Sample records for active sound control

  1. Spherical loudspeaker array for local active control of sound.

    PubMed

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  2. A multichannel amplitude and relative-phase controller for active sound quality control

    NASA Astrophysics Data System (ADS)

    Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.

    2017-05-01

    The enhancement of the sound quality of periodic disturbances for a number of listeners within an enclosure often confronts difficulties given by cross-channel interferences, which arise from simultaneously profiling the primary sound at each error sensor. These interferences may deteriorate the original sound among each listener, which is an unacceptable result from the point of view of sound quality control. In this paper we provide experimental evidence on controlling both amplitude and relative-phase functions of stationary complex primary sounds for a number of listeners within a cavity, attaining amplifications of twice the original value, reductions on the order of 70 dB, and relative-phase shifts between ± π rad, still in a free-of-interference control scenario. To accomplish such burdensome control targets, we have designed a multichannel active sound profiling scheme that bases its operation on exchanging time-domain control signals among the control units during uptime. Provided the real parts of the eigenvalues of persistently excited control matrices are positive, the proposed multichannel array is able to counterbalance cross-channel interferences, while attaining demanding control targets. Moreover, regularization of unstable control matrices is not seen to prevent the proposed array to provide free-of-interference amplitude and relative-phase control, but the system performance is degraded, as a function of the amount of regularization needed. The assessment of Loudness and Roughness metrics on the controlled primary sound proves that the proposed distributed control scheme noticeably outperforms current techniques, since active amplitude- and/or relative-phase-based enhancement of the auditory qualities of a primary sound no longer implies in causing interferences among different positions. In this regard, experimental results also confirm the effectiveness of the proposed scheme on stably enhancing the sound qualities of periodic sounds for

  3. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  4. Foam-PVDF smart skin for active control of sound

    NASA Astrophysics Data System (ADS)

    Fuller, Chris R.; Guigou, Cathy; Gentry, C. A.

    1996-05-01

    This work is concerned with the development and testing of a foam-PVDF smart skin designed for active noise control. The smart skin is designed to reduce sound by the action of the passive absorption of the foam (which is effective at higher frequencies) and the active input of an embedded PVDF element driven by an oscillating electrical input (which is effective at lower frequencies). It is primarily developed to be used in an aircraft fuselage in order to reduce interior noise associated with turbulent boundary layer excitation. The device consists of cylindrically curved sections of PVDF piezoelectric film embedded in partially reticulated polyurethane acoustic foam. The active PVDF layer was configured to behave in a linear sense as well as to couple the predominantly in-plane strain due to the piezoelectric effect and the vertical motion that is needed to accelerate fluid particles and hence radiate sound away from the foam surface. For performance testing, the foam-PVDF element was mounted near the surface of an oscillating rigid piston mounted in a baffle in an anechoic chamber. A far-field and a near-field microphone were considered as an error sensor and compared in terms of their efficiency to control the far-field sound radiation. A feedforward LMS controller was used to minimize the error sensor signal under broadband excitation (0 - 1.6 kHz). The potential of the smart foam-PVDF skin for globally reducing sound radiation is demonstrated as more than 20 dB attenuation is obtained over the studied frequency band. The device thus has the potential of simultaneously controlling low and high frequency sound in a very thin compact arrangement.

  5. Investigation of spherical loudspeaker arrays for local active control of sound.

    PubMed

    Peleg, Tomer; Rafaely, Boaz

    2011-10-01

    Active control of sound can be employed globally to reduce noise levels in an entire enclosure, or locally around a listener's head. Recently, spherical loudspeaker arrays have been studied as multiple-channel sources for local active control of sound, presenting the fundamental theory and several active control configurations. In this paper, important aspects of using a spherical loudspeaker array for local active control of sound are further investigated. First, the feasibility of creating sphere-shaped quiet zones away from the source is studied both theoretically and numerically, showing that these quiet zones are associated with sound amplification and poor system robustness. To mitigate the latter, the design of shell-shaped quiet zones around the source is investigated. A combination of two spherical sources is then studied with the aim of enlarging the quiet zone. The two sources are employed to generate quiet zones that surround a rigid sphere, investigating the application of active control around a listener's head. A significant improvement in performance is demonstrated in this case over a conventional headrest-type system that uses two monopole secondary sources. Finally, several simulations are presented to support the theoretical work and to demonstrate the performance and limitations of the system. © 2011 Acoustical Society of America

  6. Active control of sound transmission through partitions composed of discretely controlled modules

    NASA Astrophysics Data System (ADS)

    Leishman, Timothy W.

    This thesis provides a detailed theoretical and experimental investigation of active segmented partitions (ASPs) for the control of sound transmission. ASPs are physically segmented arrays of interconnected acoustically and structurally small modules that are discretely controlled using electronic controllers. Theoretical analyses of the thesis first address physical principles fundamental to ASP modeling and experimental measurement techniques. Next, they explore specific module configurations, primarily using equivalent circuits. Measured normal-incidence transmission losses and related properties of experimental ASPs are determined using plane wave tubes and the two-microphone transfer function technique. A scanning laser vibrometer is also used to evaluate distributed transmitting surface vibrations. ASPs have the inherent potential to provide excellent active sound transmission control (ASTC) through lightweight structures, using very practical control strategies. The thesis analyzes several unique ASP configurations and evaluates their abilities to produce high transmission losses via global minimization of normal transmitting surface vibrations. A novel dual diaphragm configuration is shown to employ this strategy particularly well. It uses an important combination of acoustical actuation and mechano-acoustical segmentation to produce exceptionally high transmission loss (e.g., 50 to 80 dB) over a broad frequency range-including lower audible frequencies. Such performance is shown to be comparable to that produced by much more massive partitions composed of thick layers of steel or concrete and sand. The configuration uses only simple localized error sensors and actuators, permitting effective use of independent single-channel controllers in a decentralized format. This work counteracts the commonly accepted notion that active vibration control of partitions is an ineffective means of controlling sound transmission. With appropriate construction, actuation

  7. [Actuator placement for active sound and vibration control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  8. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  9. Multichannel feedforward control schemes with coupling compensation for active sound profiling

    NASA Astrophysics Data System (ADS)

    Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.

    2017-05-01

    Active sound profiling includes a number of control techniques that enables the equalization, rather than the mere reduction, of acoustic noise. Challenges may rise when trying to achieve distinct targeted sound profiles simultaneously at multiple locations, e.g., within a vehicle cabin. This paper introduces distributed multichannel control schemes for independently tailoring structural borne sound reaching a number of locations within a cavity. The proposed techniques address the cross interactions amongst feedforward active sound profiling units, which compensate for interferences of the primary sound at each location of interest by exchanging run-time data amongst the control units, while attaining the desired control targets. Computational complexity, convergence, and stability of the proposed multichannel schemes are examined in light of the physical system at which they are implemented. The tuning performance of the proposed algorithms is benchmarked with the centralized and pure-decentralized control schemes through computer simulations on a simplified numerical model, which has also been subjected to plant magnitude variations. Provided that the representation of the plant is accurate enough, the proposed multichannel control schemes have been shown as the only ones that properly deliver targeted active sound profiling tasks at each error sensor location. Experimental results in a 1:3-scaled vehicle mock-up further demonstrate that the proposed schemes are able to attain reductions of more than 60 dB upon periodic disturbances at a number of positions, while resolving cross-channel interferences. Moreover, when the sensor/actuator placement is found as defective at a given frequency, the inclusion of a regularization parameter in the cost function is seen to not hinder the proper operation of the proposed compensation schemes, at the time that it assures their stability, at the expense of losing control performance.

  10. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    PubMed

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  11. Frequency-independent radiation modes of interior sound radiation: Experimental study and global active control

    NASA Astrophysics Data System (ADS)

    Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.

    2017-08-01

    Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.

  12. Active control and sound synthesis--two different ways to investigate the influence of the modal parameters of a guitar on its sound.

    PubMed

    Benacchio, Simon; Mamou-Mani, Adrien; Chomette, Baptiste; Finel, Victor

    2016-03-01

    The vibrational behavior of musical instruments is usually studied using physical modeling and simulations. Recently, active control has proven its efficiency to experimentally modify the dynamical behavior of musical instruments. This approach could also be used as an experimental tool to systematically study fine physical phenomena. This paper proposes to use modal active control as an alternative to sound simulation to study the complex case of the coupling between classical guitar strings and soundboard. A comparison between modal active control and sound simulation investigates the advantages, the drawbacks, and the limits of these two approaches.

  13. The use of an active controlled enclosure to attenuate sound radiation from a heavy radiator

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Yang, Tiejun; Zhu, Minggang; Pan, Jie

    2017-03-01

    Active structural acoustical control usually experiences difficulty in the control of heavy sources or sources where direct applications of control forces are not practical. To overcome this difficulty, an active controlled enclosure, which forms a cavity with both flexible and open boundary, is employed. This configuration permits indirect implementation of active control in which the control inputs can be applied to subsidiary structures other than the sources. To determine the control effectiveness of the configuration, the vibro-acoustic behavior of the system, which consists of a top plate with an open, a sound cavity and a source panel, is investigated in this paper. A complete mathematical model of the system is formulated involving modified Fourier series formulations and the governing equations are solved using the Rayleigh-Ritz method. The coupling mechanisms of a partly opened cavity and a plate are analysed in terms of modal responses and directivity patterns. Furthermore, to attenuate sound power radiated from both the top panel and the open, two strategies are studied: minimizing the total radiated power and the cancellation of volume velocity. Moreover, three control configurations are compared, using a point force on the control panel (structural control), using a sound source in the cavity (acoustical control) and applying hybrid structural-acoustical control. In addition, the effects of boundary condition of the control panel on the sound radiation and control performance are discussed.

  14. Active control of noise on the source side of a partition to increase its sound isolation

    NASA Astrophysics Data System (ADS)

    Tarabini, Marco; Roure, Alain; Pinhede, Cedric

    2009-03-01

    This paper describes a local active noise control system that virtually increases the sound isolation of a dividing wall by means of a secondary source array. With the proposed method, sound pressure on the source side of the partition is reduced using an array of loudspeakers that generates destructive interference on the wall surface, where an array of error microphones is placed. The reduction of sound pressure on the incident side of the wall is expected to decrease the sound radiated into the contiguous room. The method efficiency was experimentally verified by checking the insertion loss of the active noise control system; in order to investigate the possibility of using a large number of actuators, a decentralized FXLMS control algorithm was used. Active control performances and stability were tested with different array configurations, loudspeaker directivities and enclosure characteristics (sound source position and absorption coefficient). The influence of all these parameters was investigated with the factorial design of experiments. The main outcome of the experimental campaign was that the insertion loss produced by the secondary source array, in the 50-300 Hz frequency range, was close to 10 dB. In addition, the analysis of variance showed that the active noise control performance can be optimized with a proper choice of the directional characteristics of the secondary source and the distance between loudspeakers and error microphones.

  15. Active room compensation for sound reinforcement using sound field separation techniques.

    PubMed

    Heuchel, Franz M; Fernandez-Grande, Efren; Agerkvist, Finn T; Shabalina, Elena

    2018-03-01

    This work investigates how the sound field created by a sound reinforcement system can be controlled at low frequencies. An indoor control method is proposed which actively absorbs the sound incident on a reflecting boundary using an array of secondary sources. The sound field is separated into incident and reflected components by a microphone array close to the secondary sources, enabling the minimization of reflected components by means of optimal signals for the secondary sources. The method is purely feed-forward and assumes constant room conditions. Three different sound field separation techniques for the modeling of the reflections are investigated based on plane wave decomposition, equivalent sources, and the Spatial Fourier transform. Simulations and an experimental validation are presented, showing that the control method performs similarly well at enhancing low frequency responses with the three sound separation techniques. Resonances in the entire room are reduced, although the microphone array and secondary sources are confined to a small region close to the reflecting wall. Unlike previous control methods based on the creation of a plane wave sound field, the investigated method works in arbitrary room geometries and primary source positions.

  16. Reduction of interior sound fields in flexible cylinders by active vibration control

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1988-01-01

    The mechanisms of interior sound reduction through active control of a thin flexible shell's vibrational response are presently evaluated in view of an analytical model. The noise source is a single exterior acoustic monopole. The active control model is evaluated for harmonic excitation; the results obtained indicate spatially-averaged noise reductions in excess of 20 dB over the source plane, for acoustic resonant conditions inside the cavity.

  17. Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs - An experimental comparison

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Hansen, C. H.; Snyder, S. D.

    1991-01-01

    Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.

  18. Active Control of Sound Radiation due to Subsonic Wave Scattering from Discontinuities on Thin Elastic Beams.

    NASA Astrophysics Data System (ADS)

    Guigou, Catherine Renee J.

    1992-01-01

    Much progress has been made in recent years in active control of sound radiation from vibrating structures. Reduction of the far-field acoustic radiation can be obtained by directly modifying the response of the structure by applying structural inputs rather than by adding acoustic sources. Discontinuities, which are present in many structures are often important in terms of sound radiation due to wave scattering behavior at their location. In this thesis, an edge or boundary type discontinuity (clamped edge) and a point discontinuity (blocking mass) are analytically studied in terms of sound radiation. When subsonic vibrational waves impinge on these discontinuities, large scattered sound levels are radiated. Active control is then achieved by applying either control forces, which approximate shakers, or pairs of control moments, which approximate piezoelectric actuators, near the discontinuity. Active control of sound radiation from a simply-supported beam is also examined. For a single frequency, the flexural response of the beam subject to an incident wave or an input force (disturbance) and to control forces or control moments is expressed in terms of waves of both propagating and near-field types. The far-field radiated pressure is then evaluated in terms of the structural response, using Rayleigh's formula or a stationary phase approach, depending upon the application. The control force and control moment magnitudes are determined by optimizing a quadratic cost function, which is directly related to the control performance. On determining the optimal control complex amplitudes, these can be resubstituted in the constitutive equations for the system under study and the minimized radiated fields can be evaluated. High attenuation in radiated sound power and radiated acoustic pressure is found to be possible when one or two active control actuators are located near the discontinuity, as is shown to be mostly associated with local changes in beam response near

  19. Active control of turbulent boundary layer sound transmission into a vehicle interior

    NASA Astrophysics Data System (ADS)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2016-09-01

    In high speed automotive, aerospace, and railway transportation, the turbulent boundary layer (TBL) is one of the most important sources of interior noise. The stochastic pressure distribution associated with the turbulence is able to excite significantly structural vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior panels. Therefore, the air flow noise becomes very influential when it comes to the noise vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally, passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced noise transmission into a vehicle interior, which generally improve the structure sound isolation performance. These can achieve excellent isolation performance at higher frequencies, but are unable to deal with the low-frequency interior noise components. In this paper, active control of TBL noise transmission through an acoustically coupled double panel system into a rectangular cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used to model the disturbance. The disturbance is rejected by an active vibration isolation unit reacting between the exterior and the interior panels. Significant reductions of the low-frequency vibrations of the interior panel and the sound pressure in the cavity are observed.

  20. Anticipated Effectiveness of Active Noise Control in Propeller Aircraft Interiors as Determined by Sound Quality Tests

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Sullivan, Brenda M.

    2004-01-01

    Two experiments were conducted, using sound quality engineering practices, to determine the subjective effectiveness of hypothetical active noise control systems in a range of propeller aircraft. The two tests differed by the type of judgments made by the subjects: pair comparisons in the first test and numerical category scaling in the second. Although the results of the two tests were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference.

  1. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  2. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  3. Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels

    NASA Astrophysics Data System (ADS)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2018-05-01

    This paper presents a theoretical study of active control of turbulent boundary layer (TBL) induced sound transmission through the cavity-backed double panels. The aerodynamic model used is based on the Corcos wall pressure distribution. The structural-acoustic model encompasses a source panel (skin panel), coupled through an acoustic cavity to the radiating panel (trim panel). The radiating panel is backed by a larger acoustic enclosure (the back cavity). A feedback control unit is located inside the acoustic cavity between the two panels. It consists of a control force actuator and a sensor mounted at the actuator footprint on the radiating panel. The control actuator can react off the source panel. It is driven by an amplified velocity signal measured by the sensor. A fully coupled analytical structural-acoustic model is developed to study the effects of the active control on the sound transmission into the back cavity. The stability and performance of the active control system are firstly studied on a reduced order model. In the reduced order model only two fundamental modes of the fully coupled system are assumed. Secondly, a full order model is considered with a number of modes large enough to yield accurate simulation results up to 1000 Hz. It is shown that convincing reductions of the TBL-induced vibrations of the radiating panel and the sound pressure inside the back cavity can be expected. The reductions are more pronounced for a certain class of systems, which is characterised by the fundamental natural frequency of the skin panel larger than the fundamental natural frequency of the trim panel.

  4. Issues in Humanoid Audition and Sound Source Localization by Active Audition

    NASA Astrophysics Data System (ADS)

    Nakadai, Kazuhiro; Okuno, Hiroshi G.; Kitano, Hiroaki

    In this paper, we present an active audition system which is implemented on the humanoid robot "SIG the humanoid". The audition system for highly intelligent humanoids localizes sound sources and recognizes auditory events in the auditory scene. Active audition reported in this paper enables SIG to track sources by integrating audition, vision, and motor movements. Given the multiple sound sources in the auditory scene, SIG actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. However, such an active head movement inevitably creates motor noises.The system adaptively cancels motor noises using motor control signals and the cover acoustics. The experimental result demonstrates that active audition by integration of audition, vision, and motor control attains sound source tracking in variety of conditions.onditions.

  5. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators.

    PubMed

    Sanada, Akira; Tanaka, Nobuo

    2012-08-01

    This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.

  6. Controlling sound radiation through an opening with secondary loudspeakers along its boundaries.

    PubMed

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun

    2017-10-17

    We propose a virtual sound barrier system that blocks sound transmission through openings without affecting access, light and air circulation. The proposed system applies active control technique to cancel sound transmission with a double layered loudspeaker array at the edge of the opening. Unlike traditional transparent glass windows, recently invented double-glazed ventilation windows and planar active sound barriers or any other metamaterials designed to reduce sound transmission, secondary loudspeakers are put only along the boundaries of the opening, which provides the possibility to make it invisible. Simulation and experimental results demonstrate its feasibility for broadband sound control, especially for low frequency sound which is usually hard to attenuate with existing methods.

  7. Quadratic Optimization in the Problems of Active Control of Sound

    NASA Technical Reports Server (NTRS)

    Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).

  8. Shaping reverberating sound fields with an actively tunable metasurface.

    PubMed

    Ma, Guancong; Fan, Xiying; Sheng, Ping; Fink, Mathias

    2018-06-26

    A reverberating environment is a common complex medium for airborne sound, with familiar examples such as music halls and lecture theaters. The complexity of reverberating sound fields has hindered their meaningful control. Here, by combining acoustic metasurface and adaptive wavefield shaping, we demonstrate the versatile control of reverberating sound fields in a room. This is achieved through the design and the realization of a binary phase-modulating spatial sound modulator that is based on an actively reconfigurable acoustic metasurface. We demonstrate useful functionalities including the creation of quiet zones and hotspots in a typical reverberating environment. Copyright © 2018 the Author(s). Published by PNAS.

  9. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    NASA Astrophysics Data System (ADS)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  10. Mathematically trivial control of sound using a parametric beam focusing source.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2011-01-01

    By exploiting a case regarded as trivial, this paper presents global active noise control using a parametric beam focusing source (PBFS). As with a dipole model, one is used for a primary sound source and the other for a control sound source, the control effect for minimizing a total acoustic power depends on the distance between the two. When the distance becomes zero, the total acoustic power becomes null, hence nothing less than a trivial case. Because of the constraints in practice, there exist difficulties in placing a control source close enough to a primary source. However, by projecting a sound beam of a parametric array loudspeaker onto the target sound source (primary source), a virtual sound source may be created on the target sound source, thereby enabling the collocation of the sources. In order to further ensure feasibility of the trivial case, a PBFS is then introduced in an effort to meet the size of the two sources. Reflected sound wave of the PBFS, which is tantamount to the virtual sound source output, aims to suppress the primary sound. Finally, a numerical analysis as well as an experiment is conducted, verifying the validity of the proposed methodology.

  11. Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin

    2016-06-01

    This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.

  12. Decentralized Control of Sound Radiation using a High-Authority/Low-Authority Control Strategy with Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2008-01-01

    This paper describes a combined control strategy designed to reduce sound radiation from stiffened aircraft-style panels. The control architecture uses robust active damping in addition to high-authority linear quadratic Gaussian (LQG) control. Active damping is achieved using direct velocity feedback with triangularly shaped anisotropic actuators and point velocity sensors. While active damping is simple and robust, stability is guaranteed at the expense of performance. Therefore the approach is often referred to as low-authority control. In contrast, LQG control strategies can achieve substantial reductions in sound radiation. Unfortunately, the unmodeled interaction between neighboring control units can destabilize decentralized control systems. Numerical simulations show that combining active damping and decentralized LQG control can be beneficial. In particular, augmenting the in-bandwidth damping supplements the performance of the LQG control strategy and reduces the destabilizing interaction between neighboring control units.

  13. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  14. Experimental active control of sound in the ATR 42

    NASA Astrophysics Data System (ADS)

    Paonessa, A.; Sollo, A.; Paxton, M.; Purver, M.; Ross, C. F.

    Passenger comfort is becoming day by day an important issue for the market of the regional turboprop aircraft and also for the future high speed propeller driven aircraft. In these aircraft the main contribution to the passenger annoyance is due to the propeller noise blade passing frequency (BPF) and its harmonics. In the recent past a detailed theoretical and experimental work has been done by Alenia Aeronautica in order to reduce the noise level in the ATR aircraft passenger cabin by means of conventional passive treatments: synchrophasing of propellers, dynamic vibration absorbers, structural reinforcements, damping materials. The application of these treatments has been introduced on production aircraft with a remarkable improvement of noise comfort but with a significant weight increase. For these reasons, a major technology step is required for reaching passenger comfort comparable to that of jet aircraft with the minimum weight increase. The most suitable approach to this problem has been envisaged in the active noise control which consists in generating an anti-sound field in the passenger cabin to reduce the noise at propeller BPF and its harmonics. The attenuation is reached by means of a control system which acquires information about the cabin noise distribution and the propeller speed during flight and simultaneously generates the signals to drive the speakers.

  15. Active control of sound transmission through a rectangular panel using point-force actuators and piezoelectric film sensors.

    PubMed

    Sanada, Akira; Higashiyama, Kouji; Tanaka, Nobuo

    2015-01-01

    This study deals with the active control of sound transmission through a rectangular panel, based on single input, single output feedforward vibration control using point-force actuators and piezoelectric film sensors. It focuses on the phenomenon in which the sound power transmitted through a finite-sized panel drops significantly at some frequencies just below the resonance frequencies of the panel in the low-frequency range as a result of modal coupling cancellation. In a previous study, it was shown that when point-force actuators are located on nodal lines for the frequency at which this phenomenon occurs, a force equivalent to the incident sound wave can act on the panel. In this study, a practical method for sensing volume velocity using a small number of piezoelectric film strips is investigated. It is found that two quadratically shaped piezoelectric film strips, attached at the same nodal lines as those where the actuators were placed, can sense the volume velocity approximately in the low-frequency range. Results of simulations show that combining the proposed actuation method and the sensing method can achieve a practical control effect at low frequencies over a wide frequency range. Finally, experiments are carried out to demonstrate the validity and feasibility of the proposed method.

  16. Toward Inverse Control of Physics-Based Sound Synthesis

    NASA Astrophysics Data System (ADS)

    Pfalz, A.; Berdahl, E.

    2017-05-01

    Long Short-Term Memory networks (LSTMs) can be trained to realize inverse control of physics-based sound synthesizers. Physics-based sound synthesizers simulate the laws of physics to produce output sound according to input gesture signals. When a user's gestures are measured in real time, she or he can use them to control physics-based sound synthesizers, thereby creating simulated virtual instruments. An intriguing question is how to program a computer to learn to play such physics-based models. This work demonstrates that LSTMs can be trained to accomplish this inverse control task with four physics-based sound synthesizers.

  17. Application of sound and temperature to control boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.

    1987-01-01

    The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.

  18. Active localization of virtual sounds

    NASA Technical Reports Server (NTRS)

    Loomis, Jack M.; Hebert, C.; Cicinelli, J. G.

    1991-01-01

    We describe a virtual sound display built around a 12 MHz 80286 microcomputer and special purpose analog hardware. The display implements most of the primary cues for sound localization in the ear-level plane. Static information about direction is conveyed by interaural time differences and, for frequencies above 1800 Hz, by head sound shadow (interaural intensity differences) and pinna sound shadow. Static information about distance is conveyed by variation in sound pressure (first power law) for all frequencies, by additional attenuation in the higher frequencies (simulating atmospheric absorption), and by the proportion of direct to reverberant sound. When the user actively locomotes, the changing angular position of the source occasioned by head rotations provides further information about direction and the changing angular velocity produced by head translations (motion parallax) provides further information about distance. Judging both from informal observations by users and from objective data obtained in an experiment on homing to virtual and real sounds, we conclude that simple displays such as this are effective in creating the perception of external sounds to which subjects can home with accuracy and ease.

  19. Brain responses to sound intensity changes dissociate depressed participants and healthy controls.

    PubMed

    Ruohonen, Elisa M; Astikainen, Piia

    2017-07-01

    Depression is associated with bias in emotional information processing, but less is known about the processing of neutral sensory stimuli. Of particular interest is processing of sound intensity which is suggested to indicate central serotonergic function. We tested weather event-related brain potentials (ERPs) to occasional changes in sound intensity can dissociate first-episode depressed, recurrent depressed and healthy control participants. The first-episode depressed showed larger N1 amplitude to deviant sounds compared to recurrent depression group and control participants. In addition, both depression groups, but not the control group, showed larger N1 amplitude to deviant than standard sounds. Whether these manifestations of sensory over-excitability in depression are directly related to the serotonergic neurotransmission requires further research. The method based on ERPs to sound intensity change is fast and low-cost way to objectively measure brain activation and holds promise as a future diagnostic tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    NASA Astrophysics Data System (ADS)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  1. Salient sounds activate human visual cortex automatically.

    PubMed

    McDonald, John J; Störmer, Viola S; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A

    2013-05-22

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, this study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2-4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of colocalized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task.

  2. Modular and Adaptive Control of Sound Processing

    NASA Astrophysics Data System (ADS)

    van Nort, Douglas

    This dissertation presents research into the creation of systems for the control of sound synthesis and processing. The focus differs from much of the work related to digital musical instrument design, which has rightly concentrated on the physicality of the instrument and interface: sensor design, choice of controller, feedback to performer and so on. Often times a particular choice of sound processing is made, and the resultant parameters from the physical interface are conditioned and mapped to the available sound parameters in an exploratory fashion. The main goal of the work presented here is to demonstrate the importance of the space that lies between physical interface design and the choice of sound manipulation algorithm, and to present a new framework for instrument design that strongly considers this essential part of the design process. In particular, this research takes the viewpoint that instrument designs should be considered in a musical control context, and that both control and sound dynamics must be considered in tandem. In order to achieve this holistic approach, the work presented in this dissertation assumes complementary points of view. Instrument design is first seen as a function of musical context, focusing on electroacoustic music and leading to a view on gesture that relates perceived musical intent to the dynamics of an instrumental system. The important design concept of mapping is then discussed from a theoretical and conceptual point of view, relating perceptual, systems and mathematically-oriented ways of examining the subject. This theoretical framework gives rise to a mapping design space, functional analysis of pertinent existing literature, implementations of mapping tools, instrumental control designs and several perceptual studies that explore the influence of mapping structure. Each of these reflect a high-level approach in which control structures are imposed on top of a high-dimensional space of control and sound synthesis

  3. Salient sounds activate human visual cortex automatically

    PubMed Central

    McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.

    2013-01-01

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530

  4. Experimental Simulation of Active Control With On-line System Identification on Sound Transmission Through an Elastic Plate

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification is not required. A time-varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time-varying system consists of a stainless-steel plate which is bolted down on a rigid cavity opening where the cavity depth was changed with respect to time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. First, all the water was drained, the external disturbance frequency is swept with 1 Hz/sec. The result shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the water level is initially empty and then raised to 3/20 full in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreases and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.

  5. Sounds activate visual cortex and improve visual discrimination.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2014-07-16

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.

  6. Sounds Activate Visual Cortex and Improve Visual Discrimination

    PubMed Central

    Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.

    2014-01-01

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419

  7. Active noise control using a steerable parametric array loudspeaker.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2010-06-01

    Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.

  8. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  9. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential

  10. 40 CFR 81.32 - Puget Sound Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puget Sound Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.32 Puget Sound Intrastate Air Quality Control Region. The Puget Sound...

  11. 40 CFR 81.32 - Puget Sound Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Puget Sound Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.32 Puget Sound Intrastate Air Quality Control Region. The Puget Sound...

  12. 40 CFR 81.32 - Puget Sound Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Puget Sound Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.32 Puget Sound Intrastate Air Quality Control Region. The Puget Sound...

  13. 40 CFR 81.32 - Puget Sound Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Puget Sound Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.32 Puget Sound Intrastate Air Quality Control Region. The Puget Sound...

  14. 40 CFR 81.32 - Puget Sound Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Puget Sound Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.32 Puget Sound Intrastate Air Quality Control Region. The Puget Sound...

  15. Sound, Noise, and Vibration Control.

    ERIC Educational Resources Information Center

    Yerges, Lyle F.

    This working guide on the principles and techniques of controlling acoustical environment is discussed in the light of human, environmental and building needs. The nature of sound and its variables are defined. The acoustical environment and its many materials, spaces and functional requirements are described, with specific methods for planning,…

  16. Interaction Metrics for Feedback Control of Sound Radiation from Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Cox, David E.; Gibbs, Gary P.

    2003-01-01

    Interaction metrics developed for the process control industry are used to evaluate decentralized control of sound radiation from bays on an aircraft fuselage. The metrics are applied to experimentally measured frequency response data from a model of an aircraft fuselage. The purpose is to understand how coupling between multiple bays of the fuselage can destabilize or limit the performance of a decentralized active noise control system. The metrics quantitatively verify observations from a previous experiment, in which decentralized controllers performed worse than centralized controllers. The metrics do not appear to be useful for explaining control spillover which was observed in a previous experiment.

  17. Loud and angry: sound intensity modulates amygdala activation to angry voices in social anxiety disorder

    PubMed Central

    Simon, Doerte; Becker, Michael; Mothes-Lasch, Martin; Miltner, Wolfgang H.R.

    2017-01-01

    Abstract Angry expressions of both voices and faces represent disorder-relevant stimuli in social anxiety disorder (SAD). Although individuals with SAD show greater amygdala activation to angry faces, previous work has failed to find comparable effects for angry voices. Here, we investigated whether voice sound-intensity, a modulator of a voice’s threat-relevance, affects brain responses to angry prosody in SAD. We used event-related functional magnetic resonance imaging to explore brain responses to voices varying in sound intensity and emotional prosody in SAD patients and healthy controls (HCs). Angry and neutral voices were presented either with normal or high sound amplitude, while participants had to decide upon the speaker’s gender. Loud vs normal voices induced greater insula activation, and angry vs neutral prosody greater orbitofrontal cortex activation in SAD as compared with HC subjects. Importantly, an interaction of sound intensity, prosody and group was found in the insula and the amygdala. In particular, the amygdala showed greater activation to loud angry voices in SAD as compared with HC subjects. This finding demonstrates a modulating role of voice sound-intensity on amygdalar hyperresponsivity to angry prosody in SAD and suggests that abnormal processing of interpersonal threat signals in amygdala extends beyond facial expressions in SAD. PMID:27651541

  18. Source sparsity control of sound field reproduction using the elastic-net and the lasso minimizers.

    PubMed

    Gauthier, P-A; Lecomte, P; Berry, A

    2017-04-01

    Sound field reproduction is aimed at the reconstruction of a sound pressure field in an extended area using dense loudspeaker arrays. In some circumstances, sound field reproduction is targeted at the reproduction of a sound field captured using microphone arrays. Although methods and algorithms already exist to convert microphone array recordings to loudspeaker array signals, one remaining research question is how to control the spatial sparsity in the resulting loudspeaker array signals and what would be the resulting practical advantages. Sparsity is an interesting feature for spatial audio since it can drastically reduce the number of concurrently active reproduction sources and, therefore, increase the spatial contrast of the solution at the expense of a difference between the target and reproduced sound fields. In this paper, the application of the elastic-net cost function to sound field reproduction is compared to the lasso cost function. It is shown that the elastic-net can induce solution sparsity and overcomes limitations of the lasso: The elastic-net solves the non-uniqueness of the lasso solution, induces source clustering in the sparse solution, and provides a smoother solution within the activated source clusters.

  19. Sound control by temperature gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Dehesa, José; Angelov, Mitko I.; Cervera, Francisco; Cai, Liang-Wu

    2009-11-01

    This work reports experiments showing that airborne sound propagation can be controlled by temperature gradients. A system of two heated tubes is here used to demonstrate the collimation and focusing of an ultrasonic beam by the refractive index profile created by the temperature gradients existing around the tubes. Numerical simulations supporting the experimental findings are also reported.

  20. Active Control Of Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  1. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  2. Loud and angry: sound intensity modulates amygdala activation to angry voices in social anxiety disorder.

    PubMed

    Simon, Doerte; Becker, Michael; Mothes-Lasch, Martin; Miltner, Wolfgang H R; Straube, Thomas

    2017-03-01

    Angry expressions of both voices and faces represent disorder-relevant stimuli in social anxiety disorder (SAD). Although individuals with SAD show greater amygdala activation to angry faces, previous work has failed to find comparable effects for angry voices. Here, we investigated whether voice sound-intensity, a modulator of a voice's threat-relevance, affects brain responses to angry prosody in SAD. We used event-related functional magnetic resonance imaging to explore brain responses to voices varying in sound intensity and emotional prosody in SAD patients and healthy controls (HCs). Angry and neutral voices were presented either with normal or high sound amplitude, while participants had to decide upon the speaker's gender. Loud vs normal voices induced greater insula activation, and angry vs neutral prosody greater orbitofrontal cortex activation in SAD as compared with HC subjects. Importantly, an interaction of sound intensity, prosody and group was found in the insula and the amygdala. In particular, the amygdala showed greater activation to loud angry voices in SAD as compared with HC subjects. This finding demonstrates a modulating role of voice sound-intensity on amygdalar hyperresponsivity to angry prosody in SAD and suggests that abnormal processing of interpersonal threat signals in amygdala extends beyond facial expressions in SAD. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Control of sound radiation from a wavepacket over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; El Hady, Nabil M.

    1989-01-01

    Active control of acoustic pressure in the far field resulting from the growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is investigated numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. The acoustic far field exhibits directivity type of behavior that points upstream to the flow direction. A fixed control algorithm is used where the attenuation signal is synthesized by a filter which actively adapt it to the amplitude-time response of the outgoing acoustic wave.

  4. Sound-field reproduction in-room using optimal control techniques: simulations in the frequency domain.

    PubMed

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-02-01

    This paper describes the simulations and results obtained when applying optimal control to progressive sound-field reproduction (mainly for audio applications) over an area using multiple monopole loudspeakers. The model simulates a reproduction system that operates either in free field or in a closed space approaching a typical listening room, and is based on optimal control in the frequency domain. This rather simple approach is chosen for the purpose of physical investigation, especially in terms of sensing microphones and reproduction loudspeakers configurations. Other issues of interest concern the comparison with wave-field synthesis and the control mechanisms. The results suggest that in-room reproduction of sound field using active control can be achieved with a residual normalized squared error significantly lower than open-loop wave-field synthesis in the same situation. Active reproduction techniques have the advantage of automatically compensating for the room's natural dynamics. For the considered cases, the simulations show that optimal control results are not sensitive (in terms of reproduction error) to wall absorption in the reproduction room. A special surrounding configuration of sensors is introduced for a sensor-free listening area in free field.

  5. Controlled sound field with a dual layer loudspeaker array

    NASA Astrophysics Data System (ADS)

    Shin, Mincheol; Fazi, Filippo M.; Nelson, Philip A.; Hirono, Fabio C.

    2014-08-01

    Controlled sound interference has been extensively investigated using a prototype dual layer loudspeaker array comprised of 16 loudspeakers. Results are presented for measures of array performance such as input signal power, directivity of sound radiation and accuracy of sound reproduction resulting from the application of conventional control methods such as minimization of error in mean squared pressure, maximization of energy difference and minimization of weighted pressure error and energy. Procedures for selecting the tuning parameters have also been introduced. With these conventional concepts aimed at the production of acoustically bright and dark zones, all the control methods used require a trade-off between radiation directivity and reproduction accuracy in the bright zone. An alternative solution is proposed which can achieve better performance based on the measures presented simultaneously by inserting a low priority zone named as the “gray” zone. This involves the weighted minimization of mean-squared errors in both bright and dark zones together with the gray zone in which the minimization error is given less importance. This results in the production of directional bright zone in which the accuracy of sound reproduction is maintained with less required input power. The results of simulations and experiments are shown to be in excellent agreement.

  6. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus.

    PubMed

    Xiong, Xiaorui R; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A; Tao, Huizhong W; Zhang, Li I

    2015-06-11

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities.

  7. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus

    PubMed Central

    Xiong, Xiaorui R.; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A.; Tao, Huizhong W.; Zhang, Li I.

    2015-01-01

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. PMID:26068082

  8. Different categories of living and non-living sound-sources activate distinct cortical networks

    PubMed Central

    Engel, Lauren R.; Frum, Chris; Puce, Aina; Walker, Nathan A.; Lewis, James W.

    2009-01-01

    With regard to hearing perception, it remains unclear as to whether, or the extent to which, different conceptual categories of real-world sounds and related categorical knowledge are differentially represented in the brain. Semantic knowledge representations are reported to include the major divisions of living versus non-living things, plus more specific categories including animals, tools, biological motion, faces, and places—categories typically defined by their characteristic visual features. Here, we used functional magnetic resonance imaging (fMRI) to identify brain regions showing preferential activity to four categories of action sounds, which included non-vocal human and animal actions (living), plus mechanical and environmental sound-producing actions (non-living). The results showed a striking antero-posterior division in cortical representations for sounds produced by living versus non-living sources. Additionally, there were several significant differences by category, depending on whether the task was category-specific (e.g. human or not) versus non-specific (detect end-of-sound). In general, (1) human-produced sounds yielded robust activation in the bilateral posterior superior temporal sulci independent of task. Task demands modulated activation of left-lateralized fronto-parietal regions, bilateral insular cortices, and subcortical regions previously implicated in observation-execution matching, consistent with “embodied” and mirror-neuron network representations subserving recognition. (2) Animal action sounds preferentially activated the bilateral posterior insulae. (3) Mechanical sounds activated the anterior superior temporal gyri and parahippocampal cortices. (4) Environmental sounds preferentially activated dorsal occipital and medial parietal cortices. Overall, this multi-level dissociation of networks for preferentially representing distinct sound-source categories provides novel support for grounded cognition models that may

  9. Interior sound field control using generalized singular value decomposition in the frequency domain.

    PubMed

    Pasco, Yann; Gauthier, Philippe-Aubert; Berry, Alain; Moreau, Stéphane

    2017-01-01

    The problem of controlling a sound field inside a region surrounded by acoustic control sources is considered. Inspired by the Kirchhoff-Helmholtz integral, the use of double-layer source arrays allows such a control and avoids the modification of the external sound field by the control sources by the approximation of the sources as monopole and radial dipole transducers. However, the practical implementation of the Kirchhoff-Helmholtz integral in physical space leads to large numbers of control sources and error sensors along with excessive controller complexity in three dimensions. The present study investigates the potential of the Generalized Singular Value Decomposition (GSVD) to reduce the controller complexity and separate the effect of control sources on the interior and exterior sound fields, respectively. A proper truncation of the singular basis provided by the GSVD factorization is shown to lead to effective cancellation of the interior sound field at frequencies below the spatial Nyquist frequency of the control sources array while leaving the exterior sound field almost unchanged. Proofs of concept are provided through simulations achieved for interior problems by simulations in a free field scenario with circular arrays and in a reflective environment with square arrays.

  10. A Functional Neuroimaging Study of Sound Localization: Visual Cortex Activity Predicts Performance in Early-Blind Individuals

    PubMed Central

    Gougoux, Frédéric; Zatorre, Robert J; Lassonde, Maryse; Voss, Patrice

    2005-01-01

    Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life. PMID:15678166

  11. Active noise control using a distributed mode flat panel loudspeaker.

    PubMed

    Zhu, H; Rajamani, R; Dudney, J; Stelson, K A

    2003-07-01

    A flat panel distributed mode loudspeaker (DML) has many advantages over traditional cone speakers in terms of its weight, size, and durability. However, its frequency response is uneven and complex, thus bringing its suitability for active noise control (ANC) under question. This paper presents experimental results demonstrating the effective use of panel DML speakers in an ANC application. Both feedback and feedforward control techniques are considered. Effective feedback control with a flat panel speaker could open up a whole range of new noise control applications and has many advantages over feedforward control. The paper develops a new control algorithm to attenuate tonal noise of a known frequency by feedback control. However, due to the uneven response of the speakers, feedback control is found to be only moderately effective even for this narrow-band application. Feedforward control proves to be most capable for the flat panel speaker. Using feedforward control, the sound pressure level can be significantly reduced in close proximity to an error microphone. The paper demonstrates an interesting application of the flat panel in which the panel is placed in the path of sound and effectively used to block sound transmission using feedforward control. This is a new approach to active noise control enabled by the use of flat panels and can be used to prevent sound from entering into an enclosure in the first place rather than the traditional approach of attempting to cancel sound after it enters the enclosure.

  12. A double-panel active segmented partition module using decoupled analog feedback controllers: numerical model.

    PubMed

    Sagers, Jason D; Leishman, Timothy W; Blotter, Jonathan D

    2009-06-01

    Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.

  13. Decentralized control of sound radiation using iterative loop recovery.

    PubMed

    Schiller, Noah H; Cabell, Randolph H; Fuller, Chris R

    2010-10-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  14. Decentralized Control of Sound Radiation Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2009-01-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  15. Maintenance of neuronal size gradient in MNTB requires sound-evoked activity.

