Science.gov

Sample records for active source experiments

  1. Preliminary Results from the iMUSH Active Source Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Kiser, Eric; Palomeras, Imma; Zelt, Colin; Schmandt, Brandon; Hansen, Steve; Harder, Steven; Creagar, Kenneth; Vidale, John; Abers, Geoffrey

    2015-04-01

    iMUSH (imaging Magma Under Saint Helens) is a US NSF sponsored multi-disciplinary investigation of Mount Saint Helens (MSH), currently the most active volcano in the Cascades arc in the northwestern United States. The project consists of active and passive seismic experiments, extensive magnetotelluric sounding, and geological/geochemical studies involving scientists at 7 institutions in the U.S. and Europe. The long-term goal of the seismic project is to combine analysis of the active source data with that of data from the 70 element broadband seismograph operating from summer 2014 until 2016. Combining seismic and MT analyses with other data, we hope to image the MSH volcanic plumbing system from the surface to the subducting Juan de Fuca slab. Here we describe preliminary results of the iMUSH active source seismic experiment, conducted in July and August 2014. The active source experiment consisted of twenty-three 454 or 908 kg weight shots recorded by ~3500 seismographs deployed at ~6,000 locations. Of these instruments, ~900 Nodal Seismic instruments were deployed continuously for two weeks in an areal array within 10 km of the MSH summit. 2,500 PASSCAL Texan instruments were deployed twice for five days in 3 areal arrays and 2 dense orthogonal linear arrays that extended from MSH to distances > 80 km. Overall the data quality from the shots is excellent. The seismograph arrays also recorded dozens of micro-earthquakes beneath the MSH summit and along the MSH seismic zone, and numerous other local and regional earthquakes. In addition, at least one low frequency event beneath MSH was recorded during the experiment. At this point we have begun various types of analysis of the data set: We have determined an average 1D Vp structure from stacking short-term/long-term average ratios, we have determined the 2-D Vp structure from ray-trace inversions along the two orthogonal profiles (in the NW-SE and NE-SW directions), and we have made low-fold CMP stacks of the

  2. Active Source Tomography of Stromboli Volcano (Italy): Results From the 2006 Seismic Experiment.

    NASA Astrophysics Data System (ADS)

    Zuccarello, L.; Patanè, D.; Cocina, O.; Castellano, M.; Sgroi, T.; Favali, P.; de Gori, P.

    2008-12-01

    Stromboli island, located in the Southern Tyrrhenian sea, is the emerged part (about 900 m a.s.l.) of a 3km-high strato-volcano. Its persistent Strombolian activity, documented for over 2000 years, is sometimes interrupted by lava effusions or major explosions. Despite the amount of recent published geophysical studies aimed to clarifying eruption dynamics, the spatial extend and geometrical characteristics of the plumbing system remain poorly understood. In fact, the knowledge of the inner structure and the zones of magma storage is limited to the upper few hundreds meters of the volcanic edifice and P- and S-waves velocity models are available only in restricted areas. In order to obtain a more suitable internal structural and velocity models of the volcano, from 25 November to 2 December 2006, a seismic tomography experiment through active seismics using air-gun sources was carried out and the final Vp model is here presented. The data has been inverted for the Vp structure by using the code Simulps13q, considering a 3D grid of nodes spaced 0.5 km down to 2 km depth, beneath the central part of volcano. The results show a relatively high velocity zones located both in the inner part of the volcanic structure, at about 1km b.s.l. and in the last 200-300 m a.s.l. in correspondence with the volcanic conduit. Slower zones were located around the summit craters in agreement with volcanological and petrological informations for the area. The relatively high velocity zones could suggest the presence of intrusive bodies related to the plumbing system.

  3. Field Report on the iMUSH Active Source Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Levander, A.; Schmandt, B.; Palomeras, I.; Harder, S. H.; Creager, K. C.; Vidale, J. E.; Malone, S. D.

    2014-12-01

    In the second half of July we completed the iMUSH active source seismic experiment, one component of the Imaging Magma Under Saint Helens project. A team of ~75 volunteers deployed 3500 seismographs to ~5920 locations on and around Mount St. Helens over the course of 3 weeks. This instrument deployment was accompanied by 23 shots distributed around the volcano. Instrumentation consisted of ~2550 Reftek 125A (Texan) seismographs with 4.5 Hz geophones, and 920 Nodal Seismic recorders with 10 Hz geophones. The shots were also recorded by the permanent stations of the Pacific Northwest Seismograph Network and 70 iMUSH broadband seismographs. Fifteen of the shots, 424 kg each, formed two rings around Mount Saint Helens at 15 km and 30 km radius from the summit. Eight of the shots, 828 kg each, were fired at distances of 50 to 80 km from MSH on NW-SE and NE-SW azimuths. The deployment geometry consisted of two lines oriented NW/SE and NE/SW, and three arrays. The offset of the lines ranged from 150 km to 190 km with an average spacing of 200 m. The first array was centered on the volcano with a radius of 30 km, and required both driving and hiking to deploy. Arrays two and three were set out with, and centered on, the NW/SE line. These arrays had a distance range from MSH of 30-75 km and an azimuth range of about 100 degrees. In addition to this large-scale deployment, we set out 7 beamforming arrays approximately collocated with iMUSH broadband seismographs, and above clusters of seismicity in the region. The aperture of these arrays was about 1 km with an instrument spacing of 100 m. The final deployment ended only days before the AGU abstract deadline, so we have not yet examined all of the data. However, the preliminary indications are that signal to noise is excellent: The shots, several of which registered on PNSN as ML>2.1, carried across the entire array, and were recorded as far away as Seattle and Corvallis on permanent stations. The array also recorded a

  4. Active Source Seismic Experiment Peers Under Soufrière Hills Volcano

    NASA Astrophysics Data System (ADS)

    Voight, Barry; Sparks, R. S. J.; Hammond, J.; Shalev, E.; Malin, P.; Kenedi, C.; Minshull, T. A.; Paulatto, M.; Mattioli, G.; Hidayat, D.; Widiwijayanti, C.

    2010-07-01

    Characterizing internal structures of active volcanoes remains an enigmatic issue in geosciences. Yet studies of such structures can greatly improve hazard assessments, helping scientists to better monitor seismic signatures, geodetic deformation, and gas emissions, data that can be used to improve models and forecasts of future eruptions. Several passive seismic tomography experiments—which use travel times of seismic waves from natural earthquakes to image underground structures—have been conducted at active volcanoes (Hawaii's Kilauea, Washington's Mount St. Helens, Italy's Etna, and Japan's Unzen), but an inhomogeneous distribution of earthquakes compromises resolution. Further, if volcanic earthquakes are dominantly shallow at a given location, passive methods are limited to studying only shallow features. Thus, active source experiments—where seismic waves from the explosion of deliberately set charges are used to image below the surface—hold great potential to illuminate structures not readily seen through passive measures.

  5. Pacific Upper Mantle Seismic Anisotropy from the Active-Source Seismic Component of the NoMelt Experiment

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Lizarralde, D.; Gaherty, J. B.; Collins, J. A.; Hirth, G.; Evans, R. L.

    2014-12-01

    We will present a measurement of azimuthal seismic anisotropy of Pacific-plate upper mantle based on Pn travel times from the active-source seismic component of the NoMelt experiment. The NoMelt experiment was conducted in 2012 on ~70-m.y.-old lithosphere, in the center of the spreading segment between the Clarion and Clipperton fracture zones, with the goal of delineating the detailed seismic and electrical structure of "normal," mature oceanic lithosphere. The seismic component of the experiment consisted of a 600x400 km array of 27 broad-band (BB) ocean bottom seismometers (OBS); 31 short period (SP) OBS, spaced at 20 km, deployed along the long axis of the array (the main transect), oriented along a plate-kinematic flow line; and 3 SP OBS deployed along a line normal to the main transect, at 50 km spacing, extending to 200 km southeast of the center of the main transect. The SP OBS array was deployed to record airgun shots fired by the R/V M.G. Langseth's 36-element array. Airgun shots were fired along the two perpendicular lines and also along a semi-circular arc with a 75-km radius centered at the line intersection at the center of the main transect. Pn (upper mantle refraction) arrivals from shots fired along the semicircle and recorded by OBS within the semicircle's arc span 180 degrees of azimuth and an offset range of ~40-150 km. Preliminary analyses of these Pn arrival travel times indicate an azimuthal dependence of P-wave speeds, which range from ~8.6 km/s to ~7.6 km/s. These preliminary results suggest a pattern of azimuthal wave-speed dependence that requires depth-dependent seismic anisotropy and/or a dipping mantle fabric, with the latter being more likely given the limited range of source/receiver offsets spanned by the Pn arrivals used in this analysis. We will present results that include these observations as well as Pn arrivals from a much more comprehensive set of source/receiver pairs from the NoMelt experiment.

  6. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  7. SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA

    SciTech Connect

    Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz

    2005-09-30

    The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.

  8. Infrasound Generation from the Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Preston, L. A.; Schramm, K. A.; Jones, K. R.

    2015-12-01

    Understanding the acoustic and infrasound source generation mechanisms from underground explosions is of great importance for usage of this unique data type in non-proliferation activities. One of the purposes of the Source Physics Experiments (SPE), a series of underground explosive shots at the Nevada National Security Site (NNSS), is to gain an improved understanding of the generation and propagation of physical signals, such as seismic and infrasound, from the near to far field. Two of the SPE shots (SPE-1 and SPE-4') were designed to be small "Green's Function" sources with minimal spall or permanent surface deformation. We analyze infrasound data collected from these two shots at distances from ~300 m to ~1 km and frequencies up to 20 Hz. Using weather models based upon actual observations at the times of these sources, including 3-D variations in topography, temperatures, pressures, and winds, we synthesized full waveforms using Sandia's moving media acoustic propagation simulation suite. Several source mechanisms were simulated and compared and contrasted with observed waveforms using full waveform source inversion. We will discuss results of these source inversions including the relative roll of spall from these small explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  10. Characterization of the Source Physics Experiment Site

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Broome, S. T.; Townsend, M.; Abbott, R. E.; Snelson, C. M.; Cogbill, A. H.; Conklin, G.; Mitra, G.; Sabbeth, L.

    2012-12-01

    Designed to improve long-range treaty monitoring capabilities, the Source Physics Experiments, conducted at the Nevada National Security Site, also provide an opportunity to advance near-field monitoring and field-based investigations of suspected underground test locations. In particular, features associated with underground testing can be evaluated using Source Physics Experiment activities as analogs, linking on-site inspections with remote sensing technologies. Following a calibration shot (SPE 1), SPE 2 (10/2011) and SPE 3 (07/2012) were performed in the same emplacement hole with 1.0 ton of explosives at 150 ft depth. Because one of the goals of the Source Physics Experiments is to determine damage effects on seismic wave propagation and improve modeling capabilities, a key component in the predictive component and ultimate validation of the models is a full understanding of the intervening geology between the source and instrumented bore holes. Ground-based LIDAR and fracture mapping, mechanical properties determined via laboratory testing of rock core, discontinuity analysis and optical microscopy of the core rocks were performed prior to and following each experiment. In addition, gravity and magnetic data were collected between SPE 2 and 3. The source region of the explosions was also characterized using cross-borehole seismic tomography and vertical seismic profiling utilizing two sets of two boreholes within 40 meters of ground zero. The two sets of boreholes are co-linear with the explosives hole in two directions. Results of the LIDAR collects from both SPE 2 and 3 indicate a permanent ground displacement of up to several centimeters aligning along the projected surface traces of two faults observed in the core and fractures mapped at the surface. Laboratory testing and optical work show a difference in the characteristics of the rocks below and above 40 feet and within the fault zones.The estimated near-surface densities from the gravity survey show

  11. SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW

    SciTech Connect

    Galambos, John D

    2011-01-01

    The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

  12. Bell experiments with random destination sources

    SciTech Connect

    Sciarrino, Fabio; Mataloni, Paolo; Vallone, Giuseppe; Cabello, Adan

    2011-03-15

    It is generally assumed that sources randomly sending two particles to one or two different observers, random destination sources (RDSs), cannot be used for genuine quantum nonlocality tests because of the postselection loophole. We demonstrate that Bell experiments not affected by the postselection loophole may be performed with (i) an RDS and local postselection using perfect detectors, (ii) an RDS, local postselection, and fair sampling assumption with any detection efficiency, and (iii) an RDS and a threshold detection efficiency required to avoid the detection loophole. These results allow the adoption of RDS setups which are simpler and more efficient for long-distance free-space Bell tests, and extend the range of physical systems which can be used for loophole-free Bell tests.

  13. Vehicular sources in acoustic propagation experiments

    NASA Technical Reports Server (NTRS)

    Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George

    1990-01-01

    One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.

  14. A three-dimensional Vp, Vs, and Vp/Vs crustal structure in Fujian, Southeast China, from active- and passive-source experiments

    NASA Astrophysics Data System (ADS)

    Cai, Hui-Teng; Kuo-Chen, Hao; Jin, Xin; Wang, Chien-Ying; Huang, Bor-Shouh; Yen, Horng-Yuan

    2015-11-01

    Fujian, Southeastern China, has experienced multistage tectonic activities since the Neoproterozoic Era and is currently influenced by collision between the Eurasian and Philippine Sea plates. Topography, fault zones, and patterns of seismicity are the imprints of tectonic evolution. Historically, there have been several catastrophic earthquakes in the southeastern part of Fujian. To understand the crustal structure related to the fault zones, we performed Vp, Vs, and Vp/Vs travel-time tomography using joint inversion of active and passive sources. A total of 75,827 and 31,044 arrivals of P and S waves, respectively, from 33 explosions and 2543 earthquakes are used in our study. As a result, seismicity has indicated that two NE strike seismogenic zones, the Zhenghe-Dapu and Changle-Zhaoan fault zones, are currently active. Low Vp/Vs ratios in inland Fujian imply that the crust is mainly composed of felsic rocks as part of the Eurasian continental crust, which is consistent with geological observations at the surface. Based on Vp tomography, the thickness of the crust along the coastline is shallower than that on land, which is related to higher heat flow and the Bouguer anomaly. This shallow crust phenomenon near the coastline could be related to the regional extensional stress: the remaining structure of the back-arc extension that stretched the continental crust during the Mesozoic Era or/and the Cenozoic extension due to South China sea opening in Taiwan Strait.

  15. Stable voltage source for Penning trap experiments.

    PubMed

    Pinegar, David B; Blaum, Klaus; Biesiadzinski, Tomasz P; Zafonte, Steven L; Van Dyck, Robert S

    2009-06-01

    A voltage reference has been developed to bias ring electrodes of two Penning traps between -90 and 0 V. For output voltages near -90 V, the Allan deviation of the system's voltage instability is less than 1 part in 10(8) over all time scales shorter than 10(4) s. For averaging times longer than several seconds, the system's stability is determined almost completely by the noise, drift, and aging of the zener diodes in the array of voltage reference integrated circuits. For shorter averaging times, active filters built into the new system significantly reduce the intrinsic noise of the zener diodes. The system makes it possible to continuously adjust the ring voltages for frequency locking the axial motion in the two Penning traps. By keeping electrical noise highly correlated between the two traps, measurement uncertainty should be reduced for precision experiments such as Penning trap mass spectrometry.

  16. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  17. Gamma source for active interrogation

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2009-09-29

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  18. Gamma source for active interrogation

    SciTech Connect

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2012-10-02

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  19. IRIS Controlled Source Seismic Experiments: Continental Structure, Instrumentation, and Education

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Keller, G. R.

    2004-12-01

    The controlled-source seismology program of IRIS/PASSCAL has made major contributions to the study of continental structure and evolution. It has also undergone major developments in seismic instrumentation. The first PASSCAL experiments (1984/85) targeted the Basin and Range Province and the Ouachita orogenic belt. The Basin and Range study provided remarkably clear images of this thin, highly-extended crust, while the Ouachita experiment tested competing hypotheses for the deep structure of this Paleozoic orogen. However, both of these projects were limited by a lack of seismic instruments. The situation improved in the late 1980's with the benefit of a mixed array of 600 seismic recorders from the USGS, Stanford, and the Geological Survey of Canada. The resolution achieved with these instruments was revolutionary. Results include the imaging of such remarkable features as crustal-scale duplexes in the Brooks Range compressional orogen of northern Alaska, and of crustal "core complexes" in the extended crust of southwest Arizona. The 3-channel PASSCAL Jr. instrument was developed, leading to experiments in which ˜1000 instruments were deployed, including three-component recording. This complex mix of instruments served the community well for several years, but required large, complex instrument centers and lots of technical support. With input from PASSCAL and the international community, a newly designed, compact instrument (the Texan) was finalized in the spring of 1998, and the first 200 instruments was delivered to the Univ. of Texas-El Paso in late 1998. The present instrument pool of Texans exceeds 1,400 and these have been used on such projects as the high-resolution imaging of the Los Angeles and San Fernando basins (LARSE I and II experiments), where active thrust faults have been imaged. Controlled-source seismic experiments are now very numerous. During calendar year 2004 alone, portable Texan instruments have traveled from Venezuela to Denmark

  20. Romanian Experience in The Conditioning of Radium Sources

    SciTech Connect

    Dogaru, Gh.; Dragolici, F.; Rotarescu, Gh.; Nicu, M.

    2008-07-01

    Ra{sup 226} first radionuclide separated from pitchblende in 1898 by Pierre and Marie Curie was successfully used in medicine, industry as in other fields being the only one available radionuclide till 1940 when were produced other radionuclides in accelerators. On long term the use of Ra{sup 226} sealed sources are not any more safe due to: the high specific activity, long half live, decays in Rn{sup 226} gas which increases the internal pressure of capsule leading in time to the leakage, the salts as raw materials from which the sealed sources are manufactured are soluble, there is a leak of information and records on the manufacture and operation. Based on this consideration in Romania regulatory authority did not authorized any more the use of these sealed sources [1]. The paper presents some aspects from Romanian experience related to the collection and conditioning of radium sealed sources. Data relating the radium inventory as well as the arrangements made in order to create a workshop for the conditioning of radium sources are presented. (authors)

  1. Operating experience with the LBL ECR source

    SciTech Connect

    Lyneis, C.M.

    1987-12-01

    The overall performance of the LBL ECR source in providing beam for the 88-Inch Cyclotron has been excellent. However, during the past two years there have been some fluctuations in the peak performance, particularly for the highest charge states. Among the factors which influence the peak performance are coatings from solid feeds or gases such as SiH/sub 4/ or CO/sub 2/, changes in first stage output, and variation in outgassing rates on the wall. Modifications made to the source have also affected its performance. In the plasma chamber the screens between the sextupole bars were removed to lower its Q/sub 0/. When the 9.2 GHz klystron used to power the first stage failed, it was replaced by a 10.3 GHz klystron. Tests were also made using 6.4 GHz to drive both first and second stages. The source performance in these various configuration will be reviewed.

  2. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  3. Source physics experiments at the Nevada Test Site.

    SciTech Connect

    Lee, Ping; Snelson, Catherine; Abbott, Robert; Coblentz, David D.; Corbell, Robert; Bowyer, Theodore W.; Sussman, Aviva J.; Carrigan, Charles R.; Bradley, Christopher R.; Patton, Howard J.; Seifert, Carolyn E.; Sweeney, Jerry J.; Brunish, Wendee M.; Hawkins, Ward L.; Antoun,Tarabay H.; Wohletz, Kenneth H.; Zucca, John Jay

    2010-10-01

    The U. S. capability to monitor foreign underground nuclear test activities relies heavily on measurement of explosion phenomena, including characteristic seismic, infrasound, radionuclide, and acoustic signals. Despite recent advances in each of these fields, empirical, rather than physics-based, approaches are used to predict and explain observations. Seismologists rely on prior knowledge of the variations of teleseismic and regional seismic parameters such as p- and s-wave arrivals from simple one-dimensional models for the teleseismic case to somewhat more complicated enhanced two-dimensional models for the regional case. Likewise, radionuclide experts rely on empirical results from a handful of limited experiments to determine the radiological source terms present at the surface after an underground test. To make the next step in the advancement of the science of monitoring we need to transform these fields to enable predictive, physics-based modeling and analysis. The Nevada Test Site Source Physics Experiments (N-SPE) provide a unique opportunity to gather precise data from well-designed experiments to improve physics-based modeling capability. In the seismic experiments, data collection will include time domain reflectometry to measure explosive performance and yield, free-field accelerometers, extensive seismic arrays, and infrasound and acoustic measurements. The improved modeling capability that we will develop using this data should enable important advances in our ability to monitor worldwide for nuclear testing. The first of a series of source physics experiments will be conducted in the granite of Climax Stock at the NTS, near the locations of the HARD HAT and PILE DRIVER nuclear tests. This site not only provides a fairly homogeneous and well-documented geology, but also an opportunity to improve our understanding of how fractures, joints, and faults affect seismic wave generation and propagation. The Climax Stock experiments will consist of a 220

  4. Experiments with radioactive samples at the Advanced Photon Source.

    SciTech Connect

    Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

    2000-11-01

    The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

  5. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  6. First experiments with the negative ion source NIO1.

    PubMed

    Cavenago, M; Serianni, G; De Muri, M; Agostinetti, P; Antoni, V; Baltador, C; Barbisan, M; Baseggio, L; Bigi, M; Cervaro, V; Degli Agostini, F; Fagotti, E; Kulevoy, T; Ippolito, N; Laterza, B; Minarello, A; Maniero, M; Pasqualotto, R; Petrenko, S; Poggi, M; Ravarotto, D; Recchia, M; Sartori, E; Sattin, M; Sonato, P; Taccogna, F; Variale, V; Veltri, P; Zaniol, B; Zanotto, L; Zucchetti, S

    2016-02-01

    Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW). PMID:26932048

  7. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  8. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  9. Neutron calibration sources in the Daya Bay experiment

    DOE PAGES

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  10. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  11. Review of auditory subliminal psychodynamic activation experiments.

    PubMed

    Fudin, R; Benjamin, C

    1991-12-01

    Subliminal psychodynamic activation experiments using auditory stimuli have yielded only a modicum of support for the contention that such activation produces predictable behavioral changes. Problems in many auditory subliminal psychodynamic activation experiments indicate that those predictions have not been tested adequately. The auditory mode of presentation, however, has several methodological advantages over the visual one, the method used in the vast majority of subliminal psychodynamic activation experiments. Consequently, it should be considered in subsequent research in this area. PMID:1805167

  12. The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2004-01-01

    The hard X-ray sky was continuously monitored with the BATSE experiment on the Compton Gamma Ray observatory using the Earth Occultation method. Known sources were monitored twice every orbit and transients could be detected at about the approx. 50 mCrab level on a daily basis. I will summarize the results from our catalog of 179 monitored sources, highlighting observations of black holes and energy spectra for the 83 firmly detected sources and FITS files for all 179 sources. This web database can serve as a guide and comparison tool for future observations with EXIST.

  13. Active VLF wave injection experiments with DEMETER

    NASA Astrophysics Data System (ADS)

    Inan, U.

    The comprehensive suite of electromagnetic wave receivers as well as the highly sensitive energetic electron detector on DEMETER provide outstanding opportunities for a range of ELF VLF wave-injection experiments These experiments are aimed at understanding physical mechanisms of wave-growth amplification and emission triggering and the loss of energetic radiation belt particles by injected coherent signals of known characteristics One class of experiments involves the use of the High-frequency Active Auroral Research Program HAARP HF ionospheric heating facility located in Gakona Alaska which is used to inject signals in the frequency range of few tens of Hz to few kHz for detection on DEMETER during its overpasses of either HAARP or its geomagnetically conjugate region HAARP is the only controlled signal source which can inject signals in the frequency range below 1 2 kHz so that all six components of the injected signals can be simultaneously measured A second class of experiments is carried out with the 21 4 kHz NPM transmitter facility in Hawaii which operates at a radiated power of 464 kW injecting signals of intensity in the several tens of pT in situ over the range of L-shells of 1 5 to 2 0 Using specialized ON OFF patterns to modulate the amplitude of the injected signals the NPM-induced precipitation is detected with the DEMETER IDP instrument both in terms of its temporal and energy spectral signatures Several examples of direct observations of NPM-induced precipitation has been observed so far with the

  14. Environmental Pollution, Student's Book (Experiences/Experiments/Activities).

    ERIC Educational Resources Information Center

    Weaver, Elbert C.

    Described in this student's manual are numerous experiments to acquaint the learner with community environmental problems. Experiments are relatively simple and useful in the junior high school grades. Activities are provided which emphasize some of the materials involved in pollution problems, such as carbon dioxide, sulfur compounds, and others,…

  15. Methodology for a bounding estimate of activation source-term.

    PubMed

    Culp, Todd

    2013-02-01

    Sandia National Laboratories' Z-Machine is the world's most powerful electrical device, and experiments have been conducted that make it the world's most powerful radiation source. Because Z-Machine is used for research, an assortment of materials can be placed into the machine; these materials can be subjected to a range of nuclear reactions, producing an assortment of activation products. A methodology was developed to provide a systematic approach to evaluate different materials to be introduced into the machine as wire arrays. This methodology is based on experiment specific characteristics, physical characteristics of specific radionuclides, and experience with Z-Machine. This provides a starting point for bounding calculations of radionuclide source-term that can be used for work planning, development of work controls, and evaluating materials for introduction into the machine.

  16. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided

  17. The "Radar-Progress" active space experiment

    NASA Astrophysics Data System (ADS)

    Khakhinov, Vitaly; Mikhalev, Alexander; Potekhin, Alexander; Alsatkin, Sergey; Podlesnyi, Alexey; Beletsky, Alexandr; Klunko, Evgeny; Tverdokhlebova, Ekaterina; Timofeeva, Nataliya; Lebedev, Valentin; Kushnarev, Dmitrii; Kurshakov, Mikhail; Manzheley, Andrey

    Central Research Institute of Machine Building and Institute of Solar-Terrestrial Physics Siberian Branch of Russian Academy of Sciences have carried out the "Radar-Progress" active space experiment since 2006. After main mission, some of the “Progress” cargo vehicles have been for the experiment. The “Progress” starts orbital maneuvering subsystem engines during the flyby over Irkutsk Incoherent Scatter Radar at 340 - 410 km altitude. Engines operate for 5 - 11 s. Engines exhaust products are a source of ionosphere disturbances. The flow directions and amount of injected exhaust products varied from flight to flight. The flows directed to Irkutsk Radar are almost parallel to the geomagnetic field lines. The following measurements have been performed: - radar characteristics; - height profiles of electron density; - spatial-temporal structure of ionosphere disturbances; - intensity of nightglow emissions in several spectral lines; - onboard VHF transmitter signal parameters; - brightness of the “Progress” in optical ranges; - geomagnetic field variations. These results were obtained with unique research facilities of Center for collective using "Angara". The study has been supported by the grant 13-05-00456-a and 13-02-00957-a of the Russian Foundation for Basic Research.

  18. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  19. Experience of disused source management in Latin America

    SciTech Connect

    Pimenta Mourao, R.

    2008-07-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (Center for the Development of Nuclear Technology) - CDTN - has been actively engaged in cooperation programs for disused source management throughout the Latin American and the Caribbean region since 1996. The CDTN source conditioning team participated in the preparation of the technical procedures established for the different tasks involved in the radium sources conditioning operations, like preparation of the packaging for conditioning; sources conditioning; capsule welding; leak test in radium-containing capsule; and radiation protection planning for the conditioning of disused radium sources. The team also carried out twelve radium sources conditioning operation in the region, besides in-house operations, which resulted in a total conditioned activity of approximately 525 GBq, or 14,200 mg of radium. Additionally, one operation was carried out in Nicaragua to safely condition three Cobalt teletherapy heads stored under very precarious conditions in the premises of an old hospital. More recently, the team started its participation in an IAEA- and US State Department-sponsored program for the repatriation of disused or excess transuranic sources presently stored at users' premises or under regulatory control in different countries in the region. In September 2007 the team attended a theoretical and practical training in transuranic sources management, including the participation in the conditioning of different neutron sources in certified packages. It is expected that the trained team will carry out similar operations in other Latin American countries. Finally, the team is expected be involved in the near future in the repatriation of US-origin teletherapy heads and industrial gauges. (authors)

  20. Ion source issues for the DAEδALUS neutrino experiment

    SciTech Connect

    Alonso, Jose R. Barletta, William A.; Toups, Matthew H.; Conrad, Janet; Liu, Y.; Bannister, Mark E.; Havener, C. C.; Vane, Randy

    2014-02-15

    The DAEδALUS experiment calls for 10 mA of protons at 800 MeV on a neutrino-producing target. To achieve this record-setting current from a cyclotron system, H{sub 2}{sup +} ions will be accelerated. Loosely bound vibrationally excited H{sub 2}{sup +} ions inevitably produced in conventional ion sources will be Lorentz stripped at the highest energies. Presence of these states was confirmed at the Oak Ridge National Laboratory and strategies were investigated to quench them, leading to a proposed R and D effort towards a suitable ion source for these high-power cyclotrons.

  1. An experiment on the color rendering of different light sources

    NASA Astrophysics Data System (ADS)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  2. Target Operational Experience at the Spallation Neutron Source

    SciTech Connect

    Riemer, Bernie; Janney, Jim G; Kaminskas, Saulius; McClintock, David A; Rosenblad, Peter M

    2013-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) has operated at unprecedented power levels for a short-pulse spallation source. Target operations have been successful but not without difficulties. Three targets out of the eight used to date have ended life unexpectedly causing interruptions to the neutron science users. The first of a kind mercury target design experiences beam-pulse induced cavitation damage that is suspected in one of the target leaks. The two other targets suffered early failures due to defective welds. Diagnosing the causes of target leaks and understanding of the progression of cavitation erosion and radiation damage effects has made use of post-irradiation examination (PIE) capabilities. As a result of PIE, review of quality assurance practices and related investigations, design changes are being implemented and manufacturing oversight improved. This paper describes SNS target operating experience, including the more important observations and lessons learned.

  3. Angular response calibration of the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1988-01-01

    The Gamma Ray Observatory includes four experiments designed to observe the gamma-ray universe. Laboratory measurements to test the response the Burst and Transient Source Experiment (BATSE) modules to gamma-ray sources that are non-axial were recently completed. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in Earth orbit. The launch is planned for March, 1900. Preliminary analyses of these test data show the presence of a radial dependence to the detector's light collection efficiency. It is proposed to evaluate the importance of this radial response, analyze future experimental data to derive the actual functional dependence on radius, and calculate the net effect on the output spectrum as a function of the angle of incidence.

  4. Explosive Vessel for Dynamic Experiments at Advanced Light Sources

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sorensen, Christian; Armstrong, Christopher; Sanchez, Nathaniel; Jensen, Brian

    2015-06-01

    There has been significant effort in coupling dynamic loading platforms to advanced light sources such as the Advanced Photon Source (APS) to take advantage of X-ray diagnostics for examining material physics at extremes. Although the focus of these efforts has been on using gun systems for dynamic compression experiments, there are many experiments that require explosive loading capabilities including studies related to detonator dynamics, small angle X-ray scattering on explosives, and ejecta formation, for example. To this end, an explosive vessel and positioning stage was designed specifically for use at a synchrotron with requirements to confine up to 15 grams of explosives, couple the vessel to the X-ray beam line, and reliably position samples in the X-ray beam remotely with micrometer spatial accuracy. In this work, a description of the system will be provided along with explosive testing results for the robust, reusable positioning system.

  5. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  6. Active source electromagnetic methods for marine munitions

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory; Shubiditze, Fridon; Miller, Jonathan; Evans, Rob

    2011-06-01

    The detection of munitions targets obscured in coastal and marine settings has motivated the need for advanced geophysical technologies suited for underwater deployment. Building on conventional marine electromagnetic theory and based on the use of existing electric and magnetic field sensing designs, we analyze the electromagnetic fields emitted from excited targets in the frequency range between 1 kHz and 1 MHz. We present evidence that employing electromagnetic modes that are higher in frequency relative to those typically used in ground-based sensing yields greater range and sensitivity for underwater surveys. We develop potential design strategies for implementing both magnetic (B) and electric (E) field sources and sensors in the marine environment, and determine optimal arrangements for a potential combined E- and B-field sensing system. The implementation of both 1D analytical and 3D numerical simulations yields the primary and secondary field distributions in representative underwater settings for various sourcereceiver arrangements. We study the electromagnetic field distributions from both electric (voltage-fed dipole) and magnetic field (encased and submerged induction coil) active sources. Application of these concepts provide unique and useful information about targets from the addition of electric field sensing alone as well as through the combination of electric and magnetic field sensing.

  7. Management of Spent and Disused Radiation Sources - The Zambian Experience

    SciTech Connect

    Chabala, F.

    2002-02-26

    Zambia like all other countries in the world is faced with environmental problems brought about by a variety of human activities. In Zambia the major environmental issues as identified by Nation Environmental Action Plan (NEAP) of 1994 are water pollution, poor sanitation, land degradation, air pollution, poor waste management, misuse of chemicals, wildlife depletion and deforestation. Zambian has been using a lot of radioactive materials in its various industries. The country has taken several projects with help of external partners. These partners however left these projects in the hands of the Zambians without developing their capacities to manage these radioactive sources. The Government recognized the need to manage these sources and passed legislation governing the management of radioactive materials. The first act of Parliament on Radiation Protection work was passed in 1975 to legislate the use of ionizing radiation. However, because of financial constraints the Country is facing, these regulations have remained unimplemented. Fortunately the international Community has been working in partnership with the Zambian Government in the Management of Radioactive Material. Therefore this paper will present the following aspects of radioactive waste management in Zambia: review Existing Legislation in Zambia regarding management of spent/radioactive sources; capacity building in the field of management of radioactive waste; management of spent and disused radiation sources; existing disposal systems in Zambia regarding spent/orphaned sources; existing stocks of radioactive sources in the Zambian industries.

  8. Metabolic Activity - Skylab Experiment M171

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.

  9. The Burst and Transient Source Experiment Earth Occultation Technique

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Wilson, C. A.; Paciesas, W. S.; Zhang, S. N.; Finger, M. H.; Koshut, T. M.; McCollough, M. L.; Robinson, C. R.; Rubin, B. C.

    2002-01-01

    An Earth orbiting detector sensitive to gamma-ray photons will see step-like occultation features in its count rate when a gamma-ray point source crosses the Earth's limb. This is due to the change in atmospheric attenuation of the gamma rays along the line of sight. In an uncollimated detector, these occultation features can be used to locate and monitor astrophysical sources provided their signals can be individually separated from the detector background. We show that the Earth occultation technique applied to the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) is a viable and flexible all-sky monitor in the low-energy gamma-ray and hard X-ray energy range (20 keV-1 MeV). The method is an alternative to more sophisticated photon imaging devices for astronomy and can serve well as a cost-effective science capability for monitoring the high energy sky. Here we describe the Earth occultation technique for locating new sources and for measuring source intensity and spectra without the use of complex background models. Examples of transform imaging, step searches, spectra, and light curves are presented. Systematic uncertainties due to source confusion, detector response, and contamination from rapid background fluctuations are discussed and analyzed for their effect on intensity measurements. A sky location-dependent average systematic error is derived as a function of Galactic coordinates. The sensitivity of the technique is derived as a function of incident photon energy and also as a function of angle between the source and the normal to the detector entrance window. Occultations of the Crab Nebula by the Moon are used to calibrate Earth occultation flux measurements independent of possible atmospheric scattering effects.

  10. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  11. Patient experience of source isolation: lessons for clinical practice.

    PubMed

    Barratt, Ruth Linda; Shaban, Ramon; Moyle, Wendy

    2011-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is now the leading antimicrobial-resistant organism of concern to clinicians worldwide. Preventing and controlling the increase and spread of MRSA within the health-care environment is therefore an important function of the infection control team. The prevention and control of MRSA requires strict use of both Standard and Additional Precautions, which include good hand hygiene practices, judicious antimicrobial prescribing, and source isolation. While few would dispute the need for these precautions for preventing the spread of MRSA and other infections, their use may result in adverse physical and psychological effects for the patient. In an age of quality and safety of health care, ensuring infection control practice such as source isolation and contact precautions adhere to fundamental human rights is paramount. This paper presents a review of the literature on the patient experience of source isolation for MRSA or other infectious diseases. The review yielded five major interconnected themes: (1) psychological effects of isolation; (2) coping with isolation; (3) social isolation; (4) communication and information provision; and (5) physical environment and quality of care. It found that the experience of isolation by patients has both negative and positive elements. Isolation may result in detrimental psychological effects including anxiety, stress and depression, but may also result in the patient receiving less or substandard care. However, patients may also benefit from the quietness and privacy of single rooms. Nurses and other healthcare workers must look for ways to improve the experience of isolation and contact precautions of patients in source isolation. Opportunities exist in particular in improving the environment and the patient's self-control of the situation and in providing adequate information.

  12. The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson, C. A.; Fishman, G. J.; Connaughton, V.; Henze, W.; Paciesas, W. S.; Finger, M. H.; McCollough, M. L.; Sahi, M.; Peterson, B.

    2004-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (approx. 20-1000 keV) between 1991 April and 2000 May (9.1 yr). BATSE monitored the high-energy sky using the Earth occultation technique (EOT) for point sources whose emission extended for times on the order of the CGRO orbital period (approx. 92 min) or greater. Using the EOT to extract flux information, a catalog of sources using data from the BATSE Large Area Detectors has been prepared. The first part of the catalog consists of results from the all-sky monitoring of 58 sources, mostly Galactic, with intrinsic variability on timescales of hours to years. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) have been placed on the World Wide Web. We then performed a deep sampling of these 58 objects, plus a selection of 121 more objects, combining data from the entire 9.1 yr BATSE data set. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The sample represents a compilation of sources monitored and/or discovered with BATSE and other high-energy instruments between 1991 and 2000, known sources taken from the HEAO 1 A-4 and Macomb & Gehrels catalogs. The deep sample results include definite detections of 83 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies, and Supernova remnants. The average fluxes measured for the fourth class, the X-ray emitting stars, were below the confidence limit for definite detection.

  13. Advanced light source. Activity report 1995

    SciTech Connect

    1996-07-01

    The ALS Activity Report is designed to share the breadth, variety, and interest of the scientific program and ongoing R&D efforts in a form that is accessible to a broad audience. Recent research results are presented in six sections, each representing an important theme in ALS science. These results are designed to demonstrate the capabilities of the ALS, rather than to give a comprehensive review of 1995 experiments. Although the scientific program and facilities report are separate sections, in practice the achievements and accomplishments of users and ALS staff are interdependent. This user-staff collaboration is essential to help us direct our efforts toward meeting the needs of the user community, and to ensure the continued success of the ALS as a premier facility.

  14. Meter scale plasma source for plasma wakefield experiments

    SciTech Connect

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  15. First experiments with gasdynamic ion source in CW mode.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Vodopyanov, A; Tarvainen, O

    2016-02-01

    A new type of ECR ion source-a gasdynamic ECR ion source-has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600-700 emA/cm(2) in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation. PMID:26931933

  16. Development of the Burst and Transient Source Experiment (BATSE)

    NASA Technical Reports Server (NTRS)

    Horack, J. M.

    1991-01-01

    The Burst and Transient Source Experiment (BATSE), one of four instruments on the Gamma Ray Observatory, consists of eight identical detector modules mounted on the corners of the spacecraft. Developed at MSFC, BATSE is the most sensitive gamma ray burst detector flown to date. Details of the assembly and test phase of the flight hardware development are presented. Results and descriptions of calibrations performed at MSFC, TRW, and KSC are documented extensively. With the presentation of each calibration results, the reader is provided with the means to access raw calibration data for further review or analysis.

  17. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  18. Postanalysis of the CNPS (Compact Nuclear Power Source) critical experiment

    SciTech Connect

    Palmer, R.G.

    1988-01-01

    The Compact Nuclear Power Source (CNPS) was designed to produce electric power for remote sites where fuel logistics and costs would justify a remotely sited nuclear power plant. Since the reactor was of novel design with no appropriate benchmarks, a series of critical experiments was carried out at LANL. This paper describes the methodology and reports the results of the postanalysis that was performed on the critical experiments, which included several distinct critical configurations, the measurement of the isothermal temperature coefficient of reactivity and various material worths. Comparisons with measurements indicate that current methods and cross sections are adequate for calculating at least the beginning of life conditions in low enriched /sup 235/U-graphite cores. 7 refs., 4 figs., 4 tabs.

  19. A portable active interrogation system using a switchable AmBe neutron source

    NASA Astrophysics Data System (ADS)

    Allen, Matthew; Hertz, Kristin; Kunz, Christopher; Mascarenhas, Nicholas

    2005-09-01

    Active neutron interrogation is an effective technique used to locate fissionable material. This paper discusses a portable system that utilizes a AmBe neutron source. The AmBe source consists of an americium alpha source and a beryllium target that can be switched into alignment to turn the source on and out of alignment to turn the source off. This offers a battery operated backpack portable source. The detector system that has been fabricated for use with this source is a fifteen tube 3He neutron detector. The results of initial experiments with the detector and MCNP calculations are discussed.

  20. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  1. Radial response of the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1989-01-01

    The Gamma Ray Observatory (GRO) includes four experiments designed for observe the gamma-ray universe, one of which is the Burst And Transient Source Experiment (BATSE). During the first summer with the BATSE team in 1988, laboratory measurements were completed which test the response of the BATSE modules to gamma-ray sources that are non-axial. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in earth orbit. Subsequent analysis of the data revealed a shift in the centroids of the full-energy photopeaks for angles of incidence between about 70 and 110 degrees. This effect was diagnosed as being due to a radial dependence of the light collecting efficiency of the large-area detector (LAD). Energy-depositing events that occur near the perimeter of the 10-inch radius NaI disc are not as efficiently collected as those events that occur near the disc's center. This radial response is analyzed and in so doing the non-Gaussian shape of the photopeaks seen in the spectra taken at all angles is explained.

  2. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  3. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  4. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  5. HTGR nuclear heat source component design and experience

    SciTech Connect

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included.

  6. Attributing Sources of Variability in Regional Climate Model Experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, C. G.; Sain, S. R.

    2008-12-01

    Variability in regional climate model (RCM) projections may be due to a number of factors, including the choice of RCM itself, the boundary conditions provided by a driving general circulation model (GCM), and the choice of emission scenario. We describe a new statistical methodology, Gaussian Process ANOVA, which allows us to decompose these sources of variability while also taking account of correlations in the output across space. Our hierarchical Bayesian framework easily allows joint inference about high probability envelopes for the functions, as well as decompositions of total variance that vary over the domain of the functions. These may be used to create maps illustrating the magnitude of each source of variability across the domain of the regional model. We use this method to analyze temperature and precipitation data from the Prudence Project, an RCM intercomparison project in which RCMs were crossed with GCM forcings and scenarios in a designed experiment. This work was funded by the North American Regional Climate Change Assessment Program (NARCCAP).

  7. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  8. Collaborative experiments of small autonomous systems at the SOURCE ATO capstone experiment

    NASA Astrophysics Data System (ADS)

    Gregory, Jason; Baran, David; Rogers, John; Fink, Jonathan; Delmerico, Jeffrey

    2013-05-01

    Autonomous systems operating in militarily-relevant environments are valuable assets due to the increased situational awareness they provide to the Warfighter. To further advance the current state of these systems, a collaborative experiment was conducted as part of the Safe Operations of Unmanned Systems for Reconnaissance in Complex Environments (SOURCE) Army Technology Objective (ATO). We present the findings from this large-scale experiment which spanned several research areas, including 3D mapping and exploration, communications maintenance, and visual intelligence. For 3D mapping and exploration, we evaluated loop closure using Iterative Closest Point (ICP). To improve current communications systems, the limitations of an existing mesh network were analyzed. Also, camera data from a Microsoft Kinect was used to test autonomous stairway detection and modeling algorithms. This paper will detail the experiment procedure and the preliminary results for each of these tests.

  9. Preliminary results of the Source China Sea passive source OBS array experiment

    NASA Astrophysics Data System (ADS)

    Yang, T.; Liu, C.; Pei, Y.; Xia, S.

