surveying underwater environments. Such devices are comprised of a multibeam echosounder attached to a pan & tilt positioner, that allows sweeping the scene in a similar way as Terrestrial Laser Scanners (TLS). In this paper, we report on the experimental assessment of a recent MSS, namely, the BlueView BV5000, in a confined environment: lock number 50 on the Marne-Rhin canal (France). To this aim, we hung the system upside-down to scan the lock chamber from the surface, which allows surveying the scanning positions, up to an horizontal orientation. We propose a geometric method to estimate the remaining angle and register the scans in a coordinate system attached to the site. After reviewing the different errors that impair sonar data, we compare the resulting point cloud to a TLS model that was acquired the day before, while the lock was completely empty for maintenance. While the results exhibit a bias that can be partly explained by an imperfect setup, the maximum difference is less than 15 cm, and the standard deviation is about 3.5 cm. Visual inspection shows that coarse defects of the masonry, such as stone lacks or cavities, can be detected in the MSS point cloud, while smaller details, e.g. damaged joints, are harder to notice.

  3. Continuous transmission frequency modulation detection under variable sonar-target speed conditions.

    PubMed

    Wang, Yang; Yang, Jun

    2013-03-13

    As a ranging sensor, a continuous transmission frequency modulation (CTFM) sonar with its ability for range finding and range profile formation works effectively under stationary conditions. When a relative velocity exists between the target and the sonar, the echo signal is Doppler-shifted. This situation causes the output of the sensor to deviate from the actual target range, thus limiting its applications to stationary conditions only. This work presents an approach for correcting such a deviation. By analyzing the Doppler effect during the propagation process, the sensor output can be corrected by a Doppler factor. To obtain this factor, a conventional CTFM system is slightly modified by adding a single tone signal with a frequency that locates out-of-sweep range of the transmitted signal. The Doppler factor can be extracted from the echo. Both verification experiments and performance tests are carried out. Results indicate the validity of the proposed approach. Moreover, ranging precision under different processing setups is discussed. For adjacent multiple targets, the discrimination ability is influenced by displacement and velocity. A discrimination boundary is provided through an analysis.

  4. Wall-corner classification using sonar: a new approach based on geometric features.

    PubMed

    Martínez, Milagros; Benet, Ginés

    2010-01-01

    Ultrasonic signals coming from rotary sonar sensors in a robot gives us several features about the environment. This enables us to locate and classify the objects in the scenario of the robot. Each object and reflector produces a series of peaks in the amplitude of the signal. The radial and angular position of the sonar sensor gives information about location and their amplitudes offer information about the nature of the surface. Early works showed that the amplitude can be modeled and used to classify objects with very good results at short distances-80% average success in classifying both walls and corners at distances less than 1.5 m. In this paper, a new set of geometric features derived from the amplitude analysis of the echo is presented. These features constitute a set of characteristics that can be used to improve the results of classification at distances from 1.5 m to 4 m. Also, a comparative study on classification algorithms widely used in pattern recognition techniques has been carried out for sensor distances ranging between 0.5 to 4 m, and with incidence angles ranging between 20° to 70°. Experimental results show an enhancement on the success in classification rates when these geometric features are considered.

  5. Rifting and volcanism on the ocean floor from high resolution bathymetry and sonar backscatter data

    SciTech Connect

    Arvidson, R.E.; Edwards, M.; Batiza, R.

    1985-01-01

    The authors have recently compiled a global shaded relief map that has roughly 10 x 10 km spatial resolution, using 4 separate digital data sets. This global data set delineates many longer wavelength features such as trenches, ridges, and topographic swells related to hot spots. The map also provides a regional bathymetric context for interpreting, for example, the new multichannel SEABEAM bathymetric data, which have lateral resolutions of several hundred meters and a vertical resolution measured in meters. They have processed a number of SEABEAM data sets acquired for seamounts, overlapping spreading centers, and propagating fractures. Contour maps cannot readily display all the bathymetric detail in these data. Thus, the 16 channel data were converted to shaded-relief images and color composites to preserve and meaningfully display the bathymetric details. SEAMARC sonar backscatter images, where available, were geometrically registered to the SEABWAM data for direct comparison of sonar reflectivity and roughness with depth and slope. The processed data are now being analyzed as part of tectonic and volcanic studies at a half dozen institutions. The project clearly demonstrates the synergistic effects to be gained by crossing disciplines when similar approaches can be used to advantage.

  6. Sidescan sonar as a tool for detection of demersal fish habitats

    USGS Publications Warehouse

    Able, Kenneth W.; Twichell, David C.; Grimes, Churchill B.; Jones, R. S.

    1987-01-01

    Sidescan sonar can be an effective tool for the determination of the habitat distribution of commercially important species.  This technique has the advantage of rapidly mapping large areas of the seafloor.  Sidescan images (sonographs) may also help to identify appropriate fishing gears for different types of seafloor or areas to be avoided with certain types of gears.  During the early stages of exploration, verification of sidescan sonar sonographs is critical to successful identification of important habitats.  Tilefishes (Lopholatilus and Caulolatilus) are especially good target species because the construct large burrows in the seafloor or live around boulders, both of which are easily detectable on sonographs.  In some special circumstances the estimates of tilefish burrow densities from sonographs can be used to estimate standing stock. In many localities the burrow and boulder habitats of tilefish are shared with other commercially important species such as American lobsters, Homarus americanus; cusk, Brosme brosme; and ocean pout, Macrozoarces americanus.

  7. Application of multibeam sonar in marine ecology and fisheries research: New fields and limitations

    NASA Astrophysics Data System (ADS)

    Gerlotto, Francois M.; Brehmer, Patrice A.; Fernandes, Paul G.; Reid, David G.; Copland, Philip; Georgakarakos, Stratis; Paramo, Jorge

    2003-10-01

    Multibeam sonars have been used since the mid 90s for three dimensions and a dynamic observation of fish schools and shoals in their environment. A 455 kHz Reson Seabat 6012, with 60 beams of 1.5×22 deg, was used. It has allowed the quantification of school avoidance in acoustic surveys; the three-dimensional description of school structure and position in the water column; the noninvasive study of the real schooling behavior of fish in the wild; the observation and quantification of fish in relation to survey gear; and the predation on mussels in aquaculture by fish schools; the fish school distribution in relation to ecological factors, even in very shallow water. These observations showed that a multibeam sonar can be a useful tool for improving the quality of stock assessment surveys and studying the behavioral ecology of important commercial species. To date all these applications are essentially observational. The next stage in the development of these systems will be to produce quantitative biomass estimates. To achieve this, calibration systems and side aspect TS measurements for the fish will be required. The paper presents the current uses of this instrument described above, and discuss the research requirements for use in fisheries science.

  8. Echoview as a multibeam sonar data processing and analysis toolkit for fisheries research

    NASA Astrophysics Data System (ADS)

    Buelens, Bart; Pauly, Tim; Higginbottom, Ian

    2003-10-01

    Echoview is a hydroacoustic data analysis software package, widely used in the fisheries research and stock assessment communities. Originally developed to handle a variety of single-beam sonar data formats, Echoview has been extended to support multibeam data. Multibeam data logging, lossless compression, and real time beamforming and display are some of the software's core features. Multibeam data has an additional dimension compared to single-beam data, and a 3D data viewer has been developed providing 3D visualizations of the seabed and fish schools detected by built-in algorithms. Since the multibeam module is just one of many software modules of the Echoview package, data from other sources such as single-beam sonar systems and current profilers can be combined and analyzed together with the multibeam data. The combination of coincident fish density estimates from calibrated single-beam backscatter data with school volume estimates from multibeam data will represent a significant improvement in stock assessment methods. Ongoing research and development will make it possible for Echoview to follow and even set new trends in multibeam water-column data analysis for fisheries research. Features under development include calibration, vessel motion compensation, improved feature detection, and enhanced and animated 3D displays.

  9. High resolution mapping and classification of oyster habitats in nearshore Louisiana using sidescan sonar

    USGS Publications Warehouse

    Allen, Y.C.; Wilson, C.A.; Roberts, H.H.; Supan, J.

    2005-01-01

    Sidescan sonar holds great promise as a tool to quantitatively depict the distribution and extent of benthic habitats in Louisiana's turbid estuaries. In this study, we describe an effective protocol for acoustic sampling in this environment. We also compared three methods of classification in detail: mean-based thresholding, supervised, and unsupervised techniques to classify sidescan imagery into categories of mud and shell. Classification results were compared to ground truth results using quadrat and dredge sampling. Supervised classification gave the best overall result (kappa = 75%) when compared to quadrat results. Classification accuracy was less robust when compared to all dredge samples (kappa = 21-56%), but increased greatly (90-100%) when only dredge samples taken from acoustically homogeneous areas were considered. Sidescan sonar when combined with ground truth sampling at an appropriate scale can be effectively used to establish an accurate substrate base map for both research applications and shellfish management. The sidescan imagery presented here also provides, for the first time, a detailed presentation of oyster habitat patchiness and scale in a productive oyster growing area.

  10. Behavioral responses of California sea lions to mid-frequency (3250-3450 Hz) sonar signals.

    PubMed

    Houser, Dorian S; Martin, Stephen W; Finneran, James J

    2013-12-01

    Military sonar has the potential to negatively impact marine mammals. To investigate factors affecting behavioral disruption in California sea lions (Zalophus californianus), fifteen sea lions participated in a controlled exposure study using a simulated tactical sonar signal (1 s duration, 3250-3450 Hz) as a stimulus. Subjects were placed into groups of three and each group received a stimulus exposure of 125, 140, 155, 170, or 185 dB re: 1 μPa (rms). Each subject was trained to swim across an enclosure, touch a paddle, and return to the start location. Sound exposures occurred at the mid-point of the enclosure. Control and exposure sessions were run consecutively and each consisted of ten, 30-s trials. The occurrence and severity of behavioral responses were used to create acoustic dose-response and dose-severity functions. Age of the subject significantly affected the dose-response relationship, but not the dose-severity relationship. Repetitive exposures did not affect the dose-response relationship.