    PubMed

    Weatherstone, Jessica H; Kopp-Scheinpflug, Conny; Pilati, Nadia; Wang, Yuan; Forsythe, Ian D; Rubel, Edwin W; Tempel, Bruce L

    2017-02-01

    The medial nucleus of the trapezoid body (MNTB) is an important source of inhibition during the computation of sound location. It transmits fast and precisely timed action potentials at high frequencies; this requires an efficient calcium clearance mechanism, in which plasma membrane calcium ATPase 2 (PMCA2) is a key component. Deafwaddler ( dfw 2J ) mutant mice have a null mutation in PMCA2 causing deafness in homozygotes ( dfw 2J / dfw 2J ) and high-frequency hearing loss in heterozygotes (+/ dfw 2J ). Despite the deafness phenotype, no significant differences in MNTB volume or cell number were observed in dfw 2J homozygous mutants, suggesting that PMCA2 is not required for MNTB neuron survival. The MNTB tonotopic axis encodes high to low sound frequencies across the medial to lateral dimension. We discovered a cell size gradient along this axis: lateral neuronal somata are significantly larger than medially located somata. This size gradient is decreased in +/ dfw 2J and absent in dfw 2J / dfw 2J The lack of acoustically driven input suggests that sound-evoked activity is required for maintenance of the cell size gradient. This hypothesis was corroborated by selective elimination of auditory hair cell activity with either hair cell elimination in Pou4f3 DTR mice or inner ear tetrodotoxin (TTX) treatment. The change in soma size was reversible and recovered within 7 days of TTX treatment, suggesting that regulation of the gradient is dependent on synaptic activity and that these changes are plastic rather than permanent. NEW & NOTEWORTHY Neurons of the medial nucleus of the trapezoid body (MNTB) act as fast-spiking inhibitory interneurons within the auditory brain stem. The MNTB is topographically organized, with low sound frequencies encoded laterally and high frequencies medially. We discovered a cell size gradient along this axis: lateral neurons are larger than medial neurons. The absence of this gradient in deaf mice lacking plasma membrane calcium ATPase 2

  16. Effect of sound-related activities on human behaviours and acoustic comfort in urban open spaces.

    PubMed

    Meng, Qi; Kang, Jian

    2016-12-15

    Human activities are important to landscape design and urban planning; however, the effect of sound-related activities on human behaviours and acoustic comfort has not been considered. The objective of this study is to explore how human behaviours and acoustic comfort in urban open spaces can be changed by sound-related activities. On-site measurements were performed at a case study site in Harbin, China, and an acoustic comfort survey was simultaneously conducted. In terms of effect of sound activities on human behaviours, music-related activities caused 5.1-21.5% of persons who pass by the area to stand and watch the activity, while there was a little effect on the number of persons who performed excises during the activity. Human activities generally have little effect on the behaviour of pedestrians when only 1 to 3 persons are involved in the activities, while a deep effect on the behaviour of pedestrians is noted when >6 persons are involved in the activities. In terms of effect of activities on acoustic comfort, music-related activities can increase the sound level from 10.8 to 16.4dBA, while human activities such RS and PC can increase the sound level from 9.6 to 12.8dBA; however, they lead to very different acoustic comfort. The acoustic comfort of persons can differ with activities, for example the acoustic comfort of persons who stand watch can increase by music-related activities, while the acoustic comfort of persons who sit and watch can decrease by human sound-related activities. Some sound-related activities can show opposite trend of acoustic comfort between visitors and citizens. Persons with higher income prefer music sound-related activities, while those with lower income prefer human sound-related activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Astrophysics Data System (ADS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  18. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Technical Reports Server (NTRS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    1993-01-01

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  19. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  20. Cortical Activation Patterns Evoked by Temporally Asymmetric Sounds and Their Modulation by Learning

    PubMed Central

    Horikawa, Junsei

    2017-01-01

    When complex sounds are reversed in time, the original and reversed versions are perceived differently in spectral and temporal dimensions despite their identical duration and long-term spectrum-power profiles. Spatiotemporal activation patterns evoked by temporally asymmetric sound pairs demonstrate how the temporal envelope determines the readout of the spectrum. We examined the patterns of activation evoked by a temporally asymmetric sound pair in the primary auditory field (AI) of anesthetized guinea pigs and determined how discrimination training modified these patterns. Optical imaging using a voltage-sensitive dye revealed that a forward ramped-down natural sound (F) consistently evoked much stronger responses than its time-reversed, ramped-up counterpart (revF). The spatiotemporal maximum peak (maxP) of F-evoked activation was always greater than that of revF-evoked activation, and these maxPs were significantly separated within the AI. Although discrimination training did not affect the absolute magnitude of these maxPs, the revF-to-F ratio of the activation peaks calculated at the location where hemispheres were maximally activated (i.e., F-evoked maxP) was significantly smaller in the trained group. The F-evoked activation propagated across the AI along the temporal axis to the ventroanterior belt field (VA), with the local activation peak within the VA being significantly larger in the trained than in the naïve group. These results suggest that the innate network is more responsive to natural sounds of ramped-down envelopes than their time-reversed, unnatural sounds. The VA belt field activation might play an important role in emotional learning of sounds through its connections with amygdala. PMID:28451640

  1. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    NASA Astrophysics Data System (ADS)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  2. Radiometric sounding system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making suchmore » measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.« less

  3. Activation of auditory cortex by anticipating and hearing emotional sounds: an MEG study.

    PubMed

    Yokosawa, Koichi; Pamilo, Siina; Hirvenkari, Lotta; Hari, Riitta; Pihko, Elina

    2013-01-01

    To study how auditory cortical processing is affected by anticipating and hearing of long emotional sounds, we recorded auditory evoked magnetic fields with a whole-scalp MEG device from 15 healthy adults who were listening to emotional or neutral sounds. Pleasant, unpleasant, or neutral sounds, each lasting for 6 s, were played in a random order, preceded by 100-ms cue tones (0.5, 1, or 2 kHz) 2 s before the onset of the sound. The cue tones, indicating the valence of the upcoming emotional sounds, evoked typical transient N100m responses in the auditory cortex. During the rest of the anticipation period (until the beginning of the emotional sound), auditory cortices of both hemispheres generated slow shifts of the same polarity as N100m. During anticipation, the relative strengths of the auditory-cortex signals depended on the upcoming sound: towards the end of the anticipation period the activity became stronger when the subject was anticipating emotional rather than neutral sounds. During the actual emotional and neutral sounds, sustained fields were predominant in the left hemisphere for all sounds. The measured DC MEG signals during both anticipation and hearing of emotional sounds implied that following the cue that indicates the valence of the upcoming sound, the auditory-cortex activity is modulated by the upcoming sound category during the anticipation period.

  4. Activation of Auditory Cortex by Anticipating and Hearing Emotional Sounds: An MEG Study

    PubMed Central

    Yokosawa, Koichi; Pamilo, Siina; Hirvenkari, Lotta; Hari, Riitta; Pihko, Elina

    2013-01-01

    To study how auditory cortical processing is affected by anticipating and hearing of long emotional sounds, we recorded auditory evoked magnetic fields with a whole-scalp MEG device from 15 healthy adults who were listening to emotional or neutral sounds. Pleasant, unpleasant, or neutral sounds, each lasting for 6 s, were played in a random order, preceded by 100-ms cue tones (0.5, 1, or 2 kHz) 2 s before the onset of the sound. The cue tones, indicating the valence of the upcoming emotional sounds, evoked typical transient N100m responses in the auditory cortex. During the rest of the anticipation period (until the beginning of the emotional sound), auditory cortices of both hemispheres generated slow shifts of the same polarity as N100m. During anticipation, the relative strengths of the auditory-cortex signals depended on the upcoming sound: towards the end of the anticipation period the activity became stronger when the subject was anticipating emotional rather than neutral sounds. During the actual emotional and neutral sounds, sustained fields were predominant in the left hemisphere for all sounds. The measured DC MEG signals during both anticipation and hearing of emotional sounds implied that following the cue that indicates the valence of the upcoming sound, the auditory-cortex activity is modulated by the upcoming sound category during the anticipation period. PMID:24278270

  5. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  6. Topological sound in active-liquid metamaterials

    NASA Astrophysics Data System (ADS)

    Souslov, Anton

    Active liquids can flow spontaneously even in the absence of an external drive. Recently, such liquids have been experimentally realized using molecular, colloidal, or macroscopic self-propelled constituents. Using active liquids as a building material, we lay out design principles for artificial structures termed topological active metamaterials. Such metamaterials break time-reversal symmetry and can be designed using periodic lattices composed of annular channels filled with a spontaneously flowing active liquid. We show that these active metamaterials support topologically protected sound modes that propagate unidirectionally (without backscattering) along either sample edges or domain walls, and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.

  7. Ventilation duct with concurrent acoustic feed-forward and decentralised structural feedback active control

    NASA Astrophysics Data System (ADS)

    Rohlfing, J.; Gardonio, P.

    2014-02-01

    This paper presents theoretical and experimental work on concurrent active noise and vibration control for a ventilation duct. The active noise control system is used to reduce the air-borne noise radiated via the duct outlet whereas the active vibration control system is used to both reduce the structure-borne noise radiated by the duct wall and to minimise the structural feed-through effect that reduces the effectiveness of the active noise control system. An elemental model based on structural mobility functions and acoustic impedance functions has been developed to investigate the principal effects and limitations of feed-forward active noise control and decentralised velocity feedback vibration control. The principal simulation results have been contrasted and validated with measurements taken on a laboratory duct set-up, equipped with an active noise control system and a decentralised vibration control system. Both simulations and experimental results show that the air-borne noise radiated from the duct outlet can be significantly attenuated using the feed-forward active noise control. In the presence of structure-borne noise the performance of the active noise control system is impaired by a structure-borne feed-through effect. Also the sound radiation from the duct wall is increased. In this case, if the active noise control is combined with a concurrent active vibration control system, the sound radiation by the duct outlet is further reduced and the sound radiation from the duct wall at low frequencies reduces noticeably.

  8. Superior Analgesic Effect of an Active Distraction versus Pleasant Unfamiliar Sounds and Music: The Influence of Emotion and Cognitive Style

    PubMed Central

    Garza Villarreal, Eduardo A.; Brattico, Elvira; Vase, Lene; Østergaard, Leif; Vuust, Peter

    2012-01-01

    Listening to music has been found to reduce acute and chronic pain. The underlying mechanisms are poorly understood; however, emotion and cognitive mechanisms have been suggested to influence the analgesic effect of music. In this study we investigated the influence of familiarity, emotional and cognitive features, and cognitive style on music-induced analgesia. Forty-eight healthy participants were divided into three groups (empathizers, systemizers and balanced) and received acute pain induced by heat while listening to different sounds. Participants listened to unfamiliar Mozart music rated with high valence and low arousal, unfamiliar environmental sounds with similar valence and arousal as the music, an active distraction task (mental arithmetic) and a control, and rated the pain. Data showed that the active distraction led to significantly less pain than did the music or sounds. Both unfamiliar music and sounds reduced pain significantly when compared to the control condition; however, music was no more effective than sound to reduce pain. Furthermore, we found correlations between pain and emotion ratings. Finally, systemizers reported less pain during the mental arithmetic compared with the other two groups. These findings suggest that familiarity may be key in the influence of the cognitive and emotional mechanisms of music-induced analgesia, and that cognitive styles may influence pain perception. PMID:22242169

  9. Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style.

    PubMed

    Villarreal, Eduardo A Garza; Brattico, Elvira; Vase, Lene; Østergaard, Leif; Vuust, Peter

    2012-01-01

    Listening to music has been found to reduce acute and chronic pain. The underlying mechanisms are poorly understood; however, emotion and cognitive mechanisms have been suggested to influence the analgesic effect of music. In this study we investigated the influence of familiarity, emotional and cognitive features, and cognitive style on music-induced analgesia. Forty-eight healthy participants were divided into three groups (empathizers, systemizers and balanced) and received acute pain induced by heat while listening to different sounds. Participants listened to unfamiliar Mozart music rated with high valence and low arousal, unfamiliar environmental sounds with similar valence and arousal as the music, an active distraction task (mental arithmetic) and a control, and rated the pain. Data showed that the active distraction led to significantly less pain than did the music or sounds. Both unfamiliar music and sounds reduced pain significantly when compared to the control condition; however, music was no more effective than sound to reduce pain. Furthermore, we found correlations between pain and emotion ratings. Finally, systemizers reported less pain during the mental arithmetic compared with the other two groups. These findings suggest that familiarity may be key in the influence of the cognitive and emotional mechanisms of music-induced analgesia, and that cognitive styles may influence pain perception.

  10. Relations among pure-tone sound stimuli, neural activity, and the loudness sensation

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1972-01-01

    Both the physiological and psychological responses to pure-tone sound stimuli are used to derive formulas which: (1) relate the loudness, loudness level, and sound-pressure level of pure tones; (2) apply continuously over most of the acoustic regime, including the loudness threshold; and (3) contain no undetermined coefficients. Some of the formulas are fundamental for calculating the loudness of any sound. Power-law formulas relating the pure-tone sound stimulus, neural activity, and loudness are derived from published data.

  11. 75 FR 38406 - Amendment of Norton Sound Low and Control 1234L Offshore Airspace Areas; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...-0071; Airspace Docket No. 10-AAL-1] RIN 2120-AA66 Amendment of Norton Sound Low and Control 1234L.... SUMMARY: This action modifies the Norton Sound Low and Control 1234L Offshore Airspace Areas in Alaska... rulemaking (NPRM) to modify two Alaskan Offshore Airspace Areas, Norton Sound Low, and Control 1234L (75 FR...

  12. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments.

    PubMed

    Han, Wenjing; Coutinho, Eduardo; Ruan, Huabin; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances.

  13. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    PubMed Central

    Han, Wenjing; Coutinho, Eduardo; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances. PMID:27627768

  14. Active noise control for infant incubators.

    PubMed

    Yu, Xun; Gujjula, Shruthi; Kuo, Sen M

    2009-01-01

    This paper presents an active noise control system for infant incubators. Experimental results show that global noise reduction can be achieved for infant incubator ANC systems. An audio-integration algorithm is presented to introduce a healthy audio (intrauterine) sound with the ANC system to mask the residual noise and soothe the infant. Carbon nanotube based transparent thin film speaker is also introduced in this paper as the actuator for the ANC system to generate the destructive secondary sound, which can significantly save the congested incubator space and without blocking the view of doctors and nurses.

  15. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal

  16. Annoyance resulting from intrusion of aircraft sounds upon various activities

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shepherd, W. T.; Fletcher, J. L.

    1975-01-01

    An experiment was conducted in which subjects were engaged in TV viewing, telephone listening, or reverie (no activity) for a 1/2-hour session. During the session, they were exposed to a series of recorded aircraft sounds at the rate of one flight every 2 minutes. Within each session, four levels of flyover noise, separated by dB increments, were presented several times in a Latin Square balanced sequence. The peak level of the noisiest flyover in any session was fixed at 95, 90, 85, 75, or 70 dBA. At the end of the test session, subjects recorded their responses to the aircraft sounds, using a bipolar scale which covered the range from very pleasant to extremely annoying. Responses to aircraft noises were found to be significantly affected by the particular activity in which the subjects were engaged. Not all subjects found the aircraft sounds to be annoying.

  17. DETECTION AND IDENTIFICATION OF SPEECH SOUNDS USING CORTICAL ACTIVITY PATTERNS

    PubMed Central

    Centanni, T.M.; Sloan, A.M.; Reed, A.C.; Engineer, C.T.; Rennaker, R.; Kilgard, M.P.

    2014-01-01

    We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/sec), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech processing disorders. PMID:24286757

  18. Scanning silence: mental imagery of complex sounds.

    PubMed

    Bunzeck, Nico; Wuestenberg, Torsten; Lutz, Kai; Heinze, Hans-Jochen; Jancke, Lutz

    2005-07-15

    In this functional magnetic resonance imaging (fMRI) study, we investigated the neural basis of mental auditory imagery of familiar complex sounds that did not contain language or music. In the first condition (perception), the subjects watched familiar scenes and listened to the corresponding sounds that were presented simultaneously. In the second condition (imagery), the same scenes were presented silently and the subjects had to mentally imagine the appropriate sounds. During the third condition (control), the participants watched a scrambled version of the scenes without sound. To overcome the disadvantages of the stray acoustic scanner noise in auditory fMRI experiments, we applied sparse temporal sampling technique with five functional clusters that were acquired at the end of each movie presentation. Compared to the control condition, we found bilateral activations in the primary and secondary auditory cortices (including Heschl's gyrus and planum temporale) during perception of complex sounds. In contrast, the imagery condition elicited bilateral hemodynamic responses only in the secondary auditory cortex (including the planum temporale). No significant activity was observed in the primary auditory cortex. The results show that imagery and perception of complex sounds that do not contain language or music rely on overlapping neural correlates of the secondary but not primary auditory cortex.

  19. A taste for words and sounds: a case of lexical-gustatory and sound-gustatory synesthesia

    PubMed Central

    Colizoli, Olympia; Murre, Jaap M. J.; Rouw, Romke

    2013-01-01

    Gustatory forms of synesthesia involve the automatic and consistent experience of tastes that are triggered by non-taste related inducers. We present a case of lexical-gustatory and sound-gustatory synesthesia within one individual, SC. Most words and a subset of non-linguistic sounds induce the experience of taste, smell and physical sensations for SC. SC's lexical-gustatory associations were significantly more consistent than those of a group of controls. We tested for effects of presentation modality (visual vs. auditory), taste-related congruency, and synesthetic inducer-concurrent direction using a priming task. SC's performance did not differ significantly from a trained control group. We used functional magnetic resonance imaging to investigate the neural correlates of SC's synesthetic experiences by comparing her brain activation to the literature on brain networks related to language, music, and sound processing, in addition to synesthesia. Words that induced a strong taste were contrasted to words that induced weak-to-no tastes (“tasty” vs. “tasteless” words). Brain activation was also measured during passive listening to music and environmental sounds. Brain activation patterns showed evidence that two regions are implicated in SC's synesthetic experience of taste and smell: the left anterior insula and left superior parietal lobe. Anterior insula activation may reflect the synesthetic taste experience. The superior parietal lobe is proposed to be involved in binding sensory information across sub-types of synesthetes. We conclude that SC's synesthesia is genuine and reflected in her brain activation. The type of inducer (visual-lexical, auditory-lexical, and non-lexical auditory stimuli) could be differentiated based on patterns of brain activity. PMID:24167497

  20. Design of virtual three-dimensional instruments for sound control

    NASA Astrophysics Data System (ADS)

    Mulder, Axel Gezienus Elith

    An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object

  1. Activity in Human Auditory Cortex Represents Spatial Separation Between Concurrent Sounds.

    PubMed

    Shiell, Martha M; Hausfeld, Lars; Formisano, Elia

    2018-05-23

    The primary and posterior auditory cortex (AC) are known for their sensitivity to spatial information, but how this information is processed is not yet understood. AC that is sensitive to spatial manipulations is also modulated by the number of auditory streams present in a scene (Smith et al., 2010), suggesting that spatial and nonspatial cues are integrated for stream segregation. We reasoned that, if this is the case, then it is the distance between sounds rather than their absolute positions that is essential. To test this hypothesis, we measured human brain activity in response to spatially separated concurrent sounds with fMRI at 7 tesla in five men and five women. Stimuli were spatialized amplitude-modulated broadband noises recorded for each participant via in-ear microphones before scanning. Using a linear support vector machine classifier, we investigated whether sound location and/or location plus spatial separation between sounds could be decoded from the activity in Heschl's gyrus and the planum temporale. The classifier was successful only when comparing patterns associated with the conditions that had the largest difference in perceptual spatial separation. Our pattern of results suggests that the representation of spatial separation is not merely the combination of single locations, but rather is an independent feature of the auditory scene. SIGNIFICANCE STATEMENT Often, when we think of auditory spatial information, we think of where sounds are coming from-that is, the process of localization. However, this information can also be used in scene analysis, the process of grouping and segregating features of a soundwave into objects. Essentially, when sounds are further apart, they are more likely to be segregated into separate streams. Here, we provide evidence that activity in the human auditory cortex represents the spatial separation between sounds rather than their absolute locations, indicating that scene analysis and localization processes may

  2. Topological sound in active-liquid metamaterials

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; van Zuiden, Benjamin C.; Bartolo, Denis; Vitelli, Vincenzo

    2017-11-01

    Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal or macroscopic constituents. These active liquids can flow spontaneously even in the absence of an external drive. Unlike spontaneous active flow, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field to lay out design principles for artificial structures termed topological active metamaterials. We design metamaterials that break time-reversal symmetry using lattices composed of annular channels filled with a spontaneously flowing active liquid. Such active metamaterials support topologically protected sound modes that propagate unidirectionally, without backscattering, along either sample edges or domain walls and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.

  3. Low-frequency sound affects active micromechanics in the human inner ear

    PubMed Central

    Kugler, Kathrin; Wiegrebe, Lutz; Grothe, Benedikt; Kössl, Manfred; Gürkov, Robert; Krause, Eike; Drexl, Markus

    2014-01-01

    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing. PMID:26064536

  4. Effects of musical expertise on oscillatory brain activity in response to emotional sounds.

    PubMed

    Nolden, Sophie; Rigoulot, Simon; Jolicoeur, Pierre; Armony, Jorge L

    2017-08-01

    Emotions can be conveyed through a variety of channels in the auditory domain, be it via music, non-linguistic vocalizations, or speech prosody. Moreover, recent studies suggest that expertise in one sound category can impact the processing of emotional sounds in other sound categories as they found that musicians process more efficiently emotional musical and vocal sounds than non-musicians. However, the neural correlates of these modulations, especially their time course, are not very well understood. Consequently, we focused here on how the neural processing of emotional information varies as a function of sound category and expertise of participants. Electroencephalogram (EEG) of 20 non-musicians and 17 musicians was recorded while they listened to vocal (speech and vocalizations) and musical sounds. The amplitude of EEG-oscillatory activity in the theta, alpha, beta, and gamma band was quantified and Independent Component Analysis (ICA) was used to identify underlying components of brain activity in each band. Category differences were found in theta and alpha bands, due to larger responses to music and speech than to vocalizations, and in posterior beta, mainly due to differential processing of speech. In addition, we observed greater activation in frontal theta and alpha for musicians than for non-musicians, as well as an interaction between expertise and emotional content of sounds in frontal alpha. The results reflect musicians' expertise in recognition of emotion-conveying music, which seems to also generalize to emotional expressions conveyed by the human voice, in line with previous accounts of effects of expertise on musical and vocal sounds processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluating the performance of active noise control systems in commercial and industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depies, C.; Deneen, S.; Lowe, M.

    1995-06-01

    Active sound cancellation technology is increasingly being used to quiet commercial and industrial air-moving devices. Engineers and designers are implementing active or combination active/passive technology to control sound quality in the workplace and the acoustical environment in residential areas near industrial facilities. Sound level measurements made before and after the installation of active systems have proved that significant improvements in sound quality can be obtained even if there is little or no change in the NC/RC or dBA numbers. Noise produced by centrifugal and vane-axial fans, pumps and blowers, commonly used for ventilation and material movement in industry, are frequentlymore » dominated by high amplitude, tonal noise at low frequencies. And the low-frequency noise produced by commercial air handlers often has less tonal and more broadband characteristics, resulting in audible duct rumble noise and objectionable room spectrums. Because the A-weighting network, which is commonly used for industrial noise measurements, de-emphasizes low frequencies, its single number rating can be misleading in terms of judging the overall subjective sound quality in impacted areas and assessing the effectiveness of noise control measures. Similarly, NC values, traditionally used for commercial HVAC acoustical design criteria, can be governed by noise at any frequency and cannot accurately depict human judgment of the aural comfort level. Analyses of frequency spectrum characteristics provide the most effective means of assessing sound quality and determining mitigative measures for achieving suitable background sound levels.« less

  6. Potential Subjective Effectiveness of Active Interior Noise Control in Propeller Airplanes

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Sullivan, Brenda M.

    2000-01-01

    Active noise control technology offers the potential for weight-efficient aircraft interior noise reduction, particularly for propeller aircraft. However, there is little information on how passengers respond to this type of interior noise control. This paper presents results of two experiments that use sound quality engineering practices to determine the subjective effectiveness of hypothetical active noise control (ANC) systems in a range of propeller aircraft. The two experiments differed by the type of judgments made by the subjects: pair comparisons based on preference in the first and numerical category scaling of noisiness in the second. Although the results of the two experiments were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference. The reductions in subjective response due to the ANC conditions were predicted with reasonable accuracy by reductions in measured loudness level. Inclusion of corrections for the sound quality characteristics of tonality and fluctuation strength in multiple regression models improved the prediction of the ANC effects.

  7. Brain activation during anticipation of sound sequences.

    PubMed

    Leaver, Amber M; Van Lare, Jennifer; Zielinski, Brandon; Halpern, Andrea R; Rauschecker, Josef P

    2009-02-25

    Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive "anticipatory imagery" at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in "training" frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains.

  8. Causal feedforward control of a stochastically excited fuselage structure with active sidewall panel.

    PubMed

    Misol, Malte; Haase, Thomas; Monner, Hans Peter; Sinapius, Michael

    2014-10-01

    This paper provides experimental results of an aircraft-relevant double panel structure mounted in a sound transmission loss facility. The primary structure of the double panel system is excited either by a stochastic point force or by a diffuse sound field synthesized in the reverberation room of the transmission loss facility. The secondary structure, which is connected to the frames of the primary structure, is augmented by actuators and sensors implementing an active feedforward control system. Special emphasis is placed on the causality of the active feedforward control system and its implications on the disturbance rejection at the error sensors. The coherence of the sensor signals is analyzed for the two different disturbance excitations. Experimental results are presented regarding the causality, coherence, and disturbance rejection of the active feedforward control system. Furthermore, the sound transmission loss of the double panel system is evaluated for different configurations of the active system. A principal result of this work is the evidence that it is possible to strongly influence the transmission of stochastic disturbance sources through double panel configurations by means of an active feedforward control system.

  9. Active control of spectral detail radiated by an air-loaded impacted membrane

    NASA Astrophysics Data System (ADS)

    Rollow, J. Douglas, IV

    An active control system is developed to independently operate on the vibration of individual modes of an air-loaded drum head, resulting in changes in the acoustic field radiated from the structure. The timbre of the system is investigated, and techniques for changing the characteristic frequencies by means of the control system are proposed. A feedforward control system is constructed for empirical investigation of this approach, creating a musical instrument which can produce a variety of sounds not available with strictly mechanical systems. The work is motivated by applications for actively controlled structures, active control of sound quality, and musical acoustics. The instrument consists of a Mylar timpano head stretched over an enclosure which has been outfitted with electroacoustic drivers. Sensors are arranged on the surface of the drum head and combined to measure modal vibration, and the array of drivers allows independent control of these modes. A signal processor is used to form modal control filters which can modify the loading of each mode, changing the time-dependent and spectral characteristics, and therefore the timbre, of the radiated sound. A theoretical formulation of active control of structural vibration by means of fluid-coupled actuators is expressed, and computational solutions show the effects of fluid loading and the radiated field. Experimental results with the new instrument are shown, with implementations of the control system providing a demonstrated degree of control, and illustrating several limitations of such systems.

  10. Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.

    2018-05-01

    We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.

  11. Cortical activation with sound stimulation in cochlear implant users demonstrated by positron emission tomography.

    PubMed

    Naito, Y; Okazawa, H; Honjo, I; Hirano, S; Takahashi, H; Shiomi, Y; Hoji, W; Kawano, M; Ishizu, K; Yonekura, Y

    1995-07-01

    Six postlingually deaf patients using multi-channel cochlear implants were examined by positron emission tomography (PET) using 15O-labeled water. Changes in regional cerebral blood flow (rCBF) were measured during different sound stimuli. The stimulation paradigms employed consisted of two sets of three different conditions; (1) no sound stimulation with the speech processor of the cochlear implant system switched off, (2) hearing white noise and (3) hearing sequential Japanese sentences. In the primary auditory area, the mean rCBF increase during noise stimulation was significantly greater on the side contralateral to the implant than on the ipsilateral side. Speech stimulation caused significantly greater rCBF increase compared with noise stimulation in the left immediate auditory association area (P < 0.01), the bilateral auditory association areas (P < 0.01), the posterior part of the bilateral inferior frontal gyri; the Broca's area (P < 0.01) and its right hemisphere homologue (P < 0.05). Activation of cortices related to verbal and non-verbal sound recognition was clearly demonstrated in the current subjects probably because complete silence was attained in the control condition.

  12. Letter-Sound Reading: Teaching Preschool Children Print-to-Sound Processing

    PubMed Central

    2015-01-01

    This intervention study investigated the growth of letter sound reading and growth of consonant–vowel–consonant (CVC) word decoding abilities for a representative sample of 41 US children in preschool settings. Specifically, the study evaluated the effectiveness of a 3-step letter-sound teaching intervention in teaching pre-school children to decode, or read, single letters. The study compared a control group, which received the preschool’s standard letter-sound instruction, to an intervention group which received a 3-step letter-sound instruction intervention. The children’s growth in letter-sound reading and CVC word decoding abilities were assessed at baseline and 2, 4, 6 and 8 weeks. When compared to the control group, the growth of letter-sound reading ability was slightly higher for the intervention group. The rate of increase in letter-sound reading was significantly faster for the intervention group. In both groups, too few children learned to decode any CVC words to allow for analysis. Results of this study support the use of the intervention strategy in preschools for teaching children print-to-sound processing. PMID:26839494

  13. Modeling and analysis of secondary sources coupling for active sound field reduction in confined spaces

    NASA Astrophysics Data System (ADS)

    Montazeri, Allahyar; Taylor, C. James

    2017-10-01

    This article addresses the coupling of acoustic secondary sources in a confined space in a sound field reduction framework. By considering the coupling of sources in a rectangular enclosure, the set of coupled equations governing its acoustical behavior are solved. The model obtained in this way is used to analyze the behavior of multi-input multi-output (MIMO) active sound field control (ASC) systems, where the coupling of sources cannot be neglected. In particular, the article develops the analytical results to analyze the effect of coupling of an array of secondary sources on the sound pressure levels inside an enclosure, when an array of microphones is used to capture the acoustic characteristics of the enclosure. The results are supported by extensive numerical simulations showing how coupling of loudspeakers through acoustic modes of the enclosure will change the strength and hence the driving voltage signal applied to the secondary loudspeakers. The practical significance of this model is to provide a better insight on the performance of the sound reproduction/reduction systems in confined spaces when an array of loudspeakers and microphones are placed in a fraction of wavelength of the excitation signal to reduce/reproduce the sound field. This is of particular importance because the interaction of different sources affects their radiation impedance depending on the electromechanical properties of the loudspeakers.

  14. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  15. Brain Activation During Anticipation of Sound Sequences

    PubMed Central

    Leaver, Amber M.; Van Lare, Jennifer; Zielinski, Brandon; Halpern, Andrea R.; Rauschecker, Josef P.

    2010-01-01

    Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here we study this predictive “anticipatory imagery” at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging (fMRI). Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in “training” frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains. PMID:19244522

  16. Auditory-Motor Processing of Speech Sounds

    PubMed Central

    Möttönen, Riikka; Dutton, Rebekah; Watkins, Kate E.

    2013-01-01

    The motor regions that control movements of the articulators activate during listening to speech and contribute to performance in demanding speech recognition and discrimination tasks. Whether the articulatory motor cortex modulates auditory processing of speech sounds is unknown. Here, we aimed to determine whether the articulatory motor cortex affects the auditory mechanisms underlying discrimination of speech sounds in the absence of demanding speech tasks. Using electroencephalography, we recorded responses to changes in sound sequences, while participants watched a silent video. We also disrupted the lip or the hand representation in left motor cortex using transcranial magnetic stimulation. Disruption of the lip representation suppressed responses to changes in speech sounds, but not piano tones. In contrast, disruption of the hand representation had no effect on responses to changes in speech sounds. These findings show that disruptions within, but not outside, the articulatory motor cortex impair automatic auditory discrimination of speech sounds. The findings provide evidence for the importance of auditory-motor processes in efficient neural analysis of speech sounds. PMID:22581846

  17. Cognitive Control of Involuntary Distraction by Deviant Sounds

    ERIC Educational Resources Information Center

    Parmentier, Fabrice B. R.; Hebrero, Maria

    2013-01-01

    It is well established that a task-irrelevant sound (deviant sound) departing from an otherwise repetitive sequence of sounds (standard sounds) elicits an involuntary capture of attention and orienting response toward the deviant stimulus, resulting in the lengthening of response times in an ongoing task. Some have argued that this type of…

  18. Active control of sound transmission through a double panel partition

    NASA Astrophysics Data System (ADS)

    Sas, P.; Bao, C.; Augusztinovicz, F.; Desmet, W.

    1995-03-01

    The feasibility of improving the insertion loss of lightweight double panel partitions by using small loudspeakers as active noise control sources inside the air gap between both panels of the partition is investigated analytically, numerically and experimentally in this paper. A theoretical analysis of the mechanisms of the fluid-structure interaction of double panel structures is presented in order to gain insight into the physical phenomena underlying the behaviour of a coupled vibro-acoustic system controlled by active methods. The analysis, based on modal coupling theory, enables one to derive some qualitative predictions concerning the potentials and limitations of the proposed approach. The theoretical analysis is valid only for geometrically simple structures. For more complex geometries, numerical simulations are required. Therefore the potential use of active noise control inside double panel structures has been analyzed by using coupled finite element and boundary element methods. To verify the conclusions drawn from the theoretical analysis and the numerical calculation and, above all, to demonstrate the potential of the proposed approach, experiments have been conducted with a laboratory set-up. The performance of the proposed approach was evaluated in terms of relative insertion loss measurements. It is shown that a considerable improvement of the insertion loss has been achieved around the lightly damped resonances of the system for the frequency range investigated (60-220 Hz).

  19. 76 FR 34627 - Proposed Modification of Offshore Airspace Areas: Norton Sound Low, Control 1234L and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...: Norton Sound Low, Control 1234L and Control 1487L; Alaska AGENCY: Federal Aviation Administration (FAA... Low, Control 1234L, and Control 1487L Offshore Airspace Areas in Alaska. The airspace floors would be... there is a requirement to provide Instrument Flight Rules (IFR) en route Air Traffic Control (ATC...

  20. Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control

    NASA Astrophysics Data System (ADS)

    Krushynska, A. O.; Bosia, F.; Miniaci, M.; Pugno, N. M.

    2017-10-01

    Attenuating low-frequency sound remains a challenge, despite many advances in this field. Recently-developed acoustic metamaterials are characterized by unusual wave manipulation abilities that make them ideal candidates for efficient subwavelength sound control. In particular, labyrinthine acoustic metamaterials exhibit extremely high wave reflectivity, conical dispersion, and multiple artificial resonant modes originating from the specifically-designed topological architectures. These features enable broadband sound attenuation, negative refraction, acoustic cloaking and other peculiar effects. However, hybrid and/or tunable metamaterial performance implying enhanced wave reflection and simultaneous presence of conical dispersion at desired frequencies has not been reported so far. In this paper, we propose a new type of labyrinthine acoustic metamaterials (LAMMs) with hybrid dispersion characteristics by exploiting spider web-structured configurations. The developed design approach consists in adding a square surrounding frame to sectorial circular-shaped labyrinthine channels described in previous publications (e.g. (11)). Despite its simplicity, this approach provides tunability in the metamaterial functionality, such as the activation/elimination of subwavelength band gaps and negative group-velocity modes by increasing/decreasing the edge cavity dimensions. Since these cavities can be treated as extensions of variable-width internal channels, it becomes possible to exploit geometrical features, such as channel width, to shift the band gap position and size to desired frequencies. Time transient simulations demonstrate the effectiveness of the proposed metastructures for wave manipulation in terms of transmission or reflection coefficients, amplitude attenuation and time delay at subwavelength frequencies. The obtained results can be important for practical applications of LAMMs such as lightweight acoustic barriers with enhanced broadband wave

  1. Human brain regions involved in recognizing environmental sounds.

    PubMed

    Lewis, James W; Wightman, Frederic L; Brefczynski, Julie A; Phinney, Raymond E; Binder, Jeffrey R; DeYoe, Edgar A

    2004-09-01

    To identify the brain regions preferentially involved in environmental sound recognition (comprising portions of a putative auditory 'what' pathway), we collected functional imaging data while listeners attended to a wide range of sounds, including those produced by tools, animals, liquids and dropped objects. These recognizable sounds, in contrast to unrecognizable, temporally reversed control sounds, evoked activity in a distributed network of brain regions previously associated with semantic processing, located predominantly in the left hemisphere, but also included strong bilateral activity in posterior portions of the middle temporal gyri (pMTG). Comparisons with earlier studies suggest that these bilateral pMTG foci partially overlap cortex implicated in high-level visual processing of complex biological motion and recognition of tools and other artifacts. We propose that the pMTG foci process multimodal (or supramodal) information about objects and object-associated motion, and that this may represent 'action' knowledge that can be recruited for purposes of recognition of familiar environmental sound-sources. These data also provide a functional and anatomical explanation for the symptoms of pure auditory agnosia for environmental sounds reported in human lesion studies.

  2. Digital servo control of random sound test excitation. [in reverberant acoustic chamber

    NASA Technical Reports Server (NTRS)

    Nakich, R. B. (Inventor)

    1974-01-01

    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones.

  3. Decentralized Control of Sound Radiation from an Aircraft-Style Panel Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2008-01-01

    A decentralized LQG-based control strategy is designed to reduce low-frequency sound transmission through periodically stiffened panels. While modern control strategies have been used to reduce sound radiation from relatively simple structural acoustic systems, significant implementation issues have to be addressed before these control strategies can be extended to large systems such as the fuselage of an aircraft. For instance, centralized approaches typically require a high level of connectivity and are computationally intensive, while decentralized strategies face stability problems caused by the unmodeled interaction between neighboring control units. Since accurate uncertainty bounds are not known a priori, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is validated using real-time control experiments performed on a built-up aluminum test structure representative of the fuselage of an aircraft. Experiments demonstrate that the iterative approach is capable of achieving 12 dB peak reductions and a 3.6 dB integrated reduction in radiated sound power from the stiffened panel.

  4. Developing an active artificial hair cell using nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  5. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  6. Performances of Student Activism: Sound, Silence, Gender, and Dis/ability

    ERIC Educational Resources Information Center

    Pasque, Penny A.; Vargas, Juanita Gamez

    2014-01-01

    This chapter explores the various performances of activism by students through sound, silence, gender, and dis/ability and how these performances connect to social change efforts around issues such as human trafficking, homeless children, hunger, and children with varying abilities.

  7. Acoustic transistor: Amplification and switch of sound by sound

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Kan, Wei-wei; Zou, Xin-ye; Yin, Lei-lei; Cheng, Jian-chun

    2014-08-01

    We designed an acoustic transistor to manipulate sound in a manner similar to the manipulation of electric current by its electrical counterpart. The acoustic transistor is a three-terminal device with the essential ability to use a small monochromatic acoustic signal to control a much larger output signal within a broad frequency range. The output and controlling signals have the same frequency, suggesting the possibility of cascading the structure to amplify an acoustic signal. Capable of amplifying and switching sound by sound, acoustic transistors have various potential applications and may open the way to the design of conceptual devices such as acoustic logic gates.

  8. Sound levels in modern rodent housing rooms are an uncontrolled environmental variable with fluctuations mainly due to human activities

    PubMed Central

    Lauer, Amanda M.; May, Bradford J.; Hao, Ziwei Judy; Watson, Julie

    2009-01-01

    Noise in animal housing facilities is an environmental variable that can affect hearing, behavior and physiology in mice. The authors measured sound levels in two rodent housing rooms (room 1 and room 2) during several periods of 24 h. Room 1, which was subject to heavy personnel traffic, contained ventilated racks and static cages that housed large numbers of mice. Room 2 was accessed by only a few staff members and contained only static cages that housed fewer mice. In both rooms, background sound levels were about 80 dB, and transient noises caused sound levels to temporarily rise 30–40 dB above the baseline level; such peaks occurred frequently during work hours (8:30 AM to 4:30 PM) and infrequently during non-work hours. Noise peaks during work hours in room 1 occurred about two times as often as in room 2 (P = 0.01). Use of changing stations located in the rooms caused background noise to increase by about 10 dB. Loud noise and noise variability were attributed mainly to personnel activity. Attempts to reduce noise should concentrate on controlling sounds produced by in-room activities and experimenter traffic; this may reduce the variability of research outcomes and improve animal welfare. PMID:19384312

  9. Active noise control: A tutorial for HVAC designers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrastmore » the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.« less

  10. Hybrid mode-scattering/sound-absorbing segmented liner system and method

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E. (Inventor); Hersh, Alan S. (Inventor); Rice, Edward J. (Inventor)

    1999-01-01

    A hybrid mode-scattering/sound-absorbing segmented liner system and method in which an initial sound field within a duct is steered or scattered into higher-order modes in a first mode-scattering segment such that it is more readily and effectively absorbed in a second sound-absorbing segment. The mode-scattering segment is preferably a series of active control components positioned along the annulus of the duct, each of which includes a controller and a resonator into which a piezoelectric transducer generates the steering noise. The sound-absorbing segment is positioned acoustically downstream of the mode-scattering segment, and preferably comprises a honeycomb-backed passive acoustic liner. The invention is particularly adapted for use in turbofan engines, both in the inlet and exhaust.

  11. Development of a directivity controlled piezoelectric transducer for sound reproduction

    NASA Astrophysics Data System (ADS)

    Bédard, Magella; Berry, Alain

    2005-04-01

    One of the inherent limitations of loudspeaker systems in audio reproduction is their inability to reproduce the possibly complex acoustic directivity patterns of real sound sources. For music reproduction for example, it may be desirable to separate diffuse field and direct sound components and project them with different directivity patterns. Because of their properties, poly (vinylidene fluoride) (PVDF) films offer lot of advantages for the development of electroacoustic transducers. A system of piezoelectric transducers made with PVDF that show a controllable directivity was developed. A cylindrical omnidirectional piezoelectric transducer is used to produce an ambient field, and a piezoelectric transducers system, consisting of a series of curved sources placed around a cylinder frame, is used to produce a sound field with a given directivity. To develop the system, a numerical model was generated with ANSYS Multiphysics TM8.1 and used to calculate the mechanical response of the piezoelectric transducer. The acoustic radiation of the driver was then computed using the Kirchoff-Helmoltz theorem. Numerical and experimental results of the mechanical and acoustical response of the system will be shown.

  12. Translation of an Object Using Phase-Controlled Sound Sources in Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Matsui, Takayasu; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi; Ide, Masao

    1995-05-01

    Acoustic levitation is used for positioning materials in the development of new materials in space where there is no gravity. This technique is applicable to materials for which electromagnetic force cannot be used. If the levitation point of the materials can be controlled freely in this application, possibilities of new applications will be extended. In this paper we report on an experimental study on controlling the levitation point of the object in an acoustic levitation system. The system fabricated and tested in this study has two sound sources with vibrating plates facing each other. Translation of the object can be achieved by controlling the phase of the energizing electrical signal for one of the sound sources. It was found that the levitation point can be moved smoothly in proportion to the phase difference between the vibrating plates.

  13. Active Control of Fan-Generated Tone Noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1995-01-01

    This paper reports on an experiment to control the noise radiated from the inlet of a ducted fan using a time domain active adaptive system. The control ,sound source consists of loudspeakers arranged in a ring around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same, when the dominant wave in the duct is a plane wave. The presence of higher order modes in the duct reduces the noise reduction efficiency, particularly near the mode cut-on where the standing wave component is strong, but the control system converges stably. The control system is stable and converges when the first circumferential mode is generated in the duct. The control system is found to reduce the fan noise in the far field on an arc around the fan inlet by as much as 20 dB with none of the sound amplification associated with mode spillover.

  14. Prevalence of different temporomandibular joint sounds, with emphasis on disc-displacement, in patients with temporomandibular disorders and controls.

    PubMed

    Elfving, Lars; Helkimo, Martti; Magnusson, Tomas

    2002-01-01

    Temporomandibular joint (TMJ) sounds are very common among patients with temporomandibular disorders (TMD), but also in non-patient populations. A variety of different causes to TMJ-sounds have been suggested e.g. arthrotic changes in the TMJs, anatomical variations, muscular incoordination and disc displacement. In the present investigation, the prevalence and type of different joint sounds were registered in 125 consecutive patients with suspected TMD and in 125 matched controls. Some kind of joint sound was recorded in 56% of the TMD patients and in 36% of the controls. The awareness of joint sounds was higher among TMD patients as compared to controls (88% and 60% respectively). The most common sound recorded in both groups was reciprocal clickings indicative of a disc displacement, while not one single case fulfilling the criteria for clicking due to a muscular incoordination was found. In the TMD group women with disc displacement reported sleeping on the stomach significantly more often than women without disc displacement did. An increased general joint laxity was found in 39% of the TMD patients with disc displacement, while this was found in only 9% of the patients with disc displacement in the control group. To conclude, disc displacement is probably the most common cause to TMJ sounds, while the existence of TMJ sounds due to a muscular incoordination can be questioned. Furthermore, sleeping on the stomach might be associated with disc displacement, while general joint laxity is probably not a causative factor, but a seeking care factor in patients with disc displacement.

  15. Developmental changes in brain activation involved in the production of novel speech sounds in children.

    PubMed

    Hashizume, Hiroshi; Taki, Yasuyuki; Sassa, Yuko; Thyreau, Benjamin; Asano, Michiko; Asano, Kohei; Takeuchi, Hikaru; Nouchi, Rui; Kotozaki, Yuka; Jeong, Hyeonjeong; Sugiura, Motoaki; Kawashima, Ryuta

    2014-08-01

    Older children are more successful at producing unfamiliar, non-native speech sounds than younger children during the initial stages of learning. To reveal the neuronal underpinning of the age-related increase in the accuracy of non-native speech production, we examined the developmental changes in activation involved in the production of novel speech sounds using functional magnetic resonance imaging. Healthy right-handed children (aged 6-18 years) were scanned while performing an overt repetition task and a perceptual task involving aurally presented non-native and native syllables. Productions of non-native speech sounds were recorded and evaluated by native speakers. The mouth regions in the bilateral primary sensorimotor areas were activated more significantly during the repetition task relative to the perceptual task. The hemodynamic response in the left inferior frontal gyrus pars opercularis (IFG pOp) specific to non-native speech sound production (defined by prior hypothesis) increased with age. Additionally, the accuracy of non-native speech sound production increased with age. These results provide the first evidence of developmental changes in the neural processes underlying the production of novel speech sounds. Our data further suggest that the recruitment of the left IFG pOp during the production of novel speech sounds was possibly enhanced due to the maturation of the neuronal circuits needed for speech motor planning. This, in turn, would lead to improvement in the ability to immediately imitate non-native speech. Copyright © 2014 Wiley Periodicals, Inc.

  16. Active Outer Hair Cells Affect the Sound-Evoked Vibration of the Reticular Lamina

    NASA Astrophysics Data System (ADS)

    Jacob, Stefan; Fridberger, Anders

    2011-11-01

    It is well established that the organ of Corti uses active mechanisms to enhance its sensitivity and frequency selectivity. Two possible mechanisms have been identified, both capable of producing mechanical forces, which can alter the sound-evoked vibration of the hearing organ. However, little is known about the effect of these forces on the sound-evoked vibration pattern of the reticular lamina. Current injections into scala media were used to alter the amplitude of the active mechanisms in the apex of the guinea pig temporal bone. We used time-resolved confocal imaging to access the vibration pattern of individual outer hair cells. During positive current injection the the sound-evoked vibration of outer hair cell row three increased while row one showed a small decrease. Negative currents reversed the observed effect. We conclude that the outer hair cell mediated modification of reticular lamina vibration patterns could contribute to the inner hair cell stimulation.