    2013-12-01

    The Scarborough, or Huangyan, Seamount chain in South China Sea (SCS) represents an extreme case of the global mid-ocean ridge system where the magmatism continues for many million years after the cessation of spreading. To understand this unique process, the South China Sea Deep (SCSD) program funded an experiment deploying a passive source OBS array to image the lithospheric structure beneath the extinct ridge. In April 2012, 18 passive source OBSs, including 15 Guralp CMG-40T OBS and 3 I-4C OBS, were deployed around the Huangyan Island for one year. 11 OBSs were successfully recovered this April, and their data are being processed. Here we present some preliminary results from analyses of this dataset, including the general quality of three-component seismograms, characteristics of seafloor ambient noise spectra, determining the OBS orientation from the Rayleigh wave polarization, and the dispersion analysis of Rayleigh waves. We found that, for most stations, seismograms from teleseismic, regional and local events are generally good with the horizontal records being comparable with vertical component. The noise levels in these seafloor stations are much higher than land-based stations, especially in shorter periods, likely suggesting the direct and stronger impact from the tempestuous SCS. Applications of more sophisticated seismic techniques such as surface wave tomography, seismic anisotropy, receiver function and ambient noise cross-correlation are underway. In addition to the low recovery rate, there are other lessons learned from this experiment. For example, at least two stations have detectable timing problems; Airgun shots should have been used to constrain the timings and orientations in both deployment and recovery. It is still challenging and costly to carry out long-term passive source seismic observations in deep sea.

  10. Active plasma source formation in the MAP diode

    SciTech Connect

    Lamppa, K.P.; Stinnett, R.W.; Renk, T.J.

    1995-07-01

    The Ion Beam Surface Treatment (IBEST) program is exploring using ion beams to treat the surface of a wide variety of materials. These experiments have shown that improved corrosion resistance, surface hardening, grain size modification, polishing and surface cleaning can all be achieved using a pulsed 0.4-0.8 MeV ion beam delivering 1-10 J/cm{sup 2}. The Magnetically-confined Anode Plasma (MAP) diode, developed at Cornell University, produces an active plasma which can be used to treat the surfaces of materials. The diode consists of a fast puff valve as the source of gas to produce the desired ions and two capacitively driven B-fields. A slow magnetic field is used for electron insulation and a fast field is used to both ionize the puffed gas and to position the plasma in the proper spatial location in the anode prior to the accelerator pulse. The relative timing between subsystems is an important factor in the effective production of the active plasma source for the MAP diode system. The MAP diode has been characterized using a Langmuir probe to measure plasma arrival times at the anode annulus for hydrogen gas. This data was then used to determine the optimum operating point for the MAP diode on RHEPP-1 accelerator shots. Operation of the MAP diode system to produce an ion beam of 500 kV, 12 kA with 40% efficiency (measured at the diode) has been demonstrated.

  11. The Thermal Ion Dynamics Experiment and Plasma Source Instrument

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.; McComas, D. J.; Nordholdt, J. E.; Thomsen, M. F.; Berthelier, J. J.; Robson, R.

    1995-01-01

    The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.

  12. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  13. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  14. The Enlightenment Revisited: Sources & Interpretations. Learning Activities.

    ERIC Educational Resources Information Center

    Donato, Clorinda; And Others

    This resource book provides 26 learning activities with background materials for teaching about the Enlightenment. Topics include: (1) "What Was the Enlightenment?"; (2) "An Introduction to the Philosophes"; (3) "Was the Enlightenment a Revolt Against Rationalism?"; (4) "Were the Philosophes Democrats? A Comparison of the 'Enlightened' Ideas of…

  15. The central power source in active galaxies

    NASA Astrophysics Data System (ADS)

    Ptak, Roger; Stoner, Ronald

    Potential sources for the central power in AGN are examined. The continuum, emission line profiles, and time variability and broad emission line region for AGN are analyzed. The supermassive black hole hypothesis, the supermassive magnetized core model of Kundt (1978), and the model of Stoner and Ptak (1984) in which the supermassive stars maintain a kind of long-term quasi-stability, but accretion is balanced by mass loss and spherical bursts rather than in jets are considered. It is argued that the hypothesis that the supermassive blackholes are the central engines for AGN is based on theoretical principles; however, AGN emission line profiles and variability suggest a spherical geometry for the observed components of these engines. Also the supermassive black hole models do not account for all the AGN observations.

  16. Active array design for FAME: Freeform Active Mirror Experiment

    NASA Astrophysics Data System (ADS)

    Jaskó, Attila; Aitink-Kroes, Gabby; Agócs, Tibor; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Bányai, Evelin

    2014-07-01

    In this paper a status report is given on the development of the FAME (Freeform Active Mirror Experiment) active array. Further information regarding this project can be found in the paper by Venema et al. (this conference). Freeform optics provide the opportunity to drastically reduce the complexity of the future optical instruments. In order to produce these non-axisymmetric freeform optics with up to 1 mm deviation from the best fit sphere, it is necessary to come up with new design and manufacturing methods. The way we would like to create novel freeform optics is by fine tuning a preformed high surface-quality thin mirror using an array which is actively controlled by actuators. In the following we introduce the tools deployed to create and assess the individual designs. The result is an active array having optimal number and lay-out of actuators.

  17. A deep towed explosive source for seismic experiments on the ocean floor

    NASA Astrophysics Data System (ADS)

    Koelsch, Donald E.; Witzell, Warren E.; Broda, James E.; Wooding, Frank B.; Purdy, G. M.

    1986-12-01

    A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68″ coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m-1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000 4000 m.

  18. A 220Rn source for the calibration of low-background experiments

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Brown, A.; Brown, E.; Cervantes, M.; Macmullin, S.; Masson, D.; Schreiner, J.; Simgen, H.

    2016-04-01

    We characterize two 40 kBq sources of electrodeposited 228Th for use in low-background experiments. The sources efficiently emanate 220Rn, a noble gas that can diffuse in a detector volume. 220Rn and its daughter isotopes produce α-, β-, and γ-radiation, which may used to calibrate a variety of detector responses and features, before decaying completely in only a few days. We perform various tests to place limits on the release of other long-lived isotopes. In particular, we find an emanation of < 0.008 atoms/min/kBq (90% CL) for 228Th and (1.53 ± 0.04) atoms/min/kBq for 224Ra. The sources lend themselves in particular to the calibration of detectors employing liquid noble elements such as argon and xenon. With the source mounted in a noble gas system, we demonstrate that filters are highly efficient in reducing the activity of these longer-lived isotopes further. We thus confirm the suitability of these sources even for use in next-generation experiments, such as XENON1T/XENONnT, LZ, and nEXO.

  19. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  20. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation.

    PubMed

    White, David J; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID

  1. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    PubMed Central

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID

  2. Sources of Stress, Coping Strategies, Emotional Experience: Effects of the Level of Experience in Primary School Teachers in France

    ERIC Educational Resources Information Center

    Carton, Annie; Fruchart, Eric

    2014-01-01

    This study attempted to determine whether the level of experience affected sources of stress, coping responses and emotional experience in primary school teachers. The first aim was to identify sources of stress and to evaluate coping strategies using the questionnaire of Graziani et al. ("Journal de Thérapie Comportementale et…

  3. STACEE Observations of Active Galactic Nuclei and Other Sources

    NASA Astrophysics Data System (ADS)

    Ong, R. A.; Boone, L. M.; Bramel, D.; Chae, E.; Covault, C. E.; Fortin, P.; Gingrich, D.; Hanna, D. S.; Hinton, J. A.; Meuller, C.; Mukherjee, R.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Theoret, C. G.; Williams, D. A.

    2001-08-01

    We describe recent observations and future plans for the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) located at Sandia National Laboratories in Albuquerque, New Mexico. STACEE is a ground-based experiment for detecting atmospheric Cherenkov light from γrays in the energy range 50 to 500 GeV. We describe recent observations of active galactic nuclei such as Mrk 501, and also outline plans for the observations of other AGN, including Flat Spectrum Radio Quasars (FSRQs) detected by EGRET above 1 GeV and other BL-Lac objects. We summarize plans for observing other sources, including the Crab Nebula, other pulsars, supernova remnants, and unidentified EGRET objects. The up-to-date results from recent source observations by STACEE will be presented at the conference. 1 Intergalactic absorption and the γ-ray horizon The energy range from 50 to 250 GeV is important for understanding many high energy astrophysical objects, especially active galactic nuclei. Great progress has been made during the last decade, but many problems remain. For example, while dozens of AGN at a variety of redshifts were detected by EGRET, only a few of the closest AGN have been detected by ground-based experiments above 250 GeV. These results imply that the power-law spectra of many AGN cut off at energies between 20 and 250 GeV, and the fact that only nearby AGN are seen at very high energies argues that the γrays are attenuated on their long journey to Earth. High energy γ-rays interact with photons at infrared/optical/UV energies via the pair-production process (Stecker and de Jager, 1993; Biller, 1995). The level of such extragalactic background light (EBL) from galaxies is not well known, but measurements of absorption features of AGN should provide constraints on its flux and spectral shape. These constraints in turn could give us valuable information about the epoch of galaxy formation and the composition of dark mat-

  4. Experiments on active cloaking and illusion for Laplace equation.

    PubMed

    Ma, Qian; Mei, Zhong Lei; Zhu, Shou Kui; Jin, Tian Yu; Cui, Tie Jun

    2013-10-25

    In recent years, invisibility cloaks have received a lot of attention and interest. These devices are generally classified into two types: passive and active. The design and realization of passive cloaks have been intensively studied using transformation optics and plasmonic approaches. However, active cloaks are still limited to theory and numerical simulations. Here, we present the first experiment on active cloaking and propose an active illusion for the Laplace equation. We make use of a resistor network to simulate a conducting medium. Then, we surround the central region with controlled sources to protect it from outside detection. We show that by dynamically changing the controlled sources, the protected region can be cloaked or disguised as different objects (illusion). Our measurement results agree very well with numerical simulations. Compared with the passive counterparts, the active cloaking and illusion devices do not need complicated metamaterials. They are flexible, in-line controllable, and adaptable to the environment. In addition to dc electricity, the proposed method can also be used for thermodynamics and other problems governed by the Laplace equation.

  5. Experiences with active cosmic background suppression

    SciTech Connect

    Lindstrom, R.M.; Lamaze, G.P.

    1994-12-31

    The dominant source of background in a bare germanium gamma-ray detector is natural radiation originating from potassium, uranium, and thorium decay in the laboratory environment and from cosmic rays. Most of the background is removed by surrounding the detector with lead shielding, which is commonly 20 cm thick. In a well-shielded detector, the largest contributor to the integral counting rate is cosmic rays, and to a lesser extent beta particles from {sup 210}Pb. Most of the counting rate in the continuum is due to highly penetrating muons. Many of the characteristic peaks in the background also originate from fast tertiary neutrons of cosmic-ray origin, which generate neutron activation products or create gamma rays from inelastic scattering in materials of the detector and shield. Very massive shielding is required to remove this penetrating component of background; we have found a fivefold reduction in the cosmic components by moving the detector into a laboratory 20 m underground. However, lacking an underground lab, we have attempted to use active shielding to reduce the background of a Ge detector located above ground. The guard detector is a proportional counter forming a roof 23 cm above the detector. The counter is placed inside the lead shielding to reduce it`s background counting rate.

  6. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    PubMed Central

    Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2012-01-01

    Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971

  7. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  8. Convoy Active Safety Technologies Warfighter Experiment I

    NASA Astrophysics Data System (ADS)

    Schoenherr, Edward; Theisen, Bernard L.; Animashaun, Asisat; Davis, James, Jr.; Day, Christopher

    2008-04-01

    The operational ability to project and sustain forces in distant, anti-access and area denial environments poses new challenges for combatant commanders. One of the new challenges is the ability to conduct sustainment operations at operationally feasible times and places on the battlefield. Combatant commanders require a sustainment system that is agile, versatile, and survivable throughout the range of military operations and across the spectrum of conflict. A key component of conducting responsive, operationally feasible sustainment operations is the ability to conduct sustainment convoys. Sustainment convoys are critical to providing combatant commanders the right support, at the right time and place, and in the right quantities, across the full range of military operations. The ability to conduct sustainment convoys in a variety of hostile environments require force protection measures that address the enemy threat and protect the Soldier. One cost effective, technically feasible method of increasing the force protection for sustainment convoys is the use of robotic follower technology and autonomous navigation. The Convoy Active Safety Technologies (CAST) system is a driver assist, convoy autopilot technology aimed to address these issues. Warfigher Experiment I, held at A.P. Hill, VA in the fall of 2007, tested the utility of this vehicle following technology not only in measures of system integrity and performance vs. manual driving, but also the physiological effects on the operators themselves. This paper will detail the Warfigher Experiment's methodology, analysis, results and conclusions.

  9. Large-N Over the Source Physics Experiment (SPE) Phase I and Phase II Test Beds

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Carmichael, J. D.; Mellors, R. J.; Abbott, R. E.

    2014-12-01

    One of the current challenges in the field of monitoring and verification is source discrimination of low-yield nuclear explosions from background seismicity, both natural and anthropogenic. Work is underway at the Nevada National Security Site to conduct a series of chemical explosion experiments using a multi-institutional, multi-disciplinary approach. The goal of this series of experiments, called the Source Physics Experiments (SPE), is to refine the understanding of the effect of earth structures on source phenomenology and energy partitioning in the source region, the transition of seismic energy from the near field to the far field, and the development of S waves observed in the far field. To fully explore these problems, the SPE series includes tests in both hard and soft rock geologic environments. The project comprises a number of activities, which range from characterizing the shallow subsurface to acquiring new explosion data from both the near field (<100 m) and the far field (>100 m). SPE includes a series of planned explosions (with different yields and depths of burials), which are conducted in the same hole and monitored by a diverse set of sensors recording characteristics of the explosions, ground-shock, seismo-acoustic energy propagation. This presentation focuses on imaging the full 3D wavefield over hard rock and soft rock test beds using a large number of seismic sensors. This overview presents statistical analyses of optimal sensor layout required to estimate wavefield discriminants and the planned deployment for the upcoming experiments. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Post-Shot Surface Damage Detected with LIDAR at the Source Physics Experiment Site (Invited)

    NASA Astrophysics Data System (ADS)

    Schultz-Fellenz, E. S.; Sussman, A. J.; Kelley, R. E.; Cooper, D. I.

    2013-12-01

    Designed to improve long-range treaty monitoring capabilities, the Source Physics Experiment series is being conducted at a location in Nevada and provides an opportunity to advance near-field monitoring and field-based investigations of suspected underground test locations. In particular, features associated with underground testing can be evaluated using Source Physics Experiment activities as analogs, linking on-site inspections with remote sensing technologies. Following a calibration shot (SPE 1), SPE 2 (10/2011) and SPE 3 (07/2012) were performed in the same emplacement hole with 1.0 ton of explosives at 150 ft depth. A fourth shot (SPE 4) is planned for August 2013 as a 220 lb (100 kg) TNT equivalent shot at a depth of 315 ft (96 m). Because one of the goals of the Source Physics Experiments is to determine damage effects on seismic wave propagation and improve modeling capabilities, a key component in the predictive component and ultimate validation of the models is a full understanding of the intervening geology between the source and instrumented bore holes. Ground-based LIDAR and fracture mapping, mechanical properties determined via laboratory testing of rock core, discontinuity analysis and optical microscopy of the core rocks were performed prior to and following each experiment. Results of the LIDAR collects from both SPE 2 and 3 indicate a permanent ground displacement of up to several centimeters aligning along the projected surface traces of two faults observed in the core and fractures mapped at the surface. Work by Los Alamos National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946.

  11. Phase 1 immobilized low-activity waste operational source term

    SciTech Connect

    Burbank, D.A.

    1998-03-06

    This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

  12. Open Source Software for Experiment Design and Control. (tutorial)

    ERIC Educational Resources Information Center

    Hillenbrand, James M.; Gayvert, Robert T.

    2005-01-01

    The purpose of this paper is to describe a software package that can be used for performing such routine tasks as controlling listening experiments (e.g., simple labeling, discrimination, sentence intelligibility, and magnitude estimation), recording responses and response latencies, analyzing and plotting the results of those experiments,…

  13. Angular dependence of source-target-detector in active mode standoff infrared detection

    NASA Astrophysics Data System (ADS)

    Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.

    2013-06-01

    Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.

  14. Characterization of an atomic hydrogen source for charge exchange experiments

    NASA Astrophysics Data System (ADS)

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-11-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  15. p-process nucleosynthesis: Activation experiments

    NASA Astrophysics Data System (ADS)

    Glorius, J.; Knörzer, M.; Müller, S.; Pietralla, N.; Sauerwein, A.; Sonnabend, K.; Wälzlein, C.; Wiescher, M.

    2011-04-01

    For the astrophysical p process a complex reaction network has to be solved. In the order of 10,000 theoretically predicted reaction rates are needed for simulations of this network. For reactions involving α particles or protons, the predictions in the framework of the Hauser-Feshbach (HF) model were found to deviate from experimental results partially by a factor of 5 or even more. To optimize the predictive power of the applied HF codes, the nuclear physics input has to be improved. For this purpose, the reactions 166ErTm(p,n) as well as the reaction 170Yb(γ,n) have been measured with the activation method at low energies. The data can provide a further test of HF predictions but can also be used to optimize input parameters of the afore mentioned codes. Preliminary results of the experiments are presented and compared to theoretical predictions using the standard settings of the HF codes NON-SMOKER and TALYS.

  16. Students' Source Misuse in Language Classrooms: Sharing Experiences

    ERIC Educational Resources Information Center

    Fazel, Ismaeil; Kowkabi, Nasrin

    2013-01-01

    In this article we first provide a brief discussion of what is generally referred to as "student plagiarism," which we prefer to call "source misuse" or "inappropriate textual borrowing," and then provide some of the factors that may contribute to this problem in language classes. Moreover, we provide our views and…

  17. EMITTING ELECTRONS AND SOURCE ACTIVITY IN MARKARIAN 501

    SciTech Connect

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo; Rivers, Elizabeth; Rothschild, Richard; Tavecchio, Fabrizio

    2012-07-10

    We study the variation of the broadband spectral energy distribution (SED) of the BL Lac object Mrk 501 as a function of source activity, from quiescent to flaring. Through {chi}{sup 2}-minimization we model eight simultaneous SED data sets with a one-zone synchrotron self-Compton (SSC) model, and examine how model parameters vary with source activity. The emerging variability pattern of Mrk 501 is complex, with the Compton component arising from {gamma}-e scatterings that sometimes are (mostly) Thomson and sometimes (mostly) extreme Klein-Nishina. This can be seen from the variation of the Compton to synchrotron peak distance according to source state. The underlying electron spectra are faint/soft in quiescent states and bright/hard in flaring states. A comparison with Mrk 421 suggests that the typical values of the SSC parameters are different in the two sources: however, in both jets the energy density is particle-dominated in all states.

  18. Source term experiments project (STEP): aerosol characterization system

    SciTech Connect

    Schlenger, B.J.; Dunn, P.F.

    1985-01-01

    A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They have been designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in-pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Ag/In/Cd control rod material.

  19. Optical Pumping Experiments on Next Generation Light Sources

    SciTech Connect

    Moon, S J; Fournier, K B; Scott, H; Chung, H K; Lee, R W

    2004-07-29

    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with n{sub e}>10{sup 22}cm{sup -3} as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility(TTF) at DESY(Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE(self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 10{sup 13} photons in a 200 fs duration pulse that is tunable from {approx} 6nm to 100nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can easily be monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  20. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  1. Dynamic Initiator Experiments using IMPULSE (Impact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Sanchez, Nathaniel; Jensen, Brian; Ramos, Kyle; Iverson, Adam; Martinez, Michael; Liechty, Gary; Fezzaa, Kamel; Clarke, Steven

    2015-06-01

    We have successfully imaged, for the first time, the operation of copper slapper initiators that are used to initiate high explosive detonators. These data will aid in model development and calibration in order to provide a robust predictive capability and as a design tool in future applications. The initiation system consists of a copper bridge fixed to a parylene flyer. The copper bridge functions when a capacitor is discharged causing current to flow through the narrow bridge. As this happens, a plasma forms due to the high current densities and ohmic heating, which launches the parylene flyer that impacts a high explosive pellet producing detonation. Unlike traditional measurements, x-ray phase contrast imaging can see ``inside'' the process providing unique information with nanosecond time resolution and micrometer spatial resolution. The team performed experiments on the IMPULSE system at the Advanced Photon Source to obtain high resolution, in situ images of this process in real-time. From these images, researchers can examine the formation of the plasma instabilities and their interaction with the flyer, determine the flyer velocity, and obtain crucial information on the spatial distribution of mass and density gradients in the plasma and flyer.

  2. Source strengths for indoor human activities that resuspend particulate matter.

    PubMed

    Ferro, Andrea R; Kopperud, Royal J; Hildemann, Lynn M

    2004-03-15

    A mathematical model was applied to continuous indoor and outdoor particulate matter (PM) measurements to estimate source strengths for a variety of prescribed human activities that resuspend house dust in the home. Activities included folding blankets, folding clothes, dry dusting, making a bed, dancing on a rug, dancing on a wood floor, vacuuming, and walking around and sitting on upholstered furniture. Although most of the resuspended particle mass from these activities was larger than 5 microm in diameter, the resuspension of PM2.5 and PM5 was substantial, with source strengths ranging from 0.03 to 0.5 mg min(-1) for PM2.5 and from 0.1 to 1.4 mg min(-1) for PM5. Source strengths for PM > 5 microm could not be quantified due to instrument limitations. The source strengths were found to be a function of the number of persons performing the activity, the vigor of the activity, the type of activity, and the type of flooring.

  3. Microwave Oven Experiments with Metals and Light Sources

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    "Don't put metal objects in the microwave" is common safety advice. But why? Here we describe demonstration experiments involving placing household metallic objects in a microwave oven. These allow a better understanding of the interaction of microwaves with materials. Light bulbs and discharge lamps can also be used in instructive demonstrations.

  4. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  5. Versatile cold atom source for multi-species experiments

    SciTech Connect

    Paris-Mandoki, A.; Jones, M. D.; Nute, J.; Warriar, S.; Hackermüller, L.; Wu, J.

    2014-11-15

    We present a dual-species oven and Zeeman slower setup capable of producing slow, high-flux atomic beams for loading magneto-optical traps. Our compact and versatile system is based on electronic switching between different magnetic field profiles and is applicable to a wide range of multi-species experiments. We give details of the vacuum setup, coils, and simple electronic circuitry. In addition, we demonstrate the performance of our system by optimized, sequential loading of magneto-optical traps of lithium-6 and cesium-133.

  6. The orientation experiences of urgent care nurses: sources of learning.

    PubMed

    Bartz, K L

    1999-01-01

    The purpose of this qualitative study was to characterize and explain the unique features relating to the orientation of newly hired nurses in an urgent care setting. The learning needs of professionally experienced nurses are examined as nurses change their context of work. The methodology for this study was exploratory, using descriptive and evaluative case studies. Nurses identified how additional knowledge was learned when they recognized gaps between what they know and what they need to know. The findings included an urgent care nursing perspective of orientations and consisted of four sources of learning: natural, self-directed, peer-directed, and organization-directed. The narratives shared by these nurses strengthen and advance the communication of those who help adults learn.

  7. The COHERENT Experiment at the Spallation Neutron Source

    SciTech Connect

    Elliott, Steven Ray

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  8. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  9. Young Urban African American Adolescents' Experience of Discretionary Time Activities

    ERIC Educational Resources Information Center

    Bohnert, Amy M.; Richards, Maryse H.; Kolmodin, Karen E.; Lakin, Brittany L.

    2008-01-01

    This cross-sectional study examined the daily discretionary time experiences of 246 (107 boys, 139 girls) fifth through eighth grade urban African American adolescents using the Experience Sampling Method. Relations between the types of activities (i.e., active structured, active unstructured, passive unstructured) engaged in during discretionary…

  10. Inducing in situ, nonlinear soil response applying an active source

    USGS Publications Warehouse

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  11. Memory sources of dreams: the incorporation of autobiographical rather than episodic experiences.

    PubMed

    Malinowski, Josie E; Horton, Caroline L

    2014-08-01

    The present study aimed to explore autobiographical memories (long-lasting memories about the self) and episodic memories (memories about discrete episodes or events) within dream content. We adapted earlier episodic memory study paradigms and reinvestigated the incorporation of episodic memory sources into dreams, operationalizing episodic memory as featuring autonoetic consciousness, which is the feeling of truly re-experiencing or reliving a past event. Participants (n = 32) recorded daily diaries and dream diaries, and reported on wake-dream relations for 2 weeks. Using a new scale, dreams were rated for their episodic richness, which categorized memory sources of dreams as being truly episodic (featuring autonoetic consciousness), autobiographical (containing segregated features of experiences that pertained to waking life) or otherwise. Only one dream (0.5%) was found to contain an episodic memory. However, the majority of dreams (>80%) were found to contain low to moderate incorporations of autobiographical memory features. These findings demonstrate the inactivity of intact episodic memories, and emphasize the activity of autobiographical memory and processing within dreams. Taken together, this suggests that memories for personal experiences are experienced fragmentarily and selectively during dreaming, perhaps in order to assimilate these memories into the autobiographical memory schema.

  12. Celebrating the Earth: Stories, Experiences, and Activities.

    ERIC Educational Resources Information Center

    Livo, Norma J.

    Young learners are invited to learn about the natural world through engaging activities that encourage the observation, exploration, and appreciation of nature. Weaving together a stimulating tapestry of folktales, personal narratives, and hands-on activities, this book teaches children about the earth and all of its creatures--birds, plants,…

  13. Intense antineutrino source based on a lithium converter. Proposal for a promising experiment for studying oscillations

    NASA Astrophysics Data System (ADS)

    Lyashuk, V. I.; Lutostansky, Yu. S.

    2016-03-01

    An intense electron-antineutrino source with a hard spectrum (E_{{{tilde v}_e}}^{max} = 13 MeV and < {{E_{{{tilde v}_e}}}} rangle = 6.5MeV) can be created on the basis of the short-lived isotope 8Li (β--decay, T 1/2 = 0.84 s) formed via the ( n, γ) activation of 7Li. In contrast to a reactor antineutrino spectrum whose uncertainty is large, particularly in the high-energy region {E_{{{tilde v}_e}}} > 6 MeV, which is experimentally relevant, the lithium {tilde v_e} spectrum is accurately determined. The proposed accelerator-driven experimental scheme with a neutron-producing target and a lithium converter as an intense {tilde v_e} source is an alternative to a nuclear reactor. The required amount of high-purity 7Li will be reduced in many times by using the suggested heavy-water LiOD solutions. A possible experiment involving the lithium source on search for sterile neutrinos in the mass region Δ m 2 ≥ 0.2 eV2 with a very high sensitivity to mixing-angle values down to sin2(2Θ) ≈ (7-10) × 10-4 at the 95% C.L. has been considered.

  14. Imaging the magmatic system of Newberry Volcano using Joint active source and teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Heath, Benjamin A.; Hooft, Emilie E. E.; Toomey, Douglas R.; Bezada, Maximiliano J.

    2015-12-01

    In this paper, we combine active and passive source P wave seismic data to tomographically image the magmatic system beneath Newberry Volcano, located east of the Cascade arc. By using both travel times from local active sources and delay times from teleseismic earthquakes recorded on closely spaced seismometers (300-800 m), we significantly improve recovery of upper crustal velocity structure (<10 km depth). The tomographic model reveals a low-velocity feature between 3 and 5 km depth that lies beneath the caldera, consistent with a magma body. In contrast to earlier tomographic studies, where elevated temperatures were sufficient to explain the recovered low velocities, the larger amplitude low-velocity anomalies in our joint tomography model require low degrees of partial melt (˜10%), and a minimum melt volume of ˜2.5 km3. Furthermore, synthetic tests suggest that even greater magnitude low-velocity anomalies, and by inference larger volumes of magma (up to 8 km3), are needed to explain the observed waveform variability. The lateral extent and shape of the inferred magma body indicates that the extensional tectonic regime at Newberry influences the emplacement of magmatic intrusions. Our study shows that jointly inverting active source and passive source seismic data improves tomographic imaging of the shallow crustal seismic structure of volcanic systems and that active source experiments would benefit from longer deployment times to also record teleseismic sources.

  15. Numerical simulation of the geographical sources of water for Continental Scale Experiments (CSEs) Precipitation

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Sud, Yogesh; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    There are several important research questions that the Global Energy and Water Cycle Experiment (GEWEX) is actively pursuing, namely: What is the intensity of the water cycle and how does it change? And what is the sustainability of water resources? Much of the research to address these questions is directed at understanding the atmospheric water cycle. In this paper, we have used a new diagnostic tool, called Water Vapor Tracers (WVTs), to quantify the how much precipitation originated as continental or oceanic evaporation. This shows how long water can remain in the atmosphere and how far it can travel. The model-simulated data are analyzed over regions of interest to the GEWEX community, specifically, their Continental Scale Experiments (CSEs) that are in place in the United States, Europe, Asia, Brazil, Africa and Canada. The paper presents quantitative data on how much each continent and ocean on Earth supplies water for each CSE. Furthermore, the analysis also shows the seasonal variation of the water sources. For example, in the United States, summertime precipitation is dominated by continental (land surface) sources of water, while wintertime precipitation is dominated by the Pacific Ocean sources of water. We also analyze the residence time of water in the atmosphere. The new diagnostic shows a longer residence time for water (9.2 days) than more traditional estimates (7.5 days). We emphasize that the results are based on model simulations and they depend on the model s veracity. However, there are many potential uses for the new diagnostic tool in understanding weather processes and large and small scales.

  16. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  17. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  18. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  19. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    SciTech Connect

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  20. Obsidian sources characterized by neutron-activation analysis.

    PubMed

    Gordus, A A; Wright, G A; Griffin, J B

    1968-07-26

    Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.

  1. Biochemical assays on plasminogen activators and hormones from kidney sources

    NASA Technical Reports Server (NTRS)

    Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.

    1988-01-01

    Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.

  2. The effect of light-activation sources on tooth bleaching

    PubMed Central

    Baroudi, Kusai; Hassan, Nadia Aly

    2014-01-01

    Vital bleaching is one of the most requested cosmetic dental procedures asked by patients who seek a more pleasing smile. This procedure consists of carbamide or hydrogen peroxide gel applications that can be applied in-office or by the patient (at-home/overnight bleaching system). Some in-office treatments utilise whitening light with the objective of speeding up the whitening process. The objective of this article is to review and summarise the current literature with regard to the effect of light-activation sources on in-office tooth bleaching. A literature search was conducted using Medline, accessed via the National Library of Medicine Pub Med from 2003 to 2013 searching for articles relating to effectiveness of light activation sources on in-office tooth bleaching. This study found conflicting evidence on whether light truly improve tooth whitening. Other factors such as, type of stain, initial tooth colour and subject age which can influence tooth bleaching outcome were discussed. Conclusions: The use of light activator sources with in-office bleaching treatment of vital teeth did not increase the efficacy of bleaching or accelerate the bleaching. PMID:25298598

  3. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  4. Source altitude for experiments to simulate space-to-earth laser propagation.

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1973-01-01

    The bias in scintillation measurements caused by the proximity of a spherical-wave source to the turbulence region of the atmosphere is predicted, and the laser-source altitude required for meaningful experiments simulating space-to-earth laser propagation is estimated. It is concluded that the source should be located at two or more times the maximum altitude of the tropopause to ensure that all measurements are not biased by more than 25%. Thus the vehicle used for experiments of this type should be capable of reaching a minimum altitude of 32 km.

  5. The Effects of Primary Sources and Field Trip Experience on the Knowledge Retention of Multicultural Content

    ERIC Educational Resources Information Center

    Farmer, James; Knapp, Doug; Benton, Gregory M.

    2007-01-01

    Although small in scope, this study attempted to analyze the impacts of primary sources and field trip experiences on multicultural education through first-hand narrative interviews, one year after the experience. In particular, it assessed the recollections of students who participated in a one-half-day field trip to George Washington Carver…

  6. Prevalent flucocorticoid and androgen activity in US water sources

    USGS Publications Warehouse

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  7. Pore-space alteration in source rock (shales) during hydrocarbons generation: laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.; Nadezhkin, D. V.

    2013-12-01

    Hydrocarbons (HC) are generated from solid organic matter (kerogen) due to thermocatalytic reactions. The rate of such reactions shows direct correlation with temperature and depends on the depth of source rock burial. Burial of sedimentary rock is also inevitably accompanied by its structural alteration owing to compaction, dehydration and re-crystallization. Processes of HC generation, primary migration and structural changes are inaccessible for direct observation in nature, but they can be studied in laboratory experiments. Experiment was carried out with a clayey-carbonate rock sample of the Domanik Horizon taken from boreholes drilled in the northeastern part of the south Tatar arch. The rock chosen fits the very essential requirements - high organic matter content and its low metamorphic grade. Our work aimed at laboratory modeling of HC generation in an undisturbed rock sample by its heating in nitrogen atmosphere based on a specified temperature regime and monitoring alterations in the pore space structure. Observations were carried out with a SkyScan-1172 X-ray microtomography scanner (resulting scan resolution of 1 μm). A cylinder, 44 mm in diameter, was prepared from the rock sample for the pyrolitic and microtomographic analyses. Scanning procedures were carried out in 5 runs. Temperature interval for each run had to match the most important stage of HC generation in the source rock, namely: (1) original structure; (2) 100-300°C - discharge of free and adsorbed HC and water; (3) 300-400°C - initial stage of HC formation owing to high-temperature pyrolysis of the solid organic matter and discharge of the chemically bound water; (4) 400-470°C - temperature interval fitting the most intense stage of HC formation; (5) 470-510°C - final stage of HC formation. Maximum sample heating in the experiment was determined as temperature of the onset of active decomposition of carbonates, i.e., in essence, irreversible metamorphism of the rock. Additional

  8. Note: A versatile radio-frequency source for cold atom experiments.

    PubMed

    Li, Na; Wu, Yu-Ping; Min, Hao; Yang, Tao; Jiang, Xiao

    2016-08-01

    A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicated RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments. PMID:27587180

  9. Note: A versatile radio-frequency source for cold atom experiments

    NASA Astrophysics Data System (ADS)

    Li, Na; Wu, Yu-Ping; Min, Hao; Yang, Tao; Jiang, Xiao

    2016-08-01

    A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicated RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments.

  10. Patient Activation and Mental Health Care Experiences Among Women Veterans

    PubMed Central

    Pavao, Joanne; Wong, Ava

    2016-01-01

    We utilized a nationally representative survey of women veteran primary care users to examine associations between patient activation and mental health care experiences. A dose–response relationship was observed, with odds of high quality ratings significantly greater at each successive level of patient activation. Higher activation levels were also significantly associated with preference concordant care for gender-related preferences (use of female providers, women-only settings, and women-only groups as often as desired). Results add to the growing literature documenting better health care experiences among more activated patients, and suggest that patient activation may play an important role in promoting engagement with mental health care. PMID:25917224

  11. Advisory Committee on human radiation experiments. Final report, Supplemental Volume 2. Sources and documentation

    SciTech Connect

    1995-01-01

    This volume and its appendixes supplement the Advisory Committee`s final report by reporting how we went about looking for information concerning human radiation experiments and intentional releases, a description of what we found and where we found it, and a finding aid for the information that we collected. This volume begins with an overview of federal records, including general descriptions of the types of records that have been useful and how the federal government handles these records. This is followed by an agency-by-agency account of the discovery process and descriptions of the records reviewed, together with instructions on how to obtain further information from those agencies. There is also a description of other sources of information that have been important, including institutional records, print resources, and nonprint media and interviews. The third part contains brief accounts of ACHRE`s two major contemporary survey projects (these are described in greater detail in the final report and another supplemental volume) and other research activities. The final section describes how the ACHRE information-nation collections were managed and the records that ACHRE created in the course of its work; this constitutes a general finding aid for the materials deposited with the National Archives. The appendices provide brief references to federal records reviewed, descriptions of the accessions that comprise the ACHRE Research Document Collection, and descriptions of the documents selected for individual treatment. Also included are an account of the documentation available for ACHRE meetings, brief abstracts of the almost 4,000 experiments individually described by ACHRE staff, a full bibliography of secondary sources used, and other information.

  12. Hollow cathode plasma source for active spacecraft charge control

    NASA Astrophysics Data System (ADS)

    Deininger, William D.; Aston, Graeme; Pless, Lewis C.

    1987-06-01

    A prototype plasma source spacecraft discharge device has been developed to control overall and differential spacecraft surface charging. The plasma source is based on a unique hollow cathode discharge, where the plasma generation process is contained completely within the cathode. This device can be operated on argon, krypton, or xenon and has a rapid cold start time of less than 4 s. The discharge system design includes a spacecraft-discharge/net-charge sensing circuit which provides the ability to measure the polarity, magnitude, pulse shape, and time duration of a discharging event. Ion currents of up to 325 microA and electron currents ranging from 0.02 to 6.0 A have been extracted from the device. In addition, the spacecraft discharge device successfully discharged capacitively biased plates, from as high as + or - 2500 V, to ground potential, and discharged and clamped actively biased plates at +5 V with respect to ground potential during ground simulation testing.

  13. A visiting scientist program for the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Kerr, Frank J.

    1995-01-01

    During this project, Universities Space Research Association provided program management and the administration for overseeing the performance of the total contractual effort. The program director and administrative staff provided the expertise and experience needed to efficiently manage the program.USRA provided a program coordinator and v visiting scientists to perform scientific research with Burst and Transient Source Experiment (BATSE) data. This research was associated with the primary scientific objectives of BATSE and with the various BATSE collaborations which were formed in response to the Compton Gamma Ray Observatory Guest Investigator Program. USRA provided administration for workshops, colloquia, the preparation of scientific documentation, etc. and also provided flexible program support in order to meet the on-going needs of MSFC's BATSE program. USRA performed tasks associated with the recovery, archiving, and processing of scientific data from BATSE. A bibliography of research in the astrophysics discipline is attached as Appendix 1. Visiting Scientists and Research Associates performed activities on this project, and their technical reports are attached as Appendix 2.

  14. Quantitation of Lipase Activity from a Bee: An Introductory Enzyme Experiment.

    ERIC Educational Resources Information Center

    Farley, Kathleen A.; Jones, Marjorie A.

    1989-01-01

    This four-hour experiment uses a bee as a source of the enzyme which is reacted with a radioactive substrate to determine the specific activity of the enzyme. Uses thin layer chromatography, visible spectrophotometry, and liquid scintillation spectrometry (if not available a Geiger-Muller counter can be substituted). (MVL)

  15. Active and retired public employees' health insurance: potential data sources.

    PubMed

    Morrill, Melinda Sandler

    2014-12-01

    Employer-provided health insurance for public sector workers is a significant public policy issue. Underfunding and the growing costs of benefits may hinder the fiscal solvency of state and local governments. Findings from the private sector may not be applicable because many public sector workers are covered by union contracts or salary schedules and often benefit modifications require changes in legislation. Research has been limited by the difficulty in obtaining sufficiently large and representative data on public sector employees. This article highlights data sources researchers might utilize to investigate topics concerning health insurance for active and retired public sector employees. PMID:25479894

  16. Verification of Minimum Detectable Activity for Radiological Threat Source Search

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn

    2015-10-01

    The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.

  17. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  18. Adolescents' Accounts of Growth Experiences in Youth Activities.

    ERIC Educational Resources Information Center

    Dworkin, Jodi B.; Larson, Reed; Hansen, David

    2003-01-01

    Conducted 10 focus groups in which adolescents discussed their "growth experiences" in extracurricular and community-based activities. The 55 participants reported personal and interpersonal processes and generally described themselves as agents of their own development and change. (SLD)

  19. Report on Active and Planned Spacecraft and Experiments

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor); Maitson, H. H. (Editor)

    1981-01-01

    Active and planned spacecraft activity and experiments between June 1, 1980 and May 31, 1981 known to the National Space Science Data Center are described. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. Each spacecraft and experiment is described and its current status presented. Descriptions of navigational and communications satellites and of spacecraft that contain only continuous radio beacons used for ionospheric studies are specifically excluded.

  20. Investigation of acoustic gravity waves created by anomalous heat sources: experiments and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.

    2013-07-01

    We have been investigating high-power radio wave-induced acoustic gravity waves (AGWs) at Gakona, Alaska, using the High-frequency Active Aurora Research Program (HAARP) heating facility (i.e. HF heater) and extensive diagnostic instruments. This work was aimed at performing a controlled study of the space plasma turbulence triggered by the AGWs originating from anomalous heat sources, as observed in our earlier experiments at Arecibo, Puerto Rico (Pradipta 2007 MS Thesis MIT Press, Cambridge, MA). The HF heater operated in continuous wave (CW) O-mode can heat ionospheric plasmas effectively to yield a depleted magnetic flux tube as rising plasma bubbles (Lee et al 1998 Geophys. Res. Lett. 25 579). Two processes are responsible for the depletion of the magnetic flux tube: (i) thermal expansion and (ii) chemical reactions caused by heated ions. The depleted plasmas create large density gradients that can augment spread F processes via generalized Rayleigh-Taylor instabilities (Lee et al 1999 Geophys. Res. Lett. 26 37). It is thus expected that the temperature of neutral particles in the heated ionospheric region can be increased. Such a heat source in the neutral atmosphere may potentially generate AGWs in the form of traveling ionospheric plasma disturbances (TIPDs). We should point out that these TIPDs have features distinctively different from electric and magnetic field (ExB) drifts of HF wave-induced large-scale non-propagating plasma structures. Moreover, it was noted in our recent study of naturally occurring AGW-induced TIDs that only large-scale AGWs can propagate upward to reach higher altitudes. Thus, in our Gakona experiments we select optimum heating schemes for HF wave-induced AGWs that can be distinguished from the naturally occurring ones. The generation and propagation of AGWs are monitored by MUIR (Modular Ultra high-frequency Ionospheric Radar), Digisonde and GPS/low-earth-orbit satellites. Our theoretical and experimental studies have shown that

  1. Source spectra of the first four Source Physics Experiments (SPE) explosions from the frequency-domain moment-tensor inversion

    SciTech Connect

    Yang, Xiaoning

    2016-01-01

    In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and Rg-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, volumetric components of the moment-tensor spectra were well constrained.

  2. Source spectra of the first four Source Physics Experiments (SPE) explosions from the frequency-domain moment-tensor inversion

    DOE PAGES

    Yang, Xiaoning

    2016-01-01

    In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and Rg-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, volumetricmore » components of the moment-tensor spectra were well constrained.« less

  3. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  4. Source Region Modeling of Explosions 2 and 3 from the Source Physics Experiment Using the Rayleigh Integral Method

    NASA Astrophysics Data System (ADS)

    Jones, K. R.; Arrowsmith, S.; Whitaker, R. W.

