Science.gov

Sample records for active species responsible

  1. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound.

    PubMed

    Jorgenson, Z G; Buhl, K; Bartell, S E; Schoenfuss, H L

    2015-01-01

    Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption-as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration-than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered Rio

  2. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound

    USGS Publications Warehouse

    Jorgenson, Zachary G.; Buhl, Kevin J.; Bartell, Stephen E.; Schoenfuss, Heiko L.

    2015-01-01

    Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption—as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration—than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered

  3. Multivariate data analysis to evaluate the fingerprint peaks responsible for the cytotoxic activity of Mallotus species.

    PubMed

    Tistaert, C; Chataigné, G; Dejaegher, B; Rivière, C; Nguyen Hoai, N; Chau Van, M; Quetin-Leclercq, J; Vander Heyden, Y

    2012-12-01

    The Mallotus genus comprises numerous species used as traditional medicines in oriental countries and provides scientists a broad basis in the search for pharmacologically active constituents. In this paper, the cytotoxicity of 39 Mallotus extracts, different in species, part of the plant used, origin, and harvest season, is evaluated combining cytotoxicity assays with fingerprint technology and data handling tools. At first, the antiproliferative activity of the plant extracts is analyzed both on a non-cancerous cell line (WI-38--human lung fibroblast) and on a cancerous cell line (HeLa human cervix carcinoma). The results are linked to a data set of high-performance liquid chromatographic fingerprint profiles of the samples using multivariate calibration techniques. The regression coefficients of the multivariate model are then evaluated to indicate those peaks potentially responsible for the cytotoxic activity of the Mallotus extracts. In a final step, the cytotoxic extracts are analyzed by HPLC-MS and the indicated peaks identified.

  4. Distribution of the trehalase activation response and the regulatory trehalase gene among yeast species.

    PubMed

    Soto, T; Fernández, J; Cansado, J; Vicente, J; Gacto, M

    1997-12-01

    In Saccharomyces cerevisiae and other yeasts the activity of regulatory trehalases increases in response to the addition of glucose and to thermal changes in the extracellular medium. We have performed an screening on the extent of this response among different representative yeast species and the results show that this ability is displayed only by a few members of the Saccharomycetaceae family. However, all yeasts examined contain a gene related to that coding for regulatory trehalase in S. cerevisiae. This finding reveals that the operational distinction between regulatory and nonregulatory trehalase in yeasts is not a property of the enzyme by itself but relays on the expression of accompanying mechanisms able to modulate trehalase activity.

  5. Changes in GDPase/UDPase enzymatic activity in response to oxidative stress in four Candida species.

    PubMed

    Delgado-Carmona, Jenny Daniela; Ramírez-Quijas, Mayra Denisse; Vega-González, Arturo; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2015-07-01

    The terminal processing of proteins and lipids occurs in the Golgi apparatus and involves the transport of sugar nucleotides into the Golgi lumen by specific carriers and the accumulation of nucleoside diphosphates (NDPs) as a result of oligosaccharide-protein glycosyltransferase activity. NDPs are converted into the corresponding nucleoside monophosphates (NMPs) by nucleoside diphosphatases (NDPases), thus relieving inhibition of sugar transferases. In addition, NMPs are then exchanged for equimolecular amounts of cytosolic sugar nucleotides by antiport transport systems. NDPases, commonly GDPase and UDPase, thus play a critical role in glycoprotein maturation and may influence fungal pathogenesis, morphogenesis, and cell wall properties. Interest of this laboratory has recently focused on the effect of reactive oxygen species (ROS) on enzymes involved in detoxification of these oxidants and on the metabolism of biomolecules such as lipids, nucleic acids, and proteins in human pathogenic Candida species. We therefore consider it important to extend these studies to determine how GDPase and UDPase are affected after exposure of cells to oxidants such as menadione, a superoxide (O2 (•-))-generator, and H2O2. Results indicate that activity of both enzymes decrease in response to these agents suggesting that ROS may also affect other critical cell functions such as protein glycosylation.

  6. Development of HPLC fingerprints for Mallotus species extracts and evaluation of the peaks responsible for their antioxidant activity.

    PubMed

    Nguyen Hoai, N; Dejaegher, B; Tistaert, C; Nguyen Thi Hong, V; Rivière, C; Chataigné, G; Phan Van, K; Chau Van, M; Quetin-Leclercq, J; Vander Heyden, Y

    2009-12-05

    Some Mallotus species are used in traditional medicine in Vietnam. To use certain species in Western medicines or as food supplements, they should be identified and quality control should be more strict, for instance, to avoid the erroneous switching of species. In species with interesting activities, the compounds responsible for them should be identified. For these identifications, HPLC fingerprint methodology can be used. In this paper, HPLC fingerprints of different lengths were developed for a number of Mallotus species. Secondly, a multivariate regression model was constructed to model the antioxidant activity of the Mallotus samples from the HPLC fingerprints with the aim to indicate peaks possibly responsible for this activity. For this purpose, after data pretreatment, the calibration technique partial least squares (PLS) was applied.

  7. Reactive Oxygen and Nitrogen Species in Defense/Stress Responses Activated by Chitosan in Sycamore Cultured Cells

    PubMed Central

    Malerba, Massimo; Cerana, Raffaella

    2015-01-01

    Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation. PMID:25642757

  8. Physiological Response and Habituation of Endangered Species to Military Training Activities

    DTIC Science & Technology

    2009-11-01

    nest survival rate and mean number of fledglings produced per egg for birds from each treatment...Figure 49. Plot of median HR versus fractional day (CDT) for six birds before and after alternating periods of nest searching, sitting and chase during... nests by parental birds in response to a perceived threat may enhance parental survival at the cost of reduced nestling survival (Steidl and Anthony

  9. Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes.

    PubMed

    Nedelcu, Aurora M; Marcu, Oana; Michod, Richard E

    2004-08-07

    Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell-cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage--the multicellular green alga Volvox carteri--sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex-inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS-induced DNA damage.

  10. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  11. Bacterial responses to reactive chlorine species.

    PubMed

    Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research.

  12. Activity response to climate seasonality in species with fossorial habits: a niche modeling approach using the lowland burrowing treefrog (Smilisca fodiens).

    PubMed

    Encarnación-Luévano, Alondra; Rojas-Soto, Octavio R; Sigala-Rodríguez, J Jesús

    2013-01-01

    The importance of climatic conditions in shaping the geographic distribution of amphibian species is mainly associated to their high sensitivity to environmental conditions. How they cope with climate gradients through behavioral adaptations throughout their distribution is an important issue due to the ecological and evolutionary implications for population viability. Given their low dispersal abilities, the response to seasonal climate changes may not be migration, but behavioral and physiological adaptations. Here we tested whether shifts in climatic seasonality can predict the temporal variation of surface activity of the fossorial Lowland Burrowing Treefrog (Smilisca fodiens) across its geographical distribution. We employed Ecological Niche Modeling (ENM) to perform a monthly analysis of spatial variation of suitable climatic conditions (defined by the July conditions, the month of greatest activity), and then evaluated the geographical correspondence of monthly projections with the occurrence data per month. We found that the species activity, based on the species' occurrence data, corresponds with the latitudinal variation of suitable climatic conditions. Due to the behavioral response of this fossorial frog to seasonal climate variation, we suggest that precipitation and temperature have played a major role in the definition of geographical and temporal distribution patterns, as well as in shaping behavioral adaptations to local climatic conditions. This highlights the influence of macroclimate on shaping activity patterns and the important role of fossorials habits to meet the environmental requirements necessary for survival.

  13. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate.

