Sample records for active spacecraft potential

  1. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  2. Active spacecraft potential control system selection for the Jupiter orbiter with probe mission

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Goldstein, R.

    1977-01-01

    It is shown that the high flux of energetic plasma electrons and the reduced photoemission rate in the Jovian environment can result in the spacecraft developing a large negative potential. The effects of the electric fields produced by this charging phenomenon are discussed in terms of spacecraft integrity as well as charged particle and fields measurements. The primary area of concern is shown to be the interaction of the electric fields with the measuring devices on the spacecraft. The need for controlling the potential of the spacecraft is identified, and a system capable of active control of the spacecraft potential in the Jupiter environment is proposed. The desirability of using this system to vary the spacecraft potential relative to the ambient plasma potential is also discussed. Various charged particle release devices are identified as potential candidates for use with the spacecraft potential control system. These devices are evaluated and compared on the basis of system mass, power consumption, and system complexity and reliability.

  3. Study of the Spacecraft Potential Under Active Control and Plasma Density Estimates During the MMS Commissioning Phase

    NASA Technical Reports Server (NTRS)

    Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.

    2016-01-01

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  4. Active control of spacecraft potentials at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Deforest, S. E.

    1976-01-01

    Tests have been conducted concerning the active control of the potentials of the geosynchronous satellites ATS-5 and ATS-6. The ATS-5 tests show that a simple electron emitter can be used to reduce the magnitude of the potential of a spacecraft which has been charged negatively by the environment. The ATS-6 ion thruster had also a pronounced effect on the potential barrier. In this case, the flux of high-energy primary ions and of low-charge exchange ions produces a space-charge neutralization effect which the electron gun alone cannot achieve.

  5. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  6. Spacecraft potential control on ISEE-1

    NASA Technical Reports Server (NTRS)

    Gonfalone, A.; Pedersen, A.; Fahleson, U. V.; Faelthammar, C. G.; Mozer, F. S.; Torbert, R. B.

    1979-01-01

    Active control of the potential of the ISEE-1 satellite by the use of electron guns is reviewed. The electron guns contain a special cathode capable of emitting an electron current selectable between 10 to the -8th power and 10 to the -3rd power at energies from approximately .6 to 41 eV. Results obtained during flight show that the satellite potential can be stabilized at a value more positive than the normally positive floating potential. The electron guns also reduce the spin modulation of the spacecraft potential which is due to the aspect dependent photoemission of the long booms. Plasma parameters like electron temperature and density can be deduced from the variation of the spacecraft potential as a function of the gun current. The effects of electron beam emission on other experiments are briefly mentioned.

  7. The Potential and Equipotentiality of Spacecraft

    NASA Astrophysics Data System (ADS)

    Afonin, V. V.

    2004-01-01

    The problem of maintenance of the equipotentiality of spacecraft surfaces is considered. The method under examination is the use of the ``conductive thermal-vacuum multilayer blanket'' (CMLB), whose outer surface represents a fabric woven of threads of glass fiber type with interwoven metal threads. The process of spacecraft potential formation and methods of the potential calculation are described, and the results of such a calculation for the illuminated and shadowed parts of spacecraft surfaces in some characteristic near-Earth plasma environments are presented. The CMLB model is described, and the potential distribution near the CMLB surface is calculated. The conclusion was drawn that the conductive thermal-vacuum multilayer blanket used in some cases on Russian spacecraft does not ensure the equipotentiality of spacecraft surfaces, and in the case of using CMLB, the differential spacecraft charging in outer regions of the Earth's magnetosphere may reach a dangerous level for onboard electronic systems. In spite of the fact that CMLB guards against large-scale powerful discharges, one cannot exclude discharges completely, what may result in broadband noise enhancement and cause onboard systems failures.

  8. EMI from Spacecraft Docking Systems Spacecraft Charging - Plasma Contact Potentials

    NASA Technical Reports Server (NTRS)

    Norgard, John D.; Scully, Robert; Musselman, Randall

    2012-01-01

    The plasma contact potential of a visiting vehicle (VV), such as the Orion Service Module (SM), is determined while docking at the Orion Crew Exploration Vehicle (CEV). Due to spacecraft charging effects on-orbit, the potential difference between the CEV and the VV can be large at docking, and an electrostatic discharge (ESD) could occur at capture, which could degrade, disrupt, damage, or destroy sensitive electronic equipment on the CEV and/or VV. Analytical and numerical models of the CEV are simulated to predict the worst-case potential difference between the CEV and the VV when the CEV is unbiased (solar panels unlit: eclipsed in the dark and inactive) or biased (solar panels sunlit: in the light and active).

  9. Spacecraft potential effects on the Dynamics Explorer 2 satellite

    NASA Technical Reports Server (NTRS)

    Anderson, P. C.; Hanson, W. B.; Coley, W. R.; Hoegy, W. R.

    1994-01-01

    The relationship between the plasma environment and spacecraft potential is examined for the Dynamics Explorer 2 (DE 2) spacecraft in an attempt to improve the accuracy of ion drift measurements by the retarding potential analyzer (RPA). Because of the DE 2 orbit characteristics (apogee near 1000 km and perigee near 300 km) and the configuration of conducting surfaces on the spacecraft, thermal electrons and ions constituted the only significant contributions to the charging currents to the spacecraft surface for the majority of geophysical conditions encountered. The geomagnetic field had considerable effect on the spacecraft potential due to magnetic field confinement of the electrons as well as to the V x B electric field resulting from the movement of the spacecraft across magnetic field lines. Using a database of inferred spacecraft potentials from the RPA, measured electron temperatures from the Langmuir probe (LANG), and calculated V x B electric fields, we derive an algorithm for determining the spacecraft potential (at the location of the RPA on the spacecraft) for any point of the DE 2 orbit. Knowledge of the spacecraft potential subsequently allows us to retrieve relatively accurate ion drifts from the RPA data.

  10. Influence of the Ambient Electric Field on Measurements of the Actively Controlled Spacecraft Potential by MMS

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Andriopoulou, M.; Giles, B. L.; Jeszenszky, H.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Torbert, R. B.

    2017-12-01

    Space missions with sophisticated plasma instrumentation such as Magnetospheric Multiscale, which employs four satellites to explore near-Earth space benefit from a low electric potential of the spacecraft, to improve the plasma measurements and therefore carry instruments to actively control the potential by means of ion beams. Without control, the potential varies in anticorrelation with plasma density and temperature to maintain an equilibrium between the plasma current and the one of photoelectrons produced at the surface and overcoming the potential barrier. A drawback of the controlled, almost constant potential is the difficulty to use it as convenient estimator for plasma density. This paper identifies a correlation between the spacecraft potential and the ambient electric field, both measured by double probes mounted at the end of wire booms, as the main responsible for artifacts in the potential data besides the known effect of the variable photoelectron production due to changing illumination of the surface. It is shown that the effect of density variations is too weak to explain the observed correlation with the electric field and that a correction of the artifacts can be achieved to enable the reconstruction of the uncontrolled potential and plasma density in turn. Two possible mechanisms are discussed: the asymmetry of the current-voltage characteristic determining the probe to plasma potential and the fact that a large equipotential structure embedded in an electric field results in asymmetries of both the emission and spatial distribution of photoelectrons, which results in an increase of the spacecraft potential.

  11. Active experiments in modifying spacecraft potential: Results from ATS-5 and ATS-6

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Whipple, E. C.

    1979-01-01

    The processing of data from onboard spacecraft instruments are described. The modification of spacecraft potentials is reviewed. Analysis of this data yielded the following results: (1) electron emission (E approximately 10 electron-volts) did not perturb the status of a satellite at low potential the absolute value of phi approximately 50 volts by more than 50 volts (the ATS 5 low energy limit), (2) emission of a low energy plasma (E approximatey 10 volts) does not change low potentials (the absolute value of phi approximately 5 volts) by more than a few volts (ATS 6 low energy resolution), (3) when ATS 6 entered eclipse in the presence of a high energy plasma (10 keV), the neutralizer suppressed any rise in the absolute value of phi (within a few volts resolution), (4) when the electron emitter on ATS 5 operated, it served to discharge negative potentials from thousands to hundreds of volts, and (5) when the neutralizer on ATS 6 was operated, it served to discharge kilovolt potentials to below 50 volts. Low altitude (100 - 300 km) experiments with KV electron beams are studied. Differential charging was eliminated by the operation of the main thruster on ATS 6 clamped on the spacecraft at -5 volts.

  12. Langmuir Probe Spacecraft Potential End Item Specification Document

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian; Curtis, Leslie (Technical Monitor)

    2001-01-01

    This document describes the Langmuir Probe Spacecraft Potential (LPSP) investigation of the plasma environment in the vicinity of the ProSEDS Delta II spacecraft. This investigation will employ a group of three (3) Langmuir Probe Assemblies, LPAs, mounted on the Delta II second stage to measure the electron density and temperature (n(sub e) and T(sub e)), the ion density (n(sub i)), and the spacecraft potential (V(sub s)) relative to the surrounding ionospheric plasma. This document is also intended to define the technical requirements and flight-vehicle installation interfaces for the design, development, assembly, testing, qualification, and operation of the LPSP subsystem for the Propulsive Small Expendable Deployer System (ProSEDS) and its associated Ground Support Equipment (GSE). This document also defines the interfaces between the LPSP instrument and the ProSEDS Delta II spacecraft, as well as the design, fabrication, operation, and other requirements established to meet the mission objectives. The LPSP is the primary measurement instrument designed to characterize the background plasma environment and is a supporting instrument for measuring spacecraft potential of the Delta II vehicle used for the ProSEDS mission. Specifically, the LPSP will use the three LPAs equally spaced around the Delta II body to make measurements of the ambient ionospheric plasma during passive operations to aid in validating existing models of electrodynamic-tether propulsion. These same probes will also be used to measure Delta II spacecraft potential when active operations occur. When the electron emitting plasma contractor is on, dense neutral plasma is emitted. Effective operation of the plasma contactor (PC) will mean a low potential difference between the Delta II second stage and the surrounding plasma and represents one of the voltage parameters needed to fully characterize the electrodynamic-tether closed circuit. Given that the LP already needs to be well away from any

  13. Plasma source for spacecraft potential control

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.

  14. Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.; Hwang, K. S.; Wu, S. T.

    1995-01-01

    Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.

  15. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE PAGES

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.; ...

    2018-05-29

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  16. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  17. Report on Active and Planned Spacecraft and Experiments

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor); Maitson, H. H. (Editor)

    1981-01-01

    Active and planned spacecraft activity and experiments between June 1, 1980 and May 31, 1981 known to the National Space Science Data Center are described. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. Each spacecraft and experiment is described and its current status presented. Descriptions of navigational and communications satellites and of spacecraft that contain only continuous radio beacons used for ionospheric studies are specifically excluded.

  18. Monitoring of the Spacecraft Potential in the Magetosphere With a Double Probe Instrument

    NASA Astrophysics Data System (ADS)

    Laakso, H.

    1998-11-01

    Measurements of the double probe instrument can be used for monitoring the variation of the spacecraft potential Vs in tenuous plasmas where the satellite usually floats at a positive potential. This study deals with the Vs variation of the Polar satellite in the magnetosphere, using three and half years of data in 1996-99. The observations are binned with the Kp index in order to investigate how the level of geomagnetic activity affects the average surface potential. Two different antenna baselines are used, 6 and 60 meters, which both can be used for monitoring the spacecraft potential. In a low-density environment, however, the short antenna measurements are more influenced by the charging sheath of the satellite, but the data are nevertheless qualitatively useful. In burst mode the sampling rate of the double probe experiment is 1-8 kHz, and then very fast spacecraft potential variations can be monitored. Typically Vs varies between 0 and 50 volts so that in the plasmasphere it is 0-1 volt, at the plasmapause it exhibits a steep increase by 3-5 volts, and outside the plasmasphere Vs is more than 5 volts. Highest Vs's occur in the high-altitude (> 4 RE) polar cap, where Vs is usually between 20 and 30 volts, and on auroral field lines where it frequently lies in the 30-50 volts range and occasionally above 50 volts.

  19. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Schofield, N. J., Jr.; Littlefield, R. G.; Elsen, M. F.

    1985-01-01

    This report provides the professional community with information on current and planned spacecraft activity (including both free-flying spacecraft and Shuttle-attached payloads) for a broad range of scientific disciplines. By providing a brief description of each spacecraft and experiment as well as its current status, it is hoped that this document will be useful to many people interested in the scientific, applied, and operational uses of the data collected. Furthermore, for those investigators who are planning or coordinating future observational programs employing a number of different techniques such as rockets, balloons, aircraft, ships, and buoys, this document can provide some insight into the contributions that may be provided by orbiting instruments. The document includes information concerning active and planned spacecraft and experiments. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries, as well as cooperative arrangements among different countries.

  20. The 1975 report on active and planned spacecraft and experiments. [index

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Davis, L. R. (Editor)

    1975-01-01

    Information is presented on current and planned spacecraft activity for various disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, solar physics, and life sciences. For active orbiting spacecraft, the epoch date, orbit type, orbit period, apoasis, periapsis, and inclination are given along with the spacecraft weight, launch date, launch site, launch vehicle, and sponsoring agency. For each planned orbiting spacecraft, the orbit parameters, planned launch date, launch site, launch vehicle, spacecraft weight, and sponsoring agency are given.

  1. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna; Minor, Jody

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  2. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, B.; Hardage, D.; Minor, J.

    2004-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  3. Activated recombinative desorption: A potential component in mechanisms of spacecraft glow

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1985-01-01

    The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.

  4. On-orbit assembly of a team of flexible spacecraft using potential field based method

    NASA Astrophysics Data System (ADS)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  5. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor)

    1977-01-01

    Information concerning active and planned spacecraft and experiments is reported. The information includes a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  6. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Littlefield, R. G. (Editor)

    1983-01-01

    Information concerning active and planned spacecraft and experiments is included. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and fundng of individual countries as well as cooperative arrangements among different countries.

  7. Prediction of large negative shaded-side spacecraft potentials

    NASA Technical Reports Server (NTRS)

    Prokopenko, S. M. L.; Laframboise, J. G.

    1977-01-01

    A calculation by Knott, for the floating potential of a spherically symmetric synchronous-altitude satellite in eclipse, was adapted to provide simple calculations of upper bounds on negative potentials which may be achieved by electrically isolated shaded surfaces on spacecraft in sunlight. Large (approximately 60 percent) increases in predicted negative shaded-side potentials are obtained. To investigate effective potential barrier or angular momentum selection effects due to the presence of less negative sunlit-side or adjacent surface potentials, these expressions were replaced by the ion random current, which is a lower bound for convex surfaces when such effects become very severe. Further large increases in predicted negative potentials were obtained, amounting to a doubling in some cases.

  8. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor); Horowitz, R. (Editor)

    1978-01-01

    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  9. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Nostreys, R. W. (Editor)

    1980-01-01

    Information on current and planned spacecraft activity for a broad range of scientific disciplines is presented. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  10. Activity at Europe Most Active Volcano Eyed by NASA Spacecraft

    NASA Image and Video Library

    2016-05-27

    Mt. Etna, Sicily, Italy, is Europe most active volcano. In mid-May 2016, Mt. Etna put on a display of lava fountaining, ash clouds and lava flows. Three of the four summit craters were active. NASA Terra spacecraft acquired this image on May 26, 2016.

  11. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Brecht, J. J. (Editor)

    1974-01-01

    Information dealing with active and planned spacecraft and experiments known to the National Space Science Data Center (NSSDC) is presented. Included is information concerning a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft represent the efforts and funding of individual countries, as well as cooperative arrangements among different countries.

  12. Potential and Limitations of the Modal Characterization of a Spacecraft Bus Structure by Means of Active Structure Elements

    NASA Technical Reports Server (NTRS)

    Grillenbeck, Anton M.; Dillinger, Stephan A.; Elliott, Kenny B.

    1998-01-01

    Theoretical and experimental studies have been performed to investigate the potential and limitations of the modal characterization of a typical spacecraft bus structure by means of active structure elements. The aim of these studies has been test and advance tools for performing an accurate on-orbit modal identification which may be characterized by the availability of a generally very limited test instrumentation, autonomous excitation capabilities by active structure elements and a zero-g environment. The NASA LARC CSI Evolutionary Testbed provided an excellent object for the experimental part of this study program. The main subjects of investigation were: (1) the selection of optimum excitation and measurement to unambiguously identify modes of interest; (2) the applicability of different types of excitation means with focus on active structure elements; and (3) the assessment of the modal identification potential of different types of excitation functions and modal analysis tools. Conventional as well as dedicated modal analysis tools were applied to determine modal parameters and mode shapes. The results will be presented and discussed based on orthogonality checks as well as on suitable indicators for the quality of the acquired modes with respect to modal purity. In particular, the suitability for modal analysis of the acquired frequency response functions as obtained by excitation with active structure elements will be demonstrated with the help of reciprocity checks. Finally, the results will be summarized in a procedure to perform an on-orbit modal identification, including an indication of limitation to be observed.

  13. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell

    2006-01-01

    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  14. Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling

    NASA Technical Reports Server (NTRS)

    Ghosh, Alexander

    2016-01-01

    The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.

  15. Spacecraft Charge Monitor

    NASA Astrophysics Data System (ADS)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  16. Report on Active and Planned Spacecraft and Experiments. [bibliographies

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor); Horwitz, R. (Editor)

    1979-01-01

    Information concerning concerning active and planned spacecraft and experiments known to the National Space Science Data Center are included. The information contains a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries. Approximately 850 articles are included.

  17. Relationship between the Geotail spacecraft potential and the magnetospheric electron number density including the distant tail regions

    NASA Astrophysics Data System (ADS)

    Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.

    2001-04-01

    The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.

  18. Solar array/spacecraft biasing

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1981-01-01

    Biasing techniques and their application to the control of spacecraft potential is discussed. Normally when a spacecraft is operated with ion thrusters, the spacecraft will be 10-20 volts negative of the surrounding plasma. This will affect scientific measurements and will allow ions from the charge-exchange plasma to bombard the spacecraft surfaces with a few tens of volts of energy. This condition may not be tolerable. A proper bias system is described that can bring the spacecraft to or near the potential of the surrounding plasma.

  19. Supplement to the 1975 report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Davis, L. R. (Editor)

    1975-01-01

    A listing and brief description of spacecraft and experiments designed to update the January 1975 report on active and planned spacecraft and experiments to March 31, 1975 was presented. The information is given in two sections. In the first, spacecraft and experiments that have become known to NSSDC since the original report or that have changed significantly are described. In the second, an alphabetical listing is given for all spacecraft and experiments described in the first section and in the original report. It also updates status of operation and launch dates to March 31, 1975.

  20. Electric potential structures of auroral acceleration region border from multi-spacecraft Cluster data

    NASA Astrophysics Data System (ADS)

    Sadeghi, S.; Emami, M. R.

    2018-04-01

    This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.

  1. Space environmental interactions with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Stevens, J. N.

    1979-01-01

    Environmental interactions are defined as the response of spacecraft surfaces to the charged-particle environment. These interactions are divided into two broad categories: spacecraft passive, in which the environment acts on the surfaces and spacecraft active, in which the spacecraft or a system on the spacecraft causes the interaction. The principal spacecraft passive interaction of concern is the spacecraft charging phenomenon. The spacecraft active category introduces the concept of interactions with the thermal plasma environment and Earth's magnetic fields, which are important at all altitudes and must be considered the designs of proposed large space structures and space power systems. The status of the spacecraft charging investigations is reviewed along with the spacecraft active interactions.

  2. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  3. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  4. Potential biofouling of spacecraft propellant systems due to contaminated deionized water

    NASA Astrophysics Data System (ADS)

    Hogue, Patrick

    2006-08-01

    Deionized (DI) water, with a density close to hydrazine, is used to fill spacecraft propellant tanks for mechanical testing during ground operations, after which is it removed and the tanks dried for use with anhydrous hydrazine. Pure nitrogen is used as a pressurant during storage and during water fill and drain operations. Since DI water systems are notorious for contamination by slime-forming bacteria, DI water intended for use in New Horizons and STEREO hydrazine tanks at APL was assessed for microorganism content using the heterotrophic plate count (HPC) method. Results show that some growth occurred during storage of DI water in propellant tanks, however not at the logarithmic rate associated with well-nourished bacteria. Ralstonia and Burkholderia were present in DI water on-loaded however only Ralstonia was present in off-loaded water. One possible source of nutrients during water storage in propellant tanks is organic material originating from the EPDM (EPR per AF-E-332) expulsion diaphragm. This paper will demonstrate potential for bio-fouling of spacecraft propulsion systems due to growth of slime-forming bacteria and will suggest that specifications controlling microorganism content should be imposed on water used for spacecraft ground testing.

  5. Supplement no. 1 to the January 1974 report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R.; Davis, L. R.

    1974-01-01

    Updated information and descriptions on spacecraft and experiments are listed according to spacecraft name and principle experimental investigator. A cumulative index of active and planned spacecraft and experiments is provided; bar graph indexes for electromagnetic radiation experiments are included in table form.

  6. Analysis of Martian ionosphere and solar wind electron gas data from the planar retarding potential analyzer on the Viking spacecraft

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Hanson, W. B.

    1987-01-01

    Approximate expressions for the electron current collected by a planar retarding potential analyzer (RPA) mounted on a moving, conducting, charged spacecraft are derived. They are utilized for the analysis of electron current data obtained by the RPAs on the Viking spacecraft in the ionosphere of Mars and in the disturbed and undisturbed solar wind near this planet. It is shown that contamination currents by photoelectrons emitted from the spacecraft can be distinguished and removed from the signal. Parameters deduced from the analysis of RPA electron sampling data are the multicomponent electron temperatures, the number densities, and the spacecraft potential.

  7. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  8. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  9. Electromagnetic interaction of spacecraft with ambient environment

    NASA Astrophysics Data System (ADS)

    Ku, Hwar-Ching; Silver, David M.

    1993-01-01

    A model of the midcourse space experiment (MSX) spacecraft and its electromagnetic environment has been developed using the potential of large spacecraft in the Auroral region (POLAR) code. The geometric model has a resolution of 0.341 meters and uses six materials to simulate the electrical surface properties of MSX. The vehicle model includes features such as the major instruments, electronic boxes, radiators, a dewar and open bay, a booster attachment ring, and three different orientations of the solar panels. The electron and ion composition and temperature environment are modeled as a function of the solar activity. Additional parameters include the ram-wake orientation, the hot electron spectrum, day-night-twilight variations, latitudinal variations, and solar panel voltage biasing. Nominal low spacecraft charging cases are described. Calculation with a high peak energetic electron flux produces a ground potential of -180 volts and differential charging as high as 66 volts.

  10. Suboptimal artificial potential function sliding mode control for spacecraft rendezvous with obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Qiao, Dong; Xu, Jingwen

    2018-02-01

    Sub-Optimal Artificial Potential Function Sliding Mode Control (SOAPF-SMC) is proposed for the guidance and control of spacecraft rendezvous considering the obstacles avoidance, which is derived based on the theories of artificial potential function (APF), sliding mode control (SMC) and state dependent riccati equation (SDRE) technique. This new methodology designs a new improved APF to describe the potential field. It can guarantee the value of potential function converge to zero at the desired state. Moreover, the nonlinear terminal sliding mode is introduced to design the sliding mode surface with the potential gradient of APF, which offer a wide variety of controller design alternatives with fast and finite time convergence. Based on the above design, the optimal control theory (SDRE) is also employed to optimal the shape parameter of APF, in order to add some degree of optimality in reducing energy consumption. The new methodology is applied to spacecraft rendezvous with the obstacles avoidance problem, which is simulated to compare with the traditional artificial potential function sliding mode control (APF-SMC) and SDRE to evaluate the energy consumption and control precision. It is demonstrated that the presented method can avoiding dynamical obstacles whilst satisfying the requirements of autonomous rendezvous. In addition, it can save more energy than the traditional APF-SMC and also have better control accuracy than the SDRE.

  11. Spacecraft Charging Technology, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.

  12. Docking system for spacecraft

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1988-01-01

    A mechanism is disclosed for the docking of a spacecraft to a space station where a connection for transfer of personnel and equipment is desired. The invention comprises an active docking structure on a spacecraft and a passive docking structure on the station. The passive structure includes a docking ring mounted on a tunnel structure fixed to the space station. The active structure includes a docking ring carried by an actuator-attenuator devices, each attached at one end to the ring and at its other end in the spacecraft payload bay. The devices respond to command signals for moving the docking ring between a stowed position in the spacecraft to a deployed position suitable for engagement with the docking ring. The devices comprise means responsive to signals of sensed loadings to absorb impact energy and retraction means for drawing the coupled spacecraft and station into final docked configuration and moving the tunnel structure to a berthed position in the spacecraft. Latches couple the spacecraft and space station upon contact of the docking rings and latches establish a structural tie between the spacecraft when retracted.

  13. Implications of arcing due to spacecraft charging on spacecraft EMI margins of immunity

    NASA Technical Reports Server (NTRS)

    Inouye, G. T.

    1981-01-01

    Arcing due to spacecraft charging on spacecraft EMI margins of immunity was determined. The configuration of the P78-2 spacecraft of the SCATHA program was analyzed. A brushfire arc discharge model was developed, and a technique for initiating discharges with a spark plug trigger was for data configuration. A set of best estimate arc discharge parameters was defined. The effects of spacecraft potentials in limiting the discharge current blowout component are included. Arc discharge source models were incorporated into a SEMCAP EMI coupling analysis code for the DSP spacecraft. It is shown that with no mission critical circuits will be affected.

  14. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  15. Active lithium chloride cell for spacecraft power

    NASA Technical Reports Server (NTRS)

    Fleischmann, C. W.; Horning, R. J.

    1988-01-01

    An active thionyl chloride high rate battery is under development for spacecraft operations. It is a 540kC (150 Ah) battery capable of pulses up to 75A. This paper describes the design and initial test data on a 'state-of-the-art' cell that has been selected to be the baseline for the prototype cell for that battery. Initial data indicate that the specification can be met with fresh cells. Data for stored cells and additional environmental test data are in the process of being developed.

  16. Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.

  17. A GNC Perspective of the Launch and Commissioning of NASA's SMAP (Soil Moisture Active Passive) Spacecraft

    NASA Technical Reports Server (NTRS)

    Brown, Todd S.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) spacecraft was designed to use radar and radiometer measurements to produce global soil moisture measurements every 2-3 days. The SMAP spacecraft is a complicated dual-spinning design with a large 6 meter deployable mesh reflector mounted on a platform that spins at 14.6 rpm while the Guidance Navigation and Control algorithms maintain precise nadir pointing for the de-spun portion of the spacecraft. After launching in early 2015, the Guidance Navigation and Control software and hardware aboard the SMAP spacecraft underwent an intensive spacecraft checkout and commissioning period. This paper describes the activities performed by the Guidance Navigation and Control team to confirm the health and phasing of subsystem hardware and the functionality of the guidance and control modes and algorithms. The operations tasks performed, as well as anomalies that were encountered during the commissioning, are explained and results are summarized.

  18. Spacecraft-spacecraft very long baseline interferometry for planetary approach navigation

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Folkner, William M.; Border, James S.; Wood, Lincoln J.

    1991-01-01

    The study presents an error budget for Delta differential one-way range (Delta-DOR) measurements between two spacecraft. Such observations, made between a planetary orbiter (or lander) and another spacecraft approaching that planet, would provide a powerful target-relative angular tracking data type for approach navigation. Accuracies of about 5 nrad should be possible for a pair of X-band spacecraft incorporating 40-MHz DOR tone spacings, while accuracies approaching 1 nrad will be possible if the spacecraft incorporate Ka-band downlinks with DOR tone spacings of order 250 MHz. Operational advantages of this data type are discussed, and ground system requirements needed to enable S/C-S/C Delta-DOR observations are outlined. A covariance analysis is presented to examine the potential navigation improvement for this scenario. The results show factors of 2-3 improvement in spacecraft targeting over conventional Doppler, range, and quasar-relative VLBI, along with reduced sensitivity to ephemeris uncertainty and other systematic errors.

  19. Spacecraft active thermal control subsystem design and operation considerations

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.

    1986-01-01

    Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.

  20. Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.

  1. High precision active nutation control for a flexible momentum biased spacecraft

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Kopf, E. H.

    1984-01-01

    The controller design for the Solar Dynamics Observatory (SDO) is presented. SDO is a momentum biased spacecraft with three flexible appendages. Its primary scientific instrument, the solar oscillations imager (SOI), is rigidly attached to the spacecraft bus and has arc-second pointing requirements. Meeting these requirements necessitates the use of an active nutation controller (ANC) which is here mechanized with a small reaction wheel oriented along a bus transverse axis. The ANC does its job by orchestrating the transfer of angular momentum out of the bus transverse axes and into the momentum wheel. A simulation study verifies that the controller provides quick, stable, and accurate response.

  2. Cluster Inter-Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    2008-01-01

    A document describes a radio communication system being developed for exchanging data and sharing data-processing capabilities among spacecraft flying in formation. The system would establish a high-speed, low-latency, deterministic loop communication path connecting all the spacecraft in a cluster. The system would be a wireless version of a ring bus that complies with the Institute of Electrical and Electronics Engineers (IEEE) standard 1393 (which pertains to a spaceborne fiber-optic data bus enhancement to the IEEE standard developed at NASA's Jet Propulsion Laboratory). Every spacecraft in the cluster would be equipped with a ring-bus radio transceiver. The identity of a spacecraft would be established upon connection into the ring bus, and the spacecraft could be at any location in the ring communication sequence. In the event of failure of a spacecraft, the ring bus would reconfigure itself, bypassing a failed spacecraft. Similarly, the ring bus would reconfigure itself to accommodate a spacecraft newly added to the cluster or newly enabled or re-enabled. Thus, the ring bus would be scalable and robust. Reliability could be increased by launching, into the cluster, spare spacecraft to be activated in the event of failure of other spacecraft.

  3. Discussion meeting on Gossamer spacecraft (ultralightweight spacecraft)

    NASA Technical Reports Server (NTRS)

    Brereton, R. G. (Editor)

    1980-01-01

    Concepts, technology, and application of ultralightweight structures in space are examined. Gossamer spacecraft represented a generic class of space vehicles or structures characterized by a low mass per unit area (approximately 50g/m2). Gossamer concepts include the solar sail, the space tether, and various two and three dimensional large lightweight structures that were deployed or assembled in space. The Gossamer Spacecraft had a high potential for use as a transportation device (solar sail), as a science instrument (reflecting or occulting antenna), or as a large structural component for an enclosure, manned platform, or other human habitats. Inflatable structures were one possible building element for large ultralightweight structures in space.