  11. An automatic ellipse and line targets detection method from synthetic aperture sonar images

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Bao-Li; Liu, Ji-Yuan; Zhang, Chun-Hua

    2009-10-01

    Detection of ellipse and line targets is important for the analysis of Synthetic Aperture Sonar (SAS) images. An automatic ellipse and line targets detection method from synthetic aperture sonar images is presented. The method mainly has three procedures: preprocessing of SAS images, Zernike Orthogonal Moment Edge Detection Algorithm (ZOMEDA), line and ellipse detection. The guidance is presented firstly on how to perform the preprocessing of SAS images. Then, ZOMEDA is utilized to produce edge points with both the direction and position information. Principles of ZOMEDA with the 7x7 template are analyzed and the coefficients to carry out the ZOMEDA are calculated and listed. The idea of Random Sample Consensus (RANSAC) is applied to the Line and ellipse detection procedure to improve the robustness and the computing efficiency. Detail procedures of RANSAC are analyzed in the article. Calculating of line and ellipse parameters is pivotal to carry out the idea of RANSAC. Principles are analyzed on how to calculate the parameters of the line and ellipse based on the direction and position information. Another important procedure, parameters refinement, is also discussed. At last, the line and ellipse detection method is applied to simulated datasets and lake-trial datasets for validation.

  12. Multiresolution neural networks for mine detection in side scan sonar images

    NASA Astrophysics Data System (ADS)

    Guo, Weiming; Szymczak, William G.

    1998-09-01

    Statistical and neural network algorithms are used to separate mine targets from clutter in side scan sonar images. In these images, a typical target usually contains in excess of 100 pixels filled with salt and pepper noise. This translates into a problem of classifying in a complicated high dimensional space, which is very difficult if not impossible to solve. Therefore, a typical mine detection algorithm contains three stages preceding the classification algorithm: noise reduction, clutter rejection, and feature extraction. These pre-processing steps would reduce the dimension of the feature space by an order of magnitude. Side scan sonar images are known to be contaminated with noise and mine like clutter. The major challenge is to select and measure the features of the potential targets. This is frequently done by fractal and/or Fourier analysis. Recently, wavelet analysis has also been used successfully as a tool for feature extraction. However, there are few analytical rules to guide the selection of features. In this paper, we investigate a new integrated feature extraction and classification algorithm that first enhances a potential target using variational based algorithms, and then transforms the enhanced image into a set of wavelet channels. We use the multichannel information as inputs to a feed-forward neural network. This new classifier has the advantage of extracting not only the local features but also the background features through higher scale wavelet channels. Results are compared for different network designs.

  13. Fusion of sea mine detection and classification processing strings for sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernandez, Manuel F.; Dobeck, Gerald J.

    2000-08-01

    An advanced, automatic, adaptive clutter suppression, sea mine detection, classification and fusion processing string has been developed and tested with new sonar imagery data. The overall CAD/CAC string includes pre-processing, adaptive clutter filtering (ACF), normalization, detection , features extraction, classification and fusion processing blocks. The ACF is a multi-dimensional adaptive linear FIR filter, optimal in the Least Squares sense, and is applied to low- resolution data. It performs simultaneous background clutter suppression and preservation of an average peak target signature. Following 2D normalization, the detection consists of thresholding, clustering of exceedances and limiting the number of detections. Subsequently, features are extracted from high-resolution input data and an orthogonalization transformation is applied to the features, enabling an efficient application of the optimal log- likelihood-ratio-test (LLRT) classification rule. Finally, the classified objects of three processing strings, developed by 3 different research teams, are fused, using a variety of fusion rules, including logic-based and a novel orthogonal LLRT-base done. The utility of the overall processing string and their fusion was demonstrated with high-resolution side-scan sonar imagery from a difficult shallow water environment. The processing string classification performance was optimized by appropriately selecting a subset of the original feature set. The overall CAD/CAC processing string fusion result in improved mine classification capability, providing up to a four-fold false alarm rate reduction, compared to the best single CAD/CAC processing string results.

  14. Echolocation with bat buzz emissions: model and biomimetic sonar for elevation estimation.

    PubMed

    Kuc, Roman

    2012-01-01

    Just prior to capture the Buzz II emissions of some mouth-emitting bats, such as Eptesicus fuscus, are observed to exhibit spectra having multiple peaks. This paper proposes an echolocation strategy that uses such spectra with energy concentrated in specific frequency bands for determining target elevation. A biomimetic sonar was implemented to produce a tri-modal spectrum by driving a speaker with a signal rich in harmonics. The emission magnitudes at these harmonic frequencies measured as a function of elevation in the zero-azimuth plane form distinct beams. A template was formed from the ratio of the first harmonic and fundamental magnitudes to determine elevation. The elevation estimator exhibited a sub-degree accuracy (SD = 0.4° over a 20° interval centered at the elevation at which these two beams intersect in the zero-azimuth plane. Spectral cues from -40° to +10° elevation allow a qualitative non-linear control of sonar orientation to drive the target to the beam-intersection point where quantitative elevation estimates are available.

  15. Dynamic response of an insonified sonar window interacting with a Tonpilz transducer array.

    PubMed

    Hull, Andrew J

    2007-08-01

    This paper derives and evaluates an analytical model of an insonified sonar window in contact with an array of Tonpilz transducers operating in receive mode. The window is fully elastic so that all wave components are present in the analysis. The output of the model is a transfer function of a transducer element output voltage divided by input pressure versus arrival angle and frequency. This model is intended for analysis of sonar systems that are to be built or modified for broadband processing. The model is validated at low frequency with a comparison to a previously derived thin plate model. Once this is done, an example problem is studied so that the effects of higher order wave interaction with acoustic reception can be understood. It was found that these higher order waves cause multiple nulls in the region where the array detects acoustic energy and that their locations in the arrival angle-frequency plane can be determined. The effects of these nulls in the beam patterns of the array are demonstrated.

  16. Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Capus, Chris; Pailhas, Yan; Brown, Keith; Lane, David M; Moore, Patrick W; Houser, Dorian

    2007-01-01

    This paper uses advanced time-frequency signal analysis techniques to generate new models for bio-inspired sonar signals. The inspiration comes from the analysis of bottlenose dolphin clicks. These pulses are very short duration, between 50 and 80 micros, but for certain examples we can delineate a double down-chirp structure using fractional Fourier methods. The majority of clicks have energy distributed between two main frequency bands with the higher frequencies delayed in time by 5-20 micros. Signal syntheses using a multiple chirp model based on these observations are able to reproduce much of the spectral variation seen in earlier studies on natural dolphin echolocation pulses. Six synthetic signals are generated and used to drive the dolphin based sonar (DBS) developed through the Biosonar Program office at the SPAWAR Systems Center, San Diego, CA. Analyses of the detailed echo structure for these pulses ensonifying two solid copper spherical targets indicate differences in discriminatory potential between the signals. It is suggested that target discrimination could be improved through the transmission of a signal packet in which the chirp structure is varied between pulses. Evidence that dolphins may use such a strategy themselves comes from observations of variations in the transmissions of dolphins carrying out target detection and identification tasks.

  17. An acoustic/thermal model for self-heating in PMN sonar projectors

    PubMed

    Shankar; Hom

    2000-11-01

    Dielectric hysteresis and a strong material temperature dependence uniquely couple the acoustic output and temperature of a sonar projector driven by electrostrictive Pb(Mg1/3, Nb2/3)O3 (PMN). Both the source level and the source of self-heating, i.e., dielectric hysteresis, dramatically decrease as the PMN driver heats. The final temperature delineates outstanding PMN transducers from mediocre PMN transducers, so accurate acoustic performance prediction requires accurate transducer temperature prediction. This study examined this self-heating phenomenon by combining an electro-acoustics model for a PMN flextensional transducer with a thermal finite element model. The sonar model calculated the source level and heat generation rate for the PMN driver as a function of temperature. This computed source level varied 12 dB over a 75 degrees C temperature range solely due to the temperature dependent ceramic. The heat transfer model used the computed heat rate to predict the transducer's transient thermal response. The results clearly demonstrate that the transducer reached a steady-state equilibrium temperature, where the heat generated by the PMN driver balanced the heat dissipated. While the transducer model predicted a significant temperature rise, the corresponding acoustic output still surpassed the output of an equivalent Pb(Zr,Ti)O3 (PZT) transducer by 8 dB. Good agreement with experiments made on a PMN flextensional transducer validated the model.

  18. Responses to cold in the midbrain sonar center of hibernating and tropical bats.

    PubMed

    Howell, D J; Simmons, J; Horst, R

    1975-12-01

    The central gray matter of the bat midbrain, when electrically stimulated, causes the animal to produce a string of species-specific biosonar cries. Changes in this response with progressive cooling were studied in tropical homeothermic bats and in temperate hibernating bats. The species of hibernators chosen often move between hibernacula in the winter, flying and echolocating at low body temperatures (Tb). It was found that the midbrain "sonar center" exhibits a differential response to cooling that depends on the thermal propensities of the animal and its natural environment. Tropical bats followed a Q10 similar to that reported for other nonhibernating mammals and ceased responding at Tb 14-15 degrees C. Temperate zone-hibernating bat brains showed a relative insensitivity to temperature change and still responded at Tb 4-5 degrees C. Individual sonar cries within a string showed that duration was correlated with temperature but amplitude was unaffected. The study provides data for the functional separation of some parameters of biosonar and gives further evidence for differential nervous function in eurythermal versus stenothermal animals.