    PubMed

    Gomez-Lazaro, M; Galindo, M F; Melero-Fernandez de Mera, R M; Fernandez-Gómez, F J; Concannon, C G; Segura, M F; Comella, J X; Prehn, J H M; Jordan, J

    2007-03-01

    Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington's disease and ischemic stroke. We have shown previously that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative stress, cytochrome c release, and apoptotic cell death. Expression of a green fluorescent protein-Bax fusion protein in SH-SY5Y neuroblastoma cells demonstrated a Bax redistribution from the cytosol to mitochondria after 12 to 24 h of malonate treatment that coincided with mitochondrial potential collapse and chromatin condensation. Inhibition of Bax translocation using furosemide, as well as Bax gene deletion, afforded significant protection against malonate-induced apoptosis. Further experiments revealed that malonate induced a prominent increase in the level of activated p38 mitogen-activated protein (MAP) kinase and that treatment with the p38 MAP kinase inhibitor SKF86002 potently blocked malonate-induced Bax translocation and apoptosis. Treatment with vitamin E diminished ROS production, reduced the activation status of p38 MAP kinase, inhibited Bax translocation, and protected against malonate-induced apoptosis. Our data suggest that malonate-induced ROS production and subsequent p38 MAP kinase activation mediates the activation of the pro-apoptotic Bax protein to induce mitochondrial membrane permeabilization and neuronal apoptosis.

  14. The relationship between species and functional diversity for permafrost and active layer Arctic microorganisms: implications for decomposition in response to warming

    NASA Astrophysics Data System (ADS)

    Ernakovich, J. G.; Wallenstein, M. D.

    2012-12-01

    For higher organisms, decades of research has examined the relationship between species diversity and ecosystem function. In contrast, we know little about this relationship in bacterial communities. Recently, molecular techniques have been used to explore the impact of microbial community composition on ecosystem function, but results have been mixed when the response variable is an ecosystem flux rate, such as CO2 production. Despite the ambiguity of the link between ecosystem flux rate and microbial community composition, it is becoming clear that different consortia of bacterial taxa utilize different substrates. Thus, the relative rate at which various constituents of soil organic matter are decomposed may be affected by the particular taxa that are present and active. In permafrost soils, there is an added layer of complexity, because the community may composed of microorganisms selected for survival of extreme cold rather than those suited to decompose available carbon. Understanding the relationship between the species and functional diversity of the permafrost microbial community will inform our predictions of the fate of permafrost carbon as it thaws under a warmer climate. Permafrost and seasonally thawed ("active layer") soils were collected from Sagwon Hills, Alaska in August of 2009. The functional diversity of microbial communities was explored using Ecolog plates (Biolog, Inc) incubated at 1°C, 10°C, and 20°C. Bacterial species diversity was investigated with 454 pyrosequencing of the 16S rRNA. The functional diversity of the permafrost microbial community was temperature dependent with diversity increasing with temperature (p<0.001), whereas the active layer utilized similar numbers of substrates at all temperatures. At 1°C, the permafrost community was only able to utilize 1.6 + 0.11 substrates on average, but the active layer was able to utilize an order of magnitude more substrates (21.3 + 0.33). Initial analysis of the 454 pyrosequencing

  15. All Three Endogenous Quinone Species of Escherichia coli Are Involved in Controlling the Activity of the Aerobic/Anaerobic Response Regulator ArcA

    PubMed Central

    van Beilen, Johan W. A.; Hellingwerf, Klaas J.

    2016-01-01

    The enteron Escherichia coli is equipped with a branched electron transfer chain that mediates chemiosmotic electron transfer, that drives ATP synthesis. The components of this electron transfer chain couple the oxidation of available electron donors from cellular metabolism (e.g., NADH, succinate, lactate, formate, etc.) to the reduction of electron acceptors like oxygen, nitrate, fumarate, di-methyl-sulfoxide, etc. Three different quinones, i.e., ubiquinone, demethyl-menaquinone and menaquinone, couple the transfer of electrons between the dehydrogenases and reductases/oxidases that constitute this electron transfer chain, whereas, the two-component regulation system ArcB/A regulates gene expression, to allow the organism to adapt itself to the ambient conditions of available electron donors and acceptors. Here, we report that E. coli can grow and adjust well to transitions in the availability of oxygen, with any of the three quinones as its single quinone. In all three ‘single-quinone’ E. coli strains transitions in the activity of ArcB are observed, as evidenced by changes in the level of phosphorylation of the response regulator ArcA, upon depletion/readmission of oxygen. These results lead us to conclude that all quinol species of E. coli can reduce (i.e., activate) the sensor ArcB and all three quinones oxidize (i.e., de-activate) it. These results also confirm our earlier conclusion that demethyl-menaquinone can function in aerobic respiration. PMID:27656164

  16. Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk-dependent activation of Nox2

    PubMed Central

    Bae, Yun Soo; Lee, Jee Hyun; Choi, Soo Ho; Kim, Sunah; Almazan, Felicidad; Witztum, Joseph L.; Miller, Yury I.

    2009-01-01

    Oxidative modification of low-density lipoprotein (LDL) plays a causative role in the development of atherosclerosis. In this study, we demonstrate that minimally oxidized LDL (mmLDL) stimulates intracellular reactive oxygen species (ROS) generation in macrophages through NADPH oxidase 2 (gp91phox/Nox2), which in turn induces production of RANTES and migration of smooth muscle cells. Peritoneal macrophages from gp91phox/Nox2−/− mice or J774 macrophages in which Nox2 was knocked down by siRNA failed to generate ROS in response to mmLDL. Because mmLDL-induced cytoskeletal changes were dependent on TLR4, we analyzed ROS generation in peritoneal macrophages from wild type, TLR4−/−, or MyD88−/− mice and found that mmLDL-mediated ROS was generated in a TLR4-dependent, but MyD88-independent manner. Furthermore, we found that ROS generation required the recruitment and activation of spleen tyrosine kinase (Syk) and that mmLDL also induced PLCγ1 phosphorylation and PKC membrane translocation. Importantly, the PLCγ1 phosphorylation was reduced in J774 cells expressing Syk-specific shRNA. Nox2 modulated mmLDL activation of macrophages by regulating the expression of proinflammatory cytokines IL-1β, IL-6 and RANTES. We showed that purified RANTES was able to stimulate migration of mouse aortic smooth muscle cells (MASMC) and addition of neutralizing antibody against RANTES abolished the migration of MASMC stimulated by mmLDL-stimulated macrophages. These results suggest that mmLDL induces generation of ROS through sequential activation of TLR4, Syk, PLCγ1, PKC, and gp91phox/Nox2 and thereby stimulates expression of proinflammatory cytokines. These data help explain mechanisms by which endogenous ligands, such as mmLDL, can induce TLR4-dependent, proatherogenic activation of macrophages. PMID:19096031

  17. Inverse modelling of Köhler theory - Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

    NASA Astrophysics Data System (ADS)

    Lowe, Samuel; Partridge, Daniel G.; Topping, David; Stier, Philip

    2016-09-01

    In this study a novel framework for inverse modelling of cloud condensation nuclei (CCN) spectra is developed using Köhler theory. The framework is established by using model-generated synthetic measurements as calibration data for a parametric sensitivity analysis. Assessment of the relative importance of aerosol physicochemical parameters, while accounting for bulk-surface partitioning of surface-active organic species, is carried out over a range of atmospherically relevant supersaturations. By introducing an objective function that provides a scalar metric for diagnosing the deviation of modelled CCN concentrations from synthetic observations, objective function response surfaces are presented as a function of model input parameters. Crucially, for the chosen calibration data, aerosol-CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is particularly important. To perform an inverse aerosol-CCN closure analysis and constrain parametric uncertainties, it is shown that a high-resolution CCN spectrum definition of the calibration data is required where single-valued definitions may be expected to fail. Using Köhler theory to model CCN concentrations requires knowledge of many physicochemical parameters, some of which are difficult to measure in situ on the scale of interest and introduce a considerable amount of parametric uncertainty to model predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturbations in aerosol log-normal parameters describing the accumulation mode, surface tension, organic : inorganic mass ratio, insoluble fraction, and solution ideality. Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for calibration using a Monte Carlo Markov Chain (MCMC

  18. Peroxisome proliferator-activated receptors and biotransformation responses in relation to condition factor and contaminant burden in tilapia species from Ogun River, Nigeria.