  4. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to

  5. Costa Rica Turrialba Volcano, Continued Activity seen by NASA Spacecraft

    NASA Image and Video Library

    2015-04-06

    The March, 2015 eruption of Turrialba Volcano in Costa Rica caught everyone by surprise as seen in this image from the ASTER instrument onboard NASA Terra spacecraft. Activity had greatly diminished when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft acquired this nighttime thermal infrared image on April 2, 2015. The hot summit crater appears in white, indicating continued volcanic unrest. To the west, Poas Volcano's hot crater lake also appears white, though its temperature is considerably less than Turrialba's crater. The large image covers an area of 28 by 39 miles (45 by 63 kilometers); the insets 2 by 2 miles (3.1 by 3.1 kilometers). The image is centered at 10.1 degrees north, 84 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19355

  6. Use of the space shuttle to avoid spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An existing data base covering 304 spacecraft of the U.S. space program was analyzed to determine the effect on individual spacecraft failures and other anomalies that the space shuttle might have had if it had been operational throughout the period covered by the data. By combining the results of this analysis, information on the prelaunch activities of selected spacecraft programs, and shuttle capabilities data, the potential impact of the space shuttle on future space programs was derived. The shuttle was found to be highly effective in the prevention or correction of spacecraft anomalies, with 887 of 1,230 anomalies analyzed being favorably impacted by full utilization of shuttle capabilities. The shuttle was also determined to have a far-reaching and favorable influence on the design, development, and test phases of future space programs. This is documented in 37 individual statements of impact.

  7. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    NASA Technical Reports Server (NTRS)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  8. Plasma sheath structure surrounding a large powered spacecraft

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Jongeward, G. A.; Katz, I.

    1984-01-01

    Various factors determining the floating potential of a highly biased (about 4-kV) spacecraft in low earth orbit are discussed. While the common rule of thumb (90 percent negative; 10 percent positive) is usually a good guide, different biasing and grounding patterns can lead to high positive potentials. The NASCAP/LEO code can be used to predict spacecraft floating potential for complex three-dimensional spacecraft.

  9. Bounding Extreme Spacecraft Charging in the Lunar Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2008-01-01

    Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.

  10. A Novel Spacecraft Charge Monitor for LEO

    NASA Technical Reports Server (NTRS)

    Goembel, Luke

    2004-01-01

    Five years ago we introduced a new method for measuring spacecraft chassis floating potential relative to the space plasma (absolute spacecraft potential) in low Earth orbit. The method, based on a straightforward interpretation of photoelectron spectra, shows promise for numerous applications, but has not yet been tried. In the interest of testing the method, and ultimately supplying another tool for measuring absolute spacecraft charge, we are producing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. Although insight into the technique came from data collected in space over two decades ago, very little data are available. The data indicate that it may be possible to determine spacecraft floating potential to within 0.1 volt each with the SCM second under certain conditions. It is debatable that spacecraft floating potential has ever been measured with such accuracy. The compact, easily deployed SCM also offers the advantage of long-term stability in calibration. Accurate floating potential determinations from the SCM could be used to correct biases in space plasma measurements and evaluate charge mitigation and/or sensing devices. Although this paper focuses on the device's use in low Earth orbit (LEO), the device may also be able to measure spacecraft charge at higher altitudes, in the solar wind, and in orbits around other planets. The flight prototype SCM we are producing for delivery to NASA in the third quarter of 2004 will measure floating potential from 0 to -150 volts with 0.1 volt precision, weigh approximately 600-700 grams, consume approximately 2 watts, and will measure approximately 8 x 10 x 17 cm.

  11. AI challenges for spacecraft control programs

    NASA Technical Reports Server (NTRS)

    Lightfoot, Patricia

    1986-01-01

    The application of AI technology to the spacecraft and experiment command and control systems environment is proposed. The disadvantages of the present methods for analyzing and resolving spacecraft experiment command and control problems are discussed. The potential capabilities and advantages of using AI for the spacecraft and experiment command and control systems are described.

  12. Inner magnetospheric electron temperature and spacecraft potential estimated from concurrent Polar upper hybrid frequency and relative potential measurements

    NASA Astrophysics Data System (ADS)

    Boardsen, S. A.; Adrian, M. L.; Pfaff, R.; Menietti, J. D.

    2014-10-01

    Direct measurement of low < 1 eV electron temperature is difficult to make in the Earth's inner magnetosphere for electron densities (Ne) < 3 × 102 cm-3. We compute these quantities by solving current balance equations in low-density regions. Concurrent measurements from the Polar spacecraft of the relative potential (VS - VP), between the spacecraft body and the electric field probe, and the electron density (Ne), derived from upper hybrid frequency (fUHR), were used in the current balance equations to solve for the electron temperature (Te), Vs, and Vp. Where VP is the probe potential and VS is the spacecraft potential relative to the nearby plasma. The assumption that the bulk plasma electrons are Maxwellian is used in the computations. Our data set covered 1.5 years of measurements when fUHR was detectable (L < 10). The following "averaged" Te versus L relation for 3 < L < 5 was obtained: Te = 0.58 + 0.49 (L - 3) eV. This expression is in reasonable agreement with extrapolations of ionospheric Te measurements by Akebono at lower altitudes. However, the solution is sensitive to the photoemission coefficients, substituting those of Scudder et al. (2000) with those of Escoubet et al. (1997), the Te curve shifted upward by ~1 eV. Also, the solution is sensitive to measurement error of VS - VP, applying a voltage shift of ±0.1 and ±0.2 V to VS - VP, the relative median error for our data set was computed to be 0.27 and 1.04, respectively. We believe that our Te values computed outside the plasmasphere are unrealistically low. We conclude that this method shows promise inside the plasmasphere but should be used with caution. We also quantified the Ne versus VS - VP relationship. The running median Ne versus VS - VP curve shows no significant variation over the 1.5 year period of the data set, suggesting that the photoemission coefficients did not change significantly over this time span. The Scudder et al. (2000) Ne model, based on only one Polar orbit, is in

  13. Neutron Activation Analysis of Single Grains Recovered by the Hayabusa Spacecraft

    NASA Technical Reports Server (NTRS)

    Ebihara, M.; Sekimoto, S.; Hamajima, Y.; Yamamoto, M.; Kumagai, K.; Oura, Y.; Shirai, N.; Ireland. T. R.; Kitajima, F.; Nagao, K.; hide

    2011-01-01

    The Hayabusa spacecraft was launched on May 9, 2003 and reached an asteroid Itokawa (25143 Itokawa) in September 2005. After accomplishing several scientific observations, the spacecraft tried to collect the surface material of Itokawa by touching down to the asteroid in November. The spacecraft was then navigated for the earth. In encountering several difficulties, Hayabusa finally returned to the earth on June 12, 2010 and the entry capsule was successfully recovered. Initially, a g-scale of solid material was aimed to be captured into the entry capsule. Although the sample collection was not perfectly performed, it was hoped that some extraterrestrial material was stored into the capsule. After careful and extensive examination, more than 1500 particles were recognized visibly by microscopes, most of which were eventually judged to be extraterrestrial, highly probably originated from Itokawa [1]. Several years before the launching of the Hayabusa spacecraft, the initial analysis team was officially formed under the selection panel at ISAS. As a member of this team, we have been preparing for the initial inspection of the returned material from many scientific viewpoints [2]. Once the recovered material had been confirmed to be much less than 1 g, a scheme for the initial analysis was updated accordingly [3]. In this study, we aim to analyze tiny single grains by instrumental neutron activation analysis (INAA). As the initial analysis is to be started in mid-January, 2011, some progress for the initial analysis using INAA is described here. Analytical procedure

  14. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    NASA Technical Reports Server (NTRS)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  15. Medical Screening for Individuals Supporting Spacecraft Launch and Landing Activities in Remote Locations

    NASA Technical Reports Server (NTRS)

    Powers. W. Edward

    2010-01-01

    This viewgraph presentation reviews the medical screening process and spacecraft launch and landing mission activities for astronauts. The topics include: 1) Launch and Landing Mission Overview; 2) Available Resources; and 3) Medical Screening Process.

  16. Spacecraft charging and ion wake formation in the near-Sun environment

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Malaspina, D. M.; Bale, S. D.; McFadden, J. P.; Larson, D. E.; Mozer, F. S.; Meyer-Vernet, N.; Maksimovic, M.; Kellogg, P. J.; Wygant, J. R.

    2010-07-01

    A three-dimensional, self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) the photoelectron density at the surface of the spacecraft greatly exceeds the ambient plasma density, (2) the spacecraft size is significantly larger than local Debye length of the photoelectrons, and (3) the thermal electron energy is much larger than the characteristic energy of the escaping photoelectrons. All of these conditions are present near the Sun. The numerical solutions also show that the spacecraft's negative potential can be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping the part of spacecraft in contact with the wake. These findings may be important for future spacecraft missions that go nearer to the Sun, such as Solar Orbiter and Solar Probe Plus.

  17. The plasma dynamics of hypersonic spacecraft: Applications of laboratory simulations and active in situ experiments

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, Uri

    1986-01-01

    Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.

  18. MERCURY-ATLAS (MA)-9 - "FRIENDSHIP 7" SPACECRAFT - PRELAUNCH ACTIVITIES - CAPE

    NASA Image and Video Library

    1963-02-01

    S63-03960 (1 Feb. 1963) --- Astronaut L. Gordon Cooper Jr., prime pilot for the Mercury-Atlas 9 (MA-9) mission, checks over the instrument panel from Mercury spacecraft #20 with Robert Graham, McDonnell Aircraft Corp. spacecraft engineer. It contains the instruments necessary to monitor spacecraft systems and sequencing, the controls required to initiate primary sequences manually, and flight control displays. Photo credit: NASA

  19. Failures and anomalies attributed to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Leach, R. D.; Alexander, M. B. (Editor)

    1995-01-01

    The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  20. Contingency rescheduling of spacecraft operations

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.

    1988-01-01

    Spacecraft activity scheduling was a focus of attention in artificial intelligence recently. Several scheduling systems were devised which more-or-less successfully address various aspects of the activity scheduling problem, though most of these are not yet mature, with the notable expection of NASA's ESP. Few current scheduling systems, however, make any attempt to deal fully with the problem of modifying a schedule in near-real-time in the event of contingencies which may arise during schedule execution. These contingencies can include resources becoming unavailable unpredictably, a change in spacecraft conditions or environment, or the need to perform an activity not scheduled. In these cases it becomes necessary to repair an existing schedule, disrupting ongoing operations as little as possible. Normal scheduling is just a part of that which must be accomplished during contingency rescheduling. A prototype system named MAESTRO was developed for spacecraft activity scheduling. MAESTRO is briefly described with a focus on recent work in the area of real-time contingency handling. Included is a discussion of some of the complexities of the scheduling problem and how they affect contingency rescheduling, such as temporal constraints between activities, activities which may be interrupted and continued in any of several ways, and different ways to choose a resource complement which will allow continuation of an activity. Various heuristics used in MAESTRO for contingency rescheduling is discussed, as are operational concerns such as interaction of the scheduler with spacecraft subsystems controllers.

  1. Comparison of interball-2 spacecraft potential from IESP and KM-7 experiments in high-latitude regions of the magnetosphere at altitudes of 2-3 RE

    NASA Astrophysics Data System (ADS)

    Smirnova, N.; Afonin, V.; Smilauer, Ja.; Stanev, G.

    Measurements of Interball-2 spacecraft potential by two instruments, IESP and KM-7, are reviewed and simultaneous measurements are compared. Unacceptable discrepancy between results of spacecraft potential measurements, including opposite signs, was found. Actually, both experiments are methodically identical: they used the same type of sensor - spherical Langmuir probes operating in the ``floating'' mode, and they have measured the same parameter - the voltage difference between the probe and the satellite structure. The IESP instrument measured one value of this parameter at fixed bias current to the probe. The KM-7 measured the whole current-voltage characteristic (the probe current as a function of the probe potential), which consists of 11 IESP-type measurements at different values of bias current. The difference lies only in the way of technical implementation, as the probes were operating in different ambient conditions. The IESP probes were mounted at the ends of long booms and thus were affected by the solar UV emission, while the KM-7 probe was rather well protected against UV emission by proper mounting and screening the head of the sensor from both direct UV emission and those reflected from spacecraft elements. The comparison of two data sets and variations along the orbit has shown, that KM-7 correctly measures the spacecraft potential. In high-latitude inner magnetosphere (in auroral region and polar cap) at altitudes 2-3 RE the spacecraft potential was predominantly negative down to -10 V, increasing up to about +5 V in some locations at rather extended parts of the satellite orbit. Reasonably good agreement between two experiments was obtained only at spacecraft potential <= -2 V and after inversion the sign of available calibration curve of IESP experiment; in this case both experiments very accurately reflect variation of potential data even in the small details. The operation mode of IESP experiment was not optimal and requires further analysis

  2. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    NASA Astrophysics Data System (ADS)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  3. Spacecraft architecture

    NASA Technical Reports Server (NTRS)

    Zefeld, V. V.

    1986-01-01

    Three requirements for a spacecraft interior are considered. Adequate motor activity in the anatomical-physiological sense results from attention to the anthropometric characteristics of humans. Analysis of work requirements is a prerequisite for the planning of adequate performance space. The requirements for cognitive activity are also elucidated. The importance of a well-designed interior during a long space flight is discussed.

  4. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  5. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  6. Proximity operations considerations affecting spacecraft design

    NASA Technical Reports Server (NTRS)

    Staas, Steven K.

    1991-01-01

    Experience from several recent spacecraft development programs, such as Space Station Freedom (SSF) and the Orbital Maneuvering Vehicle (OMV) has shown the need for factoring proximity operations considerations into the vehicle design process. Proximity operations, those orbital maneuvers and procedures which involve operation of two or more spacecraft at ranges of less than one nautical mile, are essential to the construction, servicing, and operation of complex spacecraft. Typical proximity operations considerations which drive spacecraft design may be broken into two broad categories; flight profile characteristics and concerns, and use of various spacecraft systems during proximity operations. Proximity operations flight profile concerns include the following: (1) relative approach/separation line; (2) relative orientation of the vehicles; (3) relative translational and rotational rates; (4) vehicle interaction, in the form of thruster plume impingement, mating or demating operations, or uncontrolled contact/collision; and (5) active vehicle piloting. Spacecraft systems used during proximity operations include the following: (1) sensors, such as radar, laser ranging devices, or optical ranging systems; (2) effector hardware, such as thrusters; (3) flight control software; and (4) mating hardware, needed for docking or berthing operations. A discussion of how these factors affect vehicle design follows, addressing both active and passive/cooperative vehicles.

  7. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  8. A charging model for three-axis stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Massaro, M. J.; Green, T.; Ling, D.

    1977-01-01

    A charging model was developed for geosynchronous, three-axis stabilized spacecraft when under the influence of a geomagnetic substorm. The differential charging potentials between the thermally coated or blanketed outer surfaces and metallic structure of a spacecraft were determined when the spacecraft was immersed in a dense plasma cloud of energetic particles. The spacecraft-to-environment interaction was determined by representing the charged particle environment by equivalent current source forcing functions and by representing the spacecraft by its electrically equivalent circuit with respect to the plasma charging phenomenon. The charging model included a sun/earth/spacecraft orbit model that simulated the sum illumination conditions of the spacecraft outer surfaces throughout the orbital flight on a diurnal as well as a seasonal basis. Transient and steady-state numerical results for a three-axis stabilized spacecraft are presented.

  9. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    NASA Technical Reports Server (NTRS)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  10. Spacecraft

    NASA Technical Reports Server (NTRS)

    Feoktistov, K. P.

    1974-01-01

    The task of building a spacecraft is compared to the construction of an artificial cybernetic system able to acquire and process information. Typical features for future spacecraft are outlined and the assignment of duties in spacecraft control between automatic devices and the crew is analyzed.

  11. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  12. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    Until the past few years, missions typically involved fairly large expensive spacecraft. Such missions have primarily favored using older proven technologies over more recently developed ones, and humans controlled spacecraft by manually generating detailed command sequences with low-level tools and then transmitting the sequences for subsequent execution on a spacecraft controller. This approach toward controlling a spacecraft has worked spectacularly on previous missions, but it has limitations deriving from communications restrictions - scheduling time to communicate with a particular spacecraft involves competing with other projects due to the limited number of deep space network antennae. This implies that a spacecraft can spend a long time just waiting whenever a command sequence fails. This is one reason why the New Millennium program has an objective to migrate parts of mission control tasks onboard a spacecraft to reduce wait time by making spacecraft more robust. The migrated software is called a "remote agent" and has 4 components: a mission manager to generate the high level goals, a planner/scheduler to turn goals into activities while reasoning about future expected situations, an executive/diagnostics engine to initiate and maintain activities while interpreting sensed events by reasoning about past and present situations, and a conventional real-time subsystem to interface with the spacecraft to implement an activity's primitive actions. In addition to needing remote planning and execution for isolated spacecraft, a trend toward multiple-spacecraft missions points to the need for remote distributed planning and execution. The past few years have seen missions with growing numbers of probes. Pathfinder has its rover (Sojourner), Cassini has its lander (Huygens), and the New Millenium Deep Space 3 (DS3) proposal involves a constellation of 3 spacecraft for interferometric mapping. This trend is expected to continue to progressively larger fleets. For

  13. SHARP: Automated monitoring of spacecraft health and status

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  14. SHARP - Automated monitoring of spacecraft health and status

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  15. Validation of Spacecraft Active Cavity Radiometer Total Solar Irradiance (TSI) Long Term Measurement Trends Using Proxy TSI Least Squares Analyses

    NASA Technical Reports Server (NTRS)

    Lee, Robert Benjamin, III; Wilson, Robert S.

    2003-01-01

    Long-term, incoming total solar irradiance (TSI) measurement trends were validated using proxy TSI values, derived from indices of solar magnetic activity. Spacecraft active cavity radiometers (ACR) are being used to measure longterm TSI variability, which may trigger global climate changes. The TSI, typically referred to as the solar constant, was normalized to the mean earth-sun distance. Studies of spacecraft TSI data sets confirmed the existence of a 0.1 %, long-term TSI variability component within a 10-year period. The 0.1% TSI variability component is clearly present in the spacecraft data sets from the 1984-2004 time frame. Typically, three overlapping spacecraft data sets were used to validate long-term TSI variability trends. However, during the years of 1978-1984, 1989-1991, and 1993-1996, three overlapping spacecraft data sets were not available in order to validate TSI trends. The TSI was found to vary with indices of solar magnetic activity associated with recent 10-year sunspot cycles. Proxy TSI values were derived from least squares analyses of the measured TSI variability with the solar indices of 10.7-cm solar fluxes, and with limb-darked sunspot fluxes. The resulting proxy TSI values were compared to the spacecraft ACR measurements of TSI variability to detect ACR instrument degradation, which may be interpreted as TSI variability. Analyses of ACR measurements and TSI proxies are presented primarily for the 1984-2004, Earth Radiation Budget Experiment (ERBE) ACR solar monitor data set. Differences in proxy and spacecraft measurement data sets suggest the existence of another TSI variability component with an amplitude greater than or equal to 0.5 Wm-2 (0.04%), and with a cycle of 20 years or more.

  16. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  17. Internet Access to Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.

  18. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.

  19. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for

  20. Technology Development Activities for the Space Environment and its Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how emerging microelectronics will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding and the potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will describe the relationship between the Living With a Star (LWS): Space Environment Testbeds (SET) Project and NASA's Space Environments and Effects (SEE) Program and their technology development activities funded as a result from the recent SEE Program's NASA Research Announcement.

  1. Representation of the Geosynchronous Plasma Environment in Spacecraft Charging Calculations

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Mandell, M. J.; Thomsen, M. F.

    2006-01-01

    Historically, our ability to predict and postdict spacecraft surface charging has been limited by the characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. We use electron and ion flux spectra measured by the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These measured fluxes have been corrected for the difference between the measured and calculated potential. The potential computed using the measured fluxes and the best available material properties of graphite carbon, with a secondary electron escape fraction of 81%, is within a factor of three of the measured potential for 87% of the data. Potentials calculated using a Kappa function fit to the incident electron flux distribution function and a Maxwellian function fit to the incident ion flux distribution function agree with measured potentials nearly as well as do potentials calculated using the measured fluxes. Alternative spectral representations gave less accurate estimates of potential. The use of all the components of the net flux, along with spacecraft specific average material properties, gives a better estimate of the spacecraft potential than the high energy flux alone.

  2. Low-Impact Mating System for Docking Spacecraft

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Robertson, Brandan; Carroll, Monty B.; Le, Thang; Morales, Ray

    2008-01-01

    A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft. The operational characteristics of the mating system can be easily configured in software, during operation, to enable mating of spacecraft having various masses, center-of-gravity offsets, and closing velocities. The system design provides multi-fault tolerance for critical operations: for example, to ensure unmating at a critical time, a redundant unlatching mechanism and two independent pyrotechnic release subsystems are included.

  3. Spacecraft Charging Issues for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Buhler, Janessa L.; Minow, Joseph I.; Trout, Dawn H.

    2014-01-01

    Spacecraft charging is well known threat to successful long term spacecraft operations and instrument reliability in orbits that spend significant time in hot electron environments. In recent years, spacecraft charging has increasingly been recognized as a potentially significant engineering issue for launch vehicles used to deploy spacecraft using (a) low Earth orbit (LEO), high inclination flight trajectories that pass through the auroral zone, (b) geostationary transfer orbits that require exposures to the hot electron environments in the Earths outer radiation belts, and (c) LEO escape trajectories using multiple phasing orbits through the Earths radiation belts while raising apogee towards a final Earth escape geometry. Charging becomes an issue when significant areas of exposed insulating materials or ungrounded conductors are used in the launch vehicle design or the payload is designed for use in a benign charging region beyond the Earths magnetosphere but must survive passage through the strong charging regimes of the Earths radiation belts. This presentation will first outline the charging risks encountered on typical launch trajectories used to deploy spacecraft into Earth orbit and Earth escape trajectories. We then describe the process used by NASAs Launch Services Program to evaluate when surface and internal charging is a potential risk to a NASA mission. Finally, we describe the options for mitigating charging risks including modification of the launch vehicle andor payload design and controlling the risk through operational launch constraints to avoid significant charging environments.

  4. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  5. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    NASA Astrophysics Data System (ADS)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  6. Searches for Plumes and Ongoing Geologic Activity on Europa from Galileo and Other Spacecraft

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.

    2014-12-01

    The recent discovery of an apparent plume erupting from Europa's surface using data from the Hubble Space Telescope (Roth et al. 2014) has prompted renewed interest in the possibility of recent or ongoing geologic activity on Europa. Here we summarize previous searches for plumes and changes on Europa's surface, and make recommendations for future efforts. During the period of time in which the Galileo spacecraft was in orbit in the Jupiter system, we made a number of comparisons with observations taken 20 years earlier by the Voyager spacecraft to look for surface changes (Phillips et al. 2000). We found no changes which were visible on Europa's surface. These comparisons, however, were necessarily limited by the low resolution of the Voyager images, which had a maximum resolution of about 2 km/pixel. We also used Galileo spacecraft data to search for plumes of material being ejected from Europa's surface. A 30-image observation was taken in 1999 to observe the limb and the dark sky just off the limb in a search for active plumes, but no plumes were observed (Phillips et al. 2000). However, Hoppa et al (1999) suggested that this image sequence occurred under unfavorable tidal stress conditions. Plume searches were also performed in eclipse images, but again no plumes were detected. More recently, we compared global-scale images of Europa taken in 2007 by the New Horizons spacecraft during its Jupiter flyby en route to Pluto (Bramson et al. 2011). After a careful search that included the iterative coregistration and ratioing techniques developed by Phillips et al. (2000), again, no changes were found on Europa's surface. If the recent Roth et al. (2014) suggestions of an active plume on Europa prove to be correct, we infer that one of two possibilities must be the case. Either 1) the plume is a recent event and was not active before the 2007 New Horizons flyby; or 2) the plume is intermittent and low-density, consisting primarily of gas and not dust, and therefore

  7. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semi-major axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecrafts cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASAs EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  8. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semimajor axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecraft's cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASA's EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  9. Automating Trend Analysis for Spacecraft Constellations

    NASA Technical Reports Server (NTRS)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  10. Space Tools for Servicing, Repairing, and Maintaining Spacecraft

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2002-01-01

    Just like mechanics and technicians on Earth, astronauts use a variety of manual and portable power tools in space to repair, service, and maintain spacecraft, like the Space Shuttle and the International Space Station (ISS), and other satellites, like the Hubble Space Telescope (HST). Space tools are divided into two main operating categories: Intravehicular Activity (IVA) tools and Extravehicular Activity (EVA) tools. N A tools are used by astronauts inside the pressurized habitable compartments of a spacecraft for routine maintenance, repair, and unexpected tasks. EVA tools are used by space-suited astronauts outside of their pressurized spacecraft in the vacuum of space.

  11. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  12. Inter-Satellite Communications Considerations and Requirements for Distributed Spacecraft and Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Kwadrat, Carl F.; Horne, William D.; Edwards, Bernard L.

    2002-01-01

    In order to avoid selecting inadequate inter-spacecraft cross-link communications standards for Distributed Spacecraft System (DSS) missions, it is first necessary to identify cross-link communications strategies and requirements common to a cross-section of proposed missions. This paper addresses the cross-link communication strategies and requirements derived from a survey of 39 DSS mission descriptions that are projected for potential launch within the next 20 years. The inter-spacecraft communications strategies presented are derived from the topological and communications constraints from the DSS missions surveyed. Basic functional requirements are derived from an analysis of the fundamental activities that must be undertaken to establish and maintain a cross-link between two DSS spacecraft. Cross-link bandwidth requirements are derived from high-level assessments of mission science objectives and operations concepts. Finally, a preliminary assessment of possible cross-link standards is presented within the context of the basic operational and interoperability requirements.

  13. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  14. Developing Sustainable Spacecraft Water Management Systems

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  15. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  16. A study of structural concepts for ultralightweight spacecraft

    NASA Technical Reports Server (NTRS)

    Miller, R. K.; Knapp, K.; Hedgepeth, J. M.

    1984-01-01

    Structural concepts for ultralightweight spacecraft were studied. Concepts for ultralightweight space structures were identified and the validity of heir potential application in advanced spacecraft was assessed. The following topics were investigated: (1) membrane wrinkling under pretensioning; (2) load-carrying capability of pressurized tubes; (3) equilibrium of a precompressed rim; (4) design of an inflated reflector spacecraft; (5) general instability of a rim; and (6) structural analysis of a pressurized isotensoid column. The design approaches for a paraboloidal reflector spacecraft included a spin-stiffened design, both inflated and truss central columns, and to include both deep truss and rim-stiffened geodesic designs. The spinning spacecraft analysis is included, and the two truss designs are covered. The performances of four different approaches to the structural design of a paraboloidal reflector spacecraft are compared. The spinning and inflated configurations result in very low total masses and some concerns about their performance due to unresolved questions about dynamic stability and lifetimes, respectively.

  17. On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries

    NASA Astrophysics Data System (ADS)

    Bennett, Trevor J.

    In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns

  18. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2012-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  19. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2013-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  20. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  1. Spacecraft Systems Engineering, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Fortescue, Peter; Stark, John; Swinerd, Graham

    2003-03-01

    Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manouevring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.

  2. Mechanical Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  3. Spacecraft radiator systems

    NASA Technical Reports Server (NTRS)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  4. Standardizing the information architecture for spacecraft operations

    NASA Technical Reports Server (NTRS)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  5. Peculiarities of Spacecraft Photoelectron Shield Formation in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Veselov, Mikhail; Chugunin, Dmitriy

    Traditionally, the current balance equations for a spacecraft in space plasma rely on the electric field of positively charged spacecraft. Equilibrium potential V is derived from currents outward and toward the spacecraft body. The currents are in turn functions of V. However, in reality photoelectrons move in both the electric field of the spacecraft and the Earth or the interplanetary magnetic field. This causes an anisotropic distribution of photoelectrons along a magnetic field line with the characteristic size of the order of several photoelectron gyro-radii. As a result, confinement of photoelectrons in the spacecraft-related electric field is much longer. Thus, a fraction of returned photoelectrons in the electron current toward the spacecraft can be rather great and may even dominate several times over the ambient electrons’ fraction. Modeled ph-electron trajectories as well as general photoelectron shield distribution around spacecraft are represented, and comparison of experimental data on the electron density with the magnetic flux tube model is discussed.

  6. DMSP Spacecraft Charging in Auroral Environments

    NASA Technical Reports Server (NTRS)

    Colson, Andrew; Minow, Joseph

    2011-01-01

    The Defense Meteorological Satellite Program (DMSP) spacecraft are a series of low-earth orbit (LEO) satellites whose mission is to observe the space environment using the precipitating energetic particle spectrometer (SSJ/4-5). DMSP satellites fly in a geosynchronous orbit at approx.840 km altitude which passes through Earth s ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. For satellites in LEO, such as DMSP, the plasma density is usually high and the main contributors to the currents to the spacecraft are the precipitating auroral electrons and ions from the magnetosphere as well as the cold plasma that constitutes the ionosphere. It is important to understand how the ionosphere and auroral electrons can accumulate surface charges on satellites because spacecraft charging has been the cause of a number of significant anomalies for on-board instrumentation on high altitude spacecraft. These range from limiting the sensitivity of measurements to instrument malfunction depending on the magnitude of the potential difference over the spacecraft surface. Interactive Data Language (IDL) software was developed to process SSJ/4-5 electron and ion data and to create a spectrogram of the particles number and energy fluxes. The purpose of this study is to identify DMSP spacecraft charging events and to present a preliminary statistical analysis. Nomenclature

  7. Xenia Spacecraft Study Addendum: Spacecraft Cost Estimate

    NASA Technical Reports Server (NTRS)

    Hill, Spencer; Hopkins, Randall

    2009-01-01

    This slide presentation reviews the Xenia spacecraft cost estimates as an addendum for the Xenia Spacecraft study. The NASA/Air Force Cost model (NAFCPOM) was used to derive the cost estimates that are expressed in 2009 dollars.