    2012-12-01

    The overall mission of the National Center for Nuclear Security (NCNS) Source Physics Experiment at the National Nuclear Security Site (SPE-N) near Las Vegas, Nevada is to improve upon and develop new physics based models for underground nuclear explosions using scaled, underground chemical explosions as proxies. To this end, we use the Rayleigh integral as an approximation to the Helmholz-Kirchoff integral, [Whitaker, 2007 and Arrowsmith et al., 2011], to model infrasound generation in the far-field. Infrasound generated by single-point explosive sources above ground can typically be treated as monopole point-sources. While the source is relatively simple, the research needed to model above ground point-sources is complicated by path effects related to the propagation of the acoustic signal and out of the scope of this study. In contrast, for explosions that occur below ground, including the SPE explosions, the source region is more complicated but the observation distances are much closer (< 5 km), thus greatly reducing the complication of path effects. In this case, elastic energy from the explosions radiates upward and spreads out, depending on depth, to a more distributed region at the surface. Due to this broad surface perturbation of the atmosphere we cannot model the source as a simple monopole point-source. Instead, we use the analogy of a piston mounted in a rigid, infinite baffle, where the surface area that moves as a result of the explosion is the piston and the surrounding region is the baffle. The area of the "piston" is determined by the depth and explosive yield of the event. In this study we look at data from SPE-N-2 and SPE-N-3. Both shots had an explosive yield of 1 ton at a depth of 45 m. We collected infrasound data with up to eight stations and 32 sensors within a 5 km radius of ground zero. To determine the area of the surface acceleration, we used data from twelve surface accelerometers installed within 100 m radially about ground zero

  5. Measurement of the argon-38(n,2n)argon-37 and calcium- 40(n,alpha)argon-37 cross sections, and National Ignition Facility concrete activation using the rotating target neutron source. The design of an experiment to measure the beryllium-9(n,gamma)beryllium-10 cross section at 14 MeV

    NASA Astrophysics Data System (ADS)

    Belian, Anthony Paul

    The Rotating Target Neutron Source (RTNS) was used in experiments to measure neutron induced cross sections at 14 MeV, and the activation properties of a specific mix of concrete. The RTNS is an accelerator based DT fusion neutron source located at the University of California, Berkeley. Two of the experiments performed for this thesis were specifically of interest for the construction and operation of the National Ignition Facility (NIF), they were the 38Ar(n,2n)37Ar cross section measurement, and the concrete activation measurement. The NIF is a large multi-beam laser facility that will study the effects of age on the nation's stockpile of nuclear weapons. The NIF, when fully operational, will focus the energy of 192 Neodymium glass lasers onto a 1 mm diameter pellet filled with deuterium and tritium fuel. This pellet is compressed by the laser energy giving some of the individual atoms of deuterium and tritium enough kinetic energy to overcome the coulomb barrier and fuse. The energy output from these pellet implosions will be in the range of tens of mega-joules (MJ). The 38Ar(n,2n)37Ar reaction will be useful to NIF scientists to measure important parameters such as target energy yield and areal density. In order to make these measurements precise, an accurate 38Ar(n,2n)37Ar cross section was necessary. The cross sections measured were: 74.9 +/- 3.8 millibarns (mb) at 13.3 +/- 0.01 MeV, 89.2 +/- 4.0 mb at 14.0 +/- 0.03 MeV, and 123.57 +/- 6.4 mb at 15.0 +/- 0.06 MeV. With anticipated energy yields in the tens of mega-joules per pellet implosion, the number of neutrons released is in the range of 1019 to 1020 neutrons per implosion. With such a large number of neutrons, minimizing the activation of the surrounding structure is very much of interest for the sake of personnel radiation safety. To benchmark the computer codes used to calculate the anticipated neutron activation of target bay concrete, samples were irradiated at the RTNS. Dose rates from each sample

  6. Possibility of weather and climate change by active experiments

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergey; Voronin, Nikolai; Troitsky, Arkadil; Chernouss, Sergey

    ). Application of the optical recording channel in active experiments (i.e., at a fixed space-time artificial ionospheric disturbances) allow: - to confirm experimentally the Rydberg channel of generating microwave fluxes from the ionosphere at its perturbations; - to offer remote monitoring as international control of sources of artificial influence on weather and climatic characteristics.

  7. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  8. Experience API: Flexible, Decentralized and Activity-Centric Data Collection

    ERIC Educational Resources Information Center

    Kevan, Jonathan M.; Ryan, Paul R.

    2016-01-01

    This emerging technology report describes the Experience API (xAPI), a new e-learning specification designed to support the learning community in standardizing and collecting both formal and informal distributed learning activities. Informed by Activity Theory, a framework aligned with constructivism, data is collected in the form of activity…

  9. Subliminal psychodynamic activation: methodological problems and questions in Silverman's experiments.

    PubMed

    Fudin, R

    1999-08-01

    Analyses of procedures in Lloyd H. Silverman's subliminal psychodynamic activation experiments identify problems and questions. Given the information provided, none of his experiments can be replicated, and none of his positive results were found under luminance conditions he reckoned in 1983 were typical of such outcomes. Furthermore, there is no evidence in any of his experiments that all stimuli were presented completely within the fovea, a condition critical to the production of positive findings (Silverman & Geisler, 1986). These considerations and the fact that no experiment using Silverman's procedures can yield unambiguous positive results (Fudin, 1986) underscore the need to start anew research in this area. Such research should be undertaken with a greater appreciation of methodological issues involved in exposing and encoding subliminal stimuli than that found in all but a few experiments on subliminal psychodynamic activation. PMID:10544424

  10. Groundwater seepage landscapes from distant and local sources in experiments and on Mars

    NASA Astrophysics Data System (ADS)

    Marra, W. A.; McLelland, S. J.; Parsons, D. R.; Murphy, B. J.; Hauber, E.; Kleinhans, M. G.

    2015-08-01

    Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis.

  11. The reversed description-experience gap: Disentangling sources of presentation format effects in risky choice.

    PubMed

    Glöckner, Andreas; Hilbig, Benjamin E; Henninger, Felix; Fiedler, Susann

    2016-04-01

    Previous literature has suggested that risky choice patterns in general--and probability weighting in particular--are strikingly different in experience-based as compared with description-based formats. In 2 reanalyses and 3 new experiments, we investigate differences between experience-based and description-based decisions using a parametric approach based on cumulative prospect theory (CPT). Once controlling for sampling biases, we consistently find a reversal of the typical description-experience gap, that is, a reduced sensitivity to probabilities and increased overweighting of small probabilities in decisions from experience as compared with decisions from descriptions. This finding supports the hypothesis that regression to the mean effects in probability estimation are a crucial source of differences between both presentation formats. Further analyses identified task specific information asymmetry prevalent in gambles involving certainty as a third source of differences. We present a novel conceptualization of multiple independent sources of bias that contribute to the description-experience gap, namely sampling biases and task specific information asymmetry on the one hand, and regression to the mean effects in probability estimation on the other hand. PMID:26974209

  12. The reversed description-experience gap: Disentangling sources of presentation format effects in risky choice.

    PubMed

    Glöckner, Andreas; Hilbig, Benjamin E; Henninger, Felix; Fiedler, Susann

    2016-04-01

    Previous literature has suggested that risky choice patterns in general--and probability weighting in particular--are strikingly different in experience-based as compared with description-based formats. In 2 reanalyses and 3 new experiments, we investigate differences between experience-based and description-based decisions using a parametric approach based on cumulative prospect theory (CPT). Once controlling for sampling biases, we consistently find a reversal of the typical description-experience gap, that is, a reduced sensitivity to probabilities and increased overweighting of small probabilities in decisions from experience as compared with decisions from descriptions. This finding supports the hypothesis that regression to the mean effects in probability estimation are a crucial source of differences between both presentation formats. Further analyses identified task specific information asymmetry prevalent in gambles involving certainty as a third source of differences. We present a novel conceptualization of multiple independent sources of bias that contribute to the description-experience gap, namely sampling biases and task specific information asymmetry on the one hand, and regression to the mean effects in probability estimation on the other hand.

  13. Antiglycation Activity of Iridoids and Their Food Sources

    PubMed Central

    West, Brett J.; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Nakajima, Sanae; Jensen, C. Jarakae

    2014-01-01

    Iridoids are dietary phytochemicals that may have the ability to inhibit the formation of advanced glycation end products (AGEs). Three studies were conducted to investigate this anti-AGE potential. First, the inhibition of fluorescence intensity by food-derived iridoids, after 4 days of incubation with bovine serum albumin, glucose, and fructose, was used to evaluate in vitro antiglycation activity. Next, an 8-week open-label pilot study used the AGE Reader to measure changes in the skin autofluorescence of 34 overweight adults who consumed daily a beverage containing food sources of iridoids. Finally, a cross-sectional population study with 3913 people analyzed the relationship between daily iridoid intake and AGE accumulation, as measured by skin autofluorescence with the TruAge scanner. In the in vitro test, deacetylasperulosidic acid and loganic acid both inhibited glycation in a concentration-dependent manner, with respective IC50 values of 3.55 and 2.69 mM. In the pilot study, average skin autofluorescence measurements decreased by 0.12 units (P < 0.05). The cross-sectional population survey revealed that, for every mg of iridoids consumed, there is a corresponding decline in AGE associated age of 0.017 years (P < 0.0001). These results suggest that consumption of dietary sources of iridoids may be a useful antiaging strategy. PMID:26904624

  14. Orally active opioid compounds from a non-poppy source.

    PubMed

    Raffa, Robert B; Beckett, Jaclyn R; Brahmbhatt, Vivek N; Ebinger, Theresa M; Fabian, Chrisjon A; Nixon, Justin R; Orlando, Steven T; Rana, Chintan A; Tejani, Ali H; Tomazic, Robert J

    2013-06-27

    The basic science and clinical use of morphine and other "opioid" drugs are based almost exclusively on the extracts or analogues of compounds isolated from a single source, the opium poppy (Papaver somniferum). However, it now appears that biological diversity has evolved an alternative source. Specifically, at least two alkaloids isolated from the plant Mitragyna speciosa, mitragynine ((E)-2-[(2S,3S)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[3,2-h]quinolizin-2-yl]-3-methoxyprop-2-enoic acid methyl ester; 9-methoxy coryantheidine; MG) and 7-hydroxymitragynine (7-OH-MG), and several synthetic analogues of these natural products display centrally mediated (supraspinal and spinal) antinociceptive (analgesic) activity in various pain models. Several characteristics of these compounds suggest a classic "opioid" mechanism of action: nanomolar affinity for opioid receptors, competitive interaction with the opioid receptor antagonist naloxone, and two-way analgesic cross-tolerance with morphine. However, other characteristics of the compounds suggest novelty, particularly chemical structure and possible greater separation from side effects. We review the chemical and pharmacological properties of these compounds. PMID:23517479

  15. Antiglycation Activity of Iridoids and Their Food Sources.

    PubMed

    West, Brett J; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Nakajima, Sanae; Jensen, C Jarakae

    2014-01-01

    Iridoids are dietary phytochemicals that may have the ability to inhibit the formation of advanced glycation end products (AGEs). Three studies were conducted to investigate this anti-AGE potential. First, the inhibition of fluorescence intensity by food-derived iridoids, after 4 days of incubation with bovine serum albumin, glucose, and fructose, was used to evaluate in vitro antiglycation activity. Next, an 8-week open-label pilot study used the AGE Reader to measure changes in the skin autofluorescence of 34 overweight adults who consumed daily a beverage containing food sources of iridoids. Finally, a cross-sectional population study with 3913 people analyzed the relationship between daily iridoid intake and AGE accumulation, as measured by skin autofluorescence with the TruAge scanner. In the in vitro test, deacetylasperulosidic acid and loganic acid both inhibited glycation in a concentration-dependent manner, with respective IC50 values of 3.55 and 2.69 mM. In the pilot study, average skin autofluorescence measurements decreased by 0.12 units (P < 0.05). The cross-sectional population survey revealed that, for every mg of iridoids consumed, there is a corresponding decline in AGE associated age of 0.017 years (P < 0.0001). These results suggest that consumption of dietary sources of iridoids may be a useful antiaging strategy.

  16. Antiglycation Activity of Iridoids and Their Food Sources.

    PubMed

    West, Brett J; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Nakajima, Sanae; Jensen, C Jarakae

    2014-01-01

    Iridoids are dietary phytochemicals that may have the ability to inhibit the formation of advanced glycation end products (AGEs). Three studies were conducted to investigate this anti-AGE potential. First, the inhibition of fluorescence intensity by food-derived iridoids, after 4 days of incubation with bovine serum albumin, glucose, and fructose, was used to evaluate in vitro antiglycation activity. Next, an 8-week open-label pilot study used the AGE Reader to measure changes in the skin autofluorescence of 34 overweight adults who consumed daily a beverage containing food sources of iridoids. Finally, a cross-sectional population study with 3913 people analyzed the relationship between daily iridoid intake and AGE accumulation, as measured by skin autofluorescence with the TruAge scanner. In the in vitro test, deacetylasperulosidic acid and loganic acid both inhibited glycation in a concentration-dependent manner, with respective IC50 values of 3.55 and 2.69 mM. In the pilot study, average skin autofluorescence measurements decreased by 0.12 units (P < 0.05). The cross-sectional population survey revealed that, for every mg of iridoids consumed, there is a corresponding decline in AGE associated age of 0.017 years (P < 0.0001). These results suggest that consumption of dietary sources of iridoids may be a useful antiaging strategy. PMID:26904624

  17. Source localization of brain activity using helium-free interferometer

    NASA Astrophysics Data System (ADS)

    Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-01

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-Tc) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-Tc SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-Tc SQUID-based MEG systems.

  18. Source localization of brain activity using helium-free interferometer

    SciTech Connect

    Dammers, Jürgen Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  19. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial

  20. Educative Experiences of Rural Junior High History Fair Participants Seeking and Evaluating Online Primary Sources

    ERIC Educational Resources Information Center

    Johnson, Riley Todd

    2012-01-01

    This phenomenological ethnographic multi-case study's purpose was to gain insight into experiences of rural junior high History Fair participants as they searched for and evaluated online primary sources. Drawing on the theories of Dewey and Kuhlthau, the study examined how the participants searched the Internet, what strategies they used to…

  1. Practicum Experiences as Sources of Pre-Service Teachers' Self-Efficacy

    ERIC Educational Resources Information Center

    Martins, Maria; Costa, João; Onofre, Marcos

    2015-01-01

    This study examines physical education pre-service teachers' (PTs) self-efficacy and practicum experiences as self-efficacy sources through a mixed-method approach. For the quantitative phase, a self-efficacy questionnaire was applied to 141 PTs. Results showed a stronger self-efficacy in the relationship with students and discipline promotion.…

  2. Shear Wave Generation and Modeling Ground Motion From a Source Physics Experiment (SPE) Underground Explosion

    NASA Astrophysics Data System (ADS)

    Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn

    2014-05-01

    We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.

  3. Vacuum ARC ion sources - activities & developments at LBL

    SciTech Connect

    Brown, I.

    1996-08-01

    The author describes work at LBL on the development and application of vacuum arc ion sources. Work has been done on vacuum spark sources - to produce very high charge states, studies of high charge states in magnetic field, hybrid ion source operation on metal/gas plasma, multipole operation, work on MEVVA V for implantation applications, development of broad beam sources, and removal of particles from the output of the source.

  4. THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz

    SciTech Connect

    Huffenberger, K. M.; Araujo, D.; Zwart, J. T. L.; Bischoff, C.; Buder, I.; Chinone, Y.; Hasegawa, M.; Cleary, K.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Eriksen, H. K.; Wehus, I. K.; Gaier, T.; Dickinson, C.; Gundersen, J. O.; Collaboration: QUIET Collaboration; and others

    2015-06-10

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  5. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    NASA Astrophysics Data System (ADS)

    Huffenberger, K. M.; Araujo, D.; Bischoff, C.; Buder, I.; Chinone, Y.; Cleary, K.; Kusaka, A.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Wehus, I. K.; Zwart, J. T. L.; Dickinson, C.; Eriksen, H. K.; Gaier, T.; Gundersen, J. O.; Hasegawa, M.; Hazumi, M.; Miller, A. D.; Radford, S. J. E.; Readhead, A. C. S.; Staggs, S. T.; Tajima, O.; Thompson, K. L.; QUIET Collaboration

    2015-06-01

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ˜480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30-40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%-20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  6. Fruit cuticular waxes as a source of biologically active triterpenoids.

    PubMed

    Szakiel, Anna; Pączkowski, Cezary; Pensec, Flora; Bertsch, Christophe

    2012-06-01

    The health benefits associated with a diet rich in fruit and vegetables include reduction of the risk of chronic diseases such as cardiovascular disease, diabetes and cancer, that are becoming prevalent in the aging human population. Triterpenoids, polycyclic compounds derived from the linear hydrocarbon squalene, are widely distributed in edible and medicinal plants and are an integral part of the human diet. As an important group of phytochemicals that exert numerous biological effects and display various pharmacological activities, triterpenoids are being evaluated for use in new functional foods, drugs, cosmetics and healthcare products. Screening plant material in the search for triterpenoid-rich plant tissues has identified fruit peel and especially fruit cuticular waxes as promising and highly available sources. The chemical composition, abundance and biological activities of triterpenoids occurring in cuticular waxes of some economically important fruits, like apple, grape berry, olive, tomato and others, are described in this review. The need for environmentally valuable and potentially profitable technologies for the recovery, recycling and upgrading of residues from fruit processing is also discussed.

  7. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    PubMed Central

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20–320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17β-estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  8. An impulsive source with variable output and stable bandwidth for underwater acoustic experiments.

    PubMed

    McNeese, Andrew R; Wilson, Preston S; Sagers, Jason D; Knobles, David P

    2014-07-01

    The Combustive Sound Source (CSS) is being developed as an environmentally friendly source to be used in ocean acoustics research and surveys. It has the ability to maintain the same wide bandwidth signal over a 20 dB drop in source level. The CSS consists of a submersible combustion chamber filled with a fuel/oxidizer mixture. The mixture is ignited and the ensuing combustion and bubble activity radiates an impulsive, thus broadband, acoustic pulse. The ability to control pulse amplitude while maintaining bandwidth is demonstrated. PMID:24993239

  9. An impulsive source with variable output and stable bandwidth for underwater acoustic experiments.

    PubMed

    McNeese, Andrew R; Wilson, Preston S; Sagers, Jason D; Knobles, David P

    2014-07-01

    The Combustive Sound Source (CSS) is being developed as an environmentally friendly source to be used in ocean acoustics research and surveys. It has the ability to maintain the same wide bandwidth signal over a 20 dB drop in source level. The CSS consists of a submersible combustion chamber filled with a fuel/oxidizer mixture. The mixture is ignited and the ensuing combustion and bubble activity radiates an impulsive, thus broadband, acoustic pulse. The ability to control pulse amplitude while maintaining bandwidth is demonstrated.

  10. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  11. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented. PMID:26931949

  12. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Thomae, R.; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  13. A novel method for the activity measurement of large-area beta reference sources.

    PubMed

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ioan, M R

    2016-03-01

    A novel method has been developed for the activity measurement of large-area beta reference sources. It makes use of two emission rate measurements and is based on the weak dependence between the source activity and the activity distribution for a given value of transmission coefficient. The method was checked experimentally by measuring the activity of two ((60)Co and (137)Cs) large-area reference sources constructed from anodized aluminum foils. Measurement results were compared with the activity values measured by gamma spectrometry. For each source, they agree within one standard uncertainty and also agree within the same limits with the certified values of the source activity. PMID:26701656

  14. Studies of HT and HTO Behavior in the Vicinity of Long-Term Emission Source: Model - Experiment Intercomparison

    SciTech Connect

    Golubev, A. V.; Aleinikov, A. Y.; Golubeva, V. N.; Khabibulin, M. M.; Glagolev, M. V.; Misatyuk, S. E.; Mavrin, S. V.; Belot, Y. A.; Raskob, W.; Tate, P. J.

    2003-02-24

    There are presented in the research results of HT and HTO deposition and the model of HT (HTO) atmosphere concentration in the vicinity of a long-term HT and HTO emission source. Scavenging of HTO by precipitations was studied in 6 field experiments. The site of the scavenging experiments was around a 30 m emission source. The sampling arcs were chosen at 150-300 m from the base of the source to minimize dry deposition on the precipitation collectors. Data of the scavenging experiments are presented. Kinetics of HT deposition to soil through its oxidation has been studied in laboratory conditions. The activity of HTO converted in the soil sample during a certain period of time was used to determine the oxidation rate. This rate varies, depending on the catalytic and/or biological activity of the soil material. Theoretical considerations have shown that the deposition rate can be expressed by the effective rate of oxidation, which formally corresponds to the first-order HT oxidation. HT deposition rates are reported. The model, used for assessments, takes into account atmospheric dispersion, deposition and reemission. The model of HTO wet deposition is taken into account kinetics of HTO exchange between vapor and liquid phase with parameters such as rain drop spectra, rain intensity, condensation-evaporation on drop's interface. Gauss type formulae for continuous emission source is used to calculate HTO atmospheric concentration. Meteorological data are used as input parameters for modeling. The data presented on HT deposition to soil and HTO washout by precipitation is required for assessment of consequences of HT (HTO) release into the atmosphere.

  15. Long Duration Multi-hohlraum X-ray Sources for Eagle Nebula Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Heeter, Robert; Martinez, David; Casner, Alexis; Villette, Bruno; Mancini, Roberto; Pound, Marc

    2013-10-01

    A novel foam-filled multi-hohlraum long-duration x-ray source has been demonstrated at the Omega EP laser and used to obtain L-band spectra of photoionized Ti. A larger scale version of the source will be used in the Science on NIF Eagle Nebula experiments studying dynamic evolution of distinctive pillar and cometary structures in star-forming clouds, where the long duration and directionality of photoionizing radiation from nearby stars generates new classes of flows and instabilities. At NIF, a target representing an astrophysical molecular cloud will be placed several mm from an x-ray source lasting 40-100 ns. At EP, three hohlraums were illuminated in sequence with 3.3 kJ pulses lasting 6 ns, or 4.3 kJ pulses lasting 10 ns, generating 18 or 30 ns of x-ray output at 90-100 eV color temperature. Performance of the source was validated using the μ DMX and VSG spectrometers, ASBO VISAR, and x-ray pinhole imagery. The HYDRA code suggests the EP-scale source can also be shot at NIF with at least 10 kJ per hohlraum. The multi-hohlraum source concept has potential further application to hard x-ray sources, soft x-ray backlighters, and nonlinear ablative hydrodynamics. Prepared by LLNL under Contract DE-AC52-07NA27344. J. Kane supported by DOE OFES grant HEDLP LAB 11-583.

  16. A HIGH CURRENT DENSITY LI+ ALUMINO-SILICATE ION SOURCE FOR TARGET HEATING EXPERIMENTS

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.

    2011-03-23

    The NDCX-II accelerator for target heating experiments has been designed to use a large diameter ({approx_equal} 10.9 cm) Li{sup +} doped alumino-silicate source with a pulse duration of 0.5 {micro}s, and beam current of {approx_equal} 93 mA. Characterization of a prototype lithium alumino-silicate sources is presented. Using 6.35mm diameter prototype emitters (coated on a {approx_equal} 75% porous tungsten substrate), at a temperature of {approx_equal} 1275 C, a space-charge limited Li{sup +} beam current density of {approx_equal} 1 mA/cm{sup 2} was measured. At higher extraction voltage, the source is emission limited at around {approx_equal} 1.5 mA/cm{sup 2}, weakly dependent on the applied voltage. The lifetime of the ion source is {approx_equal} 50 hours while pulsing the extraction voltage at 2 to 3 times per minute. Measurements show that the life time of the ion source does not depend only on beam current extraction, and lithium loss may be dominated by neutral loss or by evaporation. The life time of a source is around {ge} 10 hours in a DC mode extraction, and the extracted charge is {approx_equal} 75% of the available Li in the sample. It is inferred that pulsed heating may increase the life time of a source.

  17. Hen's egg as a source of valuable biologically active substances.

    PubMed

    Zdrojewicz, Zygmunt; Herman, Marta; Starostecka, Ewa

    2016-01-01

    The aim of this article is to show current knowledge concerning valuable substances biologically active present in hen eggs and underline important nutritive role of hen eggs. Hen egg is a good source of nutrients such as proteins, vitamins (A, B2, B6, B12, D, E, K), minerals and lipids. The significant part of lipids is a group of unsaturated phospholipids, which are components of cell membranes, act protectively on the cardiovascular system and contribute to a decrease of cholesterol level and blood pressure. Therefore, the consumption of unsaturated phospholipids is recommended especially in patients suffering from diseases of the cardiovascular system. Another important substance is egg cystatin, which has a wide spectrum of biological functions, for example the ability to stimulate cell growth, inhibit inflammatory processes and has antibacterial and antiviral properties. Other substance presented in the egg white which helps fight bacteria is lysozyme. It is used in medicine as an aid in antibiotic therapy and analgesic in the course of infection, as well as in tumor malignancies. Among the components contained in the egg yolk there is also immunoglobulin Y which due to its therapeutic importance deserves special attention. Its use offers the possibility of replacing chemotherapeutic agents in the treatment of bacterial infections of digestive system, as well as an opportunity for the development of medicine associated with passive immunization of patients. The egg is a rich source of retinol which gradual depletion in the organism causes many eye pathologies. A very important and useful part of the egg, used in medicine is a shell and its membranes, due to the high collagen content relevant in the treatment of connective tissue diseases. PMID:27383572

  18. Infrasound Interferometry for Active and Passive Sources: A Synthetic Example for Waves Refracted in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Fricke, J.; Ruigrok, E. N.; Evers, L. G.; El Allouche, N.; Simons, D.; Wapenaar, C. A.

    2012-12-01

    The travel time of infrasound through the stratosphere depends on the temperature profile and the wind speed. These atmospheric conditions can be estimated by determining the travel times between different receivers (microbarometers). Therefore the determination of the travel time of infrasound between different receivers becomes more and more important. An approach to determine the travel time is infrasound interferometry. In this work, the infrasound interferometry is applied to synthetic data of active and passive sources refracted by the stratosphere is tested. The synthetic data were generated with a raytracing model. The inputs of the raytracing model are the atmospheric conditions and a source wavelet. As source wavelet we used blast waves and microbaroms. With the atmospheric conditions and the source wavelet the raytracing model calculates the raypath and the travel time of the infrasound. In order to simulate the measurement of a receiver the rays which reach the receiver need to be found. The rays which propagate from a source to the receiver are called eigen rays. The simulation of the receiver measurements takes into account the travel time along the eigen rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. The simulated measurements of the different receivers are combined to synthetic barograms. Two synthetic experiments were performed with the described model. In the first experiment the interferometry was applied to barograms of active sources like blast waves. The second experiment with microbaroms tests the applicability of interferometry to barograms of passive sources. In the next step infrasound interferometry will be applied to measured barograms. These barograms are measured with the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR

  19. In-space technology flight experiments: Middeck 0-gravity Dynamics Experiment (MODE) and Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.

    1991-01-01

    The topics addressed are covered in viewgraph form. The objective of the Middeck 0-gravity Dynamics Experiment (MODE) programs is to study gravity dependent nonlinearities associated with fluid slosh and truss structure dynamics. MODE provides a reusable facility for on-orbit dynamics testing of small scale test articles in the shirt sleeve environment on the Shuttle middeck. Flight program objective of Middeck Active Control Experiment (MACE) is to study gravity effects on the performance and stability of controlled structures.

  20. New conditioning procedure derived from operating experience with the Common Long-Pulse Ion Source

    SciTech Connect

    Scoville, B.G.; Madruga, M.; Hong, R.M.; Phillips, J.C.

    1993-10-01

    The DIII-D neutral beam system utilizes an 80 kV version of the Common Long-Pulse Ion Source designed by Lawrence Berkeley Laboratories (LBL) and originally built by RCA. Eight of these ion sources are mounted on four beamlines to provide a total of 20 MW of injected deuterium neutral power to the DIII-D tokamak. To support the DIII-D one-shift operation, neutral beams must be readied in a relatively short period of time each day, typically one hour. During non-operating periods conditioning time for the ion sources is limited, due to the costs of associated support services and the need to perform corrective and preventive maintenance. The experience gained over a six year period has resulted in finely tuned procedures for the conditioning and operation of these ion sources. Recently, an ion source was conditioned which had been accidentally filled with water for several days, resulting in surface corrosion and deconditioning of the grids and surfaces. The method of successful recovery along with data, experience and procedures derived this event and normal operations will be detailed and discussed.

  1. Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA

    SciTech Connect

    Manuel, M. J.-E.; Zylstra, A. B.; Rinderknecht, H. G.; Casey, D. T.; Rosenberg, M. J.; Sinenian, N.; Li, C. K.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.

    2012-06-15

    A monoenergetic proton source has been characterized and a modeling tool developed for proton radiography experiments at the OMEGA [T. R. Boehly et al., Opt. Comm. 133, 495 (1997)] laser facility. Multiple diagnostics were fielded to measure global isotropy levels in proton fluence and images of the proton source itself provided information on local uniformity relevant to proton radiography experiments. Global fluence uniformity was assessed by multiple yield diagnostics and deviations were calculated to be {approx}16% and {approx}26% of the mean for DD and D{sup 3}He fusion protons, respectively. From individual fluence images, it was found that the angular frequencies of Greater-Than-Or-Equivalent-To 50 rad{sup -1} contributed less than a few percent to local nonuniformity levels. A model was constructed using the Geant4 [S. Agostinelli et al., Nuc. Inst. Meth. A 506, 250 (2003)] framework to simulate proton radiography experiments. The simulation implements realistic source parameters and various target geometries. The model was benchmarked with the radiographs of cold-matter targets to within experimental accuracy. To validate the use of this code, the cold-matter approximation for the scattering of fusion protons in plasma is discussed using a typical laser-foil experiment as an example case. It is shown that an analytic cold-matter approximation is accurate to within Less-Than-Or-Equivalent-To 10% of the analytic plasma model in the example scenario.

  2. Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Zylstra, A. B.; Rinderknecht, H. G.; Casey, D. T.; Rosenberg, M. J.; Sinenian, N.; Li, C. K.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.

    2012-06-01

    A monoenergetic proton source has been characterized and a modeling tool developed for proton radiography experiments at the OMEGA [T. R. Boehly et al., Opt. Comm. 133, 495 (1997)], 10.1016/S0030-4018(96)00325-2 laser facility. Multiple diagnostics were fielded to measure global isotropy levels in proton fluence and images of the proton source itself provided information on local uniformity relevant to proton radiography experiments. Global fluence uniformity was assessed by multiple yield diagnostics and deviations were calculated to be ˜16% and ˜26% of the mean for DD and D3He fusion protons, respectively. From individual fluence images, it was found that the angular frequencies of ≳50 rad-1 contributed less than a few percent to local nonuniformity levels. A model was constructed using the Geant4 [S. Agostinelli et al., Nuc. Inst. Meth. A 506, 250 (2003)], 10.1016/S0168-9002(03)01368-8 framework to simulate proton radiography experiments. The simulation implements realistic source parameters and various target geometries. The model was benchmarked with the radiographs of cold-matter targets to within experimental accuracy. To validate the use of this code, the cold-matter approximation for the scattering of fusion protons in plasma is discussed using a typical laser-foil experiment as an example case. It is shown that an analytic cold-matter approximation is accurate to within ≲10% of the analytic plasma model in the example scenario.

  3. Point source moving above a finite impedance reflecting plane - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1978-01-01

    A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.

  4. Advanced Light Source activity report 1996/97

    SciTech Connect

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  5. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Littlefield, R. G. (Editor)

    1983-01-01

    Information concerning active and planned spacecraft and experiments is included. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and fundng of individual countries as well as cooperative arrangements among different countries.

  6. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor)

    1977-01-01

    Information concerning active and planned spacecraft and experiments is reported. The information includes a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  7. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor); Horowitz, R. (Editor)

    1978-01-01

    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  8. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  9. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Brecht, J. J. (Editor)

    1974-01-01

    Information dealing with active and planned spacecraft and experiments known to the National Space Science Data Center (NSSDC) is presented. Included is information concerning a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft represent the efforts and funding of individual countries, as well as cooperative arrangements among different countries.

  10. Physical Activity Experiences of Boys with and without ADHD

    ERIC Educational Resources Information Center

    Harvey, William J.; Reid, Greg; Bloom, Gordon A.; Staples, Kerri; Grizenko, Natalie; Mbekou, Valentin; Ter-Stepanian, Marina; Joober, Ridha

    2009-01-01

    Physical activity experiences of 12 age-matched boys with and without attention-deficit hyperactivity disorder (ADHD) were explored by converging information from Test of Gross Motor Development-2 assessments and semistructured interviews. The knowledge-based approach and the inhibitory model of executive functions, a combined theoretical lens,…

  11. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  12. Creative Activities in the Language Experience Approach to Teaching Reading.

    ERIC Educational Resources Information Center

    Brennan, Alison

    This study was conducted to determine the effect that hands-on, creative activity using the Language Experience Approach would have on language usage in students' written stories. Twenty-five fifth grade students were randomly divided into three sample groups. Sample A received hands-on, creative stimulus and art materials; Sample B looked at and…

  13. Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. Several forums have identified a number of specific questions that require supporting field experiments. Addressing these issues as soon as p...

  14. Young Asian Women Experiences of the Summer Activities Initiative.

    ERIC Educational Resources Information Center

    Kirby, Laura

    2002-01-01

    Interviews and observations focused on experiences of 15 young Asian women at a 5-day summer adventure program in southern England. Participants seemed bored with presentations about future career options, activities lost their challenge through repetition, and debriefing was weak. However, the women connected with the transferable skills of trust…

  15. K{sup +} ion source for the heavy ion Induction Linac System Experiment ILSE

    SciTech Connect

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-05-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K{sup +} ion beam is emitted thermionically into a diode gap from alumina-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4in. to 7in.) source able to deliver high current ({approximately}800 mA) low emittance (E{sub n} < .5 {pi} mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. We report on the 1in. source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, we shall report on the extension of the fabricating technique to large diameter sources (up to 7in.), measured ion emission performance, measured surface temperature uniform heating power considerations for large sources.

  16. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Sun, L. T.; Cui, B. Q.; Lian, G.; Yang, Y.; Ma, H. Y.; Tang, X. D.; Zhang, X. Z.; Zhang, Z. M.; Liu, W. P.

    2016-09-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H+, 10 emA He+ and 2.0 emA He2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  17. Physical activity related information sources predict physical activity behaviors in adults with type 2 diabetes.

    PubMed

    Plotnikoff, Ronald C; Johnson, Steven T; Karunamuni, Nandini; Boule, Normand G

    2010-12-01

    Physical activity (PA) is a key management strategy for type 2 diabetes. Despite the known benefits, PA levels are low. Whether the low level of PA is related to lack of knowledge or support is not fully understood. This study was conducted to describe where and how often adults with type 2 diabetes receive and seek information related to PA and examine the relationships between the source and quality of PA information with PA behaviors. A series of questions related to the source and quality of PA information were added to a baseline survey distributed to the participants (N = 244) of the Canadian Aerobic and Resistance Training in Diabetes (CARED) study. Physicians and television were found to be the main sources of PA-related information. In our cross-sectional model, sources of PA-related information other than that from health care professionals explained 14% (p = .05) and 16% (p < .05) of the variance for aerobic-based and resistance training behaviors and 22% (p < .01) and 15% (p < .05) for these behaviors in our longitudinal model. Physical activity (PA)-related information is widely available to adults with type 2 diabetes. Neither the quantity nor the quality of the PA information provided by health care professionals predicted PA behavior. These data provide further insight into the modes with which PA can be promoted to adults with type 2 diabetes. PMID:21170787

  18. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    SciTech Connect

    LBNL; Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-04-20

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li{sup +} ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 {micro}s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance {approx}2 {pi}-mm-mrad. Here, lithium aluminosilicate ion sources, of {beta}-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 {micro}s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V{sup 3/2}. A space-charge limited beam density of {approx}1 mA/cm{sup 2} was measured at 1275 C temperature, after allowing a conditioning time of about {approx} 12 hours. Maximum emission limited beam current density of {ge} 1.8mA/cm{sup 2} was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 {+-} 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino

  19. Visual Experience Modulates Spatio-Temporal Dynamics of Circuit Activation

    PubMed Central

    Wang, Lang; Fontanini, Alfredo; Maffei, Arianna

    2011-01-01

    Persistent reduction in sensory drive in early development results in multiple plastic changes of different cortical synapses. How these experience-dependent modifications affect the spatio-temporal dynamics of signal propagation in neocortical circuits is poorly understood. Here we demonstrate that brief visual deprivation significantly affects the propagation of electrical signals in the primary visual cortex. The spatio-temporal spread of circuit activation upon direct stimulation of its input layer (Layer 4) is reduced, as is the activation of L2/3 – the main recipient of the output from L4. Our data suggest that the decrease in spatio-temporal activation of L2/3 depends on reduced L4 output, and is not intrinsically generated within L2/3. The data shown here suggest that changes in the synaptic components of the visual cortical circuit result not only in alteration of local integration of excitatory and inhibitory inputs, but also in a significant decrease in overall circuit activation. Furthermore, our data indicate a differential effect of visual deprivation on L4 and L2/3, suggesting that while feedforward activation of L2/3 is reduced, its activation by long range, within layer inputs is unaltered. Thus, brief visual deprivation induces experience-dependent circuit re-organization by modulating not only circuit excitability, but also the spatio-temporal patterns of cortical activation within and between layers. PMID:21743804

  20. Background evaluation for the neutron sources in the Daya Bay experiment

    NASA Astrophysics Data System (ADS)

    Gu, W. Q.; Cao, G. F.; Chen, X. H.; Ji, X. P.; Li, G. S.; Ling, J. J.; Liu, J.; Qian, X.; Wang, W.

    2016-10-01

    We present an evaluation of the background induced by 241Am-13C neutron calibration sources in the Daya Bay reactor neutrino experiment. As a significant background for electron-antineutrino detection at 0.26 ± 0.12 per detector per day on average, it has been estimated by a Monte Carlo simulation that was benchmarked by a special calibration data set. This dedicated data set also provides the energy spectrum of the background.

  1. Large aperture micro-focus KB mirrors for spectroscopy experiments at the Advanced Light Source

    SciTech Connect

    Warwick, T.; Andresen, N.; Comins, J.; Franck, A.; Gilles, M.; Tonnessen, T.; Tyliszczak, T.

    2004-06-04

    General purpose refocus mirrors using Kirkpatrick-Baez geometry have been designed, built and installed at a new undulator beam-line facility to provide spot sizes smaller than 10 microns for specialized spectroscopy experiments at the Advanced Light Source. All the available flux is focused and the focal length is adjustable. The mirrors are fully computer controlled and can be detuned to create a spot as big as 500 microns.

  2. Perceiving active listening activates the reward system and improves the impression of relevant experiences.

    PubMed

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sasaki, Akihiro T; Sugawara, Sho K; Tanabe, Hiroki C; Shinohara, Ryoji; Sugisawa, Yuka; Tokutake, Kentaro; Mochizuki, Yukiko; Anme, Tokie; Sadato, Norihiro

    2015-01-01

    Although active listening is an influential behavior, which can affect the social responses of others, the neural correlates underlying its perception have remained unclear. Sensing active listening in social interactions is accompanied by an improvement in the recollected impressions of relevant experiences and is thought to arouse positive feelings. We therefore hypothesized that the recognition of active listening activates the reward system, and that the emotional appraisal of experiences that had been subject to active listening would be improved. To test these hypotheses, we conducted functional magnetic resonance imaging (fMRI) on participants viewing assessments of their own personal experiences made by evaluators with or without active listening attitude. Subjects rated evaluators who showed active listening more positively. Furthermore, they rated episodes more positively when they were evaluated by individuals showing active listening. Neural activation in the ventral striatum was enhanced by perceiving active listening, suggesting that this was processed as rewarding. It also activated the right anterior insula, representing positive emotional reappraisal processes. Furthermore, the mentalizing network was activated when participants were being evaluated, irrespective of active listening behavior. Therefore, perceiving active listening appeared to result in positive emotional appraisal and to invoke mental state attribution to the active listener. PMID:25188354

  3. Perceiving active listening activates the reward system and improves the impression of relevant experiences

    PubMed Central

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sasaki, Akihiro T.; Sugawara, Sho K.; Tanabe, Hiroki C.; Shinohara, Ryoji; Sugisawa, Yuka; Tokutake, Kentaro; Mochizuki, Yukiko; Anme, Tokie; Sadato, Norihiro

    2015-01-01

    Although active listening is an influential behavior, which can affect the social responses of others, the neural correlates underlying its perception have remained unclear. Sensing active listening in social interactions is accompanied by an improvement in the recollected impressions of relevant experiences and is thought to arouse positive feelings. We therefore hypothesized that the recognition of active listening activates the reward system, and that the emotional appraisal of experiences that had been subject to active listening would be improved. To test these hypotheses, we conducted functional magnetic resonance imaging (fMRI) on participants viewing assessments of their own personal experiences made by evaluators with or without active listening attitude. Subjects rated evaluators who showed active listening more positively. Furthermore, they rated episodes more positively when they were evaluated by individuals showing active listening. Neural activation in the ventral striatum was enhanced by perceiving active listening, suggesting that this was processed as rewarding. It also activated the right anterior insula, representing positive emotional reappraisal processes. Furthermore, the mentalizing network was activated when participants were being evaluated, irrespective of active listening behavior. Therefore, perceiving active listening appeared to result in positive emotional appraisal and to invoke mental state attribution to the active listener. PMID:25188354

  4. Large-N Seismic Deployment at the Source Physics Experiment (SPE) Site

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.; Pitarka, A.

    2015-12-01

    The Source Physics Experiment (SPE) is multi-institutional and multi-disciplinary project that consists of a series of chemical explosion experiments at the Nevada National Security Site. The goal of SPE is to understand the complicated effect of earth structures on source energy partitioning and seismic wave propagation, develop and validate physics-based monitoring, and ultimately better discriminate low-yield nuclear explosions from background seismicity. Deployment of a large number of seismic sensors is planned for SPE to image the full 3-D wavefield with about 500 three-component sensors and 500 vertical component sensors. This large-N seismic deployment will operate near the site of SPE-5 shot for about one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources. This presentation focuses on the design of the large-N seismic deployment. We show how we optimized the sensor layout based on the geological structure and experiment goals with a limited number of sensors. In addition, we will also show some preliminary record sections from deployment. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  5. Groundwater seepage landscapes from local or distal sources in experiments and on Mars

    NASA Astrophysics Data System (ADS)

    Marra, W. A.; McLelland, S. J.; Parsons, D. R.; Murphy, B. J.; Hauber, E.; Kleinhans, M. G.

    2015-02-01

    Theater-headed valleys can form due to groundwater sapping, but these valleys could also be the result of knick-point (waterfall) erosion generated by overland flow. This morphological ambiguity hampers the interpretation of such valleys on Mars, especially due to insufficient knowledge of material properties, but the climate implications are quite different. Instead of single-valley morphology, metrics of the entire landscape may provide diagnostic insight in the formative hydrological conditions. However, flow patterns and the resulting landscapes are different for different sources of groundwater and poorly understood. We aim to increase our understanding of the formation of the entire landscapes by sapping from different sources of groundwater and to provide a framework of landscape metrics of such systems to aid interpretation of such landscapes. We study sapping from local and distal sources of groundwater in sandbox experiments and combine our results with previous experiments. Key results are that groundwater piracy acts on distally-fed valleys, which results in a sparsely dissected landscape of many small and a few large valleys while locally-fed valleys result in a densely dissected landscape. In addition, distally-fed valleys grow into the direction of the groundwater source while locally-fed channels grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flat horizontal surfaces. As an example, we apply these results to two Martian cases. The valleys of Louros Valles show properties of sapping by a local source and Nirgal Vallis shows evidence of a distal source, which is likely groundwater from Tharsis.

  6. Decision-Making in Flight with Different Convective Weather Information Sources: Preliminary Results from the Langley CoWS Experiment (COnvective Weather Sources)

    NASA Technical Reports Server (NTRS)

    Chamberlain, Jim; Latorella, Kara

    2003-01-01

    This viewgraph presentation provides information on an airborne experiment designed to test the decision making of pilots receiving different sources of meteorological data. The presentation covers the equipment used in the COnvective Weather Sources (CoWS) Experiment), including the information system and display devices available to some of the subjects. It also describes the experiment, which featured teams of general aviation pilots, who were onboard but did not actually fly the aircraft used in the experiment. The presentation includes the results of a survey of the subjects' confidence.