    PubMed

    Adeogun, Aina O; Ibor, Oju R; Regoli, Francesco; Arukwe, Augustine

    2016-01-01

    A major development in fishery science has been the Fulton's condition factor (CF) as a reliable physiological index of fish growth and health status (Fulton 1902). As a general rule, CF-value greater than 1 (>1) should be regarded as an indicator for good growth and health. Therefore, exposure of fish to contaminants in the environment will be expected to produce a reduction in scope for growth, since energy for growth will be allocated to overcome stressful conditions. In the present study, we hypothesized that tilapia species from Ogun River (Nigeria) are experiencing severe contaminant-induced obesogen effects leading to high CF (≥ 2) in fish with pathological alterations. The environmental obesogen hypothesis has related the interaction between environmental pollutants and PPAR isoform activation In this respect, peroxisome proliferator-activated receptors (PPARs) and biotransformation responses in relation to contaminant burden were investigated in a total of 1074 specimens of Tilapias species (Tilapia guineensis, Sarotherodon galileaus and Oreochromis niloticus) collected from three areas with different degrees of anthropogenic contamination and from a putative control site along the Ogun River. Liver mRNA expression of cytochrome cyp1 isoforms (cyp1a, 1b and 1c) and PPAR isoforms (ppar-α, β and γ) were analyzed using validated real-time PCR. Fish were also analyzed for CF and muscle contaminant burden (aliphatic and polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls). A significant increase in mRNA expression of cyp1- and ppar isoforms was observed in fish from polluted areas, and these results paralleled data on PCBs and PAHs tissue concentrations. Further, cyp1 isoforms showed clear sex-related differences, with higher mRNA expression in male fish than in females. Principal component analysis revealed a relationship between cyp1 isoforms, ppar-α, β, PCBs and PAHs and these interactions may suggest a crosstalk

  19. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  20. Species-specific responses of constitutively active receptor (CAR)-CYP2B coupling: lack of CYP2B inducer-responsive nuclear translocation of CAR in marine teleost, scup (Stenotomus chrysops).

    PubMed

    Iwata, Hisato; Yoshinari, Kouichi; Negishi, Masahiko; Stegeman, John J

    2002-04-01

    The mammalian constitutively active receptor (CAR) is a novel ligand-activated transcription factor that participates in controlling the expression of cytochrome P450 2B (CYP2B) genes in response to pharmaceutical agents (phenobarbital) and halogenated aromatic hydrocarbons (ortho-substituted PCBs). The occurrence and physiological function of this protein are as yet unknown in marine animals, where there has been a paradoxical lack of induction by PB-type chemicals. One approach to understanding CAR function is to study the evolutionary history of processes such as CAR-CYP2B coupling. In this study, CAR function was evaluated in a representative teleost fish (scup, Stenotomus chrysops). Treatment of scup with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is one of the most potent CYP2B inducers in mouse, caused no increase in hepatic alkoxyresorufin O-dealkylase activity nor in immunodetectable CYP2B-like protein levels. Western blot analyses of scup livers using anti-human CAR antisera revealed the occurrence of a putative CAR homologue in nuclear and cytoplasmic fractions, but no nuclear accumulation of CAR following TCPOBOP treatment, which is a first step regulating the transcriptional activation of CYP2B genes in mouse. Immunohistochemical study also showed no translocation of CAR into nucleus in the hepatocytes of TCPOBOP-treated scup. These results suggest that there may be species-specific differences in CAR activation or CAR-CYP2B coupling signaling transduction in fish from those in mouse.

  1. Inverse modelling of Köhler theory - Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

    NASA Astrophysics Data System (ADS)

    Lowe, Samuel; Partridge, Daniel; Topping, David; Stier, Philip

    2016-04-01

    In this study an inverse modelling framework for the calculation of CCN spectra is developed to facilitate a more robust treatment of evaluation of Köhler models against observations. To achieve this, we define an objective function that provides a diagnostic metric of the deviation of modelled CCN spectra from observations as a function of input parameters. This allows for the assessment of model accuracy while simultaneously examining global parameter sensitivities and identifying parameter interactions across all atmospherically relevant supersaturations, corresponding to a broad range of cloud types and updraft velocities. The focus of this study is two-fold. Firstly, we assess the feasibility of inverse modelling as a new methodology for aerosol-CCN spectra closure. To achieve this goal, responses in the objective function to parameter perturbations in 2D cross-sections of the complete parameter space, response surfaces, are used to examine the likelihood of our chosen objective function containing enough information to constrain the model input parameters considered using automatic search algorithms. Secondly, these response surfaces are employed to conduct an extensive parametric sensitivity analysis and subsequently rank the relative importance of aerosol physiochemical parameters in determining CCN spectra. Using Köhler theory to model CCN concentrations requires knowledge of many physiochemical parameters, some of which are difficult to measure in-situ at the scale of interest. Therefore, novel methodologies, such as the one developed here, are required to probe the entire parameter space of aerosol-cloud interaction problems and provide global sensitivity analyses to constrain parametric uncertainties. Partitioning of surface-active species from the bulk to the surface phase can alter the point of CCN activation. Therefore, the analysis conducted here is carried out for a standard Köhler model as well as more complex Köhler models accounting for the

  2. Engineers and Active Responsibility.

    PubMed

    Pesch, Udo

    2015-08-01

    Knowing that technologies are inherently value-laden and systemically interwoven with society, the question is how individual engineers can take up the challenge of accepting the responsibility for their work? This paper will argue that engineers have no institutional structure at the level of society that allows them to recognize, reflect upon, and actively integrate the value-laden character of their designs. Instead, engineers have to tap on the different institutional realms of market, science, and state, making their work a 'hybrid' activity combining elements from the different institutional realms. To deal with this institutional hybridity, engineers develop routines and heuristics in their professional network, which do not allow societal values to be expressed in a satisfactory manner. To allow forms of 'active' responsibility, there have to be so-called 'accountability forums' that guide moral reflections of individual actors. The paper will subsequently look at the methodologies of value-sensitive design (VSD) and constructive technology assessment (CTA) and explore whether and how these methodologies allow engineers to integrate societal values into the design technological artifacts and systems. As VSD and CTA are methodologies that look at the process of technological design, whereas the focus of this paper is on the designer, they can only be used indirectly, namely as frameworks which help to identify the contours of a framework for active responsibility of engineers.

  3. Complex cellular responses to reactive oxygen species.

    PubMed

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W

    2005-06-01

    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  4. Texas Endangered Species Activity Book.

    ERIC Educational Resources Information Center

    Jackson, Kathleen Marie; Campbell, Linda

    This publication is the result of the Texas Parks and Wildlife Division's (TPWD's) commitment to education and the fertile partnerships formed between TPWD biologists and educators. This activity book brings together the expertise and practical knowledge of a classroom teacher with the technical knowledge and skills of a TPWD biologist and artist.…

  5. A species difference in the peroxisome proliferator-activated receptor α-dependent response to the developmental effects of perfluorooctanoic acid.

    PubMed

    Albrecht, Prajakta P; Torsell, Nicole E; Krishnan, Prasad; Ehresman, David J; Frame, Steven R; Chang, Shu-Ching; Butenhoff, John L; Kennedy, Gerald L; Gonzalez, Frank J; Peters, Jeffrey M

    2013-02-01

    This study examined the effect of prenatal perfluorooctanoic acid (PFOA) administration on pre- and postnatal development using peroxisome proliferator-activated receptor α (PPARα)-humanized mice to determine if species differences in receptor activity might influence the developmental effects induced by PFOA. Pregnant mice were treated daily with water or PFOA (3mg/kg) by po gavage from gestation day 1 (GD1) until GD17 and then either euthanized on GD18 or allowed to give birth and then euthanized on postnatal day 20 (PND20). No changes in average fetal weight, crown-to-rump length, or placental weight were observed on GD18. Expression of mRNA encoding the PPARα target genes acyl CoA oxidase (Acox1) and cytochrome P450 4a10 (Cyp4a10) in maternal and fetal liver was increased on GD18 in wild-type and PPARα-humanized mice but not in Pparα-null mice. On PND20, relative liver weight was higher in wild-type mice but not in Pparα-null mice or PPARα-humanized mice. Hepatic expression of Acox1 and Cyp4a10 mRNA was higher in wild-type mice but not in Pparα-null mice or PPARα-humanized mice on PND20. The percentage of mice surviving postnatally was lower in wild-type litters but not in litters from Pparα-null mice or PPARα-humanized mice. No changes in pup weight gain, onset of eye opening, or mammary gland development were found in any genotype. Results from these studies demonstrate that the developmental/postnatal effects resulting from prenatal PFOA exposure in mice are differentially mediated by mouse and human PPARα.