  8. Gamma radiation survey of the LDEF spacecraft

    NASA Astrophysics Data System (ADS)

    Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; McKisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

    1991-06-01

    The retrieval of the Long Duration Exposure Facility (LDEF) spacecraft after nearly 6 years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. The first complete gamma ray survey was conducted of a large spacecraft on LDEF shortly after its return to Earth. A surprising observation was the large Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes seen during the survey, the strongest being Na-22 and Mn-54, are all attributed to activation of spacecraft components in orbit. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

  9. Electromagnetic Safety of Spacecraft During Active Experiments with the Use of Plasma Accelerators and Ion Injectors

    NASA Astrophysics Data System (ADS)

    Plokhikh, Andrey; Popov, Garri; Shishkin, Gennady; Antropov, Nikolay; Vazhenin, Nikolay; Soganova, Galina

    Works under the development and application of stationary and pulsed plasma accelerators of charged particles conducted at the Moscow Aviation Institute and Research Institute of Applied Mechanics and Electrodynamics during over 40 years, active experiments on board meteorological rockets, artificial Earth satellites and "Mir" orbital station including [1], allowed to obtain data on the influence of pulsed and continuous plasma injection with the given parameters on the drop of energetic particles out of the radiation belts, efficiency of artificial excitation and propagation of electromagnetic waves in ELF and VLF ranges, and evolution of artificial plasma formations in different regions of ionosphere. Variation of the near-spacecraft electromagnetic environment related to the operation of plasma injectors was registered during active experiments along with the global electrodynamic processes. The measured electromagnetic fields are of rather high intensity and occupy frequency spectrum from some Hz to tens of GHz that may be of definite danger for the operation of spacecraft and its onboard systems. Analysis for the known test data is presented in the paper and methods are discussed for the diagnostics and modeling under laboratory conditions of radiative processes proceeding at the operation of plasma accelerators and ion injectors used while making active space experiments. Great attention is paid to the methodological and metrological bases for making radio measurements in vacuum chambers, design concept and hardware configuration of ground special-purpose instrumentation scientific complexes [2]. Basic requirements are formulated for the measurements and analysis of electromagnetic fields originating during the operation of plasma accelerators, including the radiative induced and conductive components inside the spacecraft, as well as the wave emission and excitation outside the spacecraft, in the ionosphere including. Measurement results for the intrinsic

  10. Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,

  11. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  12. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  13. Spacecraft Onboard Interface Services: Current Status and Roadmap

    NASA Astrophysics Data System (ADS)

    Prochazka, Marek; Lopez Trescastro, Jorge; Krueger, Sabine

    2016-08-01

    Spacecraft Onboard Interface Services (SOIS) is a set of CCSDS standards defining communication stack services to interact with hardware equipment onboard spacecraft. In 2014 ESA kicked off three parallel activities to critically review the SOIS standards, use legacy spacecraft flight software (FSW), make it compliant to a preselected subset of SOIS standards and make performance and architecture assessment. As a part of the three parallel activities, led by Airbus DS Toulouse, OHB Bremen and Thales Alenia Space Cannes respectively, it was to provide feedback back to ESA and CCSDS and also to propose a roadmap of transition towards an operational FSW system fully compliant to applicable SOIS standards. The objective of the paper is twofold: Firstly it is to summarise main results of the three parallel activities and secondly, based on the results, to propose a roadmap for the future.

  14. Multi-Spacecraft Autonomous Positioning System

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2015-01-01

    As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.

  15. Training for spacecraft technical analysts

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  16. Spacecraft Charging Standard Report.

    DTIC Science & Technology

    1980-09-30

    SSPM include: SAMPLE POTENTIAL (with respect to S/C ground) Aluminized Kapton -2.0 kV Silvered Teflon -4.0 kV Astroquartz -3.7 kV 50.3 Analysis. As...and potential gradients on the space vehicle (candidate spacecraft locations for ESD tests) (The NASCAP computer code, when validated, will be useful...The coupling analysis should then determine as a minimum: I. electromagnetic fields generated interior to the space vehicle due to ESD 2. induced

  17. A Comparison of Structurally Connected and Multiple Spacecraft Interferometers

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Crawley, Edward F.

    1996-01-01

    Structurally connected and multiple spacecraft interferometers are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure interferometer in space rather than an interferometer composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft interferometers can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating interferometers and the potential advantages of adding active structural control to the connected truss of the structurally connected interferometer are also examined. The minimum mass design of the structurally connected interferometer that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft interferometer. It is discovered that the design of the minimum mass structurally connected interferometer that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for interferometers in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating interferometers and 650 m for rotating interferometers.

  18. Fire safety applications for spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Olson, Sandra L.

    1989-01-01

    Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.

  19. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  20. Deep Dielectric Charging of Spacecraft Polymers by Energetic Protons

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Dennison, J. R.

    2007-01-01

    The majority of research in the field of spacecraft charging concentrates on electron charging effects with little discussion of charging by protons. For spacecraft orbiting in the traditional LEO and GEO environments this emphasis on electrons is appropriate since energetic electrons are the dominant species in those orbits. But for spacecraft in orbits within the inner radiation belts or for interplanetary and lunar space probes, proton charging (center dot) effects may also be of concern. To examine bulk spacecraft charging effects in these environments several typical highly insulating spacecraft polymers were exposed to energetic protons (center dot) with energies from 1 Me V to lO Me V to simulate protons from the solar wind and from solar energetic proton events. Results indicate that effects in proton charged dielectrics are distinctly different than those observed due to electron charging. In most cases, the positive surface potential continued to increase for periods on the order of minutes to a day, followed by long time scale decay at rates similar to those observed for electron charging. All samples charged to positive potentials with substantially lower magnitudes than for equivalent electron doses. Possible explanations for the different behavior of the measured surface potentials from proton irradiation are discussed; these are related to the evolving internal charge distribution from energy dependent electron and proton transport, electron emission, charge migration due to dark current and radiation induced conductivity, and electron capture by embedded protons.

  1. Industry perspectives on Plug-& -Play Spacecraft Avionics

    NASA Astrophysics Data System (ADS)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  2. Astronaut Edwin Aldrin in open hatch of spacecraft during EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin Aldrin, pilot for the Gemini 12 flight, stands up in the open hatch of the spacecraft during his extravehicular activity (EVA) on the first day of the four day mission in space. He prepares camera for installation on outside of the spacecraft (63537); Aldrin removes micrometeoroid package for return to the spacecraft (63538).

  3. Sensor On-orbit Calibration and Characterization Using Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Butler, Jim; Barnes, W. L.; Guenther, B.

    2007-01-01

    Spacecraft flight operations often require activities that involve different kinds of maneuvers for orbital adjustments (pitch, yaw, and roll). Different maneuvers, when properly planned and scheduled, can also be applied to support and/or to perform on-board sensor calibration and characterization. This paper uses MODIS (Moderate Resolution Imaging Spectroradiometer) as an example to illustrate applications of spacecraft maneuvers for Earth-observing sensors on-orbit calibration and characterization. MODIS is one of the key instruments for NASA's Earth Observing System (EOS) currently operated on-board the EOS Terra and Aqua spacecraft launched in December 1999 and May 2002, respectively. Since their launch, both Terra and Aqua spacecraft have made a number of maneuvers, specially the yaw and roll maneuvers, to support the MODIS on-orbit calibration and characterization. For both Terra and Aqua MODIS, near-monthly spacecraft roll maneuvers are executed for lunar observations. These maneuvers are carefully scheduled so that the lunar phase angles are nearly identical for each sensor's lunar observations. The lunar observations are used to track MODIS reflective solar bands (RSB) calibration stability and to inter-compare Terra and Aqua MODIS RSB calibration consistency. To date, two sets of yaw maneuvers (each consists of two series of 8 consecutive yaws) by the Terra spacecraft and one set by the Aqua spacecraft have been performed to validate MODIS solar diffuser (SD) bi-directional reflectance factor (BRF) and to derive SD screen transmission. Terra spacecraft pitch maneuvers, first made on March 26, 2003 and the second on April 14, 2003 (with the Moon in the spacecraft nadir view), have been applied to characterize MODIS thermal emissive bands (TEB) response versus scan angle (RVS). This is particularly important since the pre-launch TEB RSV measurements made by the sensor vendor were not successful. Terra MODIS TEB RVS obtained from pitch maneuvers have been

  4. Hazards by meteoroid Impacts onto operational spacecraft

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Jehn, R.; Flury, W.

    Operational spacecraft in Earth orbit or on interplanetary trajectories are exposed to high-velocity particles that can cause damage to sensitive on-board instrumentation. In general there are two types of hazard: direct destruction of functional elements by impacts, and indirect disturbance of instruments by the generated impact plasma. The latter poses a threat especially for high-voltage instrumentation and electronics. While most meteoroids have sizes in the order of a few micrometre, and typical masses of 10-15 kg, the most dangerous population with sizes in the millimetre and masses in the milligramme range exhibits still substantial impact fluxes in the order of 2 × 10-11 m-2 s-1 . This level of activity can by significantly elevated during passages of the spacecraft through cometary trails, which on Earth cause events like the well-known Leonid and Perseid meteor streams. The total mass flux of micrometeoroids onto Earth is about 107 kg yr-1 , which is about one order of magnitude less than the estimated mass flux of large objects like comets and asteroids with individual masses above 105 kg. In order to protect spacecraft from the advert effects of meteoroid impacts, ESA performs safety operations on its spacecraft during meteor streams, supported by real-time measurements of the meteor activity. A summary of past and future activities is given.

  5. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Mingliang; Gao, Dong

    2014-02-01

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  6. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong; Zhang, Mingliang, E-mail: niudun12@126.com; Gao, Dong

    2014-02-14

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improvedmore » image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.« less

  7. Spacecraft Charging Technology, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.

  8. Habitability design for spacecraft

    NASA Technical Reports Server (NTRS)

    Franklin, G. C.

    1978-01-01

    Habitability is understood to mean those spacecraft design elements that involve a degree of comfort, quality or necessities to support man in space. These elements are environment, architecture, mobility, clothing, housekeeping, food and drink, personal hygiene, off-duty activities, each of which plays a substantial part in the success of a mission. Habitability design for past space flights is discussed relative to the Mercury, Gemini, Apollo, and Skylab spacecraft, with special emphasis on an examination of the Shuttle Orbiter cabin design from a habitability standpoint. Future projects must consider the duration and mission objectives to meet their habitability requirements. Larger ward rooms, improved sleeping quarters and more complete hygiene facilities must be provided for future prolonged space flights

  9. Understanding natural language for spacecraft sequencing

    NASA Technical Reports Server (NTRS)

    Katz, Boris; Brooks, Robert N., Jr.

    1987-01-01

    The paper describes a natural language understanding system, START, that translates English text into a knowledge base. The understanding and the generating modules of START share a Grammar which is built upon reversible transformations. Users can retrieve information by querying the knowledge base in English; the system then produces an English response. START can be easily adapted to many different domains. One such domain is spacecraft sequencing. A high-level overview of sequencing as it is practiced at JPL is presented in the paper, and three areas within this activity are identified for potential application of the START system. Examples are given of an actual dialog with START based on simulated data for the Mars Observer mission.

  10. Cooperative control of two active spacecraft during proximity operations. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1989-01-01

    A cooperative autopilot is developed for the control of the relative attitude, relative position and absolute attitude of two maneuvering spacecraft during on orbit proximity operations. The autopilot consists of an open-loop trajectory solver which computes a nine dimensional linearized nominal state trajectory at the beginning of each maneuver and a phase space regulator which maintains the two spacecraft on the nominal trajectory during coast phases of the maneuver. A linear programming algorithm is used to perform jet selection. Simulation tests using a system of two space shuttle vehicles are performed to verify the performance of the cooperative controller and comparisons are made to a traditional passive target/active pursuit vehicle approach to proximity operations. The cooperative autopilot is shown to be able to control the two vehicle system when both the would be pursuit vehicle and the target vehicle are not completely controllable in six degrees of freedom. The cooperative controller is also shown to use as much as 37 percent less fuel and 57 percent fewer jet firings than a single pursuit vehicle during a simple docking approach maneuver.

  11. COTSAT Small Spacecraft Cost Optimization for Government and Commercial Use

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bui, David; Dallara, Christopher; Ghassemieh, Shakib; Hanratty, James; Jackson, Evan; Klupar, Pete; Lindsay, Michael; Ling, Kuok; Mattei, Nicholas; hide

    2009-01-01

    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The prototype spacecraft, also known as CheapSat, is the first of what could potentially be a series of rapidly produced low-cost spacecraft. The COTSAT-1 team is committed to realizing the challenging goal of building a fully functional spacecraft for $500K parts and $2.0M labor. The project's efforts have resulted in significant accomplishments within the scope of a limited budget and schedule. Completion and delivery of the flight hardware to the Engineering Directorate at NASA Ames occurred in February 2009 and a cost effective qualification program is currently under study. The COTSAT-1 spacecraft is now located at NASA Ames Research Center and is awaiting a cost effective launch opportunity. This paper highlights the advancements of the COTSAT-1 spacecraft cost reduction techniques.

  12. Spacecraft-environment interaction model cross comparison applied to Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Deca, J.; Markidis, S.; Marchand, R.; Guillemant, S.; Matéo Vélez, J.; Miyake, Y.; Usui, H.; Ergun, R.; Sturner, A. P.

    2013-12-01

    Given that our society becomes increasingly dependent on space technology, it is imperative to develop a good understanding of spacecraft-plasma interactions. Two main issues are important. First, one needs to be able to design a reliable spacecraft that can survive in the harsh solar wind conditions, and second a very good knowledge of the behaviour and plasma structure around the spacecraft is required to be able to interpret and correct measurements from onboard instruments and science experiments. In this work we present the results of a cross-comparison study between five spacecraft-plasma models (EMSES, iPic3D, LASP, PTetra, SPIS) used to simulate the interaction of the Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. The purpose of this cross-comparison is to assess the consistency and validity of the different numerical approaches from the similarities and differences of their predictions under well defined conditions, with attention to the implicit PIC code iPic3D, which has never been used for spacecraft-environment interaction studies before. The physical effects considered are spacecraft charging, photoelectron and secondary electron emission, the presence of a background magnetic field and density variations. The latter of which can cause the floating potential of SPP to go from negative to positive or visa versa, depending on the solar wind conditions, and spacecraft material properties. Simulation results are presented and compared with increasing levels of complexity in the physics to evaluate the sensitivity of the model predictions to certain physical effects. The comparisons focus particularly on spacecraft floating potential, detailed contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. Model predictions obtained with our different computational approaches are found to be in good agreement

  13. Adaptive lyapunov control and artificial neural networks for spacecraft relative maneuvering using atmospheric differential drag

    NASA Astrophysics Data System (ADS)

    Perez Chaparro, David Andres

    At low Earth orbits, a differential in the drag acceleration between spacecraft can be used to control their relative motion. This drag differential allows for a propellant-free alternative to thrusters for performing relative maneuvers in these orbits. The interest in autonomous propellant-less maneuvering comes from the desire to reduce the costs of spacecraft formations. Formation maneuvering opens up a wide variety of new applications for spacecraft missions, such as on-orbit maintenance and refueling. In this work atmospheric differential drag based nonlinear controllers are presented that can be used for virtually any planar relative maneuver of two spacecraft, provided that there is enough atmospheric density and that the spacecraft can change their ballistic coefficients by sufficient amounts to generate the necessary differential accelerations. The control techniques are successfully tested using high fidelity Satellite Tool Kit simulations for re-phase, fly-around, and rendezvous maneuvers, proving the feasibility of the proposed approach for a real flight. Furthermore, the atmospheric density varies in time and in space as the spacecraft travel along their orbits. The ability to accurately forecast the density allows for accurate onboard orbit propagation and for creating realistic guidance trajectories for maneuvers that rely on the differential drag. In this work a localized density predictor based on artificial neural networks is also presented. The predictor uses density measurements or estimates along the past orbits and can use a set of proxies for solar and geomagnetic activities to predict the value of the density along the future orbits of the spacecraft. The performance of the localized predictor is studied for different neural network structures, testing periods of high and low solar and geomagnetic activities and different prediction windows. Comparison with previously developed methods show substantial benefits in using neural networks, both

  14. SPX-8 Dragon Spacecraft Approach

    NASA Image and Video Library

    2016-04-10

    ISS047e052707 (04/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.

  15. Autonomous Guidance Strategy for Spacecraft Formations and Reconfiguration Maneuvers

    NASA Astrophysics Data System (ADS)

    Wahl, Theodore P.

    A guidance strategy for autonomous spacecraft formation reconfiguration maneuvers is presented. The guidance strategy is presented as an algorithm that solves the linked assignment and delivery problems. The assignment problem is the task of assigning the member spacecraft of the formation to their new positions in the desired formation geometry. The guidance algorithm uses an auction process (also called an "auction algorithm''), presented in the dissertation, to solve the assignment problem. The auction uses the estimated maneuver and time of flight costs between the spacecraft and targets to create assignments which minimize a specific "expense'' function for the formation. The delivery problem is the task of delivering the spacecraft to their assigned positions, and it is addressed through one of two guidance schemes described in this work. The first is a delivery scheme based on artificial potential function (APF) guidance. APF guidance uses the relative distances between the spacecraft, targets, and any obstacles to design maneuvers based on gradients of potential fields. The second delivery scheme is based on model predictive control (MPC); this method uses a model of the system dynamics to plan a series of maneuvers designed to minimize a unique cost function. The guidance algorithm uses an analytic linearized approximation of the relative orbital dynamics, the Yamanaka-Ankersen state transition matrix, in the auction process and in both delivery methods. The proposed guidance strategy is successful, in simulations, in autonomously assigning the members of the formation to new positions and in delivering the spacecraft to these new positions safely using both delivery methods. This guidance algorithm can serve as the basis for future autonomous guidance strategies for spacecraft formation missions.

  16. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  17. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  18. Atmospheric drag model calibrations for spacecraft lifetime prediction

    NASA Technical Reports Server (NTRS)

    Binebrink, A. L.; Radomski, M. S.; Samii, M. V.

    1989-01-01

    Although solar activity prediction uncertainty normally dominates decay prediction error budget for near-Earth spacecraft, the effect of drag force modeling errors for given levels of solar activity needs to be considered. Two atmospheric density models, the modified Harris-Priester model and the Jacchia-Roberts model, to reproduce the decay histories of the Solar Mesosphere Explorer (SME) and Solar Maximum Mission (SMM) spacecraft in the 490- to 540-kilometer altitude range were analyzed. Historical solar activity data were used in the input to the density computations. For each spacecraft and atmospheric model, a drag scaling adjustment factor was determined for a high-solar-activity year, such that the observed annual decay in the mean semimajor axis was reproduced by an averaged variation-of-parameters (VOP) orbit propagation. The SME (SMM) calibration was performed using calendar year 1983 (1982). The resulting calibration factors differ by 20 to 40 percent from the predictions of the prelaunch ballistic coefficients. The orbit propagations for each spacecraft were extended to the middle of 1988 using the calibrated drag models. For the Jaccia-Roberts density model, the observed decay in the mean semimajor axis of SME (SMM) over the 4.5-year (5.5-year) predictive period was reproduced to within 1.5 (4.4) percent. The corresponding figure for the Harris-Priester model was 8.6 (20.6) percent. Detailed results and conclusions regarding the importance of accurate drag force modeling for lifetime predictions are presented.

  19. Investigation of fast initialization of spacecraft bubble memory systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  20. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  1. Magnet-Based System for Docking of Miniature Spacecraft

    NASA Technical Reports Server (NTRS)

    Howard, Nathan; Nguyen, Hai D.

    2007-01-01

    A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet. A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet( s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30 . Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.

  2. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  3. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  4. Low-Temperature Spacecraft: Challenges/Opportunities

    NASA Technical Reports Server (NTRS)

    Dickman, J. E.; Patterson, R. L.; Overton, E.; Hammoud, A. N.; Gerber, S. S.

    2001-01-01

    Imagine sending a spacecraft into deep space that operates at the ambient temperature of its environment rather than hundreds of degrees Kelvin warmer. The average temperature of a spacecraft warmed only by the sun drops from 279 K near the Earth's orbit to 90 K near the orbit of Saturn, and to 44 K near Pluto's orbit. At present, deep space probes struggle to maintain an operating temperature near 300 K for the onboard electronics. To warm the electronics without consuming vast amounts of electrical energy, radioisotope heater units (RHUs) are used in vast numbers. Unfortunately, since RHU are always 'on', an active thermal management system is required to reject the excess heat. A spacecraft designed to operate at cryogenic temperatures and shielded from the sun by a large communication dish or solar cell array could be less complex, lighter, and cheaper than current deep space probes. Before a complete low-temperature spacecraft becomes a reality, there are several challenges to be met. Reliable cryogenic power electronics is one of the major challenges. The Low-Temperature Power Electronics Research Group at NASA Glenn Research Center (GRC) has demonstrated the ability of some commercial off the shelf power electronic components to operate at temperatures approaching that of liquid nitrogen (77 K). Below 77 K, there exists an opportunity for the development of reliable semiconductor power switching technologies other than bulk silicon CMOS. This paper will report on the results of NASA GRC's Low-Temperature Power Electronics Program and discuss the challenges to (opportunities for) the creation of a low-temperature spacecraft.

  5. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    NASA Astrophysics Data System (ADS)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-08-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  6. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-01-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  7. Formation Flying of Tethered and Nontethered Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2005-01-01

    A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.

  8. Ground correlation investigation of thruster spacecraft interactions to be measured on the IAPS flight test

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1984-01-01

    Preliminary ground correlation testing has been conducted with an 8 cm mercury ion thruster and diagnostic instrumentation replicating to a large extent the IAPS flight test hardware, configuration, and electrical grounding/isolation. Thruster efflux deposition retained at 25 C was measured and characterized. Thruster ion efflux was characterized with retarding potential analyzers. Thruster-generated plasma currents, the spacecraft common (SCC) potential, and ambient plasma properties were evaluated with a spacecraft potential probe (SPP). All the measured thruster/spacecraft interactions or their IAPS measurements depend critically on the SCC potential, which can be controlled by a neutralizer ground switch and by the SPP operation.

  9. FSD- FLEXIBLE SPACECRAFT DYNAMICS

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1994-01-01

    The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD

  10. Miniature Robotic Spacecraft for Inspecting Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer; hide

    2004-01-01

    A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.

  11. NASA Spacecraft Images Mexican Volcanic Eruption

    NASA Image and Video Library

    2012-04-24

    NASA Terra spacecraft shows Mexico active Popocatepetl volcano, located about 40 miles southeast of Mexico City, spewing water vapor, gas, ashes and glowing rocks since its most recent eruption period began in April 2012.

  12. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  13. Certification of vapor phase hydrogen peroxide sterilization process for spacecraft application

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Koukol, R.; Foster, T. L.; Stabekis, P. D.

    2002-01-01

    This paper describes the selection process and research activities JPL is planning to conduct for certification of hydrogen peroxide as a NASA approved technique for sterilization of various spacecraft parts/components and entire modern spacecraft.

  14. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  15. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  16. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  17. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-06

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  18. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  19. (abstract) Follow-on Missions for the Pluto Spacecraft

    NASA Technical Reports Server (NTRS)

    Weinstein, Stacy; Salvo, Chris; Stern, Alan

    1994-01-01

    The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The long-life (6 - 10 years) mission duration and lightweight design make the Pluto spacecraft a good candidate for a number of other flyby missions to objects in the outer Solar System, and some of these were investigated by JPL in cooperation with NASA Code SL's (Solar System Exploration) Outer Planets Science Working Group (OPSWG) in 1993. The JPL team looked at what it would mean to fly one of these missions (if a third spacecraft were available) in terms of flight time, spacecraft modifications, and science payload resources; the OPSWG recommended science investigation modifications for the different targets based on the available resources. The missions could, in many cases, utilize less capable launch vehicles, thereby reducing life-cycle cost of the mission. Examples of the sort of targets which were investigated and looked attractive in terms of flight time are: Uranus, Neptune, Uranus/Neptune dual-mission, Trojan asteroids (624 Hektor, 617 Patroclus, others), 5145 Pholus (the reddest object known in the solar system), and Kuiper Belt objects (i.e., 1992 QB1) . This paper will present the results of this investigation in terms of potential science return, performance, and the potential for life-cycle cost reductions through inheritance from Pluto Fast Flyby .

  20. Planetary Science and Spacecraft Analogs in the Classroom

    NASA Astrophysics Data System (ADS)

    Edberg, S. J.; McConnell, S. L.

    2000-12-01

    The Cassini Program Outreach Team has developed a number of classroom demonstrations and activities that present science investigation techniques and spacecraft flight operations. These activities and demonstrations include analogs to planetary magnetic field orientations, ring particle and atmospheric scattering, thermal inertia studies, body-mounted vs. scan platform-mounted instrument operations on spacecraft, gravity assist, and many others. These curriculum supplements utilize inexpensive, commonly available materials that can be found in household kitchens, backyards, and hardware and variety stores. While designed for middle school classrooms, these activities are easily modified for use in both elementary and high school classes. We will demonstrate several of our activities and present information on others. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  1. Planetary Science and Spacecraft Analogs in the Classroom

    NASA Astrophysics Data System (ADS)

    Edberg, S. J.; McConnell, S. L.

    2000-10-01

    The Cassini Program Outreach Team has developed a number of classroom demonstrations and activities that present science investigation techniques and spacecraft flight operations. These activities and demonstrations include analogs to planetary magnetic field orientations, ring particle and atmospheric scattering, thermal inertia studies, body-mounted vs. scan platform-mounted instrument operations on spacecraft, gravity assist, and many others. These curriculum supplements utilize inexpensive, commonly available materials that can be found in household kitchens, backyards, and hardware and variety stores. While designed for middle school classrooms, these activities are easily modified for use in both elementary and high school classes. We will demonstrate several of our activities and present information on others. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  2. Spacecraft 2000

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objective of the Workshop was to focus on the key technology area for 21st century spacecraft and the programs needed to facilitate technology development and validation. Topics addressed include: spacecraft systems; system development; structures and materials; thermal control; electrical power; telemetry, tracking, and control; data management; propulsion; and attitude control.

  3. A Reconfigurable Communications System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Kifle, Muli

    2004-01-01

    Two trends of NASA missions are the use of multiple small spacecraft and the development of an integrated space network. To achieve these goals, a robust and agile communications system is needed. Advancements in field programmable gate array (FPGA) technology have made it possible to incorporate major communication and network functionalities in FPGA chips; thus this technology has great potential as the basis for a reconfigurable communications system. This report discusses the requirements of future space communications, reviews relevant issues, and proposes a methodology to design and construct a reconfigurable communications system for small scientific spacecraft.

  4. Soviet Soyuz spacecraft in orbit as seen from American Apollo spacecraft

    NASA Image and Video Library

    1975-07-17

    AST-01-053 (17-19 July 1975) --- The Soviet Soyuz spacecraft is contrasted against a black-sky background in this photograph taken in Earth orbit. This view is looking toward the aft end of the Soyuz. Two solar panels protrude out from the spacecraft's Instrument Assembly Module. The ASTP astronauts and cosmonauts visited each other's spacecraft while the Soyuz and Apollo were docked in Earth orbit for two days.

  5. Method for deploying multiple spacecraft

    NASA Technical Reports Server (NTRS)

    Sharer, Peter J. (Inventor)

    2007-01-01

    A method for deploying multiple spacecraft is disclosed. The method can be used in a situation where a first celestial body is being orbited by a second celestial body. The spacecraft are loaded onto a single spaceship that contains the multiple spacecraft and the spacecraft is launched from the second celestial body towards a third celestial body. The spacecraft are separated from each other while in route to the third celestial body. Each of the spacecraft is then subjected to the gravitational field of the third celestial body and each of the spacecraft assumes a different, independent orbit about the first celestial body. In those situations where the spacecraft are launched from Earth, the Sun can act as the first celestial body, the Earth can act as the second celestial body and the Moon can act as the third celestial body.

  6. An assessment of spacecraft target mode selection methods

    NASA Astrophysics Data System (ADS)

    Mercer, J. F.; Aglietti, G. S.; Remedia, M.; Kiley, A.

    2017-11-01

    Coupled Loads Analyses (CLAs), using finite element models (FEMs) of the spacecraft and launch vehicle to simulate critical flight events, are performed in order to determine the dynamic loadings that will be experienced by spacecraft during launch. A validation process is carried out on the spacecraft FEM beforehand to ensure that the dynamics of the analytical model sufficiently represent the behavior of the physical hardware. One aspect of concern is the containment of the FEM correlation and update effort to focus on the vibration modes which are most likely to be excited under test and CLA conditions. This study therefore provides new insight into the prioritization of spacecraft FEM modes for correlation to base-shake vibration test data. The work involved example application to large, unique, scientific spacecraft, with modern FEMs comprising over a million degrees of freedom. This comprehensive investigation explores: the modes inherently important to the spacecraft structures, irrespective of excitation; the particular 'critical modes' which produce peak responses to CLA level excitation; an assessment of several traditional target mode selection methods in terms of ability to predict these 'critical modes'; and an indication of the level of correlation these FEM modes achieve compared to corresponding test data. Findings indicate that, although the traditional methods of target mode selection have merit and are able to identify many of the modes of significance to the spacecraft, there are 'critical modes' which may be missed by conventional application of these methods. The use of different thresholds to select potential target modes from these parameters would enable identification of many of these missed modes. Ultimately, some consideration of the expected excitations is required to predict all modes likely to contribute to the response of the spacecraft in operation.

  7. An enhanced methodology for spacecraft correlation activity using virtual testing tools

    NASA Astrophysics Data System (ADS)

    Remedia, Marcello; Aglietti, Guglielmo S.; Appolloni, Matteo; Cozzani, Alessandro; Kiley, Andrew

    2017-11-01

    Test planning and post-test correlation activity have been issues of growing importance in the last few decades and many methodologies have been developed to either quantify or improve the correlation between computational and experimental results. In this article the methodologies established so far are enhanced with the implementation of a recently developed procedure called Virtual Testing. In the context of fixed-base sinusoidal tests (commonly used in the space sector for correlation), there are several factors in the test campaign that affect the behaviour of the satellite and are not normally taken into account when performing analyses: different boundary conditions created by the shaker's own dynamics, non-perfect control system, signal delays etc. All these factors are the core of the Virtual Testing implementation, which will be thoroughly explained in this article and applied to the specific case of Bepi-Colombo spacecraft tested on the ESA QUAD Shaker. Correlation activity will be performed in the various stages of the process, showing important improvements observed after applying the final complete methodology.

  8. Spacecraft-spacecraft very long baseline interferometry. Part 1: Error modeling and observable accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Border, J. S.