  19. Source level reduction and sonar beam aiming in landing big brown bats (Eptesicus fuscus).

    PubMed

    Koblitz, Jens C; Stilz, Peter; Pflästerer, Wiebke; Melcón, Mariana L; Schnitzler, Hans-Ulrich

    2011-11-01

    Reduction of echolocation call source levels in bats has previously been studied using set-ups with one microphone. By using a 16 microphone array, sound pressure level (SPL) variations, possibly caused by the scanning movements of the bat, can be excluded and the sonar beam aiming can be studied. During the last two meters of approach flights to a landing platform in a large flight room, five big brown bats aimed sonar beams at the landing site and reduced the source level on average by 7 dB per halving of distance. Considerable variation was found among the five individuals in the amount of source level reduction ranging from 4 to 9 dB per halving of distance. These results are discussed with respect to automatic gain control and intensity compensation and the combination of the two effects. It is argued that the two effects together do not lead to a stable echo level at the cochlea. This excludes a tightly coupled closed loop feed back control system as an explanation for the observed reduction of signal SPL in landing big brown bats.

  20. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  1. Continuous transmission frequency modulation detection under variable sonar-target speed conditions.

    PubMed

    Wang, Yang; Yang, Jun

    2013-01-01

    As a ranging sensor, a continuous transmission frequency modulation (CTFM) sonar with its ability for range finding and range profile formation works effectively under stationary conditions. When a relative velocity exists between the target and the sonar, the echo signal is Doppler-shifted. This situation causes the output of the sensor to deviate from the actual target range, thus limiting its applications to stationary conditions only. This work presents an approach for correcting such a deviation. By analyzing the Doppler effect during the propagation process, the sensor output can be corrected by a Doppler factor. To obtain this factor, a conventional CTFM system is slightly modified by adding a single tone signal with a frequency that locates out-of-sweep range of the transmitted signal. The Doppler factor can be extracted from the echo. Both verification experiments and performance tests are carried out. Results indicate the validity of the proposed approach. Moreover, ranging precision under different processing setups is discussed. For adjacent multiple targets, the discrimination ability is influenced by displacement and velocity. A discrimination boundary is provided through an analysis. PMID:23486221

  2. Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales.

    PubMed

    Miller, Patrick J O; Antunes, Ricardo N; Wensveen, Paul J; Samarra, Filipa I P; Alves, Ana Catarina; Tyack, Peter L; Kvadsheim, Petter H; Kleivane, Lars; Lam, Frans-Peter A; Ainslie, Michael A; Thomas, Len

    2014-02-01

    Eight experimentally controlled exposures to 1-2 kHz or 6-7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 μPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 ± 15 dB (mean ± s.d.). High levels of between- and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales. PMID:25234905

  3. Side-scan sonar and submersible observations: New techniques for gleaning more information from sea-floor outcrops

    SciTech Connect

    Kendall, J.; Hams, J.E.; Buck, S.P. )

    1990-05-01

    Advances in high resolution side-scan sonar imaging technology are so effective at imaging sea-floor geology that they have greatly improved the efficiency of a bottom sampling program The traditional sea-floor geology methodology of shooting a high-resolution seismic survey and sampling along the seismic grid was considered successful if outcrops were sampled on 20% of the attempts. A submersible was used sparingly because of the inability to consistently locate sea-floor outcrops. Side-scan sonar images have increased the sampling success ratio to 70-95% and allow the cost-effective use of a submersible even in areas of sparse sea-floor outcrops. In offshore basins this new technology has been used in consolidated and semiconsolidated rock terranes. When combined with observations from a two-man submersible, SCUBA traverses, seismic data, and traditional sea-floor bottom sampling techniques, enough data are provided to develop an integrated sea-floor geologic interpretation. On individual prospects, side-scan sonar has aided the establishment of critical dip in poor seismic data areas, located seeps and tar mounds, and determined erosional breaching of a prospect. Over a mature producing field, side-scan sonar has influenced the search for field extension by documenting the orientation and location of critical trapping cross faults. These relatively inexpensive techniques can provide critical data in any marine basin where rocks crop out on the sea floor.

  4. Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales.

    PubMed

    Miller, Patrick J O; Antunes, Ricardo N; Wensveen, Paul J; Samarra, Filipa I P; Alves, Ana Catarina; Tyack, Peter L; Kvadsheim, Petter H; Kleivane, Lars; Lam, Frans-Peter A; Ainslie, Michael A; Thomas, Len

    2014-02-01

    Eight experimentally controlled exposures to 1-2 kHz or 6-7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 μPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 ± 15 dB (mean ± s.d.). High levels of between- and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales.

  5. Using side-scan sonar to characterize and map physical habitat and anthropogenic underwater features in the St. Louis River.

    EPA Science Inventory

    Characterizing underwater habitat and other features is difficult and costly, especially in the large St. Louis River Estuary. We are using side-scan sonar (SSS), first developed in the 1960s to remotely sense underwater habitat features from reflected acoustic signals (backscatt...

  6. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  7. Neural mechanisms underlying the analysis of sonar and social vocalizations: Spectral and temporal integration in the mustached bat

    NASA Astrophysics Data System (ADS)

    Wenstrup, Jeffrey J.; Nataraj, Kiran; Gans, Don; Sheykholeslami, Kianoush

    2001-05-01

    The analysis of sonar echoes by the mustached bat depends on combination-sensitive neurons that respond best when distinct spectral elements of a sonar pulse and echo occur in a particular temporal relationship. Such integrative response properties underlie direct comparisons of acoustic features in outgoing pulses and returning echoes, comparisons thought to encode pulse-echo delay and other information-bearing features of echoes. These response properties are abundant in the auditory midbrain, thalamus, and cortex of the mustached bat. Combination-sensitive neurons utilize facilitatory and inhibitory neural interactions to create selective responses to acoustic features. The different interactions (facilitatory and inhibitory) originate in different stages within the ascending auditory pathway. Inhibitory interactions arise mostly in the auditory brainstem. Facilitatory interactions arise within the inferior colliculus, but also display the results of the inhibitory interactions originating at brainstem levels. These response properties are well suited to the analysis of sonar echoes, but similar combinatorial response properties are tuned to spectral elements outside sonar frequency bands, probably to elements of social vocalizations. It is therefore likely that the neural analysis of biosonar signals shares common features with the analysis of other vocal signals. [Work supported by the National Institute on Deafness and Other Communication Disorders.

  8. Design of a multi-sensor sonar system for indoor range measurement as a navigational aid for the blind.

    PubMed

    Choudhury, Maroof H; Barreto, Armando

    2003-01-01

    This paper reports the methodology for the design of a sonar-based ranging and guidance system. The intended application of the system is to help a blind person avoid obstacles as he/she navigates his/her environment. Six sonar transceivers are arranged radially on a headgear worn by the user. The transceivers detect discrete range data at discrete-time sampling instances. A panoramic map of the environment is generated from the discrete-space sensory data. The paper emphasizes the challenges faced during the measurement of omnidirectional ranging information in indoor environments. Situations have been identified where erroneous range readings are generated due to channel cross talk caused by echo bouncing off multiple surfaces. Several sonar control and measurement schemes were developed and tested to avoid these situations. The results and performance of these different control schemes are compared in this paper. A microcontroller-based system commands the sonar ping sequences, acquires the echo return times and computes the ranges. The set of range data is transmitted to a PC, which utilizes the information to build a spatialized audio map of the surrounding obstacles. The hardware and software layout for the system are described in this paper.

  9. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system.

    PubMed

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  10. A New Multibeam Sonar Technique for Evaluating Fine-Scale Fish Behavior Near Hydroelectric Dam Guidance Structures

    SciTech Connect

    Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.; Blanton, Susan L.; Coutant, C.

    2002-03-07

    This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (

  11. A Synthesis of Multibeam Bathymetry and Backscatter, and Sidescan Sonar of the Mariana Submarine Magmatic Arc, Western Pacific

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Chadwick, W. W.; Stern, R. J.; Merle, S. G.; Bloomer, S. H.; Nakamura, K.; Tamura, Y.

    2006-12-01

    A series of expeditions funded by the NSF MARGINS Program, the NOAA Ocean Exploration Program and JAMSTEC from 2001 to 2006 have collected a large data set that includes multibeam bathymetry and backscatter and surface-towed MR-1 sidescan sonar along more than 1200 km of the Mariana submarine magmatic arc between 12 and 23 degrees N. These data, along with more limited in situ observational data from remotely operated vehicle dives, are interpreted within an ESRI ArcGIS framework to produce a series of preliminary geologic maps showing a wide range of volcanic, tectonic and other morphologic features along the arc. The maps reveal a widespread channelized distribution of volcaniclastic material from volcanoes in the Southern Seamount Province (SSP) and Central Island Provinces (CIP). Giant sediment wave forms (up to 2 km in wavelength) occur on the flanks of many of the volcanoes and can be traced out to up to 60 km (Esmeralda). Relative ages of the activity of the volcanoes can be assigned in some areas where deposits from one edifice overlap others or where erosion has deeply dissected the flanks. Faulting is common on the frontal arc, especially in the SSP and the Northern Seamount Province (NSP). Many of the individual volcanoes have faults that are oriented at a range of azimuths but are commonly at either an arc-parallel or arc- orthogonal orientations. Several large extensional basins (>30 across in arc-parallel direction) occur in the NSP. One of these features exhibits a zone of headless channels on its western flank, implying that the feature may be a very large caldera.

  12. Using artificial bat sonar neural networks for complex pattern recognition: recognizing faces and the speed of a moving target.