  6. ESTIMATION OF AQUATIC SPECIES SENSITIVITY AND POPULATION-LEVEL RESPONSES

    EPA Science Inventory

    Determining species sensitivity and population-level responses of aquatic organisms to contaminants are critical components of criteria development and ecological risk assessment. To address data gaps in species sensitivity, the U.S. EPA developed the Interspecies Correlation Est...

  7. Biodiversity inhibits species' evolutionary responses to changing environments.

    PubMed

    de Mazancourt, C; Johnson, E; Barraclough, T G

    2008-04-01

    Despite growing interplay between ecological and evolutionary studies, the question of how biodiversity influences evolutionary dynamics within species remains understudied. Here, using a classical model of phenotypic evolution in species occupying a patchy environment, but introducing global change affecting patch conditions, we show that biodiversity can inhibit species' evolution during global change. The presence of several species increases the chance that one or more species are pre-adapted to new conditions, which restricts the ecological opportunity for evolutionary responses in all the species. Consequently, environmental change tends to select for changes in species abundances rather than for changing phenotypes within each species. The buffering effects of species diversity that we describe might be one important but neglected explanation for widely observed niche conservatism in natural systems. Furthermore, the results show that attempts to understand biotic responses to environmental change need to consider both ecological and evolutionary processes in a realistically diverse setting.

  8. Reactive oxygen species in response of plants to gravity stress

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  9. Evolutionary responses to global change: lessons from invasive species.

    PubMed

    Moran, Emily V; Alexander, Jake M

    2014-05-01

    Biologists have recently devoted increasing attention to the role of rapid evolution in species' responses to environmental change. However, it is still unclear what evolutionary responses should be expected, at what rates, and whether evolution will save populations at risk of extinction. The potential of biological invasions to provide useful insights has barely been realised, despite the close analogies to species responding to global change, particularly climate change; in both cases, populations encounter novel climatic and biotic selection pressures, with expected evolutionary responses occurring over similar timescales. However, the analogy is not perfect, and invasive species are perhaps best used as an upper bound on expected change. In this article, we review what invasive species can and cannot teach us about likely evolutionary responses to global change and the constraints on those responses. We also discuss the limitations of invasive species as a model and outline directions for future research.

  10. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells.

    PubMed

    de Pinto, Maria Concetta; Tommasi, Franca; De Gara, Laura

    2002-10-01

    Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for the activation of the hypersensitive reaction, a defense response induced in the noncompatible plant-pathogen interaction. However, its involvement in activating programmed cell death (PCD) in plant cells has been questioned. In this paper, the involvement of the cellular antioxidant metabolism in the signal transduction triggered by these bioactive molecules has been investigated. NO and ROS levels were singularly or simultaneously increased in tobacco (Nicotiana tabacum cv Bright-Yellow 2) cells by the addition to the culture medium of NO and/or ROS generators. The individual increase in NO or ROS had different effects on the studied parameters than the simultaneous increase in the two reactive species. NO generation did not cause an increase in phenylalanine ammonia-lyase (PAL) activity or induction of cellular death. It only induced minor changes in ascorbate (ASC) and glutathione (GSH) metabolisms. An increase in ROS induced oxidative stress in the cells, causing an oxidation of the ASC and GSH redox pairs; however, it had no effect on PAL activity and did not induce cell death when it was generated at low concentrations. In contrast, the simultaneous increase of NO and ROS activated a process of death with the typical cytological and biochemical features of hypersensitive PCD and a remarkable rise in PAL activity. Under the simultaneous generation of NO and ROS, the cellular antioxidant capabilities were also suppressed. The involvement of ASC and GSH as part of the transduction pathway leading to PCD is discussed.

  11. Species interactions alter evolutionary responses to a novel environment.

    PubMed

    Lawrence, Diane; Fiegna, Francesca; Behrends, Volker; Bundy, Jacob G; Phillimore, Albert B; Bell, Thomas; Barraclough, Timothy G

    2012-01-01

    Studies of evolutionary responses to novel environments typically consider single species or perhaps pairs of interacting species. However, all organisms co-occur with many other species, resulting in evolutionary dynamics that might not match those predicted using single species approaches. Recent theories predict that species interactions in diverse systems can influence how component species evolve in response to environmental change. In turn, evolution might have consequences for ecosystem functioning. We used experimental communities of five bacterial species to show that species interactions have a major impact on adaptation to a novel environment in the laboratory. Species in communities diverged in their use of resources compared with the same species in monocultures and evolved to use waste products generated by other species. This generally led to a trade-off between adaptation to the abiotic and biotic components of the environment, such that species evolving in communities had lower growth rates when assayed in the absence of other species. Based on growth assays and on nuclear magnetic resonance (NMR) spectroscopy of resource use, all species evolved more in communities than they did in monocultures. The evolutionary changes had significant repercussions for the functioning of these experimental ecosystems: communities reassembled from isolates that had evolved in polyculture were more productive than those reassembled from isolates that had evolved in monoculture. Our results show that the way in which species adapt to new environments depends critically on the biotic environment of co-occurring species. Moreover, predicting how functioning of complex ecosystems will respond to an environmental change requires knowing how species interactions will evolve.

  12. Microorganisms of the San Francisco sour dough bread process. II. Isolation and characterization of undescribed bacterial species responsible for the souring activity.

    PubMed

    Kline, L; Sugihara, T F

    1971-03-01

    A medium was developed which permitted isolation, apparently for the first time, of the bacteria responsible for the acid production in the 100-year-old San Francisco sour dough French bread process. Some of the essential ingredients of this medium included a specific requirement for maltose at a high level, Tween 80, freshly prepared yeast extractives, and an initial pH of not over 6.0. The bacteria were gram-positive, nonmotile, catalase-negative, short to medium slender rods, indifferent to oxygen, and producers of lactic and acetic acids with the latter varying from 3 to 26% of the total. Carbon dioxide was also produced. Their requirement for maltose for rapid and heavy growth and a proclivity for forming involuted, filamentous, and pleomorphic forms raises a question as to whether they should be properly grouped with the heterofermentative lactobacilli.

  13. Degradation of reactive blue 19 by needle-plate non-thermal plasma in different gas atmospheres: Kinetics and responsible active species study assisted by CFD calculations.

    PubMed

    Sun, Yu; Liu, Yanan; Li, Rui; Xue, Gang; Ognier, Stéphanie

    2016-07-01

    This study investigated the degradation of a model organic compound, reactive blue (RB-19), in aqueous solution using a needle-plate non-thermal plasma (NTP) reactor, which was operated using three gas atmospheres (Ar, air, O2) at room temperature and atmospheric pressure. The relative discharge and degradation parameters, including the peak to peak applied voltage, power, ozone generation, pH, decolorization rates, energy density and the total organic carbon (TOC) reduction were analyzed to determine the various dye removal efficiencies. The decolorization rate for Ar, air and O2 were 59.9%, 49.6% and 89.8% respectively at the energy density of 100 kJ/L. The best TOC reduction was displayed by Ar with about 8.8% decrease, and 0% with O2 and air atmospheres. This phenomenon could be explained by the formation of OH• and O3 in the Ar and O2 atmospheres, which are responsible for increased mineralization and efficient decolorization. A one-dimension model was developed using software COMSOL to simulate the RB-19-ozone reaction and verify the experiments by comparing the simulated and experimental results. It was determined that ozone plays the most important role in the dye removal process, and the ozone contribution rate ranged from 0.67 to 0.82.

  14. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation.