    1992-01-01

    In Part 1 of this two-part article, an error budget is presented for Earth-based delta differential one-way range (delta DOR) measurements between two spacecraft. Such observations, made between a planetary orbiter (or lander) and another spacecraft approaching that planet, would provide a powerful target-relative angular tracking data type for approach navigation. Accuracies of better than 5 nrad should be possible for a pair of spacecraft with 8.4-GHz downlinks, incorporating 40-MHz DOR tone spacings, while accuracies approaching 1 nrad will be possible if the spacecraft incorporate 32-GHz downlinks with DOR tone spacing on the order of 250 MHz; these accuracies will be available for the last few weeks or months of planetary approach for typical Earth-Mars trajectories. Operational advantages of this data type are discussed, and ground system requirements needed to enable spacecraft-spacecraft delta DOR observations are outlined. This tracking technique could be demonstrated during the final approach phase of the Mars '94 mission, using Mars Observer as the in-orbit reference spacecraft, if the Russian spacecraft includes an 8.4-GHz downlink incorporating DOR tones. Part 2 of this article will present an analysis of predicted targeting accuracy for this scenario.

  9. A small spacecraft for multipoint measurement of ionospheric plasma.

    PubMed

    Roberts, T M; Lynch, K A; Clayton, R E; Weiss, J; Hampton, D L

    2017-07-01

    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  10. A small spacecraft for multipoint measurement of ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Roberts, T. M.; Lynch, K. A.; Clayton, R. E.; Weiss, J.; Hampton, D. L.

    2017-07-01

    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  11. Probing interferometric parallax with interplanetary spacecraft

    NASA Astrophysics Data System (ADS)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  12. MarcoPolo-R: Mission and Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    asteroid properties and map the surface in detail. Five potential sampling sites will be selected and closely observed in a local characterisation phase, leading to a single preferred sampling site being identified. The baseline instruments are a Narrow Angle Camera, a Mid-Infrared Spectrometer, a Visible Near-Infrared Spectrometer, a Radio Science Experiment, and a Close-up Camera. For the sampling phase, the spacecraft will perform a touch-and-go manoeuvre. A boom with a sampling mechanism at the end will be deployed, and the spacecraft will descend using visual navigation to touch the asteroid for some seconds. The rotary brush sampling mechanism will be activated on touchdown to obtain a good quality sample comprising regolith dust and pebbles. Low touchdown velocities and collision avoidance are critical at this point to prevent damage to the spacecraft and solar arrays. The spacecraft will then move away, returning to a safe orbit, and the sample will be transferred to an Earth Re-entry Capsule. After a final post-sampling characterisation campaign, the spacecraft will perform the return transfer to Earth. The Earth Re-entry Capsule will be released to directly enter the Earth's atmosphere, and is designed to survive a hard landing with no parachute deceleration. Once recovered, the asteroid sample would be extracted in a sample curation facility in preparation for the full analysis campaign. This presentation will describe Astrium's MarcoPolo-R mission and spacecraft design, with a focus on the innovative aspects of the design.

  13. Contingent plan structures for spacecraft

    NASA Technical Reports Server (NTRS)

    Drummond, M.; Currie, K.; Tate, A.

    1987-01-01

    Most current AI planners build partially ordered plan structures which delay decisions on action ordering. Such structures cannot easily represent contingent actions. A representation which can is presented. The representation has some other useful features: it provides a good account of the causal structure of a plan, can be used to describe disjunctive actions, and it offers a planner the opportunity of even less commitment than the classical partial order on actions. The use of this representation is demonstrated in an on-board spacecraft activity sequencing problem. Contingent plan execution in a spacecraft context highlights the requirements for a fully disjunctive representation, since communication delays often prohibit extensive ground-based accounting for remotely sensed information and replanning on execution failure.

  14. Applying a cloud computing approach to storage architectures for spacecraft

    NASA Astrophysics Data System (ADS)

    Baldor, Sue A.; Quiroz, Carlos; Wood, Paul

    As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.

  15. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  16. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.

  17. GEMINI SPACECRAFT - ARTIST CONCEPT

    NASA Image and Video Library

    1964-01-01

    S64-22331 (1964) --- Artist concept illustrating the relative sizes of the one-man Mercury spacecraft, the two-man Gemini spacecraft, and the three-man Apollo spacecraft. Also shows line drawing of launch vehicles to show their relative size in relation to each other. Photo credit: NASA

  18. Spacecraft maximum allowable concentrations for selected airborne contaminants, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee on Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMAC's for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMAC's for 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the first 11 SMAC reports that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee.

  19. The search for materials to mitigate spacecraft charging

    NASA Technical Reports Server (NTRS)

    Losure, Nancy S.

    1996-01-01

    As spacecraft orbit the earth, they encounter a variety of particles and radiation. Charged particles are common enough that a spacecraft can collect substantial charges on its surfaces. If these charges are not bled off, they can accumulate until electrostatic discharges occur between a charged surface and some lower-potential location on the craft. Electrostatic discharge (ESD) is the suspected culprit in a number of spacecraft failures. Silverized Teflon film has become the standard heat-reflecting outer layer of spacecraft because of its flexibility, chemical inertness, and low volatiles content. However, as spacecraft are designed to operate in orbits with greater probability of accumulating enough ions and electrons to create ESD, the Teflon-based thermal control blankets are becoming a liability. Unless stringent (and sometimes burdensome) shielding measures are taken, ESD can upset delicate electronic systems by upsetting or destroying components, interfering with radio signals, garbling internal instructions, and so on. As orbits become higher and more eccentric, as electronics become more sensitive, and as fault-free operation becomes more crucial, it is becoming necessary to find a replacement for silver/Teflon that has comparable strength, flexibility and chemical inertness, as well as a much lower potential for ESD. This is a report of the steps taken toward the goal of selecting a replacement for silver/Teflon during the Summer of 1995. It is a condensation of a much larger report available on request from the author. Three tasks were undertaken. Task 1 was to specify desirable properties for thermal control blankets. The second task was to collect data on materials properties from the literature and organize into a format useful for identifying candidate materials. The third task was to identify candidate materials and begin testing.

  20. Minimum dV for Targeted Spacecraft Disposal

    NASA Technical Reports Server (NTRS)

    Bacon, John

    2017-01-01

    The density scale height of the Earth's atmosphere undergoes significant reduction in the final phases of a natural decay. It can be shown that for most realistic ballistic numbers, it is possible to exploit this effect to amplify available spacecraft dV by using it at the penultimate perigee to penetrate into higher drag regions at final apogee. The drag at this lower pass can more effectively propel a spacecraft towards the final target region than applying the same dV direct Hohmann transfer at that final apogee. This study analyzes the potential use of this effect-- in combination with small phasing burns--to calculate the absolute minimum delta-V that would be required to reliably guide a spacecraft to any specified safe unoccupied ocean region as a function of ballistic number, orbit inclination, and initial eccentricity. This calculation is made for controllable spacecraft in several orbit inclinations and eccentricities with arbitrary initial LAN and ArgP one week before final entry, under three-sigma atmospheric perturbations. The study analyzes the dV required under varying levels of final controllable altitude at which dV may be imparted, and various definitions of the length and location of a "safe" disposal area. The goal of such research is to improve public safety by creating assured safe disposal strategies for low-dV and/or low-thrust spacecraft that under more traditional strategies would need to be abandoned to a fully random decay.

  1. Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes

    DOE PAGES

    Sarno-Smith, Lois K.; Larsen, Brian A.; Skoug, Ruth M.; ...

    2016-02-27

    Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV.more » It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. Furthermore, we also show noneclipse significant negative charging events on the Van Allen Probes.« less

  2. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  3. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  4. Analysis of GEO spacecraft anomalies: Space weather relationships

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Sung; Lee, Jaejin; Cho, Kyung-Suk; Kwak, Young-Sil; Cho, Il-Hyun; Park, Young-Deuk; Kim, Yeon-Han; Baker, Daniel N.; Reeves, Geoffrey D.; Lee, Dong-Kyu

    2011-06-01

    While numerous anomalies and failures of spacecraft have been reported since the beginning of the space age, space weather effects on modern spacecraft systems have been emphasized more and more with the increase of their complexity and capability. However, the relationship between space weather and commercial satellite anomalies has not been studied extensively. In this paper, we investigate the geostationary Earth orbit (GEO) satellite anomalies archived by Satellite News Digest during 1997-2009 in order to search for possible influences of space weather on the anomaly occurrences. We analyze spacecraft anomalies for the Kp index, local time, and season and then compare them with the tendencies of charged particles observed by Los Alamos National Laboratory (LANL) satellites. We obtain the following results: (1) there are good relationships between geomagnetic activity (as measured by the Kp index) and anomaly occurrences of the GEO satellites; (2) the satellite anomalies occurred mainly in the midnight to morning sector; and (3) the anomalies are found more frequently in spring and fall than summer and winter. While we cannot fully explain how space weather is involved in producing such anomalies, our analysis of LANL data shows that low-energy (<100 keV) electrons have similar behaviors with spacecraft anomalies and implies the spacecraft charging might dominantly contribute to the GEO spacecraft anomalies reported in Satellite News Digest.

  5. Proliferation of spacecraft-associated Acinetobacter on alcohol solvents

    NASA Astrophysics Data System (ADS)

    Mogul, Rakesh; Cepeda, Ivonne; Brasali, Hania; Gornick, Trevor; Jain, Chirag; Kim, Eun Jin; Nguyen, Vinh Bao; Oei, Alex; Rodriguez, Joseph; Walker, Jillian; Savla, Gautam

    The Acinetobacter are the most abundant Gram-negative and non-spore forming bacteria found in the cleanroom facilities for Mars spacecraft. The spacecraft-associated Acinetobacter are extremotolerant towards hydrogen peroxide and have been shown to increase in abundance as a result of the spacecraft assembly process. To better understand the oligotrophic growth in the cleanroom environments, we have measured the growth of several Acinetobacter strains against ethanol and isopropanol, which are cleaning solvents used in the spacecraft assembly process. Our studies show that A. radioresistens 50v1, which was isolated from Mars Odyssey orbiter, optimally proliferates on 300 mM ethanol under minimal conditions at a growth rate that is 2-fold higher than that of the A. radioresistens type strain (strain 43998 (T) ). The impact of transition metals on the growth rates followed the trend of Fe (2+) > Mn (2+) > Zn (2+) , where Zn (2+) was inhibitory. In contrast, no growth on ethanol was observed for the novel species A. phoenicis 2P01AA, which was isolated from the facilities for the Mars Phoenix lander. Alcohol dehydrogenase activities measured in rich and minimal media paralleled these observations with the 50v1 strain possessing higher specific activities than the type strain, and the 2P01AA strain displaying no measurable activity in rich media. Preliminary studies indicate that isopropanol is insufficient as an energy source when in culture. The significance of these results as well as the observed differences between the Odyssey and Phoenix-associated strains will be discussed.

  6. Development of an advanced spacecraft tandem mass spectrometer

    NASA Astrophysics Data System (ADS)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  7. Development of an advanced spacecraft tandem mass spectrometer

    NASA Technical Reports Server (NTRS)

    Drew, Russell C.

    1992-01-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  8. GPS Based Spacecraft Attitude Determination

    DTIC Science & Technology

    1993-09-30

    AD-A271 734 GPS Based Spacecraft Attitude Determination Final Report for October 1992- September 1993 to the Naval Research Laboratory Prepared by .F...ethods ....................................................................... 7 4. Spacecraft Attitude and Orbit Determination... attitude determination techniques to near-Earth spacecraft. The areas addressed include solution algorithms, simulation of the spacecraft and

  9. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    NASA Technical Reports Server (NTRS)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  10. Discrete piezoelectric sensors and actuators for active control of two-dimensional spacecraft components

    NASA Technical Reports Server (NTRS)

    Bayer, Janice I.; Varadan, V. V.; Varadan, V. K.

    1991-01-01

    This paper describes research into the use of discrete piezoelectric sensors and actuators for active modal control of flexible two-dimensional structures such as might be used as components for spacecraft. A dynamic coupling term is defined between the sensor/actuator and the structure in terms of structural model shapes, location and piezoelectric behavior. The relative size of the coupling term determines sensor/actuator placement. Results are shown for a clamped square plate and for a large antenna. An experiment was performed on a thin foot-square plate clamped on all sides. Sizable vibration control was achieved for first, second/third (degenerate) and fourth modes.

  11. Current Issues in Human Spacecraft Thermal Control Technology

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.

  12. Plasma particle simulations on interactions between spacecraft and cold streaming plasmas

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Nakashima, H.

    2012-12-01

    In order to better assess space weather effects on spacecraft system, we require in-depth understanding of fundamental processes of spacecraft-plasma interactions. Particularly in scientific spacecraft missions, the wake and photoelectron cloud formation as well as the spacecraft charging are significant factors influencing their operations, because onboard scientific instruments are often susceptible to such plasma disturbances. In this paper, we focus on the wake formation resulting from spacecraft interactions with a cold streaming plasma and study it by means of numerical simulations using modern supercomputers. We apply the particle-in-cell (PIC) method to the study of wake structure around a scientific spacecraft. We use our original plasma particle simulation code EMSES [2], which enables us to include solid spacecraft and sensor surfaces as internal boundaries. Although there are a number of preceding PIC simulation works regarding the wake structure behind a spacecraft [3], we here extend the studies by including numerical models of both spacecraft body and conducting booms simultaneously in the simulation system. The current analysis focuses on the wake structures behind the Cluster satellite in a tenuous plasma flow. We have included the conducting surfaces of wire booms as well as the spacecraft body in the simulations, the both of which can contribute to the wake formation. The major outcomes of the simulations are summarized as follows [4]; 1. not only a spacecraft body but also a thin (in an order of mm) wire boom contribute substantially to the formation of an electrostatic wake, particularly when the spacecraft has a positive potential of a few tens of volts; 2. in such a condition, the spatial scale of the wake reaches up to 100 m, leading to the detection of a wake electric field pattern that is very similar to that observed in the presence of a uniform ambient electric field; 3. spurious electric field can be detected even in subsonic ion flows

  13. WIND Spacecraft Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An international effort to learn more about the complex interaction between the Earth and Sun took another step forward with the launch of WIND spacecraft from Kennedy Space Center (KSC). WIND spacecraft is studded with eight scientific instruments - six US, one French, and one - the first Russian instrument to fly on a US spacecraft - that collected data about the influence of the solar wind on the Earth and its atmosphere. WIND is part of the Global Geospace Science (GGS) initiative, the US contribution to NASA's International Solar Terrestrial Physics (ISTP) program.

  14. Trace chemical contaminant generation rates for spacecraft contamination control system design

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1995-01-01

    A spacecraft presents a unique design challenge with respect to providing a comfortable environment in which people can live and work. All aspects of the spacecraft environmental design including the size of the habitable volume, its temperature, relative humidity, and composition must be considered to ensure the comfort and health of the occupants. The crew members and the materials selected for outfitting the spacecraft play an integral part in designing a habitable spacecraft because material offgassing and human metabolism are the primary sources for continuous trace chemical contaminant generation onboard a spacecraft. Since these contamination sources cannot be completely eliminated, active control processes must be designed and deployed onboard the spacecraft to ensure an acceptably clean cabin atmosphere. Knowledge of the expected rates at which contaminants are generated is very important to the design of these processes. Data from past spacecraft missions and human contaminant production studies have been analyzed to provide this knowledge. The resulting compilation of contaminants and generation rates serve as a firm basis for past, present, and future contamination control system designs for space and aeronautics applications.

  15. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2010-01-01

    Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.

  16. Applications Technology Satellite ATS-6 experiment checkout and continuing spacecraft evaluation report

    NASA Technical Reports Server (NTRS)

    Moore, W.; Prensky, W. (Editor)

    1974-01-01

    The activities of the ATS-6 spacecraft are reviewed. The following subsystems and experiments are summarized: (1) radio beacon experiments; (2) spacecraft attitude precision pointing and slewing adaptive control experiment; (3) satellite instruction television experiment; (4) thermal control subsystem; (5) spacecraft propulsion subsystem; (6) telemetry and control subsystem; (7) millimeter wave experiment; and (8) communications subsystem. The results of performance evaluation of its subsystems and experiments are presented.

  17. Surviving Atmospheric Spacecraft Breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Conley, Catharine A.

    2003-01-01

    In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.

  18. Spacecraft Charging Calculations: NASCAP-2K and SEE Spacecraft Charging Handbook

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Neergaard, L. F.; Mandell, M. J.; Katz, I.; Gardner, B. M.; Hilton, J. M.; Minor, J.

    2002-01-01

    For fifteen years NASA and the Air Force Charging Analyzer Program for Geosynchronous Orbits (NASCAP/GEO) has been the workhorse of spacecraft charging calculations. Two new tools, the Space Environment and Effects (SEE) Spacecraft Charging Handbook (recently released), and Nascap-2K (under development), use improved numeric techniques and modern user interfaces to tackle the same problem. The SEE Spacecraft Charging Handbook provides first-order, lower-resolution solutions while Nascap-2K provides higher resolution results appropriate for detailed analysis. This paper illustrates how the improvements in the numeric techniques affect the results.

  19. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure

  20. Fast, Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy-Wiltshire-Hill Dynamics

    NASA Technical Reports Server (NTRS)

    Starek, Joseph A.; Schmerling, Edward; Maher, Gabriel D.; Barbee, Brent W.; Pavone, Marco

    2016-01-01

    This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant- optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill dynamics model. The approach calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.

  1. Analysis of Lunar Surface Charging for a Candidate Spacecraft Using NASCAP-2K

    NASA Technical Reports Server (NTRS)

    Parker, Linda; Minow, Joseph; Blackwell, William, Jr.

    2007-01-01

    The characterization of the electromagnetic interaction for a spacecraft in the lunar environment, and identification of viable charging mitigation strategies, is a critical lunar mission design task, as spacecraft charging has important implications both for science applications and for astronaut safety. To that end, we have performed surface charging calculations of a candidate lunar spacecraft for lunar orbiting and lunar landing missions. We construct a model of the spacecraft with candidate materials having appropriate electrical properties using Object Toolkit and perform the spacecraft charging analysis using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. We use nominal and atypical lunar environments appropriate for lunar orbiting and lunar landing missions to establish current collection of lunar ions and electrons. In addition, we include a geostationary orbit case to demonstrate a bounding example of extreme (negative) charging of a lunar spacecraft in the geostationary orbit environment. Results from the charging analysis demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as expected. We compare charging results to data taken during previous lunar orbiting or lunar flyby spacecraft missions.

  2. Spacecraft telecommunications system mass estimates

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Sakamoto, L. L.

    1988-01-01

    Mass is the most important limiting parameter for present-day planetary spacecraft design, In fact, the entire design can be characterized by mass. The more efficient the design of the spacecraft, the less mass will be required. The communications system is an essential and integral part of planetary spacecraft. A study is presented of the mass attributable to the communications system for spacecraft designs used in recent missions in an attempt to help guide future design considerations and research and development efforts. The basic approach is to examine the spacecraft by subsystem and allocate a portion of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft into two parts, telecommunications and nontelecommunications. In this way, it is clear what the mass attributable to the communications system is. The percentage of mass is calculated using the actual masses of the spacecraft parts, except in the case of CRAF. In that case, estimated masses are used since the spacecraft was not yet built. The results show that the portion of the spacecraft attributable to telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF (Mariner Mark 2) is 34, 19, and 18 percent, respectively. The large reduction of telecommunications mass from Voyager to Galileo is mainly due to the use of a deployable antenna instead of the solid antenna on Voyager.

  3. Target Search & Selection for the DI/EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Bhaskaran, Shyam; Chesley, Steven R.

    2012-01-01

    Upon completion of the Hartley 2 flyby in November 2010, the Deep Impact (DI) spacecraft resided in a solar orbit without possibility for gravity assist with any large body. Conservative estimates of remaining fuel were enough to provide only an 18 m/s impulse on the spacecraft. We present our method and results of our systematic scan of potential small body encounters for DI, and our criteria to narrow the selection to the asteroid 2002 GT as the target flyby body. The mission profile has two deterministic maneuvers to achieve the encounter, the first of which executed on November 25, 2011.

  4. Unmanned Spacecraft of the United States

    NASA Technical Reports Server (NTRS)

    Cortright, Edgar M.

    1964-01-01

    In 1957 the first earth satellite ushered in the age of space flight. Since that historic event, space exploration has become a major national objective of both the United States and the Soviet Union. These two nations have attempted a total of well over 200 space flight missions. Other nations are also participating in various degrees in what will continue to grow as a cooperative world effort. In the years since 1957, man has successfully flown in earth orbit. He has initiated programs to land on the moon and return. He has made dramatic applications of earth satellites in meteorology, communications, navigation, and geodesy. A host of scientific satellites.continue to advance understanding of the earth's environment, the sun, and the stars. Automated spacecraft are being flown to the moon, deep into interplanetary space, and to the near planets, Mars and Venus. One of the most exciting technological aspects of space exploration has been the development of automated spacecraft. Most of the scientific exploration of space and the useful applications of space flight thus far have been made possible by automated spacecraft. Development of these spacecraft and their many complex subsystems is setting the pace today for many branches of science and technology. Guidance, computer, attitude control, power, telecommunication, instrumentation, and structural subsystems are being subjected to new standards of light weight, high efficiency, extreme accuracy, and unsurpassed reliability and quality. This publication reviews the automated spacecraft which have been developed and flown, or which are under active development in the United States by the National Aeronautics and Space Administration. From the facts and statistics contained herein, certain observations can be made and certain conclusions drawn.

  5. Spacecraft Docking System

    NASA Technical Reports Server (NTRS)

    Ghofranian, Siamak (Inventor); Chuang, Li-Ping Christopher (Inventor); Motaghedi, Pejmun (Inventor)

    2016-01-01

    A method and apparatus for docking a spacecraft. The apparatus comprises elongate members, movement systems, and force management systems. The elongate members are associated with a docking structure for a spacecraft. The movement systems are configured to move the elongate members axially such that the docking structure for the spacecraft moves. Each of the elongate members is configured to move independently. The force management systems connect the movement systems to the elongate members and are configured to limit a force applied by the each of the elongate members to a desired threshold during movement of the elongate members.

  6. Plasma distribution and spacecraft charging modeling near Jupiter

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Divine, N.

    1977-01-01

    To assess the role of spacecraft charging near Jupiter, the plasma distribution in Jupiter's magnetosphere was modeled using data from the plasma analyzer experiments on Pioneer 10 (published results) and on Pioneer 11 (preliminary results). In the model, electron temperatures are kT = 4 eV throughout, whereas proton temperatures range over 100 or equal to kT or equal to 400 eV. The model fluxes and concentrations vary over three orders of magnitude among several corotating regions, including, in order to increasing distance from Jupiter, a plasma void, plasma sphere, sporadic zone, ring current, current sheet, high latitude plasma and magnetosheath. Intermediate and high energy electrons and protons (to 100 MeV) are modeled as well. The models supply the information for calculating particle fluxes to a spacecraft in the Jovian environment. The particle balance equations (including effects of secondary and photoemission) then determine the spacecraft potential.

  7. Technology for small spacecraft

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.

  8. Soyuz Spacecraft

    NASA Image and Video Library

    2014-11-12

    ISS038-E-000250 (12 Nov. 2013) --- The Russian Soyuz TMA-11M spacecraft dominates this image exposed by one of the Expedition 38 crew members aboard the International Space Station over Earth on Nov. 12. Now docked to the Rassvet or Mini-Research Module 1 (MRM-1), the spacecraft had delivered three crew members to the orbital outpost five days earlier, temporarily bringing the total population to nine aboard the station.

  9. Pioneer Venus data analysis for the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Knudsen, William C.

    1993-01-01

    This report describes the data analysis and archiving activities, analysis results, and instrument performance of the orbiter retarding potential analyzer (ORPA) flown on the Pioneer Venus Orbiter spacecraft during the period, Aug. 1, 1988 to Sept. 30, 1993. During this period, the periapsis altitude of the Orbiter spacecraft descended slowly from 1900 km altitude, at which altitude the spacecraft was outside the Venus ionosphere, to approximately 130 km altitude in Oct. 1992 at which time communication with the spacecraft ceased as a result of entry of the spacecraft into the Venus atmosphere. The quantity of ORPA data returned during this reporting period was greatly reduced over that recovered in the previous years of the mission because of the reduced power capability of the spacecraft, loss of half of the onboard data storage, and partial failure of the ORPA. Despite the reduction in available data, especially ionospheric data, important scientific discoveries resulted from this extended period of the Pioneer Venus mission. The most significant discovery was that of a strong solar cycle change in the size of the dayside ionosphere and the resulting shutoff of flow of dayside ions into the nightside hemisphere. The large, topside O+ F2 ionospheric layer observed during the first three years of the Pioneer Venus mission, a period of solar cycle maximum activity, is absent during the solar cycle minimum activity period.

  10. NASA Spacecraft Captures Fury of Russian Volcano

    NASA Image and Video Library

    2011-01-27

    This nighttime thermal infrared image from NASA Terra spacecraft shows Shiveluch volcano, one of the largest and most active volcanoes in Russia Kamchatka Peninsula; the bright, hot summit lava dome is evident in the center of the image.

  11. Spacecraft attitude sensor

    NASA Technical Reports Server (NTRS)

    Davidson, A. C.; Grant, M. M. (Inventor)

    1973-01-01

    A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.

  12. Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Güttler, C.; Hasselmann, P. H.; Li, Y.; Fulle, M.; Tubiana, C.; Kovacs, G.; Agarwal, J.; Sierks, H.; Fornasier, S.; Hofmann, M.; Gutiérrez Marqués, P.; Ott, T.; Drolshagen, E.; Bertini, I.; Osiris Team

    2017-09-01

    In a Rosetta/OSIRIS imaging activity in June 2015, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS Wide Angle Camera (WAC), these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 108 dust aggregates over a 130 minutes long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 m and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. We prefer a scenario where centimeter-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel when rotated towards the sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the sun and can be explain by a rocket effect, which requires a minimum ice fraction in the order of 0.1%

  13. A global spacecraft control network for spacecraft autonomy research

    NASA Technical Reports Server (NTRS)

    Kitts, Christopher A.

    1996-01-01

    The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.

  14. Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard; Marquart, Jane; Lin, Michael

    2003-01-01

    Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.

  15. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    NASA Technical Reports Server (NTRS)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  16. CCSDS Spacecraft Monitor and Control Service Framework

    NASA Technical Reports Server (NTRS)

    Merri, Mario; Schmidt, Michael; Ercolani, Alessandro; Dankiewicz, Ivan; Cooper, Sam; Thompson, Roger; Symonds, Martin; Oyake, Amalaye; Vaughs, Ashton; Shames, Peter

    2004-01-01

    This CCSDS paper presents a reference architecture and service framework for spacecraft monitoring and control. It has been prepared by the Spacecraft Monitoring and Control working group of the CCSDS Mission Operations and Information Management Systems (MOIMS) area. In this context, Spacecraft Monitoring and Control (SM&C) refers to end-to-end services between on- board or remote applications and ground-based functions responsible for mission operations. The scope of SM&C includes: 1) Operational Concept: definition of an operational concept that covers a set of standard operations activities related to the monitoring and control of both ground and space segments. 2) Core Set of Services: definition of an extensible set of services to support the operational concept together with its information model and behaviours. This includes (non exhaustively) ground systems such as Automatic Command and Control, Data Archiving and Retrieval, Flight Dynamics, Mission Planning and Performance Evaluation. 3) Application-layer information: definition of the standard information set to be exchanged for SM&C purposes.

  17. Upsets related to spacecraft charging

    NASA Astrophysics Data System (ADS)

    Frederickson, A. R.

    1996-04-01

    The charging of spacecraft components by high energy radiation can result in spontaneous pulsed discharges. The pulses can interrupt normal operations of spacecraft electronics. The 20-year history of ground studies and spacecraft studies of this phenomenon are reviewed. The data from space are not sufficient to unambiguously point to a few specific solutions. The ground based data continue to find more problem areas the longer one looks. As spacecraft become more complex and carry less radiation shielding, the charging and discharging of insulators is becoming a more critical problem area. Ground experiments indicate that solutions for spacecraft are multiple and diverse, and many technical details are reviewed or introduced here.

  18. Assessment of Capabilities for First-Principles Simulation of Spacecraft Electric Propulsion Systems and Plasma Spacecraft Environment

    DTIC Science & Technology

    2016-04-29

    Simulation of Spacecraft Electric Propulsion Systems and Plasma Spacecraft Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Assessment of Capabilities for First‐ Principles Simulation of Spacecraft Electric  Propulsion   Systems and Plasma Spacecraft Environment” Team leader(s

  19. Spacecraft Minimum Allowable Concentrations: Determination, Application, and Contingency Situations

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas H.; Dawson, David L. (Technical Monitor)

    1999-01-01

    This document is an outline of a presentation about the determination of minimum allowable concentrations in spacecraft. The presentation reviews the type of toxins and mechanisms to determine the acceptable concentrations of these toxic substances. The considerations for the unique situation that spaceflight entails including zero gravity, and the intense scrutiny are reviewed. The current measurement hardware is reviewed. The spacecraft atmospheres on the Shuttle, airflow, the Space Station and the EMU in respect to airflow, pressure, constituents are also summarized. Contingency situations and potential hazards are also discussed.

  20. Small Spacecraft Technology Initiative Education Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  1. Computer models of the spacecraft wake

    NASA Technical Reports Server (NTRS)

    Rubin, A. G.; Heinemann, M.; Tautz, M.; Cooke, D.

    1986-01-01

    Until recently, computations of space plasma flow over a spacecraft have been unstable for ratios of spacecraft dimension to Debye length typical of the low Earth orbit environment. Calculations are presented of the spacecraft/environment interaction based on two computer codes, MACH and POLAR. MACH, an inside-out particle tracking code, was developed for the purpose of validating the physics of POLAR in regimes where these are no comprehensive theoretical or experimental results. While the spacecraft which can be treated by MACH are restricted to simple geometries, the methodology is more fundamental than POLAR. MACH generates self-consistent solutions within the context of quasisteady Vlasov plasma flow and achieves Debye ratios previously unobtainable. POLAR uses a three-dimensional finite-element representation of the vehicle in a staggered mesh. The plasma sheath is modeled by outside-in particle tracking. Solutions for the plasma flow, wake and vehicle charging are obtained by Vlasov-Poisson iteration; charge stabilization techniques make the results virtually insensitive to the Debye ratio. POLAR reproduces the Laframboise static plasma solutions for sperical probes and fits the Makita-Kuriki probe data for spheres in a flowing plasma in regions where comparisons are valid. POLAR and MACH solutions for the particle and electrostatic potential structure of the wake of a charged disk in a low-altitude flow are shown for Mach numbers 4, 5, and 8. New features of the solutions include ion focussing in the wake and a definitive determination of the sheath edge in the wake which shows that the sheath is not an equipotential.

  2. Voyager spacecraft electrostatic discharge testing

    NASA Technical Reports Server (NTRS)

    Whittlesey, A.; Inouye, G.