    PubMed

    Dror, I E; Florer, F L; Rios, D; Zagaeski, M

    1996-04-01

    Two sets of studies examined the viability of using bat-like sonar input for artificial neural networks in complex pattern recognition tasks. In the first set of studies, a sonar neural network was required to perform two face recognition tasks. In the first task, the network was trained to recognize different faces regardless of facial expressions. Following training, the network was tested on its ability to generalize and correctly recognize faces using echoes of novel facial expressions that were not included in the training set. The neural network was able to recognize novel echoes of faces almost perfectly (above 96% accuracy) when it was required to recognize up to five faces. In the second face recognition task, a sonar neural network was trained to recognize the sex of 16 faces (eight males and eight females). After training, the network was able to correctly recognize novel echoes of those faces as 'male' or as 'female' faces with accuracy levels of 88%. However, the network was not able to recognize novel faces as 'male' or 'female' faces. In the second set of studies, a sonar neural network was required to learn to recognize the speed of a target that was moving towards the viewer. During training, the target was presented in a variety of orientations, and the network's performance was evaluated when the target was presented in novel orientations that were not included in the training set. The different orientations dramatically affected the amplitude and the frequency composition of the echoes. The neural network was able to learn and recognize the speed of a moving target, and to generalize to new orientations of the target. However, the network was not able to generalize to new speeds that were not included in the training set. The potential and limitations of using bat-like sonar as input for artifical neural networks are discussed.

  13. Automatic gain control in the bat's sonar receiver and the neuroethology of echolocation.

    PubMed

    Kick, S A; Simmons, J A

    1984-11-01

    The sensitivity of the echolocating bat, Eptesicus fuscus, to sonar echoes at different time delays after sonar emissions was measured in a two-choice echo detection experiment. Since echo delay is perceptually equivalent to target range, the experiment effectively measured sensitivity to targets at different ranges. The bat's threshold for detecting sonar echoes at a short delay of only 1.0 msec after emissions (corresponding to a range of 17 cm) was 36 dB SPL (peak to peak), but the threshold decreased to 8 dB SPL at a longer delay of 6.4 msec (a range of 1.1 m). Prior research has shown that, at even longer delays (corresponding to ranges of 3 to 5 m), the bat's threshold is in the region of 0 dB SPL. Contractions of the bat's middle ear muscles synchronized with the production of echolocation sounds cause a transient loss in hearing sensitivity which appears to account for the observed echo detection threshold shifts. The bat's echo detection thresholds increase by approximately 11 dB for each reduction in target range by a factor of 2 over the span from 17 cm to 1.1 m. As range shortens, the amplitude of echoes from small targets also increases, by 12 dB for each 2-fold reduction in range. Thus, when approaching a target, the bat compensates for changes in echo strength as target range shortens by changing its hearing threshold. Since this compensation appears to occur in the middle ear, the bat regulates echoes reaching the cochlea to a stable amplitude during its approach to a target such as a flying insect. In addition to this automatic gain control linked to target range, the bat aims its head to track a target's position during approach, thus stabilizing echo amplitude even if the target's direction changes. We hypothesize that the bat's directional emissions, directional hearing, middle ear muscle contractions, and head aim response collectively create a three-dimensional spatial tracking filter which the bat locks onto targets to stabilize echo

  14. Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus.

    PubMed

    Simmons, J A; Moffat, A J; Masters, W M

    1992-02-01

    The echolocating bat, Eptesicus fuscus, detects sonar echoes with a sensitivity that changes according to the time elapsed between broadcasting of each sonar signal and reception of echoes. When tested in an electronic target simulator on a two-choice echo-detection task, the bat's threshold improved by 11.5 dB as echo delay changed from 2.3 to 4.6 ms (target ranges of 40 and 80 cm). Earlier experiments measured the change in detection threshold for delays from 1 to 6.4 ms (target ranges from about 17 to 110 cm) and obtained about 11 dB of improvement per doubling of delay. The new experiments used electronic delay lines to simulate echo delay, thus avoiding movement of loudspeakers to different distances and the possible creation of delay-dependent backward masking between stimulus echoes and cluttering echoes from the loudspeaker surfaces. The slope of the threshold shift defines an echo gain control that keeps echoes from point targets at a fixed sensation level--reducing sensitivity by 11 to 12 dB as echo amplitude increases by 12 dB per halving of range during the bat's approach to the target. A recent experiment using loudness discrimination of echoes at 70 to 80 dB SPL (roughly 50 dB above threshold) found a slope of about 6 dB per halving of range, so the gain-control effect may be level dependent. The observed effect is operationally equivalent to forward masking of echoes by the transmission, but any events correlated with vocalization which impair hearing sensitivity for a short interval following transmissions could cause a decline in sensitivity to echoes. Contractions of the bat's middle-ear muscles synchronized to transmissions may account for the observed threshold shift, at least for a span of echo delays associated with the most critical portion of the approach stage of pursuit. Forward masking by the sonar transmissions may contribute to the threshold shift, too, but middle-ear muscle contractions do occur and must be a significant part of the

  15. The beluga whale produces two pulses to form its sonar signal.

    PubMed

    Lammers, Marc O; Castellote, Manuel

    2009-06-23

    Odontocete cetaceans use biosonar clicks to acoustically probe their aquatic environment with an aptitude unmatched by man-made sonar. A cornerstone of this ability is their use of short, broadband pulses produced in the region of the upper nasal passages. Here we provide empirical evidence that a beluga whale (Delphinapterus leucas) uses two signal generators simultaneously when echolocating. We show that the pulses of the two generators are combined as they are transmitted through the melon to produce a single echolocation click emitted from the front of the animal. Generating two pulses probably offers the beluga the ability to control the energy and frequency distribution of the emitted click and may allow it to acoustically steer its echolocation beam.

  16. Surficial geology in central Narragansett Bay, Rhode Island: interpretations of sidescan sonar and multibeam bathymetry

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Larry J.; Signell, Richard P.; Denny, Jane F.; Crocker, Jim M.; Beaver, Andrew L.; Schattgen, P. Tod

    2006-01-01

    The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to determine the distributions of surficial sediments and sedimentary environments in two areas of Narragansett Bay, Rhode Island, using sidescan sonar imagery, high-resolution bathymetry, and sediment data. This study provides a framework for future studies on topics such as benthic habitats and oceanographic processes that control the transport and distribution of bottom sediments. This study mapped two separate areas totalling about 33 km² One area lies in West Passage between Plum Point, Quonset Point and Conanicut Island; the other area lies in East Passage around Dyer Island and extends south of Prudence Island

  17. Proposal to characterise legacy Sellafield ponds using SONAR and RadLine™.

    PubMed

    Reddy, Sarah F; Monk, Stephen D; Nye, Daniel W; Colling, Bethany R; Stanley, Steven J

    2012-07-01

    Sellafield Nuclear Reprocessing Plant in Cumbria contains storage ponds built in the 1950s which was originally intended to hold spent nuclear fuel for reprocessing, and eventual production of weapons grade plutonium. Parts of the spent fuel have corroded; some are buried under a layer of sediment or intertwined with other debris and removal and destruction of this nuclear waste is not a trivial task due to elevated radiation levels. We propose a system in collaboration with the National Nuclear Laboratory (NNL) to characterise the ponds using a system containing three main parts; an ultrasonic SONAR system used to physically map the pond, scintillator based radiation detector (known as RadLine™) used to map the pond from a radiation point of view, and bespoke software intended to combine the physical and radiation plots of this environment to create an overall 3D source map. PMID:22698817

  18. Sidescan sonar examination of deteriorated revetments and bulkheads along Chicago's lake front

    USGS Publications Warehouse

    Chrzastowski, Michael J.

    1989-01-01

    Lakefill for parks along Chicago's lake front is primarily defended with aged, deteriorated revetments. Survey by 100- and 500-kHz sidescan sonar documents that structural failure of the revetments is not related to lake-bottom undermining. The size and weight of the rock fill in the cribs is identified as a critical factor. Long-term effects of wave surge combined with ice action and gravity can remove rock fill either through breaks in the timber crib wall, or where revetment design offers lakeward exposure of the rock fill. Capstones are displaced when they lose underlying support. Revetments with a lakeward face of steel sheetpile, or toe protection mounded high against the structure, have no significant capstone displacement and are models for improved design. This study supports a rebuilding project that will bury the old revetments with new structures having a lakeward face of either steel sheetpile or a rubble mound.

  19. Local inversion of the sonar transform regularized by the approximate inverse

    NASA Astrophysics Data System (ADS)

    Quinto, Eric Todd; Rieder, Andreas; Schuster, Thomas

    2011-03-01

    A new reconstruction method is given for the spherical mean transform with centers on a plane in {{ R}^3} which is also called the sonar transform. Standard inversion formulas require data over all spheres, but typically, the data are limited in the sense that the centers and radii are in a compact set. Our reconstruction operator is local because, to reconstruct at \\mathbf {x}, one needs only spheres that pass near \\mathbf {x}, and the operator reconstructs singularities, such as object boundaries. The microlocal properties of the reconstruction operator, including its symbol as a pseudodifferential operator, are given. The method is implemented using the approximate inverse, and reconstructions are given. They are evaluated in light of the microlocal properties of the reconstruction operator.

  20. Quantifying Fish Backscattering using SONAR Instrument and Kirchhoff Ray Mode (KRM) Model

    NASA Astrophysics Data System (ADS)

    Manik, Henry M.

    2016-08-01

    Sonar instrument was used to study backscattering from tuna fish. Extraction of target strength, incidence angle, and frequency dependence of the backscattered signal for individual scatterer was important for biological information. For this purpose, acoustic measurement of fish backscatter was conducted in the laboratory. Characteristics and general trends of the target strength of fish with special reference to tuna fish were investigated by using a Kirchhoff Ray Mode (KRM) model. Backscattering strength were calculated for the KRM having typical morphological and physical parameters of actual fish. Those backscattering amplitudes were shown as frequency, body length, backscattering patterns, the density and sound speed dependences, and orientation dependence. These results were compared with experimentally measured target strength data and good agreement was found. Measurement and model showed the target strength from the fish are depend on the presence of swimbladder. Target Strength increase with increasing the frequency and fish length.