    PubMed

    He, Xiaoqing; Young, Shih-Houng; Schwegler-Berry, Diane; Chisholm, William P; Fernback, Joseph E; Ma, Qiang

    2011-12-19

    Carbon nanotubes (CNTs) are novel materials with unique electronic and mechanical properties. The extremely small size, fiberlike shape, large surface area, and unique surface chemistry render their distinctive chemical and physical characteristics and raise potential hazards to humans. Several reports have shown that pulmonary exposure to CNTs caused inflammation and lung fibrosis in rodents. The molecular mechanisms that govern CNT lung toxicity remain largely unaddressed. Here, we report that multiwalled carbon nanotubes (MWCNTs) have potent, dose-dependent toxicity on cultured human lung cells (BEAS-2B, A549, and WI38-VA13). Mechanistic analyses were carried out at subtoxic doses (≤20 μg/mL, ≤ 24 h). MWCNTs induced substantial ROS production and mitochondrial damage, implicating oxidative stress in cellular damage by MWCNT. MWCNTs activated the NF-κB signaling pathway in macrophages (RAW264.7) to increase the secretion of a panel of cytokines and chemokines (TNFα, IL-1β, IL-6, IL-10, and MCP1) that promote inflammation. Activation of NF-κB involved rapid degradation of IκBα, nuclear accumulation of NF-κBp65, binding of NF-κB to specific DNA-binding sequences, and transactivation of target gene promoters. Finally, MWCNTs induced the production of profibrogenic growth factors TGFβ1 and PDGF from macrophages that function as paracrine signals to promote the transformation of lung fibroblasts (WI38-VA13) into myofibroblasts, a key step in the development of fibrosis. Our results revealed that MWCNTs elicit multiple and intertwining signaling events involving oxidative damage, inflammatory cytokine production, and myofibroblast transformation, which potentially underlie the toxicity and fibrosis in human lungs by MWCNTs.

  15. Neural activation during response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, E.; Poldrack, R.; Gabrieli, J. D.

    2000-01-01

    The flanker task, introduced by Eriksen and Eriksen [Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143--149], provides a means to selectively manipulate the presence or absence of response competition while keeping other task demands constant. We measured brain activity using functional magnetic resonance imaging (fMRI) during performance of the flanker task. In accordance with previous behavioral studies, trials in which the flanking stimuli indicated a different response than the central stimulus were performed significantly more slowly than trials in which all the stimuli indicated the same response. This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortex. The increases were not due to changes in stimulus complexity or the need to overcome previously learned associations between stimuli and responses. Correspondences between this study and other experiments manipulating response interference suggest that the frontal foci may be related to response inhibition processes whereas the posterior foci may be related to the activation of representations of the inappropriate responses.

  16. Phytochemistry and biological activities of Phlomis species.

    PubMed

    Limem-Ben Amor, Ilef; Boubaker, Jihed; Ben Sgaier, Mohamed; Skandrani, Ines; Bhouri, Wissem; Neffati, Aicha; Kilani, Soumaya; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2009-09-07

    The genus Phlomis L. belongs to the Lamiaceae family and encompasses 100 species native to Turkey, North Africa, Europe and Asia. It is a popular herbal tea enjoyed for its taste and aroma. Phlomis species are used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation, and wounds. This review aims to summarize recent research on the phytochemistry and pharmacological properties of the genus Phlomis, with particular emphasis on its ethnobotanical uses. The essential oil of Phomis is composed of four chemotypes dominated by monoterpenes (alpha-pinene, limonene and linalool), sesquiterpenes (germacrene D and beta-caryophyllene), aliphalic compounds (9,12,15-octadecatrienoic acid methyl ester), fatty acids (hexadecanoic acid) and other components (trans-phytol, 9,12,15-octadecatrien-1-ol). Flavonoids, iridoids and phenylethyl alcohol constitute the main compounds isolated from Phlomis extracts. The pharmacological activities of some Phlomis species have been investigated. They are described according to antidiabetic, antinociceptive, antiulcerogenic, protection of the vascular system, anti-inflammatory, antiallergic, anticancer, antimicrobial and antioxidant properties.

  17. Compensatory responses to loss of warming-sensitive plant species.

    PubMed

    Cross, Molly S; Harte, John

    2007-03-01

    Climate warming-induced plant species loss is likely to be nonrandom and based on species-specific susceptibility to changing climate. We examined the ecological consequences of losing shallow-rooted forbs, a group of species we predict to be adversely affected by climate change based on their response to experimental warming. After three years of experimental species removal, tap-rooted forbs and grasses were able to fully compensate for the loss of shallow-rooted forbs with increased biomass production. Moreover, the remaining plant community yielded a larger biomass response to nitrogen addition when shallow-rooted forbs were removed, possibly because removal led to increased soil moisture. We conclude that, although shallow-rooted forbs share a common response to warming, their loss did not affect community-level biomass. However, the loss of shallow-rooted forbs could result in increased sensitivity to perturbations, such as changing nutrient availability. Our results demonstrate that realistic, nonrandom scenarios of species loss do not necessarily follow the general pattern of decreased productivity and dampened response to nitrogen addition with species loss that is predicted by theory and many experimental results. Further examinations of nonrandom species loss in other ecosystems are needed to further improve our understanding of the consequences of human-driven species loss.

  18. Plant responses to climatic extremes: within-species variation equals among-species variation.

    PubMed

    Malyshev, Andrey V; Arfin Khan, Mohammed A S; Beierkuhnlein, Carl; Steinbauer, Manuel J; Henry, Hugh A L; Jentsch, Anke; Dengler, Jürgen; Willner, Evelin; Kreyling, Juergen

    2016-01-01

    Within-species and among-species differences in growth responses to a changing climate have been well documented, yet the relative magnitude of within-species vs. among-species variation has remained largely unexplored. This missing comparison impedes our ability to make general predictions of biodiversity change and to project future species distributions using models. We present a direct comparison of among- versus within-species variation in response to three of the main stresses anticipated with climate change: drought, warming, and frost. Two earlier experiments had experimentally induced (i) summer drought and (ii) spring frost for four common European grass species and their ecotypes from across Europe. To supplement existing data, a third experiment was carried out, to compare variation among species from different functional groups to within-species variation. Here, we simulated (iii) winter warming plus frost for four grasses, two nonleguminous, and two leguminous forbs, in addition to eleven European ecotypes of the widespread grass Arrhenatherum elatius. For each experiment, we measured: (i) C/N ratio and biomass, (ii) chlorophyll content and biomass, and (iii) plant greenness, root (15) N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among-species variation for each seed origin (five countries). Of the six significant differences, within-species CVs were higher than among-species CVs in four cases. Partitioning of variance within each treatment in two of the three experiments showed that within-species variability (ecotypes) could explain an additional 9% of response variation after accounting for the among-species variation. Our observation that within-species variation was generally as high as among-species variation emphasizes the importance of

  19. Geomagnetic response to solar activity.

    NASA Technical Reports Server (NTRS)

    Mead, G. D.

    1972-01-01

    The relationship between solar activity and geomagnetic variations is discussed in the light of spacecraft data obtained during the last decade. The effects of centers of solar activity responsible for producing geomagnetic activity on earth are believed to be transmitted through the solar wind, and there is usually a delay of two or three days before the onset of magnetic activity. Attempts to make a one-to-one correspondence between specific solar events and specific magnetic storms, however, are usually unsuccessful, because of the complex and indirect processes linking the two phenomena. Normally, only statistical tendencies can be shown.

  20. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands.

    PubMed

    Tredennick, Andrew T; de Mazancourt, Claire; Loreau, Michel; Adler, Peter B

    2017-02-01

    Temporal asynchrony among species helps diversity to stabilize ecosystem functioning, but identifying the mechanisms that determine synchrony remains a challenge. Here, we refine and test theory showing that synchrony depends on three factors: species responses to environmental variation, interspecific interactions, and demographic stochasticity. We then conduct simulation experiments with empirical population models to quantify the relative influence of these factors on the synchrony of dominant species in five semiarid grasslands. We found that the average synchrony of per capita growth rates, which can range from 0 (perfect asynchrony) to 1 (perfect synchrony), was higher when environmental variation was present (0.62) rather than absent (0.43). Removing interspecific interactions and demographic stochasticity had small effects on synchrony. For the dominant species in these plant communities, where species interactions and demographic stochasticity have little influence, synchrony reflects the covariance in species responses to the environment. This article is protected by copyright. All rights reserved.