  17. Comparison of the Effects of Benson Muscle Relaxation and Nature Sounds on the Fatigue in Patients With Heart Failure: A Randomized Controlled Clinical Trial.

    PubMed

    Seifi, Leila; Najafi Ghezeljeh, Tahereh; Haghani, Hamid

    This study was conducted with the aim of comparing the effects of Benson muscle relaxation and nature sounds on fatigue in patients with heart failure. Fatigue and exercise intolerance as prevalent symptoms experienced by patients with heart failure can cause the loss of independence in the activities of daily living. It can also damage self-care and increase dependence to others, which subsequently can reduce the quality of life. This randomized controlled clinical trial was conducted in an urban area of Iran in 2016. Samples were consisted of 105 hospitalized patients with heart failure chosen using a convenience sampling method. They were assigned to relaxation, nature sounds, and control groups using a randomized block design. In addition to routine care, the Benson muscle relaxation and nature sounds groups received interventions in mornings and evenings twice a day for 20 minutes within 3 consecutive days. A 9-item questionnaire was used to collect data regarding fatigue before and after the interventions. Relaxation and nature sounds reduced fatigue in patients with heart failure in comparison to the control group. However, no statistically significant difference was observed between the interventions. Benson muscle relaxation and nature sounds are alternative methods for the reduction of fatigue in patients with heart failure. They are inexpensive and easy to be administered and upon patients' preferences can be used by nurses along with routine nursing interventions.

  18. Age-related differences in neuromagnetic brain activity underlying concurrent sound perception.

    PubMed

    Alain, Claude; McDonald, Kelly L

    2007-02-07

    Deficits in parsing concurrent auditory events are believed to contribute to older adults' difficulties in understanding speech in adverse listening conditions (e.g., cocktail party). To explore the level at which aging impairs sound segregation, we measured auditory evoked fields (AEFs) using magnetoencephalography while young, middle-aged, and older adults were presented with complex sounds that either had all of their harmonics in tune or had the third harmonic mistuned by 4 or 16% of its original value. During the recording, participants were asked to ignore the stimuli and watch a muted subtitled movie of their choice. For each participant, the AEFs were modeled with a pair of dipoles in the superior temporal plane, and the effects of age and mistuning were examined on the amplitude and latency of the resulting source waveforms. Mistuned stimuli generated an early positivity (60-100 ms), an object-related negativity (ORN) (140-180 ms) that overlapped the N1 and P2 waves, and a positive displacement that peaked at approximately 230 ms (P230) after sound onset. The early mistuning-related enhancement was similar in all three age groups, whereas the subsequent modulations (ORN and P230) were reduced in older adults. These age differences in auditory cortical activity were associated with a reduced likelihood of hearing two sounds as a function of mistuning. The results reveal that inharmonicity is rapidly and automatically registered in all three age groups but that the perception of concurrent sounds declines with age.

  19. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    PubMed Central

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  20. Digital servo control of random sound fields

    NASA Technical Reports Server (NTRS)

    Nakich, R. B.

    1973-01-01

    It is necessary to place number of sensors at different positions in sound field to determine actual sound intensities to which test object is subjected. It is possible to determine whether specification is being met adequately or exceeded. Since excitation is of random nature, signals are essentially coherent and it is impossible to obtain true average.

  1. Common sole larvae survive high levels of pile-driving sound in controlled exposure experiments.

    PubMed

    Bolle, Loes J; de Jong, Christ A F; Bierman, Stijn M; van Beek, Pieter J G; van Keeken, Olvin A; Wessels, Peter W; van Damme, Cindy J G; Winter, Hendrik V; de Haan, Dick; Dekeling, René P A

    2012-01-01

    In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa(2) (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa(2)s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa(2)s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised.

  2. Common Sole Larvae Survive High Levels of Pile-Driving Sound in Controlled Exposure Experiments

    PubMed Central

    Bolle, Loes J.; de Jong, Christ A. F.; Bierman, Stijn M.; van Beek, Pieter J. G.; van Keeken, Olvin A.; Wessels, Peter W.; van Damme, Cindy J. G.; Winter, Hendrik V.; de Haan, Dick; Dekeling, René P. A.

    2012-01-01

    In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa2 (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa2s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa2s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised. PMID:22431996

  3. A lab-controlled simulation of a letter-speech sound binding deficit in dyslexia.

    PubMed

    Aravena, Sebastián; Snellings, Patrick; Tijms, Jurgen; van der Molen, Maurits W

    2013-08-01

    Dyslexic and non-dyslexic readers engaged in a short training aimed at learning eight basic letter-speech sound correspondences within an artificial orthography. We examined whether a letter-speech sound binding deficit is behaviorally detectable within the initial steps of learning a novel script. Both letter knowledge and word reading ability within the artificial script were assessed. An additional goal was to investigate the influence of instructional approach on the initial learning of letter-speech sound correspondences. We assigned children from both groups to one of three different training conditions: (a) explicit instruction, (b) implicit associative learning within a computer game environment, or (c) a combination of (a) and (b) in which explicit instruction is followed by implicit learning. Our results indicated that dyslexics were outperformed by the controls on a time-pressured binding task and a word reading task within the artificial orthography, providing empirical support for the view that a letter-speech sound binding deficit is a key factor in dyslexia. A combination of explicit instruction and implicit techniques proved to be a more powerful tool in the initial teaching of letter-sound correspondences than implicit training alone. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography.

    PubMed

    Ishii, Akira; Tanaka, Masaaki; Iwamae, Masayoshi; Kim, Chongsoo; Yamano, Emi; Watanabe, Yasuyoshi

    2013-06-13

    It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. We demonstrated that the metronome sounds can cause mental fatigue sensation as a result of repeated pairings of the sounds

  5. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography

    PubMed Central

    2013-01-01

    Background It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Methods Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. Results The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. Conclusions We demonstrated that the metronome sounds can cause mental fatigue sensation as a

  6. Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx.

    PubMed

    Elemans, Coen P H; Muller, Mees; Larsen, Ole Naesbye; van Leeuwen, Johan L

    2009-04-01

    Birdsong has developed into one of the important models for motor control of learned behaviour and shows many parallels with speech acquisition in humans. However, there are several experimental limitations to studying the vocal organ - the syrinx - in vivo. The multidisciplinary approach of combining experimental data and mathematical modelling has greatly improved the understanding of neural control and peripheral motor dynamics of sound generation in birds. Here, we present a simple mechanical model of the syrinx that facilitates detailed study of vibrations and sound production. Our model resembles the 'starling resistor', a collapsible tube model, and consists of a tube with a single membrane in its casing, suspended in an external pressure chamber and driven by various pressure patterns. With this design, we can separately control 'bronchial' pressure and tension in the oscillating membrane and generate a wide variety of 'syllables' with simple sweeps of the control parameters. We show that the membrane exhibits high frequency, self-sustained oscillations in the audio range (>600 Hz fundamental frequency) using laser Doppler vibrometry, and systematically explore the conditions for sound production of the model in its control space. The fundamental frequency of the sound increases with tension in three membranes with different stiffness and mass. The lower-bound fundamental frequency increases with membrane mass. The membrane vibrations are strongly coupled to the resonance properties of the distal tube, most likely because of its reflective properties to sound waves. Our model is a gross simplification of the complex morphology found in birds, and more closely resembles mathematical models of the syrinx. Our results confirm several assumptions underlying existing mathematical models in a complex geometry.

  7. Modeling of influencing parameters in active noise control on an enclosure wall

    NASA Astrophysics Data System (ADS)

    Tarabini, Marco; Roure, Alain

    2008-04-01

    This paper investigates, by means of a numerical model, the possibility of using an active noise barrier to virtually reduce the acoustic transparency of a partition wall inside an enclosure. The room is modeled with the image method as a rectangular enclosure with a stationary point source; the active barrier is set up by an array of loudspeakers and error microphones and is meant to minimize the squared sound pressure on a wall with the use of a decentralized control. Simulations investigate the effects of the enclosure characteristics and of the barrier geometric parameters on the sound pressure attenuation on the controlled partition, on the whole enclosure potential energy and on the diagonal control stability. Performances are analyzed in a frequency range of 25-300 Hz at discrete 25 Hz steps. Influencing parameters and their effects on the system performances are identified with a statistical inference procedure. Simulation results have shown that it is possible to averagely reduce the sound pressure on the controlled partition. In the investigated configuration, the surface attenuation and the diagonal control stability are mainly driven by the distance between the loudspeakers and the error microphones and by the loudspeakers directivity; minor effects are due to the distance between the error microphones and the wall, by the wall reflectivity and by the active barrier grid meshing. Room dimensions and source position have negligible effects. Experimental results point out the validity of the model and the efficiency of the barrier in the reduction of the wall acoustic transparency.

  8. Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations.

    PubMed

    Miller, Patrick J O

    2006-05-01

    Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1-20 kHz band ranged from 131 to 168 dB re 1 microPa at 1 m, with differences in the means of different sound classes (whistles: 140.2+/-4.1 dB; variable calls: 146.6+/-6.6 dB; stereotyped calls: 152.6+/-5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with "long-range" stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10-16 km in sea state zero) and "short-range" sounds (5-9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.

  9. Recent sounding rocket highlights and a concept for melding sounding rocket and space shuttle activities

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Mayo, E. E.

    1980-01-01

    Highlights include launching guided vehicles into the African Solar Eclipse, initiation of development of a Three-Stage Black Brant to explore the dayside polar cusp, large payload Aries Flights at White Sands Missile Range, and an active program with the Orion vehicle family using surplus motors. Sounding rocket philosophy and experience is being applied to the shuttle in a Get Away Special and Experiments of Opportunity Payloads Programs. In addition, an orbit selection and targeting software system to support shuttle pallet mounted experiments is under development.

  10. The NASA Sounding Rocket Program and space sciences.

    PubMed

    Gurkin, L W

    1992-10-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  11. The NASA Sounding Rocket Program and space sciences

    NASA Technical Reports Server (NTRS)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  12. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.

    1999-01-01

    Previous work has demonstrated the large potential for hybrid active-passive systems for attenuating interior noise in aircraft fuselages. The main advantage of an active-passive system is, by utilizing the natural dynamics of the actuator system, the control actuator power and weight is markedly reduced and stability/robustness is enhanced. Three different active-passive approaches were studied in the past year. The first technique utilizes multiple tunable vibration absorbers (ATVA) for reducing narrow band sound radiated from panels and transmitted through fuselage structures. The focus is on reducing interior noise due to propeller or turbo fan harmonic excitation. Two types of tunable vibration absorbers were investigated; a solid state system based upon a piezoelectric mechanical exciter and an electromechanical system based upon a Motran shaker. Both of these systems utilize a mass-spring dynamic effect to maximize tile output force near resonance of the shaker system and so can also be used as vibration absorbers. The dynamic properties of the absorbers (i.e. resonance frequency) were modified using a feedback signal from an accelerometer mounted on the active mass, passed through a compensator and fed into the drive component of the shaker system (piezoelectric element or voice coil respectively). The feedback loop consisted of a two coefficient FIR filter, implemented on a DSP, where the input is acceleration of tile ATVA mass and the output is a force acting in parallel with the stiffness of the absorber. By separating the feedback signal into real and imaginary components, the effective natural frequency and damping of the ATVA can be altered independently. This approach gave control of the resonance frequencies while also allowing the simultaneous removal of damping from the ATVA, thus increasing the ease of controllability and effectiveness. In order to obtain a "tuned" vibration absorber the chosen resonant frequency was set to the excitation

  13. Magnetic Fields Can Control Heat and Sound

    DTIC Science & Technology

    2015-03-23

    solids. When we talk to each other, the vocal chords of the speaker vibrate , causing the air coming from his lungs to vibrate as well. This creates...Physics, and Materials Science & Engineering at The Ohio State University Sound is carried by periodic vibrations of atoms in gases, liquids and...sound waves, which then propagate through the air until they hit a listener’s eardrums and make them vibrate as well. From these vibrations , the listener

  14. Multiple sound source localization using gammatone auditory filtering and direct sound componence detection

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Cao, Li

    2017-06-01

    In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.

  15. Active control of panel vibrations induced by a boundary layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1995-01-01

    The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.

  16. Effects of Natural Sounds on Pain: A Randomized Controlled Trial with Patients Receiving Mechanical Ventilation Support.

    PubMed

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Vaismoradi, Mojtaba; Jordan, Sue

    2015-08-01

    Nonpharmacologic pain management in patients receiving mechanical ventilation support in critical care units is under investigated. Natural sounds may help reduce the potentially harmful effects of anxiety and pain in hospitalized patients. The aim of this study was to examine the effect of pleasant, natural sounds on self-reported pain in patients receiving mechanical ventilation support, using a pragmatic parallel-arm, randomized controlled trial. The study was conducted in a general adult intensive care unit of a high-turnover teaching hospital, in Tehran, Iran. Between October 2011 and June 2012, we recruited 60 patients receiving mechanical ventilation support to the intervention (n = 30) and control arms (n = 30) of a pragmatic parallel-group, randomized controlled trial. Participants in both arms wore headphones for 90 minutes. Those in the intervention arm heard pleasant, natural sounds, whereas those in the control arm heard nothing. Outcome measures included the self-reported visual analog scale for pain at baseline; 30, 60, and 90 minutes into the intervention; and 30 minutes post-intervention. All patients approached agreed to participate. The trial arms were similar at baseline. Pain scores in the intervention arm fell and were significantly lower than in the control arm at each time point (p < .05). Administration of pleasant, natural sounds via headphones is a simple, safe, nonpharmacologic nursing intervention that may be used to allay pain for up to 120 minutes in patients receiving mechanical ventilation support. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  17. A unified approach for the spatial enhancement of sound

    NASA Astrophysics Data System (ADS)

    Choi, Joung-Woo; Jang, Ji-Ho; Kim, Yang-Hann

    2005-09-01

    This paper aims to control the sound field spatially, so that the desired or target acoustic variable is enhanced within a zone where a listener is located. This is somewhat analogous to having manipulators that can draw sounds in any place. This also means that one can somehow see the controlled shape of sound in frequency or in real time. The former assures its practical applicability, for example, listening zone control for music. The latter provides a mean of analyzing sound field. With all these regards, a unified approach is proposed that can enhance selected acoustic variables using multiple sources. Three kinds of acoustic variables that have to do with magnitude and direction of sound field are formulated and enhanced. The first one, which has to do with the spatial control of acoustic potential energy, enables one to make a zone of loud sound over an area. Otherwise, one can control directional characteristic of sound field by controlling directional energy density, or one can enhance the magnitude and direction of sound at the same time by controlling acoustic intensity. Throughout various examples, it is shown that these acoustic variables can be controlled successfully by the proposed approach.

  18. Frequency-independent radiation modes of interior sound radiation: An analytical study

    NASA Astrophysics Data System (ADS)

    Hesse, C.; Vivar Perez, J. M.; Sinapius, M.

    2017-03-01

    Global active control methods of sound radiation into acoustic cavities necessitate the formulation of the interior sound field in terms of the surrounding structural velocity. This paper proposes an efficient approach to do this by presenting an analytical method to describe the radiation modes of interior sound radiation. The method requires no knowledge of the structural modal properties, which are often difficult to obtain in control applications. The procedure is exemplified for two generic systems of fluid-structure interaction, namely a rectangular plate coupled to a cuboid cavity and a hollow cylinder with the fluid in its enclosed cavity. The radiation modes are described as a subset of the acoustic eigenvectors on the structural-acoustic interface. For the two studied systems, they are therefore independent of frequency.

  19. Recording and Analysis of Bowel Sounds.

    PubMed

    Zaborski, Daniel; Halczak, Miroslaw; Grzesiak, Wilhelm; Modrzejewski, Andrzej

    2015-01-01

    The aim of this study was to construct an electronic bowel sound recording system and determine its usefulness for the diagnosis of appendicitis, mechanical ileus and diffuse peritonitis. A group of 67 subjects aged 17 to 88 years including 15 controls was examined. Bowel sounds were recorded using an electret microphone placed on the right side of the hypogastrium and connected to a laptop computer. The method of adjustable grids (converted into binary matrices) was used for bowel sounds analysis. Significantly, fewer (p ≤ 0.05) sounds were found in the mechanical ileus (1004.4) and diffuse peritonitis (466.3) groups than in the controls (2179.3). After superimposing adjustable binary matrices on combined sounds (interval between sounds <0.01 s), significant relationships (p ≤ 0.05) were found between particular positions in the matrices (row-column) and the patient groups. These included the A1_T1 and A1_T2 positions and mechanical ileus as well as the A1_T2 and A1_T4 positions and appendicitis. For diffuse peritonitis, significant positions were A5_T4 and A1_T4. Differences were noted in the number of sounds and binary matrices in the groups of patients with acute abdominal diseases. Certain features of bowel sounds characteristic of individual abdominal diseases were indicated. BS: bowel sound; APP: appendicitis; IL: mechanical ileus; PE: diffuse peritonitis; CG: control group; NSI: number of sound impulses; NCI: number of combined sound impulses; MBS: mean bit-similarity; TMIN: minimum time between impulses; TMAX: maximum time between impulses; TMEAN: mean time between impulses. Zaborski D, Halczak M, Grzesiak W, Modrzejewski A. Recording and Analysis of Bowel Sounds. Euroasian J Hepato-Gastroenterol 2015;5(2):67-73.

  20. Active and passive electromagnetic sounding on comets and moons

    NASA Astrophysics Data System (ADS)

    Przyklenk, Anita; Auster, Hans-Ulrich

    We want to present the method of electromagnetic sounding on small extraterrestrial bodies to determine interior structures of those. Our sensors are perfectly suited for rover or lander missions, because they do not weight much (sum of all devices is approximately 600g) and can be easily installed at the bottom of a rover or at lander feet. The aim is to measure the material-specific complex resistivity, which depends on the electrical resistivity and electrical permittivity, for various sounding depth. This penetration depth depends on the 2 different operating modes. In the active mode, that is the so called Capacitive Resistivity (CR) method, the sounding depth is around a few meters. The CR is a purely electrical field measurement and works with a 4 electrode array. 2 of them are transmitter electrodes. They inject AC signals with frequencies between 100 Hz and 100 kHz into the subsurface. Then 2 receiver electrodes pick up the generated potentials. And a 4-point impedance can be calculated that depends on the electrical parameters among others [Grard, 1990a and b] [Kuras, 2002]. The second operating mode is the passive one. In the so called magneto telluric method the penetration depth depends on electrical parameters and can be in range of several 100m to km. Here, for excitation natural magnetic field variations are used. The magnetic field components are measured with our Fluxgate Magnetometer (FGM) (flight heritage: Rosetta, Venus Express, Themis,…). Induced electrical field components are measured again with the CR electrode array. Then the electromagnetic impedance can be derived, which depends on electrical resistivity among others. In the end, we want to discuss advantages and disadvantages of investigations during space missions compared to surveys on earth. As examples we have a closer look at the jovian moon Ganymede, the earth moon and the comet 67P/Churyumov-Gerasimenko and consider the applicability of electromagnetic sounding on this objects

  1. Speech versus non-speech as irrelevant sound: controlling acoustic variation.

    PubMed

    Little, Jason S; Martin, Frances Heritage; Thomson, Richard H S

    2010-09-01

    Functional differences between speech and non-speech within the irrelevant sound effect were investigated using repeated and changing formats of irrelevant sounds in the form of intelligible words and unintelligible signal correlated noise (SCN) versions of the words. Event-related potentials were recorded from 25 females aged between 18 and 25 while they completed a serial order recall task in the presence of irrelevant sound or silence. As expected and in line with the changing-state hypothesis both words and SCN produced robust changing-state effects. However, words produced a greater changing-state effect than SCN indicating that the spectral detail inherent within speech accounts for the greater irrelevant sound effect and changing-state effect typically observed with speech. ERP data in the form of N1 amplitude was modulated within some irrelevant sound conditions suggesting that attentional aspects are involved in the elicitation of the irrelevant sound effect. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Sounds Alive: A Noise Workbook.

    ERIC Educational Resources Information Center

    Dickman, Donna McCord

    Sarah Screech, Danny Decibel, Sweetie Sound and Neil Noisy describe their experiences in the world of sound and noise to elementary students. Presented are their reports, games and charts which address sound measurement, the effects of noise on people, methods of noise control, and related areas. The workbook is intended to stimulate students'…

  3. Prey-mediated behavioral responses of feeding blue whales in controlled sound exposure experiments.

    PubMed

    Friedlaender, A S; Hazen, E L; Goldbogen, J A; Stimpert, A K; Calambokidis, J; Southall, B L

    2016-06-01

    Behavioral response studies provide significant insights into the nature, magnitude, and consequences of changes in animal behavior in response to some external stimulus. Controlled exposure experiments (CEEs) to study behavioral response have faced challenges in quantifying the importance of and interaction among individual variability, exposure conditions, and environmental covariates. To investigate these complex parameters relative to blue whale behavior and how it may change as a function of certain sounds, we deployed multi-sensor acoustic tags and conducted CEEs using simulated mid-frequency active sonar (MFAS) and pseudo-random noise (PRN) stimuli, while collecting synoptic, quantitative prey measures. In contrast to previous approaches that lacked such prey data, our integrated approach explained substantially more variance in blue whale dive behavioral responses to mid-frequency sounds (r2 = 0.725 vs. 0.14 previously). Results demonstrate that deep-feeding whales respond more clearly and strongly to CEEs than those in other behavioral states, but this was only evident with the increased explanatory power provided by incorporating prey density and distribution as contextual covariates. Including contextual variables increases the ability to characterize behavioral variability and empirically strengthens previous findings that deep-feeding blue whales respond significantly to mid-frequency sound exposure. However, our results are only based on a single behavioral state with a limited sample size, and this analytical framework should be applied broadly across behavioral states. The increased capability to describe and account for individual response variability by including environmental variables, such as prey, that drive foraging behavior underscores the importance of integrating these and other relevant contextual parameters in experimental designs. Our results suggest the need to measure and account for the ecological dynamics of predator

  4. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  5. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    PubMed Central

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344

  6. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    PubMed

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  7. Might as Well Jump: Sound Affects Muscle Activation in Skateboarding

    PubMed Central

    Cesari, Paola; Camponogara, Ivan; Papetti, Stefano; Rocchesso, Davide; Fontana, Federico

    2014-01-01

    The aim of the study is to reveal the role of sound in action anticipation and performance, and to test whether the level of precision in action planning and execution is related to the level of sensorimotor skills and experience that listeners possess about a specific action. Individuals ranging from 18 to 75 years of age - some of them without any skills in skateboarding and others experts in this sport - were compared in their ability to anticipate and simulate a skateboarding jump by listening to the sound it produces. Only skaters were able to modulate the forces underfoot and to apply muscle synergies that closely resembled the ones that a skater would use if actually jumping on a skateboard. More importantly we showed that only skaters were able to plan the action by activating anticipatory postural adjustments about 200 ms after the jump event. We conclude that expert patterns are guided by auditory events that trigger proper anticipations of the corresponding patterns of movements. PMID:24619134

  8. Might as well jump: sound affects muscle activation in skateboarding.

    PubMed

    Cesari, Paola; Camponogara, Ivan; Papetti, Stefano; Rocchesso, Davide; Fontana, Federico

    2014-01-01

    The aim of the study is to reveal the role of sound in action anticipation and performance, and to test whether the level of precision in action planning and execution is related to the level of sensorimotor skills and experience that listeners possess about a specific action. Individuals ranging from 18 to 75 years of age--some of them without any skills in skateboarding and others experts in this sport--were compared in their ability to anticipate and simulate a skateboarding jump by listening to the sound it produces. Only skaters were able to modulate the forces underfoot and to apply muscle synergies that closely resembled the ones that a skater would use if actually jumping on a skateboard. More importantly we showed that only skaters were able to plan the action by activating anticipatory postural adjustments about 200 ms after the jump event. We conclude that expert patterns are guided by auditory events that trigger proper anticipations of the corresponding patterns of movements.

  9. Listening to sound patterns as a dynamic activity

    NASA Astrophysics Data System (ADS)

    Jones, Mari Riess

    2003-04-01

    The act of listening to a series of sounds created by some natural event is described as involving an entrainmentlike process that transpires in real time. Some aspects of this dynamic process are suggested. In particular, real-time attending is described in terms of an adaptive synchronization activity that permits a listener to target attending energy to forthcoming elements within an acoustical pattern (e.g., music, speech, etc.). Also described are several experiments that illustrate features of this approach as it applies to attending to musiclike patterns. These involve listeners' responses to changes in either the timing or the pitch structure (or both) of various acoustical sequences.

  10. Application of subharmonics for active sound design of electric vehicles.

    PubMed

    Gwak, Doo Young; Yoon, Kiseop; Seong, Yeolwan; Lee, Soogab

    2014-12-01

    The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed.

  11. Early Fishing Peoples of Puget Sound. Ocean Related Curriculum Activities. Revised Edition.

    ERIC Educational Resources Information Center

    McNutt, Nan

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  12. Inducing physiological stress recovery with sounds of nature in a virtual reality forest--results from a pilot study.

    PubMed

    Annerstedt, Matilda; Jönsson, Peter; Wallergård, Mattias; Johansson, Gerd; Karlson, Björn; Grahn, Patrik; Hansen, Ase Marie; Währborg, Peter

    2013-06-13

    Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality as a tool in this research field. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications.

    PubMed

    Nordahl, Rolf; Turchet, Luca; Serafin, Stefania

    2011-09-01

    We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models. Two experiments were conducted. In the first experiment, the ability of subjects to recognize the surface they were exposed to was assessed. In the second experiment, the sound synthesis engine was enhanced with environmental sounds. Results show that, in some conditions, adding a soundscape significantly improves the recognition of the simulated environment.

  14. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)

  15. Active noise control: a review of the field.

    PubMed

    Gordon, R T; Vining, W D

    1992-11-01

    Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.

  16. Listening to an Audio Drama Activates Two Processing Networks, One for All Sounds, Another Exclusively for Speech

    PubMed Central

    Boldt, Robert; Malinen, Sanna; Seppä, Mika; Tikka, Pia; Savolainen, Petri; Hari, Riitta; Carlson, Synnöve

    2013-01-01

    Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ∼19 min to the audio drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). An intersubject-correlation (ISC) map, computed across the whole experiment to assess the stimulus-driven extrinsic brain network, indicated statistically significant ISC in temporal, frontal and parietal cortices, cingulate cortex, and amygdala. Group-level independent component (IC) analysis was used to parcel out the brain signals into functionally coupled networks, and the dependence of the ICs on external stimuli was tested by comparing them with the ISC map. This procedure revealed four extrinsic ICs of which two–covering non-overlapping areas of the auditory cortex–were modulated by both speech and non-speech sounds. The two other extrinsic ICs, one left-hemisphere-lateralized and the other right-hemisphere-lateralized, were speech-related and comprised the superior and middle temporal gyri, temporal poles, and the left angular and inferior orbital gyri. In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula, and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech sounds. PMID:23734202

  17. Listening to an audio drama activates two processing networks, one for all sounds, another exclusively for speech.

    PubMed

    Boldt, Robert; Malinen, Sanna; Seppä, Mika; Tikka, Pia; Savolainen, Petri; Hari, Riitta; Carlson, Synnöve

    2013-01-01

    Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ∼19 min to the audio drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). An intersubject-correlation (ISC) map, computed across the whole experiment to assess the stimulus-driven extrinsic brain network, indicated statistically significant ISC in temporal, frontal and parietal cortices, cingulate cortex, and amygdala. Group-level independent component (IC) analysis was used to parcel out the brain signals into functionally coupled networks, and the dependence of the ICs on external stimuli was tested by comparing them with the ISC map. This procedure revealed four extrinsic ICs of which two-covering non-overlapping areas of the auditory cortex-were modulated by both speech and non-speech sounds. The two other extrinsic ICs, one left-hemisphere-lateralized and the other right-hemisphere-lateralized, were speech-related and comprised the superior and middle temporal gyri, temporal poles, and the left angular and inferior orbital gyri. In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula, and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech sounds.

  18. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  19. The effect of speaking rate on serial-order sound-level errors in normal healthy controls and persons with aphasia.

    PubMed

    Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I

    Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions

  20. Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Yang, Sei Hyun; Lee, Hyeong Rae; Yu, Cheng Bin; Pak, Seong Yeol; Oh, Chi Sung; Kang, Yeon June; Youn, Jae Ryoun

    2017-06-01

    Sound absorption of a polyurethane (PU) foam was predicted for various geometries to fabricate the optimum microstructure of a sound absorbing foam. Multiscale numerical analysis for sound absorption was carried out by solving flow problems in representative unit cell (RUC) and the pressure acoustics equation using Johnson-Champoux-Allard (JCA) model. From the numerical analysis, theoretical optimum cell diameter for low frequency sound absorption was evaluated in the vicinity of 400 μm under the condition of 2 cm-80 K (thickness of 2 cm and density of 80 kg/m3) foam. An ultrasonic foaming method was employed to modulate microcellular structure of PU foam. Mechanical activation was only employed to manipulate the internal structure of PU foam without any other treatment. A mean cell diameter of PU foam was gradually decreased with increase in the amplitude of ultrasonic waves. It was empirically found that the reduction of mean cell diameter induced by the ultrasonic wave enhances acoustic damping efficiency in low frequency ranges. Moreover, further analyses were performed with several acoustic evaluation factors; root mean square (RMS) values, noise reduction coefficients (NRC), and 1/3 octave band spectrograms.

  1. Opponent Coding of Sound Location (Azimuth) in Planum Temporale is Robust to Sound-Level Variations

    PubMed Central

    Derey, Kiki; Valente, Giancarlo; de Gelder, Beatrice; Formisano, Elia

    2016-01-01

    Coding of sound location in auditory cortex (AC) is only partially understood. Recent electrophysiological research suggests that neurons in mammalian auditory cortex are characterized by broad spatial tuning and a preference for the contralateral hemifield, that is, a nonuniform sampling of sound azimuth. Additionally, spatial selectivity decreases with increasing sound intensity. To accommodate these findings, it has been proposed that sound location is encoded by the integrated activity of neuronal populations with opposite hemifield tuning (“opponent channel model”). In this study, we investigated the validity of such a model in human AC with functional magnetic resonance imaging (fMRI) and a phase-encoding paradigm employing binaural stimuli recorded individually for each participant. In all subjects, we observed preferential fMRI responses to contralateral azimuth positions. Additionally, in most AC locations, spatial tuning was broad and not level invariant. We derived an opponent channel model of the fMRI responses by subtracting the activity of contralaterally tuned regions in bilateral planum temporale. This resulted in accurate decoding of sound azimuth location, which was unaffected by changes in sound level. Our data thus support opponent channel coding as a neural mechanism for representing acoustic azimuth in human AC. PMID:26545618

  2. Interaction between DRD2 variation and sound environment on mood and emotion-related brain activity.

    PubMed

    Quarto, T; Fasano, M C; Taurisano, P; Fazio, L; Antonucci, L A; Gelao, B; Romano, R; Mancini, M; Porcelli, A; Masellis, R; Pallesen, K J; Bertolino, A; Blasi, G; Brattico, E

    2017-01-26

    Sounds, like music and noise, are capable of reliably affecting individuals' mood and emotions. However, these effects are highly variable across individuals. A putative source of variability is genetic background. Here we explored the interaction between a functional polymorphism of the dopamine D2 receptor gene (DRD2 rs1076560, G>T, previously associated with the relative expression of D2S/L isoforms) and sound environment on mood and emotion-related brain activity. Thirty-eight healthy subjects were genotyped for DRD2 rs1076560 (G/G=26; G/T=12) and underwent functional magnetic resonance imaging (fMRI) during performance of an implicit emotion-processing task while listening to music or noise. Individual variation in mood induction was assessed before and after the task. Results showed mood improvement after music exposure in DRD2GG subjects and mood deterioration after noise exposure in GT subjects. Moreover, the music, as opposed to noise environment, decreased the striatal activity of GT subjects as well as the prefrontal activity of GG subjects while processing emotional faces. These findings suggest that genetic variability of dopamine receptors affects sound environment modulations of mood and emotion processing. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Olivocochlear Efferent Control in Sound Localization and Experience-Dependent Learning

    PubMed Central

    Irving, Samuel; Moore, David R.; Liberman, M. Charles; Sumner, Christian J.

    2012-01-01

    Efferent auditory pathways have been implicated in sound localization and its plasticity. We examined the role of the olivocochlear system (OC) in horizontal sound localization by the ferret and in localization learning following unilateral earplugging. Under anesthesia, adult ferrets underwent olivocochlear bundle section at the floor of the fourth ventricle, either at the midline or laterally (left). Lesioned and control animals were trained to localize 1 s and 40ms amplitude-roved broadband noise stimuli from one of 12 loudspeakers. Neither type of lesion affected normal localization accuracy. All ferrets then received a left earplug and were tested and trained over 10 d. The plug profoundly disrupted localization. Ferrets in the control and lateral lesion groups improved significantly during subsequent training on the 1 s stimulus. No improvement (learning) occurred in the midline lesion group. Markedly poorer performance and failure to learn was observed with the 40 ms stimulus in all groups. Plug removal resulted in a rapid resumption of normal localization in all animals. Insertion of a subsequent plug in the right ear produced similar results to left earplugging. Learning in the lateral lesion group was independent of the side of the lesion relative to the earplug. Lesions in all reported cases were verified histologically. The results suggest the OC system is not needed for accurate localization, but that it is involved in relearning localization during unilateral conductive hearing loss. PMID:21325517

  4. Inexpensive Audio Activities: Earbud-based Sound Experiments

    NASA Astrophysics Data System (ADS)

    Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James

    2016-11-01

    Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two interference laboratories (beat frequency and two-speaker interference) and two resonance laboratories (quarter- and half-wavelength). Lastly, a Doppler laboratory using rotating earbuds is explained. The audio signal captured by all experiments is analyzed on free spectral analysis software and many of the experiments incorporate the unifying theme of measuring the speed of sound in air.

  5. Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. Also included are the clear column radiances used to derive these products which are representative of the radiances AIRS would have seen if there were no clouds in the field of view. All products also have error estimates. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20 percent, in cases with up to 90 percent effective cloud cover. The products are designed for data assimilation purposes for the improvement of numerical weather prediction, as well as for the study of climate and meteorological processes. With regard to data assimilation, one can use either the products themselves or the clear column radiances from which the products were derived. The AIRS Version 5 retrieval algorithm is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates for retrieved quantities and clear column radiances, and the use of these error estimates for Quality Control. The temperature profile error estimates are used to determine a case-by-case characteristic pressure pbest, down to which the profile is considered acceptable for data assimilation purposes. The characteristic pressure p(sub best) is determined by comparing the case dependent error estimate (delta)T(p) to the threshold values (Delta)T(p). The AIRS Version 5 data set provides error estimates of T(p) at all levels, and also profile dependent values of pbest based

  6. Affection of Fundamental Brain Activity By Using Sounds For Patients With Prosodic Disorders: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Imai, Emiko; Katagiri, Yoshitada; Seki, Keiko; Kawamata, Toshio

    2011-06-01

    We present a neural model of the production of modulated speech streams in the brain, referred to as prosody, which indicates the limbic structure essential for producing prosody both linguistically and emotionally. This model suggests that activating the fundamental brain including monoamine neurons at the basal ganglia will potentially contribute to helping patients with prosodic disorders coming from functional defects of the fundamental brain to overcome their speech problem. To establish effective clinical treatment for such prosodic disorders, we examine how sounds affect the fundamental activity by using electroencephalographic measurements. Throughout examinations with various melodious sounds, we found that some melodies with lilting rhythms successfully give rise to the fast alpha rhythms at the electroencephalogram which reflect the fundamental brain activity without any negative feelings.

  7. Enhanced control of light and sound trajectories with three-dimensional gradient index lenses

    NASA Astrophysics Data System (ADS)

    Chang, T. M.; Dupont, G.; Enoch, S.; Guenneau, S.

    2012-03-01

    We numerically study the focusing and bending effects of light and sound waves through heterogeneous isotropic cylindrical and spherical devices. We first point out that transformation optics and acoustics show that the control of light requires spatially varying anisotropic permittivity and permeability, while the control of sound is achieved via spatially anisotropic density and isotropic compressibility. Moreover, homogenization theory applied to electromagnetic and acoustic periodic structures leads to such artificial (although not spatially varying) anisotropic permittivity, permeability and density. We stress that homogenization is thus a natural mathematical tool for the design of structured metamaterials. To illustrate the two-step geometric transform-homogenization approach, we consider the design of cylindrical and spherical electromagnetic and acoustic lenses displaying some artificial anisotropy along their optical axis (direction of periodicity of the structural elements). Applications are sought in the design of Eaton and Luneburg lenses bending light at angles ranging from 90° to 360°, or mimicking a Schwartzchild metric, i.e. a black hole. All of these spherical metamaterials are characterized by a refractive index varying inversely with the radius which is approximated by concentric layers of homogeneous material. We finally propose some structured cylindrical metamaterials consisting of infinitely conducting or rigid toroidal channels in a homogeneous bulk material focusing light or sound waves. The functionality of these metamaterials is demonstrated via full-wave three-dimensional computations using nodal elements in the context of acoustics, and finite edge-elements in electromagnetics.

  8. Good vibrations: Controlling light with sound (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eggleton, Benjamin J.; Choudhary, Amol

    2016-10-01

    One of the surprises of nonlinear optics, is that light may interact strongly with sound. Intense laser light literally "shakes" the glass in optical fibres, exciting acoustic waves (sound) in the fibre. Under the right conditions, it leads to a positive feedback loop between light and sound termed "Stimulated Brillouin Scattering," or simply SBS. This nonlinear interaction can amplify or filter light waves with extreme precision in frequency which makes it uniquely suited to solve key problems in the fields of defence, biomedicine, wireless communications, spectroscopy and imaging. We have achieved the first demonstration of SBS in compact chip-scale structures, carefully designed so that the optical fields and the acoustic fields are simultaneously confined and guided. This new platform has opened a range of new functionalities that are being applied in communications and defence with breathtaking performance and compactness. My talk will introduce this new field and review our progress and achievements, including silicon based optical phononic processor.

  9. Earth Observing System/Advanced Microwave SoundingUnit-A (EOS/AMSU-A): Acquisition activities plan

    NASA Technical Reports Server (NTRS)

    Schwantje, Robert

    1994-01-01

    This is the acquisition activities plan for the software to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) system. This document is submitted in response to Contract NAS5-323 14 as CDRL 508. The procurement activities required to acquire software for the EOS/AMSU-A program are defined.

  10. Long-term exposure to noise impairs cortical sound processing and attention control.

    PubMed

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  11. Acoustics in Research Facilities--Control of Wanted and Unwanted Sound. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Newman, Robert B.

    Common and special acoustics problems are discussed in relation to the design and construction of research facilities. Following a brief examination of design criteria for the control of wanted and unwanted sound, the technology for achieving desired results is discussed. Emphasis is given to various design procedures and materials for the control…

  12. Determining the speed of sound in the air by sound wave interference

    NASA Astrophysics Data System (ADS)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  13. The emotional symbolism of two English e-sounds: /i/ as in "cheap" is pleasant and /I/ as in "chip" active.

    PubMed

    Whissell, Cynthia

    2003-02-01

    This article aligns the symbolism of the long (/i/) and short (/I/) e sounds in English with the two dimensions of emotional space-Pleasantness and Activation. On the basis of this alignment, the four quadrants of emotional space are labelled Cheerful (high /i/, high /I/), Cheerless (low /i/, low /I/), Tough (low /i/, high /I/), and Tender (high /i/, low /I/). In four phases, data from over 50 samples (mainly, poetry, song lyrics, and names) were plotted and compared in terms of their use of the two e sounds. Significant and meaningful differences among samples were discovered in all phases. The placement of samples in quadrants was additionally informative. Data samples including many long e sounds (/i/) tended to be more Pleasant and those including many short e sounds (/I/) tended to be more Active.

  14. Processes controlling the remobilization of surficial sediment and formation of sedimentary furrows in north-central Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Lewis, R.S.; DiGiacomo-Cohen, M. L.

    2002-01-01

    Sidescan sonar, bathymetric, subbottom, and bottom-photographic surveys and sediment sampling have improved our understanding of the processes that control the complex distribution of bottom sediments and benthic habitats in Long Island Sound. Although the deeper (>20 m) waters of the central Sound are long-term depositional areas characterized by relatively weak bottom-current regimes, our data reveal the localized presence of sedimentary furrows. These erosional bedforms occur in fine-grained cohesive sediments (silts and clayey silts), trend east-northeast, are irregularly spaced, and have indistinct troughs with gently sloping walls. The average width and relief of the furrows is 9.2 m and 0.4 m, respectively. The furrows average about 206 m long, but range in length from 30 m to over 1,300 m. Longitudinal ripples, bioturbation, and nutclam shell debris are common within the furrows. Although many of the furrows appear to end by gradually narrowing, some furrows show a "tuning fork" joining pattern. Most of these junctions open toward the east, indicating net westward sediment transport. However, a few junctions open toward the west suggesting that oscillating tidal currents are the dominant mechanism controlling furrow formation. Sedimentary furrows and longitudinal ripples typically form in environments which have recurring, directionally stable, and occasionally strong currents. The elongate geometry and regional bathymetry of Long Island Sound combine to constrain the dominant tidal and storm currents to east-west flow directions and permit the development of these bedforms. Through resuspension due to biological activity and the subsequent development of erosional bedforms, fine-grained cohesive sediment can be remobilized and made available for transport farther westward into the estuary.

  15. Processes controlling the remobilization of surficial sediment and formation of sedimentary furrows in North-Central Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Lewis, R.S.; DiGiacomo-Cohen, M. L.

    2002-01-01

    Sidescan sonar, bathymetric, subbottom, and bottom-photographic surveys and sediment sampling have improved our understanding of the processes that control the complex distribution of bottom sediments and benthic habitats in Long Island Sound. Although the deeper (>20 m) waters of the central Sound are long-term depositional areas characterized by relatively weak bottom-current regimes, our data reveal the localized presence of sedimentary furrows. These erosional bedforms occur in fine-grained cohesive sediments (silts and clayey silts), trend east-northeast, are irregularly spaced, and have indistinct troughs with gently sloping walls. The average width and relief of the furrows is 9.2 m and 0.4 m, respectively. The furrows average about 206 m long, but range in length from 30 m to over 1,300 m. Longitudinal ripples, bioturbation, and nutclam shell debris are common within the furrows. Although many of the furrows appear to end by gradually narrowing, some furrows show a "tuning fork" joining pattern. Most of these junctions open toward the east, indicating net westward sediment transport. However, a few junctions open toward the west suggesting that oscillating tidal currents are the dominant mechanism controlling furrow formation. Sedimentary furrows and longitudinal ripples typically form in environments which have recurring, directionally stable, and occasionally strong currents. The elongate geometry and regional bathymetry of Long Island Sound combine to constrain the dominant tidal and storm currents to east-west flow directions and permit the development of these bedforms. Through resuspension due to biological activity and the subsequent development of erosional bedforms, fine-grained cohesive sediment can be remobilized and made available for transport farther westward into the estuary.

  16. Opponent Coding of Sound Location (Azimuth) in Planum Temporale is Robust to Sound-Level Variations.

    PubMed

    Derey, Kiki; Valente, Giancarlo; de Gelder, Beatrice; Formisano, Elia

    2016-01-01

    Coding of sound location in auditory cortex (AC) is only partially understood. Recent electrophysiological research suggests that neurons in mammalian auditory cortex are characterized by broad spatial tuning and a preference for the contralateral hemifield, that is, a nonuniform sampling of sound azimuth. Additionally, spatial selectivity decreases with increasing sound intensity. To accommodate these findings, it has been proposed that sound location is encoded by the integrated activity of neuronal populations with opposite hemifield tuning ("opponent channel model"). In this study, we investigated the validity of such a model in human AC with functional magnetic resonance imaging (fMRI) and a phase-encoding paradigm employing binaural stimuli recorded individually for each participant. In all subjects, we observed preferential fMRI responses to contralateral azimuth positions. Additionally, in most AC locations, spatial tuning was broad and not level invariant. We derived an opponent channel model of the fMRI responses by subtracting the activity of contralaterally tuned regions in bilateral planum temporale. This resulted in accurate decoding of sound azimuth location, which was unaffected by changes in sound level. Our data thus support opponent channel coding as a neural mechanism for representing acoustic azimuth in human AC. © The Author 2015. Published by Oxford University Press.

  17. Reduction of external noise of mobile energy facilities by using active noise control system in muffler

    NASA Astrophysics Data System (ADS)

    Polivaev, O. I.; Kuznetsov, A. N.; Larionov, A. N.; Beliansky, R. G.