  7. Vocalisations of the bigeye Pempheris adspersa: characteristics, source level and active space.

    PubMed

    Radford, Craig A; Ghazali, Shahriman; Jeffs, Andrew G; Montgomery, John C

    2015-03-01

    Fish sounds are an important biological component of the underwater soundscape. Understanding species-specific sounds and their associated behaviour is critical for determining how animals use the biological component of the soundscape. Using both field and laboratory experiments, we describe the sound production of a nocturnal planktivore, Pempheris adspersa (New Zealand bigeye), and provide calculations for the potential effective distance of the sound for intraspecific communication. Bigeye vocalisations recorded in the field were confirmed as such by tank recordings. They can be described as popping sounds, with individual pops of short duration (7.9±0.3 ms) and a peak frequency of 405±12 Hz. Sound production varied during a 24 h period, with peak vocalisation activity occurring during the night, when the fish are most active. The source level of the bigeye vocalisation was 115.8±0.2 dB re. 1 µPa at 1 m, which is relatively quiet compared with other soniferous fish. Effective calling range, or active space, depended on both season and lunar phase, with a maximum calling distance of 31.6 m and a minimum of 0.6 m. The bigeyes' nocturnal behaviour, characteristics of their vocalisation, source level and the spatial scale of its active space reported in the current study demonstrate the potential for fish vocalisations to function effectively as contact calls for maintaining school cohesion in darkness.

  8. Specification of High Activity Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    International Commission on Radiation Units and Measurements, Washington, DC.

    The report is concerned with making recommendations for the specifications of gamma ray sources, which relate to the quantity of radioactive material and the radiation emitted. Primary consideration is given to sources in teletherapy and to a lesser extent those used in industrial radiography and in irradiation units used in industry and research.…

  9. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  10. Low-cost Active Structural Control Space Experiment (LASC)

    NASA Technical Reports Server (NTRS)

    Robinett, Rush; Bukley, Angelia P.

    1992-01-01

    The DOE Lab Director's Conference identified the need for the DOE National Laboratories to actively and aggressively pursue ways to apply DOE technology to problems of national need. Space structures are key elements of DOD and NASA space systems and a space technology area in which DOE can have a significant impact. LASC is a joint agency space technology experiment (DOD Phillips, NASA Marshall, and DOE Sandia). The topics are presented in viewgraph form and include the following: phase 4 investigator testbed; control of large flexible structures in orbit; INFLEX; Controls, Astrophysics; and structures experiments in space; SARSAT; and LASC mission objectives.

  11. Active radiometric calorimeter for absolute calibration of radioactive sources

    SciTech Connect

    Stump, K.E.; DeWerd, L.A.; Rudman, D.A.; Schima, S.A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  12. Experience and Lessons Learned from Conditioning of Spent Sealed Sources in Singapore - 13107

    SciTech Connect

    Hong, Dae-Seok; Kang, Il-Sik; Jang, Kyung-Duk; Jang, Won-Hyuk; Hoo, Wee-Teck

    2013-07-01

    In 2010, IAEA requested KAERI (Korea Atomic Energy Research Institute) to support Singapore for conditioning spent sealed sources. Those that had been used for a lightning conductor, check source, or smoke detector, various sealed sources had been collected and stored by the NEA (National Environment Agency) in Singapore. Based on experiences for the conditioning of Ra-226 sources in some Asian countries since 2000, KAERI sent an expert team to Singapore for the safe management of spent sealed sources in 2011. As a result of the conditioning, about 575.21 mCi of Am-241, Ra-226, Co-60, and Sr-90 were safely conditioned in 3 concrete lining drums with the cooperation of the KAERI expert team, the IAEA supervisor, the NEA staff and local laborers in Singapore. Some lessons were learned during the operation: (1) preparations by a local authority are very helpful for an efficient operation, (2) a preliminary inspection by an expert team is helpful for the operation, (3) brief reports before and after daily operation are useful for communication, and (4) a training opportunity is required for the sustainability of the expert team. (authors)

  13. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments.

    PubMed

    Dickson, B M; Cornett, E M; Ramjan, Z; Rothbart, S B

    2016-01-01

    Microarray-based proteomic platforms have emerged as valuable tools for studying various aspects of protein function, particularly in the field of chromatin biochemistry. Microarray technology itself is largely unrestricted in regard to printable material and platform design, and efficient multidimensional optimization of assay parameters requires fluidity in the design and analysis of custom print layouts. This motivates the need for streamlined software infrastructure that facilitates the combined planning and analysis of custom microarray experiments. To this end, we have developed ArrayNinja as a portable, open source, and interactive application that unifies the planning and visualization of microarray experiments and provides maximum flexibility to end users. Array experiments can be planned, stored to a private database, and merged with the imaged results for a level of data interaction and centralization that is not currently attainable with available microarray informatics tools. PMID:27423857

  14. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  15. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  16. Imaging magnetic sources in the presence of superconducting surfaces : model&experiment

    SciTech Connect

    Matlachov, A. N.; Espy, M. A.; Volegov, P.; Flynn, E. R.; Maharajh, K.; Kraus, Robert H., Jr.

    2001-01-01

    The forward physics model describing the effect of a superconducting surface on the magnetic field distribution resulting from specific magnetic sources has numerous applications ranging from basic physics experiments to large superconducting magnets used in energy storage and magnetic resonance imaging. In this paper, we describe the novel application of a superconducting imaging surface (SIS) to enhance the performance of systems designed to directly observe and localize human brain function. Magnetoencephalography (MEG) measures the weak magnetic fields emanating from the brain as a direct consequence of the neuronal currents resulting from brain function[1]. The extraordinarily weak magnetic fields are measured by an array of SQUID (Superconducting QUantum Interference Device) sensors. The position and vector characteristics of these neuronal sources can be estimated from the inverse solution of the field distribution at the surface of the head. In addition, MEG temporal resolution is unsurpassed by any other method currently used for brain imaging. Although MEG source reconstruction is limited by solutions of the electromagnetic inverse problem, constraints used for source localization produce reliable results. A novel MEG system incorporating a SIS has been designed and built at Los Alamos with the goal of dramatically improving source localization accuracy while mitigating limitations of current systems (e.g. low signal-to-noise, cost, bulk). We incorporate shielding and source field measurement into an integrated design and combine the latest SQUID and data acquisition technology. The Los Alamos MEG system is based on the principal that fields from nearby sources measured by a SQUID sensor array while the SIS simultaneously shields the sensor array from distant noise fields. In general, Meissner currents flow in the surface of superconductors, preventing any significant penetration of magnetic fields. A hemispherical SIS with a brim, or helmet, surrounds

  17. Seismic Reflectivity Evolution Beneath Sakurajima Volcano, Japan, from 2009 through 2014, Revealed with Rounds of Controlled-source Seismic Experiments

    NASA Astrophysics Data System (ADS)

    Tsutsui, T.; Iguchi, M.; Tameguri, T.; Nakamichi, H.

    2015-12-01

    Evolution in seismic reflectivity is detected beneath an active volcano, Sakurajima Volcano, from 2009 through 2014 with using controlled seismic experiments . The reflectivity variation is interpreted to associate with discharging magma. Sakurajima Volcano is the target of this study, which is one of the most active volcanoes in Japan. Seven rounds of the seismic experiment with controlled sources have been conducted annually in the volcano. Two seismic reflection profiles tied up are obtained from the datasets under successful reproduction during rounds. Clear annual variation in seismic reflectivity at 6.2km depth is detected in the northeastern part of Sakurajima during the rounds. The reflectivity marked its maximum on December 2009 on the first intrusion of magma and decreased gradually until December 2013, which coincides with inflation and following deflation in Sakurajima Volcano. The active reflector at 6.2km depth occupies a part of embedded clear reflector. A sandwich structure is invoked as the reflector model. Intrusion of fresh and high temperature magma into the intermediate layer of the model and its decline explains the variation range of reflectivity successfully. Our study presents one of new approaches for sensing magma properties instantaneously and for monitoring active volcanoes.

  18. Preseismic Velocity Changes Observed from Active Source Monitoringat the Parkfield SAFOD Drill Site

    SciTech Connect

    Daley, Thomas; Niu, Fenglin; Silver, Paul G.; Daley, Thomas M.; Cheng, Xin; Majer, Ernest L.

    2008-06-10

    Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. Here we show that such stress changes are measurable by exploiting the stress dependence of seismic wave speed from an active source cross-well experiment conducted at the SAFOD drill site. Over a two-month period we observed an excellent anti-correlation between changes in the time required for an S wave to travel through the rock along a fixed pathway--a few microseconds--and variations in barometric pressure. We also observed two large excursions in the traveltime data that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes at SAFOD. Interestingly, the two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies.

  19. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    SciTech Connect

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 ..mu..amp proton beam is 4.0 x 10/sup 11/ n/cm/sup 2/-s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error.

  20. Preliminary activation calculations for the Poloidal Divertor Experiment

    SciTech Connect

    Judd, J.L.; Scott, A.J.; Nigg, D.W.; Bohn, T.S.

    1981-01-01

    The Poloidal Divertor Experiment (PDX) tokamak is being operated by the Princeton Plasma Physics Laboratory (PPPL) to study plasma cross section shaping, high power neutral beam heating, and divertor control of plasma impurities in tokamaks. Experiments to date have been performed at relatively low power, but with 6 MW of neutral beam power eventually available, high D-D plasma reaction rates are expected that will yield up to 10/sup 15/ 2.45-MeV neutrons per pulse. This neutron emission level is high enough to cause significant neutron-induced machine activation that will limit the occupancy time of personnel entering the room to repair or change parts. The dose rate depends on the location in the room and, of course, the pulsing history prior to entry. This paper describes one-dimensional activation calculations that have been done for PDX to provide preliminary dose rate information for various times after shutdown following one week of high power operation.

  1. Nonpoint sources as external threats to coastal water quality: lessons from Park Service experience

    USGS Publications Warehouse

    Burroughs, R.H.

    1993-01-01

    Program design for nonpoint source control was considered through an analogous problem, external threats to national parks. Nonpoint sources are diffuse land activities that degrade water quality, and recent federal legislation seeks to limit them in coastal areas. External threats occur outside a park boundary but affect the purposes for, or resources within, a park. They have been subject to federal management for many decades. Nonpoint sources are a class of external threat. Therefore, programs to limit them should consider techniques used in part protection. These park techniques include 'hard approaches', which rely on power, usually through legal devices, and 'soft approaches', which utilize shared values and objectives. A linked approach, as exemplified at the Cape Cod National Seashore, appears most promising. In a linked approach, if a soft approach fails, the manager of the protected unit is empowered to take an alternative hard action to protect the resource.

  2. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self.

    PubMed

    Lehmann, D; Faber, P L; Achermann, P; Jeanmonod, D; Gianotti, L R; Pizzagalli, D

    2001-11-30

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions.

  3. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self.

    PubMed

    Lehmann, D; Faber, P L; Achermann, P; Jeanmonod, D; Gianotti, L R; Pizzagalli, D

    2001-11-30

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions. PMID:11738545

  4. Report on Active and Planned Spacecraft and Experiments. [bibliographies

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor); Horwitz, R. (Editor)

    1979-01-01

    Information concerning concerning active and planned spacecraft and experiments known to the National Space Science Data Center are included. The information contains a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries. Approximately 850 articles are included.

  5. The middeck active control experiment: Gravity and suspension effects

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Alexander, H.; Rey, Daniel

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE): Gravity and Suspension Effects are presented. Topics covered include: gravity and suspension influences; gravity and suspension effects on structure; gravity effects on sensors and actuators; modeling of gravity and suspension effects on structure; geometric stiffness theory and initial static deformation calculation; modeling gravity's effect on accelerometers and PMA's; application to MACE; MACE EM configuration study; and MACE DM configuration study.

  6. Nature experience reduces rumination and subgenual prefrontal cortex activation.

    PubMed

    Bratman, Gregory N; Hamilton, J Paul; Hahn, Kevin S; Daily, Gretchen C; Gross, James J

    2015-07-14

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world.

  7. Nature experience reduces rumination and subgenual prefrontal cortex activation.

    PubMed

    Bratman, Gregory N; Hamilton, J Paul; Hahn, Kevin S; Daily, Gretchen C; Gross, James J

    2015-07-14

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world. PMID:26124129

  8. Nature experience reduces rumination and subgenual prefrontal cortex activation

    PubMed Central

    Bratman, Gregory N.; Hamilton, J. Paul; Hahn, Kevin S.; Daily, Gretchen C.; Gross, James J.

    2015-01-01

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world. PMID:26124129

  9. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  10. Preliminary experiments on active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; Burdisso, R. A.; Fuller, C. R.; O'Brien, W. F.

    1993-01-01

    In the preliminary experiments reported here, active acoustic sources positioned around the circumference of a turbofan engine were used to control the fan noise radiated forward through the inlet. The main objective was to demonstrate the potential of active techniques to alleviate the noise pollution that will be produced by the next generation of larger engines. A reduction of up to 19 dB in the radiation directivity was demonstrated in a zone that encompasses a 30-deg angle, near the error sensor, while spillover effects were observed toward the lateral direction. The simultaneous control of two tones was also demonstrated using two identical controllers in a parallel control configuration.

  11. Using Spectral Losses to Map a Damage Zone for the Source Physics Experiments (SPE)

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Abbott, R. E.; Bonal, N.; Preston, L. A.

    2013-12-01

    We performed a series of cross-borehole seismic experiments in support of the Source Physics Experiments (SPE). These surveys, which were conducted in a granitic body using a sparker source and hydrophone string, were designed to image the damage zone from two underground explosions (SPE2 and SPE3). We present results here from a total of six boreholes (the explosive shot emplacement hole and 5 satellite holes, 20-35 meters away) where we found a marked loss of high frequency energy in ray paths traversing the region near the SPE explosions. Specifically, the frequencies above ~400 Hz were lost in a region centered around 45 meters depth, coincident with SPE2 and SPE3 shots. We further quantified these spectral losses, developed a map of where they occur, and evaluated the attenuation effects of raypath length (i.e. source-receiver offset). We attribute this severe attenuation to the inelastic damage (i.e. cracking and pulverizing) caused by the large chemical explosions and propose that frequency attenuation of this magnitude provides yet another tool for detecting the damage due to large underground explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Tunable IR/THz source for pump probe experiments at the European XFEL

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.; Krasilnikov, M.; Stephan, F.

    2013-05-01

    We present a concept of an accelerator based source of powerful, coherent IR/THz radiation for pump-probe experiments at the European XFEL. The electron accelerator is similar to that operating at the PITZ facility. It consists of an rf gun and a warm accelerating section (energy up to 30 MeV). The radiation is generated in an APPLE-II type undulator, thus providing polarization control. Radiation with wavelength below 200 micrometers is generated using the mechanism of SASE FEL. Powerful coherent radiation with wavelength above 200 micrometers is generated in the undulator by a tailored (compressed) electron beam. Properties of the radiation are: wavelength range is 10 to 1000 micrometers (30 THz - 0.3 THz), radiation pulse energy is up to a few hundred microjoule, peak power is 10 to 100 MW, spectrum bandwidth is 2 - 3 %. Pump-probe experiments involving ultrashort electron pulses can be realized as well. The time structure of the THz source and x-ray FEL are perfectly matched since the THz source is based on the same technology as the injector of the European XFEL. A similar scheme can also be realized at LCLS, SACLA, or SWISS FEL with S-band rf accelerator technology.

  13. Data Release Report for Source Physics Experiment 1 (SPE-1), Nevada National Security Site

    SciTech Connect

    Townsend, Margaret; Mercadente, Jennifer

    2014-04-28

    The first Source Physics Experiment shot (SPE-1) was conducted in May 2011. The explosive source was a ~100-kilogram TNT-equivalent chemical set at a depth of 60 meters. It was recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100 meters) and far-field (more than 100 meters) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes around the shot and a set of singlecomponent vertical accelerometers on the surface. The far-field network comprised a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 meters to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the first Source Physics Experiment and the various types of near-field and far-field data that are available.

  14. DEPTH CONTINUOUS HYDRAULIC CONDUCTIVITY PROFILING USING AN ACTIVE SOURCE PENETROMETER

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M.; Elsworth, D.

    2009-12-01

    A method is developed to recover depth-continuous hydraulic conductivity profiles of an unconsolidated saturated aquifer using an active source penetrometer, the Hydraulic Profiling Tool (HPT). The tool yields estimates of K through continuous injection of fluid in the subsurface from a small port on the probe shaft while controlled measurements of net applied fluid pressure required to maintain a specified flow rate (typically 350 mL/min) are recorded. The tool gathers these data of flow rate and measured applied pressure during halted and constant-rate penetration (typically 2cm/sec) of the probe. The analysis is developed in two parts, first to explore the interplay between advective effects controlled by penetration rate and secondly flow volume effects controlled by the targeted flow rate. These two effects are analyzed through their respective influence on the measured applied pressure response in ΔP/σv’-Q/ΔP space, which shows a linear relationship for the flow rate to applied pressure response when Q/ΔP > 1 and when Q/ΔP < 1 the response tends towards an asymptotic limit representing soil failure limits as ΔP/σv’ > 1. The analysis shows that penetration rate does not significantly influence the applied pressure response at the tested penetration rates (0 ≤ U(cm/s)≤ 4). The targeted applied flow rate does however influence the applied pressure response as flow rates less than ~300 mL/min show a scattering of the data in ΔP/σv’-Q/ΔP space, where above 300 mL/min the data begins to form a linear response. A targeted flow rate of QT = 400mL/min is suggested as a suitable flow rate based on this analysis. Measurements of hydraulic conductivity are then obtained for the HPT data through the derivation of an equation based on a recast form of Darcy’s law where considerations of the flow geometry as K = (QHPT/ΔP)(δw/πΦ). K profiles obtained for the HPT system are then compared against K profiles obtained from an independent method (PSU

  15. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    SciTech Connect

    Schmerge, J.; Adolphsen, C.; Corbett, J.; Dolgashev, V.; Durr, H.; Fazio, M.; Fisher, A.; Frisch, J.; Gaffney, K.; Guehr, M.; Hastings, J.; Hettel, B.; Hoffmann, M.; Hogan, M.; Holtkamp, N.; Huang, X.; Huang, Z.; Kirchmann, P.; LaRue, J.; Limborg, C.; Lindenberg, A.; Loos, H.; Maxwell, T.; Nilsson, A.; Raubenheimer, T.; Reis, D.; Ross, M.; Shen, Z. -X.; Stupakov, G.; Tantawi, S.; Tian, K.; Wu, Z.; Xiang, D.; Yakimenko, V.

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  16. Calorimetric method for determination of {sup 51}Cr neutrino source activity

    SciTech Connect

    Veretenkin, E. P. Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kozlova, Yu. P.; Mirmov, I. N.

    2015-12-15

    Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on {sup 51}Cr with an accuracy of 0.5–1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.

  17. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a experiment, resulting in a marked increase of its tension with other searches, under the standard set of phenomenological assumptions. The method is illustrated for other target materials (superheated and noble liquids).

  18. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a experiment, resulting in a marked increase of its tension with other searches, under the standard set of phenomenological assumptions. The method is illustrated for other target materials (superheated and noble liquids). PMID:23745854

  19. An ultra-stable voltage source for precision Penning-trap experiments

    NASA Astrophysics Data System (ADS)

    Böhm, Ch.; Sturm, S.; Rischka, A.; Dörr, A.; Eliseev, S.; Goncharov, M.; Höcker, M.; Ketter, J.; Köhler, F.; Marschall, D.; Martin, J.; Obieglo, D.; Repp, J.; Roux, C.; Schüssler, R. X.; Steigleder, M.; Streubel, S.; Wagner, Th.; Westermann, J.; Wieder, V.; Zirpel, R.; Melcher, J.; Blaum, K.

    2016-08-01

    An ultra-stable and low-noise 25-channel voltage source providing 0 to -100 V has been developed. It will supply stable bias potentials for Penning-trap electrodes used in high-precision experiments. The voltage source generates all its supply voltages via a specially designed transformer. Each channel can be operated either in a precision mode or can be dynamically ramped. A reference module provides reference voltages for all the channels, each of which includes a low-noise amplifier to gain a factor of 10 in the output stage. A relative voltage stability of δV / V ≈ 2 ×10-8 has been demonstrated at -89 V within about 10 min.

  20. Laboratory experiments designed to provide limits on the radionuclide source term for the NNWSI Project

    SciTech Connect

    Oversby, V.M.; McCright, R.D.

    1984-11-01

    The Nevada Nuclear Waste Storage Investigations Project is investigating the suitability of the tuffaceous rocks at Yucca Mountain Nevada for potential use as a high-level nuclear waste repository. The horizon under investigation lies above the water table, and therefore offers a setting that differs substantially from other potential repository sites. The unsaturated zone environment allows a simple, but effective, waste package design. The source term for radionuclide release from the waste package will be based on laboratory experiments that determine the corrosion rates and mechanisms for the metal container and the dissolution rate of the waste form under expected long term conditions. This paper describes the present status of laboratory results and outlines the approach to be used in combining the data to develop a realistic source term for release of radionuclides from the waste package. 16 refs., 3 figs., 1 tab.

  1. Information-Driven Active Audio-Visual Source Localization.

    PubMed

    Schult, Niclas; Reineking, Thomas; Kluss, Thorsten; Zetzsche, Christoph

    2015-01-01

    We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source's position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot's mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system's performance and discuss possible areas of application. PMID:26327619

  2. Matter under extreme conditions experiments at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; Nagler, B.; Alonso-Mori, R.; Barbrel, B.; Brown, S. B.; Chapman, D. A.; Chen, Z.; Curry, C. B.; Fiuza, F.; Gamboa, E.; Gauthier, M.; Gericke, D. O.; Gleason, A.; Goede, S.; Granados, E.; Heimann, P.; Kim, J.; Kraus, D.; MacDonald, M. J.; Mackinnon, A. J.; Mishra, R.; Ravasio, A.; Roedel, C.; Sperling, P.; Schumaker, W.; Tsui, Y. Y.; Vorberger, J.; Zastrau, U.; Fry, A.; White, W. E.; Hasting, J. B.; Lee, H. J.

    2016-05-01

    The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump–probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the first experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering measurements on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. These complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness x-rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. These studies have demonstrated our ability to measure fundamental thermodynamic properties that determine the state of matter in the HED physics regime.

  3. Matter under extreme conditions experiments at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; Nagler, B.; Alonso-Mori, R.; Barbrel, B.; Brown, S. B.; Chapman, D. A.; Chen, Z.; Curry, C. B.; Fiuza, F.; Gamboa, E.; Gauthier, M.; Gericke, D. O.; Gleason, A.; Goede, S.; Granados, E.; Heimann, P.; Kim, J.; Kraus, D.; MacDonald, M. J.; Mackinnon, A. J.; Mishra, R.; Ravasio, A.; Roedel, C.; Sperling, P.; Schumaker, W.; Tsui, Y. Y.; Vorberger, J.; Zastrau, U.; Fry, A.; White, W. E.; Hasting, J. B.; Lee, H. J.

    2016-05-01

    The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the first experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering measurements on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. These complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness x-rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. These studies have demonstrated our ability to measure fundamental thermodynamic properties that determine the state of matter in the HED physics regime.

  4. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2)

    SciTech Connect

    Antoun, T; Xu, H; Vorobiev, O; Lomov, I

    2011-10-20

    Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal scientific objective of the source physics experimental campaign in the Climax Stock granitic outcrop. A modeling effort has been undertaken by LLNL to complement the experimental campaign, and over the long term provide a validated computation capability for the nuclear explosion monitoring community. The approach involves performing the near-field nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be coupled together to provide a comprehensive source-to-sensor modeling capability. The technical approach involves pre-test predictions of each of the SPE experiments using their state of the art modeling capabilities, followed by code improvements to alleviate deficiencies identified in the pre-test predictions. This spiral development cycle wherein simulations are used to guide experimental design and the data from the experiment used to improve the models is the most effective approach to enable a transition from the descriptive phenomenological models in current use to the predictive, hybrid physics models needed for a science-based modeling capability for nuclear explosion monitoring. The objective of this report is to describe initial results of non-linear motion predictions of the first two SPE shots in the Climax Stock: a 220-lb shot at a depth of 180 ft (SPE No.1), and a 2570-lb shot at a depth of 150 ft (SPE No.2). The simulations were performed using the LLNL ensemble granite model, a model developed to match velocity and displacement attenuation from HARDHAT, PILE DRIVER, and SHOAL, as well as Russian and French nuclear test data in granitic rocks. This model represents the state of the art modeling capabilities as they existed when the SPE campaign was

  5. Students' Experiences of Active Engagement through Cooperative Learning Activities in Lectures

    ERIC Educational Resources Information Center

    Cavanagh, Michael

    2011-01-01

    This article reports on students' experiences of lectures which included many opportunities for active engagement through cooperative learning activities. At the end of a 13-week semester-long unit, 113 students completed a questionnaire which contained five open-ended questions focusing on the extent to which the students thought that the lecture…

  6. Analysis and Simulations of Near-Field Ground Motion from Source Physics Experiments (spe)

    NASA Astrophysics Data System (ADS)

    Vorobiev, O.; Xu, H.; Lomov, I.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2012-12-01

    This work is focused on analysis of near-field measurements (up to 50-70 m from the source) recorded during Source Physics Experiments SPE1, SPE2 and SPE3 in a granitic formation (the Climax Stock) at the Nevada National Security Site (NNSS). The explosive source used in these experiments is a sensitized heavy ANFO (SHANFO) with a well characterized equation of state. The first event, SPE1, had a yield of 0.1 ton, and was detonated at a 55 m depth of burial in a spherical cavity of about 0.3 m radius. SPE2 and SPE3 had an explosive yield of 1 ton, and they were both detonated in the same cavity at a depth of burial of 45 meters. One of the main goals of these experiments was to investigate the possible mechanisms of shear wave generation in the nonlinear source region. Another objective, relating specifically to the SPE2-SPE3 sequence, was to investigate the effect of damage from one explosion on the response of the medium to a second explosion of the same yield and at the same location as the first explosion. Comparison of the results from SPE2 and SPE3 show some interesting trends. . At the shot level, and at deeper locations, the data from SPE3 seem to agree quite well with SPE2 data, indicating that damage from SPE2 had little to no effect on the response of the medium at these locations. On the other hand, SPE3 data consistently show delay in arrival times as well as reduced wave amplitudes both at 50 ft (16 m) depth and at the ground surface, indicating that above the shot horizon damage from SPE2 had a perceptible effect on the SPE3 near field motions. The quality of the near field data at some gages from the SPE1 and SPE2 events is somewhat questionable, with orientation uncertainties making it difficult to ascertain with confidence the extent to which shear wave generation in the source region affected near field motions. New gages were strategically added to the SPE3 test bed to provide the data needed to address this issue and verify previous

  7. The MODE family of on-orbit experiments: The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.; Deluis, Javier; Waldman, Mel; Bicos, Andy

    1990-01-01

    A flight experiment entitled the Middeck Active Control Experiment (MACE), proposed by the Space Engineering Research Center (SERC) at the Massachusetts Institute of Technology, is described. This is the second in a family of flight experiments being developed at MIT. The first is the Middeck 0-Gravity Dynamics Experiment (MODE) which investigates the nonlinear behavior of contained fluids and truss structures in zero gravity. The objective of the MACE program is to investigate and validate the modeling of the dynamics of an actively controlled flexible, articulating, multibody platform free floating in zero gravity. A rationale and experimental approach for the program are presented. The rationale shows that on-orbit testing, coupled with ground testing and a strong analytical program, is necessary in order to fully understand both how flexibility of the platform affects the pointing problem, as well as how gravity perturbs this structural flexibility causing deviations between 1- and 0-gravity behavior. The experimental approach captures the essential physics of multibody platforms, by identifying the appropriate attributes, tests, and performance metrics of the test article and defines the tests required to successfully validate the analytical framework.

  8. Optical Microscopy Characterization for Borehole U-15n#12 in Support of NCNS Source Physics Experiment

    SciTech Connect

    Wilson, Jennifer E.; Sussman, Aviva Joy

    2015-05-22

    Optical microscopy characterization of thin sections from corehole U-15n#12 is part of a larger material characterization effort for the Source Physics Experiment (SPE). The SPE program was conducted in Nevada with a series of explosive tests designed to study the generation and propagation of seismic waves inside Stock quartz monzonite. Optical microscopy analysis includes the following: 1) imaging of full thin sections (scans and mosaic maps); 2) high magnification imaging of petrographic texture (grain size, foliations, fractures, etc.); and 3) measurement of microfracture density.

  9. X-ray Optics and Diagnostics for the First Experiments on the Linac Coherent Light Source

    SciTech Connect

    Wootton, A; Arthur, J; Barbee, T; Bionta, R; London, R; Park, H-S; Ryutov, D; Spiller, E; Tatchyn, R

    2001-06-13

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration < 300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We discuss some of the proposed solutions, and give specific examples related to the planned initial experiments.

  10. An Analysis of Gamma-ray Burst Time Profiles from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1996-01-01

    This proposal requested funding to measure the durations of gamma-ray bursts (GRB) in the 4B catalog as well as to study the structure of GRB time profiles returned by the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory. The duration (T90) was to be measured using the same techniques and algorithms developed by the principal investigator for the 3B data. The profile structure studies fall into the two categories of variability and fractal analyses.

  11. Development and operating experience of a short-period superconducting undulator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ivanyushenkov, Y.; Harkay, K.; Abliz, M.; Boon, L.; Borland, M.; Capatina, D.; Collins, J.; Decker, G.; Dejus, R.; Dooling, J.; Doose, C.; Emery, L.; Fuerst, J.; Gagliano, J.; Hasse, Q.; Jaski, M.; Kasa, M.; Kim, S. H.; Kustom, R.; Lang, J. C.; Liu, J.; Moog, E.; Robinson, D.; Sajaev, V.; Schroeder, K.; Sereno, N.; Shiroyanagi, Y.; Skiadopoulos, D.; Smith, M.; Sun, X.; Trakhtenberg, E.; Vasserman, I.; Vella, A.; Xiao, A.; Xu, J.; Zholents, A.; Gluskin, E.; Lev, V.; Mezentsev, N.; Syrovatin, V.; Tsukanov, V.; Makarov, A.; Pfotenhauer, J.; Potratz, D.

    2015-04-01

    A decade-long effort at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) on development of superconducting undulators culminated in December 2012 with the installation of the first superconducting undulator "SCU0" into Sector 6 of the APS storage ring. The device was commissioned in January 2013 and has been in user operation since. This paper presents the magnetic and cryogenic design of the SCU0 together with the results of stand-alone cold tests. The initial commissioning and characterization of SCU0 as well as its operating experience in the APS storage ring are described.

  12. Gamma-ray burst locations from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Brock, M. N.; Meegan, C. A.; Roberts, F. E.; Fishman, G. J.; Wilson, R. B.; Paciesas, W. S.; Pendleton, G. N.

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) consists of eight anisotropic gamma-ray spectrometers at the corners of the Compton Gamma Ray Observatory. BATSE monitors the full sky from a fixed orientation and determines the direction of gamma-ray bursts with an accuracy appropriate for studying the bursts' celestial distribution. We describe the calculation of gamma-ray burst directions from measurements made by BATSE. We present a sample of calculated directions from BATSE's measurement of solar flaxes and compare the calculated directions with the solar direction. We describe the systematic errors apparent in these data and discuss ongoing efforts to correct them.

  13. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    PubMed

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  14. Advisory Committee on human radiation experiments. Supplemental Volume 2a, Sources and documentation appendices. Final report

    SciTech Connect

    1995-01-01

    This large document provides a catalog of the location of large numbers of reports pertaining to the charge of the Presidential Advisory Committee on Human Radiation Research and is arranged as a series of appendices. Titles of the appendices are Appendix A- Records at the Washington National Records Center Reviewed in Whole or Part by DoD Personnel or Advisory Committee Staff; Appendix B- Brief Descriptions of Records Accessions in the Advisory Committee on Human Radiation Experiments (ACHRE) Research Document Collection; Appendix C- Bibliography of Secondary Sources Used by ACHRE; Appendix D- Brief Descriptions of Human Radiation Experiments Identified by ACHRE, and Indexes; Appendix E- Documents Cited in the ACHRE Final Report and other Separately Described Materials from the ACHRE Document Collection; Appendix F- Schedule of Advisory Committee Meetings and Meeting Documentation; and Appendix G- Technology Note.

  15. Mixing of a point-source indoor pollutant: Numerical predictions and comparison with experiments

    SciTech Connect

    Lobscheid, C.; Gadgil, A.J.

    2002-01-01

    In most practical estimates of indoor pollutant exposures, it is common to assume that the pollutant is uniformly and instantaneously mixed in the indoor space. It is also commonly known that this assumption is simplistic, particularly for point sources, and for short-term or localized indoor exposures. We report computational fluid dynamics (CFD) predictions of mixing time of a point-pulse release of a pollutant in an unventilated mechanically mixed isothermal room. We aimed to determine the adequacy of the standard RANS two-equation ({kappa}-{var_epsilon}) turbulence model to predict the mixing times under these conditions. The predictions were made for the twelve mixing time experiments performed by Drescher et al. (1995). We paid attention to adequate grid resolution, suppression of numerical diffusion, and careful simulation of the mechanical blowers used in the experiments. We found that the predictions are in good agreement with experimental measurements.

  16. Using the Fermilab proton source for a muon to electron conversion experiment

    SciTech Connect

    Ankenbrandt, C.; Bogert, D.; DeJongh, F.; Geer, S.; McGinnis, D.; Neuffer, D.; Popovic, M.; Prebys, E.; /Fermilab

    2006-11-01

    The Fermilab proton source is capable of providing 8 GeV protons for both the future long-baseline neutrino program (NuMI), and for a new program of low energy muon experiments. In particular, if the 8 GeV protons are rebunched and then slowly extracted into an external beamline, the resulting proton beam would be suitable for a muon-to-electron conversion experiment designed to improve on the existing sensitivity by three orders of magnitude. We describe a scheme for the required beam manipulations. The scheme uses the Accumulator for momentum stacking, and the Debuncher for bunching and slow extraction. This would permit simultaneous operation of the muon program with the future NuMI program, delivering 10{sup 20} protons per year at 8 GeV for the muon program at the cost of a modest ({approx}10%) reduction in the protons available to the neutrino program.

  17. Solar neutrino experiments and a test for neutrino oscillations with radioactive sources

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1980-01-01

    The results of the Brookhaven solar neutrino experiment are given and compared to the most recent standard solar model calculations. The observations are about a factor of 4 below theoretical expectations. In view of the uncertainties involved in the theoretical models of the sun, the discrepancy is not considered to be evidence for neutrino oscillations. The status of the development of a gallium solar neutrino detector is described. Radiochemical neutrino detectors can be used to search for ..nu../sub e/ oscillations by using megacurie sources of monoenergetic neutrinos like /sup 65/Zn. A quantitative evaluation of possible experiments using the Brookhaven chlorine solar neutrino detector and a gallium detector is given. 6 figures, 3 tables.

  18. Groundwater seepage landscapes with local or distal sources in experiments and on Mars

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Marra, Wouter A.; Hauber, Ernst; McLelland, Stuart; Murphy, Brendan; Parsons, Daniel

    2015-04-01

    Groundwater has probably played an important role in shaping the surface of Mars. However, the hydrological origin of many typical Martian groundwater features is hampered by the lack of coupling between subsurface processes and surface morphology. Here we focus on the formation of theater-headed valleys. The basic morphology of such valleys can form by erosion through groundwater seepage (sapping), but similar valley morphology can also be the result of overland flow with waterfall-enhanced erosion. This morphological ambiguity complicates the interpretation of such valleys on Mars, but their climatic implications are quite different. Instead of the ambiguous single-valley morphology, metrics of the entire landscape may provide a diagnostic insight into the formative hydrological conditions. We aim to increase our understanding of the formation of entire landscapes by sapping processes and their hydrological implications by providing a framework for morphological metrics of different types of sapping systems. We study sapping from different groundwater sources using large-scale sandbox experiments in the Total Environmental Simulator at the University of Hull and combine our results with previous experiments. Importantly, flow patterns and the resulting landscapes are significantly different for the different sources of groundwater. The main differences are between sapping that results from either local or distal sources. Key results of our study are that groundwater piracy acts on distally-fed valleys, which results in a sparsely dissected landscape of many small and a few large valleys, while locally-fed valleys result in a densely dissected landscape. In addition, distally-fed valleys grow towards the direction of the groundwater source while locally-fed channels grow in a broad range of directions and have strong tendency to bifurcate, particularly on flat horizontal surfaces. To exemplify these differences, we apply the results to aid the interpretation of

  19. Factors affecting the pore space transformation during hydrocarbon generation in source rock (shales): laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.

    2014-12-01

    Oil and gas generation is a set of processes which taking place in the interior, the processes can't be observable in nature. In the process of dumping the source rock, organic matter is transformed into a complex of high-molecular compounds - precursors of oil and gas (kerogen). Entering of a source column for specific thermobaric conditions, triggers the formation of low molecular weight hydrocarbon compounds. Generation of sufficient quantities of hydrocarbons leads to the primary fluid migration within the source rock. For the experiment were selected mainly siliceous-carbonate composition rocks from Domanic horizon South-Tatar arch. The main aim of experiment was heating the rocks in the pyrolyzer to temperatures which correspond katagenes stages. For monitoring changes in the morphology of the pore space X-ray microtomography method was used. As a result, when was made a study of the composition of mineral and organic content of the rocks, as well as textural and structural features, have been identified that the majority of the rock samples within the selected collection are identical. However, characteristics such as organic content and texture of rocks are different. Thus, the experiment was divided into two parts: 1) the study of the influence of organic matter content on the morphology of the rock in the process of thermal effects; 2) study the effect of texture on the primary migration processes for the same values of organic matter. Also, an additional experiment was conducted to study the dynamics of changes in the structure of the pore space. At each stage of the experiment morphology of altered rocks characterized by the formation of new pores and channels connecting the primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. At the second stage of the research also revealed that the conversion of the pore

  20. Information-Driven Active Audio-Visual Source Localization

    PubMed Central

    Schult, Niclas; Reineking, Thomas; Kluss, Thorsten; Zetzsche, Christoph

    2015-01-01

    We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source’s position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot’s mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system’s performance and discuss possible areas of application. PMID:26327619

  1. Issues in Humanoid Audition and Sound Source Localization by Active Audition

    NASA Astrophysics Data System (ADS)

    Nakadai, Kazuhiro; Okuno, Hiroshi G.; Kitano, Hiroaki

    In this paper, we present an active audition system which is implemented on the humanoid robot "SIG the humanoid". The audition system for highly intelligent humanoids localizes sound sources and recognizes auditory events in the auditory scene. Active audition reported in this paper enables SIG to track sources by integrating audition, vision, and motor movements. Given the multiple sound sources in the auditory scene, SIG actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. However, such an active head movement inevitably creates motor noises.The system adaptively cancels motor noises using motor control signals and the cover acoustics. The experimental result demonstrates that active audition by integration of audition, vision, and motor control attains sound source tracking in variety of conditions.onditions.

  2. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  3. Plant folklore: a tool for predicting sources of antitumor activity?

    PubMed

    Spjut, R W; Perdue, R E

    1976-08-01

    The National Cancer Institute's record of "active plants" (extracts which showed a significant inhibitory effect in experimental tumor systems) was compared with plants reported in folklore to have medicinal or poisonous properties. The occurrence of active plants was found to be higher in plants reported in folk literature than in plants collected at random, suggesting a correlation between plants used in folklore and those with anticancer activity.

  4. Network activity of mirror neurons depends on experience.

    PubMed

    Ushakov, Vadim L; Kartashov, Sergey I; Zavyalova, Victoria V; Bezverhiy, Denis D; Posichanyuk, Vladimir I; Terentev, Vasliliy N; Anokhin, Konstantin V

    2013-03-01

    In this work, the investigation of network activity of mirror neurons systems in animal brains depending on experience (existence or absence performance of the shown actions) was carried out. It carried out the research of mirror neurons network in the C57/BL6 line mice in the supervision task of swimming mice-demonstrators in Morris water maze. It showed the presence of mirror neurons systems in the motor cortex M1, M2, cingular cortex, hippocampus in mice groups, having experience of the swimming and without it. The conclusion is drawn about the possibility of the new functional network systems formation by means of mirror neurons systems and the acquisition of new knowledge through supervision by the animals in non-specific tasks.

  5. Seeing mathematics: perceptual experience and brain activity in acquired synesthesia.

    PubMed

    Brogaard, Berit; Vanni, Simo; Silvanto, Juha

    2013-01-01

    We studied the patient JP who has exceptional abilities to draw complex geometrical images by hand and a form of acquired synesthesia for mathematical formulas and objects, which he perceives as geometrical figures. JP sees all smooth curvatures as discrete lines, similarly regardless of scale. We carried out two preliminary investigations to establish the perceptual nature of synesthetic experience and to investigate the neural basis of this phenomenon. In a functional magnetic resonance imaging (fMRI) study, image-inducing formulas produced larger fMRI responses than non-image inducing formulas in the left temporal, parietal and frontal lobes. Thus our main finding is that the activation associated with his experience of complex geometrical images emerging from mathematical formulas is restricted to the left hemisphere.

  6. Mid-latitude ionospheric response to active experiments

    NASA Astrophysics Data System (ADS)

    Foster, John C.

    Understanding the ion chemistry and conditions leading to the formation of ionospheric depletions (ionospheric holes) was an important objective of the NASA active ionospheric experiment program. Millstone Hill radar observations were used to monitor the magnitude and temporal extent of the plasma holes produced under varying conditions. The major objective of the completed project was to provide radar diagnostic support for individual NASA rocket campaigns flown from Wallops Island. Two rocket programs, NICARE and REDAIR 2, were selected by NASA for radar support during the proposal period and pre-launch and in-flight radar observations were provided for each as well as basic reduction of the acquired data for scientific analysis. Radar operations and analysis for both of these experiments were performed as proposed and the work on these projects at M.I.T. was completed.

  7. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-01

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4-5.2 eV and 2 × 1016-4.8 × 1017 m-3, respectively.

  8. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    SciTech Connect

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-15

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup −3}, respectively.

  9. Misty Picture: A Unique Experiment for the Interpretation of the Infrasound Propagation from Large Explosive Sources

    NASA Astrophysics Data System (ADS)

    Gainville, O.; Blanc, E.; Blanc-Benon, P.; Roche, R.; Millet, C.; Le Piver, F.; Piserchia, P.

    2008-12-01

    In the framework of the Comprehensive Nuclear-Test-Ban Treaty, the International Monitoring System develops a 60 micro-barometric stations network. These stations, which records infrasound, detect various powerful natural and artificial sources like long range explosions, oceanic swell, and volcano eruptions. The Misty Picture experiment is a high explosive event (4685 Tons of ANFO) realized in 1987 in New Mexico (US). Infrasound waves were recorded by an amount of 22 sensors installed by the Sandia National Laboratories (J.W. Reed et al., 1977, SAND--87-2978C), the Los Alamos National Laboratories (R.W. Whitaker et al. 1990, 4th LRSP) and the CEA (E. Blanc, 1998, CEA). Multi-reflected tropospheric, stratospheric and thermospheric phases are detected until a distance of 1000 km in a quiet background noise condition. Signals recorded near the source (1 km away) and observed in the geometrical shadow zone (between 150 km and 250 km) are of particular interest. This reference experiment is used to improve our understanding of the atmospheric propagation of infrasound as well as to evaluate our models. Using various methods such as ray tracing and parabolic equation, we investigate effects of the wind, atmospheric absorption, nonlinearity, refraction and scattering by small atmospheric scales on observed phase kinds, their travel time and their waveform.

  10. MEGAPIE project, experience of electromagnetic pumps operation in the Swiss Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Dementjev, S.; Groeschel, F.; Jekabsons, N.