    1980-01-01

    The program of environmental testing undergone by the Voyager spacecraft in order to simulate the transient voltage effects of electrostatic discharges expected in the energetic plasma environment of Jupiter is reported. The testing consists of studies of the electrostatic discharge characteristics of spacecraft dielectrics in a vacuum-chamber-electron beam facility, brief piece part sensitivity tests on such items as a MOSFET multiplexer and the grounding of the thermal blanket, and assembly tests of the magnetometer boom and the science boom. In addition, testing of a complete spacecraft was performed using two arc sources to simulate long and short duration discharge sources for successive spacecraft shielding and grounding improvements. Due to the testing program, both Voyager 1 and Voyager 2 experienced tolerable electrostatic discharge-caused transient anomalies in science and engineering subsystems, however, a closer duplication of the spacecraft environment is necessary to predict and design actual spacecraft responses more accurately.

  3. SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  4. Nighttime Look at Ambrym Volcano, Vanuatu by NASA Spacecraft

    NASA Image and Video Library

    2014-02-12

    Ambrym volcano in Vanuatu is one of the most active volcanoes in the world. A large summit caldera contains two active vent complexes, Marum and Benbow is seen in this February 12, 2014 nighttime thermal infrared image from NASA Terra spacecraft.

  5. Illumination from space with orbiting solar-reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Canady, J. E., Jr.; Allen, J. L., Jr.

    1982-01-01

    The feasibility of using orbiting mirrors to reflect sunlight to Earth for several illumination applications is studied. A constellation of sixteen 1 km solar reflector spacecraft in geosynchronous orbit can illuminate a region 333 km in diameter to 8 lux, which is brighter than most existing expressway lighting systems. This constellation can serve one region all night long or can provide illumination during mornings and evenings to five regions across the United States. Preliminary cost estimates indicate such an endeavor is economically feasible. The studies also explain how two solar reflectors can illuminate the in-orbit nighttime operations of Space Shuttle. An unfurlable, 1 km diameter solar reflector spacecraft design concept was derived. This spacecraft can be packaged in the Space, Shuttle, transported to low Earth orbit, unfurled, and solar sailed to operational orbits up to geosynchronous. The necessary technical studies and improvements in technology are described, and potential environmental concerns are discussed.

  6. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  7. Benefits of Spacecraft Level Vibration Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  8. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  9. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  10. A Comparison of Photocatalytic Oxidation Reactor Performance for Spacecraft Cabin Trace Contaminant Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.

    2011-01-01

    Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.

  11. Gaseous Environment Considerations and Evaluation Programs Leading to Spacecraft Atmosphere Selection

    NASA Technical Reports Server (NTRS)

    Johnston, Richard S.; Michel, Edward L.; Smith, George B., Jr.

    1965-01-01

    The NASA Manned Spacecraft Center has been actively involved in the direction and support of programs leading to the selection and validations of the atmosphere for forthcoming Gemini and Apollo missions. This paper discusses the engineering and physiologic considerations involved, describes the investigations to validate spacecraft atmospheres, and discusses the implications derived from the results of these investigations.

  12. The dynamics and control of large flexible asymmetric spacecraft

    NASA Astrophysics Data System (ADS)

    Humphries, T. T.

    1991-02-01

    This thesis develops the equations of motion for a large flexible asymmetric Earth observation satellite and finds the characteristics of its motion under the influence of control forces. The mathematical model of the structure is produced using analytical methods. The equations of motion are formed using an expanded momentum technique which accounts for translational motion of the spacecraft hub and employs orthogonality relations between appendage and vehicle modes. The controllability and observability conditions of the full spacecraft motions using force and torque actuators are defined. A three axis reaction wheel control system is implemented for both slewing the spacecraft and controlling its resulting motions. From minor slew results it is shown that the lowest frequency elastic mode of the spacecraft is more important than higher frequency modes, when considering the effects of elastic motion on instrument pointing from the hub. Minor slews of the spacecraft configurations considered produce elastic deflections resulting in rotational attitude motions large enough to contravene pointing accuracy requirements of instruments aboard the spacecraft hub. Active vibration damping is required to reduce these hub motions to acceptable bounds in sufficiently small time. A comparison between hub mounted collocated and hub/appendage mounted non-collocated control systems verifies that provided the non-collocated system is stable, it can more effectively damp elastic modes whilst maintaining adequate damping of rigid modes. Analysis undertaken shows that the reaction wheel controller could be replaced by a thruster control system which decouples the modes of the spacecraft motion, enabling them to be individually damped.

  13. Modeling and Data Analysis at the CCMC to Determine Threat of Spacecraft Surface Charging in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Rastaetter, L.; Kuznetsova, M. M.; Zheng, Y.; Jordanova, V.; Yu, Y.; Minow, J. I.

    2016-12-01

    Spacecraft surface charging in Low-Earth Orbit occurs primarily in regions of low plasma density when precipitating electrons drive the spacecraft potential. Sudden changes in electric potentials occur when a spacecraft enters and leaves the sunlit region.At the Community Coordinated Modeling Center, we can employ a multitude of models of the ionosphere-thermosphere and inner magnetosphere to identify regions where spacecraft charging can occur based on thresholds of electron precipitation flux and energy and track the proximity of those areas to positions of satellites of interest. The identified regions will be validated and refined based on satellite observations. This work is in conjunction with the Spacecraft Charging Challenge organized by the GEM Workshop in collaboration with CCMC and the SHIELDS project at LANL.

  14. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  15. Guidance and control of swarms of spacecraft

    NASA Astrophysics Data System (ADS)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  16. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  17. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    PubMed

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    very unusual properties of microbes. For ESA, this collection is an essential resource with which to evaluate the contamination potential of spacecraft-associated biology and validate new biological contamination control and reduction procedures.

  18. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    PubMed Central

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  19. Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Güttler, C.; Hasselmann, P. H.; Li, Y.; Fulle, M.; Tubiana, C.; Kovacs, G.; Agarwal, J.; Sierks, H.; Fornasier, S.; Hofmann, M.; Gutiérrez Marqués, P.; Ott, T.; Drolshagen, E.; Bertini, I.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bodewits, D.; Bertaux, J.-L.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Geiger, B.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; López-Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Shi, X.; Thomas, N.; Vincent, J.-B.

    2017-07-01

    In a Rosetta/OSIRIS imaging activity in 2015 June, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS wide angle camera, these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 109 dust aggregates over a 130 min long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. In the likeliest of the three scenarios, centimetre-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel (remote instrument viewing direction) when rotated towards the Sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the Sun and can be explain by a rocket effect, which requires a minimum ice fraction of the order of 0.1 per cent.

  20. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  1. Spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1972-01-01

    Spacecraft sterilization is a vital factor in projects for the successful biological exploration of other planets. The microorganisms of major concern are the fungi and bacteria. Sterilization procedures are oriented toward the destruction of bacterial spores. Gaseous sterilants are examined, giving attention to formaldehyde, beta-propiolactone, ethylene oxide, and the chemistry of the bactericidal action of sterilants. Radiation has been seriously considered as another method for spacecraft sterilization. Dry heat sterilization is discussed together with the effects of ethylene oxide decontamination and dry heat sterilization on materials.

  2. Science Benefits of Onboard Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill

    2012-01-01

    navigation can be accomplished through a self- contained system that by eliminating light time restrictions dramatically improves the relative trajectory knowledge and control and subsequently increases the amount of quality data collected. Flybys are one-time events, so the system's underlying algorithms and software must be extremely robust. The autonomous software must also be able to cope with the unknown size, shape, and orientation of the previously unseen comet nucleus. Furthermore, algorithms must be reliable in the presence of imperfections and/or damage to onboard cameras accrued after many years of deep-space operations. The AutoNav operational flight software packages, developed by scientists at the Jet Propulsion Laboratory (JPL) under contract with NASA, meet all these requirements. They have been directly responsible for the successful encounters on all of NASA's close-up comet-imaging missions (see Figure !1). AutoNav is the only system to date that has autonomously tracked comet nuclei during encounters and performed autonomous interplanetary navigation. AutoNav has enabled five cometary flyby missions (Table!1) residing on four NASA spacecraft provided by three different spacecraft builders. Using this software, missions were able to process a combined total of nearly 1000 images previously unseen by humans. By eliminating the need to navigate spacecraft from Earth, the accuracy gained by AutoNav during flybys compared to ground-based navigation is about 1!order of magnitude in targeting and 2!orders of magnitude in time of flight. These benefits ensure that pointing errors do not compromise data gathered during flybys. In addition, these benefits can be applied to flybys of other solar system objects, flybys at much slower relative velocities, mosaic imaging campaigns, and other proximity activities (e.g., orbiting, hovering, and descent/ascent).

  3. Cross-comparison of spacecraft-environment interaction model predictions applied to Solar Probe Plus near perihelion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchand, R.; Miyake, Y.; Usui, H.

    2014-06-15

    Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing results obtained with and without these effects. Simulation results are presented and compared with increasing levels of complexity in the physics of interaction between solar environmentmore » and the SPP spacecraft. The comparisons focus particularly on spacecraft floating potentials, contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. The physical effects considered include spacecraft charging, photoelectron and secondary electron emission, and the presence of a background magnetic field. Model predictions obtained with our different computational approaches are found to be in agreement within 2% when the same physical processes are taken into account and treated similarly. The comparisons thus indicate that, with the correct description of important physical effects, our simulation models should have the required skill to predict details of satellite-plasma interaction physics under relevant conditions, with a good level of confidence. Our models concur in predicting a negative floating potential V{sub fl}∼−10V for SPP at perihelion. They also predict a “saturated emission regime” whereby most emitted photo- and secondary electron will be reflected by a potential barrier near the surface, back to the spacecraft where they will be recollected.« less

  4. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  5. Propulsion Trade Studies for Spacecraft Swarm Mission Design

    NASA Technical Reports Server (NTRS)

    Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael

    2018-01-01

    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.

  6. Reporting Differences Between Spacecraft Sequence Files

    NASA Technical Reports Server (NTRS)

    Khanampompan, Teerapat; Gladden, Roy E.; Fisher, Forest W.

    2010-01-01

    A suite of computer programs, called seq diff suite, reports differences between the products of other computer programs involved in the generation of sequences of commands for spacecraft. These products consist of files of several types: replacement sequence of events (RSOE), DSN keyword file [DKF (wherein DSN signifies Deep Space Network)], spacecraft activities sequence file (SASF), spacecraft sequence file (SSF), and station allocation file (SAF). These products can include line numbers, request identifications, and other pieces of information that are not relevant when generating command sequence products, though these fields can result in the appearance of many changes to the files, particularly when using the UNIX diff command to inspect file differences. The outputs of prior software tools for reporting differences between such products include differences in these non-relevant pieces of information. In contrast, seq diff suite removes the fields containing the irrelevant pieces of information before processing to extract differences, so that only relevant differences are reported. Thus, seq diff suite is especially useful for reporting changes between successive versions of the various products and in particular flagging difference in fields relevant to the sequence command generation and review process.

  7. Spacecraft Environment Interactions

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Jun, Insoo

    2011-01-01

    As electronic components have grown smaller in size and power and have increased in complexity, their enhanced sensitivity to the space radiation environment and its effects has become a major source of concern for the spacecraft engineer. As a result, the description of the sources of space radiation, the determination of how that radiation propagates through material, and, ultimately, how radiation affects specific circuit components are primary considerations in the design of modern spacecraft. The objective of this paper will be to address the first 2 aspects of the radiation problem. This will be accomplished by first reviewing the natural and man-made space radiation environments. These environments include both the particulate and, where applicable, the electromagnetic (i.e., photon) environment. As the "ambient" environment is typically only relevant to the outer surface of a space vehicle, it will be necessary to treat the propagation of the external environment through the complex surrounding structures to the point inside the spacecraft where knowledge of the internal radiation environment is required. While it will not be possible to treat in detail all aspects of the problem of the radiation environment within a spacecraft, by dividing the problem into these parts-external environment, propagation, and internal environment-a basis for understanding the practical process of protecting a spacecraft from radiation will be established. The consequences of this environment will be discussed by the other presenters at this seminar.

  8. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  9. NASA Spacecraft Spots Large Eruption of Russian Volcano

    NASA Image and Video Library

    2012-06-07

    NASA Terra spacecraft acquired this image on June 2, 2012 of Sheveluch, one of the most active volcanoes on the Kamchatka peninsula, with frequent explosive events that can disrupt air traffic over the northern Pacific.

  10. Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.

  11. Hydrazine monitoring in spacecraft

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Beck, S. W.; Limero, T. F.; James, J. T.

    1992-01-01

    Hydrazine (HZ) and monomethyl hydrazine (MMH) are highly toxic compounds used as fuels in the Space Shuttle Orbiter Main Engines and in its maneuvering and reaction control system. Satellite refueling during a mission may also result in release of hydrazines. During extravehicular activities, the potential exists for hydrazines to contaminate the suit and to be brought into the internal atmosphere inadvertantly. Because of the high toxicity of hydrazines, a very sensitive, reliable, interference-free, and real-time method of measurement is required. A portable ion mobility spectrometer (IMS) has exhibited a low ppb detection limit for hydrazines suggesting a promising technology for the detection of hydrazines in spacecraft air. The Hydrazine Monitor is a modified airborne vapor monitor (AVM) with a custom-built datalogger. This off-the-shelf IMS was developed for the detection of chemical warfare agents on the battlefield. After early evaluations of the AVM for hydrazine measurements showed a serious interference from ammonia, the AVM was modified to measure HZ and MMH in the ppb concentration range without interference from ammonia in the low ppm range. A description of the Hydrazine Monitor and how it functions is presented.

  12. Target Search and Selection for the DI/EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Bhaskaran, Shyam; Chesley, Steven R.

    2012-01-01

    Upon completion of the Hartley 2 flyby in November 2010, the Deep Impact (DI) spacecraft resided in a solar orbit without possibility for gravity assist with any large body. Conservative estimates of remaining fuel were enough to provide only an 18 m/s impulse on the spacecraft. We present our method and results of our systematic scan of potential small body encounters for DI, and our criteria to narrow the selection to the asteroid 2002 GT as the target flyby body. The mission profile has two deterministic maneuvers to achieve the encounter, the first of which executed on November 25, 2011.

  13. Spacecraft control center automation using the generic inferential executor (GENIE)

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  14. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-01-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  15. SPX-8 SpaceX Dragon Spacecraft Approach

    NASA Image and Video Library

    2016-04-10

    iss047e050943 (4/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. On the left, the solar arrays of Orbital ATK’s Cygnus cargo craft can be seen. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM.

  16. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    NASA Astrophysics Data System (ADS)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  17. Spacecraft command verification: The AI solution

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Smith, Brian K.

    1990-01-01

    Recently, a knowledge-based approach was used to develop a system called the Command Constraint Checker (CCC) for TRW. CCC was created to automate the process of verifying spacecraft command sequences. To check command files by hand for timing and sequencing errors is a time-consuming and error-prone task. Conventional software solutions were rejected when it was estimated that it would require 36 man-months to build an automated tool to check constraints by conventional methods. Using rule-based representation to model the various timing and sequencing constraints of the spacecraft, CCC was developed and tested in only three months. By applying artificial intelligence techniques, CCC designers were able to demonstrate the viability of AI as a tool to transform difficult problems into easily managed tasks. The design considerations used in developing CCC are discussed and the potential impact of this system on future satellite programs is examined.

  18. Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik

    2007-01-01

    Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly

  19. Pegasus XL CYGNSS Spacecraft Mate

    NASA Image and Video Library

    2016-10-28

    Inside Building 1555 at Vandenberg Air Force Base in California, the eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft installed on their deployment module undergo inspections prior to NASA’s Kennedy Space Center in Florida. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to Kennedy attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  20. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  1. Gravitational forces and moments on spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, T. R.; Likins, P. W.

    1975-01-01

    The solution of problems of attitude dynamics of spacecraft and the influence of gravitational forces and moments is examined. Arguments are presented based on Newton's law of gravitation, and employing the methods of Newtonian (vectorial) mechanics, with minimal recourse to the classical concepts of potential theory. The necessary ideas were developed and relationships were established to permit the representation of gravitational forces and moments exerted on bodies in space by other bodies, both in terms involving the mass distribution properties of the bodies, and in terms of vector operations on those scalar functions classically described as gravitational potential functions.

  2. Coffee-can-sized spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    1988-01-01

    The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.

  3. Ceramic insulation/multifoil composite for thermal protection of reentry spacecraft

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Kourtides, D. A.

    1989-01-01

    A new type of insulation blanket called Composite Flexible Blanket Insulation is proposed for thermal protection of advanced spacecraft in regions where the maximum temperature is not excessive. The blanket is a composite of two proven insulation materials: ceramic insulation blankets from Space Shuttle technology and multilayer insulation blankets from spacecraft thermal control technology. A potential heatshield weight saving of up to 500 g/sq m is predicted. The concept is described; proof of concept experimental data are presented; and a spaceflight experiment to demonstrate its actual performance is discussed.

  4. Proceedings of the Spacecraft Charging Technology Conference

    NASA Technical Reports Server (NTRS)

    Pike, C. P. (Editor); Lovell, R. R. (Editor)

    1977-01-01

    Over 50 papers from the spacecraft charging conference are included on subjects such as: (1) geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, and (5) satellite design and test.

  5. Increasing Mission Science Return Through Use of Spacecraft Autonomy and Sensor Webs: A Volcanology Example

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Chien, S. A.; Castano, R.; Tran, D. Q.; Scharenbroich, L. J.

    2006-12-01

    Mission science return is increased through use of onboard autonomy, and using disparate assets integrated into an autonomously-operating sensor web that can re-task these assets to rapidly obtain additional data. Software on spacecraft has been used to analyse data to detect dynamic events of high interest, such as on- going volcanic activity. This capability has been successfully demonstrated by the NASA New Millennium Program Autonomous Sciencecraft Experiment (ASE), on the Earth Observing 1 spacecraft in Earth-orbit [1-2]. The potential now exists for eruption parameters to be quantified onboard a spacecraft, using models that relate thermal emission to volumetric eruption rate. This promises a notification not only of on-going activity, but also the magnitude of the event, within a few hours of the original observation, a process that normally takes weeks. ASE/EO-1 is part of the JPL Volcano Sensor Web [3]. This autonomous system collates information of volcanic activity from numerous assets and retasks EO-1 to obtain observations as soon as practicable. The use of a ground-based planner allows rapid insertion or replacement of new observations, with no human intervention. Endusers are notified automatically by email. Spacecraft autonomy, involving automatic fault detection and mitigation, onboard processing of data, and replanning of observations, allows mission operations to break free from pre-ordained operations sequencing, necessary for studying dynamic volcanic processes on other bodies in the Solar System (e.g., Io and Enceladus). Onboard processing allows quantification of dynamic processes, improving both science content per returned byte and optimization of subsequent resource use. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. [1] Chien, S. et al. (2004) The EO-1 Autonomous Science Agent, Proceedings of the 2004 Conferences on Autonomous Agents and Multi-agent Systems (AAMAS

  6. Structures and materials technology needs for communications and remote sensing spacecraft

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Jensen, G. A.; Hoskins, J. W.

    1995-01-01

    This report documents trade studies conducted from the perspective of a small spacecraft developer to determine and quantify the structures and structural materials technology development needs for future commercial and NASA small spacecraft to be launched in the period 1999 to 2005. Emphasis is placed on small satellites weighing less than 1800 pounds for two focus low-Earth orbit missions: commercial communications and remote sensing. The focus missions are characterized in terms of orbit, spacecraft size, performance, and design drivers. Small spacecraft program personnel were interviewed to determine their technology needs, and the results are summarized. A systems-analysis approach for quantifying the benefits of inserting advanced state-of-the-art technologies into a current reference, state-of-the-practice small spacecraft design is developed and presented. This approach is employed in a set of abbreviated trade studies to quantify the payoffs of using a subset of 11 advanced technologies selected from the interview results The 11 technology development opportunities are then ranked based on their relative payoff. Based on the strong potential for significant benefits, recommendations are made to pursue development of 8 and the 11 technologies. Other important technology development areas identified are recommended for further study.

  7. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  8. On the Isolation of Science Payloads from Spacecraft Vibrations

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W.; Horta, Lucas G.; Elliott, Kenny B.; Belvin, W. Keith

    1995-01-01

    The remote sensing of the Earth's features from space requires precision pointing of scientific instruments. To this end, the NASA Langley Research Center has been involved in developing numerous controlled structures technologies. This paper describes one of the more promising technologies for minimizing pointing jitter, namely, payload isolation. The application of passive and active payload mounts for attenuation of pointing jitter of the EOS AM-1 spacecraft is discussed. In addition, analysis and ground tests to validate the performance of isolation mounts using a scaled dynamics model of the EOS AM-1 spacecraft are presented.

  9. Deep Impact Sequence Planning Using Multi-Mission Adaptable Planning Tools With Integrated Spacecraft Models

    NASA Technical Reports Server (NTRS)

    Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina

    2006-01-01

    The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.

  10. ADRC for spacecraft attitude and position synchronization in libration point orbits

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  11. Applicability of ISO 16697 Data to Spacecraft Fire Fighting Strategies

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Beeson, Harold D.

    2012-01-01

    Presentation Agenda: (1) Selected variables affecting oxygen consumption during spacecraft fires, (2) General overview of ISO 16697, (3) Estimated amounts of material consumed during combustion in typical ISS enclosures, (4) Discussion on potential applications.

  12. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

  13. Toxicology of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Harris, E. S.

    1971-01-01

    The procedures for determining the toxicity of products outgassed from spacecraft structures are discussed. The test equipment involved in the tests and the criteria for acceptability are described. The use of animals as the final step in determining toxicity of a spacecraft environment is explained.

  14. Investigation on Improvements in Lightning Retest Criteria for Spacecraft

    NASA Technical Reports Server (NTRS)

    Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from a direct strike by launch the vehicle and ground structures, but protocols to evaluate the impact of nearby strikes are not consistent. Often spacecraft rely on the launch vehicle constraints to trigger a retest, but launch vehicles can typically evaluate the impact of a strike within minutes while spacecraft evaluation times can be on the order of hours or even days. For launches at the Kennedy Space Center where lightning activity is among the highest in the United States, this evaluation related delay could be costly with the possibility of missing the launch window altogether. This paper evaluated available data from local lightning measurements systems and computer simulations to predict the coupled effect from various nearby strikes onto a typical payload umbilical. Recommendations are provided to reduce the typical trigger criteria and costly delays.

  15. Monitoring Spacecraft Telemetry Via Optical or RF Link

    NASA Technical Reports Server (NTRS)

    Fielhauer, K. B.; Boone, B. G.

    2011-01-01

    A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.

  16. A three-dimensional spacecraft-charging computer code

    NASA Technical Reports Server (NTRS)

    Rubin, A. G.; Katz, I.; Mandell, M.; Schnuelle, G.; Steen, P.; Parks, D.; Cassidy, J.; Roche, J.

    1980-01-01

    A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA also are traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials.

  17. Internet Technology on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  18. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deca, J.; Lapenta, G.; Marchand, R.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation resultsmore » with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.« less

  19. Investigation of crew motion disturbances on Skylab-Experiment T-013. [for future manned spacecraft design

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1974-01-01

    Astronaut crew motions can produce some of the largest disturbances acting on a manned spacecraft which can affect vehicle attitude and pointing. Skylab Experiment T-013 was developed to investigate the magnitude and effects of some of these disturbances on the Skylab spacecraft. The methods and techniques used to carry out this experiment are discussed, and preliminary results of data analysis presented. Initial findings indicate that forces on the order of 300 N were exerted during vigorous soaring activities, and that certain experiment activities produced spacecraft angular rate excursions 0.03 to 0.07 deg/sec. Results of Experiment T-013 will be incorporated into mathematical models of crew-motion disturbances, and are expected to be of significant aid in the sizing, design, and analysis of stabilization and control systems for future manned spacecraft.

  20. REACH: Real-Time Data Awareness in Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Coleman, Jason; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Missions have been proposed that will use multiple spacecraft to perform scientific or commercial tasks. Indeed, in the commercial world, some spacecraft constellations already exist. Aside from the technical challenges of constructing and flying these missions, there is also the financial challenge presented by the tradition model of the flight operations team (FOT) when it is applied to a constellation mission. Proposed constellation missions range in size from three spacecraft to more than 50. If the current ratio of three-to-five FOT personnel per spacecraft is maintained, the size of the FOT becomes cost prohibitive. The Advanced Architectures and Automation Branch at the Goddard Space Flight Center (GSFC Code 588) saw the potential to reduce the cost of these missions by creating new user interfaces to the ground system health-and-safety data. The goal is to enable a smaller FOT to remain aware and responsive to the increased amount of ground system information in a multi-spacecraft environment. Rather than abandon the tried and true, these interfaces were developed to run alongside existing ground system software to provide additional support to the FOT. These new user interfaces have been combined in a tool called REACH. REACH-the Real-time Evaluation and Analysis of Consolidated Health-is a software product that uses advanced visualization techniques to make spacecraft anomalies easy to spot, no matter how many spacecraft are in the constellation. REACH reads a real-time stream of data from the ground system and displays it to the FOT such that anomalies are easy to pick out and investigate. Data visualization has been used in ground system operations for many years. To provide a unique visualization tool, we developed a unique source of data to visualize: the REACH Health Model Engine. The Health Model Engine is rule-based software that receives real-time telemetry information and outputs "health" information related to the subsystems and spacecraft that

  1. A genetic inventory of spacecraft and associated surfaces.

    PubMed

    La Duc, Myron T; Venkateswaran, Kasthuri; Conley, Catharine A

    2014-01-01

    Terrestrial organisms or other contaminants that are transported to Mars could interfere with efforts to study the potential for indigenous martian life. Similarly, contaminants that make the round-trip to Mars and back to Earth could compromise the ability to discriminate an authentic martian biosignature from a terrestrial organism. For this reason, it is important to develop a comprehensive inventory of microbes that are present on spacecraft to avoid interpreting their traces as authentic extraterrestrial biosignatures. Culture-based methods are currently used by NASA to assess spacecraft cleanliness but deliberately detect only a very small subset of total organisms present. The National Research Council has recommended that molecular (DNA)-based identification techniques should be developed as one aspect of managing the risk that terrestrial contamination could interfere with detection of life on (or returned from) Mars. The current understanding of the microbial diversity associated with spacecraft and clean room surfaces is expanding, but the capability to generate a comprehensive inventory of the microbial populations present on spacecraft outbound from Earth would address multiple considerations in planetary protection, relevant to both robotic and human missions. To this end, a 6-year genetic inventory study was undertaken by a NASA/JPL team. It was completed in 2012 and included delivery of a publicly available comprehensive final report. The genetic inventory study team evaluated the utility of three analytical technologies (conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-pyrosequencing) and combined them with a systematic methodology to collect, process, and archive nucleic acids as the first steps in assessing the phylogenetic breadth of microorganisms on spacecraft and associated surfaces.

  2. On the interpretation of Langmuir probe data inside a spacecraft sheath

    NASA Astrophysics Data System (ADS)

    Olson, J.; Brenning, N.; Wahlund, J.-E.; Gunell, H.

    2010-10-01

    If a Langmuir probe is located inside the sheath of a negatively charged spacecraft, there is a risk that the probe characteristic is modified compared to that of a free probe in the ambient plasma. We have studied this probe-in-spacecraft-sheath problem in the parameter range of a small Langmuir probe (with radius rLP<<λD) using a modified version of the orbit motion limited (OML) probe theory. We find that the ambient electron contribution Ie(ULP) to the probe characteristic is suitably analyzed in terms of three regions of applied probe potential ULP. In region I, where the probe is negatively charged (i.e., ULPpotential in the sheath at the probe position), the probe characteristic Ie(ULP) is close to that of OML theory for a free probe in the ambient plasma. In the probe potential range ULP>U1, there is first a transition region II in applied potential, U1potential minimum UM between the probe and the ambient plasma. This minimum gives the depth Upl-UM of a potential barrier that prevents the lowest energy ambient electrons from reaching the probe. For a high enough positive probe potential, in region III, the barrier becomes small. Here, Ie(ULP) again approaches OML theory for a free probe. The boundary U2 between regions II and III is somewhat arbitrary; we propose a condition on the barrier, Upl-UM<potential Upl falls into the transition region, but there is no obvious knee or other feature to identify it, (2) there is in this region no exponential part of Ie(ULP) that can be used to obtain Te, instead, (3) the probe

  3. Application of square-root filtering for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  4. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  5. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  6. Spacecraft-spacecraft radio-metric tracking: Signal acquisition requirements and application to Mars approach navigation

    NASA Technical Reports Server (NTRS)

    Kahn, R. D.; Thurman, S.; Edwards, C.

    1994-01-01

    Doppler and ranging measurements between spacecraft can be obtained only when the ratio of the total received signal power to noise power density (P(sub t)/N(sub 0)) at the receiving spacecraft is sufficiently large that reliable signal detection can be achieved within a reasonable time period. In this article, the requirement on P(sub t)/N(sub 0) for reliable carrier signal detection is calculated as a function of various system parameters, including characteristics of the spacecraft computing hardware and a priori uncertainty in spacecraft-spacecraft relative velocity and acceleration. Also calculated is the P(sub t)/N(sub 0) requirements for reliable detection of a ranging signal, consisting of a carrier with pseudonoise (PN) phase modulation. Once the P(sub t)/N(sub 0) requirement is determined, then for a given set of assumed spacecraft telecommunication characteristics (transmitted signal power, antenna gains, and receiver noise temperatures) it is possible to calculate the maximum range at which a carrier signal or ranging signal may be acquired. For example, if a Mars lander and a spacecraft approaching Mars are each equipped with 1-m-diameter antennas, the transmitted power is 5 W, and the receiver noise temperatures are 350 K, then S-band carrier signal acquisition can be achieved at ranges exceeding 10 million km. An error covariance analysis illustrates the utility of in situ Doppler and ranging measurements for Mars approach navigation. Covariance analysis results indicate that navigation accuracies of a few km can be achieved with either data type. The analysis also illustrates dependency of the achievable accuracy on the approach trajectory velocity.