    2018-03-01

    The paper describes a method for the reducing emission of low-frequency noise of modern automotive vehicles into the environment. The importance of reducing the external noise of modern mobile energy facilities made in Russia is substantiated. Standard methods for controlling external noise in technology are of low efficiency when low-frequency sound waves are reduced. In this case, it is in the low-frequency zone of the sound range that the main power of the noise emitted by the machinery lies. The most effective way to reduce such sound waves is to use active noise control systems. A design of a muffler using a similar system is presented. This muffler allowed one to reduce the emission of increased noise levels into the environment by 7-11 dB and to increase acoustic comfort at the operator's workplace by 3-5 dB.

  18. Biological Effect of Audible Sound Control on Mung Bean (Vigna radiate) Sprout

    PubMed Central

    Cai, W.; He, H.; Zhu, S.; Wang, N.

    2014-01-01

    Audible sound (20–20000 Hz) widely exists in natural world. However, the interaction between audible sound and the growth of plants is usually neglected in biophysics research. Not much effort has been put forth in studying the relation of plant and audible sound. In this work, the effect of audible sound on germination and growth of mung bean (Vigna radiate) was studied under laboratory condition. Audible sound ranging 1000–1500 Hz, 1500–2000 Hz, and 2000–2500 Hz and intensities [80 dB (A), 90 dB (A), 100 dB (A)] were used to stimulate mung bean for 72 hours. The growth of mung bean was evaluated in terms of mean germination time, total length, and total fresh weight. Experimental results indicated that the sound wave can reduce the germination period of mung bean and the mung bean under treatments of sound with intensity around 90 dB and frequency around 2000 Hz and significant increase in growth. Audible sound treatment can promote the growth of mung bean differently for distinct frequency and intensity. The study provides us with a way to understand the effects and rules of sound field on plant growth and a new way to improve the production of mung bean. PMID:25170517

  19. NESSTI: Norms for Environmental Sound Stimuli

    PubMed Central

    Hocking, Julia; Dzafic, Ilvana; Kazovsky, Maria; Copland, David A.

    2013-01-01

    In this paper we provide normative data along multiple cognitive and affective variable dimensions for a set of 110 sounds, including living and manmade stimuli. Environmental sounds are being increasingly utilized as stimuli in the cognitive, neuropsychological and neuroimaging fields, yet there is no comprehensive set of normative information for these type of stimuli available for use across these experimental domains. Experiment 1 collected data from 162 participants in an on-line questionnaire, which included measures of identification and categorization as well as cognitive and affective variables. A subsequent experiment collected response times to these sounds. Sounds were normalized to the same length (1 second) in order to maximize usage across multiple paradigms and experimental fields. These sounds can be freely downloaded for use, and all response data have also been made available in order that researchers can choose one or many of the cognitive and affective dimensions along which they would like to control their stimuli. Our hope is that the availability of such information will assist researchers in the fields of cognitive and clinical psychology and the neuroimaging community in choosing well-controlled environmental sound stimuli, and allow comparison across multiple studies. PMID:24023866

  20. Original sound compositions reduce anxiety in emergency department patients: a randomised controlled trial.

    PubMed

    Weiland, Tracey J; Jelinek, George A; Macarow, Keely E; Samartzis, Philip; Brown, David M; Grierson, Elizabeth M; Winter, Craig

    2011-12-19

    To determine whether emergency department (ED) patients' self-rated levels of anxiety are affected by exposure to purpose-designed music or sound compositions with and without the audio frequencies of embedded binaural beat. Randomised controlled trial in an ED between 1 February 2010 and 14 April 2010 among a convenience sample of adult patients who were rated as category 3 on the Australasian Triage Scale. All interventions involved listening to soundtracks of 20 minutes' duration that were purpose-designed by composers and sound-recording artists. Participants were allocated at random to one of five groups: headphones and iPod only, no soundtrack (control group); reconstructed ambient noise simulating an ED but free of clear verbalisations; electroacoustic musical composition; composed non-musical soundtracks derived from audio field recordings obtained from natural and constructed settings; sound composition of audio field recordings with embedded binaural beat. All soundtracks were presented on an iPod through headphones. Patients and researchers were blinded to allocation until interventions were administered. State-trait anxiety was self-assessed before the intervention and state anxiety was self-assessed again 20 minutes after the provision of the soundtrack. Spielberger State-Trait Anxiety Inventory. Of 291 patients assessed for eligibility, 170 patients completed the pre-intervention anxiety self-assessment and 169 completed the post-intervention assessment. Significant decreases (all P < 0.001) in anxiety level were observed among patients exposed to the electroacoustic musical composition (pre-intervention mean, 39; post-intervention mean, 34), audio field recordings (42; 35) or audio field recordings with embedded bianaural beats (43; 37) when compared with those allocated to receive simulated ED ambient noise (40; 41) or headphones only (44; 44). In moderately anxious ED patients, state anxiety was reduced by 10%-15% following exposure to

  1. Expert athletes activate somatosensory and motor planning regions of the brain when passively listening to familiar sports sounds.

    PubMed

    Woods, Elizabeth A; Hernandez, Arturo E; Wagner, Victoria E; Beilock, Sian L

    2014-06-01

    The present functional magnetic resonance imaging study examined the neural response to familiar and unfamiliar, sport and non-sport environmental sounds in expert and novice athletes. Results revealed differential neural responses dependent on sports expertise. Experts had greater neural activation than novices in focal sensorimotor areas such as the supplementary motor area, and pre- and postcentral gyri. Novices showed greater activation than experts in widespread areas involved in perception (i.e. supramarginal, middle occipital, and calcarine gyri; precuneus; inferior and superior parietal lobules), and motor planning and processing (i.e. inferior frontal, middle frontal, and middle temporal gyri). These between-group neural differences also appeared as an expertise effect within specific conditions. Experts showed greater activation than novices during the sport familiar condition in regions responsible for auditory and motor planning, including the inferior frontal gyrus and the parietal operculum. Novices only showed greater activation than experts in the supramarginal gyrus and pons during the non-sport unfamiliar condition, and in the middle frontal gyrus during the sport unfamiliar condition. These results are consistent with the view that expert athletes are attuned to only the most familiar, highly relevant sounds and tune out unfamiliar, irrelevant sounds. Furthermore, these findings that athletes show activation in areas known to be involved in action planning when passively listening to sounds suggests that auditory perception of action can lead to the re-instantiation of neural areas involved in producing these actions, especially if someone has expertise performing the actions. Copyright © 2014. Published by Elsevier Inc.

  2. Generation and control of sound bullets with a nonlinear acoustic lens.

    PubMed

    Spadoni, Alessandro; Daraio, Chiara

    2010-04-20

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment.

  3. How Pleasant Sounds Promote and Annoying Sounds Impede Health: A Cognitive Approach

    PubMed Central

    Andringa, Tjeerd C.; Lanser, J. Jolie L.

    2013-01-01

    This theoretical paper addresses the cognitive functions via which quiet and in general pleasurable sounds promote and annoying sounds impede health. The article comprises a literature analysis and an interpretation of how the bidirectional influence of appraising the environment and the feelings of the perceiver can be understood in terms of core affect and motivation. This conceptual basis allows the formulation of a detailed cognitive model describing how sonic content, related to indicators of safety and danger, either allows full freedom over mind-states or forces the activation of a vigilance function with associated arousal. The model leads to a number of detailed predictions that can be used to provide existing soundscape approaches with a solid cognitive science foundation that may lead to novel approaches to soundscape design. These will take into account that louder sounds typically contribute to distal situational awareness while subtle environmental sounds provide proximal situational awareness. The role of safety indicators, mediated by proximal situational awareness and subtle sounds, should become more important in future soundscape research. PMID:23567255

  4. How pleasant sounds promote and annoying sounds impede health: a cognitive approach.

    PubMed

    Andringa, Tjeerd C; Lanser, J Jolie L

    2013-04-08

    This theoretical paper addresses the cognitive functions via which quiet and in general pleasurable sounds promote and annoying sounds impede health. The article comprises a literature analysis and an interpretation of how the bidirectional influence of appraising the environment and the feelings of the perceiver can be understood in terms of core affect and motivation. This conceptual basis allows the formulation of a detailed cognitive model describing how sonic content, related to indicators of safety and danger, either allows full freedom over mind-states or forces the activation of a vigilance function with associated arousal. The model leads to a number of detailed predictions that can be used to provide existing soundscape approaches with a solid cognitive science foundation that may lead to novel approaches to soundscape design. These will take into account that louder sounds typically contribute to distal situational awareness while subtle environmental sounds provide proximal situational awareness. The role of safety indicators, mediated by proximal situational awareness and subtle sounds, should become more important in future soundscape research.

  5. Differential presence of anthropogenic compounds dissolved in the marine waters of Puget Sound, WA and Barkley Sound, BC.

    PubMed

    Keil, Richard; Salemme, Keri; Forrest, Brittany; Neibauer, Jaqui; Logsdon, Miles

    2011-11-01

    Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 n g L(-1) on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound. Published by Elsevier Ltd.

  6. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    NASA Astrophysics Data System (ADS)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  7. Multiple target sound quality balance for hybrid electric powertrain noise

    NASA Astrophysics Data System (ADS)

    Mosquera-Sánchez, J. A.; Sarrazin, M.; Janssens, K.; de Oliveira, L. P. R.; Desmet, W.

    2018-01-01

    The integration of the electric motor to the powertrain in hybrid electric vehicles (HEVs) presents acoustic stimuli that elicit new perceptions. The large number of spectral components, as well as the wider bandwidth of this sort of noises, pose new challenges to current noise, vibration and harshness (NVH) approaches. This paper presents a framework for enhancing the sound quality (SQ) of the hybrid electric powertrain noise perceived inside the passenger compartment. Compared with current active sound quality control (ASQC) schemes, where the SQ improvement is just an effect of the control actions, the proposed technique features an optimization stage, which enables the NVH specialist to actively implement the amplitude balance of the tones that better fits into the auditory expectations. Since Loudness, Roughness, Sharpness and Tonality are the most relevant SQ metrics for interior HEV noise, they are used as performance metrics in the concurrent optimization analysis, which, eventually, drives the control design method. Thus, multichannel active sound profiling systems that feature cross-channel compensation schemes are guided by the multi-objective optimization stage, by means of optimal sets of amplitude gain factors that can be implemented at each single sensor location, while minimizing cross-channel effects that can either degrade the original SQ condition, or even hinder the implementation of independent SQ targets. The proposed framework is verified experimentally, with realistic stationary hybrid electric powertrain noise, showing SQ enhancement for multiple locations within a scaled vehicle mock-up. The results show total success rates in excess of 90%, which indicate that the proposed method is promising, not only for the improvement of the SQ of HEV noise, but also for a variety of periodic disturbances with similar features.

  8. Focal versus distributed temporal cortex activity for speech sound category assignment

    PubMed Central

    Bouton, Sophie; Chambon, Valérian; Tyrand, Rémi; Seeck, Margitta; Karkar, Sami; van de Ville, Dimitri; Giraud, Anne-Lise

    2018-01-01

    Percepts and words can be decoded from distributed neural activity measures. However, the existence of widespread representations might conflict with the more classical notions of hierarchical processing and efficient coding, which are especially relevant in speech processing. Using fMRI and magnetoencephalography during syllable identification, we show that sensory and decisional activity colocalize to a restricted part of the posterior superior temporal gyrus (pSTG). Next, using intracortical recordings, we demonstrate that early and focal neural activity in this region distinguishes correct from incorrect decisions and can be machine-decoded to classify syllables. Crucially, significant machine decoding was possible from neuronal activity sampled across different regions of the temporal and frontal lobes, despite weak or absent sensory or decision-related responses. These findings show that speech-sound categorization relies on an efficient readout of focal pSTG neural activity, while more distributed activity patterns, although classifiable by machine learning, instead reflect collateral processes of sensory perception and decision. PMID:29363598

  9. The Production and Perception of Emotionally Expressive Walking Sounds: Similarities between Musical Performance and Everyday Motor Activity

    PubMed Central

    Giordano, Bruno L.; Egermann, Hauke; Bresin, Roberto

    2014-01-01

    Several studies have investigated the encoding and perception of emotional expressivity in music performance. A relevant question concerns how the ability to communicate emotions in music performance is acquired. In accordance with recent theories on the embodiment of emotion, we suggest here that both the expression and recognition of emotion in music might at least in part rely on knowledge about the sounds of expressive body movements. We test this hypothesis by drawing parallels between musical expression of emotions and expression of emotions in sounds associated with a non-musical motor activity: walking. In a combined production-perception design, two experiments were conducted, and expressive acoustical features were compared across modalities. An initial performance experiment tested for similar feature use in walking sounds and music performance, and revealed that strong similarities exist. Features related to sound intensity, tempo and tempo regularity were identified as been used similarly in both domains. Participants in a subsequent perception experiment were able to recognize both non-emotional and emotional properties of the sound-generating walkers. An analysis of the acoustical correlates of behavioral data revealed that variations in sound intensity, tempo, and tempo regularity were likely used to recognize expressed emotions. Taken together, these results lend support the motor origin hypothesis for the musical expression of emotions. PMID:25551392

  10. The production and perception of emotionally expressive walking sounds: similarities between musical performance and everyday motor activity.

    PubMed

    Giordano, Bruno L; Egermann, Hauke; Bresin, Roberto

    2014-01-01

    Several studies have investigated the encoding and perception of emotional expressivity in music performance. A relevant question concerns how the ability to communicate emotions in music performance is acquired. In accordance with recent theories on the embodiment of emotion, we suggest here that both the expression and recognition of emotion in music might at least in part rely on knowledge about the sounds of expressive body movements. We test this hypothesis by drawing parallels between musical expression of emotions and expression of emotions in sounds associated with a non-musical motor activity: walking. In a combined production-perception design, two experiments were conducted, and expressive acoustical features were compared across modalities. An initial performance experiment tested for similar feature use in walking sounds and music performance, and revealed that strong similarities exist. Features related to sound intensity, tempo and tempo regularity were identified as been used similarly in both domains. Participants in a subsequent perception experiment were able to recognize both non-emotional and emotional properties of the sound-generating walkers. An analysis of the acoustical correlates of behavioral data revealed that variations in sound intensity, tempo, and tempo regularity were likely used to recognize expressed emotions. Taken together, these results lend support the motor origin hypothesis for the musical expression of emotions.

  11. Active Control of Radiated Sound with Integrated Piezoelectric Composite Structures. Volume 3: Appendices (Concl.)

    DTIC Science & Technology

    1998-11-06

    after many iterations of analysis , development, construction and testing was found to provide amplification ratios of around 250:1 and generate...IEEE International Symposium on Application of Ferroelectrics 2, 767-770 (1996). 11. "A Comparative Analysis of Piezoelectric Bending Mode Actuators...Active 95, 359-368, Newport Beach, CA(1995) 21. "Multiple Reference Feedforward Active Noise Control. Part I. Analysis and Simulation of Behavior," Y

  12. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    PubMed

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  13. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  14. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of highly accurate and useful system.

  15. Radio-echo sounding of 'active' Antarctic subglacial lakes

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Richter, T.; Rippin, D. M.; Le Brocq, A. M.; Wright, A.; Bingham, R.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Smith, B. E.; Payne, A. J.; Dowdeswell, J. A.; Bamber, J. L.

    2013-12-01

    Repeat-pass satellite altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts, however. Over the last 5 years, major geophysical campaigns have acquired RES data from several 'active' lake sites, including the US-UK-Australian ICECAP programme in East Antactica and the UK survey of the Institute Ice Stream in West Antarctica. In the latter case, a targeted RES survey of one 'active' lake was undertaken. RES evidence of the subglacial bed beneath 'active' lakes in both East and West Antarctica will be presented, and the evidence for pooled subglacial water from these data will be assessed. Based on this assessment, the nature of 'active' subglacial lakes, and their associated hydrology and relationship with surrounding topography will be discussed, as will the likelihood of further 'active' lakes in Antarctica. Hydraulic potential map of the Byrd Glacier catchment with contours at 5 MPa intervals. Predicted subglacial flowpaths are shown in blue. Subglacial lakes known from previous geophysical surveys are shown as black triangles while the newly discovered 'Three-tier lakes' are shown in dashed black outline. Surface height change features within the Byrd subglacial catchment are shown in outline and are shaded to indicate whether they were rising or falling during the ICESat campaign. Those features are labelled in-line with the numbering system of Smith et al. (J. Glac. 2009).

  16. Sound representation in higher language areas during language generation

    PubMed Central

    Magrassi, Lorenzo; Aromataris, Giuseppe; Cabrini, Alessandro; Annovazzi-Lodi, Valerio; Moro, Andrea

    2015-01-01

    How language is encoded by neural activity in the higher-level language areas of humans is still largely unknown. We investigated whether the electrophysiological activity of Broca’s area correlates with the sound of the utterances produced. During speech perception, the electric cortical activity of the auditory areas correlates with the sound envelope of the utterances. In our experiment, we compared the electrocorticogram recorded during awake neurosurgical operations in Broca’s area and in the dominant temporal lobe with the sound envelope of single words versus sentences read aloud or mentally by the patients. Our results indicate that the electrocorticogram correlates with the sound envelope of the utterances, starting before any sound is produced and even in the absence of speech, when the patient is reading mentally. No correlations were found when the electrocorticogram was recorded in the superior parietal gyrus, an area not directly involved in language generation, or in Broca’s area when the participants were executing a repetitive motor task, which did not include any linguistic content, with their dominant hand. The distribution of suprathreshold correlations across frequencies of cortical activities varied whether the sound envelope derived from words or sentences. Our results suggest the activity of language areas is organized by sound when language is generated before any utterance is produced or heard. PMID:25624479

  17. Actuator placement for active sound and vibration control of cylinders

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  18. Effects of Listening to Music versus Environmental Sounds in Passive and Active Situations on Levels of Pain and Fatigue in Fibromyalgia.

    PubMed

    Mercadíe, Lolita; Mick, Gérard; Guétin, Stéphane; Bigand, Emmanuel

    2015-10-01

    In fibromyalgia, pain symptoms such as hyperalgesia and allodynia are associated with fatigue. Mechanisms underlying such symptoms can be modulated by listening to pleasant music. We expected that listening to music, because of its emotional impact, would have a greater modulating effect on the perception of pain and fatigue in patients with fibromyalgia than listening to nonmusical sounds. To investigate this hypothesis, we carried out a 4-week study in which patients with fibromyalgia listened to either preselected musical pieces or environmental sounds when they experienced pain in active (while carrying out a physical activity) or passive (at rest) situations. Concomitant changes of pain and fatigue levels were evaluated. When patients listened to music or environmental sounds at rest, pain and fatigue levels were significantly reduced after 20 minutes of listening, with no difference of effect magnitude between the two stimuli. This improvement persisted 10 minutes after the end of the listening session. In active situations, pain did not increase in presence of the two stimuli. Contrary to our expectations, music and environmental sounds produced a similar relieving effect on pain and fatigue, with no benefit gained by listening to pleasant music over environmental sounds. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  19. The Impact of Eliminating Extraneous Sound and Light on Students' Achievement: An Empirical Study

    ERIC Educational Resources Information Center

    Mangipudy, Rajarajeswari

    2010-01-01

    The impact of eliminating extraneous sound and light on students' achievement was investigated under four conditions: Light and Sound controlled, Sound Only controlled, Light Only controlled and neither Light nor Sound controlled. Group, age and gender were the control variables. Four randomly selected groups of high school freshmen students with…

  20. Cluster-Randomized Controlled Trial Evaluating the Effectiveness of Computer-Assisted Intervention Delivered by Educators for Children with Speech Sound Disorders

    ERIC Educational Resources Information Center

    McLeod, Sharynne; Baker, Elise; McCormack, Jane; Wren, Yvonne; Roulstone, Sue; Crowe, Kathryn; Masso, Sarah; White, Paul; Howland, Charlotte

    2017-01-01

    Purpose: The aim was to evaluate the effectiveness of computer-assisted input-based intervention for children with speech sound disorders (SSD). Method: The Sound Start Study was a cluster-randomized controlled trial. Seventy-nine early childhood centers were invited to participate, 45 were recruited, and 1,205 parents and educators of 4- and…

  1. Degraded speech sound processing in a rat model of fragile X syndrome

    PubMed Central

    Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Kilgard, Michael P.

    2014-01-01

    Fragile X syndrome is the most common inherited form of intellectual disability and the leading genetic cause of autism. Impaired phonological processing in fragile X syndrome interferes with the development of language skills. Although auditory cortex responses are known to be abnormal in fragile X syndrome, it is not clear how these differences impact speech sound processing. This study provides the first evidence that the cortical representation of speech sounds is impaired in Fmr1 knockout rats, despite normal speech discrimination behavior. Evoked potentials and spiking activity in response to speech sounds, noise burst trains, and tones were significantly degraded in primary auditory cortex, anterior auditory field and the ventral auditory field. Neurometric analysis of speech evoked activity using a pattern classifier confirmed that activity in these fields contains significantly less information about speech sound identity in Fmr1 knockout rats compared to control rats. Responses were normal in the posterior auditory field, which is associated with sound localization. The greatest impairment was observed in the ventral auditory field, which is related to emotional regulation. Dysfunction in the ventral auditory field may contribute to poor emotional regulation in fragile X syndrome and may help explain the observation that later auditory evoked responses are more disturbed in fragile X syndrome compared to earlier responses. Rodent models of fragile X syndrome are likely to prove useful for understanding the biological basis of fragile X syndrome and for testing candidate therapies. PMID:24713347

  2. It's More Fun than It Sounds--Enhancing Science Concepts through Hands-on Activities for Young Children

    ERIC Educational Resources Information Center

    Guha, Smita

    2012-01-01

    To teach young children, teachers choose topics in science that children are curious about. Children's inquisitive nature is reflected through the activities as they make repetitive sounds to find the cause and effect relationship. Teachers can make best use of those invaluable moments by incorporating those activities into science lessons on…

  3. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children

    PubMed Central

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C.; Hornickel, Jane; Strait, Dana L.; Nicol, Trent; White-Schwoch, Travis

    2014-01-01

    The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the

  4. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children.

    PubMed

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis

    2014-01-01

    The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the

  5. Generation and control of sound bullets with a nonlinear acoustic lens

    PubMed Central

    Spadoni, Alessandro; Daraio, Chiara

    2010-01-01

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment. PMID:20368461

  6. Using therapeutic sound with progressive audiologic tinnitus management.

    PubMed

    Henry, James A; Zaugg, Tara L; Myers, Paula J; Schechter, Martin A

    2008-09-01

    Management of tinnitus generally involves educational counseling, stress reduction, and/or the use of therapeutic sound. This article focuses on therapeutic sound, which can involve three objectives: (a) producing a sense of relief from tinnitus-associated stress (using soothing sound); (b) passively diverting attention away from tinnitus by reducing contrast between tinnitus and the acoustic environment (using background sound); and (c) actively diverting attention away from tinnitus (using interesting sound). Each of these goals can be accomplished using three different types of sound-broadly categorized as environmental sound, music, and speech-resulting in nine combinations of uses of sound and types of sound to manage tinnitus. The authors explain the uses and types of sound, how they can be combined, and how the different combinations are used with Progressive Audiologic Tinnitus Management. They also describe how sound is used with other sound-based methods of tinnitus management (Tinnitus Masking, Tinnitus Retraining Therapy, and Neuromonics).

  7. Relation Between the Overall Impression of the Sound Environment and Types and Loudness of Environmental Sounds

    NASA Astrophysics Data System (ADS)

    KAWAI, K.; YANO, T.

    2002-02-01

    This paper reports an experimental study determining the effects of the type and loudness of individual sounds on the overall impression of the sound environment. Field and laboratory experiments were carried out. In each experiment, subjects evaluated the sound environment presented, which consisted of combinations of three individual sounds of road traffic, singing crickets and the murmuring of a river, with five bipolar adjective scales such as Good-Bad, Active-Calm and Natural-Artificial. Overall loudness had the strongest effect on most types of evaluations; relative SPL has a greater effect than overall loudness on a particular evaluation of the natural-artificial scale. The test sounds in the field experiment were generally evaluated as more good and more natural than those in the laboratory. The results of comparisons between laboratory and field sounds indicate a difference in the trend between them. This difference may be explained by the term of selective listening but that needs further investigation.

  8. Active implant for optoacoustic natural sound enhancement

    NASA Astrophysics Data System (ADS)

    Mohrdiek, S.; Fretz, M.; Jose James, R.; Spinola Durante, G.; Burch, T.; Kral, A.; Rettenmaier, A.; Milani, R.; Putkonen, M.; Noell, W.; Ortsiefer, M.; Daly, A.; Vinciguerra, V.; Garnham, C.; Shah, D.

    2017-02-01

    This paper summarizes the results of an EU project called ACTION: ACTive Implant for Optoacoustic Natural sound enhancement. The project is based on a recent discovery that relatively low levels of pulsed infrared laser light are capable of triggering activity in hair cells of the partially hearing (hearing impaired) cochlea and vestibule. The aim here is the development of a self-contained, smart, highly miniaturized system to provide optoacoustic stimuli directly from an array of miniature light sources in the cochlea. Optoacoustic compound action potentials (oaCAP) are generated by the light source fully inserted into the unmodified cochlea. Previously, the same could only be achieved with external light sources connected to a fiber optic light guide. This feat is achieved by integrating custom made VCSEL arrays at a wavelength of about 1550 nm onto small flexible substrates. The laser light is collimated by a specially designed silicon-based ultra-thin lens (165 um thick) to get the energy density required for the generation of oaCAP signals. A dramatic miniaturization of the packaging technology is also required. A long term biocompatible and hermetic sapphire housing with a size of less than a 1 cubic millimeter and miniature Pt/PtIr feedthroughs is developed, using a low temperature laser assisted process for sealing. A biofouling thin film protection layer is developed to avoid fibrinogen and cell growth on the system.

  9. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.

    PubMed

    Yost, William A; Zhong, Xuan; Najam, Anbar

    2015-11-01

    In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process.

  10. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    PubMed

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  11. Parallel language activation and inhibitory control in bimodal bilinguals.

    PubMed

    Giezen, Marcel R; Blumenfeld, Henrike K; Shook, Anthony; Marian, Viorica; Emmorey, Karen

    2015-08-01

    Findings from recent studies suggest that spoken-language bilinguals engage nonlinguistic inhibitory control mechanisms to resolve cross-linguistic competition during auditory word recognition. Bilingual advantages in inhibitory control might stem from the need to resolve perceptual competition between similar-sounding words both within and between their two languages. If so, these advantages should be lessened or eliminated when there is no perceptual competition between two languages. The present study investigated the extent of inhibitory control recruitment during bilingual language comprehension by examining associations between language co-activation and nonlinguistic inhibitory control abilities in bimodal bilinguals, whose two languages do not perceptually compete. Cross-linguistic distractor activation was identified in the visual world paradigm, and correlated significantly with performance on a nonlinguistic spatial Stroop task within a group of 27 hearing ASL-English bilinguals. Smaller Stroop effects (indexing more efficient inhibition) were associated with reduced co-activation of ASL signs during the early stages of auditory word recognition. These results suggest that inhibitory control in auditory word recognition is not limited to resolving perceptual linguistic competition in phonological input, but is also used to moderate competition that originates at the lexico-semantic level. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Sound Fields in Complex Listening Environments

    PubMed Central

    2011-01-01

    The conditions of sound fields used in research, especially testing and fitting of hearing aids, are usually simplified or reduced to fundamental physical fields, such as the free or the diffuse sound field. The concepts of such ideal conditions are easily introduced in theoretical and experimental investigations and in models for directional microphones, for example. When it comes to real-world application of hearing aids, however, the field conditions are more complex with regard to specific stationary and transient properties in room transfer functions and the corresponding impulse responses and binaural parameters. Sound fields can be categorized in outdoor rural and urban and indoor environments. Furthermore, sound fields in closed spaces of various sizes and shapes and in situations of transport in vehicles, trains, and aircrafts are compared with regard to the binaural signals. In laboratory tests, sources of uncertainties are individual differences in binaural cues and too less controlled sound field conditions. Furthermore, laboratory sound fields do not cover the variety of complex sound environments. Spatial audio formats such as higher-order ambisonics are candidates for sound field references not only in room acoustics and audio engineering but also in audiology. PMID:21676999

  13. Active Noise Control of Low Speed Fan Rotor-Stator Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Hu, Ziqiang; Pla, Frederic G.; Heidelberg, Laurence J.

    1996-01-01

    This report describes the Active Noise Cancellation System designed by General Electric and tested in the NASA Lewis Research Center's 48 inch Active Noise Control Fan. The goal of this study was to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for active noise cancellation of fan tones. The control system is based on a modal control approach. A known acoustic mode propagating in the fan duct is cancelled using an array of flush-mounted compact sound sources. Controller inputs are signals from a shaft encoder and a microphone array which senses the residual acoustic mode in the duct. The canceling modal signal is generated by a modal controller. The key results are that the (6,0) mode was completely eliminated at 920 Hz and substantially reduced elsewhere. The total tone power was reduced 9.4 dB. Farfield 2BPF SPL reductions of 13 dB were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB modal PWL decrease. Global attenuation of PWL was obtained using an actuator and sensor system totally contained within the duct.

  14. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  15. Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat

    PubMed Central

    Chrostowski, Michael; Salvi, Richard J.; Allman, Brian L.

    2012-01-01

    A high dose of sodium salicylate temporarily induces tinnitus, mild hearing loss, and possibly hyperacusis in humans and other animals. Salicylate has well-established effects on cochlear function, primarily resulting in the moderate reduction of auditory input to the brain. Despite decreased peripheral sensitivity and output, salicylate induces a paradoxical enhancement of the sound-evoked field potential at the level of the primary auditory cortex (A1). Previous electrophysiologic studies have begun to characterize changes in thalamorecipient layers of A1; however, A1 is a complex neural circuit with recurrent intracortical connections. To describe the effects of acute systemic salicylate treatment on both thalamic and intracortical sound-driven activity across layers of A1, we applied current-source density (CSD) analysis to field potentials sampled across cortical layers in the anesthetized rat. CSD maps were normally characterized by a large, short-latency, monosynaptic, thalamically driven sink in granular layers followed by a lower amplitude, longer latency, polysynaptic, intracortically driven sink in supragranular layers. Following systemic administration of salicylate, there was a near doubling of both granular and supragranular sink amplitudes at higher sound levels. The supragranular sink amplitude input/output function changed from becoming asymptotic at approximately 50 dB to sharply nonasymptotic, often dominating the granular sink amplitude at higher sound levels. The supragranular sink also exhibited a significant decrease in peak latency, reflecting an acceleration of intracortical processing of the sound-evoked response. Additionally, multiunit (MU) activity was altered by salicylate; the normally onset/sustained MU response type was transformed into a primarily onset response type in granular and infragranular layers. The results from CSD analysis indicate that salicylate significantly enhances sound-driven response via intracortical circuits

  16. Experimental study of a smart foam sound absorber.

    PubMed

    Leroy, Pierre; Berry, Alain; Herzog, Philippe; Atalla, Noureddine

    2011-01-01

    This article presents the experimental implementation and results of a hybrid passive/active absorber (smart foam) made up from the combination of a passive absorbent (foam) and a curved polyvinylidene fluoride (PVDF) film actuator bonded to the rear surface of the foam. Various smart foam prototypes were built and tested in active absorption experiments conducted in an impedance tube under plane wave propagation condition at frequencies between 100 and 1500 Hz. Three control cases were tested. The first case used a fixed controller derived in the frequency domain from estimations of the primary disturbance at a directive microphone position in the tube and the transfer function between the control PVDF and the directive microphone. The two other cases used an adaptive time-domain feedforward controller to absorb either a single-frequency incident wave or a broadband incident wave. The non-linearity of the smart foams and the causality constraint were identified to be important factors influencing active control performance. The effectiveness of the various smart foam prototypes is discussed in terms of the active and passive absorption coefficients as well as the control voltage of the PVDF actuator normalized by the incident sound pressure.

  17. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place In the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. The NASA Sounding Rocket Program is managed by personnel from Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia. Typically around thirty of these rockets are launched each year, either from established ranges at Wallops Island, Virginia, Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico or from Canada, Norway and Sweden. Many times launches are conducted from temporary launch ranges in remote parts of the world requi6ng considerable expense to transport and operate tracking radars. An inverse differential GPS system has been developed for Sounding Rocket. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of a high accurate and useful system.

  18. Active control of fan noise

    NASA Astrophysics Data System (ADS)

    Yamasaki, Nobuhiko; Tajima, Hirotoshi

    2008-06-01

    In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF) and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies

  19. Attentional Capacity Limits Gap Detection during Concurrent Sound Segregation.

    PubMed

    Leung, Ada W S; Jolicoeur, Pierre; Alain, Claude

    2015-11-01

    Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.

  20. Inexpensive Audio Activities: Earbud-Based Sound Experiments

    ERIC Educational Resources Information Center

    Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James

    2016-01-01

    Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two…

  1. A Sound Therapy-Based Intervention to Expand the Auditory Dynamic Range for Loudness among Persons with Sensorineural Hearing Losses: A Randomized Placebo-Controlled Clinical Trial

    PubMed Central

    Formby, Craig; Hawley, Monica L.; Sherlock, LaGuinn P.; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M.; Juneau, Roger; Desporte, Edward J.; Siegle, Gregory R.

    2015-01-01

    The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy–based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1—full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2—partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3—partial treatment achieved with binaural sound generators alone; and (4) group 4—a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were

  2. A Sound Therapy-Based Intervention to Expand the Auditory Dynamic Range for Loudness among Persons with Sensorineural Hearing Losses: A Randomized Placebo-Controlled Clinical Trial.

    PubMed

    Formby, Craig; Hawley, Monica L; Sherlock, LaGuinn P; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M; Juneau, Roger; Desporte, Edward J; Siegle, Gregory R

    2015-05-01

    The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy-based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1-full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2-partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3-partial treatment achieved with binaural sound generators alone; and (4) group 4-a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were significantly

  3. Sound localization and auditory response capabilities in round goby (Neogobius melanostomus)

    NASA Astrophysics Data System (ADS)

    Rollo, Audrey K.; Higgs, Dennis M.

    2005-04-01

    A fundamental role in vertebrate auditory systems is determining the direction of a sound source. While fish show directional responses to sound, sound localization remains in dispute. The species used in the current study, Neogobius melanostomus (round goby) uses sound in reproductive contexts, with both male and female gobies showing directed movement towards a calling male. The two-choice laboratory experiment was used (active versus quiet speaker) to analyze behavior of gobies in response to sound stimuli. When conspecific male spawning sounds were played, gobies moved in a direct path to the active speaker, suggesting true localization to sound. Of the animals that responded to conspecific sounds, 85% of the females and 66% of the males moved directly to the sound source. Auditory playback of natural and synthetic sounds showed differential behavioral specificity. Of gobies that responded, 89% were attracted to the speaker playing Padogobius martensii sounds, 87% to 100 Hz tone, 62% to white noise, and 56% to Gobius niger sounds. Swimming speed, as well as mean path angle to the speaker, will be presented during the presentation. Results suggest a strong localization of the round goby to a sound source, with some differential sound specificity.

  4. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.

    PubMed

    Koch, Christian

    2016-03-01

    During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected. Copyright © 2015. Published by Elsevier B.V.

  5. By the sound of it. An ERP investigation of human action sound processing in 7-month-old infants

    PubMed Central

    Geangu, Elena; Quadrelli, Ermanno; Lewis, James W.; Macchi Cassia, Viola; Turati, Chiara

    2015-01-01

    Recent evidence suggests that human adults perceive human action sounds as a distinct category from human vocalizations, environmental, and mechanical sounds, activating different neural networks (Engel et al., 2009; Lewis et al., 2011). Yet, little is known about the development of such specialization. Using event-related potentials (ERP), this study investigated neural correlates of 7-month-olds’ processing of human action (HA) sounds in comparison to human vocalizations (HV), environmental (ENV), and mechanical (MEC) sounds. Relative to the other categories, HA sounds led to increased positive amplitudes between 470 and 570 ms post-stimulus onset at left anterior temporal locations, while HV led to increased negative amplitudes at the more posterior temporal locations in both hemispheres. Collectively, human produced sounds (HA + HV) led to significantly different response profiles compared to non-living sound sources (ENV + MEC) at parietal and frontal locations in both hemispheres. Overall, by 7 months of age human action sounds are being differentially processed in the brain, consistent with a dichotomy for processing living versus non-living things. This provides novel evidence regarding the typical categorical processing of socially relevant sounds. PMID:25732377

  6. Early sound symbolism for vowel sounds.

    PubMed

    Spector, Ferrinne; Maurer, Daphne

    2013-01-01

    Children and adults consistently match some words (e.g., kiki) to jagged shapes and other words (e.g., bouba) to rounded shapes, providing evidence for non-arbitrary sound-shape mapping. In this study, we investigated the influence of vowels on sound-shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat) and four rounded-jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko) rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba). Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01). The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  7. An experimental model to measure the ability of headphones with active noise control to reduce patient's exposure to noise in an intensive care unit.

    PubMed

    Gallacher, Stuart; Enki, Doyo; Stevens, Sian; Bennett, Mark J

    2017-10-17

    Defining the association between excessive noise in intensive care units, sleep disturbance and morbidity, including delirium, is confounded by the difficulty of implementing successful strategies to reduce patient's exposure to noise. Active noise control devices may prove to be useful adjuncts but there is currently little to quantify their ability to reduce noise in this complex environment. Sound meters were embedded in the auditory meatus of three polystyrene model heads with no headphones (control), with headphones alone and with headphones using active noise control and placed in patient bays in a cardiac ICU. Ten days of recording sound levels at a frequency of 1 Hz were performed, and the noise levels in each group were compared using repeated measures MANOVA and subsequent pairwise testing. Multivariate testing demonstrated that there is a significant difference in the mean noise exposure levels between the three groups (p < 0.001). Subsequent pairwise testing between the three groups shows that the reduction in noise is greatest with headphones and active noise control. The mean reduction in noise exposure between the control and this group over 24 h is 6.8 (0.66) dB. The use of active noise control was also associated with a reduction in the exposure to high-intensity sound events over the course of the day. The use of active noise cancellation, as delivered by noise-cancelling headphones, is associated with a significant reduction in noise exposure in our model of noise exposure in a cardiac ICU. This is the first study to look at the potential effectiveness of active noise control in adult patients in an intensive care environment and shows that active noise control is a candidate technology to reduce noise exposure levels the patients experience during stays on intensive care.

  8. Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP).

    PubMed

    Manohar, Senthilvelan; Spoth, Jaclyn; Radziwon, Kelly; Auerbach, Benjamin D; Salvi, Richard

    2017-09-01

    Hyperacusis is a loudness hypersensitivity disorder in which moderate-intensity sounds are perceived as extremely loud, aversive and/or painful. To assess the aversive nature of sounds, we developed an Active Sound Avoidance Paradigm (ASAP) in which rats altered their place preference in a Light/Dark shuttle box in response to sound. When no sound (NS) was present, rats spent more than 95% of the time in the Dark Box versus the transparent Light Box. However, when a 60 or 90 dB SPL noise (2-20 kHz, 2-8 kHz, or 16-20 kHz bandwidth) was presented in the Dark Box, the rats'' preference for the Dark Box significantly decreased. Percent time in the dark decreased as sound intensity in the Dark Box increased from 60 dB to 90 dB SPL. Interestingly, the magnitude of the decrease was not a monotonic function of intensity for the 16-20 kHz noise and not related to the bandwidth of the 2-20 kHz and 2-8 kHz noise bands, suggesting that sound avoidance is not solely dependent on loudness but the aversive quality of the noise as well. Afterwards, we exposed the rats for 28 days to a 16-20 kHz noise at 102 dB SPL; this exposure produced a 30-40 dB permanent threshold shift at 16 and 32 kHz. Following the noise exposure, the rats were then retested on the ASAP paradigm. High-frequency hearing loss did not alter Dark Box preference in the no-sound condition. However, when the 2-20 kHz or 2-8 kHz noise was presented at 60 or 90 dB SPL, the rats avoided the Dark Box significantly more than they did before the exposure, indicating these two noise bands with energy below the region of hearing loss were perceived as more aversive. In contrast, when the 16-20 kHz noise was presented at 60 or 90 dB SPL, the rats remained in the Dark Box presumably because the high-frequency hearing loss made 16-20 kHz noise less audible and less aversive. These results indicate that when rats develop a high-frequency hearing loss, they become less tolerant of low frequency noise, i

  9. Nonspeech oral motor treatment issues related to children with developmental speech sound disorders.

    PubMed

    Ruscello, Dennis M

    2008-07-01

    This article examines nonspeech oral motor treatments (NSOMTs) in the population of clients with developmental speech sound disorders. NSOMTs are a collection of nonspeech methods and procedures that claim to influence tongue, lip, and jaw resting postures; increase strength; improve muscle tone; facilitate range of motion; and develop muscle control. In the case of developmental speech sound disorders, NSOMTs are employed before or simultaneous with actual speech production treatment. First, NSOMTs are defined for the reader, and there is a discussion of NSOMTs under the categories of active muscle exercise, passive muscle exercise, and sensory stimulation. Second, different theories underlying NSOMTs along with the implications of the theories are discussed. Finally, a review of pertinent investigations is presented. The application of NSOMTs is questionable due to a number of reservations that include (a) the implied cause of developmental speech sound disorders, (b) neurophysiologic differences between the limbs and oral musculature, (c) the development of new theories of movement and movement control, and (d) the paucity of research literature concerning NSOMTs. There is no substantive evidence to support NSOMTs as interventions for children with developmental speech sound disorders.

  10. Active structural acoustic control of noise transmission through double panel systems

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Fuller, Chris R.

    1995-04-01

    A preliminary parametric study of active control of sound transmission through double panel systems has been experimentally performed. The technique used is the active structural acoustic control (ASAC) approach where control inputs, in the form of piezoelectric actuators, were applied to the structure while the radiated pressure field was minimized. Results indicate the application of control inputs to the radiating panel resulted in greater transmission loss due to its direct effect on the nature of the structural-acoustic coupling between the radiating panel and the receiving chamber. Increased control performance was seen in a double panel system consisting of a stiffer radiating panel with a lower modal density. As expected, more effective control of a radiating panel excited on-resonance is achieved over one excited off-resonance. In general, the results validate the ASAC approach for double panel systems and demonstrate that it is possible to take advantage of double panel behavior to enhance control performance, although it is clear that further research must be done to understand the physics involved.

  11. Stereo Sound Field Controller Design Using Partial Model Matching on the Frequency Domain

    NASA Astrophysics Data System (ADS)

    Kumon, Makoto; Miike, Katsuhiro; Eguchi, Kazuki; Mizumoto, Ikuro; Iwai, Zenta

    The objective of sound field control is to make the acoustic characteristics of a listening room close to those of the desired system. Conventional methods apply feedforward controllers, such as digital filters, to achieve this objective. However, feedback controllers are also necessary in order to attenuate noise or to compensate the uncertainty of the acoustic characteristics of the listening room. Since acoustic characteristics are well modeled on the frequency domain, it is efficient to design controllers with respect to frequency responses, but it is difficult to design a multi input multi output (MIMO) control system on a wide frequency domain. In the present study, a partial model matching method on the frequency domain was adopted because this method requires only sampled data, rather than complex mathematical models of the plant, in order to design controllers for MIMO systems. The partial model matching method was applied to design two-degree-of-freedom controllers for acoustic equalization and noise reduction. Experiments demonstrated effectiveness of the proposed method.

  12. Selective attention to sound location or pitch studied with fMRI.

    PubMed

    Degerman, Alexander; Rinne, Teemu; Salmi, Juha; Salonen, Oili; Alho, Kimmo

    2006-03-10

    We used 3-T functional magnetic resonance imaging to compare the brain mechanisms underlying selective attention to sound location and pitch. In different tasks, the subjects (N = 10) attended to a designated sound location or pitch or to pictures presented on the screen. In the Attend Location conditions, the sound location varied randomly (left or right), while the pitch was kept constant (high or low). In the Attend Pitch conditions, sounds of randomly varying pitch (high or low) were presented at a constant location (left or right). Both attention to location and attention to pitch produced enhanced activity (in comparison with activation caused by the same sounds when attention was focused on the pictures) in widespread areas of the superior temporal cortex. Attention to either sound feature also activated prefrontal and inferior parietal cortical regions. These activations were stronger during attention to location than during attention to pitch. Attention to location but not to pitch produced a significant increase of activation in the premotor/supplementary motor cortices of both hemispheres and in the right prefrontal cortex, while no area showed activity specifically related to attention to pitch. The present results suggest some differences in the attentional selection of sounds on the basis of their location and pitch consistent with the suggested auditory "what" and "where" processing streams.

  13. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.