    2008-09-01

    The MEGAPIE project with the aim to design, build and operate a 1 MW liquid metal target in the SINQ facility (Swiss Spallation Neutron Source, Paul Scherrer Institute, Switzerland) was a key experiment on the way to experimental accelerator driven systems (ADS) for transmutation of nuclear waste and for the development of liquid metal spallation targets. The electromagnetic pump system for the target, consisting of two electromagnetic pumps and two flowmeters, was designed and fabricated at the Institute of Physics, University of Latvia (IPUL) in 2003-2004. ATEA (France) integrated the pumps into the target in the beginning of 2005. The assembled target was commissioned at PSI in the frame of the MEGAPIE integral test (MIT) at the end of 2005. The target was being irradiated in the SINQ during 18 weeks in August-December 2006 in the course of the MEGAPIE-SINQ experiment . It was one of the first high-power liquid metal targets coupled with a proton accelerator and operating in a spallation source under full-service conditions. Tables 1, Figs 6, Refs 6.

  11. Discrete and continuum simulations of near-field ground motion from Source Physics Experiments (SPE) (Invited)

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2013-12-01

    This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source Physics Experiments in a granitic formation. One of the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the magnitude in the radial direction) at many locations. Furthermore, azimuthal variations in radial velocities were also observed which cannot be generated by a spherical source in isotropic materials. Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to, heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion at the surface caused by material spall and gravity. We have performed a three dimensional computational studies considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet this approach requires the mesh to be aligned with joints, which may present technical difficulties in three dimensions when multiple non-persistent joints are present. In addition, the discrete method is more computationally expensive. The continuum approach assumes that the joints are stiff and the dilatancy and shear softening can be neglected. In this approach, the joints are modeled as weakness planes within the material, which are imbedded into and pass through many finite elements. The advantage of this approach is that it requires neither sophisticated meshing algorithms nor contact detection

  12. Artifacts as Sources for Problem-Posing Activities

    ERIC Educational Resources Information Center

    Bonotto, Cinzia

    2013-01-01

    The problem-posing process represents one of the forms of authentic mathematical inquiry which, if suitably implemented in classroom activities, could move well beyond the limitations of word problems, at least as they are typically utilized. The two exploratory studies presented sought to investigate the impact of "problem-posing" activities when…

  13. Simulations as Active Assessment?: Typologizing by Purpose and Source

    ERIC Educational Resources Information Center

    Kollars, Nina A.; Rosen, Amanda M.

    2013-01-01

    Assessment through simulation is something that political science pedagogy has yet to explore in a robust manner. This article advances analysis of social science simulation and assessment by laying out a typology of active-learning activities that isolates and examines their potential for assessment. In short, we argue that there are essentially…

  14. Residents’ Preferences for Household Kitchen Waste Source Separation Services in Beijing: A Choice Experiment Approach

    PubMed Central

    Yuan, Yalin; Yabe, Mitsuyasu

    2014-01-01

    A source separation program for household kitchen waste has been in place in Beijing since 2010. However, the participation rate of residents is far from satisfactory. This study was carried out to identify residents’ preferences based on an improved management strategy for household kitchen waste source separation. We determine the preferences of residents in an ad hoc sample, according to their age level, for source separation services and their marginal willingness to accept compensation for the service attributes. We used a multinomial logit model to analyze the data, collected from 394 residents in Haidian and Dongcheng districts of Beijing City through a choice experiment. The results show there are differences of preferences on the services attributes between young, middle, and old age residents. Low compensation is not a major factor to promote young and middle age residents accept the proposed separation services. However, on average, most of them prefer services with frequent, evening, plastic bag attributes and without instructor. This study indicates that there is a potential for local government to improve the current separation services accordingly. PMID:25546279

  15. Residents' preferences for household kitchen waste source separation services in Beijing: a choice experiment approach.

    PubMed

    Yuan, Yalin; Yabe, Mitsuyasu

    2015-01-01

    A source separation program for household kitchen waste has been in place in Beijing since 2010. However, the participation rate of residents is far from satisfactory. This study was carried out to identify residents' preferences based on an improved management strategy for household kitchen waste source separation. We determine the preferences of residents in an ad hoc sample, according to their age level, for source separation services and their marginal willingness to accept compensation for the service attributes. We used a multinomial logit model to analyze the data, collected from 394 residents in Haidian and Dongcheng districts of Beijing City through a choice experiment. The results show there are differences of preferences on the services attributes between young, middle, and old age residents. Low compensation is not a major factor to promote young and middle age residents accept the proposed separation services. However, on average, most of them prefer services with frequent, evening, plastic bag attributes and without instructor. This study indicates that there is a potential for local government to improve the current separation services accordingly. PMID:25546279

  16. Oscillatory Hydraulic Tomography for NAPL Source Zone Characterization: Sandbox Experiment Demonstration

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Zhou, Y.

    2015-12-01

    Characterizing the distribution and extent of NAPL contamination is an important step in determining appropriate remedial actions. NAPL has a complex mode of transportation in the heterogeneous subsurface domain, which results in difficulties for cleaning up contaminated sites. Here, we use sandbox experiments to demonstrate the effectiveness of Oscillatory Hydraulic Tomography (OHT) for NAPL source zone characterization. In a saturated soil fluid system, the effective hydraulic conductivity (K) is dependent on the soil properties, fluid density, and fluid viscosity. By taking advantage of the differences of fluid properties before and after NAPL intrusion, we can estimate the NAPL source zone migration throughout time by imaging changes in effective K. Using OHT testing, we can derive the K heterogeneities before, during and after NAPL intrusion. NAPL source zone can be located by subtracting the background K from the K tomogram after NAPL intrusion. This approach can avoid mass extraction and injection that occurs in traditional hydraulic tomography approaches while obtain a good estimation of subsurface K heterogeneity and NAPL migration. We believe this method is more cost effective and efficient for field remediation applications.

  17. Residents' preferences for household kitchen waste source separation services in Beijing: a choice experiment approach.

    PubMed

    Yuan, Yalin; Yabe, Mitsuyasu

    2014-12-23

    A source separation program for household kitchen waste has been in place in Beijing since 2010. However, the participation rate of residents is far from satisfactory. This study was carried out to identify residents' preferences based on an improved management strategy for household kitchen waste source separation. We determine the preferences of residents in an ad hoc sample, according to their age level, for source separation services and their marginal willingness to accept compensation for the service attributes. We used a multinomial logit model to analyze the data, collected from 394 residents in Haidian and Dongcheng districts of Beijing City through a choice experiment. The results show there are differences of preferences on the services attributes between young, middle, and old age residents. Low compensation is not a major factor to promote young and middle age residents accept the proposed separation services. However, on average, most of them prefer services with frequent, evening, plastic bag attributes and without instructor. This study indicates that there is a potential for local government to improve the current separation services accordingly.

  18. Experiments and simulations of a large area ECR source as an electric propulsion neutralizer

    NASA Astrophysics Data System (ADS)

    Hidaka, Yoshiteru

    The windowed electron cyclotron resonance (ECR) source, invented by Getty, was modified into a windowless ECR source to investigate the potential use of this device as an electron source for the neutralizer of an ion thruster system. This plasma source utilizes linear arrays of permanent magnets placed at the end of a large S-band microwave horn. These magnets are held inside a grill with alternating rows of open spaces and aluminum cross bars. The metal bars are cross-polarized so that microwave radiation transmits through the grill with low reflection. The peak electron density and electron temperature measured 1 cm from the grill surface were 5 x 1010 cm-3 and 10 eV, respectively, for 200 W input microwave power and 1 mTorr argon gas pressure. At the axial distance of 25 cm from the grill surface, these values were 1 x 1010 cm-3 and 4 eV, respectively. The extracted electron current with pulsed bias increased with collector areas and with input microwave powers, as expected, though the increase was not linear. Unexpectedly, however, the current increased as the distance of the collector from the resonance zone was increased. With microwave circuit optimization, the pulsed electron current achieved 0.77 A with a 30-V bias voltage applied to a graphite collector (7.3 cm x 10.7 cm, located 28.3 cm from the grill surface), 200 W input microwave power, and 1 mTorr argon gas pressure. For DC extraction with the same settings, an electron current of 0.51 A was extracted. The 2D simulations using the MAGIC computer code demonstrated electrons gain energy only near the ECR zone (875 gauss contour). The effectiveness of the steel pole pieces designed for the windowless Getty source was also confirmed. The curvature in either electric or magnetic field profile was verified as a necessary condition for ECR to take place. Electron trajectory plots using the TriComp computer code showed electron trapping by the magnetic mirrors. Both experiments and simulations indicated that

  19. Active experiments in the ionosphere and geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.; Cherneva, N. V.; Khomutov, S. Y.; Serovetnikov, A. S.

    2014-11-01

    Variations of ionospheric-magnetospheric relation energy, as one of the possible outer climatology factors, may be traced on the basis of analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Experiments on active impact on the ionosphere have been carried out for quite a long time in Russia as well. The most modern heating stand is located in Alaska; it has been used within the HAARP Program. The possibility of this stand to affect geophysical fields, in particular, the geomagnetic field is of interest.

  20. Electron beam injection during active experiments. II - Collisional effects

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    During active beam experiments, the presence of high neutral densities at low altitudes and/or during thruster firings has been observed to modify the spacecraft charging and the properties of the beam. Two-dimensional (three-velocity) electromagnetic particle simulations with ionizing collisions incorporated are used to investigate the modification of the beam-plasma interaction as the neutral density is increased. It is shown that when the spacecraft is uniformly immersed in a neutral cloud, most of the ionization is produced by direct ionization by the beam and its secondaries, rather than via vehicle-induced or wave-induced ionization for the neutral densities considered.

  1. Modulated spectral activity (MSA) - Implications for planetary radio sources

    NASA Technical Reports Server (NTRS)

    Thieman, James R.; Alexander, Joseph K.; Staelin, David H.

    1988-01-01

    The properties of the Jovian and Saturnian MSA, modulation patterns within the normally diffuse nonthermal radio emission that are characterized by distinctive banded structures of enhanced intensity fluctuations in frequency over time scales of minutes to tens of minutes, are discussed. Although Jovian and Saturnian MSA are both normally observed in the 0.2-1.3-MHz frequency range, similar pattern have been noted in Jovian decametric emission above 30 MHz. The MSA properties are used to constrain the possible source mechanism.

  2. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  3. Feasibility study of an active target for the MEG experiment

    NASA Astrophysics Data System (ADS)

    Papa, A.; Cavoto, G.; Ripiccini, E.

    2014-03-01

    We consider the possibility to have an active target for the upgrade of the MEG experiment (MEG II). The active target should work as (1) a beam monitoring, to continuously measure the muon stopping rate and therefore provide a direct evaluation of the detector acceptance (or an absolute normalization of the stopped muon); and as (2) an auxiliary device for the spectrometer, to improve the determination of the muon decay vertex and consequently to achieve a better positron momentum and angular resolutions, detecting the positron from the muon decay. In this work we studied the feasibility of detecting minimum ionizing particle with a single layer of 250 μm fiber and the capability to discriminate between the signal induced by either a muon or a positron.

  4. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  5. Music Training Enhances Rapid Neural Plasticity of N1 and P2 Source Activation for Unattended Sounds

    PubMed Central

    Seppänen, Miia; Hämäläinen, Jarmo; Pesonen, Anu-Katriina; Tervaniemi, Mari

    2012-01-01

    Neurocognitive studies have demonstrated that long-term music training enhances the processing of unattended sounds. It is not clear, however, whether music training also modulates rapid (within tens of minutes) neural plasticity for sound encoding. To study this phenomenon, we examined whether adult musicians display enhanced rapid neural plasticity compared to non-musicians. More specifically, we compared the modulation of P1, N1, and P2 responses to standard sounds between four unattended passive blocks. Among the standard sounds, infrequently presented deviant sounds were presented (the so-called oddball paradigm). In the middle of the experiment (after two blocks), an active task was presented. Source analysis for event-related potentials (ERPs) showed that N1 and P2 source activation was selectively decreased in musicians after 15 min of passive exposure to sounds and that P2 source activation was found to be re-enhanced after the active task in musicians. Additionally, ERP analysis revealed that in both musicians and non-musicians, P2 ERP amplitude was enhanced after 15 min of passive exposure but only at the frontal electrodes. Furthermore, in musicians, the N1 ERP was enhanced after the active discrimination task but only at the parietal electrodes. Musical training modulates the rapid neural plasticity reflected in N1 and P2 source activation for unattended regular standard sounds. Enhanced rapid plasticity of N1 and P2 is likely to reflect faster auditory perceptual learning in musicians. PMID:22435057

  6. Rotatable spin-polarized electron source for inverse-photoemission experiments

    SciTech Connect

    Stolwijk, S. D. Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.

  7. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  8. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Schofield, N. J., Jr.; Littlefield, R. G.; Elsen, M. F.

    1985-01-01

    This report provides the professional community with information on current and planned spacecraft activity (including both free-flying spacecraft and Shuttle-attached payloads) for a broad range of scientific disciplines. By providing a brief description of each spacecraft and experiment as well as its current status, it is hoped that this document will be useful to many people interested in the scientific, applied, and operational uses of the data collected. Furthermore, for those investigators who are planning or coordinating future observational programs employing a number of different techniques such as rockets, balloons, aircraft, ships, and buoys, this document can provide some insight into the contributions that may be provided by orbiting instruments. The document includes information concerning active and planned spacecraft and experiments. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries, as well as cooperative arrangements among different countries.

  9. Effect of sole nitrogen sources and temperature on activated sludge

    SciTech Connect

    Mines, R.O. Jr.; Sherrard, J.H.

    1999-07-01

    The effects of temperature on biokinetic coefficients used to design aerobic biological systems treating nitrogen deficient wastewaters at a COD: TKN ratio of 13.7:1 are presented. The impact of temperature on substrate removal, waste biosolids production, and oxygen requirements with the effects of nitrification is delineated at temperatures of 5 C, 10 C, 20 C, and 30 C for two nitrogen sources; ammonia and nitrate. Temperature correction coefficients ({theta}) are presented and the implications for the design and operation of suspended growth biological systems are discussed.

  10. Design support of the Burst and Transient Source Experiment (BATSE) of the Gamma Ray Observatory (GRO) mission

    NASA Technical Reports Server (NTRS)

    Stephan, E. A., Jr.

    1986-01-01

    Engineering design specifications and development of the large area detector and photomultiplier tube assemblies for the Burst and Transient Source Experiment (BATSE) of the Gamma Ray Observatory (GRO) mission are examined.

  11. Sources of tropical Atlantic coupled model biases derived from initialised hindcasts and partially coupled sensitivity experiments

    NASA Astrophysics Data System (ADS)

    Deppenmeier, Anna-Lena; Hazeleger, Wilco; Haarsma, Rein; Prodhomme, Chloé; Exarchou, Eleftheria; Doblas-Reyes, Francisco J.

    2016-04-01

    State-of-the-art coupled general circulation models (CGCMs) still fail to simulate the mean state and variability of the tropical Atlantic (TA) climate correctly. We investigate the importance of air-sea interaction at different regions in the TA by means of performing partially coupled sensitivity experiments with the state-of-the-art CGCM EC-Earth3.1. All simulations are intialised from the observed climate state. By studying the initial drift in sensitivity experiments we obtain insight into the tropical dynamics and sources of model bias. We test the influence of realistic wind stress forcing over different regions of the TA on the development of SST as well as other oceanic biases. A series of hindcasts fully initialised in May and run until the end of August are performed with prescribed ERA-Interim zonal and meridional wind stresses over three different regions: firstly, we force the entire TA from 15N - 30S. Secondly, we force the equatorial band only between 5N - 5S, and finally we force the coastal area of the Angola Benguela upwelling region between 0W and the coast and between 5S - 30N. Our setup only affects the oceanic forcing and leaves the atmosphere free to adapt, such that we can identify the air-sea interaction processes in the different regions and their effect on the SST bias in the fully coupled system. The differences between forcing the entire TA and the equatorial region only are very small, which hints to the great importance of the relatively narrow equatorial region. The coastal upwelling area does not strongly affect the equatorial region in our model. We identify the equatorial band as most susceptible to errors in the wind stress forcing and, due to the strong atmosphere-ocean coupling, as source of the main biases in our model. The partially coupled experiments with initialised seasonal hindcasts appear to be a powerful tool to identify the sources of model biases and to identify relevant air-sea interaction processes in the TA.

  12. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  13. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  14. Laser ion source activities at Brookhaven National Laboratory

    DOE PAGES

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010more » of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less

  15. Laser ion source activities at Brookhaven National Laboratory

    SciTech Connect

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010 of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.

  16. Waste tires: A future source of activated carbon?

    SciTech Connect

    1996-01-01

    Millions of used tires are disposed in the United States each year, causing major environmental problems and representing a loss of valuable resources. Currently, over 80% of discarded tires are landfilled (approximately 200 million per year). Because tires disposed in municipal landfills rarely stay buried, regulators, landfill operators, and even the general public are constantly reminded of this problem. These ever-surfacing tires can serve as a breeding ground for disease-causing mosquitoes; in addition, large mounds of tires often catch fire, causing significant air pollution. Recent research indicates that used tires may soon represent a source of carbon-based adsorbents and energy-rich liquid and gaseous hydrocarbons. Details of this research are discussed briefly in this paper. 3 refs., 2 figs.

  17. Construction of a Visible Diode Laser Source for Free Radical Photochemistry and Spectroscopy Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Bronjelyn; Halpern, Joshua B.

    1997-01-01

    Tunable diode lasers are reliable sources of narrow-band light and comparatively cheap. Optical feedback simplifies frequency tuning of the laser diodes. We are building an inexpensive diode laser system incorporating optical feedback from a diffraction grating. The external optical cavity can be used with lasers that emit between 2 and 100 mW, and will also work if they are pulsed, although this will significantly degrade the bandwidth. The diode laser output power and bandwidth are comparable to CW dye lasers used in kinetics and dynamics experiments. However, their cost and maintenance will be much less as will alignment time. We intend to use the diode lasers to investigate CN and C2 kinetics as well as to study dissociation dynamics of atmospherically important molecules.

  18. Cancer-Related Pain and Pain Management: Sources, Prevalence, and the Experiences of Children and Parents.

    PubMed

    Twycross, Alison; Parker, Roslyn; Williams, Anna; Gibson, Faith

    2015-01-01

    Advances in treatment mean children are increasingly cared for by their parents at home, leading to a shift in responsibility from health care professionals to parents. Little is known about parents' pain management experiences and the etiology of pain experienced by children with cancer especially when at home. A rapid review of the literature was undertaken investigating children's cancer-related pain, with emphasis on the management of pain outside the health care setting. Electronic databases were searched and a quality assessment was conducted. Forty-two articles were included. Despite advances in pain management techniques, children with cancer regularly cite pain as the most prevalent symptom throughout the cancer trajectory. The source of pain is usually treatment side effects or painful procedures. Parents find dealing with their child's pain distressing and demanding and may hold misconceptions about pain management. Findings indicate a need for more robust research into parental pain management leading to the development of effective pain management resources for parents.

  19. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  20. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    SciTech Connect

    Sexton, Emily; Snelson, Catherine M; Chipman, Veraun D; Emer, Dudley; White, Bob; Emmit, Ryan; Wright, Al; Drellack, Sigmund; Huckins-Gang, Heather; Mercadante, Jennifer; Floyd, Michael; McGowin, Chris; Cothrun, Chris; Bonal, Nedra

    2013-12-05

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined.

  1. Demonstration of simultaneous experiments using thin crystal multiplexing at the Linac Coherent Light Source.

    PubMed

    Feng, Y; Alonso-Mori, R; Barends, T R M; Blank, V D; Botha, S; Chollet, M; Damiani, D S; Doak, R B; Glownia, J M; Koglin, J M; Lemke, H T; Messerschmidt, M; Nass, K; Nelson, S; Schlichting, I; Shoeman, R L; Shvyd'ko, Yu V; Sikorski, M; Song, S; Stoupin, S; Terentyev, S; Williams, G J; Zhu, D; Robert, A; Boutet, S

    2015-05-01

    Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using a dedicated beam, with no significant differences in quality.

  2. Passive and active structural monitoring experience: Civil engineering applications

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Westermo, B. D.; Crum, D. B.; Law, W. R.; Trombi, R. G.

    2000-05-01

    State Departments of Transportation and regional city government officials are beginning to view the long-term monitoring of infrastructure as being beneficial for structural damage accumulation assessment, condition based maintenance, life extension, and post-earthquake or -hurricane (-tornado, -typhoon, etc.) damage assessment. Active and passive structural monitoring systems were installed over the last few years to monitor concerns in a wide range of civil infrastructure applications. This paper describes the monitoring technologies and systems employed for such applications. Bridge system applications were directed at monitoring corrosion damage accumulation, composite reinforcements for life extension, general service cracking damage related to fatigue and overloads, and post-earthquake damage. Residential system applications were directed primarily at identifying damage accumulation and post-earthquake damage assessment. A professional sports stadium was monitored for isolated ground instability problems and for post-earthquake damage assessment. Internet-based, remote, data acquisition system experience is discussed with examples of long-term passive and active system data collected from many of the individual sites to illustrate the potential for both passive and active structural health monitoring. A summary of system-based operating characteristics and key engineering recommendations are provided to achieve specific structural monitoring objectives for a wide range of civil infrastructure applications.

  3. Dr. Fishman Reviewing Data From the Burst and Transient Source Experiment (BATSE)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (BATSE), and Dr. Chryssa Kouveliotou of Universities Space Research Associates review data from the BATSE. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept a blinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. Because gamma-rays are so powerful, they pass through conventional telescope mirrors. Instead of a mirror, the heart of each BATSE module was a large, flat, transparent crystal that generated a tiny flash of light when struck by a gamma-ray. With an impressive list of discoveries and diverse accomplishments, BATSE could claim to have rewritten astronomy textbooks. Launched aboard the Space Shuttle Orbiter Atlantis during the STS-35 mission in April 1991, the GRO reentered the Earth's atmosphere and ended its successful 9-year mission in June 2000.

  4. Experiences of nursing students in caring of patients in source isolation

    PubMed Central

    Dehkordi, Leila Mardanian; Tavakol, Khosrow

    2011-01-01

    BACKGROUND: Infectious disease control is one of the important components of patient care which can assist in reducing morbidity and mortality. Source isolation is one of the strategies that have used in order to prevent from the spread of contagious infectious diseases. Since nursing student should be able to do the caring in source isolation patients after learning the principles, it's necessary to assess the students’ perception of caring for this client group in order to prepare them for the role of caring. METHODS: This is a qualitative phenomenological study; its participants were selected with maximum variation by purposed sampling from first to fourth year nursing and midwifery students of Isfahan School of Nursing and Midwifery. The students used to do the patient caring during the clinical internship. The sampling done until 10 interview data saturation was obtained. In order to collect data, researcher used depth interview method. Data analysis was performed by seven-stage Collaizzi method. RESULTS: The findings of this study included 6 main concept (themes) from participants’ experiences as following: 1. Stressor agents of caring, 2. Response to stress, 3. Care requirments, 4. Care provider performance, 5. Consequence of care, and 6. Improper caring. CONCLUSIONS: Providing educational programs in terms of isolated patients can reduce anxiety in students which this can lead to more control and prevent the spread of infectious diseases. In addition, studying about patients’ needs can be useful for improving practical interventions and clinical care. PMID:22039374

  5. Experiments with biased side electrodes in electron cyclotron resonance ion sources

    SciTech Connect

    Drentje, A. G. Kitagawa, A.; Uchida, T.; Rácz, R.; Biri, S.

    2014-02-15

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions – i.e., radial directions – that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six “side” electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  6. Study of the Helicon Source Operation in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) Experiment

    NASA Technical Reports Server (NTRS)

    Molvig, Kim; Batishchev, Oleg

    2003-01-01

    During this research period the following models of the VASIMR helicon discharge have been further developed and applied to analyze the on-going VX- 10 ASPL experiment: A) 1D semi-analytical model for a mixed-collisional propellant flow B) OD power and balance model for the whole helicon discharge In this particular research period we have concentrated on the MW-level performance of the VASIMR helicon source. Favorable high-power scaling and reduced ionization costs were obtained, and presented at the VASIMR NASA review in the Fall '02. This Grant is continuation of the previous NAG9-1224 award. The research results are summarized in 14 publications; they were presented as 20+ talks at the major International Conferences and scientific seminars at the leading Academic and Research Institutions. The reported results allowed helicon discharge characterization, understanding of the several experimental observations, and helped to make predictions and propose structural modifications for the advanced VASIMR helicon source operation.

  7. Pulsed neutrons: One year of experience with the new source at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Lander, G. H.

    1983-05-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source based on a 500 MeV proton accelerator operating at 30 Hz and with an average proton current of ≈ 10 μA. Neutron scattering instruments for elastic scattering include two powder diffractometers, a single-crystal diffractometer based on the Laue method and employing a large (30 x 30 cm) position-sensitive scintillation detector, a small-angle diffractometer using a position-sensitive detector, and a polarized-neutron diffractometer which will utilize the spin-refrigerator device to obtain a beam of white polarized neutrons. For inelastic scattering we presently have the crystal-analyzer spectrometer, and two chopper spectrometers capable of providing monoenergetic incident neutron beams of between 100 and 600 meV. From its inception IPNS has been operating in a user mode and the selection of experiments is made by a Program Committee twice a year on the basis of the scientifi cmerit of submitted proposals.

  8. Initial operation of a large-scale Plasma Source Ion Implantation experiment

    SciTech Connect

    Wood, B.P.; Henins, I.; Gribble, R.J.; Reass, W.A.; Faehl, R.J.; Nastasi, M.A.; Rej, D.J.

    1993-10-01

    In Plasma Source Ion Implantation (PSII), a workpiece to be implanted is immersed in a weakly ionized plasma and pulsed to a high negative voltage. Plasma ions are accelerated toward the workpiece and implanted in its surface. Experimental PSII results reported in the literature have been for small workpieces. A large scale PSII experiment has recently been assembled at Los Alamos, in which stainless steel and aluminum workpieces with surface areas over 4 m{sup 2} have been implanted in a 1.5 m-diameter, 4.6 m-length cylindrical vacuum chamber. Initial implants have been performed at 50 kV with 20 {mu}s pulses of 53 A peak current, repeated at 500 Hz, although the pulse modulator will eventually supply 120 kV pulses of 60 A peak current at 2 kHz. A 1,000 W, 13.56 MHz capacitively-coupled source produces nitrogen plasma densities in the 10{sup 15} m{sup {minus}3} range at neutral pressures as low as 0.02 mtorr. A variety of antenna configurations have been tried, with and without axial magnetic fields of up to 60 gauss. Measurements of sheath expansion, modulator voltage and current, and plasma density fill-in following a pulse are presented. The authors consider secondary electron emission, x-ray production, workpiece arcing, implant conformality, and workpiece and chamber heating.

  9. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    SciTech Connect

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  10. Active Experiments on Artificial Air Ionization to Check the Physical Mechanism of Air Electrification by Radon in Seismically Active Area

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Pokhmelnykh, L. A.; Domingues, M.; Bisiacchi, G.

    2005-05-01

    The air ionization in troposphere leads to formation of the large charged clusters of the aerosol size due to water molecules attachment to the new formed ions. This process have several consequences leading to the changes of the air conductivity, formation of large scale space charges and large scale electric field, changes of the air temperature and relative humidity. All these effects were observed experimentally within the interval of two weeks before the strong earthquakes such as Colima earthquake in Mexico (M7.8) on 22 of January 2003 or Parkfield earthquake in USA (M6) on 28 of September 2004. In the case of earthquakes the atmosphere electricity modification is ascribed to the radon ionization and the effects are calculated within the frame of the seismo-ionosphere coupling model. But there are very few systematic sources of the radon monitoring, so the real check of the model is better possible within the frame of the controlled active experiment. Such experiments of the artificial ionization were conducted in Mexico using the large wire antennas producing the air ionization by applying the large electric potential (~ 40 kV) to the elevated circular thin wire of ~ 100 m diameter. It was demonstrated that such impact on the atmosphere can create the effects of the meteorological scale producing the artificial clouds (and rains), and even modify the large scale atmospheric formations as typhoons. Results of the theoretical estimations and active experiments will be demonstrated.

  11. Active experiments, magnetospheric modification, and a naturally occurring analogue

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; Russell, C. T.

    1973-01-01

    Recently, a scheme has been proposed which would modify the magnetosphere by injecting plasma near the equator beyond the plasmapause and initiating wave-particle instabilities. The expected effects have been examined theoretically. Injection of plasma into this region is also a naturally occurring phenomenon produced by the cross-tail electric fields which are associated with geomagnetic activity. For further investigation of magnetospheric instabilities, the advantages of examining artificially injected plasma (control of time and location of injection and of the volume of plasma injected) contrast with the advantages of studying natural enhancements (no extra payload, frequent occurrence). Thus, the two types of experiments are complementary. In preliminary studies of natural plasma enhancements both ULF and ELF emissions have been observed. The ELF noise is consistent with generation by the electron cyclotron instability.

  12. Numerical investigation of the seismo-acoustic responses of the Source Physics Experiment underground explosions

    NASA Astrophysics Data System (ADS)

    Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Glenn, L. A.

    2015-12-01

    We have performed three-dimensional high resolution simulations of underground explosions conducted recently in jointed rock outcrop as part of the Source Physics Experiment (SPE) being conducted at the Nevada National Security Site (NNSS). The main goal of the current study is to investigate the effects of the structural and geomechanical properties on the spall phenomena due to underground explosions and its subsequent effect on the seismo-acoustic signature at far distances. Two parametric studies have been undertaken to assess the impact of different 1) conceptual geological models including a single layer and two layers model, with and without joints and with and without varying geomechanical properties, and 2) depth of bursts of the explosions and explosion yields. Through these investigations we have explored not only the near-field response of the explosions but also the far-field responses of the seismic and the acoustic signatures. The near-field simulations were conducted using the Eulerian and Lagrangian codes, GEODYN and GEODYN -L, respectively, while the far-field seismic simulations were conducted using the elastic wave propagation code, WPP, and the acoustic response using the Kirchhoff-Helmholtz-Rayleigh time-dependent approximation code, KHR. Though a series of simulations, we have recorded the velocity field histories a) at the ground surface on an acoustic-source-patch for the acoustic simulations, and 2) on a seismic-source-box for the seismic simulations. We first analyzed the SPE3 and SPE4-prime experimental data and simulated results, and then simulated SPE5, SPE6/7 to anticipate their seismo-acoustic responses given conditions of uncertainties. SPE experiments were conducted in a granitic formation; we have extended the parametric study to include other geological settings such dolomite and alluvial formations. These parametric studies enabled us 1) investigating the geotechnical and geophysical key parameters that impact the seismo

  13. Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments.

    PubMed

    Illman, Walter A; Berg, Steven J; Liu, Xiaoyi; Massi, Antonio

    2010-11-15

    Dense nonaqueous phase liquids (DNAPL) are prevalent at a large number of sites throughout the world. The variable release history, unstable flow, and geologic heterogeneity make the spatial distribution of DNAPLs complex. This causes difficulties in site remediation contributing to long-term groundwater contamination for decades to centuries. We present laboratory experiments to demonstrate the efficacy of Sequential Successive Linear Estimator (SSLE) algorithm that images DNAPL source zones. The algorithm relies on the fusion of hydraulic and partitioning tracer tomography (HPTT) to derive the best estimate of the K heterogeneity, DNAPL saturation (S(N)) distribution, and their uncertainty. The approach is nondestructive and can be applied repeatedly. Results from our laboratory experiments show that S(N) distributions compare favorably with DNAPL distributions observed in the sandbox but not so with local saturation estimates from core samples. We also found that the delineation of K heterogeneity can have a large impact on computed S(N) distributions emphasizing the importance of accurate delineation of hydraulic heterogeneity.

  14. The high precision measurement of the 144Ce activity in the SOX experiment

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo—Berguño, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Cereseto, R.; Chepurnov, A.; Choi, K.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, C.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssière, C.; Vivier, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    In order to perform a resolutive measurement to clarify the neutrino anomalies and to observe possible short distance neutrino oscillations, the SOX (Short distance neutrino Oscillations with BoreXino) experiment is under construction. In the first phase, a 100 kCi 144Ce-144Pr antineutrino source will be placed under the Borexino detector at the Laboratori Nazionali del Gran Sasso (LNGS), in center of Italy, and the rate measurement of the antineutrino events, observed by the very low radioactive background Borexino detector, will be compared with the high precision (< 1%) activity measurement performed by two calorimeters. The source will be embedded in a 19 mm thick tungsten alloy shield and both the calorimeters have been conceived for measuring the thermal heat absorbed by a water flow. In this report the design of the calorimeters will be described in detail and very preliminary results will be also shown.

  15. Convoy active safety technologies war fighter experiment II

    NASA Astrophysics Data System (ADS)

    Schoenherr, Edward W.

    2009-01-01

    The operational ability to project and sustain forces in distant, anti-access and area denial environments poses new challenges for combatant commanders. One of the new challenges is the ability to conduct sustainment operations at operationally feasible times and places on the battlefield. Combatant commanders require a sustainment system that is agile, versatile, and survivable throughout the range of military operations and across the spectrum of conflict. A key component of conducting responsive, operationally feasible sustainment operations is the ability to conduct sustainment convoys. Sustainment convoys are critical to providing combatant commanders the right support, at the right time and place, and in the right quantities, across the full range of military operations. The ability to conduct sustainment convoys in a variety of hostile environments require force protection measures that address the enemy threat and protect the Soldier. One cost effective, technically feasible method of increasing the force protection for sustainment convoys is the use of robotic follower technology and autonomous navigation. The Convoy Active Safety Technologies (CAST) system is a driver assist, convoy autopilot technology aimed to address these issues. The CAST Warfigher Experiment II, being held at The Nevada Automotive Test Center in the fall of 2008, will continue analysis of the utility of this vehicle following technology not only in measures of system integrity and performance vs. manual driving, but also the physiological effects on the operators themselves. This paper will detail this experiment's methodology and analysis. Results will be presented at the SPIE Electronic Imaging 2009 symposium.

  16. Quantifying the impact of various radioactive background sources on germanium-76 zero-neutrino-double-beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Mizouni, Katarina Leila

    The goal of searching for 0nubetabeta-decay is to probe an absolute neutrino mass scale suggested by the mass-splitting parameters observed by neutrino oscillation experiments. Furthermore, observation of 0nubetabeta-decay is an explicit instance of lepton-number non-conservation. To detect the rare events such as 0nubetabeta-decay, half-lives of the order of 10 25-1027 years have to be probed. Using an active detector with a large volume, such as hundreds of kilograms of HPGe in the case of MAJORANA, and taking efficient measures to mitigate background of cosmic and primordial origins are necessary for the success of a sensitive 0nubetabeta-decay experiment. One focus of the present research is the analysis of data from Cascades, a HPGe crystal array developed at Pacific Northwest National Laboratory in Richland, WA, to determine an upper bound on primordial radiation levels in the cryostat constructed with electroformed copper similar to that electroformed for MAJORANA. It will be shown, however, that there are sources of background much more serious than cryostats in 76Ge experiments. Additionally, experimental applications of the Cascades detector were studied by predicting the sensitivity for a 0nuBB-decay experiment using GEANT4 simulations. Tellurium-130, an even-even nucleus that can undergo 0nubetabeta-decay to either the ground state or first 01+ excited state of 130Xe, was used as an example. The present work developed techniques that will be used for a number of measurements of betabeta-decay half-lives for decays to excited states of the daughter isotopes.

  17. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.

    2013-12-01

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were

  18. Energy cost and energy sources during a simulated firefighting activity.

    PubMed

    Perroni, Fabrizio; Tessitore, Antonio; Cortis, Cristina; Lupo, Corrado; D'artibale, Emanuele; Cignitti, Lamberto; Capranica, Laura

    2010-12-01

    This study aimed to 1) analyze the energy requirement (VO2eq) and the contribution of the aerobic (VO2ex), anaerobic alactic (VO2al), and anaerobic lactic (VO2la-) energy sources of a simulated intervention; 2) ascertain differences in mean VO2 and heart rate (HR) during firefighting tasks; and 3) verify the relationship between time of job completion and the fitness level of firefighters. Twenty Italian firefighters (age = 32 ± 6 yr, VO2peak = 43.1 ± 4.9 mL·kg·min) performed 4 consecutive tasks (i.e., child rescue; 250-m run; find an exit; 250-m run) that required a VO2eq of 406.26 ± 73.91 mL·kg (VO2ex = 86 ± 5%; VO2al = 9 ± 3%; VO2la- = 5 ± 3%). After 30 minutes, the recovery HR (108 ± 15 beats·min) and VO2 (8.86±2.67mL·kg·min) were higher (p < 0.0001) than basal values (HR = 66 ± 8 beats·min; VO2 = 4.57 ± 1.07 mL·kg·min), indicating that passive recovery is insufficient in reducing the cardiovascular and thermoregulatory strain of the previous workload. Differences (p < 0.001) between tasks emerged for mean VO2 and HR, with a lack of significant correlation between the time of job completion and the firefighters' aerobic fitness. These findings indicate that unpredictable working conditions highly challenge expert firefighters who need adequate fitness levels to meet the requirements of their work. Practically, to enhance the fitness level of firefighters, specific interval training programs should include a wide variety of tasks requiring different intensities and decision-making strategies.

  19. Classification of light sources and their interaction with active and passive environments

    SciTech Connect

    El-Dardiry, Ramy G. S.; Faez, Sanli; Lagendijk, Ad

    2011-03-15

    Emission from a molecular light source depends on its optical and chemical environment. This dependence is different for various sources. We present a general classification in terms of constant-amplitude and constant-power sources. Using this classification, we have described the response to both changes in the local density of states and stimulated emission. The unforeseen consequences of this classification are illustrated for photonic studies by random laser experiments and are in good agreement with our correspondingly developed theory. Our results require a revision of studies on sources in complex media.

  20. DrSPINE - New approach to data reduction and analysis for neutron spin echo experiments from pulsed and reactor sources

    SciTech Connect

    Monkenbusch, Michael; Holderer, Olaf; Ohl, Michael

    2015-01-01

    Neutron spin echo (NSE) method at a pulsed neutron source presents new challenges to the data reduction and analysis as compared to the instruments installed at reactor sources. The main advantage of the pulsed source NSE is the ability to resolve the neutron wavelength and collect neutrons over a wider bandwidth. This allows us to more precisely determine the symmetry phase and measure the data for several Q-values at the same time. Based on the experience gained at the SNS NSE - the first, and to date the only one, NSE instrument installed at a pulsed spallation source, we propose a novel and unified approach to the NSE data processing.

  1. The Neuro/PsyGRID calibration experiment: identifying sources of variance and bias in multicenter MRI studies.

    PubMed

    Suckling, John; Barnes, Anna; Job, Dominic; Brennan, David; Lymer, Katherine; Dazzan, Paola; Marques, Tiago Reis; MacKay, Clare; McKie, Shane; Williams, Steve R; Williams, Steven C R; Deakin, Bill; Lawrie, Stephen

    2012-02-01

    Calibration experiments precede multicenter trials to identify potential sources of variance and bias. In support of future imaging studies of mental health disorders and their treatment, the Neuro/PsyGRID consortium commissioned a calibration experiment to acquire functional and structural MRI from twelve healthy volunteers attending five centers on two occasions. Measures were derived of task activation from a working memory paradigm, fractal scaling (Hurst exponent) from resting fMRI, and grey matter distributions from T(1) -weighted sequences. At each intracerebral voxel a fixed-effects analysis of variance estimated components of variance corresponding to factors of center, subject, occasion, and within-occasion order, and interactions of center-by-occasion, subject-by-occasion, and center-by-subject, the latter (since there is no intervention) a surrogate of the expected variance of the treatment effect standard error across centers. A rank order test of between-center differences was indicative of crossover or noncrossover subject-by-center interactions. In general, factors of center, subject and error variance constituted >90% of the total variance, whereas occasion, order, and all interactions were generally <5%. Subject was the primary source of variance (70%-80%) for grey-matter, with error variance the dominant component for fMRI-derived measures. Spatially, variance was broadly homogenous with the exception of fractal scaling measures which delineated white matter, related to the flip angle of the EPI sequence. Maps of P values for the associated F-tests were also derived. Rank tests were highly significant indicating the order of measures across centers was preserved. In summary, center effects should be modeled at the voxel-level using existing and long-standing statistical recommendations.

  2. VOC Source and Inflow Characterization during the Deep Convective Cloud and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Blake, N. J.; Hartt, G.; Barletta, B.; Simpson, I. J.; Schroeder, J.; Hung, Y.; Marrero, J.; Gartner, A.; Hirsch, C.; Meinardi, S.; Blake, D. R.; Zhang, Y.; Apel, E. C.; Hornbrook, R. S.; Campos, T. L.; Emmons, L. K.

    2013-12-01

    More than 50 volatile organic compounds (VOCs) were measured during the Deep Convective Clouds and Chemistry Project (DC3) field campaign, which was based out of Salina, KS May 10 - June 30, 2012. DC3 investigated the impact of deep, mid-latitude continental convective clouds on upper tropospheric composition and chemistry. The UCI Whole Air Sampler (WAS) measured VOCs on board the NASA DC-8 aircraft and the NCAR Trace Organic Gas Analyzer (TOGA) measured VOCs on board the NSF GV. Coordinated flights between the two aircraft produced a rich dataset with which to characterize the inflow and outflow of convective events. While probing storm inflow, numerous natural and anthropogenic sources were encountered, including oil and gas wells in Colorado, Texas, and Oklahoma, biomass burning, biogenic VOC emissions, and other anthropogenic sources (urban, feedlots, etc). The significant and widespread influence of oil and gas activities dominated VOC alkane distributions during DC3, in both inflow and outflow, effectively illustrating the connection between emission and fast vertical transport of VOCs into the free troposphere. We present a mass balance analysis of a flight over TX and OK, which allowed us to estimate oil and gas emissions in that region. The results from this analysis will be compared to previous work in the same area, as well as to emissions from other oil and gas regions and to model simulations from the Community Atmosphere Model with Chemistry (CAM-chem).

  3. MAMBO observations at 240GHz of optically obscured Spitzer sources: source clumps and radio activity at high redshift

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Magliocchetti, M.; de Zotti, G.

    2010-01-01

    Optically very faint (R > 25.5) sources detected by the Spitzer Space Telescope at 24μm represent a very interesting population at redshift z ~ (1.5-3). They exhibit strong clustering properties, implying that they are hosted by very massive haloes, and their mid-infrared emission could be powered by either dust-enshrouded star formation and/or by an obscured active galactic nucleus (AGN). We report observations carried out with the Max Planck Millimetre Bolometer (MAMBO) array at the IRAM 30-m antenna on Pico Veleta of a candidate protocluster with five optically obscured sources selected from the 24-μm Spitzer sample of the First-Look Survey. Interestingly, these sources appear to lie on a high-density filament aligned with the two radio jets of an AGN. Four out of five of the observed sources were detected. We combine these measurements with optical, infrared and radio observations to probe the nature of the candidate protocluster members. Our preliminary conclusions can be summarized as follows: the spectral energy distributions (SEDs) of all sources include both AGN and starburst contributions; the AGN contribution to the bolometric luminosities ranges between 14 and 26 per cent of the total. Such a contribution is enough for the AGN to dominate the emission at 5.8, 8 and 24μm, while the stellar component, inferred from SED fitting, prevails at 1.25mm and at λ < 4.5μm. The present analysis suggests a coherent interplay at high z between extended radio activity and the development of filamentary large-scale structures.