  7. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  8. Improving Spacecraft Data Visualization Using Splunk

    NASA Technical Reports Server (NTRS)

    Conte, Matthew

    2012-01-01

    EPOXI, like all spacecraft missions, receives large volumes of telemetry data from its spacecraft, DIF. It is extremely important for this data to be updated quickly and presented in a readable manner so that the flight team can monitor the status of the spacecraft. Existing DMD pages for monitoring spacecraft telemetry, while functional, are limited and do not take advantage of modern search technology. For instance, they only display current data points from instruments on the spacecraft and have limited graphing capabilities, making it difficult to see historical data. The DMD pages have fixed refresh rates so the team must often wait several minutes to see the most recent data, even after it is received on the ground. The pages are also rigid and require an investment of time and money to update. To more easily organize and visualize spacecraft telemetry, the EPOXI team has begun experimenting with Splunk, a commercially-available data mining system. Splunk can take data received from the spacecraft's different data channels, often in different formats, and index all the data into a common format. Splunk allows flight team members to search through the different data formats from a single interface and to filter results by time range and data field to make finding specific spacecraft events quick and easy. Furthermore, Splunk provides functions to create custom interfaces which help team members visualize the data in charts and graphs to show how the health of the spacecraft has changed over time.One of the goals of my internship with my mentor, Victor Hwang, was to develop new Splunk interfaces to replace the DMD pages and give the spacecraft team access to historical data and visualizations that were previously unavailable. The specific requirements of these pages are discussed in the next section.

  9. Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  10. Merits of flywheels for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  11. Protecting Against Faults in JPL Spacecraft

    NASA Technical Reports Server (NTRS)

    Morgan, Paula

    2007-01-01

    A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, fault-protection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and health statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a general-purpose "Safe Mode" response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.

  12. Some problems of the design of highly directional spacecraft antennas

    NASA Technical Reports Server (NTRS)

    Prigoda, B. A.

    1974-01-01

    Problems of optimization and selection of the most expedient forms of design of directional antenna systems encountered in spacecraft design are discussed. Selection of a given type of antenna depends on its characteristic size, weight, and potential.

  13. System concepts and design examples for optical communication with planetary spacecraft

    NASA Astrophysics Data System (ADS)

    Lesh, James R.

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  14. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study.

    PubMed

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a

  15. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

    NASA Astrophysics Data System (ADS)

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation

  16. View of the nose of the Gemini 9 spacecraft taken from hatch of spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Eugene A. Cernan, pilot of the Gemini 9-A space flight, took this picture of the nose of the Gemini 9 spacecraft while standing in hatch of spacecraft. Area of earth below is the Pacific Ocean.

  17. SPX-8 SpaceX Dragon Spacecraft Grappled by SSRMS

    NASA Image and Video Library

    2016-04-10

    iss047e050978 (4/10/2016) --- The SpaceX Dragon cargo spaceship is grappled by the International Space Station’s Canadarm2. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.

  18. The NASA Spacecraft Transponding Modem

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.

    2000-01-01

    A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the

  19. Canadian Activities in Space Debris Mitigation Technologies

    NASA Astrophysics Data System (ADS)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  20. TEMPEST-D Spacecraft

    NASA Image and Video Library

    2018-05-17

    The complete TEMPEST-D spacecraft shown with the solar panels deployed. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22458

  1. Potential health effects of fume particles on the crew of spacecrafts

    NASA Technical Reports Server (NTRS)

    Ferin, Juraj; Oberdorster, Gunter

    1992-01-01

    The effect of the size of polymer (e.g., Teflon) particles in fumes inhaled by spacecraft personnel on the condition of the lung tissue and on the recovery of the exposed subjects was investigated in rats receiving a single intrapulmonary instillation, or repeated inhalation exposures to either TiO2 particles with primary particle diameter 20 nm, or TiO2 particles with primary particle diameter 250 nm. It was found that rats exposed to 20-nm-diam particles showed a dramatically higher toxicity and slower recovery compared to the group exposed to the 250-nm-diam particles, due to a larger extent of penetration of the interstitium of the lung by the finer particles.

  2. General Methodology for Designing Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.

    2012-01-01

    A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.

  3. TDRS-M Spacecraft Arrival

    NASA Image and Video Library

    2017-06-23

    NASA's TDRS-M satellite arrives inside its shipping container at Space Coast Regional Airport in Titusville, Florida, aboard a U.S. Air Force transport aircraft. The spacecraft is transported to the nearby Astrotech facility, also in Titusville, for preflight processing. The TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 9:02 a.m. EDT Aug. 3, 2017.

  4. Dynamic analysis of a flexible spacecraft with rotating components. Volume 1: Analytical developments

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, A. D.; Park, A. C.

    1975-01-01

    Analytical procedures and digital computer code are presented for the dynamic analysis of a flexible spacecraft with rotating components. Topics, considered include: (1) nonlinear response in the time domain, and (2) linear response in the frequency domain. The spacecraft is assumed to consist of an assembly of connected rigid or flexible subassemblies. The total system is not restricted to a topological connection arrangement and may be acting under the influence of passive or active control systems and external environments. The analytics and associated digital code provide the user with the capability to establish spacecraft system nonlinear total response for specified initial conditions, linear perturbation response about a calculated or specified nominal motion, general frequency response and graphical display, and spacecraft system stability analysis.

  5. Generalized Analysis Tools for Multi-Spacecraft Missions

    NASA Astrophysics Data System (ADS)

    Chanteur, G. M.

    2011-12-01

    Analysis tools for multi-spacecraft missions like CLUSTER or MMS have been designed since the end of the 90's to estimate gradients of fields or to characterize discontinuities crossed by a cluster of spacecraft. Different approaches have been presented and discussed in the book "Analysis Methods for Multi-Spacecraft Data" published as Scientific Report 001 of the International Space Science Institute in Bern, Switzerland (G. Paschmann and P. Daly Eds., 1998). On one hand the approach using methods of least squares has the advantage to apply to any number of spacecraft [1] but is not convenient to perform analytical computation especially when considering the error analysis. On the other hand the barycentric approach is powerful as it provides simple analytical formulas involving the reciprocal vectors of the tetrahedron [2] but appears limited to clusters of four spacecraft. Moreover the barycentric approach allows to derive theoretical formulas for errors affecting the estimators built from the reciprocal vectors [2,3,4]. Following a first generalization of reciprocal vectors proposed by Vogt et al [4] and despite the present lack of projects with more than four spacecraft we present generalized reciprocal vectors for a cluster made of any number of spacecraft : each spacecraft is given a positive or nul weight. The non-coplanarity of at least four spacecraft with strictly positive weights is a necessary and sufficient condition for this analysis to be enabled. Weights given to spacecraft allow to minimize the influence of some spacecraft if its location or the quality of its data are not appropriate, or simply to extract subsets of spacecraft from the cluster. Estimators presented in [2] are generalized within this new frame except for the error analysis which is still under investigation. References [1] Harvey, C. C.: Spatial Gradients and the Volumetric Tensor, in: Analysis Methods for Multi-Spacecraft Data, G. Paschmann and P. Daly (eds.), pp. 307-322, ISSI

  6. Delamination Assessment Tool for Spacecraft Composite Structures

    NASA Astrophysics Data System (ADS)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  7. Design/Development of Spacecraft and Module Crew Compartments

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2010-01-01

    This slide presentation reviews the design and development of crew compartments for spacecraft and for modules. The Crew Compartment or Crew Station is defined as the spacecraft interior and all other areas the crewman interfaces inside the cabin, or may potentially interface.It uses examples from all of the human rated spacecraft. It includes information about the process, significant drivers for the design, habitability, definitions of models, mockups, prototypes and trainers, including pictures of each stage in the development from Apollo, pictures of the space shuttle trainers, and International Space Station trainers. It further reviews the size and shape of the Space Shuttle orbiter crew compartment, and the Apollo command module and the lunar module. It also has a chart which reviews the International Space Station (ISS) internal volume by stage. The placement and use of windows is also discussed. Interestingly according to the table presented, the number 1 rated piece of equipment for recreation was viewing windows. The design of crew positions and restraints, crew translation aids and hardware restraints is shown with views of the restraints and handholds used from the Apollo program through the ISS.

  8. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  9. Rapid Spacecraft Development: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  10. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  11. Preventing Spacecraft Failures Due to Tribological Problems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    2001-01-01

    Many mechanical failures that occur on spacecraft are caused by tribological problems. This publication presents a study that was conducted by the author on various preventatives, analyses, controls and tests (PACTs) that could be used to prevent spacecraft mechanical system failure. A matrix is presented in the paper that plots tribology failure modes versus various PACTs that should be performed before a spacecraft is launched in order to insure success. A strawman matrix was constructed by the author and then was sent out to industry and government spacecraft designers, scientists and builders of spacecraft for their input. The final matrix is the result of their input. In addition to the matrix, this publication describes the various PACTs that can be performed and some fundamental knowledge on the correct usage of lubricants for spacecraft applications. Even though the work was done specifically to prevent spacecraft failures the basic methodology can be applied to other mechanical system areas.

  12. REACH: Real-Time Data Awareness in Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Coleman, Jason; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    NASA's Advanced Architectures and Automation Branch at the Goddard Space Flight Center (Code 588) saw the potential to reduce the cost of constellation missions by creating new user interfaces to the ground system health-and-safety data. The goal is to enable a small Flight Operations Team (FOT) to remain aware and responsive to the increased amount of ground system information in a multi-spacecraft environment. Rather than abandon the tried and true, these interfaces were developed to run alongside existing ground system software to provide additional support to the FOT. These new user interfaces have been combined in a tool called REACH. REACH-the Real-time Evaluation and Analysis of Consolidated Health-is a software product that uses advanced visualization techniques to make spacecraft anomalies easy to spot, no matter how many spacecraft are in the constellation. REACH reads numerous real-time streams of data from the ground system(s) and displays synthesized information to the FOT such that anomalies are easy to pick out and investigate.

  13. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, M. S.

    2010-01-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  14. Spacecraft Cabin Air Quality Control and Its Application to Tight Buildings

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Graf, J. C.

    1995-01-01

    Air quality is an important consideration not only for the external environment, but also for the indoor environment. Most people spend a majority of their lives indoors and the air that they breathe is important to their physical and emotional well being. Since most modern building designs have focused on energy efficiency, less fresh air is brought from the outside. As a result, pollutants from building materials, furniture, cleaning, and cooking have no place to go. To make matters worse, most ventilation systems do not include any means for removing pollutants from the recycled air. Unfortunately, pollution at even a small level can result in eye, throat, and lung irritation in addition to chronic headaches, nausea, and fatigue. A spacecraft cabin, which represents the worst case in tight building design, requires special consideration of air quality since any effects pollutants may have on a crewmember can potentially place a mission or other crewmembers at risk. A detailed approach has been developed by the National Aeronautics and Space Administration (NASA) to minimize cabin atmosphere pollution and provide the crew with an environment which is as free of pollutants as possible. This approach is a combination of passive and active contamination control concepts involving the evaluation and selection of materials to be used onboard the spacecraft, the establishment of air quality standards to ensure crew health, and the use of active control means onboard the spacecraft to further ensure an acceptable atmosphere. This approach has allowed NASA to prevent illness by providing crewmembers with a cabin atmosphere which contains pollutant concentrations up to 100 times lower than those specified for terrestrial indoor environments. Standard building construction, however, does not take into account the potentially harmful effects of materials used in the construction process on the health of future occupants and relies primarily on remedial rather than

  15. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    NASA Astrophysics Data System (ADS)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  16. Spacecraft Images Comet Target Jets

    NASA Image and Video Library

    2010-11-04

    NASA Deep Impact spacecraft High- and Medium-Resolution Imagers HRI and MRI captured multiple jets emanating from comet Hartley 2 turning on and off while the spacecraft is 8 million kilometers 5 million miles away from the comet.

  17. Lean spacecraft avionics trade study

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1994-01-01

    Spacecraft design is generally an exercise in design trade-offs: fuel vs. weight, power vs. solar cell area, radiation exposure vs. shield weight, etc. Proper analysis of these trades is critical in the development of lightweight, efficient, 'lean' satellites. The modification of the launch plans for the Magnetosphere Imager (MI) to a Taurus launcher from the much more powerful Delta has forced a reduction in spacecraft weight availability into the mission orbit from 1300 kg to less than 500 kg. With weight now a driving factor it is imperative that the satellite design be extremely efficient and lean. The accuracy of engineering trades now takes on an added importance. An understanding of spacecraft subsystem interactions is critical in the development of a good spacecraft design, yet it is a challenge to define these interactions while the design is immature. This is currently an issue in the development of the preliminary design of the MI. The interaction and interfaces between this spacecraft and the instruments it carries are currently unclear since the mission instruments are still under development. It is imperative, however, to define these interfaces so that avionics requirements ideally suited to the mission's needs can be determined.

  18. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  19. Combined space environment on spacecraft engineering materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.; Kosten, Susan

    1993-01-01

    Spacecraft structures and surface materials exposed to the space environment for extended periods, up to thirty years, have increased potential for damage from long term exposure to the combined space environment including solar ultraviolet radiation, electrons, and protons and orbiting space debris. The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/cm(sup 2)/day and the proton integral fluence is above 1 x 10(exp 9) protons/cm(sup 2)/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of ultraviolet radiation, particularly in the vacuum ultraviolet (less than 200 nm wavelength) is more difficult to characterize at this time. Very little data is available in the literature which can be used for determining the life cycle of a material placed in space for extended durations of time. In order to obtain critical data for planning and designing of spacecraft systems, use of a small vacuum system at the Environmental Effects Facility at MSFC, which can be used for these purposes was used. A special effort was made to build up this capability during the course of this research effort and perform a variety of experiments on materials proposed for the Space Station. A description of the apparatus and the procedure devised to process potential spacecraft materials is included.

  20. Meteoroid-Induced Anomalies on Spacecraft

    NASA Technical Reports Server (NTRS)

    Cooke, Bill

    2015-01-01

    Sporadic meteoroid background is directional (not isotropic) and accounts for 90 percent of the meteoroid risk to a typical spacecraft. Meteor showers get all the press, but account for only approximately10 percent of spacecraft risk. Bias towards assigning meteoroid cause to anomalies during meteor showers. Vast majority of meteoroids come from comets and have a bulk density of approximately 1 gram per cubic centimeter (ice). High speed meteoroids (approximately 50 kilometers per second) can induce electrical anomalies in spacecraft through discharging of charged surfaces (also EMP (electromagnetic pulse?).

  1. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  2. Relative Positions of Distant Spacecraft

    NASA Image and Video Library

    2011-04-29

    This graphic shows the relative positions of NASA most distant spacecraft in early 2011, looking at the solar system from the side. Voyager 1 is the most distant spacecraft, 10.9 billion miles away from the sun at a northward angle.

  3. The electrification of spacecraft

    NASA Technical Reports Server (NTRS)

    Akishin, A. I.; Novikov, L. S.

    1985-01-01

    Physical and applied aspects of the electrification of space vehicles and natural celestial objects are discussed, the factors resulting in electrification of spacecraft are analyzed, and methods of investigating various phenomena associated with this electrification and ways of protecting spacecraft against the influence of static electricity are described. The booklet is intended for the general reader interested in present day questions of space technology.

  4. Spacecraft Environmental Anomalies Handbook

    DTIC Science & Technology

    1989-08-01

    1989 4. TITLE AND SUBTITLE S. FUNDING NUMBERS SPACECRAFT ENVIRONMENTAL ANOMALIES HANDBOOK 282201AA PE: 63410F 6. AUTHOR(S) Paul A. Robinson, Jr 7...engineering solutions for mitigating the effects of environmental anomalies have been developed. Among the causes o, spacecraft anomalies are surface...have been discovered after years of investig!:tion, and engineering solutions for mitigating the effccts of environmental anomalies have been developed

  5. Optimizing Spacecraft Placement for Liaison Constellations

    NASA Technical Reports Server (NTRS)

    Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.

    2011-01-01

    A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.

  6. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  7. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  8. Manned spacecraft electrical fire safety

    NASA Technical Reports Server (NTRS)

    Wardell, A. W.

    1971-01-01

    The fire hazards created in spacecraft compartments by malfunction of electrical wiring are described. The tests for electrical wire/cable current overload flammability are presented. The application of electrical and material technologies to the reduction of fire hazards in spacecraft are examined.

  9. 1997 Spacecraft Contamination and Coatings Workshop

    NASA Technical Reports Server (NTRS)

    Chen, Philip T. (Compiler); Benner, Steve M. (Compiler)

    1997-01-01

    This volume contains the presentation charts of talks given at the "1997 Spacecraft Contamination and Coatings Workshop," held July 9-10, 1997, in Annapolis, Maryland. The workshop was attended by representatives from NASA, Jet Propulsion Laboratory, Department of Defense, industry, and universities concerned with the the spacecraft contamination engineering and thermal control coatings. The workshop provided a forum for exchanging new developments in spacecraft contamination and coatings.

  10. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    This paper describes three autonomy architectures for a system that continuously plans to control a fleet of spacecraft using collective mission goals instead of goals of command sequences for each spacecraft. A fleet of self-commanding spacecraft would autonomously coordinate itself to satisfy high level science and engineering goals in a changing partially-understood environment-making feasible the operation of tens of even a hundred spacecraft (such as for interferometer or magnetospheric constellation missions).

  11. Gravity Probe B spacecraft description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-11-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.

  12. Minimum dV for Targeted Spacecraft Disposal

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2017-01-01

    The study analyzes the minimum capability required to dispose safely of a space object. The study considers 3- sigma environmental uncertainties, as well as spacecraft-specific constraints such as the available thrust, total impulse, the achievable increase or decrease in commandable frontal area under stable attitude (or stable tumble), and the final controllable altitude at which any such dV may be imparted. The study addresses the definition of the length and location of a 'safe' disposal area, which is a statistical manifestation of uncertainty in this process. Some general legal concerns are raised that are unique to this prospect of low dV disposals. Future work is summarized. The goal of such research is to improve public safety by creating optimally safe disposal strategies (and potentially, applicable regulations) for low-dV and/or low-thrust spacecraft that under more traditional strategies would need to be abandoned to fully-random decay with its inherent higher risk of human casualty.

  13. An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John R.; Alpert, Brian K.

    2017-01-01

    As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for mission success and crew safety. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing launch on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that one would call a repairman to fix something at their home. This approach would reduce ground training requirements, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft. As this methodology relies on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition, the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of the spacecraft.

  14. An Alternative Approach to Human Servicing of Manned Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John; Alpert, Brian

    2011-01-01

    As manned spacecraft have grown larger and more complex, they have come to rely on spacewalks or Extravehicular Activities (EVA) for both mission success and crew safety. Typically these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware . This paper proposes an alternative methodology to utilize launch-on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that most people would call a repairman to fix something at their home. This approach would not only reduce ground training requirements and save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, but would also lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current ISS unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft utilizing lessons learned from ISS. As this methodology relies entirely on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of

  15. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    NASA Technical Reports Server (NTRS)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  16. Universal Controller for Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Levanas, Greg; McCarthy, Thomas; Hunter, Don; Buchanan, Christine; Johnson, Michael; Cozy, Raymond; Morgan, Albert; Tran, Hung

    2006-01-01

    An electronic control unit has been fabricated and tested that can be replicated as a universal interface between the electronic infrastructure of a spacecraft and a brushless-motor (or other electromechanical actuator) driven mechanism that performs a specific mechanical function within the overall spacecraft system. The unit includes interfaces to a variety of spacecraft sensors, power outputs, and has selectable actuator control parameters making the assembly a mechanism controller. Several control topologies are selectable and reconfigurable at any time. This allows the same actuator to perform different functions during the mission life of the spacecraft. The unit includes complementary metal oxide/semiconductor electronic components on a circuit board of a type called rigid flex (signifying flexible printed wiring along with a rigid substrate). The rigid flex board is folded to make the unit fit into a housing on the back of a motor. The assembly has redundant critical interfaces, allowing the controller to perform time-critical operations when no human interface with the hardware is possible. The controller is designed to function over a wide temperature range without the need for thermal control, including withstanding significant thermal cycling, making it usable in nearly all environments that spacecraft or landers will endure. A prototype has withstood 1,500 thermal cycles between 120 and +85 C without significant deterioration of its packaging or electronic function. Because there is no need for thermal control and the unit is addressed through a serial bus interface, the cabling and other system hardware are substantially reduced in quantity and complexity, with corresponding reductions in overall spacecraft mass and cost.

  17. Astronaut Edwin Aldrin photographed with pilot's hatch of spacecraft open

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin E. Aldrin Jr., pilot of the Gemini 12 space flight, is photographed with pilot's hatch of spacecraft open. Note J.A. Maurer camera which was used to photograph some of his extravehicular activity.

  18. Spacecraft dielectric surface charging property determination

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.

    1987-01-01

    The charging properties of 127 micron thick polyimide, (a commonly used spacecraft dielectric material) was measured under conditions of irradiation by a low-current-density electron beam with energy between 2 and 14 keV. The observed charging characteristics were consistent with predictions of the NASCAP computer model. The use of low electron current density results in a nonlinearity in the sample-potential versus beam-energy characteristic which is attributed to conduction leakage through the sample. Microdischarges were present at relatively low beam energies.

  19. Operator Performance Evaluation of Fault Management Interfaces for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Ravinder, Ujwala; Beutter, Brent; McCann, Robert S.; Spirkovska, Lilly; Renema, Fritz

    2008-01-01

    In the cockpit of the NASA's next generation of spacecraft, most of vehicle commanding will be carried out via electronic interfaces instead of hard cockpit switches. Checklists will be also displayed and completed on electronic procedure viewers rather than from paper. Transitioning to electronic cockpit interfaces opens up opportunities for more automated assistance, including automated root-cause diagnosis capability. The paper reports an empirical study evaluating two potential concepts for fault management interfaces incorporating two different levels of automation. The operator performance benefits produced by automation were assessed. Also, some design recommendations for spacecraft fault management interfaces are discussed.

  20. Lunar shadow eclipse prediction models for the Earth orbiting spacecraft: Comparison and application to LEO and GEO spacecrafts

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.

    2015-05-01

    A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.

  1. Passivity-based control with collision avoidance for a hub-beam spacecraft

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Chen, Ti; Jin, Dongping; Hu, Haiyan

    2017-01-01

    For the application of robotically assembling large space structures, a feedback control law is synthesized for transitional and rotational maneuvers of a 'tug' spacecraft in order to transport a flexible element to a desired position without colliding with other space bodies. The flexible element is treated as a long beam clamped to the 'tug' spacecraft modelled as a rigid hub. First, the physical property of passivity of Euler-Lagrange system is exploited to design the position and attitude controllers by taking a simpler obstacle-free control problem into account. To reduce sensing and actuating requirements, the vibration modes of the beam appendage are supposed to be not directly measured and actuated on. Besides, the requirements of measuring velocities are removed with the aid of a dynamic extension technique. Second, the bounding boxes in the form of super-quadric surfaces are exploited to enclose the maximal extents of the obstacles and the hub-beam spacecraft. The collision avoidance between bounding boxes is achieved by applying additional repulsive force and torque to the spacecraft based on the method of artificial potential field. Finally, the effectiveness of proposed control scheme is numerically demonstrated via case studies.

  2. Introducing GV : The Spacecraft Geometry Visualizer

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Stern, S. A.; Parker, J. W.; Gladstone, G. R.; Weaver, H. A.

    2009-12-01

    GV (Geometry Visualizer) is a web-based program for planning spacecraft observations. GV is the primary planning tool used by the New Horizons science team to plan the encounter with Pluto. GV creates accurate 3D images and movies showing the position of planets, satellites, and stars as seen from an observer on a spacecraft or other body. NAIF SPICE routines are used throughout for accurate calculations of all geometry. GV includes 3D geometry rendering of all planetary bodies, lon/lat grids, ground tracks, albedo maps, stellar magnitudes, types and positions from HD and Tycho-2 catalogs, and spacecraft FOVs. It generates still images, animations, and geometric data tables. GV is accessed through an easy-to-use and flexible web interface. The web-based interface allows for uniform use from any computer and assures that all users are accessing up-to-date versions of the code and kernel libraries. Compared with existing planning tools, GV is often simpler, faster, lower-cost, and more flexible. GV was developed at SwRI to support the New Horizons mission to Pluto. It has been subsequently expanded to support multiple other missions in flight or under development, including Cassini, Messenger, Rosetta, LRO, and Juno. The system can be used to plan Earth-based observations such as occultations to high precision, and was used by the public to help plan 'Kodak Moment' observations of the Pluto system from New Horizons. Potential users of GV may contact the author for more information. Development of GV has been funded by the New Horizons, Rosetta, and LRO missions.

  3. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woronowicz, M. S.

    2011-05-20

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may bemore » possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.« less

  4. Estimating Torque Imparted on Spacecraft Using Telemetry

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  5. Development of a rotary power transformer and inverter drive for spacecraft

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.; Bridgeforth, A. O.

    1983-01-01

    Many future satellites and spacecraft with spun and despun configurations will require the transfer of power across rotating interfaces in lieu of slip-rings and/or flexures. This is particularly true of spacecraft that have to demonstrate a long life expectancy. The rotary transformer has the desirable characteristics of high reliability and low noise, which qualify it as a potential replacement for slip rings. Development of a rotary power transformer follows the successful completion of a task to develop rotary signal-level transformers for the Galileo Spacecraft Project. The physical configuration of a rotary power transformer has a significant effect on its magnetic and electrical characteristics and therefore impacts the design of the dc/ac inverter driver. Important characteristics addressed during this development effort include: operating frequency, efficiency, transformer gap size, leakage inductance, and leakage flux. A breadboard inverter and rotary transformer were designed, fabricated and tested.

  6. Viking lander spacecraft battery

    NASA Technical Reports Server (NTRS)

    Newell, D. R.

    1976-01-01

    The Viking Lander was the first spacecraft to fly a sterilized nickel-cadmium battery on a mission to explore the surface of a planet. The significant results of the battery development program from its inception through the design, manufacture, and test of the flight batteries which were flown on the two Lander spacecraft are documented. The flight performance during the early phase of the mission is also presented.

  7. Risk Analysis of On-Orbit Spacecraft Refueling Concepts

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Stromgren, Chel; Cates, Grant R.

    2010-01-01

    On-orbit refueling of spacecraft has been proposed as an alternative to the exclusive use of Heavy-lift Launch Vehicles to enable human exploration beyond Low Earth Orbit (LEO). In these scenarios, beyond LEO spacecraft are launched dry (without propellant) or partially dry into orbit, using smaller or fewer element launch vehicles. Propellant is then launched into LEO on separate launch vehicles and transferred to the spacecraft. Refueling concepts are potentially attractive because they reduce the maximum individual payload that must be placed in Earth orbit. However, these types of approaches add significant complexity to mission operations and introduce more uncertainty and opportunities for failure to the mission. In order to evaluate these complex scenarios, the authors developed a Monte Carlo based discrete-event model that simulates the operational risks involved with such strategies, including launch processing delays, transportation system failures, and onorbit element lifetimes. This paper describes the methodology used to simulate the mission risks for refueling concepts, the strategies that were evaluated, and the results of the investigation. The results of the investigation show that scenarios that employ refueling concepts will likely have to include long launch and assembly timelines, as well as the use of spare tanker launch vehicles, in order to achieve high levels of mission success through Trans Lunar Injection.

  8. Detection of hypervelocity dust impacts on the Earth orbiting Cluster and MMS spacecraft and problems with signal interpretation

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo

    2017-04-01

    Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.

  9. A Hybrid Procedural/Deductive Executive for Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Gamble, Edward B.; Gat, Erann; Kessing, Ron; Kurien, James; Millar, William; Nayak, P. Pandurang; Plaunt, Christian; Williams, Brian C.; Lau, Sonie (Technical Monitor)

    1998-01-01

    The New Millennium Remote Agent (NMRA) will be the first AI system to control an actual spacecraft. The spacecraft domain places a strong premium on autonomy and requires dynamic recoveries and robust concurrent execution, all in the presence of tight real-time deadlines, changing goals, scarce resource constraints, and a wide variety of possible failures. To achieve this level of execution robustness, we have integrated a procedural executive based on generic procedures with a deductive model-based executive. A procedural executive provides sophisticated control constructs such as loops, parallel activity, locks, and synchronization which are used for robust schedule execution, hierarchical task decomposition, and routine configuration management. A deductive executive provides algorithms for sophisticated state inference and optimal failure recover), planning. The integrated executive enables designers to code knowledge via a combination of procedures and declarative models, yielding a rich modeling capability suitable to the challenges of real spacecraft control. The interface between the two executives ensures both that recovery sequences are smoothly merged into high-level schedule execution and that a high degree of reactivity is retained to effectively handle additional failures during recovery.

  10. High-latitude spacecraft charging in low-Earth polar orbit

    NASA Astrophysics Data System (ADS)

    Frooninckx, Thomas B.

    Spacecraft charging within the upper ionosphere is commonly thought to be insignificant and thus has received little attention. Recent experimental evidence has shown that electric potential differences as severe as 680 volts can develop between Defense Meteorological Satellite Program (DMSP) polar-orbiting (840 kilometers) spacecraft and their high-latitude environment. To explore space vehicle charging in this region more fully, an analysis was performed using DMSP F6, F7, F8, and F9 satellite precipitating particle and ambient plasma measurements taken during the winters of 1986-87 (solar minimum) and 1989-90 (solar maximum). An extreme solar cycle dependence was discovered as charging occurred more frequently and with greater severity during the period of solar minimum. One hundred seventy charging events ranging from -46 to 1,430 volts were identified, and satellite measurements and Time Dependent Ionospheric Model (TDIM) output were used to characterize the environments which generated and inhibited these potentials. All current sources were considered to determine the cause of the solar cycle dependence.

  11. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  12. Onboard Image Processing for Autonomous Spacecraft Detection of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Bunte, M.; Castaño, R.; Chien, S.; Greeley, R.

    2011-03-01

    Onboard spacecraft image processing could enable long-term monitoring for volcanic plume activity in the outer planets. A new plume detection technique shows strong performance on images of Enceladus and Io taken by Cassini, Voyager, and Galileo.

  13. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  14. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  15. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  16. SHARP: Spacecraft Health Automated Reasoning Prototype

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1991-01-01

    The planetary spacecraft mission OPS as applied to SHARP is studied. Knowledge systems involved in this study are detailed. SHARP development task and Voyager telecom link analysis were examined. It was concluded that artificial intelligence has a proven capability to deliver useful functions in a real time space flight operations environment. SHARP has precipitated major change in acceptance of automation at JPL. The potential payoff from automation using AI is substantial. SHARP, and other AI technology is being transferred into systems in development including mission operations automation, science data systems, and infrastructure applications.

  17. Interior view of KSC's Manned Spacecraft Operations Building

    NASA Image and Video Library

    1969-01-31

    S69-19197 (1969) --- Interior view of the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building (MSOB) showing Apollo Spacecraft 106 Command and Service Modules (CSM) being moved to integrated work stand number one for mating to Spacecraft Lunar Module Adapter (SLA) 13. Spacecraft 106 will be flown on the Apollo 10 (Lunar Module 4/Saturn 505) space mission.