  1. Case study of rotating sonar sensor application in unmanned automated guided vehicle

    NASA Astrophysics Data System (ADS)

    Chandak, Pravin; Cao, Ming; Hall, Ernest L.

    2001-10-01

    A single rotating sonar element is used with a restricted angle of sweep to obtain readings to develop a range map for the unobstructed path of an autonomous guided vehicle (AGV). A Polaroid ultrasound transducer element is mounted on a micromotor with an encoder feedback. The motion of this motor is controlled using a Galil DMC 1000 motion control board. The encoder is interfaced with the DMC 1000 board using an intermediate IMC 1100 break-out board. By adjusting the parameters of the Polaroid element, it is possible to obtain range readings at known angles with respect to the center of the robot. The readings are mapped to obtain a range map of the unobstructed path in front of the robot. The idea can be extended to a 360 degree mapping by changing the assembly level programming on the Galil Motion control board. Such a system would be compact and reliable over a range of environments and AGV applications.

  2. Acoustic Image Models for Obstacle Avoidance with Forward-Looking Sonar

    NASA Astrophysics Data System (ADS)

    Masek, T.; Kölsch, M.

    Long-range forward-looking sonars (FLS) have recently been deployed in autonomous unmanned vehicles (AUV). We present models for various features in acoustic images, with the goal of using this sensor for altitude maintenance, obstacle detection and obstacle avoidance. First, we model the backscatter and FLS noise as pixel-based, spatially-varying intensity distributions. Experiments show that these models predict noise with an accuracy of over 98%. Next, the presence of acoustic noise from two other sources including a modem is reliably detected with a template-based filter and a threshold learned from training data. Lastly, the ocean floor location and orientation is estimated with a gradient-descent method using a site-independent template, yielding sufficiently accurate results in 95% of the frames. Temporal information is expected to further improve the performance.

  3. Using data crawlers and semantic Web to build financial XBRL data generators: the SONAR extension approach.

    PubMed

    Rodríguez-García, Miguel Ángel; Rodríguez-González, Alejandro; Colomo-Palacios, Ricardo; Valencia-García, Rafael; Gómez-Berbís, Juan Miguel; García-Sánchez, Francisco

    2014-01-01

    Precise, reliable and real-time financial information is critical for added-value financial services after the economic turmoil from which markets are still struggling to recover. Since the Web has become the most significant data source, intelligent crawlers based on Semantic Technologies have become trailblazers in the search of knowledge combining natural language processing and ontology engineering techniques. In this paper, we present the SONAR extension approach, which will leverage the potential of knowledge representation by extracting, managing, and turning scarce and disperse financial information into well-classified, structured, and widely used XBRL format-oriented knowledge, strongly supported by a proof-of-concept implementation and a thorough evaluation of the benefits of the approach. PMID:24587726

  4. Using data crawlers and semantic Web to build financial XBRL data generators: the SONAR extension approach.

    PubMed

    Rodríguez-García, Miguel Ángel; Rodríguez-González, Alejandro; Colomo-Palacios, Ricardo; Valencia-García, Rafael; Gómez-Berbís, Juan Miguel; García-Sánchez, Francisco

    2014-01-01

    Precise, reliable and real-time financial information is critical for added-value financial services after the economic turmoil from which markets are still struggling to recover. Since the Web has become the most significant data source, intelligent crawlers based on Semantic Technologies have become trailblazers in the search of knowledge combining natural language processing and ontology engineering techniques. In this paper, we present the SONAR extension approach, which will leverage the potential of knowledge representation by extracting, managing, and turning scarce and disperse financial information into well-classified, structured, and widely used XBRL format-oriented knowledge, strongly supported by a proof-of-concept implementation and a thorough evaluation of the benefits of the approach.

  5. The beluga whale produces two pulses to form its sonar signal

    PubMed Central

    Lammers, Marc O.; Castellote, Manuel

    2009-01-01

    Odontocete cetaceans use biosonar clicks to acoustically probe their aquatic environment with an aptitude unmatched by man-made sonar. A cornerstone of this ability is their use of short, broadband pulses produced in the region of the upper nasal passages. Here we provide empirical evidence that a beluga whale (Delphinapterus leucas) uses two signal generators simultaneously when echolocating. We show that the pulses of the two generators are combined as they are transmitted through the melon to produce a single echolocation click emitted from the front of the animal. Generating two pulses probably offers the beluga the ability to control the energy and frequency distribution of the emitted click and may allow it to acoustically steer its echolocation beam. PMID:19324643

  6. Using Data Crawlers and Semantic Web to Build Financial XBRL Data Generators: The SONAR Extension Approach

    PubMed Central

    Rodríguez-García, Miguel Ángel; Rodríguez-González, Alejandro; Valencia-García, Rafael; Gómez-Berbís, Juan Miguel

    2014-01-01

    Precise, reliable and real-time financial information is critical for added-value financial services after the economic turmoil from which markets are still struggling to recover. Since the Web has become the most significant data source, intelligent crawlers based on Semantic Technologies have become trailblazers in the search of knowledge combining natural language processing and ontology engineering techniques. In this paper, we present the SONAR extension approach, which will leverage the potential of knowledge representation by extracting, managing, and turning scarce and disperse financial information into well-classified, structured, and widely used XBRL format-oriented knowledge, strongly supported by a proof-of-concept implementation and a thorough evaluation of the benefits of the approach. PMID:24587726

  7. Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System

    NASA Technical Reports Server (NTRS)

    Lin, Tsung Han (Hank)

    2011-01-01

    JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.

  8. Analysis of the temporal structure of fish echoes using the dolphin broadband sonar signal.

    PubMed

    Matsuo, Ikuo; Imaizumi, Tomohito; Akamatsu, Tomonari; Furusawa, Masahiko; Nishimori, Yasushi

    2009-07-01

    Behavioral experiments indicate that dolphins detect and discriminate prey targets through echolocating broadband sonar signals. The fish echo contains components from multiple reflections, including those from the swim bladder and other organs, and can be used for the identification of fish species and the estimation of fish abundance. In this paper, temporal structures were extracted from fish echoes using the cross-correlation function and the lowpass filter. First, the echo was measured from an anesthetized fish in a water tank. The number, reflector intensity, and echo duration were shown to be dependent on the species, individual, and orientation of the fish. In particular, the echo duration provided useful information on the fish body height and for species identification. Second, the echo was measured from the live fish suspended by nylon monofilament lines in the open sea. It was shown that this duration could be estimated regardless of whether or not the fish were moving.

  9. Proposal to characterise legacy Sellafield ponds using SONAR and RadLine™.

    PubMed

    Reddy, Sarah F; Monk, Stephen D; Nye, Daniel W; Colling, Bethany R; Stanley, Steven J

    2012-07-01

    Sellafield Nuclear Reprocessing Plant in Cumbria contains storage ponds built in the 1950s which was originally intended to hold spent nuclear fuel for reprocessing, and eventual production of weapons grade plutonium. Parts of the spent fuel have corroded; some are buried under a layer of sediment or intertwined with other debris and removal and destruction of this nuclear waste is not a trivial task due to elevated radiation levels. We propose a system in collaboration with the National Nuclear Laboratory (NNL) to characterise the ponds using a system containing three main parts; an ultrasonic SONAR system used to physically map the pond, scintillator based radiation detector (known as RadLine™) used to map the pond from a radiation point of view, and bespoke software intended to combine the physical and radiation plots of this environment to create an overall 3D source map.

  10. Mechanical and electromechanical properties of PMNT single crystals for naval sonar transducers.

    PubMed

    Ewart, Lynn M; McLaughlin, Elizabeth A; Robinson, Harold C; Stace, Joseph J; Amin, Ahmed

    2007-12-01

    PMNT single crystals in the relaxor-ferroelectric lead magnesium niobate (PMN)-lead titanate (PT) system provide significant advantage for underwater sonar transducers. Compared to lead zirconate titanate (PZT) ceramics, the large electromechanical coupling factor provides significant increases in transducer bandwidth. The superior strain energy density generates higher source level across the band, and the lower Young's modulus allows considerably smaller transducers. These payoffs occur even when PMNT crystals are subject to navy operating conditions such as uniaxial mechanical compressive stresses up to 42 MPa, electric fields up to 1.2 MV/m, and a temperature range from 5 to 50 degrees C. The impact of navy-relevant electric fields and mechanical stresses on crack propagation and failure of piezoelectric single crystals is investigated. The compressive, flexural, and tensile strength of PMNT crystals is reported and discussed with respect to conventional PZT ceramics and the operating conditions of a typical naval transducer.

  11. Sonar evidence of early pregnancy failure in patients with twin conceptions.

    PubMed

    Robinson, H P; Caines, J S

    1977-01-01

    During a four-year period 30 patients were diagnosed by sonar in the first trimester of pregnancy as having twin conceptions. Of these 30 patients, 14 eventually gave birth to twins. Eleven of the remaining 16 patients were found to have a normal pregnancy and a coexistent blighted ovum (empty sac), and ultimately all but one gave birth to a single baby; the eleventh patient aborted a fresh fetus at 25 weeks of gestation. Of the last five patients, four were diagnosed as having twin blighted ova, and one a blighted ovum and missed abortion; these five patients either aborted spontaneously or had an elective termination of pregnancy. The results suggest that the incidence of twin conceptions is higher than commonly accepted figure of 1 in 80.

  12. Signal classification using global dynamical models, Part II: SONAR data analysis

    SciTech Connect

    Kremliovsky, M.; Kadtke, J.