  1. Species response curves of oak species along climatic gradients in Turkey.

    PubMed

    Uğurlu, Emin; Oldeland, Jens

    2012-01-01

    The genus Quercus is one of the most important tree species in Turkey. However, little is known on the ecological preferences of Turkish oak species regarding climate. We analyzed species response curves using a HOF-model approach to describe the general pattern of oak distributions along climatic gradients and to identify the driving climatic factors for eight oak species in Turkey. While climate data were extracted from the free available worldclim dataset, occurrence data on oak species were assembled from the literature into a vegetation database (n = 1,104). From the analyzed species response curves, only fa ew (16%) showed unimodal responses, while most were linear (31%) or exhibited a threshold response (31%). The driving factors were seasonality of temperature and seasonality of precipitation, indicating that Turkish oak species can be characterized best by the preference of climatic stability. These findings have important implications for conservation and climate change research, which usually focuses on trends of the mean values of temperature or precipitation but less often on the seasonality. In this study, we further tested whether niche optima derived from raw mean values of occurrences could replace missing model optima due to non-responsiveness of HOF models of type I. However, we did not find this to be a satisfactory solution. Finally, we discuss the need for the construction of a national database based on phytosociological relevés for Turkey.

  2. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species

    PubMed Central

    Ramsey, Matthew M.; Freire, Marcelo O.; Gabrilska, Rebecca A.; Rumbaugh, Kendra P.; Lemon, Katherine P.

    2016-01-01

    Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe–microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species. PMID:27582729

  3. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species.

    PubMed

    Ramsey, Matthew M; Freire, Marcelo O; Gabrilska, Rebecca A; Rumbaugh, Kendra P; Lemon, Katherine P

    2016-01-01

    Staphylococcus aureus-human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species.

  4. Boechera Species Exhibit Species-Specific Responses to Combined Heat and High Light Stress

    PubMed Central

    Gallas, Genna; Waters, Elizabeth R.

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  5. Boechera species exhibit species-specific responses to combined heat and high light stress.

    PubMed

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species.

  6. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands

    PubMed Central

    Tredennick, Andrew T.; de Mazancourt, Claire; Loreau, Michel; Adler, Peter B.

    2017-01-01

    Temporal asynchrony among species helps diversity to stabilize ecosystem functioning, but identifying the mechanisms that determine synchrony remains a challenge. Here, we refine and test theory showing that synchrony depends on three factors: species responses to environmental variation, interspecific interactions, and demographic stochasticity. We then conduct simulation experiments with empirical population models to quantify the relative influence of these factors on the synchrony of dominant species in five semiarid grasslands. We found that the average synchrony of per capita growth rates, which can range from 0 (perfect asynchrony) to 1 (perfect synchrony), was higher when environmental variation was present (0.62) rather than absent (0.43). Removing interspecific interactions and demographic stochasticity had small effects on synchrony. For the dominant species in these plant communities, where species interactions and demographic stochasticity have little influence, synchrony reflects the covariance in species’ responses to the environment. PMID:28144939

  7. A comparison of auditory brainstem responses across diving bird species

    USGS Publications Warehouse

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E; Olsen, Glenn H.; Therrien, Ronald E; Yannuzzi, Sally E; Ketten, Darlene R

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  8. A comparison of auditory brainstem responses across diving bird species.

    PubMed

    Crowell, Sara E; Wells-Berlin, Alicia M; Carr, Catherine E; Olsen, Glenn H; Therrien, Ronald E; Yannuzzi, Sally E; Ketten, Darlene R

    2015-08-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676-680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  9. Global Metabolic Responses to Salt Stress in Fifteen Species

    PubMed Central

    Pollak, Georg R.; Kuehne, Andreas; Sauer, Uwe

    2016-01-01

    Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance. PMID:26848578

  10. PAL inhibitor evokes different responses in two Hypericum species.

    PubMed

    Klejdus, Bořivoj; Kováčik, Jozef; Babula, Petr

    2013-02-01

    Accumulation of secondary metabolites (general phenols, naphthodianthrones and phloroglucinol hyperforin) in Hypericum perforatum and Hypericum canariense after application of the inhibitor (2-aminoindane-2-phosphonic acid, AIP) of the pivotal enzyme of general phenylpropanoid pathway (phenylalanine ammonia-lyase, PAL) was studied. Shoots of H. perforatum revealed more expressive growth depression, concomitantly with the inhibition of PAL activity (-60%) and decrease in soluble phenols and individual phenolic acids in response to AIP. Hypericins (hypericin, pseudohypericin and protohypericin) decreased while hyperforin increased in AIP-cultured H. perforatum. On the contrary, growth changes, decreases in soluble phenols and individual phenolic acids were less-visible in H. canariense. This was also reflected in restoration of PAL activity (+330%) and selected flavonoids even increased. Hypericins and hyperforin were present in several orders of magnitude lower amounts in comparison with H. perforatum. Increase in proline indicates potential compensatory antioxidative mechanism if phenols are depleted. Microscopy revealed also differences in secondary xylem formation and lignification between species after exposure to AIP.

  11. A comparison of auditory brainstem responses across diving bird species

    PubMed Central

    Crowell, Sara E.; Wells-Berlin, Alicia M.; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al. 1969). We therefore measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e. frequency at the greatest intensity, of all species’ vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range. PMID:26156644

  12. The Economics of Saving Endangered Species: A Teaching Activity.

    ERIC Educational Resources Information Center

    Schug, Mark C.; Shaw, Jane S.

    1997-01-01

    Argues that well-intentioned government policies, such as the Endangered Species Act, can actually cause harm to endangered species by creating disincentives to preserving the habitat for endangered species. Maintains that the use of incentives can lead to voluntary species protection. Includes instructions for an in-class teaching activity. (MJP)

  13. Transcriptional Responses of Treponema denticola to Other Oral Bacterial Species

    PubMed Central

    Simanian, Emil J.; Shi, Wenyuan; Lux, Renate

    2014-01-01

    The classic organization by Socransky and coworkers categorized the oral bacteria of the subgingival plaque into different complexes. Treponema denticola, Porphyromonas gingivalis and Tannerella forsythia are grouped into the red complex that is highly correlated with periodontal disease. Socransky's work closely associates red with orange complex species such as Fusobacterium nucleatum and Prevotella intermedia but not with members of the other complexes. While the relationship between species contained by these complexes is in part supported by their ability to physically attach to each other, the physiological consequences of these interactions and associations are less clear. In this study, we employed T. denticola as a model organism to analyze contact-dependent responses to interactions with species belonging to the same complex (P. gingivalis and T. forsythia), the closely associated orange complex (using F. nucleatum and P. intermedia as representatives) and the unconnected yellow complex (using Streptococcus sanguinis and S. gordonii as representatives). RNA was extracted from T. denticola alone as well as after pairwise co-incubation for 5 hrs with representatives of the different complexes, and the respective gene expression profiles were determined using microarrays. Numerous genes related to motility, metabolism, transport, outer membrane and hypothetical proteins were differentially regulated in T. denticola in the presence of the tested partner species. Further analysis revealed a significant overlap in the affected genes and we identified a general response to the presence of other species, those specific to two of the three complexes as well as individual complexes. Most interestingly, many predicted major antigens (e.g. flagella, Msp, CTLP) were suppressed in responses that included red complex species indicating that the presence of the most closely associated species induces immune-evasive strategies. In summary, the data presented here provide

  14. Differential responses of cryptic bat species to the urban landscape.

    PubMed

    Lintott, Paul R; Barlow, Kate; Bunnefeld, Nils; Briggs, Philip; Gajas Roig, Clara; Park, Kirsty J

    2016-04-01

    Urbanization is a key global driver in the modification of land use and has been linked to population declines even in widespread and relatively common species. Cities comprise a complex assortment of habitat types yet we know relatively little about the effects of their composition and spatial configuration on species distribution. Although many bat species exploit human resources, the majority of species are negatively impacted by urbanization. Here, we use data from the National Bat Monitoring Programme, a long-running citizen science scheme, to assess how two cryptic European bat species respond to the urban landscape. A total of 124 × 1 km(2) sites throughout Britain were surveyed. The landscape surrounding each site was mapped and classified into discrete biotope types (e.g., woodland). Generalized linear models were used to assess differences in the response to the urban environment between the two species, and which landscape factors were associated with the distributions of P. pipistrellus and P. pygmaeus. The relative prevalence of P. pygmaeus compared to P. pipistrellus was greater in urban landscapes with a higher density of rivers and lakes, whereas P. pipistrellus was frequently detected in landscapes comprising a high proportion of green space (e.g., parklands). Although P. pipistrellus is thought to be well adapted to the urban landscape, we found a strong negative response to urbanization at a relatively local scale (1 km), whilst P. pygmaeus was detected more regularly in wooded urban landscapes containing freshwater. These results show differential habitat use at a landscape scale of two morphologically similar species, indicating that cryptic species may respond differently to anthropogenic disturbance. Even species considered relatively common and well adapted to the urban landscape may respond negatively to the built environment highlighting the future challenges involved in maintaining biodiversity within an increasingly urbanized