  4. Mapping Epileptic Activity: Sources or Networks for the Clinicians?

    PubMed Central

    Pittau, Francesca; Mégevand, Pierre; Sheybani, Laurent; Abela, Eugenio; Grouiller, Frédéric; Spinelli, Laurent; Michel, Christoph M.; Seeck, Margitta; Vulliemoz, Serge

    2014-01-01

    Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity. PMID:25414692

  5. Generation of Acoustic-Gravity Waves in Ionospheric HF Heating Experiments: Simulating Large-Scale Natural Heat Sources

    NASA Astrophysics Data System (ADS)

    Pradipta, Rezy

    In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence in the ionospheric layer. The main hypothesis is that, the thermal gradients associated with the heat wave fronts could act as a source of powerful AGW capable of triggering ionospheric plasma turbulence over extensive areas. In our investigations, first we are going to examine a case study of the summer 2006 North American heat wave event. Our examination of GPS-derived total electron content (TEC) data over the North American sector reveals a quite noticeable increase in the level of daily plasma density fluctuations during the summer 2006 heat wave period. Comparison with the summer 2005 and summer 2007 data further confirms that the observed increase of traveling ionospheric disturbances (TIDs) during the summer 2006 heat wave period was not simply a regular seasonal phenomenon. Furthermore, a series of field experiments had been carried out at the High-frequency Active Auroral Research Program (HAARP) facility in order to physically simulate the process of AGW/TID generation by large-scale thermal gradients in the ionosphere. In these ionospheric HF heating experiments, we create some time-varying artificial thermal gradients at an altitude of 200--300 km above the Earth's surface using vertically-transmitted amplitude-modulated 0-mode HF heater waves. For our experiments, a number of radio diagnostic instruments had been utilized to detect the characteristic signatures of heater-generated AGW/TID. So far, we have been able to obtain several affirmative indications that some artificial AGW/TID are indeed being radiated out from the heated plasma volume during the HAARP-AGW experiments. Based on the experimental evidence, we may conclude that it is certainly quite plausible for large-scale thermal gradients associated with severe heat wave

  6. 78 FR 24470 - Proposed Information Collection (uSPEQ Consumer Survey Experience (Rehabilitation)) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... AFFAIRS Proposed Information Collection (uSPEQ Consumer Survey Experience (Rehabilitation)) Activity... solicits comments for information needed to measure veterans' experience in VA's rehabilitation programs... Consumer Survey Experience (Rehabilitation). OMB Control Number: 2900-0752. Type of Review: Extension of...

  7. Solar flare injection as analog of active experiment in an ionosphere

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu.; Sinelnikov, V.; Shagimuratov, I.; Kanonidi, Kh.

    At realization of active experiment are always known precisely both localization and amplitude of an entered disturbance (whether at a beam particles or mass injection, whether at heating of an ionosphere by EM wave radiation). The nuclear explosion in atmosphere was the maiden active experiment, but the action source was instant and very multicomponent (shock wave, energetic particles and EM radiation with a broadband spectrum) or, in other words, effect was too complex. The solar flare renders mixed action on near Earth space too, but it is clear separated in time (the short pulse of electromagnetic radiation reaches the Earth behind some minutes, then the solar cosmic rays and after one day (or two) the high-velocity flow of plasma arrive) and space of each components action: ionosphere, polar cap or magnitosphere. Analysis of form and dynamics of the X-ray pulse radiation (data of GOES satellites) from a solar flare (class X17) 28.10.03 shows, that there are all basis to consider it as reference source for active experiment in an ionosphere. For this short pulse of EM radiation the investigation of disturbances (SFE, SID or Crochet) of ionosphere Sq currents system and dynamics of the integral plasma contents (or TEC, the data of GPS constellation) in an ionosphere for a network of Europe midlatitude stations (IGS and INTERMAGNET) are conducted. The availability of a maximum gradient (up to 15 A/km) of loop currents and sharp increase in TEC on a narrow range of Sun zenith angles (Z0=60°-75°) is shown. The observed spatial dependence of intensity of such localized disturbance generated in an ionosphere by short EM pulse from a solar flare is discussed.

  8. Plants as a source of butyrylcholinesterase variants designed for enhanced cocaine hydrolase activity

    PubMed Central

    Larrimore, Katherine E; Barcus, Matthew; Kannan, Latha; Gao, Yang; Zhan, Chang-Guo; Brimijoin, Stephen; Mor, Tsafrir

    2012-01-01

    Cocaine addiction affects millions of people with disastrous personal and social consequences. Cocaine is one of the most reinforcing of all drugs of abuse, and even those who undergo rehabilitation and experience long periods of abstinence have an over 80% chance of relapse. Yet there is no FDA-approved treatment to decrease the likelihood of relapse in rehabilitated addicts. Recent studies, however, have demonstrated a promising potential treatment option with the help of the serum enzyme butyrylcholinesterase (BChE), which is capable of breaking down naturally occurring (−)-cocaine before the drug can influence the reward centers of the brain or affect other areas of the body. This activity of wild-type (WT) BChE, however, is relatively low. This prompted the design of variants of BChE which exhibit significantly improved catalytic activity against (−)-cocaine. Plants are a promising means to produce large amounts of these cocaine hydrolase variants of BChE, cheaply, safely with no concerns regarding human pathogens and functionally equivalent to enzymes derived from other sources. Here, in expressing cocaine-hydrolyzing mutants of BChE in Nicotiana benthamiana using the MagnICON virus-assisted transient expression system, and in reporting their initial biochemical analysis, we provide proof-of-principle that plants can express engineered BChE proteins with desired properties. PMID:23000451

  9. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site.

    PubMed

    Niu, Fenglin; Silver, Paul G; Daley, Thomas M; Cheng, Xin; Majer, Ernest L

    2008-07-10

    Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. One approach is to exploit the stress dependence of seismic wave velocity, and we have investigated this in an active source cross-well experiment at the San Andreas Fault Observatory at Depth (SAFOD) drill site. Here we show that stress changes are indeed measurable using this technique. Over a two-month period, we observed an excellent anti-correlation between changes in the time required for a shear wave to travel through the rock along a fixed pathway (a few microseconds) and variations in barometric pressure. We also observed two large excursions in the travel-time data that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes at SAFOD. The two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies.

  10. Plants as a source of butyrylcholinesterase variants designed for enhanced cocaine hydrolase activity.

    PubMed

    Larrimore, Katherine E; Barcus, Matthew; Kannan, Latha; Gao, Yang; Zhan, Chang-Guo; Brimijoin, Stephen; Mor, Tsafrir

    2013-03-25

    Cocaine addiction affects millions of people with disastrous personal and social consequences. Cocaine is one of the most reinforcing of all drugs of abuse, and even those who undergo rehabilitation and experience long periods of abstinence have more than 80% chance of relapse. Yet there is no FDA-approved treatment to decrease the likelihood of relapse in rehabilitated addicts. Recent studies, however, have demonstrated a promising potential treatment option with the help of the serum enzyme butyrylcholinesterase (BChE), which is capable of breaking down naturally occurring (-)-cocaine before the drug can influence the reward centers of the brain or affect other areas of the body. This activity of wild-type (WT) BChE, however, is relatively low. This prompted the design of variants of BChE which exhibit significantly improved catalytic activity against (-)-cocaine. Plants are a promising means to produce large amounts of these cocaine hydrolase variants of BChE, cheaply, safely with no concerns regarding human pathogens and functionally equivalent to enzymes derived from other sources. Here, in expressing cocaine-hydrolyzing mutants of BChE in Nicotiana benthamiana using the MagnICON virus-assisted transient expression system, and in reporting their initial biochemical analysis, we provide proof-of-principle that plants can express engineered BChE proteins with desired properties.

  11. Active Seismic Monitoring Using High-Power Moveable 40-TONS Vibration Sources in Altay-Sayn Region of Russia

    NASA Astrophysics Data System (ADS)

    Soloviev, V. M.; Seleznev, V. S.; Emanov, A. F.; Kashun, V. N.; Elagin, S. A.; Romanenko, I.; Shenmayer, A. E.; Serezhnikov, N.

    2013-05-01

    determined variations in velocities of longitudinal and transverse waves. Both from 100-tons and 40-tons vibration sources there are distinctly determined annual and semiannual variations, and also variations of 120 and 90 days. There is determined correlations of revealed variations of P- and S-wave velocities with drowning of the upper part of the Earth`s crust because of season changes of water volumes in the biggest Novosibirsk water reservoir. There were carried out experiments on aperture widening of operating vibroseismic observations in seismic active zones of the South of Altay. All these results prove possibility of using moveable collapsible 40-tons vibration sources for active monitoring of seismic dangerous zones, nuclear power plants, nuclear waste storage etc.

  12. Rock Valley Source Physics Experiment Preparation: Earthquake Relocation and Attenuation Structure Characterization

    NASA Astrophysics Data System (ADS)

    Pyle, M. L.; Walter, W. R.; Myers, S.; Pasyanos, M. E.; Smith, K. D.

    2012-12-01

    The science of nuclear test monitoring relies on seismic methods to distinguish explosion from earthquakes sources. Unfortunately, the physics behind how an explosion generates seismic waves, particularly shear waves, remains incompletely understood. The Source Physics Experiments (SPE) are an ongoing series of chemical explosions designed to address this problem and advance explosion monitoring physics and associated simulation codes. The current series of explosions are located in the Climax Stock granite on the Nevada National Security Site (NNSS). A future candidate for the SPEs would allow us to make a direct comparison of earthquake and explosion sources by detonating an explosion at a well constrained earthquake hypocenter and recording the resulting signals from each source at common receivers. This possibility arises from an area of unusually shallow seismicity in the Rock Valley area of the southern NNSS. While most tectonic earthquakes occur at depths greater than 5 km, a sequence of unusually shallow earthquakes with depths of 1-2 km occurred in Rock Valley in May of 1993. The main shock had a magnitude of approximately 3.7 and 11 more events in the sequence had magnitudes over 2. The shallow depths of these events were well constrained by temporary stations deployed at the time by the University of Nevada-Reno (UNR). As part of a feasibility study for a future Rock Valley SPE, LLNL, UNR and NSTec are working to re-instrument and improve our understanding of the Rock Valley region. Rock Valley is a complex set of left oblique-slip segmented fault blocks; it is a regular source region for small magnitude shallow earthquakes. A dense seismic network was operated in the southern NNSS through the Yucca Mountain project (1992-2010). Although much of the older network has been removed, six new Rock Valley telemetered seismic stations located at both original 1993 sites and additional sites, have been installed and operating since early 2011. In order to

  13. Effect of Anisotropic Velocity Structure on Acoustic Emission Source Location during True-Triaxial Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul

    2016-04-01

    Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of

  14. Seismic exploration of Fuji volcano with active sources in 2003

    NASA Astrophysics Data System (ADS)

    Oikawa, J.; Kagiyama, T.; Tanaka, S.; Miyamachi, H.; Tsutsui, T.; Ikeda, Y.; Katayama, H.; Matsuo, N.; Oshima, H.; Nishimura, Y.; Yamamoto, K.; Watanabe, T.; Yamazaki, F.

    2004-12-01

    the Tanzawa Range to the east. This uplifted body is formed by plate subduction and collision with the Izu Peninsula, and is believed to have influence at significant depth. This is considered to be the reason for the change in the geologic structure beneath Fuji volcano from west to east. The dome structure of the bedrock layer (second layer) directly beneath the summit is considered to have formed in the initial period of volcanic activity that formed Mt. Fuji, leading to the subsequent formation of Komitake volcano, Ko-Fuji volcano and the present day Fuji volcano.

  15. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  16. Active Reading Experience Questionnaire: Development and Validation of an Instrument for Studying Active Reading Activities

    ERIC Educational Resources Information Center

    Palilonis, Jennifer; Butler, Darrell

    2015-01-01

    The increasing adoption of mobile platforms and digital textbooks in university classrooms continues to have a profound impact on higher education. Advocates believe that providing students digital textbooks with built-in annotation features and interactive study tools will improve learning by facilitating active reading, a task essential to…

  17. Flame Experiments at the Advanced Light Source: New Insights into Soot Formation Processes

    PubMed Central

    Hansen, Nils; Skeen, Scott A.; Michelsen, Hope A.; Wilson, Kevin R.; Kohse-Höinghaus, Katharina

    2014-01-01

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory1-4. This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range5,6. The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species’ profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates7. The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles4. The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation of the

  18. Flame experiments at the advanced light source: new insights into soot formation processes.

    PubMed

    Hansen, Nils; Skeen, Scott A; Michelsen, Hope A; Wilson, Kevin R; Kohse-Höinghaus, Katharina

    2014-01-01

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory(1-4). This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range(5,6). The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species' profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates(7). The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles(4). The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation

  19. Dr. Gerald Fishman Working on the Burst and Transient Source Experiment (BATSE)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (BATSE), works on the BATSE detector module. For nearly 9 years, GRO's BATSE, designed and built by MSFC, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. Because gamma-rays are so powerful, they pass through conventional telescope mirrors. Instead of a mirror, the heart of each BATSE module was a large, flat, transparent crystal that generated a tiny flash of light when struck by a gamma-ray. With an impressive list of discoveries and diverse accomplishments, BATSE could claim to have rewritten astronomy textbooks. Launched aboard the Space Shuttle Orbiter Atlantis during the STS-35 mission in April 1991, the GRO reentered the Earth's atmosphere and ended its successful 9-year mission in June 2000.

  20. Development of UCN rebuncher for nEDM experiments with pulsed sources

    NASA Astrophysics Data System (ADS)

    Imajo, Sohei; Iwashita, Yoshihisa; Kitaguchi, Masaaki; Shimizu, Hirohiko M.; Mishima, Kenji; Ino, Takashi; Kitahara, Ryuunosuke; Neutron Optics; Physics Collaboration

    2014-09-01

    We are planning to construct a spallation ultracold neutron (UCN) source and carry out the searches of the neutron electric dipole moment at J-PARC. It produces high-density pulsed UCNs. However, UCNs are diffused in guide tubes during long-range transport. In order to focus UCNs on the experimental bottle, we have developed a neutron accelerator named ``UCN rebuncher.'' This apparatus consists of a large electromagnet and a resonance spin flipper. The kinetic energy of neutron changes when it flies into static magnetic field and the change is retained due to spin-flip in the field. By accelerating slower neutrons or decelerating faster neutrons suitably this apparatus controls the diffusion of UCNs. We succeeded in the proof-of-principle experiment of the first rebuncher in 2011. It can change the kinetic energy in the range from 72 neV to 118 neV. At present we are developing the second rebuncher in order to increase the controllable range of kinetic energy by two times. It will be able to change the kinetic energy in the range from 33 neV to 124 neV.

  1. The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source

    PubMed Central

    Bergamaschi, Anna; Cervellino, Antonio; Dinapoli, Roberto; Gozzo, Fabia; Henrich, Beat; Johnson, Ian; Kraft, Philipp; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian

    2010-01-01

    The MYTHEN single-photon-counting silicon microstrip detector has been developed at the Swiss Light Source for time-resolved powder diffraction experiments. An upgraded version of the detector has been installed at the SLS powder diffraction station allowing the acquisition of diffraction patterns over 120° in 2θ in fractions of seconds. Thanks to the outstanding performance of the detector and to the calibration procedures developed, the quality of the data obtained is now comparable with that of traditional high-resolution point detectors in terms of FWHM resolution and peak profile shape, with the additional advantage of fast and simultaneous acquisition of the full diffraction pattern. MYTHEN is therefore optimal for time-resolved or dose-critical measurements. The characteristics of the MYTHEN detector together with the calibration procedures implemented for the optimization of the data are described in detail. The refinements of two known standard powders are discussed together with a remarkable application of MYTHEN to organic compounds in relation to the problem of radiation damage. PMID:20724787

  2. Radon adsorbed in activated charcoal—a simple and safe radiation source for teaching practical radioactivity in schools and colleges

    NASA Astrophysics Data System (ADS)

    Al-Azmi, Darwish; Mustapha, Amidu O.; Karunakara, N.

    2012-07-01

    Simple procedures for teaching practical radioactivity are presented in a way that attracts students' attention and does not make them apprehensive about their safety. The radiation source is derived from the natural environment. It is based on the radioactivity of radon, a ubiquitous inert gas, and the adsorptive property of activated charcoal. Radon gas from ambient air in the laboratory was adsorbed into about 70 g of activated charcoal inside metallic canisters. Gamma radiation was subsequently emitted from the canisters, following the radioactive decay of radon and its progenies. The intensities of the emitted gamma-rays were measured at suitable intervals using a NaI gamma-ray detector. The counts obtained were analysed and used to demonstrate the radioactive decay law and determine the half-life of radon. In addition to learning the basic properties of radioactivity the students also get practical experience about the existence of natural sources of radiation in the environment.

  3. Eliciting Metacognitive Experiences and Reflection in a Year 11 Chemistry Classroom: An Activity Theory Perspective

    NASA Astrophysics Data System (ADS)

    Thomas, Gregory P.; McRobbie, Campbell J.

    2013-06-01

    Concerns regarding students' learning and reasoning in chemistry classrooms are well documented. Students' reasoning in chemistry should be characterized by conscious consideration of chemical phenomenon from laboratory work at macroscopic, molecular/sub-micro and symbolic levels. Further, students should develop metacognition in relation to such ways of reasoning about chemistry phenomena. Classroom change eliciting metacognitive experiences and metacognitive reflection is necessary to shift entrenched views of teaching and learning in students. In this study, Activity Theory is used as the framework for interpreting changes to the rules/customs and tools of the activity systems of two different classes of students taught by the same teacher, Frances, who was teaching chemical equilibrium to those classes in consecutive years. An interpretive methodology involving multiple data sources was employed. Frances explicitly changed her pedagogy in the second year to direct students attention to increasingly consider chemical phenomena at the molecular/sub-micro level. Additionally, she asked students not to use the textbook until toward the end of the equilibrium unit and sought to engage them in using their prior knowledge of chemistry to understand their observations from experiments. Frances' changed pedagogy elicited metacognitive experiences and reflection in students and challenged them to reconsider their metacognitive beliefs about learning chemistry and how it might be achieved. While teacher change is essential for science education reform, students are not passive players in change efforts and they need to be convinced of the viability of teacher pedagogical change in the context of their goals, intentions, and beliefs.

  4. An Overview of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS)

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Barker, D. L.; White, R. L.; Emmitt, R. F.; Townsend, M. J.; Graves, T. E.; Becker, S. A.; Teel, M. G.; Lee, P.; Antoun, T. H.; Rodgers, A.; Walter, W. R.; Mellors, R. J.; Brunish, W. M.; Bradley, C. R.; Patton, H. J.; Hawkins, W. L.; Corbell, B. H.; Abbott, R. E.; SPE Working Group

    2011-12-01

    Modeling of explosion phenomenology has been primarily empirically based when looking at the seismic, infrasound, and acoustic signals. In order to detect low-yield nuclear explosions under the Comprehensive Nuclear Test-Ban Treaty (CTBT), we must be able to understand and model the explosive source in settings beyond where we have empirical data. The Source Physics Experiments (SPE) at the Nevada National Security Site are the first step in this endeavor to link the empirically based with the physics-based modeling to develop this predictive capability. The current series of tests is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the site's expected "simple geology"-the granite is a fairly homogeneous body. In addition, data are available from underground nuclear tests that were conducted in the same rock body, and the nature of the geology has been well-documented. Among the project goals for the SPE is to provide fully coupled seismic energy to the seismic and acoustic seismic arrays so that the transition between the near and far-field data can be modeled and our scientists can begin to understand how non-linear effects and anisotropy control seismic energy transmission and partitioning. The first shot for the SPE was conducted in May 2011 as a calibration shot (SPE1) with 220 lb (100 kg) of chemical explosives set at a depth of 180 ft (55 m). An array of sensors and diagnostics recorded the shot data, including accelerometers, geophones, rotational sensors, short-period and broadband seismic sensors, Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD) as well as infrasound sensors. The three-component accelerometer packages were set at depths of 180 ft (55 m), 150 ft (46 m), and 50 ft (15 m) in two rings around ground zero (GZ); the inner ring was at 10 m and the outer ring was 20 m from GZ. Six sets of surface accelerometers

  5. A novel source-drain follower for monolithic active pixel sensors

    NASA Astrophysics Data System (ADS)

    Gao, C.; Aglieri, G.; Hillemanns, H.; Huang, G.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mugnier, H.; Musa, L.; Lee, S.; Reidt, F.; Riedler, P.; Rousset, J.; Sielewicz, K. M.; Snoeys, W.; Sun, X.; Van Hoorne, J. W.; Yang, P.

    2016-09-01

    Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/Ceff or decrease the effective sensing node capacitance Ceff because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source-drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to Ceff. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to Ceff, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a 55Fe source. Increasing reverse substrate bias from -1 V to -6 V reduces Ceff by 38% and the equivalent noise charge (ENC) by 22% for the standard SF. The SDF

  6. Implementing Open Source Platform for Education Quality Enhancement in Primary Education: Indonesia Experience

    ERIC Educational Resources Information Center

    Kisworo, Marsudi Wahyu

    2016-01-01

    Information and Communication Technology (ICT)-supported learning using free and open source platform draws little attention as open source initiatives were focused in secondary or tertiary educations. This study investigates possibilities of ICT-supported learning using open source platform for primary educations. The data of this study is taken…

  7. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.

    PubMed

    Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J

    2016-07-01

    Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used. PMID:27328313

  8. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.

    PubMed

    Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J

    2016-07-01

    Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used.

  9. Agent-based power sharing scheme for active hybrid power sources

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  10. Experimental evidence that microbial activity lowers the albedo of glacier surfaces: the cryoconite casserole experiment.

    NASA Astrophysics Data System (ADS)

    Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.

    2014-12-01

    Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.

  11. Are Roots the Source of All Soil Organic Matter? Results From Isotopic Experiments in Temperate Forests

    NASA Astrophysics Data System (ADS)

    Torn, M. S.

    2005-12-01

    Plants produce organic detritus through roots and aboveground senescence, mainly litterfall. In soil science and biogeochemistry, the main source of soil carbon (C) inputs has been assumed to be litter. For example, litterfall is used as a measure of primary productivity relevant to belowground processes and decomposition, and properties of litter decay have been used to parameterize soil C models. There is little empirical evidence, however, that aboveground C inputs make a quantitatively important contribution to mineral soil organic matter (SOM). In a series of experiments in Mediterranean conifer and eastern deciduous forests, we used 13-C and 14-C analysis to quantify the contribution of leaf /needle C versus root C into soil organic matter pools (separated by density, physical, and chemical fractionation). Because dissolved organic C (DOC) leaching into soil may be rapidly decomposed by microbes, we also examine incorporation of isotopic tracers into microbial biomass (using chloroform-fumigation extraction, 13-C PLFA, and handpicked ectomycorrhizal fungi). We have found that aboveground inputs make almost no contribution to soil organic matter or microbial biomass in the mineral soil of these forests, at least within five years of substrate deposition. A new model of the litter layer might have the litter layer accumulating and decaying in relative isolation from the mineral soil. In that case, DOC leaching from the litter layer may be providing energy but not biomass to microbes, be mineralized in abiotic reactions with soil minerals, or be moving rapidly in macro pores. We note that these sites have low earth worm populations; sites with more bioturbation might have more surface C input to SOM. We have found that fine root lifetimes are much longer than typical leaf or needle lifespan, such that the two sources must be treated differently in biogeochemical models. It also means that the stock of SOM in these forests is derived from a much smaller flux of C

  12. Wintertime ecosystem respiration shifts tundra from carbon sink to carbon source at tundra warming experiment

    NASA Astrophysics Data System (ADS)

    Webb, E.; Schuur, E. A.; Natali, S.; Bracho, R.

    2013-12-01

    Northern latitude ecosystems play a significant role in the global carbon (C) budget due to the roughly 1700 Pg of C stored in permafrost soils. As high latitudes warm, previously frozen C is expected to decompose, thereby increasing CO2 fluxes to the atmosphere and potentially creating a positive feedback to climate warming. While warming has been shown to increase plant C uptake during the growing season, these seasonal C gains may be offset on an annual basis by ecosystem respiration (Reco) during the remaining seven months of the year. Here we present research from the Carbon in Permafrost Experimental Heating Research (CiPEHR) project, a tundra ecosystem warming experiment in interior Alaska. We partitioned the non-growing season into three segments: fall (October 1 until first snow), winter (snow-covered period until spring), and spring (snow depth less than 30cm until melt out). During fall, we measured net ecosystem exchange and Reco using a static flux chamber. In winter, we measured Reco using chamber measurements and soda lime. For spring, we modeled fluxes based on known relationships between snow depth and photosynthetic rate of arctic evergreen species. We found that ecosystem warming caused plants to photosynthesize later in fall and increased C uptake during spring but also enhanced respiration during the long winter. We combined these off-season estimates with measurements from growing season auto-chamber data and found that despite the C gained during the growing season, ecosystem warming resulted in net annual C loss for the two years measured. This annual C loss was dependent on the magnitude of wintertime Reco. Our results indicate that snow depth, soil temperature, and day of season are the major determinants of wintertime Reco. Some climate models predict that arctic ecosystems will experience warmer winters with more snow. Thus, despite increased plant productivity during the growing season, we document that increased wintertime temperatures

  13. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  14. The Source Physics Experiments (SPE): A Physics-Based Approach to Discriminate Low-Yield Nuclear Events (Invited)

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Chipman, V.; White, R. L.; Emmitt, R.; Townsend, M.

    2013-12-01

    Discriminating low-yield nuclear explosions is one of the current challenges in the field of monitoring and verification. Work is currently underway in Nevada to address this challenge by conducting a series of experiments using a physics-based approach. This has been accomplished by using a multifaceted, multi-disciplinary approach that includes a range of activities, from characterizing the shallow subsurface to acquiring new explosion data both in the near field (< 100 m from the source) to the far field (> 100 m to 10 s km from the source). The Source Physics Experiment (SPE) is a collaborative project between National Security Technologies, LLC, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories, the Defense Threat Reduction Agency, and the Air Force Technical Applications Center. The goal of the SPE is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and to understand how anisotropy controls seismic energy transmission and partitioning. To fully explore these problems, the SPE test series includes tests in both simple and complex geology cases. The current series is being conducted in a highly fractured granite body. This location was chosen, in part, because it was the location of previous nuclear tests in the same rock body and because generally the geology has been well characterized. In addition to historic data, high-resolution seismic reflection, cross-hole tomography, core samples, LIDAR, hyperspectral, and fracture mapping data have been acquired to further characterize and detect changes after each of the shot across the test bed. The complex geology series includes 7 planned shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival, Velocity of Detonation, down-hole accelerometers, surface accelerometers

  15. The Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS): An Overview

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Chipman, V.; White, R. L.; Emmitt, R.; Townsend, M.; Barker, D.; Lee, P.

    2012-12-01

    Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. The Source Physics Experiment at the Nevada National Security Site (SPE) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface

  16. An Overview of the Source Physics Experiment at the Nevada National Security Site (SPE-N)

    SciTech Connect

    Snelson, C. M., Chipman, V. D., White, R. L., Emmitt, R. F., Townsend, M. J., Barker, D., Lee, P.

    2012-07-11

    Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. The Source Physics Experiment at the Nevada National Security Site (SPE-N) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface

  17. Source activity correlation effects on LCMV beamformers in a realistic measurement environment.

    PubMed

    Belardinelli, Paolo; Ortiz, Erick; Braun, Christoph

    2012-01-01

    In EEG and MEG studies on brain functional connectivity and source interactions can be performed at sensor or source level. Beamformers are well-established source-localization tools for MEG/EEG signals, being employed in source connectivity studies both in time and frequency domain. However, it has been demonstrated that beamformers suffer from a localization bias due to correlation between source time courses. This phenomenon has been ascertained by means of theoretical proofs and simulations. Nonetheless, the impact of correlated sources on localization outputs with real data has been disputed for a long time. In this paper, by means of a phantom, we address the correlation issue in a realistic MEG environment. Localization performances in the presence of simultaneously active sources are studied as a function of correlation degree and distance between sources. A linear constrained minimum variance (LCMV) beamformer is applied to the oscillating signals generated by the current dipoles within the phantom. Results show that high correlation affects mostly dipoles placed at small distances (1, 5 centimeters). In this case the sources merge. If the dipoles lie 3 centimeters apart, the beamformer localization detects attenuated power amplitudes and blurred sources as the correlation level raises.

  18. THE ENVIRONMENT AND DISTRIBUTION OF EMITTING ELECTRONS AS A FUNCTION OF SOURCE ACTIVITY IN MARKARIAN 421

    SciTech Connect

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Tavecchio, Fabrizio

    2011-05-20

    For the high-frequency-peaked BL Lac object Mrk 421, we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized {chi}{sup 2}-minimization procedure, instead of the 'eyeball' procedure more commonly used in the literature, to model nine SED data sets with a one-zone synchrotron self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broadband SEDs (spanning from optical to very high energy photon) have finally become available. Our results suggest that in Mrk 421 the magnetic field (B) decreases with source activity, whereas the electron spectrum's break energy ({gamma}{sub br}) and the Doppler factor ({delta}) increase-the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework, these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of {gamma} {<=} {gamma}{sub br} electrons: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.

  19. Sustaining an Online, Shared Community Resource for Models, Robust Open source Software Tools and Data for Volcanology - the Vhub Experience

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Valentine, G. A.; Bursik, M. I.; Connor, C.; Connor, L.; Jones, M.; Simakov, N.; Aghakhani, H.; Jones-Ivey, R.; Kosar, T.; Zhang, B.

    2015-12-01

    Over the last 5 years we have created a community collaboratory Vhub.org [Palma et al, J. App. Volc. 3:2 doi:10.1186/2191-5040-3-2] as a place to find volcanology-related resources, and a venue for users to disseminate tools, teaching resources, data, and an online platform to support collaborative efforts. As the community (current active users > 6000 from an estimated community of comparable size) embeds the tools in the collaboratory into educational and research workflows it became imperative to: a) redesign tools into robust, open source reusable software for online and offline usage/enhancement; b) share large datasets with remote collaborators and other users seamlessly with security; c) support complex workflows for uncertainty analysis, validation and verification and data assimilation with large data. The focus on tool development/redevelopment has been twofold - firstly to use best practices in software engineering and new hardware like multi-core and graphic processing units. Secondly we wish to enhance capabilities to support inverse modeling, uncertainty quantification using large ensembles and design of experiments, calibration, validation. Among software engineering practices we practice are open source facilitating community contributions, modularity and reusability. Our initial targets are four popular tools on Vhub - TITAN2D, TEPHRA2, PUFF and LAVA. Use of tools like these requires many observation driven data sets e.g. digital elevation models of topography, satellite imagery, field observations on deposits etc. These data are often maintained in private repositories that are privately shared by "sneaker-net". As a partial solution to this we tested mechanisms using irods software for online sharing of private data with public metadata and access limits. Finally, we adapted use of workflow engines (e.g. Pegasus) to support the complex data and computing workflows needed for usage like uncertainty quantification for hazard analysis using physical

  20. NSLS 2005 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2005).

    SciTech Connect

    MILLER, L.

    2006-05-01

    In 2005, the NSLS proved itself, once again, to be a center of scientific excellence. This remarkable facility, commissioned in the early 1980s, is still attracting some of the world's best researchers in almost every scientific field, who produce more than seven hundred scientific papers every year using the NSLS. The 'Science Highlights' and 'Feature Highlights' sections of this report are just a small sampling of the many, many impressive research projects conducted at the NSLS in 2005. For example, a user group synthesized and studied zinc-oxide nanowires, which have applications in many optical and electrical devices. Another user group studied how strontium and uranium are removed from high-level radioactive waste. And in another interesting study, users deciphered the basis for antibiotic resistance. However, as always, the success of these projects depends on the performance of the facility. Again this year, the rings were in top form--reliability was 96 percent for the x-ray ring and 99 percent for the VUV-IR ring. Additionally, to keep the NSLS as productive as possible and to continue to attract users, many beamline upgrade projects were completed this year. One of the highlights of these upgrades is the new mini-gap undulator installed at beamline X25. This insertion device is providing a much brighter x-ray source for the program at X25. In the always important area of safety, several noteworthy activities took place this year. In particular, NSLS staff made a major commitment to labeling and inspecting electrical equipment. And perhaps the best news is what didn't happen--there were no reportable occurrences related to environmental, safety, or health issues in 2005, and no injuries that resulted in restricted or lost time. We all owe thanks to the dedicated NSLS staff and users who have ensured that the NSLS remains a reliable, safe, up-to-date research facility. As 2005 came to an end, I stepped down as NSLS Chairman in order to focus my primary

  1. Soaps and Suspicious Activity: Dramatic Experiences in British Classrooms.

    ERIC Educational Resources Information Center

    Ferree, Angela M.

    2001-01-01

    Offers examples of dramatic experiences (student produced soap operas) in two classrooms in British comprehensive secondary schools. Concludes that students in other countries would find such experiences as meaningful and enjoyable as their British counterparts. Notes that the two teachers managed to be flexible, appropriating effective…

  2. Geology of the Source Physics Experiment Site, Climax Stock, Nevada National Security Site

    SciTech Connect

    Townsend, M., Prothro, L. B., Obi, C.

    2012-03-15

    A test bed for a series of chemical explosives tests known as Source Physics Experiments (SPE) was constructed in granitic rock of the Climax stock, in northern Yucca Flat at the Nevada National Security Site in 2010-2011. These tests are sponsored by the U.S. Department of Energy, National Nuclear Security Administration's National Center for Nuclear Security. The test series is designed to study the generation and propagation of seismic waves, and will provide data that will improve the predictive capability of calculational models for detecting and characterizing underground explosions. Abundant geologic data are available for the area, primarily as a result of studies performed in conjunction with the three underground nuclear tests conducted in the Climax granite in the 1960s and a few later studies of various types. The SPE test bed was constructed at an elevation of approximately 1,524 meters (m), and consists of a 91.4-centimeter (cm) diameter source hole at its center, surrounded by two rings of three 20.3-cm diameter instrument holes. The inner ring of holes is positioned 10 m away from the source hole, and the outer ring of holes is positioned 20 m from the source hole. An initial 160-m deep core hole was drilled at the location of the source hole that provided information on the geology of the site and rock samples for later laboratory testing. A suite of geophysical logs was run in the core hole and all six instruments holes to obtain matrix and fracture properties. Detailed information on the character and density of fractures encountered was obtained from the borehole image logs run in the holes. A total of 2,488 fractures were identified in the seven boreholes, and these were ranked into six categories (0 through 5) on the basis of their degree of openness and continuity. The analysis presented here considered only the higher-ranked fractures (ranks 2 through 5), of which there were 1,215 (approximately 49 percent of all fractures identified from

  3. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source. PMID:26783836

  4. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source.

  5. Ion source for tests of ion behavior in the Karlsruhe tritium neutrino experiment beam line

    SciTech Connect

    Lukic, S.; Bornschein, B.; Drexlin, G.; Glueck, F.; Kazachenko, O.; Zoll, M. C. R.; Schoeppner, M.; Weinheimer, Ch.

    2011-01-15

    An electron-impact ion source based on photoelectron emission was developed for ionization of gases at pressures below 10{sup -4} mbar in an axial magnetic field in the order of 5 T. The ion source applies only dc fields, which makes it suitable for use in the presence of equipment sensitive to radio-frequency (RF) fields. The ion source was successfully tested under varying conditions regarding pressure, magnetic field, and magnetic-field gradient, and the results were studied with the help of simulations. The processes in the ion source are well understood, and possibilities for further optimization of generated ion currents are clarified.

  6. Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS

    SciTech Connect

    Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.; Grote, David P.

    2008-02-15

    The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS.

  7. Multiphase transport simulation and venting experiments to identify NAPL source in vadose zone at a site contaminated with chlorinated solvents

    NASA Astrophysics Data System (ADS)

    Joun, W.; Lee, K.

    2013-12-01

    In many countries, groundwater is threatened by contamination from Non-Aqueous Phase Liquids such as chlorinated solvents (e.g. TCE). Existing as a residual or trapped source in the unsaturated zone, NAPLs remain in a continuous contamination source to groundwater even after groundwater itself was remediated because the residual NAPL source could be dissolved into the groundwater intermittently. In this study, 1-D and 2-D experiments were conducted. For 1-D experiment, a column (1 m) packed with well-sorted sand was used for developing the hydraulic properties in VOC transport. In 2-D experiment, hydraulic and contaminant properties in unsaturated condition were investigated including gas-phase concentration of a volatile organic compound (trichloroethylene, TCE) originated from residual or trapped NAPLs with different distances between an extraction well and source point, with different extraction rates and with different extraction intervals. While extracting air from the sand-tank (50 x 30 x 5 cm), temperature, humidity and pressure data were compiled with logging sensors. One and two-dimensional STOMP (Subsurface Transport Over Multiple Phases) simulator were used to simulate the experimental conditions. The experimental and simulation results can be used to estimate distances from extraction wells to source locations of residual NAPLs.

  8. Data Release Report for Source Physics Experiments 2 and 3 (SPE-2 and SPE-3) Nevada National Security Site

    SciTech Connect

    Townsend, Margaret; Obi, Curtis

    2015-01-26

    The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100 m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and far-field data that are available.

  9. Disposal Process for High Activity Sources by a University through the U.S. Dept. of Energy's Off-Site Source Recovery Project - 12076

    SciTech Connect

    Abraham, James P.; Brandl, Alexander

    2012-07-01

    Sealed radioactive sources are used in a wide variety of applications by a large number of license holders in the Unites States. Applications range from low-activity calibration sources to high-activity irradiators for engineering, research, or medical purposes. This paper describes and evaluates the safety and security measures in place for disused sealed sources, in particular of high activity sealed sources at the end of their operational life-time. The technical, radiation protection, and financial challenges for licensees and the Competent Authorities are reviewed from the point of view of the license holder. As an example, the waste management processes and the chain of custody for disused research irradiator sources are followed from extraction from the irradiator facility to the source disposal or recycling contractor. Possible safety and security concern in the waste disposal process are investigated in order to identify improvement potential for radiation protection or source security. Two shipments of disused sealed sources from Colorado State University (CSU) have been conducted through the CSU Radiation Control Office (RCO) in the last two years, with a third shipment expected to be completed by the end of November 2011. Two of the sources shipped are considered 'high' activity and exceed the U.S. NRC limits requiring increased controls for security purposes. Three sources were shipped in 2009 and ten more are expected in 2011. A total activity of 117.3 GBq was shipped in 2009. Nine sources were recently shipped in October 2011 through a third party waste broker where the total activity was 96.34 GBq. The last source is scheduled for shipment no later than 30 November 2011 and contains an activity of 399.96 GBq. Radiation waste disposal of high activity sources in large shields with unknown manufacturers, serial numbers, or model numbers is an arduous process requiring multiple contacts with various state and federal agencies. DOE's OSRP has made it

  10. Development of a Measure to Assess Youth Self-Reported Experiences of Activity Settings (SEAS)

    ERIC Educational Resources Information Center

    King, Gillian; Batorowicz, Beata; Rigby, Patty; McMain-Klein, Margot; Thompson, Laura; Pinto, Madhu

    2014-01-01

    There is a need for psychometrically sound measures of youth experiences of community/home leisure activity settings. The 22-item Self-Reported Experiences of Activity Settings (SEAS) captures the following experiences of youth with a Grade 3 level of language comprehension or more: Personal Growth, Psychological Engagement, Social Belonging,…

  11. An Activity Group Experience for Disengaged Elderly Persons.

    ERIC Educational Resources Information Center

    Harris, John Ewing; Bodden, Jack L.

    1978-01-01

    Tested the activity theory (which proposes that elderly persons remain in active contact with their environment) and disengagement theory (which suggests adjustment comes through reduction of activity and social contact). Disengaged elderly were identified. Subjects demonstrated significant improvement over the untreated control subjects. Results…

  12. In and Out 101 Activities to Enrich the Learning Experience.

    ERIC Educational Resources Information Center

    Johnson, Patricia; And Others

    Activities developed and used with children and adults participating in the program offerings of the Edwin Gould Outdoor Education Centers are presented. Information describing most activities includes name, description of the activity, objectives, supervision or help required, procedures, time involved, size of area required, materials,…

  13. Non-Traditional Sources of Revenue for High Schools: South Dakota's Experience in the Private Sector.

    ERIC Educational Resources Information Center

    Garnos, Michael L.

    A survey of superintendents and principals in 91 percent of South Dakota school districts examined the extent and nature of nontraditional funding acquired by high schools, and administrator attitudes toward this funding. Sources of funding were categorized as donor sources (cash or other donations from individuals or organizations); enterprise…

  14. Analysis and Simulation of Near-Field Ground Motions from the Source Physics Experiment

    NASA Astrophysics Data System (ADS)

    Antoun, T. H.; Vorobiev, O.; Xu, H.; Herbold, E. B.; Glenn, L.; Lomov, I.

    2011-12-01

    The Source Physics Experiment (SPE) at the Nevada National Security Site is planned as a series of chemical explosions under a variety of emplacement conditions. The goal of the SPE is to improve our physical understanding and ability to model explosively generated seismic waves, particularly S-waves. The first SPE explosion (SPE1) consisted of a 100 kg shot at a depth of 60 meters in granite (Climax Stock). The shot was well-recorded by an array of over 150 instruments, including both near-field wave motion measurements as well as far-field seismic measurements. This paper focuses on measurements and modeling of the near-field data, which included triaxial acceleration measurements at eighteen different locations azimuthally distributed around the explosive charge. Three triaxial accelerometers were embedded in each of six vertical boreholes, distributed in two concentric rings around the charge. The inner ring consisted of three equidistant boreholes at a radius of 10 m from the charge, and the outer ring consisted of another three equidistant boreholes at a radius of 20 m. In each borehole, the accelerometers were vertically distributed at depths of 60 m (shot horizon), 50 m and 15 m. Surface accelerations were also recorded along a radial line centered at surface ground zero. A review of the SPE1 data shows that the peak radial velocity as a function of scaled range is consistent with previous nuclear explosion data but exhibits greater variability. The scaled peak radial displacement also exhibits greater variability but the mean values are significantly higher than exhibited in previous nuclear explosion data. These higher displacements were also observed in calculations performed with a constitutive model based on nuclear explosion data in hard rock, but employed a JWL equation of state for the ANFO explosive used in SPE1. The reason for this behavior is believed to be the higher effective ratio of specific heats in the explosion products of the chemical

  15. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  16. Measurement of the activity of an artificial neutrino source based on {sup 37}Ar

    SciTech Connect

    Abdurashitov, D. N.; Veretenkin, E. P.; Gavrin, V. N.; Gorbachev, V. V.; Ibragimova, T. V.; Kalikhov, A. V.; Mirmov, I. N. Shikhin, A. A.; Yants, V. E.; Barsanov, V. I.; Dzhanelidze, A. A.; Zlokazov, S. B.; Markov, S. Yu.; Shakirov, Z. N.; Cleveland, B. T.

    2007-02-15

    The activity of an artificial neutrino source based on {sup 37}Ar was measured by a specially developed method of directly counting {sup 37}Ar decays in a proportional counter. This source was used to irradiate the target of the SAGE radiochemical gallium-germanium neutrino telescope at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences, Moscow), whereupon the measurements were performed at the Institute of Reactor Materials (Zarechny, Sverdlovsk oblast, Russia). The method used to prepare gaseous samples for measurements in proportional counters and the counting procedure are described. The measured activity of the {sup 37}Ar neutrino source is 405.1 {+-} 3.7 kCi (corrected for decays that occurred within the period between the instant of activity measurement and the commencement of the irradiation of Ga target at 04:00 Moscow time, 30.04.2004)

  17. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3). PMID:23277984

  18. Activated sludge as inoculum for ready biodegradability testing: effect of source.

    PubMed

    Vazquez-Rodriguez, G; Goma, G; Rols, J L

    2003-08-01

    Results of ready biodegradability tests (RBT) are barely reproducible owing to a well-known lack of definition in inoculum source and quality. In this study, the degree of variability expected when only activated sludges are used as inoculum source was investigated. For this, the characteristics of activated sludges collected in municipal wastewater treatment plants operating at various massic loading rates (MLR; 0.1, 0.5 and 0.9 kgBOD5 kgVSS(-1) d(-1)) were compared. In order to provide suitable cellular densities for RBT, inocula were obtained after settling of activated sludges and analyzed in terms of active and cultivable cell densities, dehydrogenasic activity, BOD5 and a general profile of hydrolytic enzymes. In our analysis, biomass obtained from the High-MLR treatment plant constituted the inoculum having the highest biodegradation potential both with respect to microbial densities and to enzyme activities. This biomass also yielded the fastest biodegradation kinetics in dodecyl benzene sulfonate RBT. An attempt of biomass homogenization of inocula on the basis of cultivable cell density and dehydrogenasic activity gave negative results with this chemical compound. Since, in practice, restriction of activated sludge sources may be difficult, our results emphasize the importance of further studies aimed at homogenization of inoculum quality and quantity. PMID:14509389

  19. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    PubMed

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in

  20. Three-dimensional localization of low activity gamma-ray sources in real-time scenarios

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji B.; Lee, Hyoung K.