    PubMed

    Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina

    2017-03-01

    Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  14. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  15. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  16. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  17. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  18. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  19. Second sound tracking system

    NASA Astrophysics Data System (ADS)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  20. Experiment on Finite Amplitude Sound Propagation in a Fluid with a Strong Sound Speed Gradient

    NASA Astrophysics Data System (ADS)

    Hobæk, H.; Voll, A.˚.; Fardal, R.; Calise, L.

    2006-05-01

    A closed tank of dimensions 0.5 × 0.5 × 2.7 m3, filled with a mixture of ethanol and water to produce an almost linear sound speed profile with a gradient near 450 (m/s)/m, served the purpose for investigating shocked sound wave propagation in a stratified environment. As the sound speed profile evolved by diffusion a number of different measurements were taken, both in areas with caustics, shadow zones, along the main beam and along the bottom. After about one year, part of the fluid was re-mixed to obtain a pronounced sound speed maximum some 20 cm above the bottom. The high intensity sound was produced by a plane circular piston type sound source with near-field length 45 cm and half power angle 0.8° at 1.1 MHz, placed near one end of the tank. Its tilt angle and depth could be varied. A 0.5 mm diameter PVDF needle hydrophone (Precision Acoustics) mapped the sound field in a vertical slice in the range 0.9 - 2.4 m, remotely controlled by a PC. We present results from measurements in a shadow zone and along the bottom. The latter, in particular, displays unexpected amplitude variations. The project was funded by the European Commission, contract number G4RD-CT-2000-00398.

  1. Infra-sound cancellation and mitigation in wind turbines

    NASA Astrophysics Data System (ADS)

    Boretti, Albert; Ordys, Andrew; Al Zubaidy, Sarim

    2018-03-01

    The infra-sound spectra recorded inside homes located even several kilometres far from wind turbine installations is characterized by large pressure fluctuation in the low frequency range. There is a significant body of literature suggesting inaudible sounds at low frequency are sensed by humans and affect the wellbeing through different mechanisms. These mechanisms include amplitude modulation of heard sounds, stimulating subconscious pathways, causing endolymphatic hydrops, and possibly potentiating noise-induced hearing loss. We suggest the study of infra-sound active cancellation and mitigation to address the low frequency noise issues. Loudspeakers generate pressure wave components of same amplitude and frequency but opposite phase of the recorded infra sound. They also produce pressure wave components within the audible range reducing the perception of the infra-sound to minimize the sensing of the residual infra sound.

  2. Does the Sound of a Barking Dog Activate its Corresponding Visual Form? An fMRI Investigation of Modality-Specific Semantic Access

    PubMed Central

    Reilly, Jamie; Garcia, Amanda; Binney, Richard J.

    2016-01-01

    Much remains to be learned about the neural architecture underlying word meaning. Fully distributed models of semantic memory predict that the sound of a barking dog will conjointly engage a network of distributed sensorimotor spokes. An alternative framework holds that modality-specific features additionally converge within transmodal hubs. Participants underwent functional MRI while covertly naming familiar objects versus newly learned novel objects from only one of their constituent semantic features (visual form, characteristic sound, or point-light motion representation). Relative to the novel object baseline, familiar concepts elicited greater activation within association regions specific to that presentation modality. Furthermore, visual form elicited activation within high-level auditory association cortex. Conversely, environmental sounds elicited activation in regions proximal to visual association cortex. Both conditions commonly engaged a putative hub region within lateral anterior temporal cortex. These results support hybrid semantic models in which local hubs and distributed spokes are dually engaged in service of semantic memory. PMID:27289210

  3. Effectiveness of an acoustical product in reducing high-frequency sound within unoccupied incubators.

    PubMed

    Kellam, Barbara; Bhatia, Jatinder

    2009-08-01

    Few noise measurement studies in the neonatal intensive care unit have reported sound frequencies within incubators. Sound frequencies within incubators are markedly different from sound frequencies within the gravid uterus. This article reports the results of sound spectral analysis (SSA) within unoccupied incubators under control and treatment conditions. SSA indicated that acoustical foam panels (treatment condition) markedly reduced sound frequencies > or =500 Hz when compared with the control condition. The main findings of this study (a) illustrate the need to monitor high-frequency sound within incubators and (b) indicate one method to reduce atypical sound exposure within incubators.

  4. Differential pathologies resulting from sound exposure: Tinnitus vs hearing loss

    NASA Astrophysics Data System (ADS)

    Longenecker, Ryan James

    The first step in identifying the mechanism(s) responsible for tinnitus development would be to discover a neural correlate that is differentially expressed in tinnitus-positive compared to tinnitus negative animals. Previous research has identified several neural correlates of tinnitus in animals that have tested positive for tinnitus. However it is unknown whether all or some of these correlates are linked to tinnitus or if they are a byproduct of hearing loss, a common outcome of tinnitus induction. Abnormally high spontaneous activity has frequently been linked to tinnitus. However, while some studies demonstrate that hyperactivity positively correlates with behavioral evidence of tinnitus, others show that when all animals develop hyperactivity to sound exposure, not all exposed animals show evidence of tinnitus. My working hypothesis is that certain aspects of hyperactivity are linked to tinnitus while other aspects are linked to hearing loss. The first specific aim utilized the gap induced prepulse inhibition of the acoustic startle reflex (GIPAS) to monitor the development of tinnitus in CBA/CaJ mice during one year following sound exposure. Immediately after sound exposure, GIPAS testing revealed widespread gap detection deficits across all frequencies, which was likely due to temporary threshold shifts. However, three months after sound exposure these deficits were limited to a narrow frequency band and were consistently detected up to one year after exposure. This suggests the development of chronic tinnitus is a long lasting and highly dynamic process. The second specific aim assessed hearing loss in sound exposed mice using several techniques. Acoustic brainstem responses recorded initially after sound exposure reveal large magnitude deficits in all exposed mice. However, at the three month period, thresholds return to control levels in all mice suggesting that ABRs are not a reliable tool for assessing permanent hearing loss. Input/output functions of

  5. Neuro-cognitive aspects of "OM" sound/syllable perception: A functional neuroimaging study.

    PubMed

    Kumar, Uttam; Guleria, Anupam; Khetrapal, Chunni Lal

    2015-01-01

    The sound "OM" is believed to bring mental peace and calm. The cortical activation associated with listening to sound "OM" in contrast to similar non-meaningful sound (TOM) and listening to a meaningful Hindi word (AAM) has been investigated using functional magnetic resonance imaging (MRI). The behaviour interleaved gradient technique was employed in order to avoid interference of scanner noise. The results reveal that listening to "OM" sound in contrast to the meaningful Hindi word condition activates areas of bilateral cerebellum, left middle frontal gyrus (dorsolateral middle frontal/BA 9), right precuneus (BA 5) and right supramarginal gyrus (SMG). Listening to "OM" sound in contrast to "non-meaningful" sound condition leads to cortical activation in bilateral middle frontal (BA9), right middle temporal (BA37), right angular gyrus (BA 40), right SMG and right superior middle frontal gyrus (BA 8). The conjunction analysis reveals that the common neural regions activated in listening to "OM" sound during both conditions are middle frontal (left dorsolateral middle frontal cortex) and right SMG. The results correspond to the fact that listening to "OM" sound recruits neural systems implicated in emotional empathy.

  6. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  7. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  8. Correlation between Identification Accuracy and Response Confidence for Common Environmental Sounds

    DTIC Science & Technology

    set of environmental sounds with stimulus control and precision. The present study is one in a series of efforts to provide a baseline evaluation of a...sounds from six broad categories: household items, alarms, animals, human generated, mechanical, and vehicle sounds. Each sound was presented five times

  9. Development of a directivity-controlled piezoelectric transducer for sound reproduction

    NASA Astrophysics Data System (ADS)

    Bédard, Magella; Berry, Alain

    2008-04-01

    Present sound reproduction systems do not attempt to simulate the spatial radiation of musical instruments, or sound sources in general, even though the spatial directivity has a strong impact on the psychoacoustic experience. A transducer consisting of 4 piezoelectric elemental sources made from curved PVDF films is used to generate a target directivity pattern in the horizontal plane, in the frequency range of 5-20 kHz. The vibratory and acoustical response of an elemental source is addressed, both theoretically and experimentally. Two approaches to synthesize the input signals to apply to each elemental source are developed in order to create a prescribed, frequency-dependent acoustic directivity. The circumferential Fourier decomposition of the target directivity provides a compromise between the magnitude and the phase reconstruction, whereas the minimization of a quadratic error criterion provides a best magnitude reconstruction. This transducer can improve sound reproduction by introducing the spatial radiation aspect of the original source at high frequency.

  10. English Pronunciation: A Systematic Approach to Word-Stress and Vowel-Sounds.

    ERIC Educational Resources Information Center

    Carmona, Francisco

    A handbook on English word stress and stressed-vowel sounds is based on the idea that these segments are, in most cases, controlled by phonological context and their pronunciation can be understood through a system of rules. It serves as a reference for teachers and as a text for students. Chapters address these topics: word stress and active and…

  11. Hearing in three dimensions: Sound localization

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Kistler, Doris J.

    1990-01-01

    The ability to localize a source of sound in space is a fundamental component of the three dimensional character of the sound of audio. For over a century scientists have been trying to understand the physical and psychological processes and physiological mechanisms that subserve sound localization. This research has shown that important information about sound source position is provided by interaural differences in time of arrival, interaural differences in intensity and direction-dependent filtering provided by the pinnae. Progress has been slow, primarily because experiments on localization are technically demanding. Control of stimulus parameters and quantification of the subjective experience are quite difficult problems. Recent advances, such as the ability to simulate a three dimensional sound field over headphones, seem to offer potential for rapid progress. Research using the new techniques has already produced new information. It now seems that interaural time differences are a much more salient and dominant localization cue than previously believed.

  12. Universal mechanisms of sound production and control in birds and mammals.

    PubMed

    Elemans, C P H; Rasmussen, J H; Herbst, C T; Düring, D N; Zollinger, S A; Brumm, H; Srivastava, K; Svane, N; Ding, M; Larsen, O N; Sober, S J; Švec, J G

    2015-11-27

    As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans.

  13. Sound Levels in East Texas Schools.

    ERIC Educational Resources Information Center

    Turner, Aaron Lynn

    A survey of sound levels was taken in several Texas schools to determine the amount of noise and sound present by size of class, type of activity, location of building, and the presence of air conditioning and large amounts of glass. The data indicate that class size and relative amounts of glass have no significant bearing on the production of…

  14. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  15. Active Control of Fan Noise by Vane Actuators

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1999-01-01

    An active noise control system for ducted fan noise was built that uses actuators located in stator vanes. The actuators were piezoelectric benders manufactured using the THUNDER technology and were custom designed for the application. The active noise control system was installed in the NASA ANCF rig. Four actuator array with a total of 168 actuators in 28 stator vanes were used. Simultaneous reductions of acoustic power in both the inlet and exhaust duct were demonstrated for a fan disturbance that contained two radial mode orders in both inlet and exhaust. Total power levels in the target modes were reduced by up to 9 dB in the inlet and total tone levels by over 6 dB while exhaust power levels were reduced by up to 3 dB. Far field sound pressure level reductions of up to 17 dB were observed. A simpler control system, matched to the location of the disturbance with two radial actuator arrays, was demonstrated to control total acoustic power in four disturbance modes simultaneously in inlet and exhaust. The vane actuator met the requirements given for the ANCF, although in practice the performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. The vane actuators were robust. None of the 168 vane actuators failed during the tests.

  16. Active control of fan-generated plane wave noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.

    1993-01-01

    Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.

  17. Xinyinqin: a computer-based heart sound simulator.

    PubMed

    Zhan, X X; Pei, J H; Xiao, Y H

    1995-01-01

    "Xinyinqin" is the Chinese phoneticized name of the Heart Sound Simulator (HSS). The "qin" in "Xinyinqin" is the Chinese name of a category of musical instruments, which means that the operation of HSS is very convenient--like playing an electric piano with the keys. HSS is connected to the GAME I/O of an Apple microcomputer. The generation of sound is controlled by a program. Xinyinqin is used as a teaching aid of Diagnostics. It has been applied in teaching for three years. In this demonstration we will introduce the following functions of HSS: 1) The main program has two modules. The first one is the heart auscultation training module. HSS can output a heart sound selected by the student. Another program module is used to test the student's learning condition. The computer can randomly simulate a certain heart sound and ask the student to name it. The computer gives the student's answer an assessment: "correct" or "incorrect." When the answer is incorrect, the computer will output that heart sound again for the student to listen to; this process is repeated until she correctly identifies it. 2) The program is convenient to use and easy to control. By pressing the S key, it is able to output a slow heart rate until the student can clearly identify the rhythm. The heart rate, like the actual rate of a patient, can then be restored by hitting any key. By pressing the SPACE BAR, the heart sound output can be stopped to allow the teacher to explain something to the student. The teacher can resume playing the heart sound again by hitting any key; she can also change the content of the training by hitting RETURN key. In the future, we plan to simulate more heart sounds and incorporate relevant graphs.

  18. Sound and heat revolutions in phononics

    NASA Astrophysics Data System (ADS)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  19. Rainsticks: Integrating Culture, Folklore, and the Physics of Sound

    ERIC Educational Resources Information Center

    Moseley, Christine; Fies, Carmen

    2007-01-01

    The purpose of this activity is for students to build a rainstick out of materials in their own environment and imitate the sound of rain while investigating the physical principles of sound. Students will be able to relate the sound produced by an instrument to the type and quantity of materials used in its construction.

  20. Interpolated Sounding and Gridded Sounding Value-Added Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toto, T.; Jensen, M.

    Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25more » and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.The INTERPOLATEDSONDE VAP, a continuous time-height grid of relative humidity-corrected sounding data, is intended to provide input to higher-order products, such as the Merged Soundings (MERGESONDE; Troyan 2012) VAP, which extends INTERPOLATEDSONDE by incorporating model data. The INTERPOLATEDSONDE VAP also is used to correct gaseous attenuation of radar reflectivity in products such as the KAZRCOR VAP.« less

  1. Multichannel sound reinforcement systems at work in a learning environment

    NASA Astrophysics Data System (ADS)

    Malek, John; Campbell, Colin

    2003-04-01

    Many people have experienced the entertaining benefits of a surround sound system, either in their own home or in a movie theater, but another application exists for multichannel sound that has for the most part gone unused. This is the application of multichannel sound systems to the learning environment. By incorporating a 7.1 surround processor and a touch panel interface programmable control system, the main lecture hall at the University of Michigan Taubman College of Architecture and Urban Planning has been converted from an ordinary lecture hall to a working audiovisual laboratory. The multichannel sound system is used in a wide variety of experiments, including exposure to sounds to test listeners' aural perception of the tonal characteristics of varying pitch, reverberation, speech transmission index, and sound-pressure level. The touch panel's custom interface allows a variety of user groups to control different parts of the AV system and provides preset capability that allows for numerous system configurations.

  2. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  3. Letter names and phonological awareness help children to learn letter-sound relations.

    PubMed

    Cardoso-Martins, Cláudia; Mesquita, Tereza Cristina Lara; Ehri, Linnea

    2011-05-01

    Two experimental training studies with Portuguese-speaking preschoolers in Brazil were conducted to investigate whether children benefit from letter name knowledge and phonological awareness in learning letter-sound relations. In Experiment 1, two groups of children were compared. The experimental group was taught the names of letters whose sounds occur either at the beginning (e.g., the letter /be/) or in the middle (e.g., the letter /'eli/) of the letter name. The control group was taught the shapes of the letters but not their names. Then both groups were taught the sounds of the letters. Results showed an advantage for the experimental group, but only for beginning-sound letters. Experiment 2 investigated whether training in phonological awareness could boost the learning of letter sounds, particularly middle-sound letters. In addition to learning the names of beginning- and middle-sound letters, children in the experimental group were taught to categorize words according to rhyme and alliteration, whereas controls were taught to categorize the same words semantically. All children were then taught the sounds of the letters. Results showed that children who were given phonological awareness training found it easier to learn letter sounds than controls. This was true for both types of letters, but especially for middle-sound letters. Copyright © 2011. Published by Elsevier Inc.

  4. Topography of sound level representation in the FM sweep selective region of the pallid bat auditory cortex.

    PubMed

    Measor, Kevin; Yarrow, Stuart; Razak, Khaleel A

    2018-05-26

    Sound level processing is a fundamental function of the auditory system. To determine how the cortex represents sound level, it is important to quantify how changes in level alter the spatiotemporal structure of cortical ensemble activity. This is particularly true for echolocating bats that have control over, and often rapidly adjust, call level to actively change echo level. To understand how cortical activity may change with sound level, here we mapped response rate and latency changes with sound level in the auditory cortex of the pallid bat. The pallid bat uses a 60-30 kHz downward frequency modulated (FM) sweep for echolocation. Neurons tuned to frequencies between 30 and 70 kHz in the auditory cortex are selective for the properties of FM sweeps used in echolocation forming the FM sweep selective region (FMSR). The FMSR is strongly selective for sound level between 30 and 50 dB SPL. Here we mapped the topography of level selectivity in the FMSR using downward FM sweeps and show that neurons with more monotonic rate level functions are located in caudomedial regions of the FMSR overlapping with high frequency (50-60 kHz) neurons. Non-monotonic neurons dominate the FMSR, and are distributed across the entire region, but there is no evidence for amplitopy. We also examined how first spike latency of FMSR neurons change with sound level. The majority of FMSR neurons exhibit paradoxical latency shift wherein the latency increases with sound level. Moreover, neurons with paradoxical latency shifts are more strongly level selective and are tuned to lower sound level than neurons in which latencies decrease with level. These data indicate a clustered arrangement of neurons according to monotonicity, with no strong evidence for finer scale topography, in the FMSR. The latency analysis suggests mechanisms for strong level selectivity that is based on relative timing of excitatory and inhibitory inputs. Taken together, these data suggest how the spatiotemporal

  5. Vulnerability to the Irrelevant Sound Effect in Adult ADHD.

    PubMed

    Pelletier, Marie-France; Hodgetts, Helen M; Lafleur, Martin F; Vincent, Annick; Tremblay, Sébastien

    2016-04-01

    An ecologically valid adaptation of the irrelevant sound effect paradigm was employed to examine the relative roles of short-term memory, selective attention, and sustained attention in ADHD. In all, 32 adults with ADHD and 32 control participants completed a serial recall task in silence or while ignoring irrelevant background sound. Serial recall performance in adults with ADHD was reduced relative to controls in both conditions. The degree of interference due to irrelevant sound was greater for adults with ADHD. Furthermore, a positive correlation was observed between task performance under conditions of irrelevant sound and the extent of attentional problems reported by patients on a clinical symptom scale. The results demonstrate that adults with ADHD exhibit impaired short-term memory and a low resistance to distraction; however, their capacity for sustained attention is preserved as the impact of irrelevant sound diminished over the course of the task. © The Author(s) 2013.

  6. Community Relations: DOD’s Approach for Using Resources Reflects Sound Management Principles

    DTIC Science & Technology

    2016-09-01

    COMMUNITY RELATIONS DOD’s Approach for Using Resources Reflects Sound Management Principles Report to...Sound Management Principles What GAO Found The Department of Defense’s (DOD) approach for determining which community relations activities to...undertake reflects sound management principles —both for activities requested by non-DOD entities and for activities initiated by the department. DOD and

  7. Universal mechanisms of sound production and control in birds and mammals

    PubMed Central

    Elemans, C.P.H; Rasmussen, J.H.; Herbst, C.T.; Düring, D.N.; Zollinger, S.A.; Brumm, H.; Srivastava, K.; Svane, N.; Ding, M.; Larsen, O.N.; Sober, S.J.; Švec, J.G.

    2015-01-01

    As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans. PMID:26612008

  8. Control of Toxic Chemicals in Puget Sound, Phase 3: Study of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenberger, Jill M.; Louchouarn, Patrick; Kuo, Li-Jung

    2010-07-05

    The results of the Phase 1 Toxics Loading study suggested that runoff from the land surface and atmospheric deposition directly to marine waters have resulted in considerable loads of contaminants to Puget Sound (Hart Crowser et al. 2007). The limited data available for atmospheric deposition fluxes throughout Puget Sound was recognized as a significant data gap. Therefore, this study provided more recent or first reported atmospheric deposition fluxes of PAHs, PBDEs, and select trace elements for Puget Sound. Samples representing bulk atmospheric deposition were collected during 2008 and 2009 at seven stations around Puget Sound spanning from Padilla Bay southmore » to Nisqually River including Hood Canal and the Straits of Juan de Fuca. Revised annual loading estimates for atmospheric deposition to the waters of Puget Sound were calculated for each of the toxics and demonstrated an overall decrease in the atmospheric loading estimates except for polybrominated diphenyl ethers (PBDEs) and total mercury (THg). The median atmospheric deposition flux of total PBDE (7.0 ng/m2/d) was higher than that of the Hart Crowser (2007) Phase 1 estimate (2.0 ng/m2/d). The THg was not significantly different from the original estimates. The median atmospheric deposition flux for pyrogenic PAHs (34.2 ng/m2/d; without TCB) shows a relatively narrow range across all stations (interquartile range: 21.2- 61.1 ng/m2/d) and shows no influence of season. The highest median fluxes for all parameters were measured at the industrial location in Tacoma and the lowest were recorded at the rural sites in Hood Canal and Sequim Bay. Finally, a semi-quantitative apportionment study permitted a first-order characterization of source inputs to the atmosphere of the Puget Sound. Both biomarker ratios and a principal component analysis confirmed regional data from the Puget Sound and Straits of Georgia region and pointed to the predominance of biomass and fossil fuel (mostly liquid petroleum

  9. A realization of sound focused personal audio system using acoustic contrast control.

    PubMed

    Chang, Ji-Ho; Lee, Chan-Hui; Park, Jin-Young; Kim, Yang-Hann

    2009-04-01

    A personal audio system that does not use earphone or any wire would have great interest and potential impact on the audio industries. In this study, a line array speaker system is used to localize sound in the listening zone. The contrast control [Choi, J.-W. and Kim, Y.-H. (2002). J. Acoust. Soc. Am. 111, 1695-1700] is applied, which is a method to make acoustically bright zone around the user and acoustically dark zone in other regions by maximizing the ratio of acoustic potential energy density between the bright and the dark zone. This ratio is regarded as acoustic contrast, analogous with what is used for optical devices. For the evaluation of the performance of acoustic contrast control, experiments are performed and the results are compared with those of uncontrolled case and time reversal array.

  10. A Lightweight Loudspeaker for Aircraft Communications and Active Noise Control

    NASA Technical Reports Server (NTRS)

    Warnaka, Glenn E.; Kleinle, Mark; Tsangaris, Parry; Oslac, Michael J.; Moskow, Harry J.

    1992-01-01

    A series of new, lightweight loudspeakers for use on commercial aircraft has been developed. The loudspeakers use NdFeB magnets and aluminum alloy frames to reduce the weight. The NdFeB magnet is virtually encapsulated by steel in the new speaker designs. Active noise reduction using internal loudspeakers was demonstrated to be effective in 1983. A weight, space, and cost efficient method for creating the active sound attenuating fields is to use the existing cabin loudspeakers for both communication and sound attenuation. This will require some additional loudspeaker design considerations.

  11. Breath sounds

    MedlinePlus

    The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...

  12. Cerebellar contribution to the prediction of self-initiated sounds.

    PubMed

    Knolle, Franziska; Schröger, Erich; Kotz, Sonja A

    2013-10-01

    In everyday life we frequently make the fundamental distinction between sensory input resulting from our own actions and sensory input that is externally-produced. It has been speculated that making this distinction involves the use of an internal forward-model, which enables the brain to adjust its response to self-produced sensory input. In the auditory domain, this idea has been supported by event-related potential and evoked-magnetic field studies revealing that self-initiated sounds elicit a suppressed N100/M100 brain response compared to externally-produced sounds. Moreover, a recent study reveals that patients with cerebellar lesions do not show a significant N100-suppression effect. This result supports the theory that the cerebellum is essential for generating internal forward predictions. However, all except one study compared self-initiated and externally-produced auditory stimuli in separate conditions. Such a setup prevents an unambiguous interpretation of the N100-suppression effect when distinguishing self- and externally-produced sensory stimuli: the N100-suppression can also be explained by differences in the allocation of attention in different conditions. In the current electroencephalography (EEG)-study we investigated the N100-suppression effect in an altered design comparing (i) self-initiated sounds to externally-produced sounds that occurred intermixed with these self-initiated sounds (i.e., both sound types occurred in the same condition) or (ii) self-initiated sounds to externally-produced sounds that occurred in separate conditions. Results reveal that the cerebellum generates selective predictions in response to self-initiated sounds independent of condition type: cerebellar patients, in contrast to healthy controls, do not display an N100-suppression effect in response to self-initiated sounds when intermixed with externally-produced sounds. Furthermore, the effect is not influenced by the temporal proximity of externally

  13. Interior and exterior sound field control using general two-dimensional first-order sources.

    PubMed

    Poletti, M A; Abhayapala, T D

    2011-01-01

    Reproduction of a given sound field interior to a circular loudspeaker array without producing an undesirable exterior sound field is an unsolved problem over a broadband of frequencies. At low frequencies, by implementing the Kirchhoff-Helmholtz integral using a circular discrete array of line-source loudspeakers, a sound field can be recreated within the array and produce no exterior sound field, provided that the loudspeakers have azimuthal polar responses with variable first-order responses which are a combination of a two-dimensional (2D) monopole and a radially oriented 2D dipole. This paper examines the performance of circular discrete arrays of line-source loudspeakers which also include a tangential dipole, providing general variable-directivity responses in azimuth. It is shown that at low frequencies, the tangential dipoles are not required, but that near and above the Nyquist frequency, the tangential dipoles can both improve the interior accuracy and reduce the exterior sound field. The additional dipoles extend the useful range of the array by around an octave.

  14. Functional Brain Activation Differences in School-Age Children with Speech Sound Errors: Speech and Print Processing

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Felsenfeld, Susan; Frost, Stephen J.; Mencl, W. Einar; Fulbright, Robert K.; Grigorenko, Elena L.; Landi, Nicole; Seki, Ayumi; Pugh, Kenneth R.

    2012-01-01

    Purpose: To examine neural response to spoken and printed language in children with speech sound errors (SSE). Method: Functional magnetic resonance imaging was used to compare processing of auditorily and visually presented words and pseudowords in 17 children with SSE, ages 8;6[years;months] through 10;10, with 17 matched controls. Results: When…

  15. Diel patterns in underwater sounds produced by beluga whales and Pacific white-sided dolphins at John G. Shedd Aquarium

    NASA Astrophysics Data System (ADS)

    Brickman, Jon; Tanchez, Erin; Thomas, Jeanette

    2005-09-01

    Diel patterns in underwater sounds from five beluga whales (Delphinapterus leucas) and five Pacific white-sided dolphins (Lagenorhynchus obliquidens) housed at John G. Shedd Aquarium in Chicago, IL were studied. Underwater sounds were sampled systematically over 24-h periods by using a battery-operated cassette recorder and an Ithaco 605C hydrophone controlled by a digital timer, which activated every hour and then shut off after 2.5 min. Belugas had 14 sounds and Pacific white-sided dolphins produced 5 sounds. For each species, the use of some sounds was correlated with other sounds. The diel pattern for both species was similar and mostly affected by the presence of humans. Sounds gradually increased after the staff and visitors arrived, peaked during the midday, gradually decreased as closing of the aquarium approached, and was minimal overnight. These data can help identify the best time of day to make recordings and perhaps could be used to examine social, reproductive, or health changes in these captive cetaceans.

  16. Behavioral response of manatees to variations in environmental sound levels

    USGS Publications Warehouse

    Miksis-Olds, Jennifer L.; Wagner, Tyler

    2011-01-01

    Florida manatees (Trichechus manatus latirostris) inhabit coastal regions because they feed on the aquatic vegetation that grows in shallow waters, which are the same areas where human activities are greatest. Noise produced from anthropogenic and natural sources has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. Sound levels were calculated from recordings made throughout behavioral observation periods. An information theoretic approach was used to investigate the relationship between behavior patterns and sound level. Results indicated that elevated sound levels affect manatee activity and are a function of behavioral state. The proportion of time manatees spent feeding and milling changed in response to sound level. When ambient sound levels were highest, more time was spent in the directed, goal-oriented behavior of feeding, whereas less time was spent engaged in undirected behavior such as milling. This work illustrates how shifts in activity of individual manatees may be useful parameters for identifying impacts of noise on manatees and might inform population level effects.

  17. Prevalence of high frequency hearing loss consistent with noise exposure among people working with sound systems and general population in Brazil: A cross-sectional study

    PubMed Central

    El Dib, Regina P; Silva, Edina MK; Morais, José F; Trevisani, Virgínia FM

    2008-01-01

    Background Music is ever present in our daily lives, establishing a link between humans and the arts through the senses and pleasure. Sound technicians are the link between musicians and audiences or consumers. Recently, general concern has arisen regarding occurrences of hearing loss induced by noise from excessively amplified sound-producing activities within leisure and professional environments. Sound technicians' activities expose them to the risk of hearing loss, and consequently put at risk their quality of life, the quality of the musical product and consumers' hearing. The aim of this study was to measure the prevalence of high frequency hearing loss consistent with noise exposure among sound technicians in Brazil and compare this with a control group without occupational noise exposure. Methods This was a cross-sectional study comparing 177 participants in two groups: 82 sound technicians and 95 controls (non-sound technicians). A questionnaire on music listening habits and associated complaints was applied, and data were gathered regarding the professionals' numbers of working hours per day and both groups' hearing complaint and presence of tinnitus. The participants' ear canals were visually inspected using an otoscope. Hearing assessments were performed (tonal and speech audiometry) using a portable digital AD 229 E audiometer funded by FAPESP. Results There was no statistically significant difference between the sound technicians and controls regarding age and gender. Thus, the study sample was homogenous and would be unlikely to lead to bias in the results. A statistically significant difference in hearing loss was observed between the groups: 50% among the sound technicians and 10.5% among the controls. The difference could be addressed to high sound levels. Conclusion The sound technicians presented a higher prevalence of high frequency hearing loss consistent with noise exposure than did the general population, although the possibility of residual

  18. Noise control, sound, and the vehicle design process

    NASA Astrophysics Data System (ADS)

    Donavan, Paul

    2005-09-01

    For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.

  19. Speech Sound Processing Deficits and Training-Induced Neural Plasticity in Rats with Dyslexia Gene Knockdown

    PubMed Central

    Centanni, Tracy M.; Chen, Fuyi; Booker, Anne M.; Engineer, Crystal T.; Sloan, Andrew M.; Rennaker, Robert L.; LoTurco, Joseph J.; Kilgard, Michael P.

    2014-01-01

    In utero RNAi of the dyslexia-associated gene Kiaa0319 in rats (KIA-) degrades cortical responses to speech sounds and increases trial-by-trial variability in onset latency. We tested the hypothesis that KIA- rats would be impaired at speech sound discrimination. KIA- rats needed twice as much training in quiet conditions to perform at control levels and remained impaired at several speech tasks. Focused training using truncated speech sounds was able to normalize speech discrimination in quiet and background noise conditions. Training also normalized trial-by-trial neural variability and temporal phase locking. Cortical activity from speech trained KIA- rats was sufficient to accurately discriminate between similar consonant sounds. These results provide the first direct evidence that assumed reduced expression of the dyslexia-associated gene KIAA0319 can cause phoneme processing impairments similar to those seen in dyslexia and that intensive behavioral therapy can eliminate these impairments. PMID:24871331

  20. Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes

    PubMed Central

    Ohn, Tzu-Lun; Rutherford, Mark A.; Jing, Zhizi; Jung, Sangyong; Duque-Afonso, Carlos J.; Hoch, Gerhard; Picher, Maria Magdalena; Scharinger, Anja; Strenzke, Nicola; Moser, Tobias

    2016-01-01

    For sounds of a given frequency, spiral ganglion neurons (SGNs) with different thresholds and dynamic ranges collectively encode the wide range of audible sound pressures. Heterogeneity of synapses between inner hair cells (IHCs) and SGNs is an attractive candidate mechanism for generating complementary neural codes covering the entire dynamic range. Here, we quantified active zone (AZ) properties as a function of AZ position within mouse IHCs by combining patch clamp and imaging of presynaptic Ca2+ influx and by immunohistochemistry. We report substantial AZ heterogeneity whereby the voltage of half-maximal activation of Ca2+ influx ranged over ∼20 mV. Ca2+ influx at AZs facing away from the ganglion activated at weaker depolarizations. Estimates of AZ size and Ca2+ channel number were correlated and larger when AZs faced the ganglion. Disruption of the deafness gene GIPC3 in mice shifted the activation of presynaptic Ca2+ influx to more hyperpolarized potentials and increased the spontaneous SGN discharge. Moreover, Gipc3 disruption enhanced Ca2+ influx and exocytosis in IHCs, reversed the spatial gradient of maximal Ca2+ influx in IHCs, and increased the maximal firing rate of SGNs at sound onset. We propose that IHCs diversify Ca2+ channel properties among AZs and thereby contribute to decomposing auditory information into complementary representations in SGNs. PMID:27462107

  1. Investigation on the reproduction performance versus acoustic contrast control in sound field synthesis.

    PubMed

    Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao

    2014-10-01

    A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.

  2. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.

    PubMed

    Creylman, Veerle; Knippels, Ingrid; Janssen, Paul; Biesbrouck, Evelyne; Lechler, Knut; Peeraer, Louis

    2016-12-19

    In transfemoral (TF) amputees, the forward propulsion of the prosthetic leg in swing has to be mainly carried out by hip muscles. With hip strength being the strongest predictor to ambulation ability, an active powered knee joint could have a positive influence, lowering hip loading and contributing to ambulation mobility. To assess this, gait of four TF amputees was measured for level walking, first while using a passive microprocessor-controlled prosthetic knee (P-MPK), subsequently while using an active powered microprocessor-controlled prosthetic knee (A-MPK). Furthermore, to assess long-term effects of the use of an A-MPK, a 4-weeks follow-up case study was performed. The kinetics and kinematics of the gait of four TF amputees were assessed while walking with subsequently the P-MPK and the A-MPK. For one amputee, a follow-up study was performed: he used the A-MPK for 4 weeks, his gait was measured weekly. The range of motion of the knee was higher on both the prosthetic and the sound leg in the A-MPK compared to the P-MPK. Maximum hip torque (HT) during early stance increased for the prosthetic leg and decreased for the sound leg with the A-MPK compared to the P-MPK. During late stance, the maximum HT decreased for the prosthetic leg. The difference between prosthetic and sound leg for HT disappeared when using the A-MPK. Also, an increase in stance phase duration was observed. The follow-up study showed an increase in confidence with the A-MPK over time. Results suggested that, partially due to an induced knee flexion during stance, HT can be diminished when walking with the A-MPK compared to the P-MPK. The single case follow-up study showed positive trends indicating that an adaptation time is beneficial for the A-MPK.

  3. Pocomoke Sound Sedimentary and Ecosystem History

    USGS Publications Warehouse

    Cronin, Thomas M.

    2004-01-01

    Summary of Results: Pocomoke Sound Sediment and Sediment Processes Transport of sediment from coastal marshes. Analyses of pollen and foraminifera from surface sediments in Pocomoke Sound suggest that neither the upstream forested wetlands nor coastal marshes bordering the sound have contributed appreciably to particulate matter in the 10- to 1000-micron size range that is currently being deposited in the sound. Sediment processes derived from short-lived isotope. Analyses of beryllium-7, cesium-137 and lead-210 and redox sensitive elements from Pocomoke sediments showed that there has been a significant increase in anthropogenic elements since the late 1940's when the Delmarva Peninsula became more accessible from the Baltimore-Washington region. Cesium-137 was found to be a useful tool to determine changes in sedimentation within the system. Three major stages of sedimentation occurred. Before 1950, the system was equilibrium with the agriculture activity in the watershed, whereas urbanization and agricultural activity changes during and immediately preceding World War II resulted in increased sediment flux. Around 1970, the sediment flux diminished and there was an apparent increase in bank erosion sediment to the deeper parts of the system. Rates of sediment deposition. Radiocarbon, lead-210, and pollen dating of sediment cores from Pocomoke Sound indicate relatively continuous deposition of fine-grained sediments in the main Pocomoke channel at > ~7 m water depths. Mean sediment accumulation rates during the past few centuries were relatively high (>1 cm yr -1 ). The ages of coarser-grained sediments (sands) blanketing the shallow (4.0 cm yr -1 ) at most sites throughout the Sound in post-Colonial time. These results confirm those from other regions of the bay that land-clearance increased the flux of river-borne sediment to certain r

  4. Sound reduction by metamaterial-based acoustic enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of themore » source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.« less

  5. Monaural Sound Localization Revisited

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Kistler, Doris J.

    1997-01-01

    Research reported during the past few decades has revealed the importance for human sound localization of the so-called 'monaural spectral cues.' These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.

  6. Monaural sound localization revisited.

    PubMed

    Wightman, F L; Kistler, D J

    1997-02-01

    Research reported during the past few decades has revealed the importance for human sound localization of the so-called "monaural spectral cues." These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.

  7. Effects of emotionally charged sounds in schizophrenia patients using exploratory eye movements: comparison with healthy subjects.

    PubMed

    Ishii, Youhei; Morita, Kiichiro; Shouji, Yoshihisa; Nakashima, Youko; Uchimura, Naohisa

    2010-02-01

    Emotion-associated sounds have been suggested to exert important effects upon human personal relationships. The present study was aimed to characterize the effects of the sounds of crying or laughing on visual cognitive function in schizophrenia patients. We recorded exploratory eye movements in 24 schizophrenia patients (mean age, 27.0 +/- 6.1 years; 14 male, 10 female) and age-matched controls. The total eye scanning length (TESL) and total number of gaze points in the left (left TNGP) and right (right TNGP) visual fields of the screen and the number of researching areas (NRA) were determined using eye-mark recording in the presence/absence of emotionally charged sounds. Controls' TESL for smiling pictures was longer than that for crying pictures irrespective of sounds. Patients' TESL for smiling pictures, however, was shorter than for crying pictures irrespective of the sounds. The left TNGP for smiling pictures was lower in patients than controls independent of sound. Importantly, the right TNGP was significantly larger with laughing sounds than in the absence of sound. In controls, the NRA for smiling pictures was significantly greater than for crying pictures irrespective of sound. Patient NRA did not significantly differ between smiling and crying pictures irrespective of sound. Eye movements in schizophrenia patients' left field for smiling pictures associated with laughing sounds particularly differed from those in controls, suggesting impaired visual cognitive function associated with positive emotion, also involving pleasure-related sounds, in schizophrenia.

  8. A Corticothalamic Circuit Model for Sound Identification in Complex Scenes

    PubMed Central

    Otazu, Gonzalo H.; Leibold, Christian

    2011-01-01

    The identification of the sound sources present in the environment is essential for the survival of many animals. However, these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple sources. The identification of a source under these circumstances is a complex computational problem that is readily solved by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal. PMID:21931668

  9. Newborn infants detect cues of concurrent sound segregation.

    PubMed

    Bendixen, Alexandra; Háden, Gábor P; Németh, Renáta; Farkas, Dávid; Török, Miklós; Winkler, István

    2015-01-01

    Separating concurrent sounds is fundamental for a veridical perception of one's auditory surroundings. Sound components that are harmonically related and start at the same time are usually grouped into a common perceptual object, whereas components that are not in harmonic relation or have different onset times are more likely to be perceived in terms of separate objects. Here we tested whether neonates are able to pick up the cues supporting this sound organization principle. We presented newborn infants with a series of complex tones with their harmonics in tune (creating the percept of a unitary sound object) and with manipulated variants, which gave the impression of two concurrently active sound sources. The manipulated variant had either one mistuned partial (single-cue condition) or the onset of this mistuned partial was also delayed (double-cue condition). Tuned and manipulated sounds were presented in random order with equal probabilities. Recording the neonates' electroencephalographic responses allowed us to evaluate their processing of the sounds. Results show that, in both conditions, mistuned sounds elicited a negative displacement of the event-related potential (ERP) relative to tuned sounds from 360 to 400 ms after sound onset. The mistuning-related ERP component resembles the object-related negativity (ORN) component in adults, which is associated with concurrent sound segregation. Delayed onset additionally led to a negative displacement from 160 to 200 ms, which was probably more related to the physical parameters of the sounds than to their perceptual segregation. The elicitation of an ORN-like response in newborn infants suggests that neonates possess the basic capabilities of segregating concurrent sounds by detecting inharmonic relations between the co-occurring sounds. © 2015 S. Karger AG, Basel.

  10. Neural Correlates of Sound Localization in Complex Acoustic Environments

    PubMed Central

    Zündorf, Ida C.; Lewald, Jörg; Karnath, Hans-Otto

    2013-01-01

    Listening to and understanding people in a “cocktail-party situation” is a remarkable feature of the human auditory system. Here we investigated the neural correlates of the ability to localize a particular sound among others in an acoustically cluttered environment with healthy subjects. In a sound localization task, five different natural sounds were presented from five virtual spatial locations during functional magnetic resonance imaging (fMRI). Activity related to auditory stream segregation was revealed in posterior superior temporal gyrus bilaterally, anterior insula, supplementary motor area, and frontoparietal network. Moreover, the results indicated critical roles of left planum temporale in extracting the sound of interest among acoustical distracters and the precuneus in orienting spatial attention to the target sound. We hypothesized that the left-sided lateralization of the planum temporale activation is related to the higher specialization of the left hemisphere for analysis of spectrotemporal sound features. Furthermore, the precuneus − a brain area known to be involved in the computation of spatial coordinates across diverse frames of reference for reaching to objects − seems to be also a crucial area for accurately determining locations of auditory targets in an acoustically complex scene of multiple sound sources. The precuneus thus may not only be involved in visuo-motor processes, but may also subserve related functions in the auditory modality. PMID:23691185

  11. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    PubMed Central

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun Daniel; Carlson, Thomas J.

    2012-01-01

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality. PMID:22969353

  12. What is the link between synaesthesia and sound symbolism?

    PubMed Central

    Bankieris, Kaitlyn; Simner, Julia

    2015-01-01

    Sound symbolism is a property of certain words which have a direct link between their phonological form and their semantic meaning. In certain instances, sound symbolism can allow non-native speakers to understand the meanings of etymologically unfamiliar foreign words, although the mechanisms driving this are not well understood. We examined whether sound symbolism might be mediated by the same types of cross-modal processes that typify synaesthetic experiences. Synaesthesia is an inherited condition in which sensory or cognitive stimuli (e.g., sounds, words) cause additional, unusual cross-modal percepts (e.g., sounds trigger colours, words trigger tastes). Synaesthesia may be an exaggeration of normal cross-modal processing, and if so, there may be a link between synaesthesia and the type of cross-modality inherent in sound symbolism. To test this we predicted that synaesthetes would have superior understanding of unfamiliar (sound symbolic) foreign words. In our study, 19 grapheme-colour synaesthetes and 57 non-synaesthete controls were presented with 400 adjectives from 10 unfamiliar languages and were asked to guess the meaning of each word in a two-alternative forced-choice task. Both groups showed superior understanding compared to chance levels, but synaesthetes significantly outperformed controls. This heightened ability suggests that sound symbolism may rely on the types of cross-modal integration that drive synaesthetes’ unusual experiences. It also suggests that synaesthesia endows or co-occurs with heightened multi-modal skills, and that this can arise in domains unrelated to the specific form of synaesthesia. PMID:25498744

  13. Misconceptions About Sound Among Engineering Students

    NASA Astrophysics Data System (ADS)

    Pejuan, Arcadi; Bohigas, Xavier; Jaén, Xavier; Periago, Cristina

    2012-12-01

    Our first objective was to detect misconceptions about the microscopic nature of sound among senior university students enrolled in different engineering programmes (from chemistry to telecommunications). We sought to determine how these misconceptions are expressed (qualitative aspect) and, only very secondarily, to gain a general idea of the extent to which they are held (quantitative aspect). Our second objective was to explore other misconceptions about wave aspects of sound. We have also considered the degree of consistency in the model of sound used by each student. Forty students answered a questionnaire including open-ended questions. Based on their free, spontaneous answers, the main results were as follows: a large majority of students answered most of the questions regarding the microscopic model of sound according to the scientifically accepted model; however, only a small number answered consistently. The main model misconception found was the notion that sound is propagated through the travelling of air particles, even in solids. Misconceptions and mental-model inconsistencies tended to depend on the engineering programme in which the student was enrolled. However, students in general were inconsistent also in applying their model of sound to individual sound properties. The main conclusion is that our students have not truly internalised the scientifically accepted model that they have allegedly learnt. This implies a need to design learning activities that take these findings into account in order to be truly efficient.

  14. Listening panel agreement and characteristics of lung sounds digitally recorded from children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case-control study.