    1996-06-01

    In Part I of this paper, we described a numerical method for nonlinear signal detection and classification which made use of techniques borrowed from dynamical systems theory. Here in Part II of the paper, we will describe an example of data analysis using this method, for data consisting of open ocean acoustic (SONAR) recordings of marine mammal transients, supplied from NUWC sources. The purpose here is two-fold: first to give a more operational description of the technique and provide rules-of-thumb for parameter choices; and second to discuss some new issues raised by the analysis of non-ideal (real-world) data sets. The particular data set considered here is quite non-stationary, relatively noisy, is not clearly localized in the background, and as such provides a difficult challenge for most detection/classification schemes. {copyright} {ital 1996 American Institute of Physics.}

  13. Method for shaping and aiming narrow beams. [sonar mapping and target identification

    NASA Technical Reports Server (NTRS)

    Heyser, R. C. (Inventor)

    1981-01-01

    A sonar method and apparatus is discribed which utilizes a linear frequency chirp in a transmitter/receiver having a correlator to synthesize a narrow beamwidth pattern from otherwise broadbeam transducers when there is relative velocity between the transmitter/receiver and the target. The chirp is so produced in a generator in bandwidth, B, and time, T, as to produce a time bandwidth product, TB, that is increased for a narrower angle. A replica of the chirp produced in a generator is time delayed and Doppler shifted for use as a reference in the receiver for correlation of received chirps from targets. This reference is Doppler shifted to select targets preferentially, thereby to not only synthesize a narrow beam but also aim the beam in azimuth and elevation.

  14. Fast nearfield to farfield conversion algorithm for circular synthetic aperture sonar.

    PubMed

    Plotnick, Daniel S; Marston, Philip L; Marston, Timothy M

    2014-08-01

    Monostatic circular synthetic aperture sonar (CSAS) images are formed by processing azimuthal angle dependent backscattering from a target at a fixed distance from a collocated source/receiver. Typical CSAS imaging algorithms [Ferguson and Wyber, J. Acoust. Soc. Am. 117, 2915-2928 (2005)] assume scattering data are taken in the farfield. Experimental constraints may make farfield measurements impractical and thus require objects to be scanned in the nearfield. Left uncorrected this results in distortions of the target image and in the angular dependence of features. A fast approximate Hankel function based algorithm is presented to convert nearfield data to the farfield. Images and spectrograms of an extended target are compared for both cases.

  15. Treatment of systematic errors in the processing of wide angle sonar sensor data for robotic navigation

    SciTech Connect

    Beckerman, M.; Oblow, E.M.

    1988-04-01

    A methodology has been developed for the treatment of systematic errors which arise in the processing of sparse sensor data. We present a detailed application of this methodology to the construction from wide-angle sonar sensor data of navigation maps for use in autonomous robotic navigation. In the methodology we introduce a four-valued labelling scheme and a simple logic for label combination. The four labels, conflict, occupied, empty and unknown, are used to mark the cells of the navigation maps; the logic allows for the rapid updating of these maps as new information is acquired. The systematic errors are treated by relabelling conflicting pixel assignments. Most of the new labels are obtained from analyses of the characteristic patterns of conflict which arise during the information processing. The remaining labels are determined by imposing an elementary consistent-labelling condition. 26 refs., 9 figs.

  16. Public awareness and attitudes towards naval sonar mitigation for cetacean conservation: a preliminary case study in Fairfax County, Virginia. (the DC Metro area).

    PubMed

    Zirbel, K; Balint, P; Parsons, E C M

    2011-01-01

    The potential impacts of naval sonar on cetaceans has led to a series of court cases and statements of concern by international organizations. However, there has been no research conducted on attitudes of the general public with respect to this issue. To investigate this, a preliminary public survey was conducted in Fairfax, Virginia (the Washington, DC Metro region). The majority of the public sampled believed that naval sonar impacted marine mammals (51.3%), that the US Navy should not be exempt from environmental regulations in time of peace (75.2%), and that sonar use should be moderated if it impacts cetaceans (75.8%). Individuals who were conservative, Republican, and have served in the military were more likely to believe the Navy should be exempt from marine mammal protection regulations. In addition, expert interviews were conducted to gain opinions on the potential ramifications of the recent US Supreme Court case on naval sonar mitigation.

  17. Linear Scour Depressions or Bedforms? Using Interferometric Sonar to Investigate Nearshore Sediment Transport

    NASA Astrophysics Data System (ADS)

    Borrelli, M.; Giese, G. S.; Dingman, S. L.; Gontz, A. M.; Adams, M. B.; Norton, A. R.; Brown, T. L.

    2011-12-01

    A series of ambiguous features on the seafloor off the coast of Provincetown, Massachusetts USA has been identified in two bathymetric lidar surveys (2007, 2010) conducted by the US Army Corps of Engineers. Similar features in the area have been described as linear scour depressions by other investigators, but at deeper water depths. These features exhibit some of the characteristics of bedforms, they have migrated tens of meters and maintained similar 3 dimensional morphologies. However, what would be described as the slipface more closely resembles the updrift face of a linear scour depression. The features are in relatively shallow water (9 - 15 m), are 150 - 200 m long, have spacings of 100 - 150 m and are 5-6 m in height. Further investigations are being undertaken to better understand these features and nearshore sediment transport in the area. The features appear along a high energy, accreting coast with both strong wave-driven sediment flux and tidal currents. Mapping of the study area with an interferometric sonar system, which collects coincident swath bathymetry and acoustic backscatter imagery, is ongoing. Interferometric sonar increases bathymetric swath width to depth ratios, in comparison to multibeam systems, and expedites data collection by reducing costs, vessel-time and hazards associated with navigating shallow waters. In addition, sediment grab samples and a series of seismic reflection profiles will also be collected in the area to ground-truth acoustic imagery and provide a subsurface framework for the features, respectively. These datasets will allow investigators to better document bottom conditions, estimate flow velocities needed to create these features and improve our understanding of sediment transport processes and pathways in the area.

  18. Side-scan sonar imagery fusion for sea mine detection and classification in very shallow water

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernandez, Manuel F.; Dobeck, Gerald J.

    2001-10-01

    An advanced, automatic, adaptive clutter suppression, sea mine detection, classification and fusion processing string has been developed and tested with high resolution sonar imagery dat. The overall computer-aided-detection/computer- aided-classification (CAD/CAC) string includes pre- processing, adaptive clutter filtering (ACF), normalization, detection, feature extraction, feature orthogonalization, subset feature selection, classification and fusion processing blocks. The ACF is an adaptive linear FIR filter, optimal in the Least Squares (LS) sense, and is applied to low-resolution data. Data pre-normalization, clipping and mean subtraction, allows application of a range dimension only ACF that is matched both to average highlight and shadow information, while simultaneously suppressing background clutter. Following post-ACF normalization, and detection consists of thresholding, clustering of exceedances and limiting the number of detections. Subsequently, features are extracted from high-resolution data and an orthogonalization transformation is applied to the features, enabling an efficient application of the optimal log-likelihood-ratio-test (LLRT) classification rule. Finally, the classified objects of three processing strings, developed by three different researchers, are fused, using an LLRT-based fusion rule. Processing string improvements have been developed over previous CAD/CAC and fusion string versions. The utility of the overall processing strings and their fusion was demonstrated with very shallow water high-resolution sonar imagery data sets, form a difficult environment. The processing string classification performance was optimized by appropriately selecting a subset of the original feature set. The fusion of the CAD/CAC processing strings resulted in improved mine classification capability, providing a three-fold false alarm rate reduction, compared to the best individual CAD/CAC processing string results.

  19. Sonar jamming in the field: effectiveness and behavior of a unique prey defense.

    PubMed

    Corcoran, Aaron J; Conner, William E

    2012-12-15

    Bats and insects provide a model system for integrating our understanding of predator-prey ecology, animal behavior and neurophysiology. Previous field studies of bat-insect interactions have been limited by the technological challenges involved with studying nocturnal, volant animals that use ultrasound and engage in battles that frequently last a fraction of a second. We overcame these challenges using a robust field methodology that included multiple infrared cameras calibrated for three-dimensional reconstruction of bat and moth flight trajectories and four ultrasonic microphones that provided a spatial component to audio recordings. Our objectives were to document bat-moth interactions in a natural setting and to test the effectiveness of a unique prey defense - sonar jamming. We tested the effect of sonar jamming by comparing the results of interactions between bats and Grote's tiger moth, Bertholdia trigona, with their sound-producing organs either intact or ablated. Jamming was highly effective, with bats capturing more than 10 times as many silenced moths as clicking moths. Moths frequently combined their acoustic defense with two separate evasive maneuvers: flying away from the bat and diving. Diving decreased bat capture success for both clicking and silenced moths, while flying away did not. The diving showed a strong directional component, a first for insect defensive maneuvers. We discuss the timing of B. trigona defensive maneuvers - which differs from that of other moths - in the context of moth auditory neuroethology. Studying bat-insect interactions in their natural environment provides valuable information that complements work conducted in more controlled settings.

  20. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52.... long.; 59°36′ N. lat., 148°10′ W. long.; 58°57′ N. lat., 150°04′ W. long.; 58°20′ N. lat., 151°00′...

  1. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52.... long.; 59°36′ N. lat., 148°10′ W. long.; 58°57′ N. lat., 150°04′ W. long.; 58°20′ N. lat., 151°00′...

  2. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52.... long.; 59°36′ N. lat., 148°10′ W. long.; 58°57′ N. lat., 150°04′ W. long.; 58°20′ N. lat., 151°00′...

  3. High-Resolution Multibeam Sonar Survey and Interactive 3-D Exploration of the D-Day Wrecks off Normandy

    NASA Astrophysics Data System (ADS)

    Mayer, L. A.; Calder, B.; Schmidt, J. S.