    2016-03-01

    Radioactive source localization plays an important role in tracking radiation threats in homeland security tasks. Its real-time application requires computationally efficient and reasonably accurate algorithms even with limited data to support detection with minimum uncertainty. This paper describes a statistic-based grid-refinement method for backtracing the position of a gamma-ray source in a three-dimensional domain in real-time. The developed algorithm used measurements from various known detector positions to localize the source. This algorithm is based on an inverse-square relationship between source intensity at a detector and the distance from the source to the detector. The domain discretization was developed and implemented in MATLAB. The algorithm was tested and verified from simulation results of an ideal case of a point source in non-attenuating medium. Subsequently, an experimental validation of the algorithm was performed to determine the suitability of deploying this scheme in real-time scenarios. Using the measurements from five known detector positions and for a measurement time of 3 min, the source position was estimated with an accuracy of approximately 53 cm. The accuracy improved and stabilized to approximately 25 cm for higher measurement times. It was concluded that the error in source localization was primarily due to detection uncertainties. In verification and experimental validation of the algorithm, the distance between 137Cs source and any detector position was between 0.84 m and 1.77 m. The results were also compared with the least squares method. Since the discretization algorithm was validated with a weak source, it is expected that it can localize the source of higher activity in real-time. It is believed that for the same physical placement of source and detectors, a source of approximate activity 0.61-0.92 mCi can be localized in real-time with 1 s of measurement time and same accuracy. The accuracy and computational efficiency

  1. Social competence and collaborative guided inquiry science activities: Experiences of students with learning disabilities

    NASA Astrophysics Data System (ADS)

    Taylor, Jennifer Anne

    This thesis presents a qualitative investigation of the effects of social competence on the participation of students with learning disabilities (LD) in the science learning processes associated with collaborative, guided inquiry learning. An inclusive Grade 2 classroom provided the setting for the study. Detailed classroom observations were the primary source of data. In addition, the researcher conducted two interviews with the teacher, and collected samples of students' written work. The purpose of the research was to investigate: (a) How do teachers and peers mediate the participation of students with LD in collaborative, guided inquiry science activities, (b) What learning processes do students with LD participate in during collaborative, guided inquiry science activities, and (c) What components of social competence support and constrain the participation of students with LD during collaborative, guided inquiry science activities? The findings of the study suggest five key ideas for research and teaching in collaborative, guided inquiry science in inclusive classrooms. First, using a variety of collaborative learning formats (whole-class, small-group, and pairs) creates more opportunities for the successful participation of diverse students with LD. Second, creating an inclusive community where students feel accepted and valued may enhance the academic and social success of students with LD. Third, careful selection of partners for students with LD is important for a positive learning experience. Students with LD should be partnered with academically successful, socially competent peers; also, this study suggested that students with LD experience more success working collaboratively in pairs rather than in small groups. Fourth, a variety of strategies are needed to promote active participation and positive social interactions for students with and without LD during collaborative, guided inquiry learning. Fifth, adopting a general approach to teaching

  2. Simulation and beam line experiments for the superconducting ECRion source VENUS

    SciTech Connect

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-09-10

    The particle-in-cell code Warp has been enhanced toincorporate both two- and three-dimensional sheath extraction modelsgiving Warp the capability of simulating entire ion beam transportsystems including the extraction of beams from plasma sources. In thisarticle we describe a method of producing initial ion distributions forplasma extraction simulations in electron cyclotron resonance (ECR) ionsources based on experimentally measured sputtering on the source biaseddisc. Using this initialization method, we present preliminary resultsfor extraction and transport simulations of an oxygen beam and comparethem with experimental beam imaging on a quartz viewing plate for thesuperconducting ECR ion source VENUS.

  3. The feeling of fluent perception: a single experience from multiple asynchronous sources.

    PubMed

    Wurtz, Pascal; Reber, Rolf; Zimmermann, Thomas D

    2008-03-01

    Zeki and co-workers recently proposed that perception can best be described as locally distributed, asynchronous processes that each create a kind of microconsciousness, which condense into an experienced percept. The present article is aimed at extending this theory to metacognitive feelings. We present evidence that perceptual fluency-the subjective feeling of ease during perceptual processing-is based on speed of processing at different stages of the perceptual process. Specifically, detection of briefly presented stimuli was influenced by figure-ground contrast, but not by symmetry (Experiment 1) or the font (Experiment 2) of the stimuli. Conversely, discrimination of these stimuli was influenced by whether they were symmetric (Experiment 1) and by the font they were presented in (Experiment 2), but not by figure-ground contrast. Both tasks however were related with the subjective experience of fluency (Experiments 1 and 2). We conclude that subjective fluency is the conscious phenomenal correlate of different processing stages in visual perception.

  4. Geologic Assessment of the Damage Zone from the Second Test at Source Physics Experiment-Nevada (SPE-N)

    SciTech Connect

    Townsend, M. J.; Huckins-Gang, H. E.; Prothro, L. B.; Reed, D. N.

    2012-12-01

    The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration (NNSA), is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE-N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE-N-1) test was conducted in May 2011, using 100 kg of explosives at the depth of 54.9 m in the U 15n source hole. SPE-N-2 was conducted in October 2011, using 1,000 kg of explosives at the depth of 45.7 m in the same source hole. The SPE-N-3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE-N-2, and at the same depth as SPE-N-2, within the damage zone created by the SPE-N-2 explosion to investigate damage effects on seismic wave propagation. Following the SPE-N-2 shot and prior to the SPE-N-3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE-N-2 shot point location to obtain information necessary to characterize the damage zone. The objective was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE-N-2 core hole included

  5. Active ion tracer experiments attempted in conjunction with the ion composition experiment on GEOS-2

    NASA Astrophysics Data System (ADS)

    Young, D. T.

    It is pointed out that to date six ion injection/tracer experiments have been attempted in conjunction with the GEOS-2 Ion Composition Experiment: three rocket borne Ba shaped-charge releases (Porcupine 3 and 4 and Ba-GEOS), one Li release, and two periods of operation of the Xe(+) accelerator on the SCATHA satellite. The characteristics of each of these six releases are outlined, and upper limits are placed on possible ion fluxes reaching GEOS-2. The order of magnitude of ion fluxes to be expected from each release is estimated, and it is shown that three of the experiments had no real chance of succeeding in the first place.

  6. Complex active regions as the main source of extreme and large solar proton events

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  7. Experiments with planar inductive ion source meant for creation ofH+ Beams

    SciTech Connect

    Vainionpaa, J.H.; Kalvas, T.; Hahto, S.K.; Reijonen, J.

    2007-02-07

    In this article the effect of different engineering parameters of an rf-driven ion sources with external spiral antenna and quartz disk rf-window are studied. Paper consists of three main topics: The effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species and the effect of different antenna geometries on the extracted current density. The operation gas pressure as a function of the plasma chamber diameter, was studied. This was done with three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum and alumina (AlO{sub 2}). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. Highest proton fraction of {approx} 8% at 2000 W of rf-power and at pressure of 1.3 Pa was measured using AlO{sub 2} plasma chamber and no multicusp confinement. For all the compared ion sources at 1000W of rf-power, source with multicusp confinement and AlO2 plasma chamber yields highest current density of 82.7 mA/cm{sup 2} at operation pressure of 4 Pa. From the same source highest measured current density of 143 mA/cm{sup 2} at 1.3 Pa and 2200W of rf-power was achieved. Multicusp confinement increased the maximum extracted current up to factor of two. Plasma production with different antenna geometries was also studied. Antenna tests were performed using same source geometry as in source material study with AlO{sub 2} plasma chamber and multicusp confinement. The highest current density was achieved with 4.5 loop solenoid antenna with 6 cm diameter. Slightly lower current density with lower pressure was achieved using tightly wound 3 loop spiral antenna with 3.3 cm ID and 6 cm OD.

  8. Activation process in excitable systems with multiple noise sources: One and two interacting units.

    PubMed

    Franović, Igor; Todorović, Kristina; Perc, Matjaž; Vasović, Nebojša; Burić, Nikola

    2015-12-01

    We consider the coaction of two distinct noise sources on the activation process of a single excitable unit and two interacting excitable units, which are mathematically described by the Fitzhugh-Nagumo equations. We determine the most probable activation paths around which the corresponding stochastic trajectories are clustered. The key point lies in introducing appropriate boundary conditions that are relevant for a class II excitable unit, which can be immediately generalized also to scenarios involving two coupled units. We analyze the effects of the two noise sources on the statistical features of the activation process, in particular demonstrating how these are modified due to the linear or nonlinear form of interactions. Universal properties of the activation process are qualitatively discussed in the light of a stochastic bifurcation that underlies the transition from a stochastically stable fixed point to continuous oscillations. PMID:26764778

  9. Activation process in excitable systems with multiple noise sources: One and two interacting units

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Todorović, Kristina; Perc, Matjaž; Vasović, Nebojša; Burić, Nikola

    2015-12-01

    We consider the coaction of two distinct noise sources on the activation process of a single excitable unit and two interacting excitable units, which are mathematically described by the Fitzhugh-Nagumo equations. We determine the most probable activation paths around which the corresponding stochastic trajectories are clustered. The key point lies in introducing appropriate boundary conditions that are relevant for a class II excitable unit, which can be immediately generalized also to scenarios involving two coupled units. We analyze the effects of the two noise sources on the statistical features of the activation process, in particular demonstrating how these are modified due to the linear or nonlinear form of interactions. Universal properties of the activation process are qualitatively discussed in the light of a stochastic bifurcation that underlies the transition from a stochastically stable fixed point to continuous oscillations.

  10. Rocket exhaust effects as active space plasma experiments of opportunity

    NASA Astrophysics Data System (ADS)

    Mendillo, M.

    1983-07-01

    Examples of how photometer and wide-angle airglow imaging systems can be used to study diffusive and photochemical properties of the upper atmosphere are given. Incoherent scatter measurements of a large-scale ionospheric hole are shown to yield estimates of dynamical and chemical rate constants associated with the plasma perturbations themselsves. The Spacelab-2 series of shuttle engine burn experiments are summarized.

  11. Graduate Student Perceptions and Experiences of Professional Development Activities

    ERIC Educational Resources Information Center

    Rizzolo, Sonja; DeForest, Aubreena R.; DeCino, Daniel A.; Strear, Molly; Landram, Suzanne

    2016-01-01

    Graduate higher education has done little to assess and understand graduate students' needs and experiences beyond the classroom. Therefore, we conducted a phenomenological study using multiple data collection tools, including survey and focus groups from two different time periods to implement a multiphase needs assessment. The goal of the…

  12. A boundary element approach to optimization of active noise control sources on three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cunefare, K. A.; Koopmann, G. H.

    1991-01-01

    This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.

  13. Oscillatory behavior of US -galactosidase enzyme activity in Escherichia coli during perturbed batch experiments

    SciTech Connect

    Pih, N.P.; Dhurjat, P.

    1987-02-05

    The behaviour of a wild-type and mutant strain of Escherichia coli under batch aerobic conditions were studied. In these experiments the bacteria were initially grown with lactose as the sole carbon source. When exponential growth on lactose was achieved, the batch was perturbed with D-glucose. Periodic off-line samples were taken from the fermentor and analyzed for US -galactosidase enzyme activity, D-glucose, and lactose. Continuous on-line measurements of optical density of fermentation media were also made. Oscillations in the measured enzyme activity were observed. Oscillatory behavior of US -galactosidase enzyme in E. coli was previously reported by Knorre. In his study cells were grown in D-glucose, washed, and then grown on lactose. Oscillations were attributed to the varying enzyme synthesis rate. In the present study the cells were grown initally on lactose, thus assuring high synthesis rates of US -galactosidase from the start. The oscillations observed after perturbation with glucose are pronounced and appear to be the result of combined changes in the substrate transport system and enzyme activity in addition to possible changes in enzyme synthesis rate. 10 references.

  14. Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta.

    PubMed

    Shi, Wei; Zhang, Feng-Xian; Hu, Guan-Jiu; Hao, Ying-Qun; Zhang, Xiao-Wei; Liu, Hong-Ling; Wei, Si; Wang, Xin-Ru; Giesy, John P; Yu, Hong-Xia

    2012-07-01

    Thyroid hormone disrupting compounds in water sources is a concern. Thyroid hormone (TH) agonist and antagonist activities of water sources from the Yangtze River, Huaihe River, Taihu Lake and ground water in the Yangtze River Delta region were evaluated by use of a TH reporter gene assay based on the green monkey kidney fibroblast (CV-1). While weak TH receptor (TR) agonist potency was observed in only one of 15 water sources, antagonist potency was present in most of the water sources. TR antagonist equivalents could be explained by the presence of dibutyl phthalate (DBP), with concentrations ranging from 2.8×10(1) to 1.6×10(3) μg DBP /L (ATR-EQ(50)s). None of the ground waters exhibited TH agonist potencies while all of the samples from Taihu Lake displayed notable TR antagonist potencies. To identify the responsible thyroid active compounds, instrumental analysis was conducted to measure a list of potential thyroid-disrupting chemicals, including organochlorine (OC) pesticides and phthalate esters. Combining the results of the instrumental analysis with those of the bioassay, DBP was determined to account for 17% to 144% of ATR-EQ(50)s in water sources. Furthermore, ATR-EQ(20-80) ranges for TR antagonist activities indicated that samples from locations WX-1 and WX-2 posed the greatest health concern and the associated uncertainty may warrant further investigation.

  15. Radio Properties of Low Redshift Broad Line Active Galactic Nuclei Including Multiple Component Radio Sources

    NASA Astrophysics Data System (ADS)

    Rafter, Stephen E.

    2010-01-01

    We present results on the radio properties of a low redshift (z < 0.35) sample of 8434 broad line active galactic nuclei (AGNs) from the Sloan Digital Sky Survey after correlating the optical sources with radio sources in the Faint Images of the Radio Sky at Twenty-Centimeters survey. We find that 10% of our sample has radio emission < 4" away from the optical counterpart (core-only sources), and 1% has significant extended emission that must be taken into account when calculating the total radio luminosity (multi-component sources). Association of the extended radio emission is established by the proximity to the optical source, physical connection of jets and lobes, or large scale symmetry like in classic FRIIs. From these data we find an FRI/FRII luminosity dividing line like that found by Fanaroff & Riley (1974), where we use our core-only sources as proxies for FRIs, and our multi-component sources for the FRIIs. We find a bimodal distribution for the radio loudness (R = L(radio)/L(opt)) where the lower radio luminosity core-only sources appear as a population separate from the multi-component extended sources, compared with no evidence for bimodality when just the core-only sources are used. We also find that a log(R) value of 1.75 is well suited to separate the FRIs from the FRIIs, and that the R bimodality seen here is really a manifestation of the FRI/FRII break originally found by Fanaroff & Riley (1974). We find modest trends in the radio loud fraction as a function of Eddington ratio and black hole mass, where the fraction of RL AGNs decreases with increasing Eddington ratio, and increases when the black hole mass is above 2 x 108 solar masses.

  16. [Effect of Zn(II) on microbial activity in anaerobic acid mine drainage treatment system with biomass as carbon source].

    PubMed

    Li, Shao-Jie; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo; Jin, Jiez; Liu, Chang

    2012-01-01

    In this study, with rape straw as carbon source, anaerobic batch experiments were executed to investigate the effect of Zn (II) on the activity of sulphate reducing bacteria (SRB) in the microbial treatment of simulative acid mine drainage (AMD). The results showed that during the 60 experimental days, when initial Zn2+ concentrations were in the range of 73.7 to 196.8 mg x L(-1), SRB had high culturalbility. At the end of these experiments, pH values rose from initial 5.0 to neutral, about 96% of sulphate was reduced and the concentrations of Zn2+ reduced to 0.05 mg x L(-1). The results of Tessier sequential extraction, field emission scanning electron microscope (FE-SEM) and X-ray diffraction(XRD) showed that Zn was found to be fixed through forming organic and sulphide (mainly sphalerite) compounds. For the experiment with high Zn2+ concentration (262.97 mg x L(-1)), at the end of experiments, pH values dropped from initial 5.0 to 4.0, only 27% of sulphate was only reduced and the concentrations of Zn2+ kept in high range (25 mg x L(-1)), the activity of SRB significantly inhibited. This study indicated that: (1) Rape straw can be used as slow-release carbon source for long-term anaerobic AMD treatment; (2) Rape straw can decrease the toxicity of Zn2+ to SRB through adsorption; (3) In anaerobic AMD treatment system, Zn can be fixed by sulphide minerals with mediation of SRB.

  17. [Effect of Zn(II) on microbial activity in anaerobic acid mine drainage treatment system with biomass as carbon source].

    PubMed

    Li, Shao-Jie; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo; Jin, Jiez; Liu, Chang

    2012-01-01

    In this study, with rape straw as carbon source, anaerobic batch experiments were executed to investigate the effect of Zn (II) on the activity of sulphate reducing bacteria (SRB) in the microbial treatment of simulative acid mine drainage (AMD). The results showed that during the 60 experimental days, when initial Zn2+ concentrations were in the range of 73.7 to 196.8 mg x L(-1), SRB had high culturalbility. At the end of these experiments, pH values rose from initial 5.0 to neutral, about 96% of sulphate was reduced and the concentrations of Zn2+ reduced to 0.05 mg x L(-1). The results of Tessier sequential extraction, field emission scanning electron microscope (FE-SEM) and X-ray diffraction(XRD) showed that Zn was found to be fixed through forming organic and sulphide (mainly sphalerite) compounds. For the experiment with high Zn2+ concentration (262.97 mg x L(-1)), at the end of experiments, pH values dropped from initial 5.0 to 4.0, only 27% of sulphate was only reduced and the concentrations of Zn2+ kept in high range (25 mg x L(-1)), the activity of SRB significantly inhibited. This study indicated that: (1) Rape straw can be used as slow-release carbon source for long-term anaerobic AMD treatment; (2) Rape straw can decrease the toxicity of Zn2+ to SRB through adsorption; (3) In anaerobic AMD treatment system, Zn can be fixed by sulphide minerals with mediation of SRB. PMID:22452225

  18. Active Drumming Experience Increases Infants’ Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    PubMed Central

    Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  19. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    PubMed

    Gerson, Sarah A; Schiavio, Andrea; Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  20. Simulation of Series Active and Passive Power Filter Combination System to Mitigate Current Source Harmonics

    NASA Astrophysics Data System (ADS)

    Yusof, Yushaizad; Rahim, Nasrudin Abd.

    2009-08-01

    This paper discusses a combination three phase system of series active power filter and passive power filter used to mitigate current source harmonics produced by a three phase diode rectifier with capacitive loads. A control method based on synchronous reference frame (SRF) is implemented to compensate for the current harmonics. Computer simulation and modelling of the combined filter system is carried out using Matlab/Simulink Power System Blockset (PSB) software. The single tuned passive power filters suppress 5th and 7th order current harmonics, while the series active power filter acts as a harmonic isolator between the source and load. Hence, the proposed system performs very well in mitigating source current harmonics to the level that comply the harmonic standard such as IEEE 519-1992.

  1. Promoting Conceptual Change through Active Learning Using Open Source Software for Physics Simulations

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    This paper reports upon an active learning approach that promotes conceptual change when studying direct current electricity circuits, using free open source software, "Qucs". The study involved a total of 102 prospective mathematics teacher students. Prior to instruction, students' understanding of direct current electricity was determined by a…

  2. The Main Sources of Intersubject Variability in Neuronal Activation for Reading Aloud

    ERIC Educational Resources Information Center

    Kherif, Ferath; Josse, Goulven; Seghier, Mohamed L.; Price, Cathy J.

    2009-01-01

    The aim of this study was to find the most prominent source of intersubject variability in neuronal activation for reading familiar words aloud. To this end, we collected functional imaging data from a large sample of subjects (n = 76) with different demographic characteristics such as handedness, sex, and age, while reading. The…

  3. Renewable energy and rural development activities experience in Bangladesh

    SciTech Connect

    Barua, D.C.

    1997-12-01

    The per capita per year fuel consumption in Bangladesh is only 56 kg oil equivalent. The supply of electricity by Bangladesh power development board (BPDB) and Dhaka electricity supply authority (DESA) is mainly confined to cities and towns. Rural Electrification Board (REB) distributes electricity to the rural people through cooperatives. The rural cooperatives cover only 10% of the total population. Only about 15% of the total population is directly connected to the electricity. In order to meet the increasing energy demand for development of agriculture and industry and for the generation of better employment opportunities, it will be necessary to harness all the available alternative sources of energy immediately.

  4. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals

    PubMed Central

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

  5. Measuring spatial variability of vapor flux to characterize vadose-zone VOC sources: flow-cell experiments.

    PubMed

    Mainhagu, J; Morrison, C; Truex, M; Oostrom, M; Brusseau, M L

    2014-10-15

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local-extraction point, whereas increases were observed for monitoring points located between the local-extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  6. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    PubMed Central

    Morrison, C.; Truex, M.; Oostrom, M.; Brusseau, M.L.

    2014-01-01

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points. PMID:25171394

  7. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    DOE PAGES

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-08-05

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less

  8. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-08-05

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  9. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  10. Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions

    NASA Astrophysics Data System (ADS)

    Yang, X.

    2015-12-01

    We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.

  11. Simultaneous blind separation and clustering of coactivated EEG/MEG sources for analyzing spontaneous brain activity.

    PubMed

    Hirayama, Jun-ichiro; Ogawa, Takeshi; Hyvärinen, Aapo

    2014-01-01

    Analysis of the dynamics (non-stationarity) of functional connectivity patterns has recently received a lot of attention in the neuroimaging community. Most analysis has been using functional magnetic resonance imaging (fMRI), partly due to the inherent technical complexity of the electro- or magnetoencephalography (EEG/MEG) signals, but EEG/MEG holds great promise in analyzing fast changes in connectivity. Here, we propose a method for dynamic connectivity analysis of EEG/MEG, combining blind source separation with dynamic connectivity analysis in a single probabilistic model. Blind source separation is extremely useful for interpretation of the connectivity changes, and also enables rejection of artifacts. Dynamic connectivity analysis is performed by clustering the coactivation patterns of separated sources by modeling their variances. Experiments on resting-state EEG show that the obtained clusters correlate with physiologically meaningful quantities. PMID:25571098

  12. Developmental Changes in Infant Brain Activity During Naturalistic Social Experiences

    PubMed Central

    Jones, Emily J. H.; Venema, Kaitlin; Lowy, Rachel; Earl, Rachel K.; Webb, Sara Jane

    2015-01-01

    Between 6 and 12 months, typically developing infants undergo a socio-cognitive ‘revolution’. The Interactive Specialization (IS) theory of brain development predicts that these behavioral changes will be underpinned by developmental increases in the power and topographic extent of socially selective cortical responses. To test this hypothesis, we used EEG to examine developmental changes in cortical selectivity for ecologically valid dynamic social versus non-social stimuli in a large cohort of 6- and 12-month-old infants. Consistent with the Interactive Specialization model, results showed that differences in EEG theta activity between social and non-social stimuli became more pronounced and widespread with age. Differences in EEG activity were most clearly elicited by a live naturalistic interaction, suggesting that measuring brain activity in ecologically valid contexts is central to mapping social brain development in infancy. PMID:26219834

  13. The feeling of fluent perception: a single experience from multiple asynchronous sources.

    PubMed

    Wurtz, Pascal; Reber, Rolf; Zimmermann, Thomas D

    2008-03-01

    Zeki and co-workers recently proposed that perception can best be described as locally distributed, asynchronous processes that each create a kind of microconsciousness, which condense into an experienced percept. The present article is aimed at extending this theory to metacognitive feelings. We present evidence that perceptual fluency-the subjective feeling of ease during perceptual processing-is based on speed of processing at different stages of the perceptual process. Specifically, detection of briefly presented stimuli was influenced by figure-ground contrast, but not by symmetry (Experiment 1) or the font (Experiment 2) of the stimuli. Conversely, discrimination of these stimuli was influenced by whether they were symmetric (Experiment 1) and by the font they were presented in (Experiment 2), but not by figure-ground contrast. Both tasks however were related with the subjective experience of fluency (Experiments 1 and 2). We conclude that subjective fluency is the conscious phenomenal correlate of different processing stages in visual perception. PMID:17697788

  14. Data Release Report for Source Physics Experiments 2 and 3 (SPE-2 and SPE-3) Nevada National Security Site

    SciTech Connect

    Townsend, Margaret; Obi, Curtis

    2015-04-30

    The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100 m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and farfield data that are available.This revised document includes reports on baseline shift corrections for the SPE-2 and SPE-3 shots that were missing from the original January 2015 version.

  15. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  16. Some experiences with active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Abel, I.

    1981-01-01

    Flight and wind tunnel tests were conducted and multidiscipline computer programs were developed as part of investigations of active control technology conducted at the NASA Langley Research Center. Unsteady aerodynamics approximation, optimal control theory, optimal controller design, and the Delta wing and DC-10 models are described. The drones for aerodynamics and structural testing (DAST program) for evaluating procedures for aerodynamic loads prediction and the design of active control systems on wings with significant aeroelastic effects is described as well as the DAST model used in the wind tunnel tests.

  17. The E166 experiment: Development of an Undulator-Based Polarized Positron Source for the International Linear Collider

    SciTech Connect

    Kovermann, J.; Stahl, A.; Mikhailichenko, A.A.; Scott, D.; Moortgat-Pick, G.A.; Gharibyan, V.; Pahl, P.; Poschl, R.; Schuler, K.P.; Laihem, K.; Riemann, S.; Schalicke, A.; Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.; McDonald, K.T.; Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F.J.; /SLAC /Tel Aviv U. /Tennessee U.

    2011-11-14

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized e{sup +} and e{sup -}. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and {approx}1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%. The full exploitation of the physics potential of an international linear collider (ILC) will require the development of polarized positron beams. Having both e{sup +} and e{sup -} beams polarized will provide new insight into structures of couplings and thus give access to physics beyond the standard model [1]. The concept for a polarized positron source is based on circularly polarized photon sources. These photons are then converted to longitudinally polarized e{sup +} and e{sup -} pairs. While in an experiment at KEK [1a], Compton backscattering is used [2], the E166 experiment uses a helical undulator to produce polarized photons. An undulator-based positron source for the ILC has been proposed in [3,4]. The proposed scheme for an ILC positron source is illustrated in figure 1. In this scheme, a 150 GeV electron beam passes through a 120 m long helical undulator to produce an intense photon beam with a high degree of circular polarization. These photons are converted in a thin target to e{sup +} e{sup -} pairs. The polarized positrons are then collected, pre-accelerated to the damping ring and injected to the main linac. The E166 experiment is

  18. First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE

    NASA Astrophysics Data System (ADS)

    Fink, D. A.; Richter, S. D.; Bastin, B.; Blaum, K.; Catherall, R.; Cocolios, T. E.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Ghys, L.; Gottberg, A.; Imai, N.; Kron, T.; Lecesne, N.; Lynch, K. M.; Marsh, B. A.; Mendonca, T. M.; Pauwels, D.; Rapisarda, E.; Ramos, J. P.; Rossel, R. E.; Rothe, S.; Seliverstov, M. D.; Sjödin, M.; Stora, T.; Van Beveren, C.; Wendt, K. D. A.

    2013-12-01

    The Laser Ion Source and Trap (LIST) provides a new mode of operation for the resonance ionization laser ion source (RILIS) at ISOLDE/CERN, reducing the amount of surface-ionized isobaric contaminants by up to four orders of magnitude. After the first successful on-line test at ISOLDE in 2011 the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. The measurements of the improved LIST indicate more than a twofold increase in efficiency compared to the LIST of the 2011 run. The suppression of surface-ionized francium contaminants has enabled the first in-source laser spectroscopy of 217Po and 219Po.

  19. Design of interferometer system for Keda Torus eXperiment using terahertz solid-state diode sources

    SciTech Connect

    Xie, Jinlin Wang, Haibo; Li, Hong; Lan, Tao; Liu, Adi; Liu, Wandong; Yu, Changxuan; Ding, Weixing

    2014-11-15

    A solid-state source based terahertz (THz) interferometer diagnostic system has been designed and characterized for the Keda Torus eXperiment (KTX). The THz interferometer utilizes the planar diodes based frequency multiplier (X48) to provide the probing beam at fixed frequency 0.650 THz, and local oscillator is provided by an independent solid-state diode source with tunable frequency (0.650 THz +/− 10 MHz). Both solid-state sources have approximately 1 mW power. The planar-diode mixers optimized for high sensitivity, ∼750 mV/mW, are used in the heterodyne detection system, which permits multichannel interferometer on KTX with a low phase noise. A sensitivity of {sub min} = 4.5 × 10{sup 16} m{sup −2} and a temporal resolution of 0.2 μs have been achieved during the initial bench test.

  20. Talker Identification across Source Mechanisms: Experiments with Laryngeal and Electrolarynx Speech

    ERIC Educational Resources Information Center

    Perrachione, Tyler K.; Stepp, Cara E.; Hillman, Robert E.; Wong, Patrick C. M.

    2014-01-01

    Purpose: The purpose of this study was to determine listeners' ability to learn talker identity from speech produced with an electrolarynx, explore source and filter differentiation in talker identification, and describe acoustic-phonetic changes associated with electrolarynx use. Method: Healthy adult control listeners learned to identify…

  1. A low phase noise microwave source for atomic spin squeezing experiments in {sup 87}Rb

    SciTech Connect

    Chen Zilong; Bohnet, Justin G.; Weiner, Joshua M.; Thompson, James K.

    2012-04-15

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of {sup 87}Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 x 10{sup 5} {sup 87}Rb atoms.

  2. Involving Software Engineering Students in Open Source Software Projects: Experiences from a Pilot Study

    ERIC Educational Resources Information Center

    Sowe, Sulayman K.; Stamelos, Ioannis G.

    2007-01-01

    Anecdotal and research evidences show that the Free and Open Source Software (F/OSS) development model has produced a paradigm shift in the way we develop, support, and distribute software. This shift is not only redefining the software industry but also the way we teach and learn in our software engineering (SE) courses. But for many universities…

  3. Cord blood banking activity in Iran National Cord Blood Bank: a two years experience.

    PubMed

    Jamali, Mostafa; Atarodi, Kamran; Nakhlestani, Mozhdeh; Abolghasemi, Hasan; Sadegh, Hosein; Faranoosh, Mohammad; Golzade, Khadije; Fadai, Razieh; Niknam, Fereshte; Zarif, Mahin Nikougoftar

    2014-02-01

    Today umbilical cord blood (UCB) has known as a commonly used source of hematopoietic stem cells for allogeneic transplantation and many cord blood banks have been established around the world for collection and cryopreservation of cord blood units. Herein, we describe our experience at Iran National Cord Blood Bank (INCBB) during 2 years of activity. From November 2010 to 2012, UCBs were collected from 5 hospitals in Tehran. All the collection, processing, testing, cryopreservation and storage procedures were done according to standard operation procedures. Total nucleated cells (TNC) count, viability test, CD34+ cell count, colony forming unit (CFU) assay, screening tests and HLA typing were done on all banked units. Within 3770 collected units, only 32.9% fulfilled banking criteria. The mean volume of units was 105.2 ml and after volume reduction the mean of TNC, viability, CD34+ cells and CFUs was 10.76×10(8), 95.2%, 2.99×10(6) and 7.1×10(5), respectively. One unit was transplanted at Dec 2012 to a 5-year old patient with five of six HLA compatibilities. In our country banking of UCB is new and high rate of hematopoietic stem cell transplants needs expanding CB banks capacity to find more matching units, optimization of methods and sharing experiences to improve biological characterization of units.

  4. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible. PMID:26233382

  5. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  6. Bioanalytical and instrumental analysis of estrogenic activities in drinking water sources from Yangtze River Delta.

    PubMed

    Hu, Xinxin; Shi, Wei; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The estrogenic activities of source water from Yangtze River, Huaihe River, Taihu Lake and groundwater in Yangtze River Delta in the dry and wet season were determined by use of reporter gene assays based on African green monkey kidney (CV-1) cell lines. Higher estrogenic activities were observed in the dry season, and the estrogenic potentials in water samples from Taihu Lake were greater than other river basins. None of the samples from groundwater showed estrogen receptor (ER) agonist activity. The 17β-Estradiol (E2) equivalents (EEQs) of water samples in the dry season ranged from 9.41×10(-1) to 1.20×10(1) ng E2 L(-1). In the wet season, EEQs of all the water samples were below the detection limit as 9.00×10(-1) ng E2 L(-1) except for one sample from Huaihe River. The highest contribution of E2 was detected in Yangtze River as 99% of estrogenic activity. Nonylphenol (NP, 100% detection rate) and octylphenol (OP, 100% detection rate) might also be responsible for the estrogenic activities in water sources. Potential health risk induced by the estrogenic chemicals in source water may be posed to the residents through water drinking.

  7. Experiments on active precision isolation with a smart conical adapter

    NASA Astrophysics Data System (ADS)

    Li, H.; Li, H. Y.; Chen, Z. B.; Tzou, H. S.

    2016-07-01

    Based on a conical shell adaptor, an active vibration isolator for vibration control of precision payload is designed and tested in this study. Flexible piezoelectric sensors and actuators are bonded on the adaptor surface for active vibration monitoring and control. The mathematical model of a piezoelectric laminated conical shell is derived and then optimal design of the actuators is performed for the first axial vibration mode of the isolation system. A scaled conical adaptor is manufactured with four MFC actuators laminating on its outer surface. Active vibration isolation efficiency is then evaluated on a vibration shaker. The control model is built in Matlab/Simulink and programmed into the dSPACE control board. Experimental results show that, the proposed active isolator is effective in vibration suppression of payloads with the negative velocity feedback control. In contrast, the amplitude responses increase with positive feedback control. Furthermore, the amplitude responses increases when time delay is added into the control signals, and gets the maximum when the delay is close to one quarter of one cycle time.

  8. The Intercollegiate Ethics Bowl: An Active Learning Experience

    ERIC Educational Resources Information Center

    Meyer, Tracy

    2012-01-01

    This paper introduces the Intercollegiate Ethics Bowl (IEB) as a means of promoting active learning in the realm of marketing ethics. The cases discussed in the competition are based on current ethical issues and require students to provide a coherent analysis of what are generally complex, ambiguous, and highly viewpoint dependent issues. The…

  9. SMAPVEX08: Soil Moisture Active Passive Validation Experiment 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of retrieval algorithms as well as refining the mission design and instruments. Some of these issues require resolution as soon as possible. Several forums had identified specific ...

  10. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Nostreys, R. W. (Editor)

    1980-01-01

    Information on current and planned spacecraft activity for a broad range of scientific disciplines is presented. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  11. Sequence Dance for Lifelong Leisure Activity: An International Experience!

    ERIC Educational Resources Information Center

    Bennett, John P.

    This paper provides the outline of a session in dance at the annual meeting of the American Alliance for Health, Physical Education, Recreation, and Dance. The purpose of the session was to provide an opportunity to celebrate individual differences while learning new skills for lifelong leisure activity through an English dance form known as…

  12. Timeframe Dependent Fragment Ions Observed in In-Source Decay Experiments with β-Casein Using MALDI MS

    NASA Astrophysics Data System (ADS)

    Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo

    2015-09-01

    The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H2O, NH3, CH2O (from serine), C2H4O (from threonine), and H3PO4, whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H]+ and [M + H - H]- within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.

  13. Working Group 5: Measurements technology and active experiments

    NASA Technical Reports Server (NTRS)

    Whipple, E.; Barfield, J. N.; Faelthammar, C.-G.; Feynman, J.; Quinn, J. N.; Roberts, W.; Stone, N.; Taylor, W. L.

    1986-01-01

    Technology issues identified by working groups 5 are listed. (1) New instruments are needed to upgrade the ability to measure plasma properties in space. (2) Facilities should be developed for conducting a broad range of plasma experiments in space. (3) The ability to predict plasma weather within magnetospheres should be improved and a capability to modify plasma weather developed. (4) Methods of control of plasma spacecraft and spacecraft plasma interference should be upgraded. (5) The space station laboratory facilities should be designed with attention to problems of flexibility to allow for future growth. These issues are discussed.

  14. A precise method to determine the activity of a weak neutron source using a germanium detector.

    PubMed

    Duke, M J M; Hallin, A L; Krauss, C B; Mekarski, P; Sibley, L

    2016-10-01

    A standard high purity germanium (HPGe) detector was used to determine the previously unknown neutron activity of a weak americium-beryllium (AmBe) neutron source. γ rays were created through (27)Al(n,n'), (27)Al(n,γ) and (1)H(n,γ) reactions induced by the neutrons on aluminum and acrylic disks, respectively. These γ rays were measured using the HPGe detector. Given the unorthodox experimental arrangement, a Monte Carlo simulation was developed to model the efficiency of the detector system to determine the neutron activity from the measured γ rays. The activity of our neutron source was determined to be 307.4±5.0n/s and is consistent for the different neutron-induced γ rays.

  15. A precise method to determine the activity of a weak neutron source using a germanium detector.

    PubMed

    Duke, M J M; Hallin, A L; Krauss, C B; Mekarski, P; Sibley, L

    2016-10-01

    A standard high purity germanium (HPGe) detector was used to determine the previously unknown neutron activity of a weak americium-beryllium (AmBe) neutron source. γ rays were created through (27)Al(n,n'), (27)Al(n,γ) and (1)H(n,γ) reactions induced by the neutrons on aluminum and acrylic disks, respectively. These γ rays were measured using the HPGe detector. Given the unorthodox experimental arrangement, a Monte Carlo simulation was developed to model the efficiency of the detector system to determine the neutron activity from the measured γ rays. The activity of our neutron source was determined to be 307.4±5.0n/s and is consistent for the different neutron-induced γ rays. PMID:27474906

  16. Supplement no. 1 to the January 1974 report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R.; Davis, L. R.

    1974-01-01

    Updated information and descriptions on spacecraft and experiments are listed according to spacecraft name and principle experimental investigator. A cumulative index of active and planned spacecraft and experiments is provided; bar graph indexes for electromagnetic radiation experiments are included in table form.

  17. Towards an Understanding of Flow and Other Positive Experience Phenomena within Outdoor and Adventurous Activities.

    ERIC Educational Resources Information Center

    Boniface, Margaret R.

    2000-01-01

    People involved in adventurous activities frequently experience positive phenomena termed peak experience, peak performance, and "flow." Characteristics of these phenomena are compared, along with factors influencing the ability to experience such peak moments. Csikszentmihalyi's flow models are examined with regard to perceived levels of…

  18. Active experience shapes 10-month-old infants’ understanding of collaborative goals

    PubMed Central

    Henderson, Annette M. E.; Wang, Ying; Matz, Lauren Eisenband; Woodward, Amanda L.

    2012-01-01

    Collaborative activities in which individuals coordinate their actions to attain a common goal play a fundamental role in our everyday lives. Evidence suggests that infants engage in collaborative activities before their first birthday, however little is known about infants’ understanding of collaborative action. Using a visual habituation paradigm, this research consists of two experiments designed to investigate whether 10-month-olds understand that the actions of collaborative partners are critical to the attainment of a common goal. The results of Experiment 1 suggest that 10-month-olds represent the actions of collaborating partners in terms of a common collaborative goal only after receiving active experience with a collaborative activity. Experiment 2 demonstrated that infants who received active experience with a collaborative activity viewed active engagement in a collaboration as being critical for an individual's actions to be interpreted as being directed towards a collaborative goal. Together, these findings demonstrate that 10-month-olds exhibit an understanding of the shared nature of collaborative goals after a highly salient experience with the activity. Identifying the effects of experience on infants’ understanding of collaborative goals in a laboratory context provides insights into the role that experiences in their everyday lives might play in their understanding of collaboration. PMID:23304074

  19. 20 CFR 664.470 - Are paid work experiences allowable activities?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Are paid work experiences allowable... LABOR YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Youth Program Design, Elements, and Parameters § 664.470 Are paid work experiences allowable activities? Funds under the Act may be used to...

  20. 20 CFR 664.470 - Are paid work experiences allowable activities?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Are paid work experiences allowable... LABOR (CONTINUED) YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Youth Program Design, Elements, and Parameters § 664.470 Are paid work experiences allowable activities? Funds under the Act...

  1. 20 CFR 664.470 - Are paid work experiences allowable activities?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Are paid work experiences allowable... LABOR (CONTINUED) YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Youth Program Design, Elements, and Parameters § 664.470 Are paid work experiences allowable activities? Funds under the Act...

  2. 20 CFR 664.470 - Are paid work experiences allowable activities?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Are paid work experiences allowable... LABOR YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Youth Program Design, Elements, and Parameters § 664.470 Are paid work experiences allowable activities? Funds under the Act may be used to...

  3. The effects of negative emotion on encoding-related neural activity predicting item and source recognition.

    PubMed

    Yick, Yee Ying; Buratto, Luciano Grüdtner; Schaefer, Alexandre

    2015-07-01

    We report here a study that obtained reliable effects of emotional modulation of a well-known index of memory encoding--the electrophysiological "Dm" effect--using a recognition memory paradigm followed by a source memory task. In this study, participants performed an old-new recognition test of emotionally negative and neutral pictures encoded 1 day before the test, and a source memory task involving the retrieval of the temporal context in which pictures had been encoded. Our results showed that Dm activity was enhanced for all emotional items on a late positivity starting at ~400 ms post-stimulus onset, although Dm activity for high arousal items was also enhanced at an earlier stage (200-400 ms). Our results also showed that emotion enhanced Dm activity for items that were both recognised with or without correct source information. Further, when only high arousal items were considered, larger Dm amplitudes were observed if source memory was accurate. Three main conclusions are drawn from these findings. First, negative emotion can enhance encoding processes predicting the subsequent recognition of central item information. Second, if emotion reaches high levels of arousal, the encoding of contextual details can also be enhanced over and above the effects of emotion on central item encoding. Third, the morphology of our ERPs is consistent with a hybrid model of the role of attention in emotion-enhanced memory (Pottage and Schaefer, 2012).

  4. The effects of negative emotion on encoding-related neural activity predicting item and source recognition.

    PubMed

    Yick, Yee Ying; Buratto, Luciano Grüdtner; Schaefer, Alexandre

    2015-07-01

    We report here a study that obtained reliable effects of emotional modulation of a well-known index of memory encoding--the electrophysiological "Dm" effect--using a recognition memory paradigm followed by a source memory task. In this study, participants performed an old-new recognition test of emotionally negative and neutral pictures encoded 1 day before the test, and a source memory task involving the retrieval of the temporal context in which pictures had been encoded. Our results showed that Dm activity was enhanced for all emotional items on a late positivity starting at ~400 ms post-stimulus onset, although Dm activity for high arousal items was also enhanced at an earlier stage (200-400 ms). Our results also showed that emotion enhanced Dm activity for items that were both recognised with or without correct source information. Further, when only high arousal items were considered, larger Dm amplitudes were observed if source memory was accurate. Three main conclusions are drawn from these findings. First, negative emotion can enhance encoding processes predicting the subsequent recognition of central item information. Second, if emotion reaches high levels of arousal, the encoding of contextual details can also be enhanced over and above the effects of emotion on central item encoding. Third, the morphology of our ERPs is consistent with a hybrid model of the role of attention in emotion-enhanced memory (Pottage and Schaefer, 2012). PMID:25936685

  5. Catalytic activity of nuclease P1: Experiment and theory

    SciTech Connect

    Miller, J.H.; Falcone, J.M.; Shibata, M.; Box, H.C.

    1994-10-01

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates.

  6. Experiments on active isolation using distributed PVDF error sensors

    NASA Technical Reports Server (NTRS)

    Lefebvre, S.; Guigou, C.; Fuller, C. R.