    PubMed

    McCollum, Eric D; Park, Daniel E; Watson, Nora L; Buck, W Chris; Bunthi, Charatdao; Devendra, Akash; Ebruke, Bernard E; Elhilali, Mounya; Emmanouilidou, Dimitra; Garcia-Prats, Anthony J; Githinji, Leah; Hossain, Lokman; Madhi, Shabir A; Moore, David P; Mulindwa, Justin; Olson, Dan; Awori, Juliet O; Vandepitte, Warunee P; Verwey, Charl; West, James E; Knoll, Maria D; O'Brien, Katherine L; Feikin, Daniel R; Hammit, Laura L

    2017-01-01

    Paediatric lung sound recordings can be systematically assessed, but methodological feasibility and validity is unknown, especially from developing countries. We examined the performance of acoustically interpreting recorded paediatric lung sounds and compared sound characteristics between cases and controls. Pneumonia Etiology Research for Child Health staff in six African and Asian sites recorded lung sounds with a digital stethoscope in cases and controls. Cases aged 1-59 months had WHO severe or very severe pneumonia; age-matched community controls did not. A listening panel assigned examination results of normal, crackle, wheeze, crackle and wheeze or uninterpretable, with adjudication of discordant interpretations. Classifications were recategorised into any crackle, any wheeze or abnormal (any crackle or wheeze) and primary listener agreement (first two listeners) was analysed among interpretable examinations using the prevalence-adjusted, bias-adjusted kappa (PABAK). We examined predictors of disagreement with logistic regression and compared case and control lung sounds with descriptive statistics. Primary listeners considered 89.5% of 792 case and 92.4% of 301 control recordings interpretable. Among interpretable recordings, listeners agreed on the presence or absence of any abnormality in 74.9% (PABAK 0.50) of cases and 69.8% (PABAK 0.40) of controls, presence/absence of crackles in 70.6% (PABAK 0.41) of cases and 82.4% (PABAK 0.65) of controls and presence/absence of wheeze in 72.6% (PABAK 0.45) of cases and 73.8% (PABAK 0.48) of controls. Controls, tachypnoea, >3 uninterpretable chest positions, crying, upper airway noises and study site predicted listener disagreement. Among all interpretable examinations, 38.0% of cases and 84.9% of controls were normal (p<0.0001); wheezing was the most common sound (49.9%) in cases. Listening panel and case-control data suggests our methodology is feasible, likely valid and that small airway inflammation is common

  15. Acoustic metamaterials capable of both sound insulation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2016-04-01

    Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.

  16. How learning to abstract shapes neural sound representations

    PubMed Central

    Ley, Anke; Vroomen, Jean; Formisano, Elia

    2014-01-01

    The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques such as multivariate pattern analysis (MVPA) in studying categorical sound representations. With their increased sensitivity to distributed activation changes—even in absence of changes in overall signal level—these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations. PMID:24917783

  17. About sound mufflers sound-absorbing panels aircraft engine

    NASA Astrophysics Data System (ADS)

    Dudarev, A. S.; Bulbovich, R. V.; Svirshchev, V. I.

    2016-10-01

    The article provides a formula for calculating the frequency of sound absorbed panel with a perforated wall. And although the sound absorbing structure is a set of resonators Helmholtz, not individual resonators should be considered in acoustic calculations, and all the perforated wall panel. The analysis, showing how the parameters affect the size and sound-absorbing structures in the absorption rate.

  18. A Randomized Controlled Trial on The Beneficial Effects of Training Letter-Speech Sound Integration on Reading Fluency in Children with Dyslexia

    PubMed Central

    Fraga González, Gorka; Žarić, Gojko; Tijms, Jurgen; Bonte, Milene; van der Molen, Maurits W.

    2015-01-01

    A recent account of dyslexia assumes that a failure to develop automated letter-speech sound integration might be responsible for the observed lack of reading fluency. This study uses a pre-test-training-post-test design to evaluate the effects of a training program based on letter-speech sound associations with a special focus on gains in reading fluency. A sample of 44 children with dyslexia and 23 typical readers, aged 8 to 9, was recruited. Children with dyslexia were randomly allocated to either the training program group (n = 23) or a waiting-list control group (n = 21). The training intensively focused on letter-speech sound mapping and consisted of 34 individual sessions of 45 minutes over a five month period. The children with dyslexia showed substantial reading gains for the main word reading and spelling measures after training, improving at a faster rate than typical readers and waiting-list controls. The results are interpreted within the conceptual framework assuming a multisensory integration deficit as the most proximal cause of dysfluent reading in dyslexia. Trial Registration: ISRCTN register ISRCTN12783279 PMID:26629707

  19. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  20. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  1. Active control: an investigation method for combustion instabilities

    NASA Astrophysics Data System (ADS)

    Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.

    1992-07-01

    Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of

  2. Sound localization with communications headsets: comparison of passive and active systems.

    PubMed

    Abel, Sharon M; Tsang, Suzanne; Boyne, Stephen

    2007-01-01

    Studies have demonstrated that conventional hearing protectors interfere with sound localization. This research examines possible benefits from advanced communications devices. Horizontal plane sound localization was compared in normal-hearing males with the ears unoccluded and fitted with Peltor H10A passive attenuation earmuffs, Racal Slimgard II communications muffs in active noise reduction (ANR) and talk-through-circuitry (TTC) modes and Nacre QUIETPRO TM communications earplugs in off (passive attenuation) and push-to-talk (PTT) modes. Localization was assessed using an array of eight loudspeakers, two in each spatial quadrant. The stimulus was 75 dB SPL, 300-ms broadband noise. One block of 120 forced-choice loudspeaker identification trials was presented in each condition. Subjects responded using a laptop response box with a set of eight microswitches in the same configuration as the speaker array. A repeated measures ANOVA was applied to the dataset. The results reveal that the overall percent correct response was highest in the unoccluded condition (94%). A significant reduction of 24% was observed for the communications devices in TTC and PTT modes and a reduction of 49% for the passive muff and plug and muff with ANR. Disruption in performance was due to an increase in front-back reversal errors for mirror image spatial positions. The results support the conclusion that communications devices with advanced technologies are less detrimental to directional hearing than conventional, passive, limited amplification and ANR devices.

  3. Topological Transport of Light and Sound

    NASA Astrophysics Data System (ADS)

    Brendel, Christian; Peano, Vittorio; Schmidt, Michael; Marquardt, Florian

    Since they exploit global features of a material's band structure, topological states of matter are particularly robust. Having already been observed for electrons, atoms, and photons, it is an outstanding challenge to create a Chern insulator of sound waves in the solid state. In this work, we propose an implementation based on cavity optomechanics in a photonic crystal. We demonstrate the feasibility of our proposal by means of an effective lattice model as well as first principle simulations. The topological properties of the sound waves can be wholly tuned in situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport can be probed completely optically.

  4. Sound Levels and Risk Perceptions of Music Students During Classes.

    PubMed

    Rodrigues, Matilde A; Amorim, Marta; Silva, Manuela V; Neves, Paula; Sousa, Aida; Inácio, Octávio

    2015-01-01

    It is well recognized that professional musicians are at risk of hearing damage due to the exposure to high sound pressure levels during music playing. However, it is important to recognize that the musicians' exposure may start early in the course of their training as students in the classroom and at home. Studies regarding sound exposure of music students and their hearing disorders are scarce and do not take into account important influencing variables. Therefore, this study aimed to describe sound level exposures of music students at different music styles, classes, and according to the instrument played. Further, this investigation attempted to analyze the perceptions of students in relation to exposure to loud music and consequent health risks, as well as to characterize preventive behaviors. The results showed that music students are exposed to high sound levels in the course of their academic activity. This exposure is potentiated by practice outside the school and other external activities. Differences were found between music style, instruments, and classes. Tinnitus, hyperacusis, diplacusis, and sound distortion were reported by the students. However, students were not entirely aware of the health risks related to exposure to high sound pressure levels. These findings reflect the importance of starting intervention in relation to noise risk reduction at an early stage, when musicians are commencing their activity as students.

  5. Sound localization by echolocating bats

    NASA Astrophysics Data System (ADS)

    Aytekin, Murat

    Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies

  6. A New Mechanism of Sound Generation in Songbirds

    NASA Astrophysics Data System (ADS)

    Goller, Franz; Larsen, Ole N.

    1997-12-01

    Our current understanding of the sound-generating mechanism in the songbird vocal organ, the syrinx, is based on indirect evidence and theoretical treatments. The classical avian model of sound production postulates that the medial tympaniform membranes (MTM) are the principal sound generators. We tested the role of the MTM in sound generation and studied the songbird syrinx more directly by filming it endoscopically. After we surgically incapacitated the MTM as a vibratory source, zebra finches and cardinals were not only able to vocalize, but sang nearly normal song. This result shows clearly that the MTM are not the principal sound source. The endoscopic images of the intact songbird syrinx during spontaneous and brain stimulation-induced vocalizations illustrate the dynamics of syringeal reconfiguration before phonation and suggest a different model for sound production. Phonation is initiated by rostrad movement and stretching of the syrinx. At the same time, the syrinx is closed through movement of two soft tissue masses, the medial and lateral labia, into the bronchial lumen. Sound production always is accompanied by vibratory motions of both labia, indicating that these vibrations may be the sound source. However, because of the low temporal resolution of the imaging system, the frequency and phase of labial vibrations could not be assessed in relation to that of the generated sound. Nevertheless, in contrast to the previous model, these observations show that both labia contribute to aperture control and strongly suggest that they play an important role as principal sound generators.

  7. Expertise with artificial non-speech sounds recruits speech-sensitive cortical regions

    PubMed Central

    Leech, Robert; Holt, Lori L.; Devlin, Joseph T.; Dick, Frederic

    2009-01-01

    Regions of the human temporal lobe show greater activation for speech than for other sounds. These differences may reflect intrinsically specialized domain-specific adaptations for processing speech, or they may be driven by the significant expertise we have in listening to the speech signal. To test the expertise hypothesis, we used a video-game-based paradigm that tacitly trained listeners to categorize acoustically complex, artificial non-linguistic sounds. Before and after training, we used functional MRI to measure how expertise with these sounds modulated temporal lobe activation. Participants’ ability to explicitly categorize the non-speech sounds predicted the change in pre- to post-training activation in speech-sensitive regions of the left posterior superior temporal sulcus, suggesting that emergent auditory expertise may help drive this functional regionalization. Thus, seemingly domain-specific patterns of neural activation in higher cortical regions may be driven in part by experience-based restructuring of high-dimensional perceptual space. PMID:19386919

  8. Human-assisted sound event recognition for home service robots.

    PubMed

    Do, Ha Manh; Sheng, Weihua; Liu, Meiqin

    This paper proposes and implements an open framework of active auditory learning for a home service robot to serve the elderly living alone at home. The framework was developed to realize the various auditory perception capabilities while enabling a remote human operator to involve in the sound event recognition process for elderly care. The home service robot is able to estimate the sound source position and collaborate with the human operator in sound event recognition while protecting the privacy of the elderly. Our experimental results validated the proposed framework and evaluated auditory perception capabilities and human-robot collaboration in sound event recognition.

  9. Health Activities Project (HAP): Sight and Sound Module.

    ERIC Educational Resources Information Center

    Buller, Dave; And Others

    Contained within this Health Activities Project (HAP) learning packet are activities for children in grades 5-8. Design of the activities centers around the idea that students can control their own health and safety. Within this module are teacher and student folios describing six activities which involve students in restricting their vision by…

  10. PROTAX-Sound: A probabilistic framework for automated animal sound identification.

    PubMed

    de Camargo, Ulisses Moliterno; Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities.

  11. Visual Presentation Effects on Identification of Multiple Environmental Sounds

    PubMed Central

    Masakura, Yuko; Ichikawa, Makoto; Shimono, Koichi; Nakatsuka, Reio

    2016-01-01

    This study examined how the contents and timing of a visual stimulus affect the identification of mixed sounds recorded in a daily life environment. For experiments, we presented four environment sounds as auditory stimuli for 5 s along with a picture or a written word as a visual stimulus that might or might not denote the source of one of the four sounds. Three conditions of temporal relations between the visual stimuli and sounds were used. The visual stimulus was presented either: (a) for 5 s simultaneously with the sound; (b) for 5 s, 1 s before the sound (SOA between the audio and visual stimuli was 6 s); or (c) for 33 ms, 1 s before the sound (SOA was 1033 ms). Participants reported all identifiable sounds for those audio–visual stimuli. To characterize the effects of visual stimuli on sound identification, the following were used: the identification rates of sounds for which the visual stimulus denoted its sound source, the rates of other sounds for which the visual stimulus did not denote the sound source, and the frequency of false hearing of a sound that was not presented for each sound set. Results of the four experiments demonstrated that a picture or a written word promoted identification of the sound when it was related to the sound, particularly when the visual stimulus was presented for 5 s simultaneously with the sounds. However, a visual stimulus preceding the sounds had a benefit only for the picture, not for the written word. Furthermore, presentation with a picture denoting a sound simultaneously with the sound reduced the frequency of false hearing. These results suggest three ways that presenting a visual stimulus affects identification of the auditory stimulus. First, activation of the visual representation extracted directly from the picture promotes identification of the denoted sound and suppresses the processing of sounds for which the visual stimulus did not denote the sound source. Second, effects based on processing of the

  12. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

    PubMed

    Takahashi, Eri; Hyomoto, Kiri; Riquimaroux, Hiroshi; Watanabe, Yoshiaki; Ohta, Tetsuo; Hiryu, Shizuko

    2014-08-15

    The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequency-modulated jamming sounds (3 ms duration) mimicking echolocation pulses of P. abramus were prepared. All bats showed significant increases in the terminal frequency of the frequency-modulated pulse by an average of 2.1-4.5 kHz when the terminal frequency of the jamming sounds was lower than the bats' own pulses. This frequency shift was not observed using jamming frequencies that overlapped with or were higher than the bats' own pulses. These findings suggest that JARs in P. abramus are sensitive to the terminal frequency of jamming pulses and that the bats' response pattern was dependent on the slight difference in stimulus frequency. In experiment 2, when bats were repeatedly exposed to a band-limited noise of 70 ms duration, the bats in flight more frequently emitted pulses during silent periods between jamming sounds, suggesting that the bats could actively change the timing of pulse emissions, even during flight, to avoid temporal overlap with jamming sounds. Our findings demonstrate that bats could adjust their vocalized frequency and emission timing during flight in response to acoustic jamming stimuli. © 2014. Published by The Company of Biologists Ltd.

  13. 77 FR 19301 - Prince William Sound Regional Citizens' Advisory Council Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2012-0099] Prince William Sound Regional... Prince William Sound Regional Citizens' Advisory Council (PWSRCAC) as an alternative voluntary advisory group for Prince William Sound, Alaska. This certification allows the PWSRCAC to monitor the activities...

  14. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit.

    PubMed

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-08-03

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40 degrees to approximately 90 degrees horizontally and from approximately 45 degrees to more than 90 degrees vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals.

  15. An Algorithm for Controlled Integration of Sound and Text.

    ERIC Educational Resources Information Center

    Wohlert, Harry S.; McCormick, Martin

    1985-01-01

    A serious drawback in introducing sound into computer programs for teaching foreign language speech has been the lack of an algorithm to turn off the cassette recorder immediately to keep screen text and audio in synchronization. This article describes a program which solves that problem. (SED)

  16. Reading with sounds: sensory substitution selectively activates the visual word form area in the blind.

    PubMed

    Striem-Amit, Ella; Cohen, Laurent; Dehaene, Stanislas; Amedi, Amir

    2012-11-08

    Using a visual-to-auditory sensory-substitution algorithm, congenitally fully blind adults were taught to read and recognize complex images using "soundscapes"--sounds topographically representing images. fMRI was used to examine key questions regarding the visual word form area (VWFA): its selectivity for letters over other visual categories without visual experience, its feature tolerance for reading in a novel sensory modality, and its plasticity for scripts learned in adulthood. The blind activated the VWFA specifically and selectively during the processing of letter soundscapes relative to both textures and visually complex object categories and relative to mental imagery and semantic-content controls. Further, VWFA recruitment for reading soundscapes emerged after 2 hr of training in a blind adult on a novel script. Therefore, the VWFA shows category selectivity regardless of input sensory modality, visual experience, and long-term familiarity or expertise with the script. The VWFA may perform a flexible task-specific rather than sensory-specific computation, possibly linking letter shapes to phonology. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  18. The Use of an Open Field Model to Assess Sound-Induced Fear and Anxiety Associated Behaviors in Labrador Retrievers.

    PubMed

    Gruen, Margaret E; Case, Beth C; Foster, Melanie L; Lazarowski, Lucia; Fish, Richard E; Landsberg, Gary; DePuy, Venita; Dorman, David C; Sherman, Barbara L

    2015-01-01

    Previous studies have shown that the playing of thunderstorm recordings during an open-field task elicits fearful or anxious responses in adult beagles. The goal of our study was to apply this open field test to assess sound-induced behaviors in Labrador retrievers drawn from a pool of candidate improvised explosive devices (IED)-detection dogs. Being robust to fear-inducing sounds and recovering quickly is a critical requirement of these military working dogs. This study presented male and female dogs, with 3 minutes of either ambient noise (Days 1, 3 and 5), recorded thunderstorm (Day 2), or gunfire (Day 4) sounds in an open field arena. Behavioral and physiological responses were assessed and compared to control (ambient noise) periods. An observer blinded to sound treatment analyzed video records of the 9-minute daily test sessions. Additional assessments included measurement of distance traveled (activity), heart rate, body temperature, and salivary cortisol concentrations. Overall, there was a decline in distance traveled and heart rate within each day and over the five-day test period, suggesting that dogs habituated to the open field arena. Behavioral postures and expressions were assessed using a standardized rubric to score behaviors linked to canine fear and anxiety. These fear/anxiety scores were used to evaluate changes in behaviors following exposure to a sound stressor. Compared to control periods, there was an overall increase in fear/anxiety scores during thunderstorm and gunfire sound stimuli treatment periods. Fear/anxiety scores were correlated with distance traveled, and heart rate. Fear/anxiety scores in response to thunderstorm and gunfire were correlated. Dogs showed higher fear/anxiety scores during periods after the sound stimuli compared to control periods. In general, candidate IED-detection Labrador retrievers responded to sound stimuli and recovered quickly, although dogs stratified in their response to sound stimuli. Some dogs were

  19. The Use of an Open Field Model to Assess Sound-Induced Fear and Anxiety Associated Behaviors in Labrador Retrievers

    PubMed Central

    Gruen, Margaret E.; Case, Beth C.; Foster, Melanie L.; Lazarowski, Lucia; Fish, Richard E.; Landsberg, Gary; DePuy, Venita; Dorman, David C.; Sherman, Barbara L.

    2015-01-01

    Previous studies have shown that the playing of thunderstorm recordings during an open-field task elicits fearful or anxious responses in adult beagles. The goal of our study was to apply this open field test to assess sound-induced behaviors in Labrador retrievers drawn from a pool of candidate improvised explosive devices (IED)-detection dogs. Being robust to fear-inducing sounds and recovering quickly is a critical requirement of these military working dogs. This study presented male and female dogs, with 3 minutes of either ambient noise (Days 1, 3 and 5), recorded thunderstorm (Day 2), or gunfire (Day 4) sounds in an open field arena. Behavioral and physiological responses were assessed and compared to control (ambient noise) periods. An observer blinded to sound treatment analyzed video records of the 9-minute daily test sessions. Additional assessments included measurement of distance traveled (activity), heart rate, body temperature, and salivary cortisol concentrations. Overall, there was a decline in distance traveled and heart rate within each day and over the five-day test period, suggesting that dogs habituated to the open field arena. Behavioral postures and expressions were assessed using a standardized rubric to score behaviors linked to canine fear and anxiety. These fear/anxiety scores were used to evaluate changes in behaviors following exposure to a sound stressor. Compared to control periods, there was an overall increase in fear/anxiety scores during thunderstorm and gunfire sound stimuli treatment periods. Fear/anxiety scores were correlated with distance traveled, and heart rate. Fear/anxiety scores in response to thunderstorm and gunfire were correlated. Dogs showed higher fear/anxiety scores during periods after the sound stimuli compared to control periods. In general, candidate IED-detection Labrador retrievers responded to sound stimuli and recovered quickly, although dogs stratified in their response to sound stimuli. Some dogs were

  20. Listening panel agreement and characteristics of lung sounds digitally recorded from children aged 1–59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case–control study

    PubMed Central

    Park, Daniel E; Watson, Nora L; Buck, W Chris; Bunthi, Charatdao; Devendra, Akash; Ebruke, Bernard E; Elhilali, Mounya; Emmanouilidou, Dimitra; Garcia-Prats, Anthony J; Githinji, Leah; Hossain, Lokman; Madhi, Shabir A; Moore, David P; Mulindwa, Justin; Olson, Dan; Awori, Juliet O; Vandepitte, Warunee P; Verwey, Charl; West, James E; Knoll, Maria D; O'Brien, Katherine L; Feikin, Daniel R; Hammit, Laura L

    2017-01-01

    Introduction Paediatric lung sound recordings can be systematically assessed, but methodological feasibility and validity is unknown, especially from developing countries. We examined the performance of acoustically interpreting recorded paediatric lung sounds and compared sound characteristics between cases and controls. Methods Pneumonia Etiology Research for Child Health staff in six African and Asian sites recorded lung sounds with a digital stethoscope in cases and controls. Cases aged 1–59 months had WHO severe or very severe pneumonia; age-matched community controls did not. A listening panel assigned examination results of normal, crackle, wheeze, crackle and wheeze or uninterpretable, with adjudication of discordant interpretations. Classifications were recategorised into any crackle, any wheeze or abnormal (any crackle or wheeze) and primary listener agreement (first two listeners) was analysed among interpretable examinations using the prevalence-adjusted, bias-adjusted kappa (PABAK). We examined predictors of disagreement with logistic regression and compared case and control lung sounds with descriptive statistics. Results Primary listeners considered 89.5% of 792 case and 92.4% of 301 control recordings interpretable. Among interpretable recordings, listeners agreed on the presence or absence of any abnormality in 74.9% (PABAK 0.50) of cases and 69.8% (PABAK 0.40) of controls, presence/absence of crackles in 70.6% (PABAK 0.41) of cases and 82.4% (PABAK 0.65) of controls and presence/absence of wheeze in 72.6% (PABAK 0.45) of cases and 73.8% (PABAK 0.48) of controls. Controls, tachypnoea, >3 uninterpretable chest positions, crying, upper airway noises and study site predicted listener disagreement. Among all interpretable examinations, 38.0% of cases and 84.9% of controls were normal (p<0.0001); wheezing was the most common sound (49.9%) in cases. Conclusions Listening panel and case–control data suggests our methodology is feasible, likely valid

  1. Using Sound to Modify Fish Behavior at Power-Production and Water-Control Facilities: A Workshop December 12-13, 1995. Phase II: Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Popper, Arthur N.

    1997-06-01

    A workshop on ``Use of Sound for Fish Protection at Power-Production and Water-Control Facilities`` was held in Portland, Oregon on December 12--13, 1995. This workshop convened a 22-member panel of international experts from universities, industry, and government to share knowledge, questions, and ideas about using sound for fish guidance. Discussions involved in a broad range of indigenous migratory and resident fish species and fish-protection issues in river systems, with particular focus on the Columbia River Basin. Because the use of sound behavioral barriers for fish is very much in its infancy, the workshop was designed to address the many questionsmore » being asked by fishery managers and researchers about the feasibility and potential benefits of using sound to augment physical barriers for fish protection in the Columbia River system.« less

  2. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta

    PubMed Central

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-01-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca2+/Mg2+-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams. PMID:27063002

  3. Effects of anthropogenic sound on digging behavior, metabolism, Ca(2+)/Mg(2+) ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta.

    PubMed

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-04-11

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca(2+)/Mg(2+)-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams.

  4. Attentional Capture by Deviant Sounds: A Noncontingent Form of Auditory Distraction?

    ERIC Educational Resources Information Center

    Vachon, François; Labonté, Katherine; Marsh, John E.

    2017-01-01

    The occurrence of an unexpected, infrequent sound in an otherwise homogeneous auditory background tends to disrupt the ongoing cognitive task. This "deviation effect" is typically explained in terms of attentional capture whereby the deviant sound draws attention away from the focal activity, regardless of the nature of this activity.…

  5. PROTAX-Sound: A probabilistic framework for automated animal sound identification

    PubMed Central

    Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities. PMID:28863178

  6. Vibro-acoustic model of an active aircraft cabin window

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2017-06-01

    This paper presents modeling and design of an active structural acoustic control (ASAC) system for controlling the low frequency sound field transmitted through an aircraft cabin window. The system uses stacked piezoelectric elements arranged in a manner to generate out-of-plane actuation point forces acting on the window panel boundaries. A theoretical vibro-acoustic model for an active quadruple-panel system is developed to characterize the dynamic behavior of the system and achieve a good understanding of the active control performance and the physical phenomena of the sound transmission loss (STL) characteristics. The quadruple-panel system represents the passenger window design used in some classes of modern aircraft with an exterior double pane of Plexiglas, an interior dust cover pane and a glazed dimmable pane, all separated by thin air cavities. The STL characteristics of identical pane window configurations with different piezoelectric actuator sets are analyzed. A parametric study describes the influence of important active parameters, such as the input voltage, number and location of the actuator elements, on the STL is investigated. In addition, a mathematical model for obtaining the optimal input voltage is developed to improve the acoustic attenuation capability of the control system. In general, the achieved results indicate that the proposed ASAC design offers a considerable improvement in the passive sound loss performance of cabin window design without significant effects, such as weight increase, on the original design. Also, the results show that the acoustic control of the active model with piezoelectric actuators bonded to the dust cover pane generates high structural vibrations in the radiating panel (dust cover) and an increase in sound power radiation. High active acoustic attenuation can be achieved by designing the ASAC system to apply active control forces on the inner Plexiglas panel or dimmable panel by installing the actuators on the

  7. Making Sound Connections

    ERIC Educational Resources Information Center

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  8. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  9. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  10. Directionally Antagonistic Graphene Oxide-Polyurethane Hybrid Aerogel as a Sound Absorber.

    PubMed

    Oh, Jung-Hwan; Kim, Jieun; Lee, Hyeongrae; Kang, Yeonjune; Oh, Il-Kwon

    2018-06-21

    Innovative sound absorbers, the design of which is based on carbon nanotubes and graphene derivatives, could be used to make more efficient sound absorbing materials because of their excellent intrinsic mechanical and chemical properties. However, controlling the directional alignments of low-dimensional carbon nanomaterials, such as restacking, alignment, and dispersion, has been a challenging problem when developing sound absorbing forms. Herein, we present the directionally antagonistic graphene oxide-polyurethane hybrid aerogel we developed as a sound absorber, the physical properties of which differ according to the alignment of the microscopic graphene oxide sheets. This porous graphene sound absorber has a microporous hierarchical cellular structure with adjustable stiffness and improved sound absorption performance, thereby overcoming the restrictions of both geometric and function-orientated functions. Furthermore, by controlling the inner cell size and aligned structure of graphene oxide layers in this study, we achieved remarkable improvement of the sound absorption performance at low frequency. This improvement is attributed to multiple scattering of incident and reflection waves on the aligned porous surfaces, and air-viscous resistance damping inside interconnected structures between the urethane foam and the graphene oxide network. Two anisotropic sound absorbers based on the directionally antagonistic graphene oxide-polyurethane hybrid aerogels were fabricated. They show remarkable differences owing to the opposite alignment of graphene oxide layers inside the polyurethane foam and are expected to be appropriate for the engineering design of sound absorbers in consideration of the wave direction.

  11. The auditory P50 component to onset and offset of sound

    PubMed Central

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Bleich, Naomi; Mittelman, Nomi

    2008-01-01

    Objective: The auditory Event-Related Potentials (ERP) component P50 to sound onset and offset have been reported to be similar, but their magnetic homologue has been reported absent to sound offset. We compared the spatio-temporal distribution of cortical activity during P50 to sound onset and offset, without confounds of spectral change. Methods: ERPs were recorded in response to onsets and offsets of silent intervals of 0.5 s (gaps) appearing randomly in otherwise continuous white noise and compared to ERPs to randomly distributed click pairs with half second separation presented in silence. Subjects were awake and distracted from the stimuli by reading a complicated text. Measures of P50 included peak latency and amplitude, as well as source current density estimates to the clicks and sound onsets and offsets. Results P50 occurred in response to noise onsets and to clicks, while to noise offset it was absent. Latency of P50 was similar to noise onset (56 msec) and to clicks (53 msec). Sources of P50 to noise onsets and clicks included bilateral superior parietal areas. In contrast, noise offsets activated left inferior temporal and occipital areas at the time of P50. Source current density was significantly higher to noise onset than offset in the vicinity of the temporo-parietal junction. Conclusions: P50 to sound offset is absent compared to the distinct P50 to sound onset and to clicks, at different intracranial sources. P50 to stimulus onset and to clicks appears to reflect preattentive arousal by a new sound in the scene. Sound offset does not involve a new sound and hence the absent P50. Significance: Stimulus onset activates distinct early cortical processes that are absent to offset. PMID:18055255

  12. Discriminating between auditory and motor cortical responses to speech and non-speech mouth sounds

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Scott, S.K.

    2012-01-01

    Several perspectives on speech perception posit a central role for the representation of articulations in speech comprehension, supported by evidence for premotor activation when participants listen to speech. However no experiments have directly tested whether motor responses mirror the profile of selective auditory cortical responses to native speech sounds, or whether motor and auditory areas respond in different ways to sounds. We used fMRI to investigate cortical responses to speech and non-speech mouth (ingressive click) sounds. Speech sounds activated bilateral superior temporal gyri more than other sounds, a profile not seen in motor and premotor cortices. These results suggest that there are qualitative differences in the ways that temporal and motor areas are activated by speech and click sounds: anterior temporal lobe areas are sensitive to the acoustic/phonetic properties while motor responses may show more generalised responses to the acoustic stimuli. PMID:21812557

  13. Sound segregation via embedded repetition is robust to inattention.

    PubMed

    Masutomi, Keiko; Barascud, Nicolas; Kashino, Makio; McDermott, Josh H; Chait, Maria

    2016-03-01

    The segregation of sound sources from the mixture of sounds that enters the ear is a core capacity of human hearing, but the extent to which this process is dependent on attention remains unclear. This study investigated the effect of attention on the ability to segregate sounds via repetition. We utilized a dual task design in which stimuli to be segregated were presented along with stimuli for a "decoy" task that required continuous monitoring. The task to assess segregation presented a target sound 10 times in a row, each time concurrent with a different distractor sound. McDermott, Wrobleski, and Oxenham (2011) demonstrated that repetition causes the target sound to be segregated from the distractors. Segregation was queried by asking listeners whether a subsequent probe sound was identical to the target. A control task presented similar stimuli but probed discrimination without engaging segregation processes. We present results from 3 different decoy tasks: a visual multiple object tracking task, a rapid serial visual presentation (RSVP) digit encoding task, and a demanding auditory monitoring task. Load was manipulated by using high- and low-demand versions of each decoy task. The data provide converging evidence of a small effect of attention that is nonspecific, in that it affected the segregation and control tasks to a similar extent. In all cases, segregation performance remained high despite the presence of a concurrent, objectively demanding decoy task. The results suggest that repetition-based segregation is robust to inattention. (c) 2016 APA, all rights reserved).

  14. A mechanism study of sound wave-trapping barriers.

    PubMed

    Yang, Cheng; Pan, Jie; Cheng, Li

    2013-09-01

    The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.

  15. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  16. Temporal signatures of processing voiceness and emotion in sound

    PubMed Central

    Gunter, Thomas C.

    2017-01-01

    Abstract This study explored the temporal course of vocal and emotional sound processing. Participants detected rare repetitions in a stimulus stream comprising neutral and surprised non-verbal exclamations and spectrally rotated control sounds. Spectral rotation preserved some acoustic and emotional properties of the vocal originals. Event-related potentials elicited to unrepeated sounds revealed effects of voiceness and emotion. Relative to non-vocal sounds, vocal sounds elicited a larger centro-parietally distributed N1. This effect was followed by greater positivity to vocal relative to non-vocal sounds beginning with the P2 and extending throughout the recording epoch (N4, late positive potential) with larger amplitudes in female than in male listeners. Emotion effects overlapped with the voiceness effects but were smaller and differed topographically. Voiceness and emotion interacted only for the late positive potential, which was greater for vocal-emotional as compared with all other sounds. Taken together, these results point to a multi-stage process in which voiceness and emotionality are represented independently before being integrated in a manner that biases responses to stimuli with socio-emotional relevance. PMID:28338796

  17. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.

    PubMed

    Ross, Bernhard; Barat, Masihullah; Fujioka, Takako

    2017-06-14

    Auditory and sensorimotor brain areas interact during the action-perception cycle of sound making. Neurophysiological evidence of a feedforward model of the action and its outcome has been associated with attenuation of the N1 wave of auditory evoked responses elicited by self-generated sounds, such as talking and singing or playing a musical instrument. Moreover, neural oscillations at β-band frequencies have been related to predicting the sound outcome after action initiation. We hypothesized that a newly learned action-perception association would immediately modify interpretation of the sound during subsequent listening. Nineteen healthy young adults (7 female, 12 male) participated in three magnetoencephalographic recordings while first passively listening to recorded sounds of a bell ringing, then actively striking the bell with a mallet, and then again listening to recorded sounds. Auditory cortex activity showed characteristic P1-N1-P2 waves. The N1 was attenuated during sound making, while P2 responses were unchanged. In contrast, P2 became larger when listening after sound making compared with the initial naive listening. The P2 increase occurred immediately, while in previous learning-by-listening studies P2 increases occurred on a later day. Also, reactivity of β-band oscillations, as well as θ coherence between auditory and sensorimotor cortices, was stronger in the second listening block. These changes were significantly larger than those observed in control participants (eight female, five male), who triggered recorded sounds by a key press. We propose that P2 characterizes familiarity with sound objects, whereas β-band oscillation signifies involvement of the action-perception cycle, and both measures objectively indicate functional neuroplasticity in auditory perceptual learning. SIGNIFICANCE STATEMENT While suppression of auditory responses to self-generated sounds is well known, it is not clear whether the learned action-sound association

  18. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation.

    PubMed

    Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee

    2016-10-01

    Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

  19. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1994-01-01

    A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.

  20. Variation in the emission rate of sounds in a captive group of false killer whales Pseudorca crassidens during feedings: possible food anticipatory vocal activity?

    NASA Astrophysics Data System (ADS)

    Platto, Sara; Wang, Ding; Wang, Kexiong

    2016-11-01

    This study examines whether a group of captive false killer whales ( Pseudorca crassidens ) showed variations in the vocal rate around feeding times. The high level of motivation to express appetitive behaviors in captive animals may lead them to respond with changes of the behavioral activities during the time prior to food deliveries which are referred to as food anticipatory activity. False killer whales at Qingdao Polar Ocean World (Qingdao, China) showed significant variations of the rates of both the total sounds and sound classes (whistles, clicks, and burst pulses) around feedings. Precisely, from the Transition interval that recorded the lowest vocalization rate (3.40 s/m/d), the whales increased their acoustic emissions upon trainers' arrival (13.08 s/m/d). The high rate was maintained or intensified throughout the food delivery (25.12 s/m/d), and then reduced immediately after the animals were fed (9.91 s/m/d). These changes in the false killer whales sound production rates around feeding times supports the hypothesis of the presence of a food anticipatory vocal activity. Although sound rates may not give detailed information regarding referential aspects of the animal communication it might still shed light about the arousal levels of the individuals during different social or environmental conditions. Further experiments should be performed to assess if variations of the time of feeding routines may affect the vocal activity of cetaceans in captivity as well as their welfare.

  1. Coherent active methods for applications in room acoustics.

    PubMed

    Guicking, D; Karcher, K; Rollwage, M

    1985-10-01

    An adjustment of reverberation time in rooms is often desired, even for low frequencies where passive absorbers fail. Among the active (electroacoustic) systems, incoherent ones permit lengthening of reverberation time only, whereas coherent active methods will allow sound absorption as well. A coherent-active wall lining consists of loudspeakers with microphones in front and adjustable control electronics. The microphones pick up the incident sound and drive the speakers in such a way that the reflection coefficient takes on prescribed values. An experimental device for the one-dimensional case allows reflection coefficients between almost zero and about 1.5 to be realized below 1000 Hz. The extension to three dimensions presents problems, especially by nearfield effects. Experiments with a 3 X 3 loudspeaker array and computer simulations proved that the amplitude reflection coefficient can be adjusted between 10% and 200% for sinusoidal waves at normal and oblique incidence. Future developments have to make the system work with broadband excitation and in more diffuse sound fields. It is also planned to combine the active reverberation control with active diffusion control.

  2. Comparing Feedback Types in Multimedia Learning of Speech by Young Children With Common Speech Sound Disorders: Research Protocol for a Pretest Posttest Independent Measures Control Trial.

    PubMed

    Doubé, Wendy; Carding, Paul; Flanagan, Kieran; Kaufman, Jordy; Armitage, Hannah

    2018-01-01

    Children with speech sound disorders benefit from feedback about the accuracy of sounds they make. Home practice can reinforce feedback received from speech pathologists. Games in mobile device applications could encourage home practice, but those currently available are of limited value because they are unlikely to elaborate "Correct"/"Incorrect" feedback with information that can assist in improving the accuracy of the sound. This protocol proposes a "Wizard of Oz" experiment that aims to provide evidence for the provision of effective multimedia feedback for speech sound development. Children with two common speech sound disorders will play a game on a mobile device and make speech sounds when prompted by the game. A human "Wizard" will provide feedback on the accuracy of the sound but the children will perceive the feedback as coming from the game. Groups of 30 young children will be randomly allocated to one of five conditions: four types of feedback and a control which does not play the game. The results of this experiment will inform not only speech sound therapy, but also other types of language learning, both in general, and in multimedia applications. This experiment is a cost-effective precursor to the development of a mobile application that employs pedagogically and clinically sound processes for speech development in young children.

  3. The Surface Microlayer: Review of Literature and Evaluation of Potential Effects of Dredge Activities in Puget Sound.

    DTIC Science & Technology

    1987-01-01

    Heyrand. 1975. Polonium - 210 - Its vertical oceanic transport by zoo- plankton metabolic activity. Marine Chemistry 3:105-110. Collins, J. 1974. Oil and...Toxicology Environ. Health 7:991-1000. Hose, J.E., J.B. Hannah, D. Dijulio, M.L. Landolt, B.S. Miller, W.T. Iwaoka, and S.P. Felton. 1982. Effects of benzo(a...A184 885 THE SURFACE MICROLAVER, REVIEWJ OF LITERATURE AND 1/2 EVALUATION OF POTENTIAL EFFECTS OF DREDGE ACTIVITIES IN PUGET SOUND(U) EVANS-HAMILTON

  4. Sound propagation in light-modulated carbon nanosponge suspensions

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Tiwari, R. P.; Annamalai, R.; Sooryakumar, R.; Subramaniam, V.; Stroud, D.

    2009-03-01

    Single-walled carbon nanotube bundles dispersed in a highly polar fluid are found to agglomerate into a porous structure when exposed to low levels of laser radiation. The phototunable nanoscale porous structures provide an unusual way to control the acoustic properties of the suspension. Despite the high sound speed of the nanotubes, the measured speed of longitudinal-acoustic waves in the suspension decreases sharply with increasing bundle concentration. Two possible explanations for this reduction in sound speed are considered. One is simply that the sound speed decreases because of fluid heat induced by laser light absorption by the carbon nanotubes. The second is that this decrease results from the smaller sound velocity of fluid confined in a porous medium. Using a simplified description of convective heat transport, we estimate that the increase in temperature is too small to account for the observed decrease in sound velocity. To test the second possible explanation, we calculate the sound velocity in a porous medium, using a self-consistent effective-medium approximation. The results of this calculation agree qualitatively with experiment. In this case, the observed sound wave would be the analog of the slow compressional mode of porous solids at a structural length scale of order of 100 nm.

  5. The sound manifesto

    NASA Astrophysics Data System (ADS)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  6. Speed of sound in biodiesel produced by low power ultrasound

    NASA Astrophysics Data System (ADS)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2018-03-01

    The quality control of the biodiesel produced is an important issue to be addressed for every manufacturer or retailer. The speed of sound is a property that has an influence on the quality of the produced fuel. This work presents the evaluation about the speed of sound in biodiesel produced with the aid of low power ultrasound in the frequencies of 1 MHz and 3 MHz. The speed of sound was measured by pulse-echo technique. The ultrasonic frequency used during reaction affects the speed of sound in biodiesel. The larger expanded uncertainty for adjusted curve was 4.9 m.s-1.

  7. Balloons and bavoons versus spikes and shikes: ERPs reveal shared neural processes for shape-sound-meaning congruence in words, and shape-sound congruence in pseudowords.

    PubMed

    Sučević, Jelena; Savić, Andrej M; Popović, Mirjana B; Styles, Suzy J; Ković, Vanja

    2015-01-01

    There is something about the sound of a pseudoword like takete that goes better with a spiky, than a curvy shape (Köhler, 1929:1947). Yet despite decades of research into sound symbolism, the role of this effect on real words in the lexicons of natural languages remains controversial. We report one behavioural and one ERP study investigating whether sound symbolism is active during normal language processing for real words in a speaker's native language, in the same way as for novel word forms. The results indicate that sound-symbolic congruence has a number of influences on natural language processing: Written forms presented in a congruent visual context generate more errors during lexical access, as well as a chain of differences in the ERP. These effects have a very early onset (40-80 ms, 100-160 ms, 280-320 ms) and are later overshadowed by familiar types of semantic processing, indicating that sound symbolism represents an early sensory-co-activation effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Combination sound and vibration isolation curb for rooftop air-handling systems

    NASA Astrophysics Data System (ADS)

    Paige, Thomas S.

    2005-09-01

    This paper introduces the new Model ESSR Sound and Vibration Isolation Curb manufactured by Kinetics Noise Control, Inc. This product was specially designed to address all of the common transmission paths associated with noise and vibration sources from roof-mounted air-handling equipment. These include: reduction of airborne fan noise in supply and return air ductwork, reduction of duct rumble and breakout noise, reduction of direct airborne sound transmission through the roof deck, and reduction of vibration and structure-borne noise transmission to the building structure. Upgrade options are available for increased seismic restraint and wind-load protection. The advantages of this new system over the conventional approach of installing separate duct silencers in the room ceiling space below the rooftop unit are discussed. Several case studies are presented with the emphasis on completed projects pertaining to classrooms and school auditorium applications. Some success has also been achieved by adding active noise control components to improve low-frequency attenuation. This is an innovative product designed for conformance with the new classroom acoustics standard ANSI S12.60.

  9. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations

    PubMed Central

    Webster, Paula J.; Skipper-Kallal, Laura M.; Frum, Chris A.; Still, Hayley N.; Ward, B. Douglas; Lewis, James W.

    2017-01-01

    A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds. PMID:28111538

  10. Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae

    PubMed Central

    Pine, Matthew K.; Jeffs, Andrew G.; Radford, Craig A.

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  11. Early sound symbolism for vowel sounds

    PubMed Central

    Spector, Ferrinne; Maurer, Daphne

    2013-01-01

    Children and adults consistently match some words (e.g., kiki) to jagged shapes and other words (e.g., bouba) to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat) and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko) rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba). Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01). The results suggest that there may be naturally biased correspondences between vowel sound and shape. PMID:24349684

  12. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    PubMed Central

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas. PMID:28232739

  13. An intelligent artificial throat with sound-sensing ability based on laser induced graphene.

    PubMed

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-24

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  14. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    NASA Astrophysics Data System (ADS)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  15. [Synchronous playing and acquiring of heart sounds and electrocardiogram based on labVIEW].

    PubMed

    Dan, Chunmei; He, Wei; Zhou, Jing; Que, Xiaosheng

    2008-12-01

    In this paper is described a comprehensive system, which can acquire heart sounds and electrocardiogram (ECG) in parallel, synchronize the display; and play of heart sound and make auscultation and check phonocardiogram to tie in. The hardware system with C8051F340 as the core acquires the heart sound and ECG synchronously, and then sends them to indicators, respectively. Heart sounds are displayed and played simultaneously by controlling the moment of writing to indicator and sound output device. In clinical testing, heart sounds can be successfully located with ECG and real-time played.