  18. Interior view of KSC's Manned Spacecraft Operations Building

    NASA Image and Video Library

    1969-01-31

    S69-19190 (31 Jan. 1969) --- Interior view of the Kennedy Space Center's Manned Spacecraft Operations Building showing Apollo Spacecraft 106/Command/Service Module being moved to integrated work stand number one for mating to Spacecraft Lunar Module Adapter (SLA) 13. Spacecraft 106 will be flown on the Apollo 10 (Lunar Module 4/Saturn 505) space mission.

  19. Fire suppression in human-crew spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Dietrich, Daniel L.

    1991-01-01

    Fire extinguishment agents range from water and foam in early-design spacecraft (Halon 1301 in the present Shuttle) to carbon dioxide proposed for the Space Station Freedom. The major challenge to spacecraft fire extinguishment design and operations is from the micro-gravity environment, which minimizes natural convection and profoundly influences combustion and extinguishing agent effectiveness, dispersal, and post-fire cleanup. Discussed here are extinguishment in microgravity, fire-suppression problems anticipated in future spacecraft, and research needs and opportunities.

  20. Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.

    2007-01-01

    Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.

  1. Specific spacecraft evaluation: Special report. [charged particle transport from a mercury ion thruster to spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1978-01-01

    Charged and neutral particle transport from an 8 cm mercury ion thruster to the surfaces of the P 80-1 spacecraft and to the Teal Ruby sensor and the ECOM-501 sensor of that spacecraft were investigated. Laboratory measurements and analyses were used to examine line-of-sight and nonline-of sight particle transport modes. The recirculation of Hg(+) ions in the magnetic field of the earth was analyzed for spacecraft velocity and Earth magnetic field vector configurations which are expected to occur in near Earth, circular, high inclination orbits. For these magnetic field and orbit conditions and for expected ion release distribution functions, in both angles and energies, the recirculation/re-interception of ions on spacecraft surfaces was evaluated. The refraction of weakly energetic ions in the electric fields of the thruster plasma plume and in the electric fields between this plasma plume and the material boundaries of the thruster, the thruster sputter shield, and the various spacecraft surfaces were examined. The neutral particle transport modes of interest were identified as sputtered metal atoms from the thruster beam shield. Results, conclusions, and future considerations are presented.

  2. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    NASA Technical Reports Server (NTRS)

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  3. Astronaut John Glenn practices insertion into Mercury spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, practices insertion into the Mercury 'Friendship 7' spacecraft during MA-6 preflight training activity at Cape Canveral, Florida. He is wearing the full pressure suit and helmet (00993); Glenn practices insertion into Mercury capsule with help of a McDonnell Aircraft Corporation technician (00994).

  4. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  5. Simulator for Testing Spacecraft Separation Devices

    NASA Technical Reports Server (NTRS)

    Johnston, Nick; Gaines, Joe; Bryan, Tom

    2006-01-01

    A report describes the main features of a system for testing pyrotechnic and mechanical devices used to separate spacecraft and modules of spacecraft during flight. The system includes a spacecraft simulator [also denoted a large mobility base (LMB)] equipped with air thrusters, sensors, and data-acquisition equipment. The spacecraft simulator floats on air bearings over an epoxy-covered concrete floor. This free-flotation arrangement enables simulation of motion in outer space in three degrees of freedom: translation along two orthogonal horizontal axes and rotation about a vertical axis. The system also includes a static stand. In one application, the system was used to test a bolt-retraction system (BRS) intended for separation of the lifting-body and deorbit-propulsion stages of the X- 38 spacecraft. The LMB was connected via the BRS to the static stand, then pyrotechnic devices that actuate the BRS were fired. The separation distance and acceleration were measured. The report cites a document, not yet published at the time of reporting the information for this article, that is said to present additional detailed information.

  6. An initial investigation of the long-term trends in the fluxgate magnetometer (FGM) calibration parameters on the four Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Alconcel, L. N. S.; Fox, P.; Brown, P.; Oddy, T. M.; Lucek, E. L.; Carr, C. M.

    2014-07-01

    Over the course of more than 10 years in operation, the calibration parameters of the outboard fluxgate magnetometer (FGM) sensors on the four Cluster spacecraft are shown to be remarkably stable. The parameters are refined on the ground during the rigorous FGM calibration process performed for the Cluster Active Archive (CAA). Fluctuations in some parameters show some correlation with trends in the sensor temperature (orbit position). The parameters, particularly the offsets, of the spacecraft 1 (C1) sensor have undergone more long-term drift than those of the other spacecraft (C2, C3 and C4) sensors. Some potentially anomalous calibration parameters have been identified and will require further investigation in future. However, the observed long-term stability demonstrated in this initial study gives confidence in the accuracy of the Cluster magnetic field data. For the most sensitive ranges of the FGM instrument, the offset drift is typically 0.2 nT per year in each sensor on C1 and negligible on C2, C3 and C4.

  7. An initial investigation of the long-term trends in the fluxgate magnetometer (FGM) calibration parameters on the four Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Alconcel, L. N. S.; Fox, P.; Brown, P.; Oddy, T. M.; Lucek, E. L.; Carr, C. M.

    2014-01-01

    Over the course of more than ten years in operation, the calibration parameters of the outboard fluxgate magnetometer (FGM) sensors on the four Cluster spacecraft are shown to be remarkably stable. The parameters are refined on the ground during the rigorous FGM calibration process performed for the Cluster Active Archive (CAA). Fluctuations in some parameters show some correlation with trends in the sensor temperature (orbit position). The parameters, particularly the offsets, of the Spacecraft1 (C1) sensor have undergone more long-term drift than those of the other spacecraft (C2, C3 and C4) sensors. Some potentially anomalous calibration parameters have been identified and will require further investigation in future. However, the observed long-term stability demonstrated in this initial study gives confidence in the relative accuracy of the Cluster magnetic field data. For the most sensitive ranges of the FGM instrument, the offset drift is typically 0.2 nT yr-1 in each sensor on C1 and negligible on C2, C3 and C4.

  8. The research and practice of spacecraft software engineering

    NASA Astrophysics Data System (ADS)

    Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang

    2017-06-01

    In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.

  9. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    NASA Technical Reports Server (NTRS)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  10. Impact of Space Transportation System on planetary spacecraft and missions design

    NASA Technical Reports Server (NTRS)

    Barnett, P. M.

    1975-01-01

    Results of Jet Propulsion Laboratory (JPL) activities to define and understand alternatives for planetary spacecraft operations with the Space Transportation System (STS) are summarized. The STS presents a set of interfaces, operational alternatives, and constraints in the prelaunch, launch, and near-earth flight phases of a mission. Shuttle-unique features are defined and coupled with JPL's existing program experience to begin development of operationally efficient alternatives, concepts, and methods for STS-launched missions. The time frame considered begins with the arrival of the planetary spacecraft at Kennedy Space Center and includes prelaunch ground operations, Shuttle-powered flight, and near-earth operations, up to acquisition of the spacecraft signal by the Deep Space Network. The areas selected for study within this time frame were generally chosen because they represent the 'driving conditions' on planetary-mission as well as system design and operations.

  11. Second Venus spacecraft set for launch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch phase of the Pioneer Venus Multiprobe spacecraft and cruise phases of both the Pioneer Venus Orbiter and the Multiprobe spacecraft are covered. Material pertinent to the Venus encounter is included.

  12. Spacecraft and their Boosters. Aerospace Education I.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  13. Multipurpose hardened spacecraft insulation

    NASA Technical Reports Server (NTRS)

    Steimer, Carlos H.

    1990-01-01

    A Multipurpose Hardened Spacecraft Multilayer Insulation (MLI) system was developed and implemented to meet diverse survivability and performance requirements. Within the definition and confines of a MLI assembly (blanket), the design: (1) provides environmental protection from natural and induced nuclear, thermal, and electromagnetic radiation; (2) provides adequate electrostatic discharge protection for a geosynchronous satellite; (3) provides adequate shielding to meet radiated emission needs; and (4) will survive ascent differential pressure loads between enclosed volume and space. The MLI design is described which meets these requirements and design evolution and verification is discussed. The application is for MLI blankets which closeout the area between the laser crosslink subsystem (LCS) equipment and the DSP spacecraft cabin. Ancillary needs were implemented to ease installation at launch facility and to survive ascent acoustic and vibration loads. Directional venting accommodations were also incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second surface mirrors (SSMs).

  14. Mercury-Atlas 9 spacecraft Faith 7 is shown during mating of spacecraft to Atlas booster

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Mercury-Atlas-9 spacecraft, #20, Faith 7, is shown during mating of spacecraft to the Atlas booster at Pad 14, Cape Canaveral, Fla. Faith 7 named by Astronaut L. Gordon Cooper is programmed for a 22-orbit mission, lasting 30 hours and 20 minutes, with impact near Midway Island.

  15. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  16. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  17. Gemini 9 spacecraft during EVA as seen Astronaut Eugene Cernan

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Eugene A. Cernan took this view of the Gemini 9 spacecraft and his umbilical cord (right) over California, Arizona, and Sonora, Mexico, during his extravehicular activity on the Gemini 9 mission. Taken during the 32nd revolution of the flight.

  18. Effects of the low Earth orbital environment on spacecraft materials

    NASA Technical Reports Server (NTRS)

    Leger, L. J.

    1986-01-01

    It is evident from space flights during the last three years that the low Earth orbital (LEO) environment interacts with spacecraft surfaces in significant ways. One manifestation of these interactions is recession of, in particular, organic-polymer-based surfaces presumably due to oxidation by atomic oxygen, the major component of the LEO environment. Three experiments have been conducted on Space Shuttle flights 5, 8 and 41-G to measure reaction rates and the effects of various parameters on reaction rates. Surface recession on these flights indicates reaction efficiencies approximately 3 x 10(-24) cu cm/atoms for unfilled organic polymers. Of the metals, silver and osmium are very reactive. Effects on spacecraft or experiment surfaces can be evaluated using the derived reaction efficiencies and a definition of the total exposure to atomic oxygen. This exposure is obtained using an ambient density model, solar activity data and spacecraft parameters of altitude, attitude and operational date. Oxygen flux on a given surface is obtained from the ambient density and spacecraft velocity and can then be integrated to provide the total exposure or fluence. Such information can be generated using simple computational programs and can be converted to various formats. Overall, the extent of damage is strongly dependent on the type of surface and total exposure time.

  19. Risk-based Spacecraft Fire Safety Experiments

    NASA Technical Reports Server (NTRS)

    Apostolakis, G.; Catton, I.; Issacci, F.; Paulos, T.; Jones, S.; Paxton, K.; Paul, M.

    1992-01-01

    Viewgraphs on risk-based spacecraft fire safety experiments are presented. Spacecraft fire risk can never be reduced to a zero probability. Probabilistic risk assessment is a tool to reduce risk to an acceptable level.

  20. Proximity Navigation of Highly Constrained Spacecraft

    NASA Technical Reports Server (NTRS)

    Scarritt, S.; Swartwout, M.

    2007-01-01

    Bandit is a 3-kg automated spacecraft in development at Washington University in St. Louis. Bandit's primary mission is to demonstrate proximity navigation, including docking, around a 25-kg student-built host spacecraft. However, because of extreme constraints in mass, power and volume, traditional sensing and actuation methods are not available. In particular, Bandit carries only 8 fixed-magnitude cold-gas thrusters to control its 6 DOF motion. Bandit lacks true inertial sensing, and the ability to sense position relative to the host has error bounds that approach the size of the Bandit itself. Some of the navigation problems are addressed through an extremely robust, error-tolerant soft dock. In addition, we have identified a control methodology that performs well in this constrained environment: behavior-based velocity potential functions, which use a minimum-seeking method similar to Lyapunov functions. We have also adapted the discrete Kalman filter for use on Bandit for position estimation and have developed a similar measurement vs. propagation weighting algorithm for attitude estimation. This paper provides an overview of Bandit and describes the control and estimation approach. Results using our 6DOF flight simulator are provided, demonstrating that these methods show promise for flight use.

  1. Analyzing Dynamics of Cooperating Spacecraft

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.

    2004-01-01

    A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.

  2. Spacecraft (Mobile Satellite) configuration design study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  3. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    NASA Astrophysics Data System (ADS)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  4. Mission and sensor concepts for coastal and ocean monitoring using spacecraft and aircraft

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.

    1980-01-01

    A concept developed for a 1990 oceanic mission which places strong emphasis on coastal monitoring needs is described and analysed. The concept assumes that use of one active spacecraft in orbit and one on standby plus airplanes and data collection platforms which provide continuing complementary coverage and surface truth. The coastal measurement requirements and goals, the prospective oceanic and coastal sensors, the spacecraft and aircraft data platforms, and the prospective orbit designs are discussed.

  5. A Jupiter Orbiter mother/daughter spacecraft concept

    NASA Technical Reports Server (NTRS)

    Duxbury, J. H.

    1975-01-01

    The feasibility of a tandem launch of a mother/daughter spacecraft pair with a single launch vehicle for a 1981 Mariner Jupiter Orbiter mission is described. The mother is a close derivative of the three-axis stabilized Mariner Jupiter Saturn 1977 spacecraft with the addition of a Viking-type propulsion module for orbit capture; it concentrates on the planetology and satellite science objectives. The daughter is a small, simple spin-stabilized spacecraft taking advantage of the mother's transit and delivery capabilities; it obtains in-situ measurements of the surrounding planetary environment. A conceptual design of the daughter spacecraft is presented.

  6. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  7. Foot Pedals for Spacecraft Manual Control

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  8. Spacecraft-plasma interaction codes: NASCAP/GEO, NASCAP/LEO, POLAR, DynaPAC, and EPSAT

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Jongeward, G. A.; Cooke, D. L.

    1992-01-01

    Development of a computer code to simulate interactions between the surfaces of a geometrically complex spacecraft and the space plasma environment involves: (1) defining the relevant physical phenomena and formulating them in appropriate levels of approximation; (2) defining a representation for the 3-D space external to the spacecraft and a means for defining the spacecraft surface geometry and embedding it in the surrounding space; (3) packaging the code so that it is easy and practical to use, interpret, and present the results; and (4) validating the code by continual comparison with theoretical models, ground test data, and spaceflight experiments. The physical content, geometrical capabilities, and application of five S-CUBED developed spacecraft plasma interaction codes are discussed. The NASA Charging Analyzer Program/geosynchronous earth orbit (NASCAP/GEO) is used to illustrate the role of electrostatic barrier formation in daylight spacecraft charging. NASCAP/low Earth orbit (LEO) applications to the CHARGE-2 and Space Power Experiment Aboard Rockets (SPEAR)-1 rocket payloads are shown. DynaPAC application to the SPEAR-2 rocket payloads is described. Environment Power System Analysis Tool (EPSAT) is illustrated by application to Tethered Satellite System 1 (TSS-1), SPEAR-3, and Sundance. A detailed description and application of the Potentials of Large Objects in the Auroral Region (POLAR) Code are presented.

  9. Electromagnetic plasma particle simulations on Solar Probe Plus spacecraft interaction with near-Sun plasma environment

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki

    It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci

  10. Numerical Simulations of Spacecraft Charging: Selected Applications

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.; Borovsky, J.; Thomsen, M. F.

    2016-12-01

    The electrical charging of spacecraft due to bombarding charged particles affects their performance and operation. We study this charging using CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. It is interfaced to a mesh generator that creates a computational mesh conforming to complex objects like a spacecraft. Relevant plasma parameters can be imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Selected physics results will be presented, together with an overview of the code. The physics results include spacecraft-charging simulations with geometry representative of the Van Allen Probes spacecraft, focusing on the conditions that can lead to significant spacecraft charging events. Second, results from a recent study that investigates the conditions for which a high-power (>keV) electron beam could be emitted from a magnetospheric spacecraft will be presented. The latter study proposes a spacecraft-charging mitigation strategy based on the plasma contactor technology that might allow beam experiments to operate in the low-density magnetosphere. High-power electron beams could be used for instance to establish magnetic-field-line connectivity between ionosphere and magnetosphere and help solving long-standing questions in ionospheric/magnetospheric physics.

  11. Microbial Certification of the MER spacecraft

    NASA Technical Reports Server (NTRS)

    Schubert, W. W.; Arakelian, T.; Barengoltz, J. B.; Chough, N. G.; Chung, S. Y.; Law, J.; Kirschner, L.; Koukol, R. C.; Newlin, L. E.; Morales, F.

    2003-01-01

    Spacecraft such as the Mars Exploration Rovers (MER) must meet acceptable microbial population levels prior to launch. Sensitive parts and materials prevent any single sterilization method from being used as a final step on the assembled spacecraft.

  12. NASA Spacecraft Monitors Continuing Burn of Arizona Largest-Ever Wildfire

    NASA Image and Video Library

    2011-06-22

    NASA Terra spacecraft acquired this image of the Wallow fire in Arizona on June 21, 2011; vegetation appears in red, bare ground in shades of tan, burned areas in black and very-dark red; and smoke from the active fire front appears gray.

  13. Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  14. A Lunar-Based Spacecraft Propulsion Concept - The Ion Beam Sail

    NASA Technical Reports Server (NTRS)

    Brown, Ian G.; Lane, John E.; Youngquist, Robert C.

    2006-01-01

    We describe a concept for spacecraft propulsion by means of an energetic ion beam, with the ion source fixed at the spacecraft starting point (e.g., a lunar-based ion beam generator) and not onboard the vessel. This approach avoids the substantial mass penalty associated with the onboard ion source and power supply hardware, and vastly more energetic ion beam systems can be entertained. We estimate the ion beam parameters required for various scenarios, and consider some of the constraints limiting the concept. We find that the "ion beam sail' approach can be viable and attractive for journey distances not too great, for example within the Earth-Moon system, and could potentially provide support for journeys to the inner planets.

  15. Measuring the spacecraft and environmental interactions of the 8-cm mercury ion thrusters on the P80-1 mission

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1981-01-01

    The subject interface measurements are described for the Ion Auxiliary Propulsion System (IAPS) flight test of two 8-cm thrusters. The diagnostic devices and the effects to be measured include: 1) quartz crystal microbalances to detect nonvolatile deposition due to thruster operation; 2) warm and cold solar cell monitors for nonvolatile and volatile (mercury) deposition; 3) retarding potential ion collectors to characterize the low energy thruster ionic efflux; and 4) a probe to measure the spacecraft potential and thruster generated electron currents to biased spacecraft surfaces. The diagnostics will also assess space environmental interactions of the spacecraft and thrusters. The diagnostic data will characterize mercury thruster interfaces and provide data useful for future applications.

  16. Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux, scattered impingement can have can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion relative is compared between the various interior locations and the external surface of an LEO spacecraft.

  17. Considerations and Architectures for Inter-Satellite Communications in Distributed Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Edwards, Bernard; Horne, William; Israel, David; Kwadrat, Carl; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    This paper will identify the important characteristics and requirements necessary for inter-satellite communications in distributed spacecraft systems and present analysis results focusing on architectural and protocol comparisons. Emerging spacecraft systems plan to deploy multiple satellites in various "distributed" configurations ranging from close proximity formation flying to widely separated constellations. Distributed spacecraft configurations provide advantages for science exploration and operations since many activities useful for missions may be better served by distributing them between spacecraft. For example, many scientific observations can be enhanced through spatially separated platforms, such as for deep space interferometry. operating multiple distributed spacecraft as a mission requires coordination that may be best provided through inter-satellite communications. For example, several future distributed spacecraft systems envision autonomous operations requiring relative navigational calculations and coordinated attitude and position corrections. To conduct these operations, data must be exchanged between spacecraft. Direct cross-links between satellites provides an efficient and practical method for transferring data and commands. Unlike existing "bent-pipe" relay networks supporting space missions, no standard or widely-used method exists for cross-link communications. Consequently, to support these future missions, the characteristics necessary for inter-satellite communications need to be examined. At first glance, all of the missions look extremely different. Some missions call for tens to hundreds of nano-satellites in constant communications in close proximity to each other. Other missions call for a handful of satellites communicating very slowly over thousands to hundreds of thousands of kilometers. The paper will first classify distributed spacecraft missions to help guide the evaluation and definition of cross-link architectures and

  18. Standardization and economics of nuclear spacecraft: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft were investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 2200 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification.

  19. Message Mode Operations for Spacecraft: A Proposal for Operating Spacecraft During Cruise and Mitigating the Network Loading Crunch

    NASA Technical Reports Server (NTRS)

    Greenberg, Ed; MacMedan, Marv; Kazz, Greg; Kallemeyn, Pieter

    2000-01-01

    The NASA Deep Space Network (DSN) is a world-class spacecraft tracking facility with stations located in Spain, Australia and USA, servicing Deep Space Missions of many space agencies. The current system of scheduling spacecraft during cruise for multiple 8 hour tracking sessions per week currently leads to an overcommitted DSN. Studies indicate that future projected mission demands upon the Network will only make the loading problem worse. Therefore, a more efficient scheduling of DSN resources is necessary in order to support the additional network loading envisioned in the next few years: The number of missions is projected to increase from 25 in 1998 to 34 by 2001. In fact given the challenge of the NASA administrator, Dan Goldin, of launching 12 spacecraft per year, the DSN would be tracking approximately 90 spacecraft by 2010. Currently a large amount of antenna time and network resources are subscribed by a project in order to have their mission supported during the cruise phase. The recently completed Mars Pathfinder mission was tracked 3 times a week (8 hours/day) during the majority of its cruise to Mars. This paper proposes an innovative approach called Message Mode Operations (MMO) for mitigating the Network loading problem while continuing to meet the tracking, reporting, time management, and scheduling requirements of these missions during Cruise while occupying very short tracking times. MMO satisfies these requirements by providing the following services: Spacecraft Health and Welfare Monitoring Service Command Delivery Service Adaptive Spacecraft Scheduling Service Orbit Determination Service Time Calibration Service Utilizing more efficient engineering telemetry summarization and filtering techniques on-board the spacecraft and collapsing the navigation requirements for Doppler and Range into shorter tracks, we believe spacecraft can be adequately serviced using short 10 to 30 minute tracking sessions. This claim assumes that certain changes would

  20. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    NASA Technical Reports Server (NTRS)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  1. Calculation of secondary-electron escape currents from inclined-spacecraft surfaces in a magnetic field

    NASA Technical Reports Server (NTRS)

    Laframboise, J. G.

    1985-01-01

    In low Earth orbit, the geomagnetic field B(vector) is strong enough that secondary electrons emitted from spacecraft surfaces have an average gyroradius much smaller than typical dimensions of large spacecraft. This implies that escape of secondaries will be strongly inhibited on surfaces which are nearly parallel to B(vector), even if a repelling electric field exists outside them. This effect is likely to make an important contribution to the current balance and hence the equilibrium potential of such surfaces, making high voltage charging of them more likely. Numerically calculated escaping secondary electron fluxes are presented for these conditions. For use in numerical spacecraft charging simulations, an analytic curve fit to these results is given which is accurate to within 3% of the emitted current.

  2. Spacecraft detumbling through energy dissipation

    NASA Technical Reports Server (NTRS)

    Fitz-Coy, Norman; Chatterjee, Anindya

    1993-01-01

    The attitude motion of a tumbling, rigid, axisymmetric spacecraft is considered. A methodology for detumbling the spacecraft through energy dissipation is presented. The differential equations governing this motion are stiff, and therefore an approximate solution, based on the variation of constants method, is developed and utilized in the analysis of the detumbling strategy. Stability of the detumbling process is also addressed.

  3. The Hughes HS601HP spacecraft power subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krummann, W.; Ayvazian, H.

    1998-07-01

    The introduction of the Hughes HS 601HP (high power) spacecraft product line continuous the highly successful HS601 three axis stabilized geosynchronus spacecraft with increased power capabilities for larger payload applications. The enhanced power capabilities of the HS 601HP are built upon the heritage of 29 HS601 spacecraft presently in operation. The HS 601HP accommodates payload power ranges of 3 to 7 kilowatts and provides a smooth transition from the lower power HS 601 spacecraft to the HS 702 spacecraft, which has a payload capability up to 13 kilowatts. The HS 601HP spacecraft is designed for a 15 year life withmore » minimal operator interaction. The HS 601HP power subsystem provides a regulated power bus with a voltage range of 52 to 53 volts during all operational phases. The power subsystem is tailored to the specific needs of the spacecraft by selecting standard products from the HS 601HP power catalog. The solar arrays, battery, power control electronics and power distribution electronics are all modular and configurable to the requirements of the spacecraft. The HS 601HP solar array is the primary power source for the spacecraft. The solar array is comprised of two sets of planar solar panels (solar wings) which track the sun in a single spacecraft axis. The solar cells are selected from three different types based upon the spacecraft power generation requirements; silicon, single junction gallium arsenide or dual junction gallium arsenide. The maximum power capability at end of life (15 years, summer solstice) ranges from 4 to 7.7 kilowatts for the three types of solar cells. The HS 601HP battery is the power source for the spacecraft during eclipse and peak sunlight power periods. The battery is comprised of four individual battery packs connected in series to produce a single battery. Each battery pack can accommodate a maximum of eight battery cells with a capacity of 350 ampere-hours. The battery pack also provides for mounting of all

  4. Spacecraft Hybrid Control At NASA: A Look Back, Current Initiatives, and Some Future Considerations

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheels failures on aging, but still scientifically productive, NASA spacecraft. This paper describes the highlights of the first NASA Cross-Center Hybrid Control Workshop that was held in Greenbelt, Maryland in April of 2013 under the sponsorship of the NASA Engineering and Safety Center (NESC). A brief historical summary of NASA's past experiences with spacecraft mixed actuator hybrid attitude control approaches, some of which were implemented on-orbit, will be provided. This paper will also convey some of the lessons learned and best practices captured at that workshop. Some relevant recent and current hybrid control activities will be described with an emphasis on work in support of a repurposed Kepler spacecraft. Specific technical areas for future considerations regarding spacecraft hybrid control will also be identified.

  5. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  6. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  7. Neptune aerocapture mission and spacecraft design overview

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora

    2004-01-01

    A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.

  8. Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Wright, D. M.; Clausen, L. B. N.; Fear, R. C.; Robinson, T. R.; Yeoman, T. K.

    2009-09-01

    Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR.

  9. Vehicle Charging And Potential (VCAP)

    NASA Astrophysics Data System (ADS)

    Roberts, B.

    1986-01-01

    The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.

  10. Vehicle Charging And Potential (VCAP)

    NASA Astrophysics Data System (ADS)

    Roberts, W. T.

    The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.

  11. The NEAR Spacecraft's Flyby of Asteroid 253 Mathilde

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Barriot, J. P.; Dunham, D. W.; Farquhar, R. W.; Helfrich, C. E.; Konopliv, A. S.; McAdams, J. V.; Miller, J. K.; Owen, W. M., Jr.; Scheeres, D. J.; hide

    1997-01-01

    The Terminal navigation of the NEAR spacecraft during its close flyby of asteroid 253 Mathilde involved coordinated efforts first to determine the heliocentric orbits of the spacecraft and Mathilde and then to determine the relative trajectory of the spacecraft with respect to Mathilde.

  12. Spacecraft exploration of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas C.; Zakharov, Alexander V.; Hoffmann, Harald; Guinness, Edward A.

    2014-11-01

    We review the previous exploration of Phobos and Deimos by spacecraft. The first close-up images of Phobos and Deimos were obtained by the Mariner 9 spacecraft in 1971, followed by much image data from the two Viking orbiters at the end of the 70s, which formed the basis for early Phobos and Deimos shape and dynamic models. The Soviet Phobos 2 spacecraft came within 100 km of landing on Phobos in 1988. Mars Global Surveyor (1996-2006) and Mars Reconnaissance Orbiter (since 2005) made close-up observations of Phobos on several occasions. Mars Express (since 2003) in its highly elliptical orbit is currently the only spacecraft to make regular Phobos encounters and has returned large volumes of science data for this satellite. Landers and rovers on the ground (Viking Landers, Mars Pathfinder, MER rovers, MSL rover) frequently made observations of Phobos, Deimos and their transits across the solar disk.

  13. TDRS-M Spacecraft Encapsulation

    NASA Image and Video Library

    2017-08-02

    Inside the Astrotech facility in Titusville, Florida, NASA's Tracking and Data Relay Satellite, TDRS-M, is encapsulated into ULA's Atlas V payload fairing. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18, 2017.

  14. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    NASA Technical Reports Server (NTRS)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  15. Spacecraft design project multipurpose satellite bus MPS

    NASA Technical Reports Server (NTRS)

    Kellman, Lyle; Riley, John; Szostak, Michael; Watkins, Joseph; Willhelm, Joseph; Yale, Gary

    1990-01-01

    The thrust of this project was to design not a single spacecraft, but to design a multimission bus capable of supporting several current payloads and unnamed, unspecified future payloads. Spiraling costs of spacecraft and shrinking defense budgets necessitated a fresh look at the feasibility of a multimission spacecraft bus. The design team chose two very diverse and different payloads, and along with them two vastly different orbits, to show that multimission spacecraft buses are an area where indeed more research and effort needs to be made. Tradeoffs, of course, were made throughout the design, but optimization of subsystem components limited weight and volume penalties, performance degradation, and reliability concerns. Simplicity was chosen over more complex, sophisticated and usually more efficient designs. Cost of individual subsystem components was not a primary concern in the design phase, but every effort was made to chose flight tested and flight proven hardware. Significant cost savings could be realized if a standard spacecraft bus was indeed designed and purchased in finite quantities.

  16. Spacecraft Dynamics and Control Program at AFRPL

    NASA Technical Reports Server (NTRS)

    Das, A.; Slimak, L. K. S.; Schloegel, W. T.

    1986-01-01

    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.

  17. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  18. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  19. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  20. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  1. MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael

    1998-01-01

    MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.

  2. Spacecraft Heat Rejection Methods: Active and Passive Heat Transfer for Electronic Systems.

    DTIC Science & Technology

    1986-08-29

    Storage in avionics, spacecraft and electronics ,;"ters. Microencapsulated phase change materials (PCMs) in a two-component water SlUrrv- were useo with...capsules was observed in the pumping process. Inaddition, both microencapsulated and pure PCM were used to passively reduce tile tempera- tuo .tremes of...conducted as a Phase I Small Business Innovation Research (SBIR) program to explore the feasibility of using microencapsulated phase change materials (PCM) in

  3. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  4. Summary of spacecraft technology, systems reliability, and tracking data acquisition

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Goddard activities are reported for 1973. An eight-year flight schedule for projected space missions is presented. Data acquired by spacecraft in the following disciplines are described: stellar ultraviolet, stellar X-rays, stellar gamma rays, solar radiation, radio astronomy, particles/fields, magnetosphere, aurora, and the upper atmosphere.