  15. Drought response in self-compatible species of tomato (Solanaceae).

    PubMed

    Easlon, Hsien Ming; Richards, James H

    2009-03-01

    Wild tomatoes occur in habitats from the extremely dry Atacama Desert to moist areas in the Andean highlands, which may have resulted in adaptation of populations or species to differences in soil moisture availability. However, when two accessions representing extremes in habitat water availability from each of the five self-compatible species were grown in a common garden, we observed no differences in leaf physiological responses to soil drought within or between species. All five species had drought avoidance characteristics with the same threshold soil moisture availability for decline of assimilation, stomatal conductance, and leaf water potential (Ψ(l)) in response to slowly decreasing soil moisture. After rewatering, all species rapidly recovered to near predrought Ψ(l), but bulk leaf solute potential after recovery did not indicate any osmotic adjustment. The lack of variation in shoot physiological traits during soil drought is unexpected as water deficit is commonly thought to have imposed selective pressure in the evolution of plant physiology. However, species did differ in assimilation under nonstressed conditions, which may contribute to differential soil water conservation and growth or survival during drought.

  16. Active and responsive polymer surfaces.

    PubMed

    Zhang, Jilin; Han, Yanchun

    2010-02-01

    A central challenge in polymer science today is creating materials that dynamically alter their structures and properties on demand, or in response to changes in their environment. Surfaces represent an attractive area of focus, since they exert disproportionately large effects on properties such as wettability, adhesiveness, optical appearance, and bioactivity, enabling pronounced changes in properties to be accomplished through subtle changes in interfacial structure or chemistry. In this critical review, we review the recent research progress into active and responsive polymer surfaces. The chief purpose of this article is to summarize the advanced preparation techniques and applications in this field from the past decade. This review should be of interest both to new scientists in this field and the interdisciplinary researchers who are working on "intelligent" polymer surfaces (117 references).

  17. Novel competitors shape species' responses to climate change.

    PubMed

    Alexander, Jake M; Diez, Jeffrey M; Levine, Jonathan M

    2015-09-24

    Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by indirect effects mediated via other interacting community members. Theory suggests that some of the most dramatic impacts of community change will probably arise through the assembly of novel species combinations after asynchronous migrations with climate. Empirical tests of this prediction are rare, as existing work focuses on the effects of changing interactions between competitors that co-occur today. To explore how species' responses to climate warming depend on how their competitors migrate to track climate, we transplanted alpine plant species and intact plant communities along a climate gradient in the Swiss Alps. Here we show that when alpine plants were transplanted to warmer climates to simulate a migration failure, their performance was strongly reduced by novel competitors that could migrate upwards from lower elevation; these effects generally exceeded the impact of warming on competition with current competitors. In contrast, when we grew the focal plants under their current climate to simulate climate tracking, a shift in the competitive environment to novel high-elevation competitors had little to no effect. This asymmetry in the importance of changing competitor identity at the leading versus trailing range edges is best explained by the degree of functional similarity between current and novel competitors. We conclude that accounting for novel competitive interactions may be essential to predict species' responses to climate change accurately.

  18. Active Response Gravity Offload System

    NASA Technical Reports Server (NTRS)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  19. Species-Specific Dynamic Responses of Gut Bacteria to a Mammalian Glycan

    PubMed Central

    Raghavan, Varsha

    2015-01-01

    ABSTRACT The mammalian intestine provides nutrients to hundreds of bacterial species. Closely related species often harbor homologous nutrient utilization genes and cocolonize the gut, raising questions regarding the strategies mediating their stable coexistence. Here we reveal that related Bacteroides species that can utilize the mammalian glycan chondroitin sulfate (CS) have diverged in the manner in which they temporally regulate orthologous CS utilization genes. Whereas certain Bacteroides species display a transient surge in CS utilization transcripts upon exposure to CS, other species exhibit sustained activation of these genes. Remarkably, species-specific expression dynamics are retained even when the key players governing a particular response are replaced by those from a species with a dissimilar response. Bacteroides species exhibiting distinct expression behaviors in the presence of CS can be cocultured on CS. However, they vary in their responses to CS availability and to the composition of the bacterial community when CS is the sole carbon source. Our results indicate that diversity resulting from regulation of polysaccharide utilization genes may enable the coexistence of gut bacterial species using a given nutrient. IMPORTANCE Genes mediating a specific task are typically conserved in related microbes. For instance, gut Bacteroides species harbor orthologous nutrient breakdown genes and may face competition from one another for these nutrients. How, then, does the gut microbial composition maintain such remarkable stability over long durations? We establish that in the case of genes conferring the ability to utilize the nutrient chondroitin sulfate (CS), microbial species vary in how they temporally regulate these genes and exhibit subtle growth differences on the basis of CS availability and community composition. Similarly to how differential regulation of orthologous genes enables related species to access new environments, gut bacteria may

  20. Neutrality and the Response of Rare Species to Environmental Variance

    PubMed Central

    Benedetti-Cecchi, Lisandro; Bertocci, Iacopo; Vaselli, Stefano; Maggi, Elena; Bulleri, Fabio

    2008-01-01

    Neutral models and differential responses of species to environmental heterogeneity offer complementary explanations of species abundance distribution and dynamics. Under what circumstances one model prevails over the other is still a matter of debate. We show that the decay of similarity over time in rocky seashore assemblages of algae and invertebrates sampled over a period of 16 years was consistent with the predictions of a stochastic model of ecological drift at time scales larger than 2 years, but not at time scales between 3 and 24 months when similarity was quantified with an index that reflected changes in abundance of rare species. A field experiment was performed to examine whether assemblages responded neutrally or non-neutrally to changes in temporal variance of disturbance. The experimental results did not reject neutrality, but identified a positive effect of intermediate levels of environmental heterogeneity on the abundance of rare species. This effect translated into a marked decrease in the characteristic time scale of species turnover, highlighting the role of rare species in driving assemblage dynamics in fluctuating environments. PMID:18648545

  1. Antiinflammatory activities of Hungarian Stachys species and their iridoids.

    PubMed

    Háznagy-Radnai, Erzsébet; Balogh, Ágnes; Czigle, Szilvia; Máthé, Imre; Hohmann, Judit; Blazsó, Gábor

    2012-04-01

    The antiinflammatory activities of aqueous extracts prepared from the aerial parts of ten Hungarian Stachys species were investigated in vivo in the carrageenan-induced paw oedema test after intraperitoneal and oral administration to rats. Some of the extracts were found to display significant antiphlogistic effects when administered intraperitoneally and orally; in particular, the extracts of S. alpina, S. germanica, S. officinalis and S. recta demonstrated high activity following intraperitoneal administration. At the same dose of 5.0 mg/kg, these extracts exhibited similar or greater potency than that of the positive control diclofenac-Na. The main iridoids present in the investigated extracts, ajugoside, aucubin, acetylharpagide, harpagide and harpagoside, were also assayed in the same test, and high dose-dependent antiphlogistic effects were recorded for aucubin and harpagoside. These results led to the conclusion that most probably iridoids are responsible for the antiinflammatory effect of Stachys species, but other active constituents or their synergism must also be implicated in the antiinflammatory effect.