  16. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    PubMed Central

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40° to approximately 90° horizontally and from approximately 45° to more than 90° vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals. PMID:20643943

  17. Is 1/f sound more effective than simple resting in reducing stress response?

    PubMed

    Oh, Eun-Joo; Cho, Il-Young; Park, Soon-Kwon

    2014-01-01

    It has been previously demonstrated that listening to 1/f sound effectively reduces stress. However, these findings have been inconsistent and further study on the relationship between 1/f sound and the stress response is consequently necessary. The present study examined whether sound with 1/f properties (1/f sound) affects stress-induced electroencephalogram (EEG) changes. Twenty-six subjects who voluntarily participated in the study were randomly assigned to the experimental or control group. Data from four participants were excluded because of EEG artifacts. A mental arithmetic task was used as a stressor. Participants in the experiment group listened to 1/f sound for 5 minutes and 33 seconds, while participants in the control group sat quietly for the same duration. EEG recordings were obtained at various points throughout the experiment. After the experiment, participants completed a questionnaire on the affective impact of the 1/f sound. The results indicated that the mental arithmetic task effectively induced a stress response measurable by EEG. Relative theta power at all electrode sites was significantly lower than baseline in both the control and experimental group. Relative alpha power was significantly lower, and relative beta power was significantly higher in the T3 and T4 areas. Secondly, 1/f sound and simple resting affected task-associated EEG changes in a similar manner. Finally, participants reported in the questionnaire that they experienced a positive feeling in response to the 1/f sound. Our results suggest that a commercialized 1/f sound product is not more effective than simple resting in alleviating the physiological stress response.

  18. Design And Construction of an Impedance Tube for Measuring Sound Absorptivity and Transmissibility of Materials Using Transfer Function Method

    NASA Astrophysics Data System (ADS)

    Gowda, Haarish Kapaninaikappa

    Noise is defined as unwanted sound, when perceived in excess can cause many harmful effects such as annoyance, interference with speech, and hearing loss, hence there is a need to control noise in practical situations. Noise can be controlled actively and/or passively, here we discuss the passive noise control techniques. Passive noise control involves using energy dissipating or reflecting materials such as absorbers or barriers respectively. Damping and isolating materials are also used in eliminating structure-borne noise. These materials exhibit properties such as reflection, absorption and transmission loss when incidence is by a sound source. Thus, there is a need to characterize the acoustical properties of these materials for practical use. The theoretical background of the random incident sound absorption with reverberation room and normal incident sound absorption using impedance tube are well documented. The Transfer Matrix method for measuring transmission loss and absorption coefficient using impedance tube is very attractive since it is rather inexpensive and fast. In this research, a low-cost Impedance Tube is constructed using transfer function method to measure both absorption and transmissibility of materials. Equipment and measurement instruments available in the laboratory were used in the construction of the tube, adhering to cost-effectiveness. Care has been taken for precise construction of tube to ensure better measurement results. Further various samples varying from hard non-porous to soft porous materials were tested for absorption and sound transmission loss. Absorption values were also compared with reverberation room method with the available samples further ensuring the reliability of the newly constructed tube for future measurements.

  19. Sound beam manipulation based on temperature gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Feng; School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500; Quan, Li

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest tomore » fields such as noise control or acoustic cloaking.« less

  20. Tuning the cognitive environment: Sound masking with 'natural' sounds in open-plan offices

    NASA Astrophysics Data System (ADS)

    DeLoach, Alana

    With the gain in popularity of open-plan office design and the engineering efforts to achieve acoustical comfort for building occupants, a majority of workers still report dissatisfaction in their workplace environment. Office acoustics influence organizational effectiveness, efficiency, and satisfaction through meeting appropriate requirements for speech privacy and ambient sound levels. Implementing a sound masking system is one tried-and-true method of achieving privacy goals. Although each sound masking system is tuned for its specific environment, the signal -- random steady state electronic noise, has remained the same for decades. This research work explores how `natural' sounds may be used as an alternative to this standard masking signal employed so ubiquitously in sound masking systems in the contemporary office environment. As an unobtrusive background sound, possessing the appropriate spectral characteristics, this proposed use of `natural' sounds for masking challenges the convention that masking sounds should be as meaningless as possible. Through the pilot study presented in this work, we hypothesize that `natural' sounds as sound maskers will be as effective at masking distracting background noise as the conventional masking sound, will enhance cognitive functioning, and increase participant (worker) satisfaction.

  1. The contribution of sound intensity in vocal emotion perception: behavioral and electrophysiological evidence.

    PubMed

    Chen, Xuhai; Yang, Jianfeng; Gan, Shuzhen; Yang, Yufang

    2012-01-01

    Although its role is frequently stressed in acoustic profile for vocal emotion, sound intensity is frequently regarded as a control parameter in neurocognitive studies of vocal emotion, leaving its role and neural underpinnings unclear. To investigate these issues, we asked participants to rate the angry level of neutral and angry prosodies before and after sound intensity modification in Experiment 1, and recorded electroencephalogram (EEG) for mismatching emotional prosodies with and without sound intensity modification and for matching emotional prosodies while participants performed emotional feature or sound intensity congruity judgment in Experiment 2. It was found that sound intensity modification had significant effect on the rating of angry level for angry prosodies, but not for neutral ones. Moreover, mismatching emotional prosodies, relative to matching ones, induced enhanced N2/P3 complex and theta band synchronization irrespective of sound intensity modification and task demands. However, mismatching emotional prosodies with reduced sound intensity showed prolonged peak latency and decreased amplitude in N2/P3 complex and smaller theta band synchronization. These findings suggest that though it cannot categorically affect emotionality conveyed in emotional prosodies, sound intensity contributes to emotional significance quantitatively, implying that sound intensity should not simply be taken as a control parameter and its unique role needs to be specified in vocal emotion studies.

  2. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.

    PubMed

    Chambers, Anna R; Salazar, Juan J; Polley, Daniel B

    2016-01-01

    Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the

  3. Temporal signatures of processing voiceness and emotion in sound.

    PubMed

    Schirmer, Annett; Gunter, Thomas C

    2017-06-01

    This study explored the temporal course of vocal and emotional sound processing. Participants detected rare repetitions in a stimulus stream comprising neutral and surprised non-verbal exclamations and spectrally rotated control sounds. Spectral rotation preserved some acoustic and emotional properties of the vocal originals. Event-related potentials elicited to unrepeated sounds revealed effects of voiceness and emotion. Relative to non-vocal sounds, vocal sounds elicited a larger centro-parietally distributed N1. This effect was followed by greater positivity to vocal relative to non-vocal sounds beginning with the P2 and extending throughout the recording epoch (N4, late positive potential) with larger amplitudes in female than in male listeners. Emotion effects overlapped with the voiceness effects but were smaller and differed topographically. Voiceness and emotion interacted only for the late positive potential, which was greater for vocal-emotional as compared with all other sounds. Taken together, these results point to a multi-stage process in which voiceness and emotionality are represented independently before being integrated in a manner that biases responses to stimuli with socio-emotional relevance. © The Author (2017). Published by Oxford University Press.

  4. Comparing Feedback Types in Multimedia Learning of Speech by Young Children With Common Speech Sound Disorders: Research Protocol for a Pretest Posttest Independent Measures Control Trial

    PubMed Central

    Doubé, Wendy; Carding, Paul; Flanagan, Kieran; Kaufman, Jordy; Armitage, Hannah

    2018-01-01

    Children with speech sound disorders benefit from feedback about the accuracy of sounds they make. Home practice can reinforce feedback received from speech pathologists. Games in mobile device applications could encourage home practice, but those currently available are of limited value because they are unlikely to elaborate “Correct”/”Incorrect” feedback with information that can assist in improving the accuracy of the sound. This protocol proposes a “Wizard of Oz” experiment that aims to provide evidence for the provision of effective multimedia feedback for speech sound development. Children with two common speech sound disorders will play a game on a mobile device and make speech sounds when prompted by the game. A human “Wizard” will provide feedback on the accuracy of the sound but the children will perceive the feedback as coming from the game. Groups of 30 young children will be randomly allocated to one of five conditions: four types of feedback and a control which does not play the game. The results of this experiment will inform not only speech sound therapy, but also other types of language learning, both in general, and in multimedia applications. This experiment is a cost-effective precursor to the development of a mobile application that employs pedagogically and clinically sound processes for speech development in young children. PMID:29674986

  5. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.

    PubMed

    Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk

    2016-09-27

    A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  6. The attenuation of sound by turbulence in internal flows.

    PubMed

    Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir

    2013-06-01

    The attenuation of sound waves due to interaction with low Mach number turbulent boundary layers in internal flows (channel or pipe flow) is examined. Dynamic equations for the turbulent Reynolds stress on the sound wave are derived, and the analytical solution to the equation provides a frequency dependent eddy viscosity model. This model is used to predict the attenuation of sound propagating in fully developed turbulent pipe flow. The predictions are shown to compare well with the experimental data. The proposed dynamic equation shows that the turbulence behaves like a viscoelastic fluid in the interaction process, and that the ratio of turbulent relaxation time near the wall and the sound wave period is the parameter that controls the characteristics of the attenuation induced by the turbulent flow.

  7. Sound level exposure of high-risk infants in different environmental conditions.

    PubMed

    Byers, Jacqueline F; Waugh, W Randolph; Lowman, Linda B

    2006-01-01

    To provide descriptive information about the sound levels to which high-risk infants are exposed in various actual environmental conditions in the NICU, including the impact of physical renovation on sound levels, and to assess the contributions of various types of equipment, alarms, and activities to sound levels in simulated conditions in the NICU. Descriptive and comparative design. Convenience sample of 134 infants at a southeastern quarternary children's hospital. A-weighted decibel (dBA) sound levels under various actual and simulated environmental conditions. The renovated NICU was, on average, 4-6 dBA quieter across all environmental conditions than a comparable nonrenovated room, representing a significant sound level reduction. Sound levels remained above consensus recommendations despite physical redesign and staff training. Respiratory therapy equipment, alarms, staff talking, and infant fussiness contributed to higher sound levels. Evidence-based sound-reducing strategies are proposed. Findings were used to plan environment management as part of a developmental, family-centered care, performance improvement program and in new NICU planning.

  8. Topological Phases of Sound and Light

    NASA Astrophysics Data System (ADS)

    Peano, V.; Brendel, C.; Schmidt, M.; Marquardt, F.

    2015-07-01

    Topological states of matter are particularly robust, since they exploit global features of a material's band structure. Topological states have already been observed for electrons, atoms, and photons. It is an outstanding challenge to create a Chern insulator of sound waves in the solid state. In this work, we propose an implementation based on cavity optomechanics in a photonic crystal. The topological properties of the sound waves can be wholly tuned in situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases and offers an example of a Chern insulator produced from the interaction between two physically distinct particle species, photons and phonons.

  9. Sound Pollution-Another Urban Problem

    ERIC Educational Resources Information Center

    Breysse, Peter A.

    1970-01-01

    Suggests that sound pollution constitutes a severe problem to the urban dweller. Excessive exposure of humans to noise produces both physical and psychological manifestations. Suggests that control of industrial, aircraft, and community noise must be recognized and accepted as a major factor in urban planning and development. Bibliography. (LC)

  10. Assessment of sound quality perception in cochlear implant users during music listening.

    PubMed

    Roy, Alexis T; Jiradejvong, Patpong; Carver, Courtney; Limb, Charles J

    2012-04-01

    Although cochlear implant (CI) users frequently report deterioration of sound quality when listening to music, few methods exist to quantify these subjective claims. 1) To design a novel research method for quantifying sound quality perception in CI users during music listening; 2) To validate this method by assessing one attribute of music perception, bass frequency perception, which is hypothesized to be relevant to overall musical sound quality perception. Limitations in bass frequency perception contribute to CI-mediated sound quality deteriorations. The proposed method will quantify this deterioration by measuring CI users' impaired ability to make sound quality discriminations among musical stimuli with variable amounts of bass frequency removal. A method commonly used in the audio industry (multiple stimulus with hidden reference and anchor [MUSHRA]) was adapted for CI users, referred to as CI-MUSHRA. CI users and normal hearing controls were presented with 7 sound quality versions of a musical segment: 5 high pass filter cutoff versions (200-, 400-, 600-, 800-, 1000-Hz) with decreasing amounts of bass information, an unaltered version ("hidden reference"), and a highly altered version (1,000-1,200 Hz band pass filter; "anchor"). Participants provided sound quality ratings between 0 (very poor) and 100 (excellent) for each version; ratings reflected differences in perceived sound quality among stimuli. CI users had greater difficulty making overall sound quality discriminations as a function of bass frequency loss than normal hearing controls, as demonstrated by a significantly weaker correlation between bass frequency content and sound quality ratings. In particular, CI users could not perceive sound quality difference among stimuli missing up to 400 Hz of bass frequency information. Bass frequency impairments contribute to sound quality deteriorations during music listening for CI users. CI-MUSHRA provided a systematic and quantitative assessment of this

  11. Physiographic and land cover attributes of the Puget Lowland and the active streamflow gaging network, Puget Sound Basin

    USGS Publications Warehouse

    Konrad, Christopher; Sevier, Maria

    2014-01-01

    Geospatial information for the active streamflow gaging network in the Puget Sound Basin was compiled to support regional monitoring of stormwater effects to small streams. The compilation includes drainage area boundaries and physiographic and land use attributes that affect hydrologic processes. Three types of boundaries were used to tabulate attributes: Puget Sound Watershed Characterization analysis units (AU); the drainage area of active streamflow gages; and the catchments of Regional Stream Monitoring Program (RSMP) sites. The active streamflow gaging network generally includes sites that represent the ranges of attributes for lowland AUs, although there are few sites with low elevations (less than 60 meters), low precipitation (less than 1 meter year), or high stream density (greater than 5 kilometers per square kilometers). The active streamflow gaging network can serve to provide streamflow information in some AUs and RSMP sites, particularly where the streamflow gage measures streamflow generated from a part of the AU or that drains to the RSMP site, and that part of the AU or RSMP site is a significant fraction of the drainage area of the streamgage. The maximum fraction of each AU or RSMP catchment upstream of a streamflow gage and the maximum fraction of any one gaged basin in an AU or RSMP along with corresponding codes are provided in the attribute tables.

  12. Effects of multiple congruent cues on concurrent sound segregation during passive and active listening: an event-related potential (ERP) study.

    PubMed

    Kocsis, Zsuzsanna; Winkler, István; Szalárdy, Orsolya; Bendixen, Alexandra

    2014-07-01

    In two experiments, we assessed the effects of combining different cues of concurrent sound segregation on the object-related negativity (ORN) and the P400 event-related potential components. Participants were presented with sequences of complex tones, half of which contained some manipulation: one or two harmonic partials were mistuned, delayed, or presented from a different location than the rest. In separate conditions, one, two, or three of these manipulations were combined. Participants watched a silent movie (passive listening) or reported after each tone whether they perceived one or two concurrent sounds (active listening). ORN was found in almost all conditions except for location difference alone during passive listening. Combining several cues or manipulating more than one partial consistently led to sub-additive effects on the ORN amplitude. These results support the view that ORN reflects a combined, feature-unspecific assessment of the auditory system regarding the contribution of two sources to the incoming sound. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A "caliper" type of controlled-source, frequency-domain, electromagnetic sounding method

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lin, J.; Zhou, F.; Liu, C.; Chen, J.; Xue, K.; Liu, L.; Wu, Y.

    2011-12-01

    We developed a special measurement manner for controlled-source, frequency-domain, electromagnetic sounding method that can improve resolution and efficiency, called as "caliper". This manner is base on our array electromagnetic system DPS-I, which consists of 53 channels and can cover 2500 m survey line at one arrangement. There are several steps to apply this method. First, a rough measurement is carried out, using large dynamic range but sparse frequencies. The ratio of adjacent frequency is set to be 2 or 4. The frequency points cover the entire frequency band that is required according to the geological environment, and are almost equidistantly distributed at logarithmic axis. Receivers array are arranged in one or more survey lines to measure the amplitude and phase of electromagnetic field components simultaneously. After all frequency points for rough measurement are measured, data in each sub-receiver are transmitted to the controller and the apparent resistivity and phase are calculated in field quickly. Then the pseudo section diagrams of apparent resistivity and phase are drew. By the pseudo section we can roughly lock the abnormal zone and determine the frequency band required for detail investigation of abnormal zone. Next, the measurement using high density of frequencies in this frequency band is carried out, which we called "detailed measurement". The ratio of adjacent frequency in this time is m which lies between 1 and 2. The exact value of m will depend on how detailed that the user expected. After "detailed measurement" is finished, the pseudo section diagrams of apparent resistivity and phase are drew in the same way with the first step. We can see more detailed information about the abnormal zone and decide whether further measurement is necessary. If it is necessary, we can repeat the second step using smaller m until the resolution meet the requirements to distinguish the target. By simulation, we know that high density of frequencies

  14. L-type calcium channels refine the neural population code of sound level.

    PubMed

    Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana

    2016-12-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.

  15. L-type calcium channels refine the neural population code of sound level

    PubMed Central

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  16. The influence of company identity on the perception of vehicle sounds.

    PubMed

    Humphreys, Louise; Giudice, Sebastiano; Jennings, Paul; Cain, Rebecca; Song, Wookeun; Dunne, Garry

    2011-04-01

    In order to determine how the interior of a car should sound, automotive manufacturers often rely on obtaining data from individual evaluations of vehicle sounds. Company identity could play a role in these appraisals, particularly when individuals are comparing cars from opposite ends of the performance spectrum. This research addressed the question: does company identity influence the evaluation of automotive sounds belonging to cars of a similar performance level and from the same market segment? Participants listened to car sounds from two competing manufacturers, together with control sounds. Before listening to each sound, participants were presented with the correct company identity for that sound, the incorrect identity or were given no information about the identity of the sound. The results showed that company identity did not influence appraisals of high performance cars belonging to different manufacturers. These results have positive implications for methodologies employed to capture the perceptions of individuals. STATEMENT OF RELEVANCE: A challenge in automotive design is to set appropriate targets for vehicle sounds, relying on understanding subjective reactions of individuals to such sounds. This paper assesses the role of company identity in influencing these subjective reactions and will guide sound evaluation studies, in which the manufacturer is often apparent.

  17. Priming Gestures with Sounds

    PubMed Central

    Lemaitre, Guillaume; Heller, Laurie M.; Navolio, Nicole; Zúñiga-Peñaranda, Nicolas

    2015-01-01

    We report a series of experiments about a little-studied type of compatibility effect between a stimulus and a response: the priming of manual gestures via sounds associated with these gestures. The goal was to investigate the plasticity of the gesture-sound associations mediating this type of priming. Five experiments used a primed choice-reaction task. Participants were cued by a stimulus to perform response gestures that produced response sounds; those sounds were also used as primes before the response cues. We compared arbitrary associations between gestures and sounds (key lifts and pure tones) created during the experiment (i.e. no pre-existing knowledge) with ecological associations corresponding to the structure of the world (tapping gestures and sounds, scraping gestures and sounds) learned through the entire life of the participant (thus existing prior to the experiment). Two results were found. First, the priming effect exists for ecological as well as arbitrary associations between gestures and sounds. Second, the priming effect is greatly reduced for ecologically existing associations and is eliminated for arbitrary associations when the response gesture stops producing the associated sounds. These results provide evidence that auditory-motor priming is mainly created by rapid learning of the association between sounds and the gestures that produce them. Auditory-motor priming is therefore mediated by short-term associations between gestures and sounds that can be readily reconfigured regardless of prior knowledge. PMID:26544884

  18. The impact of artificial vehicle sounds for pedestrians on driver stress.

    PubMed

    Cottrell, Nicholas D; Barton, Benjamin K

    2012-01-01

    Electrically based vehicles have produced some concern over their lack of sound, but the impact of artificial sounds now being implemented have not been examined in respect to their effects upon the driver. The impact of two different implementations of vehicle sound on driver stress in electric vehicles was examined. A Nissan HEV running in electric vehicle mode was driven by participants in an area of congestion using three sound implementations: (1) no artificial sounds, (2) manually engaged sounds and (3) automatically engaged sounds. Physiological and self-report questionnaire measures were collected to determine stress and acceptance of the automated sound protocol. Driver stress was significantly higher in the manually activated warning condition, compared to both no artificial sounds and automatically engaged sounds. Implications for automation usage and measurement methods are discussed and future research directions suggested. The advent of hybrid- and all-electric vehicles has created a need for artificial warning signals for pedestrian safety that place task demands on drivers. We investigated drivers' stress differences in response to varying conditions of warning signals for pedestrians. Driver stress was lower when noises were automated.

  19. Distinct sensory representations of wind and near-field sound in the Drosophila brain

    PubMed Central

    Yorozu, Suzuko; Wong, Allan; Fischer, Brian J.; Dankert, Heiko; Kernan, Maurice J.; Kamikouchi, Azusa; Ito, Kei; Anderson, David J.

    2009-01-01

    Behavioral responses to wind are thought to play a critical role in controlling the dispersal and population genetics of wild Drosophila species1,2, as well as their navigation in flight3, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains4, exhibits robust wind-induced suppression of locomotion (WISL), in response to air currents delivered at speeds normally encountered in nature1,2. Here we identify wind-sensitive neurons in Johnston’s Organ (JO), an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in5,6). Using Gal4 lines targeted to different subsets of JO neurons7, and a genetically encoded calcium indicator8, we show that wind and near-field sound (courtship song) activate distinct populations of JO neurons, which project to different regions of the antennal and mechanosensory motor center (AMMC) in the central brain. Selective genetic ablation of wind-sensitive JO neurons in the antenna abolishes WISL behavior, without impairing hearing. Different neuronal subsets within the wind-sensitive population, moreover, respond to different directions of arista deflection caused by airflow and project to different regions of the AMMC, providing a rudimentary map of wind-direction in the brain. Importantly, sound- and wind-sensitive JO neurons exhibit different intrinsic response properties: the former are phasically activated by small, bi-directional, displacements of the aristae, while the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar airflow, respectively. These data identify wind-sensitive neurons in JO, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements, using a common sensory organ

  20. Sound at the zoo: Using animal monitoring, sound measurement, and noise reduction in zoo animal management.

    PubMed

    Orban, David A; Soltis, Joseph; Perkins, Lori; Mellen, Jill D

    2017-05-01

    A clear need for evidence-based animal management in zoos and aquariums has been expressed by industry leaders. Here, we show how individual animal welfare monitoring can be combined with measurement of environmental conditions to inform science-based animal management decisions. Over the last several years, Disney's Animal Kingdom® has been undergoing significant construction and exhibit renovation, warranting institution-wide animal welfare monitoring. Animal care and science staff developed a model that tracked animal keepers' daily assessments of an animal's physical health, behavior, and responses to husbandry activity; these data were matched to different external stimuli and environmental conditions, including sound levels. A case study of a female giant anteater and her environment is presented to illustrate how this process worked. Associated with this case, several sound-reducing barriers were tested for efficacy in mitigating sound. Integrating daily animal welfare assessment with environmental monitoring can lead to a better understanding of animals and their sensory environment and positively impact animal welfare. © 2017 Wiley Periodicals, Inc.

  1. Memory for product sounds: the effect of sound and label type.

    PubMed

    Ozcan, Elif; van Egmond, René

    2007-11-01

    The (mnemonic) interactions between auditory, visual, and the semantic systems have been investigated using structurally complex auditory stimuli (i.e., product sounds). Six types of product sounds (air, alarm, cyclic, impact, liquid, mechanical) that vary in spectral-temporal structure were presented in four label type conditions: self-generated text, text, image, and pictogram. A memory paradigm that incorporated free recall, recognition, and matching tasks was employed. The results for the sound type suggest that the amount of spectral-temporal structure in a sound can be indicative for memory performance. Findings related to label type suggest that 'self' creates a strong bias for the retrieval and the recognition of sounds that were self-labeled; the density and the complexity of the visual information (i.e., pictograms) hinders the memory performance ('visual' overshadowing effect); and image labeling has an additive effect on the recall and matching tasks (dual coding). Thus, the findings suggest that the memory performances for product sounds are task-dependent.

  2. The Contribution of Sound Intensity in Vocal Emotion Perception: Behavioral and Electrophysiological Evidence

    PubMed Central

    Chen, Xuhai; Yang, Jianfeng; Gan, Shuzhen; Yang, Yufang

    2012-01-01

    Although its role is frequently stressed in acoustic profile for vocal emotion, sound intensity is frequently regarded as a control parameter in neurocognitive studies of vocal emotion, leaving its role and neural underpinnings unclear. To investigate these issues, we asked participants to rate the angry level of neutral and angry prosodies before and after sound intensity modification in Experiment 1, and recorded electroencephalogram (EEG) for mismatching emotional prosodies with and without sound intensity modification and for matching emotional prosodies while participants performed emotional feature or sound intensity congruity judgment in Experiment 2. It was found that sound intensity modification had significant effect on the rating of angry level for angry prosodies, but not for neutral ones. Moreover, mismatching emotional prosodies, relative to matching ones, induced enhanced N2/P3 complex and theta band synchronization irrespective of sound intensity modification and task demands. However, mismatching emotional prosodies with reduced sound intensity showed prolonged peak latency and decreased amplitude in N2/P3 complex and smaller theta band synchronization. These findings suggest that though it cannot categorically affect emotionality conveyed in emotional prosodies, sound intensity contributes to emotional significance quantitatively, implying that sound intensity should not simply be taken as a control parameter and its unique role needs to be specified in vocal emotion studies. PMID:22291928

  3. Dementias show differential physiological responses to salient sounds.

    PubMed

    Fletcher, Phillip D; Nicholas, Jennifer M; Shakespeare, Timothy J; Downey, Laura E; Golden, Hannah L; Agustus, Jennifer L; Clark, Camilla N; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

  4. Why Do People Like Loud Sound? A Qualitative Study

    PubMed Central

    Welch, David; Fremaux, Guy

    2017-01-01

    Many people choose to expose themselves to potentially dangerous sounds such as loud music, either via speakers, personal audio systems, or at clubs. The Conditioning, Adaptation and Acculturation to Loud Music (CAALM) Model has proposed a theoretical basis for this behaviour. To compare the model to data, we interviewed a group of people who were either regular nightclub-goers or who controlled the sound levels in nightclubs (bar managers, musicians, DJs, and sound engineers) about loud sound. Results showed four main themes relating to the enjoyment of loud sound: arousal/excitement, facilitation of socialisation, masking of both external sound and unwanted thoughts, and an emphasis and enhancement of personal identity. Furthermore, an interesting incidental finding was that sound levels appeared to increase gradually over the course of the evening until they plateaued at approximately 97 dBA Leq around midnight. Consideration of the data generated by the analysis revealed a complex of influential factors that support people in wanting exposure to loud sound. Findings were considered in terms of the CAALM Model and could be explained in terms of its principles. From a health promotion perspective, the Social Ecological Model was applied to consider how the themes identified might influence behaviour. They were shown to influence people on multiple levels, providing a powerful system which health promotion approaches struggle to address. PMID:28800097

  5. Why Do People Like Loud Sound? A Qualitative Study.

    PubMed

    Welch, David; Fremaux, Guy

    2017-08-11

    Many people choose to expose themselves to potentially dangerous sounds such as loud music, either via speakers, personal audio systems, or at clubs. The Conditioning, Adaptation and Acculturation to Loud Music (CAALM) Model has proposed a theoretical basis for this behaviour. To compare the model to data, we interviewed a group of people who were either regular nightclub-goers or who controlled the sound levels in nightclubs (bar managers, musicians, DJs, and sound engineers) about loud sound. Results showed four main themes relating to the enjoyment of loud sound: arousal/excitement, facilitation of socialisation, masking of both external sound and unwanted thoughts, and an emphasis and enhancement of personal identity. Furthermore, an interesting incidental finding was that sound levels appeared to increase gradually over the course of the evening until they plateaued at approximately 97 dBA Leq around midnight. Consideration of the data generated by the analysis revealed a complex of influential factors that support people in wanting exposure to loud sound. Findings were considered in terms of the CAALM Model and could be explained in terms of its principles. From a health promotion perspective, the Social Ecological Model was applied to consider how the themes identified might influence behaviour. They were shown to influence people on multiple levels, providing a powerful system which health promotion approaches struggle to address.

  6. Sound Guard

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Lubrication technology originally developed for a series of NASA satellites has produced a commercial product for protecting the sound fidelity of phonograph records. Called Sound Guard, the preservative is a spray-on fluid that deposits a microscopically thin protective coating which reduces friction and prevents the hard diamond stylus from wearing away the softer vinyl material of the disc. It is marketed by the Consumer Products Division of Ball Corporation, Muncie, Indiana. The lubricant technology on which Sound Guard is based originated with NASA's Orbiting Solar Observatory (OSO), an Earth-orbiting satellite designed and built by Ball Brothers Research Corporation, Boulder, Colorado, also a division of Ball Corporation. Ball Brothers engineers found a problem early in the OSO program: known lubricants were unsuitable for use on satellite moving parts that would be exposed to the vacuum of space for several months. So the company conducted research on the properties of materials needed for long life in space and developed new lubricants. They worked successfully on seven OSO flights and attracted considerable attention among other aerospace contractors. Ball Brothers now supplies its "Vac Kote" lubricants and coatings to both aerospace and non-aerospace industries and the company has produced several hundred variations of the original technology. Ball Corporation expanded its product line to include consumer products, of which Sound Guard is one of the most recent. In addition to protecting record grooves, Sound Guard's anti-static quality also retards particle accumulation on the stylus. During comparison study by a leading U.S. electronic laboratory, a record not treated by Sound Guard had to be cleaned after 50 plays and the stylus had collected a considerable number of small vinyl particles. The Sound Guard-treated disc was still clean after 100 plays, as was its stylus.

  7. Application of the remote microphone method to active noise control in a mobile phone.

    PubMed

    Cheer, Jordan; Elliott, Stephen J; Oh, Eunmi; Jeong, Jonghoon

    2018-04-01

    Mobile phones are used in a variety of situations where environmental noise may interfere with the ability of the near-end user to communicate with the far-end user. To overcome this problem, it might be possible to use active noise control technology to reduce the noise experienced by the near-end user. This paper initially demonstrates that when an active noise control system is used in a practical mobile phone configuration to minimise the noise measured by an error microphone mounted on the mobile phone, the attenuation achieved at the user's ear depends strongly on the position of the source generating the acoustic interference. To help overcome this problem, a remote microphone processing strategy is investigated that estimates the pressure at the user's ear from the pressure measured by the microphone on the mobile phone. Through an experimental implementation, it is demonstrated that this arrangement achieves a significant improvement in the attenuation measured at the ear of the user, compared to the standard active control strategy. The robustness of the active control system to changes in both the interfering sound field and the position of the mobile device relative to the ear of the user is also investigated experimentally.

  8. Sound absorption of metallic sound absorbers fabricated via the selective laser melting process

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan

    2017-01-01

    The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.

  9. Sounds Exaggerate Visual Shape

    ERIC Educational Resources Information Center

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  10. Hierarchical neurocomputations underlying concurrent sound segregation: connecting periphery to percept.

    PubMed

    Bidelman, Gavin M; Alain, Claude

    2015-02-01

    Natural soundscapes often contain multiple sound sources at any given time. Numerous studies have reported that in human observers, the perception and identification of concurrent sounds is paralleled by specific changes in cortical event-related potentials (ERPs). Although these studies provide a window into the cerebral mechanisms governing sound segregation, little is known about the subcortical neural architecture and hierarchy of neurocomputations that lead to this robust perceptual process. Using computational modeling, scalp-recorded brainstem/cortical ERPs, and human psychophysics, we demonstrate that a primary cue for sound segregation, i.e., harmonicity, is encoded at the auditory nerve level within tens of milliseconds after the onset of sound and is maintained, largely untransformed, in phase-locked activity of the rostral brainstem. As then indexed by auditory cortical responses, (in)harmonicity is coded in the signature and magnitude of the cortical object-related negativity (ORN) response (150-200 ms). The salience of the resulting percept is then captured in a discrete, categorical-like coding scheme by a late negativity response (N5; ~500 ms latency), just prior to the elicitation of a behavioral judgment. Subcortical activity correlated with cortical evoked responses such that weaker phase-locked brainstem responses (lower neural harmonicity) generated larger ORN amplitude, reflecting the cortical registration of multiple sound objects. Studying multiple brain indices simultaneously helps illuminate the mechanisms and time-course of neural processing underlying concurrent sound segregation and may lead to further development and refinement of physiologically driven models of auditory scene analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of musical training on sound pattern processing in high-school students.

    PubMed

    Wang, Wenjung; Staffaroni, Laura; Reid, Errold; Steinschneider, Mitchell; Sussman, Elyse

    2009-05-01

    Recognizing melody in music involves detection of both the pitch intervals and the silence between sequentially presented sounds. This study tested the hypothesis that active musical training in adolescents facilitates the ability to passively detect sequential sound patterns compared to musically non-trained age-matched peers. Twenty adolescents, aged 15-18 years, were divided into groups according to their musical training and current experience. A fixed order tone pattern was presented at various stimulus rates while electroencephalogram was recorded. The influence of musical training on passive auditory processing of the sound patterns was assessed using components of event-related brain potentials (ERPs). The mismatch negativity (MMN) ERP component was elicited in different stimulus onset asynchrony (SOA) conditions in non-musicians than musicians, indicating that musically active adolescents were able to detect sound patterns across longer time intervals than age-matched peers. Musical training facilitates detection of auditory patterns, allowing the ability to automatically recognize sequential sound patterns over longer time periods than non-musical counterparts.

  12. The Sound Path: Adding Music to a Child Care Playground.

    ERIC Educational Resources Information Center

    Kern, Petra; Wolery, Mark

    2002-01-01

    This article discusses how musical activities were added to a childcare playground and the benefits for a young child with blindness. The six-station "Sound Path" is described, and suggestions are provided for using sound pipes to develop sensorimotor skills, social and communication skills, cognitive skills, and emotional skills. (Contains…

  13. Long-term high-intensity sound stimulation inhibits h current (Ih ) in CA1 pyramidal neurons.

    PubMed

    Cunha, A O S; Ceballos, C C; de Deus, J L; Leão, R M

    2018-05-19

    Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization activated cationic current (I h ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here we investigated if a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that I h is depressed by long-term high intensity sound exposure (1 minute of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; However, this effect was not caused by a decreased I h . Interestingly, a single episode (1 minute) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect I h and firing in pyramidal neurons, suggesting that effects on I h are long-term responses to high intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of I h . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Sound recordings of road maintenance equipment on the Lincoln National Forest, New Mexico

    Treesearch

    D. K. Delaney; T. G. Grubb

    2004-01-01

    The purpose of this pilot study was to record, characterize, and quantify road maintenance activity in Mexican spotted owl (Strix occidentalis lucida) habitat to gauge potential sound level exposure for owls during road maintenance activities. We measured sound levels from three different types of road maintenance equipment (rock crusherlloader,...

  15. Digitizing Sound: How Can Sound Waves be Turned into Ones and Zeros?

    NASA Astrophysics Data System (ADS)

    Vick, Matthew

    2010-10-01

    From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing scientific literacy should propel us to open up a few of these metaphorical boxes. High school physics offers opportunities to connect the curriculum to sports, art, music, and electricity, but it also offers connections to computers and digital music. Learning activities about digitizing sounds offer wonderful opportunities for technology integration and student problem solving. I used this series of lessons in high school physics after teaching about waves and sound but before optics and total internal reflection so that the concepts could be further extended when learning about fiber optics.

  16. Inferring Meal Eating Activities in Real World Settings from Ambient Sounds: A Feasibility Study

    PubMed Central

    Thomaz, Edison; Zhang, Cheng; Essa, Irfan; Abowd, Gregory D.

    2015-01-01

    Dietary self-monitoring has been shown to be an effective method for weight-loss, but it remains an onerous task despite recent advances in food journaling systems. Semi-automated food journaling can reduce the effort of logging, but often requires that eating activities be detected automatically. In this work we describe results from a feasibility study conducted in-the-wild where eating activities were inferred from ambient sounds captured with a wrist-mounted device; twenty participants wore the device during one day for an average of 5 hours while performing normal everyday activities. Our system was able to identify meal eating with an F-score of 79.8% in a person-dependent evaluation, and with 86.6% accuracy in a person-independent evaluation. Our approach is intended to be practical, leveraging off-the-shelf devices with audio sensing capabilities in contrast to systems for automated dietary assessment based on specialized sensors. PMID:25859566

  17. Visual motion disambiguation by a subliminal sound.

    PubMed

    Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier

    2008-09-01

    There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.

  18. Threshold for Onset of Injury in Chinook Salmon from Exposure to Impulsive Pile Driving Sounds

    PubMed Central

    Halvorsen, Michele B.; Casper, Brandon M.; Woodley, Christa M.; Carlson, Thomas J.; Popper, Arthur N.

    2012-01-01

    The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SELss, SELcum respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 µPa2⋅s SELss yielding a SELcum of 210 dB re 1 µPa2⋅s, and for 960 strikes by 180 dB re 1 µPa2⋅s SELss yielding a SELcum of 210 dB re 1 µPa2⋅s. These metrics define thresholds for onset of injury in juvenile Chinook salmon. PMID:22745695

  19. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds.

    PubMed

    Halvorsen, Michele B; Casper, Brandon M; Woodley, Christa M; Carlson, Thomas J; Popper, Arthur N

    2012-01-01

    The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SEL(ss), SEL(cum) respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 µPa(2)⋅s SEL(ss) yielding a SEL(cum) of 210 dB re 1 µPa(2)⋅s, and for 960 strikes by 180 dB re 1 µPa(2)⋅s SEL(ss) yielding a SEL(cum) of 210 dB re 1 µPa(2)⋅s. These metrics define thresholds for onset of injury in juvenile Chinook salmon.

  20. Cell type-specific suppression of mechanosensitive genes by audible sound stimulation.

    PubMed

    Kumeta, Masahiro; Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H

    2018-01-01

    Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound.

  1. Cell type-specific suppression of mechanosensitive genes by audible sound stimulation

    PubMed Central

    Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H.

    2018-01-01

    Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound. PMID:29385174

  2. The Sound of Science

    ERIC Educational Resources Information Center

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  3. The effects of age, physical activity level, and body anthropometry on calcaneal speed of sound value in men.

    PubMed

    Chin, Kok-Yong; Soelaiman, Ima-Nirwana; Mohamed, Isa Naina; Ibrahim, Suraya; Wan Ngah, Wan Zurinah

    2012-01-01

    The influences of age, physical activity, and body anthropometry on calcaneal speed of sound are different among young adults, middle-aged, and elderly men. Quantitative ultrasound assessment of bone health status is much needed for developing countries in the screening of osteoporosis, but further studies on the factors that influence the quantitative ultrasound indices are required. The present study examined the influence of age, lifestyle factors, and body anthropometry on calcaneal speed of sound (SOS) in a group of Malaysian men of diverse age range. A cross-sectional study was conducted, and data from 687 eligible males were used for analysis. They answered a detailed questionnaire on their physical activity status, and their anthropometric measurements were taken. Their calcaneal SOS values were evaluated using the CM-200 sonometer (Furuno, Nishinomiya City, Japan). Subjects with higher body mass index (BMI) had higher calcaneal SOS values albeit significant difference was only found in the elderly subjects (p < 0.05). Sedentary subjects had lower calcaneal SOS values than physically active subjects, but significant difference was only found in the middle-aged subjects (p < 0.05). Calcaneal SOS was significantly (p < 0.05) correlated with age in young men; height, BMI, and physical activity score in middle-aged men; height and physical activity score in elderly men; and age and physical activity score for overall subjects. In a multivariate regression model, significant (p < 0.05) predictors for calcaneal SOS included age for young men; physical activity, BMI, body fat percentage, and height for middle-aged men; height for elderly men; and age, height, physical activity, weight, and body fat percentage for overall subjects. Age, body anthropometry, and physical activity level have significant effects on the calcaneal SOS value in men.

  4. Assessing the potential for passive radio sounding of Europa and Ganymede with RIME and REASON

    NASA Astrophysics Data System (ADS)

    Schroeder, Dustin M.; Romero-Wolf, Andrew; Carrer, Leonardo; Grima, Cyril; Campbell, Bruce A.; Kofman, Wlodek; Bruzzone, Lorenzo; Blankenship, Donald D.

    2016-12-01

    Recent work has raised the potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. Two radar sounding instruments, the Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been selected for ESA and NASA missions to Ganymede and Europa. Here, we revisit the projected performance of the passive sounding concept and assess the potential for its implementation as an additional mode for RIME and REASON. We find that the Signal to Noise Ratio (SNR) of passive sounding can approach or exceed that of active sounding in a noisy sub-Jovian environment, but that active sounding achieves a greater SNR in the presence of quiescent noise and outperforms passive sounding in terms of clutter. We also compare the performance of passive sounding at the 9 MHz HF center frequency of RIME and REASON to other frequencies within the Jovian decametric band. We conclude that the addition of a passive sounding mode on RIME or REASON stands to enhance their science return by enabling sub-Jovian HF sounding in the presence of decametric noise, but that there is not a compelling case for implementation at a different frequency.

  5. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds

    PubMed Central

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: “metallic and unpleasant” and “powerful”. LAeq had a strong relationship with “powerful impression”, calculated sharpness was positively related to “metallic impression”, and “unpleasant impression” was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating

  6. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    PubMed

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound

  7. Soliton-sound interactions in quasi-one-dimensional Bose-Einstein condensates.

    PubMed

    Parker, N G; Proukakis, N P; Leadbeater, M; Adams, C S

    2003-06-06

    Longitudinal confinement of dark solitons in quasi-one-dimensional Bose-Einstein condensates leads to sound emission and reabsorption. We perform quantitative studies of the dynamics of a soliton oscillating in a tight dimple trap, embedded in a weaker harmonic trap. The dimple depth provides a sensitive handle to control the soliton-sound interaction. In the limit of no reabsorption, the power radiated is found to be proportional to the soliton acceleration squared. An experiment is proposed to detect sound emission as a change in amplitude and frequency of soliton oscillations.

  8. 140. Detail of north control panel in control room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    140. Detail of north control panel in control room, looking north. This panel monitors a variety of activities: gages indicate the level of Lake Tapps and level of the circular forebay; wattmeters indicate output of exciters. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  9. SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization

    PubMed Central

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  10. Influence of aging on human sound localization

    PubMed Central

    Dobreva, Marina S.; O'Neill, William E.

    2011-01-01

    Errors in sound localization, associated with age-related changes in peripheral and central auditory function, can pose threats to self and others in a commonly encountered environment such as a busy traffic intersection. This study aimed to quantify the accuracy and precision (repeatability) of free-field human sound localization as a function of advancing age. Head-fixed young, middle-aged, and elderly listeners localized band-passed targets using visually guided manual laser pointing in a darkened room. Targets were presented in the frontal field by a robotically controlled loudspeaker assembly hidden behind a screen. Broadband targets (0.1–20 kHz) activated all auditory spatial channels, whereas low-pass and high-pass targets selectively isolated interaural time and intensity difference cues (ITDs and IIDs) for azimuth and high-frequency spectral cues for elevation. In addition, to assess the upper frequency limit of ITD utilization across age groups more thoroughly, narrowband targets were presented at 250-Hz intervals from 250 Hz up to ∼2 kHz. Young subjects generally showed horizontal overestimation (overshoot) and vertical underestimation (undershoot) of auditory target location, and this effect varied with frequency band. Accuracy and/or precision worsened in older individuals for broadband, high-pass, and low-pass targets, reflective of peripheral but also central auditory aging. In addition, compared with young adults, middle-aged, and elderly listeners showed pronounced horizontal localization deficiencies (imprecision) for narrowband targets within 1,250–1,575 Hz, congruent with age-related central decline in auditory temporal processing. Findings underscore the distinct neural processing of the auditory spatial cues in sound localization and their selective deterioration with advancing age. PMID:21368004

  11. Storage changes in the quality of sound and sprouted flour.

    PubMed

    Sur, R; Nagi, H P; Sharma, S; Sekhon, K S

    1993-07-01

    Sound and sprouted flours (24 and 48 hr) from bread wheat (WL-1562), durum wheat (PBW-34) and triticale (TL-1210) were stored at room temperature (34.8 degrees C) and relative humidity (66.7%) for 0, 45, 90 and 135 days to assess the changes in physico-chemical and baking properties. Protein, gluten, sedimentation value, starch and crude fat decreased during storage in all the samples; however, the decrease was more in sprouted flours. Free amino acids, proteolytic activity, diastatic activity and damaged starch decreased with increase in storage period. Total sugars and free fatty acids increased more rapidly in the flours of sprouted wheats during 135 days of storage. Loaf volume of breads decreased during storage in both sound and sprouted flour but the mean percent decrease in loaf volume was more in stored sound flours. Aging of sprouted flour for 45 days improved the cookie and cake making properties but further storage was of no value for these baked products. Chapati making properties of stored sound and sprouted flour were inferior to that of fresh counterparts.

  12. Hybrid passive/active damping for robust multivariable acoustic control in composite plates

    NASA Astrophysics Data System (ADS)

    Veeramani, Sudha; Wereley, Norman M.