  5. Artist concept of Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  6. High Energy Failure Containment for Spacecraft

    NASA Technical Reports Server (NTRS)

    Pektas, Pete; Baker, Christopher

    2011-01-01

    Objective: The objective of this paper will be to investigate advancements and any commonality between spacecraft debris containment and the improvements being made in ballistic protection. Scope: This paper will focus on cross application of protection devices and methods, and how they relate to protecting humans from failures in spacecraft. The potential gain is to reduce the risk associated with hardware failure, while decreasing the weight and size of energy containment methods currently being used by the government and commercial industry. Method of Approach: This paper will examine testing that has already been accomplished in regards to the failure of high energy rotating hardware and compare it to advancements in ballistic protection. Examples are: DOT research and testing of turbine containment as documented in DOT/FAA/AR-96/110, DOT/FAA/AR-97/82, DOT/FAA/AR-98/22. It will also look at work accomplished by companies such as ApNano and IBD Deisenroth in the development of nano ceramics and nanometric steels. Other forms of energy absorbent materials and composites will also be considered and discussed. New Advances in State of the Art: There have been numerous advances in technology in regards to high energy debris containment and in the similar field of ballistic protection. This paper will discuss methods such as using impregnated or dry Kevlar, ceramic, and nano-technology which have been successfully tested but are yet to be utilized in spacecraft. Reports on tungsten disulfide nanotubes claim that they are 4-5 times stronger than steel and reports vary about the magnitude increase over Kevlar, but it appears to be somewhere in the range of 2-6 times stronger. This technology could also have applications in the protection of pressure vessels, motor housings, and hydraulic component failures.

  7. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  8. The Challenge of Planning and Execution for Spacecraft Mobile Robots

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Gawdiak, Yuri; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The need for spacecraft mobile robots continues to grow. These robots offer the potential to increase the capability, productivity, and duration of space missions while decreasing mission risk and cost. Spacecraft Mobile Robots (SMRs) can serve a number of functions inside and outside of spacecraft from simpler tasks, such as performing visual diagnostics and crew support, to more complex tasks, such as performing maintenance and in-situ construction. One of the predominant challenges to deploying SMRs is to reduce the need for direct operator interaction. Teleoperation is often not practical due to the communication latencies incurred because of the distances involved and in many cases a crewmember would directly perform a task rather than teleoperate a robot to do it. By integrating a mixed-initiative constraint-based planner with an executive that supports adjustably autonomous control, we intend to demonstrate the feasibility of autonomous SMRs by deploying one inside the International Space Station (ISS) and demonstrate in simulation one that operates outside of the ISS. This paper discusses the progress made at NASA towards this end, the challenges ahead, and concludes with an invitation to the research community to participate.

  9. Research supporting potential modification of the NASA specification for dry heat microbial reduction of spacecraft hardware

    NASA Astrophysics Data System (ADS)

    Spry, James A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.

  10. Spacecraft Demand Access: Autonomy for Low-Cost Planetary Operations

    NASA Technical Reports Server (NTRS)

    Sweetnam, Donald

    1997-01-01

    In this paper we describe a new concept and prototype for dramtically reducing the cost of contact with planetary spacecraft. Known as spacecraft Demand Access, a suite of spacecraft and ground automation technologies, it enables future intelligent spacecraft to act as initiators of cost effective contact with the ground - doing it only when necessary.

  11. Precision slew/settle technologies for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Manning, R. A.; Spector, Victor A.

    1993-01-01

    Many spacecraft missions in the next decade will require both a high degree of agility and precision pointing. Agility includes both rotational maneuvering for retargeting and translational motion for orbit adjustment and threat avoidance. The major challenge associated with such missions is the need for control over a wide range of amplitudes and frequencies, ranging from tens of degrees at less than 1 Hz to a few micron radians at hundreds of Hz. TRW's internally funded Precision Control of Agile Spacecraft (PCAS) project is concerned with developing and validating in hardware the tools necessary to successfully complete the combined agile maneuvering/precision pointing missions. Development has been undertaken on a number of fronts for quietly slewing flexible structures. Various methods for designing slew torque profiles have been investigated. Prime candidates for slew/settle scenarios include Inverse Dynamics and Parameterized Function Space. Joint work with Processor Bayo at the University of California, Santa Barbara and Professor Flashner at the University of Southern California has led to promising torque profile design methods. Active and passive vibration suppression techniques also play a key role for rapid slew/settle mission scenarios. Active members with local control loops and passive members with high loss factor viscoelastic material have been selected for hardware verification. Progress in each of these areas produces large gains in the quiet slewing of flexible spacecraft. The main thrust of the effort to date has been the development of a modular testbed for hardware validation of the precision control concepts. The testbed is a slewing eighteen foot long flexible truss. Active and passive members can be interchanged with the baseline aluminum members to augment the inherent damping in the system. For precision control the active members utilize control laws running on a high speed digital structural control processor. Tip and midspan motions

  12. Particle-In-Cell Analysis of an Electric Antenna for the BepiColombo/MMO spacecraft

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu

    The BepiColombo/MMO spacecraft is planned to provide a first electric field measurement in Mercury's magnetosphere by mounting two types of the electric antennas: WPT and MEFISTO. The sophisticated calibration of such measurements should be performed based on precise knowledge of the antenna characteristics in space plasma. However, it is difficult to know prac-tical antenna characteristics considering the plasma kinetics and spacecraft-plasma interactions by means of theoretical approaches. Furthermore, some modern antenna designing techniques such as a "hockey puck" principle is applied to MEFISTO, which introduces much complexity in its overall configuration. Thus a strong demand arises regarding the establishment of a nu-merical method that can solve the complex configuration and plasma dynamics for evaluating the electric properties of the modern instrument. For the self-consistent antenna analysis, we have developed a particle simulation code named EMSES based on the particle-in-cell technique including a treatment antenna conductive sur-faces. In this paper, we mainly focus on electrostatic (ES) features and photoelectron distri-bution in the vicinity of MEFISTO. Our simulation model includes (1) a photoelectron guard electrode, (2) a bias current provided from the spacecraft body to the sensing element, (3) a floating potential treatment for the spacecraft body, and (4) photoelectron emission from sunlit surfaces of the conductive bodies. Of these, the photoelectron guard electrode is a key technol-ogy for producing an optimal condition of plasma environment around MEFISTO. Specifically, we introduced a pre-amplifier housing called puck located between the conductive boom and the sensor wire. The photoelectron guard is then simulated by forcibly fixing the potential difference between the puck surface and the spacecraft body. For the modeling, we use the Capacity Matrix technique in order to assure the conservation condition of total charge owned by the

  13. Onboard Classifiers for Science Event Detection on a Remote Sensing Spacecraft

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Mazzoni, Dominic; Tang, Nghia; Greeley, Ron; Doggett, Thomas; Cichy, Ben; Chien, Steve; Davies, Ashley

    2006-01-01

    Typically, data collected by a spacecraft is downlinked to Earth and pre-processed before any analysis is performed. We have developed classifiers that can be used onboard a spacecraft to identify high priority data for downlink to Earth, providing a method for maximizing the use of a potentially bandwidth limited downlink channel. Onboard analysis can also enable rapid reaction to dynamic events, such as flooding, volcanic eruptions or sea ice break-up. Four classifiers were developed to identify cryosphere events using hyperspectral images. These classifiers include a manually constructed classifier, a Support Vector Machine (SVM), a Decision Tree and a classifier derived by searching over combinations of thresholded band ratios. Each of the classifiers was designed to run in the computationally constrained operating environment of the spacecraft. A set of scenes was hand-labeled to provide training and testing data. Performance results on the test data indicate that the SVM and manual classifiers outperformed the Decision Tree and band-ratio classifiers with the SVM yielding slightly better classifications than the manual classifier.

  14. One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Relative Motion Experiments

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.

    Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial

  15. Mariner-C Spacecraft Model

    NASA Image and Video Library

    1964-06-21

    A model of the Mariner-C spacecraft at the National Aeronautics and Space Administration (NASA) Lewis Research Center for a June 1964 Conference on New Technology. Mariner-C and Mariner-D were identical spacecraft designed by the Jet Propulsion Laboratory to flyby Mars and photograph the Martian surface. Mariner-C was launched on November 4, 1964, but the payload shroud did not jettison properly and the spacecraft’s battery power did not function. The mission ended unsuccessfully two days later. Mariner-D was launched as designed on November 28, 1964 and became the first successful mission to Mars. It was the first time a planet was photographed from space. Mariner-D’s 21 photographs revealed an inhospitable and barren landscape. The two Mariner spacecraft were launched by Atlas-Agena-D rockets. Lewis had taken over management of the Agena Program in October 1962. There had been five failures and two partial failures in the 17 Agena launches before being taken over by NASA Lewis. Lewis, however, oversaw 28 successful Agena missions between 1962 and 1968, including several Rangers and the Mariner Venus '67.

  16. Computerized atmospheric trace contaminant control simulation for manned spacecraft

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1993-01-01

    Buildup of atmospheric trace contaminants in enclosed volumes such as a spacecraft may lead to potentially serious health problems for the crew members. For this reason, active control methods must be implemented to minimize the concentration of atmospheric contaminants to levels that are considered safe for prolonged, continuous exposure. Designing hardware to accomplish this has traditionally required extensive testing to characterize and select appropriate control technologies. Data collected since the Apollo project can now be used in a computerized performance simulation to predict the performance and life of contamination control hardware to allow for initial technology screening, performance prediction, and operations and contingency studies to determine the most suitable hardware approach before specific design and testing activities begin. The program, written in FORTRAN 77, provides contaminant removal rate, total mass removed, and per pass efficiency for each control device for discrete time intervals. In addition, projected cabin concentration is provided. Input and output data are manipulated using commercial spreadsheet and data graphing software. These results can then be used in analyzing hardware design parameters such as sizing and flow rate, overall process performance and program economics. Test performance may also be predicted to aid test design.

  17. Effort to recover SOHO spacecraft continue as investigation board focuses on most likely causes

    NASA Astrophysics Data System (ADS)

    1998-07-01

    Meanwhile, the ESA/NASA investigation board concentrates its inquiry on three errors that appear to have led to the interruption of communications with SOHO on June 25. Officials remain hopeful that, based on ESA's successful recovery of the Olympus spacecraft after four weeks under similar conditions in 1991, recovery of SOHO may be possible. The SOHO Mission Interruption Joint ESA/NASA Investigation Board has determined that the first two errors were contained in preprogrammed command sequences executed on ground system computers, while the last error was a decision to send a command to the spacecraft in response to unexpected telemetry readings. The spacecraft is controlled by the Flight Operations Team, based at NASA's Goddard Space Flight Center, Greenbelt, MD. The first error was in a preprogrammed command sequence that lacked a command to enable an on-board software function designed to activate a gyro needed for control in Emergency Sun Reacquisition (ESR) mode. ESR mode is entered by the spacecraft in the event of anomalies. The second error, which was in a different preprogrammed command sequence, resulted in incorrect readings from one of the spacecraft's three gyroscopes, which in turn triggered an ESR. At the current stage of the investigation, the board believes that the two anomalous command sequences, in combination with a decision to send a command to SOHO to turn off a gyro in response to unexpected telemetry values, caused the spacecraft to enter a series of ESRs, and ultimately led to the loss of control. The efforts of the investigation board are now directed at identifying the circumstances that led to the errors, and at developing a recovery plan should efforts to regain contact with the spacecraft succeed. ESA and NASA engineers believe the spacecraft is currently spinning with its solar panels nearly edge-on towards the Sun, and thus not generating any power. Since the spacecraft is spinning around a fixed axis, as the spacecraft progresses

  18. An interactive computer program for sizing spacecraft momentum storage devices

    NASA Technical Reports Server (NTRS)

    Wilcox, F. J., Jr.

    1980-01-01

    An interactive computer program was developed which computes the sizing requirements for nongimbled reaction wheels, control moment gyros (CMG), and dual momentum control devices (DMCD) used in Earth-orbiting spacecraft. The program accepts as inputs the spacecraft's environmental disturbance torques, rotational inertias, maneuver rates, and orbital data. From these inputs, wheel weights are calculated for a range of radii and rotational speeds. The shape of the momentum wheel may be chosen to be either a hoop, solid cylinder, or annular cylinder. The program provides graphic output illustrating the trade-off potential between the weight, radius, and wheel speed. A number of the intermediate calculations such as the X-, Y-, and Z-axis total momentum, the momentum absorption requirements for reaction wheels, CMG's, DMCD's, and basic orbit analysis information are also provided as program output.

  19. Prediction, Measurement, and Control of Spacecraft Charging Hazards on the International Space Station(ISS)

    NASA Astrophysics Data System (ADS)

    Koontz, Steve; Alred, John; Ellison, Amy; Patton, Thomas; Minow, Joseph; Spetch, William

    2010-09-01

    Orbital inclination, 51.6 degrees, and altitude range, 300 to 400 km,(low-Earth orbit or LEO) determine the ISS spacecraft charging environment. Specific interactions of the ISS electrical power system and metallic structure with the Earth’s ionospheric plasma and the geomagnetic field dominate spacecraft charging processes for ISS. ISS also flies through auroral electron streams at high latitudes. In this paper, we report the character of ISS spacecraft charging processes in Earth’s ionosphere, the results of measurement and modelling of the subject charging processes, and the safety issues for ISS itself as well as for ISS interoperability with respect to extra vehicular activity(EVA) and visiting vehicle proximity operations.

  20. Program for Editing Spacecraft Command Sequences

    NASA Technical Reports Server (NTRS)

    Gladden, Roy; Waggoner, Bruce; Kordon, Mark; Hashemi, Mahnaz; Hanks, David; Salcedo, Jose

    2006-01-01

    Sequence Translator, Editor, and Expander Resource (STEER) is a computer program that facilitates construction of sequences and blocks of sequences (hereafter denoted generally as sequence products) for commanding a spacecraft. STEER also provides mechanisms for translating among various sequence product types and quickly expanding activities of a given sequence in chronological order for review and analysis of the sequence. To date, construction of sequence products has generally been done by use of such clumsy mechanisms as text-editor programs, translating among sequence product types has been challenging, and expanding sequences to time-ordered lists has involved arduous processes of converting sequence products to "real" sequences and running them through Class-A software (defined, loosely, as flight and ground software critical to a spacecraft mission). Also, heretofore, generating sequence products in standard formats has been troublesome because precise formatting and syntax are required. STEER alleviates these issues by providing a graphical user interface containing intuitive fields in which the user can enter the necessary information. The STEER expansion function provides a "quick and dirty" means of seeing how a sequence and sequence block would expand into a chronological list, without need to use of Class-A software.

  1. Differential Evolution Optimization for Targeting Spacecraft Maneuver Plans

    NASA Technical Reports Server (NTRS)

    Mattern, Daniel

    2016-01-01

    Previous analysis identified specific orbital parameters as being safer for conjunction avoidance for the TDRS fleet. With TDRS-9 being considered an at-risk spacecraft, a potential conjunction concern was raised should TDRS-9 fail while at a longitude of 12W. This document summarizes the analysis performed to identify if these specific orbital parameters could be targeted using the remaining drift-termination maneuvers for the relocation of TDRS-9 from 41W longitude to 12W longitude.

  2. Assessment and Control of International Space Station Spacecraft Charging Risks

    NASA Astrophysics Data System (ADS)

    Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.

    2003-12-01

    Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis

  3. Team X Spacecraft Instrument Database Consolidation

    NASA Technical Reports Server (NTRS)

    Wallenstein, Kelly A.

    2005-01-01

    In the past decade, many changes have been made to Team X's process of designing each spacecraft, with the purpose of making the overall procedure more efficient over time. One such improvement is the use of information databases from previous missions, designs, and research. By referring to these databases, members of the design team can locate relevant instrument data and significantly reduce the total time they spend on each design. The files in these databases were stored in several different formats with various levels of accuracy. During the past 2 months, efforts have been made in an attempt to combine and organize these files. The main focus was in the Instruments department, where spacecraft subsystems are designed based on mission measurement requirements. A common database was developed for all instrument parameters using Microsoft Excel to minimize the time and confusion experienced when searching through files stored in several different formats and locations. By making this collection of information more organized, the files within them have become more easily searchable. Additionally, the new Excel database offers the option of importing its contents into a more efficient database management system in the future. This potential for expansion enables the database to grow and acquire more search features as needed.

  4. Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials

    NASA Astrophysics Data System (ADS)

    Lee, Nicolas; Close, Sigrid; Goel, Ashish; Lauben, David; Linscott, Ivan; Johnson, Theresa; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf

    2013-03-01

    Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10-16 g to 10-11 g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather

  5. Conducted Transients on Spacecraft Primary Power Lines

    NASA Technical Reports Server (NTRS)

    Mc Closkey, John; Dimov, Jen

    2017-01-01

    One of the sources of potential interference on spacecraft primary power lines is that of conducted transients resulting from equipment being switched on and off of the bus. Susceptibility to such transients is addressed by some version of the CS06 requirement of MIL-STD-461462. This presentation provides a summary of the history of the CS06 requirement and test method, a basis for understanding of the sources of these transients, analysis techniques for determining their worst-case characteristics, and guidelines for minimizing their magnitudes and applying the requirement appropriately.

  6. Investigation of Periodic-Disturbance Identification and Rejection in Spacecraft

    DTIC Science & Technology

    2006-08-01

    linear theory. Therefore, it is of interest to examine its efficacy on the current nonlinear spacecraft model. In addition, the robustness of the...School, Monterey, California 93943 Spacecraft periodic-disturbance rejection using a realistic spacecraft hardware simulator and its associated models...is investigated. The effectiveness of the dipole-type disturbance rejection filter on the current realistic nonlinear rigid-body spacecraft model is

  7. Concurrent engineering: Spacecraft and mission operations system design

    NASA Technical Reports Server (NTRS)

    Landshof, J. A.; Harvey, R. J.; Marshall, M. H.

    1994-01-01

    Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.

  8. Spacecraft wall design for increased protection against penetration by space debris impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Tullos, Randy J.

    1990-01-01

    All orbiting spacecraft are susceptible to impacts by meteoroids and pieces of orbital space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. The design of a spacecraft for a long-duration mission into the meteoroid and space debris environment must include adequate protection against perforation of pressurized components by such impacts. This paper presents the results of an investigation into the perforation resistance of dual-wall structural systems fabricated with monolithic bumper plates and with corrugated bumper plates of equal weight. A comparative analysis of the impact damage in dual-wall systems with corrugated bumper specimens and that in dual-wall specimens with monolithic bumpers of similar weight is performed to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for long-duration spacecraft. The analysis indicates that a significant increase in perforation protection can be achieved if a monolithic bumper is replaced by a corrugated bumper of equal weight. The parameters of the corrugations in the corrugated bumper plates are optimized in a manner that minimizes the potential for the creation of ricochet debris in the event of an oblique hypervelocity impact. Several design examples using the optimization scheme are presented and discussed.

  9. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  10. Revamping Spacecraft Operational Intelligence

    NASA Technical Reports Server (NTRS)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  11. Anomalously high potentials observed on ISEE

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Krinsky, I. S.; Torbert, R. B.; Olsen, R. C.

    1985-01-01

    Data from two electric field experiments and from the plasma composition experiment on ISEE-1 are used to show that the spacecraft charged to close to -70 V in sunlight at 0700 UT on March 17, 1978. Data from the electron spectrometer experiment show that there was a potential barrier of -10 to -20 V about the spacecraft during this event. The potential barrier was effective in turning back emitted photoelectrons to the spacecraft. The stringent electrostatic cleanliness specifications imposed on ISEE make the presence of differential charging unlikely. Modeling of this event is required to determine if the barrier was produced by the presence of space charge.

  12. STS ancillary equipment study. [user reference book for multimission modular spacecraft missions

    NASA Technical Reports Server (NTRS)

    Plough, J. A.

    1977-01-01

    Spaceborne and ground ancillary equipment for multimission module spacecraft are listed to provide documentation for potential users interested in utilizing existing equipment rather than developing payload unique designs. The format of the data form contained in the Ancillary Equipment user reference book is discussed.

  13. Microbiological profiles of four Apollo spacecraft

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Oxborrow, G. S.; Fields, N. D.; Herring, C. M.; Smith, L. S.

    1973-01-01

    The levels and types of microorganisms on various components of four Apollo spacecraft were determined and compared. Although the results showed that the majority of microorganisms isolated were those considered to be indigenous to humans, an increase in organisms associated with soil and dust was noted with each successive Apollo spacecraft.

  14. Underactuated Spacecraft Control with Disturbance Compensation

    DTIC Science & Technology

    2015-08-31

    fuel, which shortens the spacecraft’s life. Hence with RW failures, the spacecraft becomes underactuated. Recent missions, such as Kepler and...R. Cowen, "The wheels come off Kepler ," URL: http://www.nature.com/news/ the-wheels- come-off- kepler -1.13032 [cited 18 October 2013]. [2] Moos

  15. Design feasibility via ascent optimality for next-generation spacecraft

    NASA Astrophysics Data System (ADS)

    Miele, A.; Mancuso, S.

    This paper deals with the optimization of the ascent trajectories for single-stage-sub-orbit (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem is studied for different values of the engine specific impulse and spacecraft structural factor. The main conclusions are that: feasibility of SSSO spacecraft is guaranteed for all the parameter combinations considered; feasibility of SSTO spacecraft depends strongly on the parameter combination chosen; not only feasibility of TSTO spacecraft is guaranteed for all the parameter combinations considered, but the TSTO payload is several times the SSTO payload. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, aerodynamic improvements do not yield significant improvements in payload. For SSSO, SSTO, and TSTO spacecraft, simple engineering approximations are developed connecting the maximum payload weight to the engine specific impulse and spacecraft structural factor. With reference to the specific impulse/structural factor domain, these engineering approximations lead to the construction of zero-payload lines separating the feasibility region (positive payload) from the unfeasibility region (negative payload).

  16. Apparatus and method of capturing an orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Harwell, William D. (Inventor); Gardner, Dale A. (Inventor)

    1987-01-01

    Apparatus and a method of capturing an orbiting spacecraft by attaching a grapple fixture are discussed. A probe is inserted into an opening, such as a rocket nozzle, in the spacecraft until a stop on the prove mechanism contacts the spacecraft. A lever is actuated releasing a spring loaded rod which moves axially along the probe removing a covering sleeve to expose spring loaded toffle fingers which pivot open engaging the side of the opening. The probe is shortened and tensioned by turning a screw thread, pressing the fingers inside of the opening to compress the spacecraft between the toggle fingers and the stop. A grapple fixture attached to the probe, which is thus secured to the spacecraft, is engaged by appropriate retrieval means such as a remote manipulator arm.

  17. Multi-Objective Online Initialization of Spacecraft Formations

    NASA Technical Reports Server (NTRS)

    Jeffrey, Matthew; Breger, Louis; How, Jonathan P.

    2007-01-01

    This paper extends a previously developed method for finding spacecraft initial conditions (ICs) that minimize the drift resulting from J2 disturbances while also minimizing the fuel required to attain those ICs. It generalizes the single spacecraft optimization to a formation-wide optimization valid for an arbitrary number of vehicles. Additionally, the desired locations of the spacecraft, separate from the starting location, can be specified, either with respect to a reference orbit, or relative to the other spacecraft in the formation. The three objectives (minimize drift, minimize fuel, and maintain a geometric template) are expressed as competing costs in a linear optimization, and are traded against one another through the use of scalar weights. By carefully selecting these weights and re-initializing the formation at regular intervals, a closed-loop, formation-wide control system is created. This control system can be used to reconfigure the formations on the fly, and creates fuel-efficient plans by placing the spacecraft in semi-invariant orbits. The overall approach is demonstrated through nonlinear simulations for two formations a GEO orbit, and an elliptical orbit.

  18. Remote sensing as a research tool. [sea ice surveillance from aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Zwally, H. J.

    1986-01-01

    The application of aircraft and spacecraft remote sensing techniques to sea ice surveillance is evaluated. The effects of ice in the air-sea-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of sea ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to sea ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and sea ice interactions. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and air, snow, and ice surface temperatures.

  19. APOLLO SPACECRAFT 017 - RECOVERY - ATLANTIC

    NASA Image and Video Library

    1967-11-09

    S67-49447 (9 Nov. 1967) --- Close-up view of the charred heat shield of the Apollo Spacecraft 017 Command Module aboard the USS Bennington. The damage was caused by the extreme heat of reentry. The carrier Bennington was the prime recovery ship for the Apollo 4 (Spacecraft 017/Saturn 501) unmanned, Earth-orbital space mission. Splashdown occurred at 3:37 p.m. (EST), Nov. 9, 1967, 934 nautical miles northwest of Honolulu, Hawaii.

  20. Spacecraft Thermal Control Coatings References

    NASA Technical Reports Server (NTRS)

    Kauder, Lonny

    2005-01-01

    The successful thermal design of spacecraft depends in part on a knowledge of the solar absorption and hemispherical emittance of the thermal control coatings used in and on the spacecraft. Goddard Space Flight Center has had since its beginning a group whose mission has been to provide thermal/optical properties data of thermal control coatings to thermal engineers. This handbook represents a summary of the data and knowledge accumulated over many years at GSFC.

  1. Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    NASA Astrophysics Data System (ADS)

    Bevilacqua, R.; Lehmann, T.; Romano, M.

    2011-04-01

    This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.

  2. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  3. Electrodeless plasma thrusters for spacecraft: A review

    NASA Astrophysics Data System (ADS)

    Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.

    2017-08-01

    The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.

  4. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  5. NASA STD-4005: The LEO Spacecraft Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2006-01-01

    Power systems with voltages higher than about 55 volts may charge in Low Earth Orbit (LEO) enough to cause destructive arcing. The NASA STD-4005 LEO Spacecraft Charging Design Standard will help spacecraft designers prevent arcing and other deleterious effects on LEO spacecraft. The Appendices, an Information Handbook based on the popular LEO Spacecraft Charging Design Guidelines by Ferguson and Hillard, serve as a useful explanation and accompaniment to the Standard.

  6. Spacecraft design project: Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  7. Spacecraft external molecular contamination analysis

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1990-01-01

    Control of contamination on and around spacecraft is required to avoid adverse effects on the performance of instruments and spacecraft systems. Recent work in this area is reviewed and discussed. Specific issues and limitations to be considered as part of the effort to predict contamination effects using modeling techniques are addressed. Significant results of Space Shuttle missions in the field of molecule/surface interactions as well as their implications for space station design and operation are reviewed.

  8. Validation of NASCAP-2K Spacecraft-Environment Interactions Calculations

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Mandell, M. J.; Gardner, B. M.; Mikellides, I. G.; Neergaard, L. F.; Cooke, D. L.; Minor, J.

    2004-01-01

    The recently released Nascap-2k, version 2.0, three-dimensional computer code models interactions between spacecraft surfaces and low-earth-orbit, geosynchronous, auroral, and interplanetary plasma environments. It replaces the earlier three-dimensional spacecraft interactions codes NASCAP/GEO, NASCAP/LEO, POLAR, and DynaPAC. Nascap-2k has improved numeric techniques, a modern user interface, and a simple, interactive satellite surface definition module (Object ToolKit). We establish the accuracy of Nascap-2k both by comparing computed currents and potentials with analytic results and by comparing Nascap-2k results with published calculations using the earlier codes. Nascap-2k predicts Langmuir-Blodgett or Parker-Murphy current collection for a nearly spherical (100 surfaces) satellite in a short Debye length plasma depending on the absence or presence of a magnetic field. A low fidelity (in geometry and time) Nascap-2k geosynchronous charging calculation gives the same results as the corresponding low fidelity NASCAP/GEO calculation. A high fidelity calculation (using the Nascap-2k improved geometry and time stepping capabilities) gives higher potentials, which are more consistent with typical observations. Nascap-2k predicts the same current as a function of applied potential as was observed and calculated by NASCAP/LEO for the SPEAR I rocket with a bipolar sheath. A Nascap-2k DMSP charging calculation gives results similar to those obtained using POLAR and consistent with observation.

  9. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  10. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  11. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  12. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  13. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  14. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  15. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  16. Integrated Thermal Insulation System for Spacecraft

    NASA Technical Reports Server (NTRS)

    Kolodziej, Paul (Inventor); Bull, Jeff (Inventor); Kowalski, Thomas (Inventor); Switzer, Matthew (Inventor)

    1998-01-01

    An integrated thermal protection system (TPS) for a spacecraft includes a grid that is bonded to skin of the spacecraft, e.g., to support the structural loads of the spacecraft. A plurality of thermally insulative, relatively large panels are positioned on the grid to cover the skin of the spacecraft to which the grid has been bonded. Each panel includes a rounded front edge and a front flange depending downwardly from the front edge. Also, each panel includes a rear edge formed with a rounded socket for receiving the rounded front edge of another panel therein, and a respective rear flange depends downwardly from each rear edge. Pins are formed on the front flanges, and pin receptacles are formed on the rear flanges, such that the pins of a panel mechanically interlock with the receptacles of the immediately forward panel. To reduce the transfer to the skin of heat which happens to leak through the panels to the grid, the grid includes stringers that are chair-shaped in cross-section.

  17. Collision detection for spacecraft proximity operations

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.

    1991-01-01

    A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.

  18. Spacecraft Solar Sails Containing Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2005-01-01

    A report discusses a proposal to use large, lightweight solar sails embedded with electrodynamic tethers (essentially, networks of wires) to (1) propel robotic spacecraft to distant planets, then (2) exploit the planetary magnetic fields to capture the spacecraft into orbits around the planets. The purpose of the proposal is, of course, to make it possible to undertake long interplanetary missions without incurring the large cost and weight penalties of conventional rocket-type propulsion systems. Through transfer of momentum from reflected solar photons, a sail would generate thrust outward from the Sun. Upon arrival in the vicinity of a planet, the electrodynamic tethers would be put to use: Motion of the spacecraft across the planetary magnetic field would induce electric currents in the tether wires, giving rise to an electromagnetic drag force that would be exploited to brake the spacecraft for capture into orbit. The sail with embedded tethers would be made to spin to provide stability during capture. Depending upon the requirements of a particular application, it could be necessary to extend the tether to a diameter greater than that of the sail.

  19. Using spacecraft trace contaminant control systems to cure sick building syndrome

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1994-01-01

    Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.

  20. Orbit Determination During Spacecraft Emergencies with Sparse Tracking Data - THEMIS and TDRS-3 Lessons Learned

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.

    2008-01-01

    This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.