    2003-12-01

    Historically, archaeological investigations use sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. The combination of 3-D mapping and interactive 3-D visualization techniques provides a powerful new means to explore underwater artifacts. A clear demonstration of the applicability of high-resolution multibeam sonar to wreck and artifact investigations occurred when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller

  4. Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies

    SciTech Connect

    Damuth, J.E.; Flood, R.D.; Kowsmann, R.O.; Belderson, R.H.; Gorini, M.A.

    1988-08-01

    Imaging of the Amazon deep-sea fan with long-range side-scan sonar (GLORIA) has, for the first time, revealed the anatomy, trends, and growth pattern of distributary channels on this fan. Only one channel-levee system was active at any given time and extended from the Amazon Submarine Canyon downslope onto the lower fan (> 4,200 m). Formation of new channel-levee systems occurred when a currently active channel-levee system was cut off and abandoned through avulsion, and a new channel-levee system was established nearby. Through time, successive channel-levee formation and abandonment built two broad levee complexes consisting of groups of overlapping, coalescing segments of channel-levee systems across the present fan surface. These, plus older, now buried levee complexes, indicate that fan growth is radially outward and downslope through development of successive levee complexes. The most striking characteristic of the distributary channels is their intricate, often recurving, meanders with sinuosities of up to 2.5. Cutoffs and abandoned meander loops indicate that the channels migrate laterally through time. Channel bifurcation results predominantly from avulsion when flows breach a channel levee, thereby abandoning the present channel and establishing a new channel-levee segment nearby. No clear evidence of channel branching (i.e., division of a single channel into two active segments) or braiding was observed. 22 figs.

  5. Ultrasound detection in fish--a parallel to the sonar-mediated detection of bats by ultrasound-sensitive insects?

    PubMed

    Astrup, J

    1999-09-01

    Most bats use ultrasonic sonar signals, or cries, to locate prey. Many of their insect prey species have evolved an ability to hear and respond to these signals, and studies clearly demonstrate the survival value associated with this ability. Like bats, toothed whales locate prey by emitting ultrasonic sonar signals, or clicks. As a parallel to the insect prey of bats, it would seem obvious to assume that some fish species likewise are capable of sensing the ultrasonic clicks of their odontocete predators. As judged from classical fish audiometry literature, this seems not to be the case, however, and although in recent years some fishes have been proven responsive to ultrasound, examination of ecological and acoustic differences reveals that conclusions on ultrasound-mediated insect escape behavior are not immediately applicable to fish. This has the consequence that future experiments on fish ultrasound detection should not be looking for observations directly parallel to those observed in the bat-insect interactions.

  6. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: Design/operation/preliminary results

    NASA Astrophysics Data System (ADS)

    Kennedy, J. L.; Marston, T. M.; Lee, K.; Lopes, J. L.; Lim, R.

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  7. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    PubMed

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  8. A prior-knowledge-based threshold segmentation method of forward-looking sonar images for underwater linear object detection

    NASA Astrophysics Data System (ADS)

    Liu, Lixin; Bian, Hongyu; Yagi, Shin-ichi; Yang, Xiaodong

    2016-07-01

    Raw sonar images may not be used for underwater detection or recognition directly because disturbances such as the grating-lobe and multi-path disturbance affect the gray-level distribution of sonar images and cause phantom echoes. To search for a more robust segmentation method with a reasonable computational cost, a prior-knowledge-based threshold segmentation method of underwater linear object detection is discussed. The possibility of guiding the segmentation threshold evolution of forward-looking sonar images using prior knowledge is verified by experiment. During the threshold evolution, the collinear relation of two lines that correspond to double peaks in the voting space of the edged image is used as the criterion of termination. The interaction is reflected in the sense that the Hough transform contributes to the basis of the collinear relation of lines, while the binary image generated from the current threshold provides the resource of the Hough transform. The experimental results show that the proposed method could maintain a good tradeoff between the segmentation quality and the computational time in comparison with conventional segmentation methods. The proposed method redounds to a further process for unsupervised underwater visual understanding.

  9. Sidescan-Sonar Imagery and Surficial Geologic Interpretations of the Sea Floor in Western Rhode Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Haupt, T.A.; Crocker, J.M.

    2009-01-01

    The U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) have been working together to interpret sea-floor geology along the northeastern coast of the United States. In 2004, the NOAA Ship RUDE completed survey H11322, a sidescan-sonar and bathymetric survey that covers about 60 square kilometers of the sea floor in western Rhode Island Sound. This report interprets sidescan-sonar and bathymetric data from NOAA survey H11322 to delineate sea-floor features and sedimentary environments in the study area. Paleozoic bedrock and Cretaceous Coastal Plain sediments in Rhode Island Sound underlie Pleistocene glacial drift that affects the distribution of surficial Holocene marine and transgressional sediments. The study area has three bathymetric highs separated by a channel system. Features and patterns in the sidescan-sonar imagery include low, moderate, and high backscatter; sand waves; scarps; erosional outliers; boulders; trawl marks; and dredge spoils. Four sedimentary environments in the study area, based on backscatter and bathymetric features, include those characterized by erosion or nondeposition, coarse-grained bedload transport, sorting and reworking, and deposition. Environments characterized by erosion or nondeposition and coarse-grained bedload transport are located in shallower areas and environments characterized by deposition are located in deeper areas; environments characterized by sorting and reworking processes are generally located at moderate depths.

  10. Adaptive-filter/feature-orthogonalization processing string for optimal LLRT mine classfication in side-scan sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Libera, Peter; Fernandez, Manuel F.; Dobeck, Gerald J.

    1996-05-01

    An automatic, robust, adaptive clutter suppression, mine detection and classification processing string has been developed and applied to side-scan sonar imagery data. The overall processing string includes data pre-processing, adaptive clutter filtering (ACF), 2D normalization, detection, feature extraction, and classification processing blocks. The data pre-processing block contains automatic gain control and data decimation processing. The ACF technique designs a 2D adaptive range-crossrange linear FIR filter which is optimal in the Least Squares sense, simultaneously suppressing the background clutter while preserving an average peak target signature (normalized shape) computed a priori using training set data. A multiple reference ACF algorithm version was utilized to account for multiple target shapes (due to different mine types, multiple target aspect angles, etc.). The detection block consists of thresholding, clustering of exceedances and limiting their number, and a secondary thresholding process. Following feature extraction, the classification block applies a novel transformation to the data, which orthogonalizes the features and enables an efficient application of the optimal log-likelihood-ratio-test (LLRT) classification rule. The utility of the overall processing string was demonstrated with two side-scan sonar data sets. The ACF/feature orthogonalization based LLRT mine classification processing string provided average probability of correct mine classification and false alarm rate performance similar to that obtained when utilizing an expert sonar operator.

  11. Advanced gray-scale morphological filters for the detection of sea mines in side-scan sonar imagery

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Vincent, Luc M.

    2000-08-01

    Computing Devices Canada, a General Dynamics company, undertakes research in image processing with focus on the automatic recognition of sea mines. This paper present the use of advanced gray-scale morphological filters for this function as applied to side scan sonar imagery. Sea mines in side scan sonar imagery can be characterized by a mine-body and a mine-shadow. Mine-bodies consist of bright regions, relative to the background, with a specific shape and size. Mine-shadows consist of dark regions, relative to the background, with a specific shape and sizes. The shapes and sizes of these regions depend on the mine type, the orientation of the mine, the physical acquisition process of the sonar imagery, and the environment in which the mine is located. Advanced gray-scale morphological filters provide very powerful and robust tools to extract bright and dark regions with low signal to noise ratio in very noisy imagery using geometric constraints such as shape, size and total surface area. For the detection of sea mines we use these morphological filters with the minimum and maximum geometric constraints for the mine-bodies and mine-shadows. The independent detection of mine-bodies and mine-shadows allows the detection of bottom, moored and drifting mines with the same detection algorithm. Consistent mine-body and mine- shadow combinations are resolved into mine like objects.

  12. Robust detection of sea mines in side-scan sonar imagery based on advanced gray-scale morphological filters

    NASA Astrophysics Data System (ADS)

    Lange, Holger

    2000-03-01

    Computing Devices Canada, a General Dynamics company, undertakes research in image processing focusing on the automatic recognition of sea mines. This paper presents the use of advanced gray-scale morphological filters for the detection of sea mines in side-scan sonar imagery. Sea mines in side-scan sonar imagery can be characterized by a mine-body and a mine shadow. Mine-bodies consist of bright regions, relative to the background, with a specific shape and size. Mine-shadows consist of dark regions, relative to the background, with a specific shape and size. The shapes and sizes of these regions depend on the mine type, the orientation of the mine, the physical acquisition process of the sonar imagery, and the environment in which the mine is located. Advanced gray-scale morphological filters provide very powerful and robust tools to extract bright and dark regions with low signal to noise ratio in very noisy imagery using geometric constraints such as shape, size and total surface area. For the detection of sea mines we use these morphological filters with the minimum and maximum geometric constraints for the mine-bodies and mine-shadows. The independent detection of mine-bodies and mine-shadows allows the detection of bottom, moored and drifting mines with the same detection algorithm. Consistent mine-body and mine-shadow combinations are resolved into mine like objects.

  13. Application of fusion algorithms for computer aided detection and classification of bottom mines to synthetic aperture sonar test data

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William C.