    1992-01-01

    A control system based on a two-channel narrow-band LMS algorithm is used to isolate periodic vibration at low frequencies on a structure composed of a rigid top plate mounted on a flexible receiving plate. The control performance of distributed PVDF error sensors and accelerometer point sensors is compared. For both sensors, high levels of global reduction, up to 32 dB, have been obtained. It is found that, by driving the PVDF strip output voltage to zero, the controller may force the structure to vibrate so that the integration of the strain under the length of the PVDF strip is zero. This ability of the PVDF sensors to act as spatial filters is especially relevant in active control of sound radiation. It is concluded that the PVDF sensors are flexible, nonfragile, and inexpensive and can be used as strain sensors for active control applications of vibration isolation and sound radiation.

  7. [Improving public health and hygiene surveillance activity: the Lombardy experience].

    PubMed

    Poloni, M

    2012-01-01

    In light of changing health needs, it has become a necessity to modify the instruments used in prevention, and this is thanks also to all the new preventive health professions that have been added to the existing ones. This presentation describes the results of the activities of prevention and control of occupational injuries, environmental hygiene and food and nutrition security in the Lombardy Region. PMID:22880384

  8. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  9. Linear halogen bulb as a powerful light source for physics experiments

    NASA Astrophysics Data System (ADS)

    Bochníček, Zdeněk

    2015-11-01

    The paper describes the usage of a conventional lamp equipped with a linear halogen bulb for physics experiments. The irradiance gain and limitation of spectral resolution are treated in detail theoretically and verified experimentally. The analysis shows that, in comparison with a standard bulb and slit arrangement, the linear bulb can increase irradiance of the spectrum image by an order of magnitude without a significant loss of spectral resolution in comparable experimental arrangements. Some concrete examples of experiments with a white light spectrum and diffraction are presented.

  10. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  11. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    DOE R&D Accomplishments Database

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  12. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    SciTech Connect

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan; Parizzi, Andre A; Halbert, Candice E; Hoffmann, Michael C; Greene, Gayle C; Browning, Jim; Ankner, John Francis

    2013-01-01

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implemented the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.

  13. Moment Tensor Descriptions for Simulated Explosions of the Source Physics Experiment (SPE)

    NASA Astrophysics Data System (ADS)

    Yang, X.; Rougier, E.; Knight, E. E.; Patton, H. J.

    2014-12-01

    In this research we seek to understand damage mechanisms governing the behavior of geo-materials in the explosion source region, and the role they play in seismic-wave generation. Numerical modeling tools can be used to describe these mechanisms through the development and implementation of appropriate material models. Researchers at Los Alamos National Laboratory (LANL) have been working on a novel continuum-based-viscoplastic strain-rate-dependent fracture material model, AZ_Frac, in an effort to improve the description of these damage sources. AZ_Frac has the ability to describe continuum fracture processes, and at the same time, to handle pre-existing anisotropic material characteristics. The introduction of fractures within the material generates further anisotropic behavior that is also accounted for within the model. The material model has been calibrated to a granitic medium and has been applied in a number of modeling efforts under the SPE project. In our modeling, we use a 2D, axisymmetric layered earth model of the SPE site consisting of a weathered layer on top of a half-space. We couple the hydrodynamic simulation code with a seismic simulation code and propagate the signals to distances of up to 2 km. The signals are inverted for time-dependent moment tensors using a modified inversion scheme that accounts for multiple sources at different depths. The inversion scheme is evaluated for its resolving power to determine a centroid depth and a moment tensor description of the damage source. The capabilities of the inversion method to retrieve such information from waveforms recorded on three SPE tests conducted to date are also being assessed.

  14. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources.

    PubMed

    Steinke, I; Walther, M; Lehmkühler, F; Wochner, P; Valerio, J; Mager, R; Schroer, M A; Lee, S; Roseker, W; Jain, A; Sikorski, M; Song, S; Hartmann, R; Huth, M; Strüder, L; Sprung, M; Robert, A; Fuoss, P H; Stephenson, G B; Grübel, G

    2016-06-01

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXS and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser. PMID:27370468

  15. Young-type experiment using a single-electron source and an independent atomic-size two-center interferometer.

    PubMed

    Chesnel, J-Y; Hajaji, A; Barrachina, R O; Frémont, F

    2007-03-01

    Evidence is given for Young-type interferences caused by a single electron acting on a given double-center scatterer analogous to an atomic-size double-slit system. The electron is provided by autoionization of a doubly excited He atom following the capture of the electrons of H2 by a He2+ incoming ion. The autoionizing projectile is a single-electron source, independent of the interferometer provided by the two H+ centers of the fully ionized H2 molecule. This experiment resembles the famous thought experiment imagined by Feynman in 1963, in which the quantum nature of the electron is illustrated from a Young-like double-slit experiment. Well-defined oscillations are visible in the angular distribution of the scattered electrons, showing that each electron interferes with itself.

  16. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Walther, M.; Lehmkühler, F.; Wochner, P.; Valerio, J.; Mager, R.; Schroer, M. A.; Lee, S.; Roseker, W.; Jain, A.; Sikorski, M.; Song, S.; Hartmann, R.; Huth, M.; Strüder, L.; Sprung, M.; Robert, A.; Fuoss, P. H.; Stephenson, G. B.; Grübel, G.

    2016-06-01

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXS and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.

  17. Influence of climatic factors on the flight activity of the stingless bee Partamona orizabaensis and its competition behavior at food sources.

    PubMed

    Keppner, Eva M; Jarau, Stefan

    2016-10-01

    Stingless bees have evolved several ways to share contested resources to ensure the coexistence between different species. Partamona orizabaensis quickly exploits food sources by fast and direct recruitment that does not rely on scent marks deposited on substrates. In this study we show that the flight activity of P. orizabaensis is influenced by weather conditions, with higher activity during periods of colder temperatures, higher relative humidity and even during rainfall. We showed that the outcome of aggression experiments between the non-aggressive species P. orizabaensis and its aggressive competitor Trigona fuscipennis is influenced by the number of bees that arrive early after food source discovery. Therefore, the increased activity during less favorable weather conditions and the fast recruitment of nestmates following the discovery of a food source, as observed for P. orizabaensis, may be adaptations that evolved to coexist even with more aggressive and dominant species of stingless bees, with which P. orizabaensis has to compete for resources. PMID:27431445

  18. Influence of climatic factors on the flight activity of the stingless bee Partamona orizabaensis and its competition behavior at food sources.

    PubMed

    Keppner, Eva M; Jarau, Stefan

    2016-10-01

    Stingless bees have evolved several ways to share contested resources to ensure the coexistence between different species. Partamona orizabaensis quickly exploits food sources by fast and direct recruitment that does not rely on scent marks deposited on substrates. In this study we show that the flight activity of P. orizabaensis is influenced by weather conditions, with higher activity during periods of colder temperatures, higher relative humidity and even during rainfall. We showed that the outcome of aggression experiments between the non-aggressive species P. orizabaensis and its aggressive competitor Trigona fuscipennis is influenced by the number of bees that arrive early after food source discovery. Therefore, the increased activity during less favorable weather conditions and the fast recruitment of nestmates following the discovery of a food source, as observed for P. orizabaensis, may be adaptations that evolved to coexist even with more aggressive and dominant species of stingless bees, with which P. orizabaensis has to compete for resources.

  19. Parallax diagnostics of radiation source geometric dilution for iron opacity experiments

    SciTech Connect

    Nagayama, T.; Bailey, J. E.; Loisel, G.; Rochau, G. A.; Falcon, R. E.

    2014-11-15

    Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions [J. E. Bailey et al., Phys. Plasmas 16, 058101 (2009)]. The iron sample is placed on top of the Sandia National Laboratories z-pinch dynamic hohlraum (ZPDH) radiation source. The samples are heated to 150–200 eV electron temperatures and 7× 10{sup 21}–4× 10{sup 22} cm{sup −3} electron densities by the ZPDH radiation and backlit at its stagnation [T. Nagayama et al., Phys. Plasmas 21, 056502 (2014)]. The backlighter attenuated by the heated sample plasma is measured by four spectrometers along ±9° with respect to the z-pinch axis to infer the sample iron opacity. Here, we describe measurements of the source-to-sample distance that exploit the parallax of spectrometers that view the half-moon-shaped sample from ±9°. The measured sample temperature decreases with increased source-to-sample distance. This distance must be taken into account for understanding the sample heating.

  20. Insights into the Galactic Cosmic-ray Source from the TIGER Experiment

    NASA Technical Reports Server (NTRS)

    Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.; deNolfo, G. A.; Rauch, B. F.; Schindler, S. M.; Scott, L. M.; Streitmatter, R. E.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.

    2009-01-01

    We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  1. Real-time analysis, visualization, and steering of microtomography experiments at photon sources

    SciTech Connect

    von Laszeski, G.; Insley, J. A.; Foster, I.; Bresnahan, J.; Kesselman, C.; Su, M.; Thiebaux, M.; Rivers, M. L.; Wang, S.; Tieman, B., McNulty, I.

    2000-02-29

    A new generation of specialized scientific instruments called synchrotron light sources allow the imaging of materials at very fine scales. However, in contrast to a traditional microscope, interactive use has not previously been possible because of the large amounts of data generated and the considerable computation required translating this data into a useful image. The authors describe a new software architecture that uses high-speed networks and supercomputers to enable quasi-real-time and hence interactive analysis of synchrotron light source data. This architecture uses technologies provided by the Globus computational grid toolkit to allow dynamic creation of a reconstruction pipeline that transfers data from a synchrotron source beamline to a preprocessing station, next to a parallel reconstruction system, and then to multiple visualization stations. Collaborative analysis tools allow multiple users to control data visualization. As a result, local and remote scientists can see and discuss preliminary results just minutes after data collection starts. The implications for more efficient use of this scarce resource and for more effective science appear tremendous.

  2. Rg excitation by underground explosions: insights from source modelling the 1997 Kazakhstan depth-of-burial experiment

    NASA Astrophysics Data System (ADS)

    Patton, Howard J.; Bonner, Jessie L.; Gupta, Indra N.

    2005-12-01

    Near-field seismograms of chemical explosions detonated as part of the 1997 depth-of-burial (DOB) experiment at the former Semipalatinsk nuclear test site provide an excellent opportunity to study the excitation of Rg waves for source effects. Rg waves were identified with particle-motion analysis and isolated from other arrivals using group velocity filtering. Amplitude and phase spectra of Rg waves were corrected for path effects based on observed attenuation in the near-field and path-specific phase velocity models. The path-corrected spectra were inputs to a grid-search method for finding source parameters of an axisymmetric source consisting of a monopole plus a compensated linear vector dipole (CLVD) or a horizontal tensile crack. The suite of observations, including ground-zero accelerograms and geophysical data from borehole logs, are best satisfied by models involving a CLVD with static (zero-frequency) seismic moment Mo. The CLVD source is related to tensile failure occurring at depths above the shotpoint. A static Mo distinguishes this source from classical models of spall, which are usually characterized by horizontal cracks that dynamically open and close with no permanent displacement (i.e. no static Mo). The CLVD source in this study appears to be more closely related to a driven block motion model envisaged by Masse. Rg source amplitudes are consistent with mb(Lg) measurements at station MAK, as would be expected if near-field Rg-to-S scattering plays a role in generating S waves observed at regional distances.

  3. Feasibility of perfluorocarbon tracers (PFTs) in atmospheric source-receptor experiments

    SciTech Connect

    Dietz, R.N.; Senum, G.I.

    1984-03-01

    A brief description of the perfluorocarbon tracer (PFT) system, which includes the tracers and the release equipment, the air samplers and the analyzers, is presented along with details on the research needs to provide a viable system for MATEX-scenario experiments. The present family of 2 viable PFTs needs to be increased to 5 to 6. Given the present precision of the analysis system, a one year long tracer experiment consisting of 4 hour releases every 60 hours from 5 different sites would require nearly 150 metric tons of PFTs at a cost of $15,000,000. Shortcomings in the programmable sampler include the pump, the sampling sequence control flexibility, data storage and retrieval, and the lack of remote communication capability; sampler adsorbent studies are also needed. The analytical system, including the catalyst processing bed, the chromatography column resolution, and the linearity of the detector, is in need of significant improvement. A higher resolution analysis system could significantly reduce analysis time but, more importantly, reduce tracer requirements more than 10-fold, for a cost savings potential of more than $13,000,000. A model is presented to demonstrate the feasibility of tracer material balances. Assessment of earlier long-range tracer experiments indicates the need for possibly 400 ground sampling sites requiring $8 to $14 million worth of samplers for a one-year tracer experiment. As many as six aircraft would be needed to conduct airborne model validation and material balance studies for each tracer plume.

  4. The Strength of Weak Identities: Social Structural Sources of Self, Situation and Emotional Experience

    ERIC Educational Resources Information Center

    Smith-Lovin, Lynn

    2007-01-01

    Modern societies are highly differentiated, with relatively uncorrelated socially salient dimensions and a preponderance of weak, unidimensional (as opposed to strong, multiplex) ties. What are the implications of a society with fewer strong ties and more weak ties for the self? What do these changes mean for our emotional experience in everyday…

  5. Paraxial SGM beamlines for coherence experiments at the Advanced Light Source

    SciTech Connect

    Warwick, Anthony I; Warwick, Anthony I; Howells, Malcolm

    2008-07-24

    Beamlines have been designed for coherence experiments at the ALS based on brightness preserving spherical grating monochromators. The operation is almost paraxial so that a very simple scheme can deliver the modest spectral resolution required, with just two focusing optics, one of which is the spherical grating.

  6. Jets and sources of activity on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste; Sierks, Holger; Lara, Luisa; Gutierez, Pedro; Rodrigo, Rafael; Pajola, Maurizio; Oklay, Nilda; Knollenberg, Jörg; Bertini, Ivano; Lin, Zhong-Yi; Ip, Wing-Huen; Thomas, Nicolas; Davidsson, Björn; Mottola, Stefano; Lowry, Stephen; Fornasier, Sonia; Bodewits, Dennis; Massironi, Matteo; A'Hearn, Mike; Keller, Uwe

    2015-04-01

    A major goal of the Rosetta mission is to study the evolution of a comet through activity. Understanding the physical processes reshaping the nucleus will help us to look back in time and reconstruct what pristine comet surface looked like at the time of its formation. A key question is how and why cometary activity is spatially distributed over the nucleus. We trace the manifestation of this activity in the coma, in the form of narrow dust features, hereafter called "jets", expanding straight for at least some distance from the source on the nucleus. We follow these jets down to the surface to constrain the location of active areas and better understand the physical processes underlying activity. Jets are a type of highly localized activity. They appear as fuzzy streams of bright material arising from specific areas on the nucleus surface. They are typically detected against a dark background, which can be either empty space or casted shadows. Jets are seen at all scales, down to the resolution of the OSIRIS images. The smallest features detected so far are a few pixels across, which translates into a couple of meters at most. They have a typical column density a few percent higher than the ambient medium [1]. At the highest spatial resolution these jets appear as a combination of thinner features which can be traced directly to specific morphologic features on the surface. By monitoring the activity and observing these jets from different angles we can reconstruct their three-dimensional structure and identify their source regions. We present here the first results of this inversion, covering the epoch from August to December 2014. We show how the spatial distribution of jet sources expands with time. While active areas were found mainly in the transition region between the two lobes in August 2014 (3.6 AU), they could be observed all over the Northern hemisphere in December 2014 (2.8 AU). Jet sources are associated to different types of terrains: smooth areas

  7. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    PubMed

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  8. Experiences from long range passive and active imaging

    NASA Astrophysics Data System (ADS)

    Grönwall, Christina; Gustafsson, David; Steinvall, Ove; Tolt, Gustav

    2015-10-01

    We present algorithm evaluations for ATR of small sea vessels. The targets are at km distance from the sensors, which means that the algorithms have to deal with images affected by turbulence and mirage phenomena. We evaluate previously developed algorithms for registration of 3D-generating laser radar data. The evaluations indicate that some robustness to turbulence and mirage induced uncertainties can be handled by our probabilistic-based registration method. We also assess methods for target classification and target recognition on these new 3D data. An algorithm for detecting moving vessels in infrared image sequences is presented; it is based on optical flow estimation. Detection of moving target with an unknown spectral signature in a maritime environment is a challenging problem due to camera motion, background clutter, turbulence and the presence of mirage. First, the optical flow caused by the camera motion is eliminated by estimating the global flow in the image. Second, connected regions containing significant motions that differ from camera motion is extracted. It is assumed that motion caused by a moving vessel is more temporally stable than motion caused by mirage or turbulence. Furthermore, it is assumed that the motion caused by the vessel is more homogenous with respect to both magnitude and orientation, than motion caused by mirage and turbulence. Sufficiently large connected regions with a flow of acceptable magnitude and orientation are considered target regions. The method is evaluated on newly collected sequences of SWIR and MWIR images, with varying targets, target ranges and background clutter. Finally we discuss a concept for combining passive and active imaging in an ATR process. The main steps are passive imaging for target detection, active imaging for target/background segmentation and a fusion of passive and active imaging for target recognition.

  9. Experiments on the active control of transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  10. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    NASA Technical Reports Server (NTRS)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  11. Synergy Between Experiments and Simulations in Laser and Beam-Driven Plasma Acceleration and Light Sources

    NASA Astrophysics Data System (ADS)

    Mori, Warren B.

    2015-11-01

    Computer simulations have been an integral part of plasma physics research since the early 1960s. Initially, they provided the ability to confirm and test linear and nonlinear theories in one-dimension. As simulation capabilities and computational power improved, then simulations were also used to test new ideas and applications of plasmas in multi-dimensions. As progress continued, simulations were also used to model experiments. Today computer simulations of plasmas are ubiquitously used to test new theories, understand complicated nonlinear phenomenon, model the full temporal and spatial scale of experiments, simulate parameters beyond the reach of current experiments, and test the performance of new devices before large capital expenditures are made to build them. In this talk I review the progress in simulations in a particular area of plasma physics: plasma based acceleration (PBA). In PBA a short laser pulse or particle beam propagates through long regions of plasma creating plasma wave wakefields on which electrons or positrons surf to high energies. In some cases the wakefields are highly nonlinear, involve three-dimensional effects, and the trajectories of plasma particles cross making it essential that fully kinetic and three-dimensional models are used. I will show how particle-in-cell (PIC) simulations were initially used to propose the basic idea of PBA in one dimension. I will review some of the dramatic progress in the experimental demonstration of PBA and show how this progress was dramatically helped by a synergy between experiments and full-scale multi-dimensional PIC simulations. This will include a review of how the capability of PIC simulation tools has improved. I will also touch on some recent progress on improvements to PIC simulations of PBA and discuss how these improvements may push the synergy further towards real time steering of experiments and start to end modeling of key components of a future linear collider or XFEL based on PBA

  12. Paper 58714 - Exploring activated faults hydromechanical processes from semi-controled field injection experiments

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Nussbaum, C.

    2015-12-01

    The appreciation of the sensitivity of fractures and fault zones to fluid-induced-deformations in the subsurface is a key question in predicting the reservoir/caprock system integrity around fluid manipulations with applications to reservoir leakage and induced seismicity. It is also a question of interest in understanding earthquakes source, and recently the hydraulic behavior of clay faults under a potential reactivation around nuclear underground depository sites. Fault and fractures dynamics studies face two key problems (1) the up-scaling of laboratory determined properties and constitutive laws to the reservoir scale which is not straightforward when considering faults and fractures heterogeneities, (2) the difficulties to control both the induced seismicity and the stimulated zone geometry when a fault is reactivated. Using instruments dedicated to measuring coupled pore pressures and deformations downhole, we conducted field academic experiments to characterize fractures and fault zones hydromechanical properties as a function of their multi-scale architecture, and to monitor their dynamic behavior during the earthquake nucleation process. We show experiments on reservoir or cover rocks analogues in underground research laboratories where experimental conditions can be optimized. Key result of these experiments is to highlight how important the aseismic fault activation is compared to the induced seismicity. We show that about 80% of the fault kinematic moment is aseismic and discuss the complex associated fault friction coefficient variations. We identify that the slip stability and the slip velocity are mainly controlled by the rate of the permeability/porosity increase, and discuss the conditions for slip nucleation leading to seismic instability.

  13. Geologic Assessment of the Damage Zone from the Second Test at Source Physics Experiment-Nevada (SPE-N)

    SciTech Connect

    ,

    2012-09-18

    The National Center for Nuclear Security (NCNS), established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site (NNSS; formerly the Nevada Test Site) that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The initial NCNS project is a series of explosive tests, known collectively as the Source Physics Experiment at the NNSS (SPE-N), being conducted in granitic rocks at the Climax stock in northern Yucca Flat. The SPE-N test series is designed to study the generation and propagation of seismic waves. The data will be used to improve the predictive capability of calculational models for detecting and characterizing underground explosions. The first SPE-N test (SPE-N-1) was a “calibration” shot conducted in May 2011, using 100 kilograms (kg) of explosives at the depth of 54.9 meters (m) (180 feet [ft]) in the U-15n source hole. SPE-N-2 was conducted in October 2011, using 1,000 kg of explosives at the depth of 45.7 m (150 ft) in the same source hole. Following the SPE-N-2 test, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE-N-2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast side, where the core hole penetrated it. The three-dimensional shape and symmetry of the damage zone are unknown at this time. Rather than spherical in shape, the dimensions of the damage zone could be influenced by the natural fracture sets in the vicinity. Geologic characterization of the borehole included geophysical logging, a directional survey

  14. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  15. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    PubMed

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor.

  16. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    SciTech Connect

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poor performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.

  17. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE PAGES

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  18. Calcium-activated conductance in skate electroreceptors: current clamp experiments

    PubMed Central

    1977-01-01

    When current clamped, skate electroreceptor epithelium produces large action potentials in response to stimuli that depolarize the lumenal faces of the receptor cells. With increasing stimulus strength these action potentials become prolonged. When the peak voltage exceeds about 140 mV the repolarizing phase is blocked until the end of the stimulus. Perfusion experiments show that the rising phase of the action potential results from an increase in calcium permeability in the lumenal membranes. Perfusion of the lumen with cobalt or with a zero calcium solution containing EGTA blocks the action potential. Perfusion of the lumen with a solution containing 10 mM Ca and 20 mM EGTA initially slows the repolarizing process at all voltages and lowers the potential at which it is blocked. With prolonged perfusion, repolarization is blocked at all voltages. When excitability is abolished by perfusion with cobalt, or with a zero calcium solution containing EGTA, no delayed rectification occurs. We suggest that repolarization during the action potential depends on an influx of calcium into the cytoplasm, and that the rate of repolarization depends on the magnitude of the inward calcium current. Increasingly large stimuli reduce the rate of repolarization by reducing the driving force for calcium, and then block repolarization by causing the lumenal membrane potential to exceed ECa. Changes in extracellular calcium affect repolarization in a manner consistent with the resulting change in ECa. PMID:190338

  19. Results of Skylab medical experiment M171: Metabolic activity

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.; Sawin, C. F.; Buderer, M. C.; Lem, J. D.

    1974-01-01

    The experiment was conducted to establish whether man's ability to perform mechanical work would be progressively altered as a result of exposure to the weightless environment of space flight. The Skylab crewmen exercised on a bicycle ergometer at workloads approximating 25, 50, and 75 percent of their maximum aerobic capacity. The physiological parameters monitored were respiratory gas exchange, blood pressure, and vectorcardiogram/heart rate. The results of these tests indicate that the crewmen had no significant decrement in their responses to exercise during their exposure to zero gravity. The results of the third manned Skylab mission (Skylab 4) are presented and a comparison is made of the overall results obtained from the three successively longer Skylab manned missions. The Skylab 4 crewmembers' 84-day in-flight responses to exercise were no worse and were probably better than the responses of the crewmen on the first two Skylab missions. Indications that exercise was an important contributing factor in maintaining this response are discussed.

  20. EXPERIENCES FROM THE SOURCE-TERM ANALYSIS OF A LOW AND INTERMEDIATE LEVEL RADWASTE DISPOSAL FACILITY

    SciTech Connect

    Park,Jin Beak; Park, Joo-Wan; Lee, Eun-Young; Kim, Chang-Lak

    2003-02-27

    Enhancement of a computer code SAGE for evaluation of the Korean concept for a LILW waste disposal facility is discussed. Several features of source term analysis are embedded into SAGE to analyze: (1) effects of degradation mode of an engineered barrier, (2) effects of dispersion phenomena in the unsaturated zone and (3) effects of time dependent sorption coefficient in the unsaturated zone. IAEA's Vault Safety Case (VSC) approach is used to demonstrate the ability of this assessment code. Results of MASCOT are used for comparison purposes. These enhancements of the safety assessment code, SAGE, can contribute to realistic evaluation of the Korean concept of the LILW disposal project in the near future.

  1. Circular arc fuel plate stability experiments and analyses for the advanced neutron source

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin fuel plates planned for the Advanced Neutron Source are to be cooled by forcing heavy water at high velocity, 25 m/s, through thin cooling channels on each side of each plate. Because the potential for structural failure of the plates is a design concern, considerable effort has been expended in assessing this potential. As part of this effort, experimental flow tests and analyses to evaluate the structural response of circular arc plates have been conducted, and the results are given in this report.

  2. Multiple source frequency-modulated continuous-wave optical reflectometry: theory and experiment.

    PubMed

    Vasilyev, Arseny; Satyan, Naresh; Xu, Shengbo; Rakuljic, George; Yariv, Amnon

    2010-04-01

    We propose and demonstrate a novel approach to increase the effective bandwidth of a frequency-modulated continuous-wave (FMCW) ranging system. This is achieved by algorithmically stitching together the swept spectra of separate laser sources. The result is an improvement in the range resolution proportional to the increase in the swept-frequency range. An analysis of this system as well as the outline of the stitching algorithm are presented. Using three distinct swept-frequency optical waveforms, we experimentally demonstrate a threefold improvement in the range resolution of a three-sweep approach over the conventional FMCW method. PMID:20357879

  3. Construction, commissioning and operational experience of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Arnold, N.; Berg, W.

    1996-10-01

    The Advanced Photon Source linear accelerator system consists of a 200 MeV, 2856 MHz S-Band electron linac and a 2-radiation-thick tungsten target followed by a 450 MeV positron linac. The linac system has operated 24 hours per day for the past year to support accelerator commissioning and beam studies and to provide beam for the user experimental program. It achieves the design goal for positron current of 8 mA and produces electron energies up to 650 MeV without the target in place. The linac is described and its operation and performance are discussed.

  4. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments.

    PubMed

    Boschini, F; Hedayat, H; Dallera, C; Farinello, P; Manzoni, C; Magrez, A; Berger, H; Cerullo, G; Carpene, E

    2014-12-01

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup. PMID:25554305

  5. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments

    SciTech Connect

    Boschini, F.; Hedayat, H.; Dallera, C.; Cerullo, G.; Farinello, P.; Manzoni, C.; Carpene, E.; Magrez, A.; Berger, H.

    2014-12-15

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  6. Animal-assisted activity: experiences of institutionalized Japanese older adults.

    PubMed

    Kawamura, Namiko; Niiyama, Masayoshi; Niiyama, Harue

    2009-01-01

    The purpose of this study was to determine how a group of institutionalized elderly Japanese women perceived animal-assisted activity (AAA) and how their perceptions may be relevant to clinical nursing practices in the AAA context. The participants in this study, 8 elderly Japanese women residing in a nursing home in a northern Japanese city, had attended AAA sessions two times per month for 2 years prior to this study's data collection. Semi-structured interviews were conducted, and data were analyzed using phenomenological procedures. Six themes emerged concerning the interactive relationships between the participants and the animals; in addition, participants were able to develop interest in themselves, other residents, and their environment, due to feelings of ease and the development of one-on-one relationships with the AAA dogs. Volunteers from outside the nursing home made residents feel refreshed and gave them opportunities to broaden their contact with society. PMID:19227109

  7. Transient desorption of water vapor - A potential source of error in upper atmosphere rocket experiments

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.; Weeks, J. O.

    1974-01-01

    Results of measurements of the outgassing rates of samples of materials and surface finishes used on the outer skins of rocket-borne experiment packages in simulated rocket ascents. The results showed outgassing rates for anodized aluminum in the second minute of flight which are two to three orders of magnitude higher than those given in typical tables of outgassing rates. The measured rates for aluminum with chromate conversion surface coatings were also abnormally high. These abnormally high initial rates fell quickly after about five to ten minutes to values comparable with those in the published literature. It is concluded that anodized and chromate conversion coatings on the aluminum outer surfaces of a sounding rocket experiment package will cause gross distortion of the true water vapor environment.

  8. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory's Source Region Program

    SciTech Connect

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    1993-01-21

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  9. Discrimination of Nuclear Explosions against Civilian Sources Based on Atmospheric Radioiodine Isotopic Activity Ratios

    NASA Astrophysics Data System (ADS)

    Kalinowski, Martin B.; Liao, Yen-Yo; Pistner, Christoph

    2014-03-01

    A global monitoring system for atmospheric radioactivity is being established as part of the International Monitoring System that will verify compliance with the comprehensive nuclear-test-ban treaty (CTBT) once the treaty has entered into force. This paper studies isotopic activity ratios to support the interpretation of observed atmospheric concentrations of 135I, 133I and 131I. The goal is to distinguish nuclear explosion sources from civilian releases. Simulated nuclear explosion releases along with observational data of radioiodine releases from historic nuclear explosions at the Nevada Test Site are compared to simulated light water reactor releases in order to provide a proof of concept for source discrimination based on radioiodine isotopic activity ratios.

  10. Quantification of Interictal Neuromagnetic Activity in Absence Epilepsy with Accumulated Source Imaging.

    PubMed

    Xiang, Jing; Tenney, Jeffrey R; Korman, Abraham M; Leiken, Kimberly; Rose, Douglas F; Harris, Elana; Yuan, Weihong; Horn, Paul S; Holland, Katherine; Loring, David W; Glauser, Tracy A

    2015-11-01

    Aberrant brain activity in childhood absence epilepsy (CAE) during seizures has been well recognized as synchronous 3 Hz spike-and-wave discharges on electroencephalography. However, brain activity from low- to very high-frequency ranges in subjects with CAE between seizures (interictal) has rarely been studied. Using a high-sampling rate magnetoencephalography (MEG) system, we studied ten subjects with clinically diagnosed but untreated CAE in comparison with age- and gender-matched controls. MEG data were recorded from all subjects during the resting state. MEG sources were assessed with accumulated source imaging, a new method optimized for localizing and quantifying spontaneous brain activity. MEG data were analyzed in nine frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low-gamma (30-55 Hz), high-gamma (65-90 Hz), ripple (90-200 Hz), high-frequency oscillation (HFO, 200-1,000 Hz), and very high-frequency oscillation (VHFO, 1,000-2,000 Hz). MEG source imaging revealed that subjects with CAE had higher odds of interictal brain activity in 200-1,000 and 1,000-2,000 Hz in the parieto-occipito-temporal junction and the medial frontal cortices as compared with controls. The strength of the interictal brain activity in these regions was significantly elevated in the frequency bands of 90-200, 200-1,000 and 1,000-2,000 Hz for subjects with CAE as compared with controls. The results indicate that CAE has significantly aberrant brain activity between seizures that can be noninvasively detected. The measurements of high-frequency neuromagnetic oscillations may open a new window for investigating the cerebral mechanisms of interictal abnormalities in CAE. PMID:25359158

  11. Lessons Learned From the CISM-DX Open Source Visualization and Data Analysis Experience

    NASA Astrophysics Data System (ADS)

    Wiltberger, M. J.; Weigel, R. S.; Schmitt, P.

    2012-12-01

    As part of its efforts to develop an end-to-end physics-based numerical model for the Sun-to-Earth space weather system the Center for Integrated Space Weather Modeling (CISM) created CISM-DX the open-source visualization and analysis package. The package is a collection of data, models, and tools for both analysis and visualization of space physics data sets. A key component of the package is SPDX, which extends the capabilities of the open source visualization package, OpenDX, into the space physics domain through a series of custom modules for importing data and visual programs for producing visualizations of the results as well as assisting in the analysis of the simulation results. The package includes the ability to import data from all CISM components, e.g. MAS, ENLIL, LFM, RCM, and TIEGCM, as well as other space physics models. We also developed a series of hands-on exercises that have been used as part of the CISM Space Weather School to provide a unique educational tool to students beginning their space physics careers. Numerous challenges have been address during the lifetime of this project including how to deal with multiple independent component libraries, installation on different operating systems, and encourage user participation in the development process. The future of CISM-DX includes addressing the need for visualization tools that support parallel rendering and remote visualization.

  12. Water privatization, water source, and pediatric diarrhea in Bolivia: epidemiologic analysis of a social experiment.

    PubMed

    Tornheim, Jeffrey A; Morland, Kimberly B; Landrigan, Philip J; Cifuentes, Enrique

    2009-01-01

    Water and sanitation services are fundamental to the prevention of pediatric diarrhea. To enhance both access to water and investment, some argue for the privatization of municipal water networks. Water networks in multiple Bolivian cities were privatized in the 1990s, but contracts ended following popular protests citing poor access. A population-based retrospective cohort study was conducted in two Bolivian cities. Data were collected on family water utilization and sanitation practices and on the prevalence of diarrhea among 596 children. Drinking from an outdoor water source (OR, 2.08; 95%CI, 1.25-3.44) and shorter in-home water boiling times (OR, 1.99; 95%CI, 1.19-3.34) were associated with prevalence of diarrhea. Increased prevalence was also observed for children from families using private versus public water services, using off-network water from cistern trucks, or not treating their water in-home. Results suggest that water source, water provider, and in-home water treatment are important predictors of pediatric diarrhea.

  13. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources.

    PubMed

    Otani, Y; Hasegawa, K; Hanaki, K

    2004-01-01

    Abilities of three aerobic denitrifiers such as Alcaligenes faecalis, Microvirgula aerodenitrificans and Paracoccus pantotrophus were compared from the viewpoints of nitrate removal efficiency and organic matter utilization. First, the effect of carbon source was investigated. Although nitrate reduction was observed in all strains under aerobic conditions, a change of carbon source considerably affected the denitrification ability. In the case of P. pantotrophus, nitrate and nitrite were completely removed in three days under sodium acetate or leucine as a carbon source. In the case of A. faecalis, sufficient nitrate removal was observed only when sodium acetate or ethanol was added. P. pantotrophus and A. faecalis showed a higher ability of nitrate removal than that of M. aerodenitrificans. Therefore, P. pantotrophus was selected in order to investigate the effects of concentration and repetitive addition of carbon. Sodium acetate was used as a sole carbon source. Nitrate was not reduced when the carbon concentration was below 500 mgC/L. However, when carbon source was added repeatedly, nitrate was reduced under 100 mgC/L after the optical density of the bacterium reached above 1.0. This result indicated that a high enough level of bacterial density was necessary to express aerobic denitrification activity. PMID:15566182

  14. Transdental photo-activation technique: hardness and marginal adaptation of composite restorations using different light sources.

    PubMed

    Alves, Eliane Bemerguy; Alonso, Roberta Caroline Bruschi; Correr, Gisele Maria; Correr, Américo Bortolazzo; de Moraes, Rafael Ratto; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-01-01

    This study investigated the influence of different light sources associated with a transdental photoactivation technique on the marginal adaptation and hardness of composite restorations. Cavities (3 mm wide x 3 mm long x 1.5 mm in deep) were prepared on flattened bovine dentin and filled with Z250 composite (3M ESPE). Nine groups (n=10) were defined according to the curing technique (direct; transdental--photo-activation through 1 mm of enamel and 2 mm of dentin; mixed--transdental + direct) and light source (QTH XL2500, 3M ESPE; PAC Apollo 95E, DMD; LED Ultrablue Is, DMC) combination. Marginal adaptation was evaluated using a dye staining method, and the percentage of stained margins was recorded. Knoop Hardness readings were made across the transversal section of the fillings. Data were submitted to two-way ANOVA and Tukey's test (p< or =0.05). For margin analysis, although none of the curing conditions provided perfect adaptation, the mixed technique showed lower gap formation. No significant differences were detected between the transdental and other techniques, and no significant differences were detected among the light sources. For hardness, the direct technique showed slightly greater hardness than the mixed technique. Also, the mixed technique yielded greater hardness than the transdental technique. Among the light sources, the LED showed greater hardness than the PAC; whereas, no significant differences between the QTH and other sources were detected. The mixed technique might improve the marginal adaptation of restorations, while not being detrimental to composite hardness.

  15. Weak reward source memory in depression reflects blunted activation of VTA/SN and parahippocampus.

    PubMed

    Dillon, Daniel G; Dobbins, Ian G; Pizzagalli, Diego A

    2014-10-01

    Reward responses in the medial temporal lobes and dopaminergic midbrain boost episodic memory formation in healthy adults, and weak memory for emotionally positive material in depression suggests this mechanism may be dysfunctional in major depressive disorder (MDD). To test this hypothesis, we performed a study in which unmedicated adults with MDD and healthy controls encoded drawings paired with reward or zero tokens during functional magnetic resonance imaging. In a recognition test, participants judged whether drawings were previously associated with the reward token ('reward source') or the zero token ('zero source'). Unlike controls, depressed participants failed to show better memory for drawings from the reward source vs the zero source. Consistent with predictions, controls also showed a stronger encoding response to reward tokens vs zero tokens in the right parahippocampus and dopaminergic midbrain, whereas the MDD group showed the opposite pattern-stronger responses to zero vs reward tokens-in these regions. Differential activation of the dopaminergic midbrain by reward vs zero tokens was positively correlated with the reward source memory advantage in controls, but not depressed participants. These data suggest that weaker memory for positive material in depression reflects blunted encoding responses in the dopaminergic midbrain and medial temporal lobes. PMID:24078019

  16. The SPARX Project: R & D Activity Towards X-Rays FEL Sources

    SciTech Connect

    Alesini, D.; Bellaveglia, M.; Bertolucci, S.; Biagini, M.E.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M.; Filippetto, D.; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Ligi, C.; Marcellini, F.; Migliorati, M.; /Frascati /ENEA, Frascati /INFN, Milan /INFN, Rome /INFN, Rome2 /Milan Polytechnic /UCLA /SLAC

    2005-08-05

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata aiming at the construction of a FELSASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on R&D activity on critical components and techniques for future X-ray facilities as described in this paper.

  17. Scanning L Band Active Passive Validation Experiment 2013

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; Kim, E. J.; Faulkner, T.; Patel, H.; Cosh, M. H.

    2014-12-01

    SLAP (Scanning L-band Active Passive) comprises of a fully polarimetric L-band radiometer and fully polarimetric L-band radar with a shared antenna. SLAP is designed to be compatible with several aircrafts; specifically, C-23, Twin Otter, P-3, and C-130. SLAP is designed for simplicity, accuracy, & reliability. It leverages, as much as possible, existing instruments, hardware, and software in order to minimize cost, time, and risk.The SLAP airborne/ground campaign is designed to conduct flight testing and ground truth for the airborne instrument. The campaign took place the third week of December 2013 in Eastern Shore, MD. SLAP contributes to the NASA's core mission because of its ability to serve as an airborne simulator for the SMAP (Soil Moisture Active Passive) satellite mission, one of NASA's flagship missions scheduled to launch in January 2015. A 3-day aircraft validation campaign was conducted where the new SLAP instrument flew three separate days over the proposed sampling region. The study area is a mixed agriculture and forest site located about 1 hour east of Washington, DC on the Eastern Shore (of the Chesapeake Bay). This region is located on the Delmarva Peninsula. The advantages of the selected site are: (1) Site was used before in previous field campaign (SMAPVEX08) (2) ARS HRSL has some established sampling sites within region (3) Dynamic variation in land cover (4) Variety of plant structures and densities. The goal of this campaign was to fly the instrument over the proposed site before a rain event, then have 2 other flights after the rain event to capture a dry down. In conjunction with the aircraft, there was in-situ ground sampling. Ground observations were collected concurrent with aircraft flights. These included soil moisture, soil temperature, surface temperature, surface roughness and vegetation parameters. Forest sites were monitored with small temporary networks of in situ sensors installed prior to the first flight. Soil moisture was

  18. Positive matrix factorization and trajectory modelling for source identification: A new look at Indian Ocean Experiment ship observations

    NASA Astrophysics Data System (ADS)

    Bhanuprasad, S. G.; Venkataraman, Chandra; Bhushan, Mani

    The sources of aerosols on a regional scale over India have only recently received attention in studies using back trajectory analysis and chemical transport modelling. Receptor modelling approaches such as positive matrix factorization (PMF) and the potential source contribution function (PSCF) are effective tools in source identification of urban and regional-scale pollution. In this work, PMF and PSCF analysis is applied to identify categories and locations of sources that influenced surface concentrations of aerosols in the Indian Ocean Experiment (INDOEX) domain measured on-board the research vessel Ron Brown [Quinn, P.K., Coffman, D.J., Bates, T.S., Miller, T.L., Johnson, J.E., Welton, E.J., et al., 2002. Aerosol optical properties during INDOEX 1999: means, variability, and controlling factors. Journal of Geophysical Research 107, 8020, doi:10.1029/2000JD000037]. Emissions inventory information is used to identify sources co-located with probable source regions from PSCF. PMF analysis identified six factors influencing PM concentrations during the INDOEX cruise of the Ron Brown including a biomass combustion factor (35-40%), three industrial emissions factors (35-40%), primarily secondary sulphate-nitrate, balance trace elements and Zn, and two dust factors (20-30%) of Si- and Ca-dust. The identified factors effectively predict the measured submicron PM concentrations (slope of regression line=0.90±0.20; R2=0.76). Probable source regions shifted based on changes in surface and elevated flows during different times in the ship cruise. They were in India in the early part of the cruise, but in west Asia, south-east Asia and Africa, during later parts of the cruise. Co-located sources include coal-fired electric utilities, cement, metals and petroleum production in India and west Asia, biofuel combustion for energy and crop residue burning in India, woodland/forest burning in north sub-Saharan Africa and forest burning in south-east Asia. Significant findings

  19. Evaluation of wild herbivore faeces from South Africa as a potential source of hydrolytically active microorganisms.

    PubMed

    Ndlela, Luyanda L; Schmidt, Stefan

    2016-01-01

    This study assessed faecal matter from three indigenous South African herbivores-zebra, giraffe and impala-as a potential source for hydrolytically active aerobic and facultatively anaerobic bacteria. Herbivore droppings were collected freshly in a local nature reserve in Pietermaritzburg, South Africa. Soil samples adjacent to faecal collection sites and faeces from a domestic herbivore, the Nguni cow, were included as controls. Hydrolase and dehydrogenase activity in faecal matter and soil samples were measured by the fluorescein diacetate and the triphenyltetrazolium chloride assay. Viable counts and counts for amylase, cellulase, esterase and protease producers were established using plate count agar and solid media containing cellulose, skim milk, starch and Tween 80. Zebra droppings produced the highest hydrolase and dehydrogenase activity. Faecal matter of the three indigenous herbivores generally produced higher hydrolytic activity than Nguni cow faeces and soil controls, thereby confirming that these materials are potential targets for hydrolytic enzyme mining. PMID:26900540

  20. Proposed new reactor-activated positron source for intense slow e + beam production

    NASA Astrophysics Data System (ADS)

    Skalsey, M.; Van House, J.

    1988-03-01

    A novel method is suggested for producing a new positron (e +) emitting isotope in a nuclear reactor with application to slow e + beams. The initial radiated sample is 124Xe which is transformed to 126I by two neutron absorptions and an intermediate decay. Over 25 Ci of positrons with a specific activity of 25 {Ci}/{gm} can be produced by this technique, allowing the generation of a slow e + beam of over 4 × 10 7{e +}/{cm 2} -s. As discussed in the conclusion, specific activities approaching 200 {Ci}/{gm} should be for activation cells are presented, one with Xe in the gas phase, the other with solid Xe. Both designs allow the easy separation of the 126I from other contaminants, permitting the production of a pure, high specific activity source.