    1996-05-01

    Noise transmission through a flexible kevlar-epoxy composite trim panel into an acoustic cavity or box is studied with the intent of controlling the interior sound fields. A hybrid noise attenuation technique is proposed which uses viscoelastic damping layers in the composite plate for passive attenuation of high frequency noise transmission, and uses piezo-electric patch actuators for active control in the low frequency range. An adaptive feedforward noise control strategy is applied. The passive structural damping augmentation incorporated in the composite plates is also intended to increase stability robustness of the active noise control strategy. A condenser microphone in the interior of the enclosure functions as the error sensor. Three composite plates were experimentally evaluated: one with no damping layer, the second with a 10 mil damping layer, and the third with a 15 mil damping layer. The damping layer was cocured in the kevlar-epoxy trim panels. Damping in the plates was increased from 1.6% for the plate with no damping layer, to 5.9% for the plate with a 15 mil damping layer. In experimental studies, the improved stability robustness of the controller was demonstrated by improved adaptive feedforward control algorithm convergence. A preliminary analytical model is presented that describes the dynamic behavior of a composite panel actuated by piezoelectric actuators bonded to its surface.

  13. Dementias show differential physiological responses to salient sounds

    PubMed Central

    Fletcher, Phillip D.; Nicholas, Jennifer M.; Shakespeare, Timothy J.; Downey, Laura E.; Golden, Hannah L.; Agustus, Jennifer L.; Clark, Camilla N.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching (“looming”) or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases. PMID:25859194

  14. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase.

    PubMed

    Zhu, Yifan; Hu, Jie; Fan, Xudong; Yang, Jing; Liang, Bin; Zhu, Xuefeng; Cheng, Jianchun

    2018-04-24

    The fine manipulation of sound fields is critical in acoustics yet is restricted by the coupled amplitude and phase modulations in existing wave-steering metamaterials. Commonly, unavoidable losses make it difficult to control coupling, thereby limiting device performance. Here we show the possibility of tailoring the loss in metamaterials to realize fine control of sound in three-dimensional (3D) space. Quantitative studies on the parameter dependence of reflection amplitude and phase identify quasi-decoupled points in the structural parameter space, allowing arbitrary amplitude-phase combinations for reflected sound. We further demonstrate the significance of our approach for sound manipulation by producing self-bending beams, multifocal focusing, and a single-plane two-dimensional hologram, as well as a multi-plane 3D hologram with quality better than the previous phase-controlled approach. Our work provides a route for harnessing sound via engineering the loss, enabling promising device applications in acoustics and related fields.

  15. Sound-induced Interfacial Dynamics in a Microfluidic Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Mak, Sze Yi; Shum, Ho Cheung

    2014-11-01

    Retrieving sound wave by a fluidic means is challenging due to the difficulty in visualizing the very minute sound-induced fluid motion. This work studies the interfacial response of multiphase systems towards fluctuation in the flow. We demonstrate a direct visualization of music in the form of ripples at a microfluidic aqueous-aqueous interface with an ultra-low interfacial tension. The interface shows a passive response to sound of different frequencies with sufficiently precise time resolution, enabling the recording of musical notes and even subsequent reconstruction with high fidelity. This suggests that sensing and transmitting vibrations as tiny as those induced by sound could be realized in low interfacial tension systems. The robust control of the interfacial dynamics could be adopted for droplet and complex-fiber generation.

  16. Sound as artifact

    NASA Astrophysics Data System (ADS)

    Benjamin, Jeffrey L.

    A distinguishing feature of the discipline of archaeology is its reliance upon sensory dependant investigation. As perceived by all of the senses, the felt environment is a unique area of archaeological knowledge. It is generally accepted that the emergence of industrial processes in the recent past has been accompanied by unprecedented sonic extremes. The work of environmental historians has provided ample evidence that the introduction of much of this unwanted sound, or "noise" was an area of contestation. More recent research in the history of sound has called for more nuanced distinctions than the noisy/quiet dichotomy. Acoustic archaeology tends to focus upon a reconstruction of sound producing instruments and spaces with a primary goal of ascertaining intentionality. Most archaeoacoustic research is focused on learning more about the sonic world of people within prehistoric timeframes while some research has been done on historic sites. In this thesis, by way of a meditation on industrial sound and the physical remains of the Quincy Mining Company blacksmith shop (Hancock, MI) in particular, I argue for an acceptance and inclusion of sound as artifact in and of itself. I am introducing the concept of an individual sound-form, or sonifact , as a reproducible, repeatable, representable physical entity, created by tangible, perhaps even visible, host-artifacts. A sonifact is a sound that endures through time, with negligible variability. Through the piecing together of historical and archaeological evidence, in this thesis I present a plausible sonifactual assemblage at the blacksmith shop in April 1916 as it may have been experienced by an individual traversing the vicinity on foot: an 'historic soundwalk.' The sensory apprehension of abandoned industrial sites is multi-faceted. In this thesis I hope to make the case for an acceptance of sound as a primary heritage value when thinking about the industrial past, and also for an increased awareness and acceptance

  17. What the Toadfish Ear Tells the Toadfish Brain About Sound.

    PubMed

    Edds-Walton, Peggy L

    2016-01-01

    Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.

  18. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  19. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  20. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  1. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  2. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  3. Assessing Acoustic Sound Levels Associated with Active Source Seismic Surveys in Shallow Marine Environments

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.

    2004-12-01

    The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California

  4. Vocalisation Repertoire of Female Bluefin Gurnard (Chelidonichthys kumu) in Captivity: Sound Structure, Context and Vocal Activity.

    PubMed

    Radford, Craig A; Ghazali, Shahriman M; Montgomery, John C; Jeffs, Andrew G

    2016-01-01

    Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1) with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas.

  5. Vocalisation Repertoire of Female Bluefin Gurnard (Chelidonichthys kumu) in Captivity: Sound Structure, Context and Vocal Activity

    PubMed Central

    Radford, Craig A.; Ghazali, Shahriman M.; Montgomery, John C.; Jeffs, Andrew G.

    2016-01-01

    Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1) with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas. PMID:26890124

  6. [Perception by teenagers and adults of the changed by amplitude sound sequences used in models of movement of the sound source].

    PubMed

    Andreeva, I G; Vartanian, I A

    2012-01-01

    The ability to evaluate direction of amplitude changes of sound stimuli was studied in adults and in the 11-12- and 15-16-year old teenagers. The stimuli representing sequences of fragments of the tone of 1 kHz, whose amplitude is changing with time, are used as model of approach and withdrawal of the sound sources. The 11-12-year old teenagers at estimation of direction of amplitude changes were shown to make the significantly higher number of errors as compared with two other examined groups, including those in repeated experiments. The structure of errors - the ratio of the portion of errors at estimation of increasing and decreasing by amplitude stimulus - turned out to be different in teenagers and in adults. The question is discussed about the effect of unspecific activation of the large hemisphere cortex in teenagers on processes if taking solution about the complex sound stimulus, including a possibility estimation of approach and withdrawal of the sound source.

  7. The Technique of the Sound Studio: Radio, Record Production, Television, and Film. Revised Edition.

    ERIC Educational Resources Information Center

    Nisbett, Alec

    Detailed explanations of the studio techniques used in radio, record, television, and film sound production are presented in as non-technical language as possible. An introductory chapter discusses the physics and physiology of sound. Subsequent chapters detail standards for sound control in the studio; explain the planning and routine of a sound…

  8. Nearshore Birds in Puget Sound

    DTIC Science & Technology

    2006-05-01

    Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Kriete, B. 2007. Orcas in Puget Sound . Puget Sound Near- shore...Technical Report 2006-05 Puget Sound Nearshore Partnership I Nearshore Birds in Puget Sound Prepared in...support of the Puget Sound Nearshore Partnership Joseph B. Buchanan Washington Department of Fish and Wildlife Technical Report 2006-05 ii

  9. Personal sound zone reproduction with room reflections

    NASA Astrophysics Data System (ADS)

    Olik, Marek

    work presents a systematic examination of the key problem of first order reflections and proposes general optimization techniques, thus forming an important contribution. The remaining contribution considers evaluation and comparison of the proposed techniques with two alternative approaches to sound zone generation under reflective conditions: acoustic contrast control (ACC) combined with anechoic source optimization and sound power minimization (SPM). The study provides a ranking of the examined approaches which could serve as a guideline for method selection for rooms with strong individual reflections.

  10. Stationary waves in tubes and the speed of sound

    NASA Astrophysics Data System (ADS)

    Kasper, Lutz; Vogt, Patrik; Strohmeyer, Christine

    2015-01-01

    The opportunity to plot oscillograms and frequency spectra with smartphones creates many options for experiments in acoustics, including several that have been described in this column.1-3 The activities presented in this paper are intended to complement these applications, and include an approach to determine sound velocity in air by using standard drain pipes4 and an outline of an investigation of the temperature dependency of the speed of sound.

  11. The sound intensity and characteristics of variable-pitch pulse oximeters.

    PubMed

    Yamanaka, Hiroo; Haruna, Junichi; Mashimo, Takashi; Akita, Takeshi; Kinouchi, Keiko

    2008-06-01

    Various studies worldwide have found that sound levels in hospitals significantly exceed the World Health Organization (WHO) guidelines, and that this noise is associated with audible signals from various medical devices. The pulse oximeter is now widely used in health care; however the health effects associated with the noise from this equipment remain largely unclarified. Here, we analyzed the sounds of variable-pitch pulse oximeters, and discussed the possible associated risk of sleep disturbance, annoyance, and hearing loss. The Nellcor N 595 and Masimo SET Radical pulse oximeters were measured for equivalent continuous A-weighted sound pressure levels (L(Aeq)), loudness levels, and loudness. Pulse beep pitches were also identified using Fast Fourier Transform (FFT) analysis and compared with musical pitches as controls. Almost all alarm sounds and pulse beeps from the instruments tested exceeded 30 dBA, a level that may induce sleep disturbance and annoyance. Several alarm sounds emitted by the pulse oximeters exceeded 70 dBA, which is known to induce hearing loss. The loudness of the alarm sound of each pulse oximeter did not change in proportion to the sound volume level. The pitch of each pulse beep did not correspond to musical pitch levels. The results indicate that sounds from pulse oximeters pose a potential risk of not only sleep disturbance and annoyance but also hearing loss, and that these sounds are unnatural for human auditory perception.

  12. 33 CFR 167.1323 - In Puget Sound and its approaches: Puget Sound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In Puget Sound and its approaches: Puget Sound. 167.1323 Section 167.1323 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1323 In Puget Sound and its...

  13. 33 CFR 167.1323 - In Puget Sound and its approaches: Puget Sound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In Puget Sound and its approaches: Puget Sound. 167.1323 Section 167.1323 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1323 In Puget Sound and its...

  14. How Sound Symbolism Is Processed in the Brain: A Study on Japanese Mimetic Words

    PubMed Central

    Okuda, Jiro; Okada, Hiroyuki; Matsuda, Tetsuya

    2014-01-01

    Sound symbolism is the systematic and non-arbitrary link between word and meaning. Although a number of behavioral studies demonstrate that both children and adults are universally sensitive to sound symbolism in mimetic words, the neural mechanisms underlying this phenomenon have not yet been extensively investigated. The present study used functional magnetic resonance imaging to investigate how Japanese mimetic words are processed in the brain. In Experiment 1, we compared processing for motion mimetic words with that for non-sound symbolic motion verbs and adverbs. Mimetic words uniquely activated the right posterior superior temporal sulcus (STS). In Experiment 2, we further examined the generalizability of the findings from Experiment 1 by testing another domain: shape mimetics. Our results show that the right posterior STS was active when subjects processed both motion and shape mimetic words, thus suggesting that this area may be the primary structure for processing sound symbolism. Increased activity in the right posterior STS may also reflect how sound symbolic words function as both linguistic and non-linguistic iconic symbols. PMID:24840874

  15. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  16. Psychophysics and Neuronal Bases of Sound Localization in Humans

    PubMed Central

    Ahveninen, Jyrki; Kopco, Norbert; Jääskeläinen, Iiro P.

    2013-01-01

    Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory “where” pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. PMID:23886698

  17. Brain processes in women and men in response to emotive sounds.

    PubMed

    Rigo, Paola; De Pisapia, Nicola; Bornstein, Marc H; Putnick, Diane L; Serra, Mauro; Esposito, Gianluca; Venuti, Paola

    2017-04-01

    Adult appropriate responding to salient infant signals is vital to child healthy psychological development. Here we investigated how infant crying, relative to other emotive sounds of infant laughing or adult crying, captures adults' brain resources. In a sample of nulliparous women and men, we investigated the effects of different sounds on cerebral activation of the default mode network (DMN) and reaction times (RTs) while listeners engaged in self-referential decision and syllabic counting tasks, which, respectively, require the activation or deactivation of the DMN. Sounds affect women and men differently. In women, infant crying deactivated the DMN during the self-referential decision task; in men, female adult crying interfered with the DMN during the syllabic counting task. These findings point to different brain processes underlying responsiveness to crying in women and men and show that cerebral activation is modulated by situational contexts in which crying occurs.

  18. Seismic and Biological Sources of Ambient Ocean Sound

    NASA Astrophysics Data System (ADS)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed

  19. Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization

    PubMed Central

    2018-01-01

    Auditory signals arrive at the ear as a mixture that the brain must decompose into distinct sources based to a large extent on acoustic properties of the sounds. An important question concerns whether listeners have voluntary control over how many sources they perceive. This has been studied using pure high (H) and low (L) tones presented in the repeating pattern HLH-HLH-, which can form a bistable percept heard either as an integrated whole (HLH-) or as segregated into high (H-H-) and low (-L-) sequences. Although instructing listeners to try to integrate or segregate sounds affects reports of what they hear, this could reflect a response bias rather than a perceptual effect. We had human listeners (15 males, 12 females) continuously report their perception of such sequences and recorded neural activity using MEG. During neutral listening, a classifier trained on patterns of neural activity distinguished between periods of integrated and segregated perception. In other conditions, participants tried to influence their perception by allocating attention either to the whole sequence or to a subset of the sounds. They reported hearing the desired percept for a greater proportion of time than when listening neutrally. Critically, neural activity supported these reports; stimulus-locked brain responses in auditory cortex were more likely to resemble the signature of segregation when participants tried to hear segregation than when attempting to perceive integration. These results indicate that listeners can influence how many sound sources they perceive, as reflected in neural responses that track both the input and its perceptual organization. SIGNIFICANCE STATEMENT Can we consciously influence our perception of the external world? We address this question using sound sequences that can be heard either as coming from a single source or as two distinct auditory streams. Listeners reported spontaneous changes in their perception between these two interpretations while

  20. Rocket ozone sounding network data

    NASA Technical Reports Server (NTRS)

    Wright, D. U.; Krueger, A. J.; Foster, G. M.

    1978-01-01

    During the period December 1976 through February 1977, three regular monthly ozone profiles were measured at Wallops Flight Center, two special soundings were taken at Antigua, West Indies, and at the Churchill Research Range, monthly activities were initiated to establish stratospheric ozone climatology. This report presents the data results and flight profiles for the period covered.

  1. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  2. Composing Sound Identity in Taiko Drumming

    ERIC Educational Resources Information Center

    Powell, Kimberly A.

    2012-01-01

    Although sociocultural theories emphasize the mutually constitutive nature of persons, activity, and environment, little attention has been paid to environmental features organized across sensory dimensions. I examine sound as a dimension of learning and practice, an organizing presence that connects the sonic with the social. This ethnographic…

  3. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders.

    PubMed

    Visser, Eelke; Zwiers, Marcel P; Kan, Cornelis C; Hoekstra, Liesbeth; van Opstal, A John; Buitelaar, Jan K

    2013-11-01

    Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs.

  4. Sound absorption and morphology characteristic of porous concrete paving blocks

    NASA Astrophysics Data System (ADS)

    Halim, N. H. Abd; Nor, H. Md; Ramadhansyah, P. J.; Mohamed, A.; Hassan, N. Abdul; Ibrahim, M. H. Wan; Ramli, N. I.; Nazri, F. Mohamed

    2017-11-01

    In this study, sound absorption and morphology characteristic of Porous Concrete Paving Blocks (PCPB) at different sizes of coarse aggregate were presented. Three different sizes of coarse aggregate were used; passing 10 mm retained 5 mm (as Control), passing 8 mm retained 5 mm (8 - 5) and passing 10 mm retained 8 mm (10 - 8). The sound absorption test was conducted through the impedance tube at different frequency. It was found that the size of coarse aggregate affects the level of absorption of the specimens. It also shows that PCPB 10 - 8 resulted in high sound absorption compared to the other blocks. On the other hand, microstructure morphology of PCPB shows a clearer version of existing micro-cracks and voids inside the specimens which affecting the results of sound absorption.

  5. Piezoelectric actuator models for active sound and vibration control of cylinders

    NASA Technical Reports Server (NTRS)

    Lester, Harold C.; Lefebvre, Sylvie

    1993-01-01

    Analytical models for piezoelectric actuators, adapted from flat plate concepts, are developed for noise and vibration control applications associated with vibrating circular cylinders. The loadings applied to the cylinder by the piezoelectric actuators for the bending and in-plane force models are approximated by line moment and line force distributions, respectively, acting on the perimeter of the actuator patch area. Coupling between the cylinder and interior acoustic cavity is examined by studying the modal spectra, particularly for the low-order cylinder modes that couple efficiently with the cavity at low frequencies. Within the scope of this study, the in-plane force model produced a more favorable distribution of low-order modes, necessary for efficient interior noise control, than did the bending model.

  6. Noise detection in heart sound recordings.

    PubMed

    Zia, Mohammad K; Griffel, Benjamin; Fridman, Vladimir; Saponieri, Cesare; Semmlow, John L

    2011-01-01

    Coronary artery disease (CAD) is the leading cause of death in the United States. Although progression of CAD can be controlled using drugs and diet, it is usually detected in advanced stages when invasive treatment is required. Current methods to detect CAD are invasive and/or costly, hence not suitable as a regular screening tool to detect CAD in early stages. Currently, we are developing a noninvasive and cost-effective system to detect CAD using the acoustic approach. This method identifies sounds generated by turbulent flow through partially narrowed coronary arteries to detect CAD. The limiting factor of this method is sensitivity to noises commonly encountered in the clinical setting. Because the CAD sounds are faint, these noises can easily obscure the CAD sounds and make detection impossible. In this paper, we propose a method to detect and eliminate noise encountered in the clinical setting using a reference channel. We show that our method is effective in detecting noise, which is essential to the success of the acoustic approach.

  7. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  8. Cortical Activation during Attention to Sound in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Funabiki, Yasuko; Murai, Toshiya; Toichi, Motomi

    2012-01-01

    Individuals with autism spectrum disorders (ASDs) can demonstrate hypersensitivity to sounds as well as a lack of awareness of them. Several functional imaging studies have suggested an abnormal response in the auditory cortex of such subjects, but it is not known whether these subjects have dysfunction in the auditory cortex or are simply not…

  9. Hearing Tests on Mobile Devices: Evaluation of the Reference Sound Level by Means of Biological Calibration.

    PubMed

    Masalski, Marcin; Kipiński, Lech; Grysiński, Tomasz; Kręcicki, Tomasz

    2016-05-30

    Hearing tests carried out in home setting by means of mobile devices require previous calibration of the reference sound level. Mobile devices with bundled headphones create a possibility of applying the predefined level for a particular model as an alternative to calibrating each device separately. The objective of this study was to determine the reference sound level for sets composed of a mobile device and bundled headphones. Reference sound levels for Android-based mobile devices were determined using an open access mobile phone app by means of biological calibration, that is, in relation to the normal-hearing threshold. The examinations were conducted in 2 groups: an uncontrolled and a controlled one. In the uncontrolled group, the fully automated self-measurements were carried out in home conditions by 18- to 35-year-old subjects, without prior hearing problems, recruited online. Calibration was conducted as a preliminary step in preparation for further examination. In the controlled group, audiologist-assisted examinations were performed in a sound booth, on normal-hearing subjects verified through pure-tone audiometry, recruited offline from among the workers and patients of the clinic. In both the groups, the reference sound levels were determined on a subject's mobile device using the Bekesy audiometry. The reference sound levels were compared between the groups. Intramodel and intermodel analyses were carried out as well. In the uncontrolled group, 8988 calibrations were conducted on 8620 different devices representing 2040 models. In the controlled group, 158 calibrations (test and retest) were conducted on 79 devices representing 50 models. Result analysis was performed for 10 most frequently used models in both the groups. The difference in reference sound levels between uncontrolled and controlled groups was 1.50 dB (SD 4.42). The mean SD of the reference sound level determined for devices within the same model was 4.03 dB (95% CI 3

  10. Abnormal lung sounds in patients with asthma during episodes with normal lung function.

    PubMed

    Schreur, H J; Vanderschoot, J; Zwinderman, A H; Dijkman, J H; Sterk, P J

    1994-07-01

    Even in patients with clinically stable asthma with normal lung function, the airways are characterized by inflammatory changes, including mucosal swelling. In order to investigate whether lung sounds can distinguish these subjects from normal subjects, we compared lung sound characteristics between eight normal and nine symptom-free subjects with mild asthma. All subjects underwent simultaneous recordings of airflow, lung volume changes, and lung sounds during standardized quiet breathing, and during forced maneuvers. Flow-dependent power spectra were computed using fast Fourier transform. For each spectrum we determined lung sound intensity (LSI), frequencies (Q25%, Q50%, Q75%) wheezing (W), and W%. The results were analyzed by ANOVA. During expiration, LSI was lower in patients with asthma than in healthy controls, in particular at relatively low airflow values. During quiet expiration, Q25% to Q75% were higher in asthmatics than in healthy controls, while the change of Q25% to Q75% with flow was greater in asthmatic than in normal subjects. The W and W% were not different between the subject groups. The results indicate that at given airflows, lung sounds are lower in intensity and higher in pitch in asthmatics as compared with controls. This suggests that the generation and/or transmission of lung sounds in symptom-free patients with stable asthma differ from that in normal subjects, even when lung function is within the normal range. Therefore, airflow standardized phonopneumography might reflect morphologic changes in airways of patients with asthma.

  11. New insights into insect's silent flight. Part II: sound source and noise control

    NASA Astrophysics Data System (ADS)

    Xue, Qian; Geng, Biao; Zheng, Xudong; Liu, Geng; Dong, Haibo

    2016-11-01

    The flapping flight of aerial animals has excellent aerodynamic performance but meanwhile generates low noise. In this study, the unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for three-dimensional (3D) models of Tibicen linnei cicada at free forward flight conditions. Single cicada wing is modelled as a membrane with prescribed motion reconstructed by Wan et al. (2015). The flow field and acoustic field around the flapping wing are solved with immersed-boundary-method based incompressible flow solver and linearized-perturbed-compressible-equations based acoustic solver. The 3D simulation allows examination of both directivity and frequency composition of the produced sound in a full space. The mechanism of sound generation of flapping wing is analyzed through correlations between acoustic signals and flow features. Along with a flexible wing model, a rigid wing model is also simulated. The results from these two cases will be compared to investigate the effects of wing flexibility on sound generation. This study is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  12. Heart sound segmentation of pediatric auscultations using wavelet analysis.

    PubMed

    Castro, Ana; Vinhoza, Tiago T V; Mattos, Sandra S; Coimbra, Miguel T

    2013-01-01

    Auscultation is widely applied in clinical activity, nonetheless sound interpretation is dependent on clinician training and experience. Heart sound features such as spatial loudness, relative amplitude, murmurs, and localization of each component may be indicative of pathology. In this study we propose a segmentation algorithm to extract heart sound components (S1 and S2) based on it's time and frequency characteristics. This algorithm takes advantage of the knowledge of the heart cycle times (systolic and diastolic periods) and of the spectral characteristics of each component, through wavelet analysis. Data collected in a clinical environment, and annotated by a clinician was used to assess algorithm's performance. Heart sound components were correctly identified in 99.5% of the annotated events. S1 and S2 detection rates were 90.9% and 93.3% respectively. The median difference between annotated and detected events was of 33.9 ms.

  13. Historical Patterns and Drivers of Spatial Changes in Recreational Fishing Activity in Puget Sound, Washington

    PubMed Central

    Beaudreau, Anne H.; Whitney, Emily J.

    2016-01-01

    Small-scale fisheries are the primary users of many coastal fish stocks; yet, spatial and temporal patterns of recreational and subsistence fishing in coastal marine ecosystems are poorly documented. Knowledge about the spatial distribution of fishing activities can inform place-based management that balances species conservation with opportunities for recreation and subsistence. We used a participatory mapping approach to document changes in spatial fishing patterns of 80 boat-based recreational anglers from 1950 to 2010 in Puget Sound, Washington, USA. Hand-drawn fishing areas for salmon, rockfishes, flatfishes, and crabs were digitized and analyzed in a Geographic Information System. We found that recreational fishing has spanned the majority of Puget Sound since the 1950s, with the heaviest use limited to small areas of central and northern Puget Sound. People are still fishing in the same places they were decades ago, with relatively little change in specific locations despite widespread declines in salmon and bottomfish populations during the second half of the 20th century. While the location of core fishing areas remained consistent, the size of those areas and intensity of use changed over time. The size of fishing areas increased through the 2000s for salmon but declined after the 1970s and 1980s for rockfishes, flatfishes, and crabs. Our results suggest that the spatial extent of recreational bottomfishing increased after the 1960s, when the availability of motorized vessels and advanced fish-finding technologies allowed anglers to expand their scope beyond localized angling from piers and boathouses. Respondents offered a wide range of reasons for shifts in fishing areas over time, reflecting substantial individual variation in motivations and behaviors. Changes in fishing areas were most commonly attributed to changes in residence and declines in target species and least tied to fishery regulations, despite the implementation of at least 25 marine

  14. Historical Patterns and Drivers of Spatial Changes in Recreational Fishing Activity in Puget Sound, Washington.

    PubMed

    Beaudreau, Anne H; Whitney, Emily J

    2016-01-01

    Small-scale fisheries are the primary users of many coastal fish stocks; yet, spatial and temporal patterns of recreational and subsistence fishing in coastal marine ecosystems are poorly documented. Knowledge about the spatial distribution of fishing activities can inform place-based management that balances species conservation with opportunities for recreation and subsistence. We used a participatory mapping approach to document changes in spatial fishing patterns of 80 boat-based recreational anglers from 1950 to 2010 in Puget Sound, Washington, USA. Hand-drawn fishing areas for salmon, rockfishes, flatfishes, and crabs were digitized and analyzed in a Geographic Information System. We found that recreational fishing has spanned the majority of Puget Sound since the 1950s, with the heaviest use limited to small areas of central and northern Puget Sound. People are still fishing in the same places they were decades ago, with relatively little change in specific locations despite widespread declines in salmon and bottomfish populations during the second half of the 20th century. While the location of core fishing areas remained consistent, the size of those areas and intensity of use changed over time. The size of fishing areas increased through the 2000s for salmon but declined after the 1970s and 1980s for rockfishes, flatfishes, and crabs. Our results suggest that the spatial extent of recreational bottomfishing increased after the 1960s, when the availability of motorized vessels and advanced fish-finding technologies allowed anglers to expand their scope beyond localized angling from piers and boathouses. Respondents offered a wide range of reasons for shifts in fishing areas over time, reflecting substantial individual variation in motivations and behaviors. Changes in fishing areas were most commonly attributed to changes in residence and declines in target species and least tied to fishery regulations, despite the implementation of at least 25 marine

  15. Study of active noise control system for a commercial HVAC unit

    NASA Astrophysics Data System (ADS)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  16. Emergent categorical representation of natural, complex sounds resulting from the early post-natal sound environment

    PubMed Central

    Bao, Shaowen; Chang, Edward F.; Teng, Ching-Ling; Heiser, Marc A.; Merzenich, Michael M.

    2013-01-01

    Cortical sensory representations can be reorganized by sensory exposure in an epoch of early development. The adaptive role of this type of plasticity for natural sounds in sensory development is, however, unclear. We have reared rats in a naturalistic, complex acoustic environment and examined their auditory representations. We found that cortical neurons became more selective to spectrotemporal features in the experienced sounds. At the neuronal population level, more neurons were involved in representing the whole set of complex sounds, but fewer neurons actually responded to each individual sound, but with greater magnitudes. A comparison of population-temporal responses to the experienced complex sounds revealed that cortical responses to different renderings of the same song motif were more similar, indicating that the cortical neurons became less sensitive to natural acoustic variations associated with stimulus context and sound renderings. By contrast, cortical responses to sounds of different motifs became more distinctive, suggesting that cortical neurons were tuned to the defining features of the experienced sounds. These effects lead to emergent “categorical” representations of the experienced sounds, which presumably facilitate their recognition. PMID:23747304

  17. The isolation of low frequency impact sounds in hotel construction

    NASA Astrophysics Data System (ADS)

    LoVerde, John J.; Dong, David W.

    2002-11-01

    One of the design challenges in the acoustical design of hotels is reducing low frequency sounds from footfalls occurring on both carpeted and hard-surfaced floors. Research on low frequency impact noise [W. Blazier and R. DuPree, J. Acoust. Soc. Am. 96, 1521-1532 (1994)] resulted in a conclusion that in wood construction low frequency impact sounds were clearly audible and that feasible control methods were not available. The results of numerous FIIC (Field Impact Insulation Class) measurements performed in accordance with ASTM E1007 indicate the lack of correlation between FIIC ratings and the reaction of occupants in the room below. The measurements presented include FIIC ratings and sound pressure level measurements below the ASTM E1007 low frequency limit of 100 Hertz, and reveal that excessive sound levels in the frequency range of 63 to 100 Hertz correlate with occupant complaints. Based upon this history, a tentative criterion for maximum impact sound level in the low frequency range is presented. The results presented of modifying existing constructions to reduce the transmission of impact sounds at low frequencies indicate that there may be practical solutions to this longstanding problem.

  18. Sound specificity effects in spoken word recognition: The effect of integrality between words and sounds.

    PubMed

    Strori, Dorina; Zaar, Johannes; Cooke, Martin; Mattys, Sven L

    2018-01-01

    Recent evidence has shown that nonlinguistic sounds co-occurring with spoken words may be retained in memory and affect later retrieval of the words. This sound-specificity effect shares many characteristics with the classic voice-specificity effect. In this study, we argue that the sound-specificity effect is conditional upon the context in which the word and sound coexist. Specifically, we argue that, besides co-occurrence, integrality between words and sounds is a crucial factor in the emergence of the effect. In two recognition-memory experiments, we compared the emergence of voice and sound specificity effects. In Experiment 1 , we examined two conditions where integrality is high. Namely, the classic voice-specificity effect (Exp. 1a) was compared with a condition in which the intensity envelope of a background sound was modulated along the intensity envelope of the accompanying spoken word (Exp. 1b). Results revealed a robust voice-specificity effect and, critically, a comparable sound-specificity effect: A change in the paired sound from exposure to test led to a decrease in word-recognition performance. In the second experiment, we sought to disentangle the contribution of integrality from a mere co-occurrence context effect by removing the intensity modulation. The absence of integrality led to the disappearance of the sound-specificity effect. Taken together, the results suggest that the assimilation of background sounds into memory cannot be reduced to a simple context effect. Rather, it is conditioned by the extent to which words and sounds are perceived as integral as opposed to distinct auditory objects.

  19. Cortical network differences in the sighted versus early blind for recognition of human-produced action sounds

    PubMed Central

    Lewis, James W.; Frum, Chris; Brefczynski-Lewis, Julie A.; Talkington, William J.; Walker, Nathan A.; Rapuano, Kristina M.; Kovach, Amanda L.

    2012-01-01

    Both sighted and blind individuals can readily interpret meaning behind everyday real-world sounds. In sighted listeners, we previously reported that regions along the bilateral posterior superior temporal sulci (pSTS) and middle temporal gyri (pMTG) are preferentially activated when presented with recognizable action sounds. These regions have generally been hypothesized to represent primary loci for complex motion processing, including visual biological motion processing and audio-visual integration. However, it remained unclear whether, or to what degree, life-long visual experience might impact functions related to hearing perception or memory of sound-source actions. Using functional magnetic resonance imaging (fMRI), we compared brain regions activated in congenitally blind versus sighted listeners in response to hearing a wide range of recognizable human-produced action sounds (excluding vocalizations) versus unrecognized, backward-played versions of those sounds. Here we show that recognized human action sounds commonly evoked activity in both groups along most of the left pSTS/pMTG complex, though with relatively greater activity in the right pSTS/pMTG by the blind group. These results indicate that portions of the postero-lateral temporal cortices contain domain-specific hubs for biological and/or complex motion processing independent of sensory-modality experience. Contrasting the two groups, the sighted listeners preferentially activated bilateral parietal plus medial and lateral frontal networks, while the blind listeners preferentially activated left anterior insula plus bilateral anterior calcarine and medial occipital regions, including what would otherwise have been visual-related cortex. These global-level network differences suggest that blind and sighted listeners may preferentially use different memory retrieval strategies when attempting to recognize action sounds. PMID:21305666

  20. Effects of head movement and proprioceptive feedback in training of sound localization

    PubMed Central

    Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti

    2013-01-01

    We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686

  1. Usefulness of bowel sound auscultation: a prospective evaluation.

    PubMed

    Felder, Seth; Margel, David; Murrell, Zuri; Fleshner, Phillip

    2014-01-01

    Although the auscultation of bowel sounds is considered an essential component of an adequate physical examination, its clinical value remains largely unstudied and subjective. The aim of this study was to determine whether an accurate diagnosis of normal controls, mechanical small bowel obstruction (SBO), or postoperative ileus (POI) is possible based on bowel sound characteristics. Prospectively collected recordings of bowel sounds from patients with normal gastrointestinal motility, SBO diagnosed by computed tomography and confirmed at surgery, and POI diagnosed by clinical symptoms and a computed tomography without a transition point. Study clinicians were instructed to categorize the patient recording as normal, obstructed, ileus, or not sure. Using an electronic stethoscope, bowel sounds of healthy volunteers (n = 177), patients with SBO (n = 19), and patients with POI (n = 15) were recorded. A total of 10 recordings randomly selected from each category were replayed through speakers, with 15 of the recordings duplicated to surgical and internal medicine clinicians (n = 41) blinded to the clinical scenario. The sensitivity, positive predictive value, and intra-rater variability were determined based on the clinician's ability to properly categorize the bowel sound recording when blinded to additional clinical information. Secondary outcomes were the clinician's perceived level of expertise in interpreting bowel sounds. The overall sensitivity for normal, SBO, and POI recordings was 32%, 22%, and 22%, respectively. The positive predictive value of normal, SBO, and POI recordings was 23%, 28%, and 44%, respectively. Intra-rater reliability of duplicated recordings was 59%, 52%, and 53% for normal, SBO, and POI, respectively. No statistically significant differences were found between the surgical and internal medicine clinicians for sensitivity, positive predictive value, or intra-rater variability. Overall, 44% of clinicians reported that they rarely listened

  2. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  3. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  4. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  5. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  6. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...

  7. Neonatal incubators: a toxic sound environment for the preterm infant?*.

    PubMed

    Marik, Paul E; Fuller, Christopher; Levitov, Alexander; Moll, Elizabeth

    2012-11-01

    the sound pressure levels in the low-frequency band of 0 to 100 Hz were reduced by 10 dB(A). The incubator fan generated tones at 200, 400, and 600 Hz that raised the sound level by approximately 2 dB(A)-3 dB(A). Opening the enclosure (with all equipment turned on) reduced the sound levels above 50 Hz by reducing the revereberance within the enclosure. The sound levels, especially at low frequencies, within a modern incubator may reach levels that are likely to be harmful to the developing newborn. Much of the noise is at low frequencies and thus difficult to reduce by conventional means. Therefore, advanced forms of noise control are needed to address this issue.

  8. The Use of Footstep Sounds as Rhythmic Auditory Stimulation for Gait Rehabilitation in Parkinson's Disease: A Randomized Controlled Trial.

    PubMed

    Murgia, Mauro; Pili, Roberta; Corona, Federica; Sors, Fabrizio; Agostini, Tiziano A; Bernardis, Paolo; Casula, Carlo; Cossu, Giovanni; Guicciardi, Marco; Pau, Massimiliano

    2018-01-01

    The use of rhythmic auditory stimulation (RAS) has been proven useful in the management of gait disturbances associated with Parkinson's disease (PD). Typically, the RAS consists of metronome or music-based sounds (artificial RAS), while ecological footstep sounds (ecological RAS) have never been used for rehabilitation programs. The aim of this study was to compare the effects of a rehabilitation program integrated either with ecological or with artificial RAS. An observer-blind, randomized controlled trial was conducted to investigate the effects of 5 weeks of supervised rehabilitation integrated with RAS. Thirty-eight individuals affected by PD were randomly assigned to one of the two conditions (ecological vs. artificial RAS); thirty-two of them (age 68.2 ± 10.5, Hoehn and Yahr 1.5-3) concluded all phases of the study. Spatio-temporal parameters of gait and clinical variables were assessed before the rehabilitation period, at its end, and after a 3-month follow-up. Thirty-two participants were analyzed. The results revealed that both groups improved in the majority of biomechanical and clinical measures, independently of the type of sound. Moreover, exploratory analyses for separate groups were conducted, revealing improvements on spatio-temporal parameters only in the ecological RAS group. Overall, our results suggest that ecological RAS is equally effective compared to artificial RAS. Future studies should further investigate the role of ecological RAS, on the basis of information revealed by our exploratory analyses. Theoretical, methodological, and practical issues concerning the implementation of ecological sounds in the rehabilitation of PD patients are discussed. www.ClinicalTrials.gov, identifier NCT03228888.

  9. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Fuller, Chris R.

    2004-05-01

    An analytical and experimental investigation of active control of sound transmission through double panel systems has been performed. The technique used was active structural acoustic control (ASAC) where the control inputs, in the form of piezoelectric actuators, were applied to the structure while the radiating pressure field was minimized. Results verify earlier experimental investigations and indicate the application of control inputs to the radiating panel of the double panel system resulted in greater transmission loss (TL) due to its direct effect on the nature of the structural-acoustic (or radiation) coupling between the radiating panel and the receiving acoustic space. Increased control performance was seen in a double panel system consisting of a stiffer radiating panel due to its lower modal density and also as a result of better impedance matching between the piezoelectric actuator and the radiating plate. In general the results validate the ASAC approach for double panel systems, demonstrating that it is possible to take advantage of double panel system passive behavior to enhance control performance, and provide design guidelines.

  10. Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis

    PubMed Central

    McDermott, Josh H.; Simoncelli, Eero P.

    2014-01-01

    Rainstorms, insect swarms, and galloping horses produce “sound textures” – the collective result of many similar acoustic events. Sound textures are distinguished by temporal homogeneity, suggesting they could be recognized with time-averaged statistics. To test this hypothesis, we processed real-world textures with an auditory model containing filters tuned for sound frequencies and their modulations, and measured statistics of the resulting decomposition. We then assessed the realism and recognizability of novel sounds synthesized to have matching statistics. Statistics of individual frequency channels, capturing spectral power and sparsity, generally failed to produce compelling synthetic textures. However, combining them with correlations between channels produced identifiable and natural-sounding textures. Synthesis quality declined if statistics were computed from biologically implausible auditory models. The results suggest that sound texture perception is mediated by relatively simple statistics of early auditory representations, presumably computed by downstream neural populations. The synthesis methodology offers a powerful tool for their further investigation. PMID:21903084

  11. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  12. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  13. 3D Sound Techniques for Sound Source Elevation in a Loudspeaker Listening Environment

    NASA Astrophysics Data System (ADS)

    Kim, Yong Guk; Jo, Sungdong; Kim, Hong Kook; Jang, Sei-Jin; Lee, Seok-Pil

    In this paper, we propose several 3D sound techniques for sound source elevation in stereo loudspeaker listening environments. The proposed method integrates a head-related transfer function (HRTF) for sound positioning and early reflection for adding reverberant circumstance. In addition, spectral notch filtering and directional band boosting techniques are also included for increasing elevation perception capability. In order to evaluate the elevation performance of the proposed method, subjective listening tests are conducted using several kinds of sound sources such as white noise, sound effects, speech, and music samples. It is shown from the tests that the degrees of perceived elevation by the proposed method are around the 17º to 21º when the stereo loudspeakers are located on the horizontal plane.

  14. Vocal Imitations of Non-Vocal Sounds

    PubMed Central

    Houix, Olivier; Voisin, Frédéric; Misdariis, Nicolas; Susini, Patrick

    2016-01-01

    Imitative behaviors are widespread in humans, in particular whenever two persons communicate and interact. Several tokens of spoken languages (onomatopoeias, ideophones, and phonesthemes) also display different degrees of iconicity between the sound of a word and what it refers to. Thus, it probably comes at no surprise that human speakers use a lot of imitative vocalizations and gestures when they communicate about sounds, as sounds are notably difficult to describe. What is more surprising is that vocal imitations of non-vocal everyday sounds (e.g. the sound of a car passing by) are in practice very effective: listeners identify sounds better with vocal imitations than with verbal descriptions, despite the fact that vocal imitations are inaccurate reproductions of a sound created by a particular mechanical system (e.g. a car driving by) through a different system (the voice apparatus). The present study investigated the semantic representations evoked by vocal imitations of sounds by experimentally quantifying how well listeners could match sounds to category labels. The experiment used three different types of sounds: recordings of easily identifiable sounds (sounds of human actions and manufactured products), human vocal imitations, and computational “auditory sketches” (created by algorithmic computations). The results show that performance with the best vocal imitations was similar to the best auditory sketches for most categories of sounds, and even to the referent sounds themselves in some cases. More detailed analyses showed that the acoustic distance between a vocal imitation and a referent sound is not sufficient to account for such performance. Analyses suggested that instead of trying to reproduce the referent sound as accurately as vocally possible, vocal imitations focus on a few important features, which depend on each particular sound category. These results offer perspectives for understanding how human listeners store and access long

  15. Hearing Living Symbols and Nonliving Icons: Category Specificities in the Cognitive Processing of Environmental Sounds

    ERIC Educational Resources Information Center

    Giordano, Bruno L.; McDonnell, John; McAdams, Stephen

    2010-01-01

    The neurocognitive processing of environmental sounds and linguistic stimuli shares common semantic resources and can lead to the activation of motor programs for the generation of the passively heard sound or speech. We investigated the extent to which the cognition of environmental sounds, like that of language, relies on symbolic mental…

  16. Performance of an Active Noise Control System for Fan Tones Using Vane Actuators

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Curtis, Alan R. D.; Heidelberg, Laurence J.; Remington, Paul J.

    2000-01-01

    An Active Noise Control (ANC) system for ducted fan noise was built that uses actuators located in stator vanes. The custom designed actuators A,ere piezoelectric benders manufactured using THUNDER technology. The ANC system was tested in the NASA Active Noise Control Fan rig. A total of 168 actuators in 28 stator vanes were used (six per vane). Simultaneous inlet and exhaust acoustic power level reductions were demonstrated for a fan modal structure that contained two radial modes in each direction. Total circumferential mode power levels were reduced by up to 9 dB in the inlet and 3 dB in the exhaust. The corresponding total 2BPF tone level reductions were by 6 dB in the inlet and 2 dB in the exhaust. Farfield sound pressure level reductions of up to 17 dB were achieved at the peak mode lobe angle. The performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. Simpler control/actuator systems using carefully selected subsets of the full system and random simulated failures of up to 7% of the actuators were investigated. (The actuators were robust and none failed during the test). Useful reductions still occurred under these conditions.

  17. Letter-sound processing deficits in children with developmental dyslexia: An ERP study.

    PubMed

    Moll, Kristina; Hasko, Sandra; Groth, Katharina; Bartling, Jürgen; Schulte-Körne, Gerd

    2016-04-01

    The time course during letter-sound processing was investigated in children with developmental dyslexia (DD) and typically developing (TD) children using electroencephalography. Thirty-eight children with DD and 25 TD children participated in a visual-auditory oddball paradigm. Event-related potentials (ERPs) elicited by standard and deviant stimuli in an early (100-190 ms) and late (560-750 ms) time window were analysed. In the early time window, ERPs elicited by the deviant stimulus were delayed and less left lateralized over fronto-temporal electrodes for children with DD compared to TD children. In the late time window, children with DD showed higher amplitudes extending more over right frontal electrodes. Longer latencies in the early time window and stronger right hemispheric activation in the late time window were associated with slower reading and naming speed. Additionally, stronger right hemispheric activation in the late time window correlated with poorer phonological awareness skills. Deficits in early stages of letter-sound processing influence later more explicit cognitive processes during letter-sound processing. Identifying the neurophysiological correlates of letter-sound processing and their relation to reading related skills provides insight into the degree of automaticity during letter-sound processing beyond behavioural measures of letter-sound-knowledge. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Technology, Sound and Popular Music.

    ERIC Educational Resources Information Center

    Jones, Steve

    The ability to record sound is power over sound. Musicians, producers, recording engineers, and the popular music audience often refer to the sound of a recording as something distinct from the music it contains. Popular music is primarily mediated via electronics, via sound, and not by means of written notes. The ability to preserve or modify…

  19. Characteristic sounds facilitate visual search.

    PubMed

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  20. Characteristic sounds facilitate visual search

    PubMed Central

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2009-01-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing “meow” did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds. PMID:18567253