    2006-05-01

    Over the past several years, Raytheon Company has adapted its Computer Aided Detection/Computer-Aided Classification (CAD/CAC) algorithm to process side-scan sonar imagery taken in both the Very Shallow Water (VSW) and Shallow Water (SW) operating environments. This paper describes the further adaptation of this CAD/CAC algorithm to process Synthetic Aperture Sonar (SAS) image data taken by an Autonomous Underwater Vehicle (AUV). The tuning of the CAD/CAC algorithm for the vehicle's sonar is described, the resulting classifier performance is presented, and the fusion of the classifier outputs with those of another CAD/CAC processor is evaluated. The fusion algorithm accepts the classification confidence levels and associated contact locations from the different CAD/CAC algorithms, clusters the contacts based on the distance between their locations, and then declares a valid target when a clustered contact passes a prescribed fusion criterion. Three different fusion criteria are evaluated: the first based on thresholding the sum of the confidence factors for the clustered contacts, the second based on simple binary combinations of the multiple CAD/CAC processor outputs, and the third based on the Fisher Discriminant. The resulting performance of the three fusion algorithms is compared, and the overall performance benefit of a significant reduction of false alarms at high correct classification probabilities is quantified.

  14. Adaptive three-dimensional range-crossrange-frequency filter processing string for sea mine classification in side scan sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernandez, Manuel F.; Dobeck, Gerald J.

    1997-07-01

    An automatic, robust, adaptive clutter suppression, predetection level fusion, sea mine detection and classification processing string has been developed and applied to shallow water side-scan sonar imagery data. The overall processing string includes pre-processing string includes pre-processing, adaptive clutter filtering (ACF), 2D normalization, detection, feature extraction and classification processing blocks. The pre-processing block contains automatic gain control, data decimation and data alignment processing. The ACF is a multi-dimensional adaptive linear FIR filter, optimal in the least squares sense, for simultaneous background clutter suppression and preservation of an average peak target signature. After data alignment, using a 3D ACF enables simultaneous multiple frequency data fusion and clutter suppression in the composite frequency-range-crossrange domain. Following 2D normalization, the detection consists of thresholding, clustering of exceedances and limiting their number. Finally, features are extracted and a orthogonalization transformation is applied to the data, enabling an efficient application of the optimal log-likelihood-ratio-test (LLRT) classification rule. The utility of the overall processing string was demonstrated with two side-scan sonar data sets. The ACF, feature orthogonalization, LLRT-based classification processing string provided average probability of correct mine classification and false alarm rate performance exceeding the one obtained when utilizing an expert sonar operator. The overall processing string can be easily implemented in real-time using COTS technology.

  15. Inherent problems of attempts to apply sonar and vibrotactile sensory aid technology to the perceptual needs of the blind.

    PubMed

    Easton, R D

    1992-01-01

    A program of research dealing with two types of sensory aids for the blind--sonar and vibrotactile--is described. Rather than immediately assessing the aids in the mobility context, which has customarily been the case, the aids' capabilities are considered in terms of the major functions of vision, that is, the exteroceptive perception of objects, surfaces, and events of the environment, and the proprioceptive perception of the self, especially the self in relation to the environment. Although sonar aids function very well for localizing objects and for providing acoustic flow specifying self-movement, they do not provide high acuity pattern and shape information due to the long wavelength of ultrasound relative to light. This limitation is considered specifically with respect to the visual accomplishment of recovery of three-dimensional structure/motion from dynamic two-dimensional images. Vibrotactile sensory aids using optical imaging can deliver detailed pattern information to the skin and thus permit assessment of the extent to which a nonvisual system can mediate the recovery of structure problem. However, in even moderately cluttered or complicated environments the skin proves unable to resolve the amount of stimulation it receives vibrotactually. The limitations of sonar and vibrotactile sensory aids are discussed with respect to future sensory substitution efforts as well as their implications for understanding differences and similarities among the senses.

  16. Target flutter rate discrimination by bats using frequency-modulated sonar sounds: behavior and signal processing models.

    PubMed

    Grossetête, A; Moss, C F

    1998-04-01

    This study utilized psychophysical data and acoustical measurements of sonar echoes from artificial fluttering targets to develop insights to the information used by FM bats to discriminate the wingbeat rate of flying insects. Fluttering targets were produced by rotating blades that moved towards the bat, and the animal learned to discriminate between two rates of movement, a reference rate (30 or 50 Hz) and a slower, variable rate. Threshold discrimination performance depended on the rotation rate of the reference target, with a difference value of 9 Hz for the reference rate of 30 Hz and 14 Hz for the reference rate of 50 Hz. Control experiments demonstrated that the bats used sonar echoes from the moving targets to perform the discrimination task. Acoustical measurements showed that the moving target produced a Doppler shift in the echo and a concomitant change in the arrival time of each frequency in the linear period FM sweep. The difference in delay between echoes from moving and stationary parts varied linearly with flutter rate and depended on the characteristics of the bat's sonar sounds. Simulations also showed a reduction in average echo bandwidth with increasing flutter rate, which may account for a higher delay discrimination threshold using the 50-Hz reference rate. This work suggests that Doppler-induced changes in echo delays produced by fluttering targets may contribute to the FM bat's perception of flying insect prey.

  17. Hydrothermal flow at Main Endeavour Field imaged and measured with Cable Operated Vent Imaging Sonar

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Bemis, K. G.; Xu, G.; Jackson, D. R.; Jones, C. D.

    2011-12-01

    Initial acoustic monitoring of hydrothermal flow in the Main Endeavour Field (MEF) captures the spatial distribution of diffuse and focused discharge and shows potential for flux determinations. Our Cabled Observatory Vent Imaging Sonar (COVIS) was connected to the NEPTUNE Canada Endeavour Observatory in September 2010. Using a customized Reson 7125 multi-beam sonar, COVIS acquired a 29 day time series of black smoker plume and associated diffuse hydrothermal flow from Grotto, a 30 m diameter vent cluster in the MEF, Juan de Fuca Ridge. Detection of the spatial patterns of diffuse flow utilizes phase decorrelation of the acoustic signal (200kHz) by buoyancy-driven turbulence (acoustic scintillation) to produce a time series of maps. Substantial fluctuation in the detected diffuse flow area (0.1 - 18 m^2) was observed over the 29 days of observation, although position remained stable. Acoustic imaging of focused flow (400 kHz) utilizes high volume backscatter (attributed to particles and turbulent sound speed fluctuations) to image in 3D the initial tens of meters of rise of buoyant plumes. Spectral analysis of bending inclination of a strong plume from multiple fast smokers on the NW end of Grotto (north tower) indicates that the dominant modes correspond with the ambient mixed semi-diurnal tide (based on current meter data at a mooring 2.9 km to the north and on a tidal model), with at least one secondary mode attributable to sub-inertial flow related to inflow to the axial valley. A weaker plume from several slower smokers is present on the NE end of Grotto. On first analysis, the bending inclination of the weaker plume appears to be affected by the stronger plume. Quantification of flow velocity and volume flux of plumes begins with measuring the Doppler phase shift through plume cross-sections beginning at 5 m above source vents where discharge merges. The volume flux measurements enable calculation of entrainment coefficients, which prior work on the same

  18. Analysis of signals under compositional noise with applications to SONAR data

    DOE PAGES

    Tucker, J. Derek; Wu, Wei; Srivastava, Anuj

    2013-07-09

    In this paper, we consider the problem of denoising and classification of SONAR signals observed under compositional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques do not account for such noise and, consequently, cannot provide a robust classification of signals. We apply a recent framework that: 1) uses a distance-based objective function for data alignment and noise reduction; and 2) leads to warping-invariant distances between signals for robust clustering and classification. We use this framework to introduce two distances that can be used for signal classification: a) a y-distance, which is the distance between themore » aligned signals; and b) an x-distance that measures the amount of warping needed to align the signals. We focus on the task of clustering and classifying objects, using acoustic spectrum (acoustic color), which is complicated by the uncertainties in aspect angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to compositional noise. As a result, we demonstrate the use of the developed metrics in classification of acoustic color data and highlight improvements in signal classification over current methods.« less

  19. Analysis of signals under compositional noise with applications to SONAR data

    SciTech Connect

    Tucker, J. Derek; Wu, Wei; Srivastava, Anuj

    2013-07-09

    In this paper, we consider the problem of denoising and classification of SONAR signals observed under compositional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques do not account for such noise and, consequently, cannot provide a robust classification of signals. We apply a recent framework that: 1) uses a distance-based objective function for data alignment and noise reduction; and 2) leads to warping-invariant distances between signals for robust clustering and classification. We use this framework to introduce two distances that can be used for signal classification: a) a y-distance, which is the distance between the aligned signals; and b) an x-distance that measures the amount of warping needed to align the signals. We focus on the task of clustering and classifying objects, using acoustic spectrum (acoustic color), which is complicated by the uncertainties in aspect angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to compositional noise. As a result, we demonstrate the use of the developed metrics in classification of acoustic color data and highlight improvements in signal classification over current methods.

  20. Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-07-01

    We present a 26 day time series (October 2010) of physical properties (volume flux, flow velocity, expansion rate) of a vigorous deep-sea hydrothermal plume measured using our Cabled Observatory Vent Imaging Sonar (COVIS), which is connected to the Northeast Pacific Time Series Underwater Experiment Canada Cabled Observatory at the Main Endeavour Field on the Juan de Fuca Ridge. COVIS quantitatively monitors the initial buoyant rise of the plume from ˜5 m to ˜15 m above the vents. The time series exhibits temporal variations of the plume vertical volume flux (1.93-5.09 m3/s ), centerline vertical velocity component (0.11-0.24 m/s ) and expansion rate (0.082-0.21 m/m ); these variations have major spectral peaks at semidiurnal (˜2 cycle/day) and inertial oscillation (˜1.5 cycle/day) frequencies. The plume expansion rate (average ˜0.14 m/m ) is inversely proportional to the plume centerline vertical velocity component (coefficient of determination R2˜0.5). This inverse proportionality, as well as the semidiurnal frequency, indicates interaction between the plume and ambient ocean currents consistent with an entrainment of ambient seawater that increases with the magnitude of ambient currents. The inertial oscillations observed in the time series provide evidence for the influence of surface storms on the dynamics of hydrothermal plumes.