  2. Neural responses from the wind-sensitive interneuron population in four cockroach species.

    PubMed

    McGorry, Clare A; Newman, Caroline N; Triblehorn, Jeffrey D

    2014-07-01

    The wind-sensitive insect cercal sensory system is involved in important behaviors including predator detection and initiating terrestrial escape responses as well as flight maintenance. However, not all insects possessing a cercal system exhibit these behaviors. In cockroaches, wind evokes strong terrestrial escape responses in Periplaneta americana and Blattella germanica, but only weak escape responses in Blaberus craniifer and no escape responses in Gromphadorhina portentosa. Both P. americana and B. craniifer possesses pink flight muscles correlated with flight ability while B. germanica possesses white flight muscles that cannot support flight and G. portentosa lacks wings. These different behavioral combinations could correlate with differences in sensory processing of wind information by the cercal system. In this study, we focused on the wind-sensitive interneurons (WSIs) since they provide input to the premotor/motor neurons that influence terrestrial escape and flight behavior. Using extracellular recordings, we characterized the responses from the WSI population by generating stimulus-response (S-R) curves and examining spike firing rates. Using cluster analysis, we also examined the activity of individual units (four per species, though not necessarily homologous) comprising the population response in each species. Our main results were: (1) all four species possessed ascending WSIs in the abdominal connectives; (2) wind elicited the weakest WSI responses (lowest spike counts and spike rates) in G. portentosa; (3) wind elicited WSI responses in B. craniifer that were greater than P. americana or B. germanica; (4) the activity of four individual units comprising the WSI population response in each species was similar across species.

  3. Neural responses from the wind-sensitive interneuron population in four cockroach species

    PubMed Central

    McGorry, Clare A.; Newman, Caroline N.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal sensory system is involved in important behaviors including predator detection and initiating terrestrial escape responses as well as flight maintenance. However, not all insects possessing a cercal system exhibit these behaviors. In cockroaches, wind evokes strong terrestrial escape responses in Periplaneta americana and Blattella germanica, but only weak escape responses in Blaberus craniifer and no escape responses in Gromphadorhina portentosa. Both P. americana and Blab. craniifer possesses pink flight muscles correlated with flight ability while Blat. germanica possesses white flight muscles that cannot support flight and G. portentosa lacks wings. These different behavioral combinations could correlate with differences in sensory processing of wind information by the cercal system. In this study, we focused on the wind-sensitive interneurons (WSIs) since they provide input to the premotor/motor neurons that influence terrestrial escape and flight behavior. Using extracellular recordings, we characterized the responses from the WSI population by generating stimulus-response (S-R) curves and examining spike firing rates. Using cluster analysis, we also examined the activity of individual units (four per species, though not necessarily homologous) comprising the population response in each species. Our main results were: 1) all four species possessed ascending WSIs in the abdominal connectives; 2) wind elicited the weakest WSI responses (lowest spike counts and spike rates) in G. portentosa; 3) wind elicited WSI responses in Blab. craniifer that were greater than P. americana or Blat. germanica; 4) the activity of four individual units comprising the WSI population response in each species was similar across species. PMID:24879967

  4. Antifungal activity of heartwood extracts from three Juniperus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heartwood samples from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane, ethanol and methanol and the hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi. These three species represent the ...

  5. Population-specific responses to an invasive species

    PubMed Central

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P.; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-01-01

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling–mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions. PMID:26180070

  6. Population-specific responses to an invasive species.

    PubMed

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-08-07

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.

  7. Recovery of cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide

    USGS Publications Warehouse

    Fleming, W.J.; Grue, C.E.

    1981-01-01

    The responses of brain and plasma cholinesterase (ChE) activities were examined in mallard ducks, bobwhite quail, barn owls, starlings, and common grackles given oral doses of dicrotophos, an organophosphorus insecticide. Up to an eightfold difference in response of brain ChE activity to dicrotophos was found among these species. Brain ChE activity recovered to within 2 SD of normal within 26 days after being depressed 55 to 64%. Recovery of brain ChE activity was similar among species and followed the model Y = a + b (log10X).

  8. Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Increased Sensitivity and Responsiveness

    PubMed Central

    Brennan, Jennifer C.; He, Guochun; Tsutsumi, Tomoaki; Zhao, Jing; Wirth, Ed; Fulton, Michael H.; Denison, Michael S.

    2016-01-01

    The Ah receptor (AhR)-responsive CALUX (chemically-activated luciferase expression) cell bioassay is commonly used for rapid screening of samples for the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), dioxin-like compounds, and AhR agonists/antagonists. By increasing the number of AhR DNA recognition sites (dioxin responsive elements), we previously generated a novel third generation (G3) recombinant AhR-responsive mouse CALUX cell line (H1L7.5c3) with significantly enhanced sensitivity and response to DLCs compared to existing AhR-CALUX cell bioassays. However, the elevated background luciferase activity of these cells and the absence of comparable G3 cell lines derived from other species have limited their utility for screening purposes. Here, we describe the development and characterization of species-specific G3 recombinant AhR-responsive CALUX cell lines (rat, human, and guinea pig) that exhibit significantly improved sensitivity and dramatically increased TCDD induction response. The low background luciferase activity, low minimal detection limit (0.1 pM TCDD) and enhanced induction response of the rat G3 cell line (H4L7.5c2) over the H1L7.5c3 mouse G3 cells, identifies them as a more optimal cell line for screening purposes. The utility of the new G3 CALUX cell lines were demonstrated by screening sediment extracts and a small chemical compound library for the presence of AhR agonists. The increased sensitivity and response of these new G3 CALUX cell lines will facilitate species-specific analysis of DLCs and AhR agonists in samples with low levels of contamination and/or in small sample volumes. PMID:26366531

  9. Biochemical alterations in native and exotic oyster species in Brazil in response to increasing temperature.

    PubMed

    Moreira, Anthony; Figueira, Etelvina; Pecora, Iracy L; Soares, Amadeu M V M; Freitas, Rosa

    2017-01-01

    The increase of temperature in marine coastal ecosystems due to atmospheric greenhouse gas emissions is becoming an increasing threat for biodiversity worldwide, and may affect organisms' biochemical performance, often resulting in biogeographical shifts of species distribution. At the same time, the introduction of non-native species into aquatic systems also threatens biodiversity and ecosystem functions. Oysters are among the most valuable socio economic group of bivalve species in global fishery landings, and also provide numerous ecosystem services. However, the introduction of non-native oyster species, namely Crassostrea gigas for aquaculture purposes may threaten native oyster species, mainly by out competing their native congeners. It is therefore of upmost importance to understand physiological and biochemical responses of native and introduced oyster species in a scenario of global temperature rise, in order to provide knowledge that may allow for better species management. Hence, we compared biochemical alterations of the introduced C. gigas and the native Crassostrea brasiliana, the most important oyster species in Brazil, in response to different thermal regimes for 28days (24, 28 and 32°C). For this, metabolism (ETS), energy content (GLY), antioxidant system (SOD, CAT and GSH/GSSG) and cellular damage (LPO) were assessed in adult and juvenile specimens of both species. Juvenile C. gigas were the most affected by increased temperatures, presenting higher mortality, more pronounced antioxidant response (SOD), whereas adults were more tolerant than juveniles, showing no mortality, no significant changes in antioxidant enzymes activity neither energy expenditure. Native C. brasiliana juveniles presented lower mortality and less pronounced biochemical alterations were noted at higher temperature comparing to non-native C. gigas juveniles. Adult C. brasiliana were the least responsive to tested temperatures. Results obtained in this study bring

  10. Different chemical cues originating from a shared predator induce common defense responses in two prey species.

    PubMed

    Takahara, Teruhiko; Doi, Hideyuki; Kohmatsu, Yukihiro; Yamaoka, Ryohei

    2013-01-01

    In freshwater ecosystems, inducible defenses that involve behavioral or morphological changes in response to chemical cue detection are key phenomena in prey-predator interactions. Many species with different phylogenetic and ecological traits (e.g., general activity patterns and microhabitats) use chemical cues to avoid predators. We hypothesized that prey species with a shared predator, but having different ecological traits, would be adapted to detect different chemical cues from the predator. However, the proximate mechanisms by which prey use chemical cues to avoid predation remain little known. Here, we tested our hypothesis by using fractionated chemical components from predatory dragonfly nymphs (Lesser Emperor, Anax parthenope julius) to trigger anti-predator behavioral responses in two anuran tadpoles, the wrinkled frog Glandirana (Rana) rugosa and the Japanese tree frog Hyla japonica. Glandirana rugosa detected chemical cues that had either high or low hydrophobic properties, but H. japonica responded only to chemical cues with hydrophilic properties. During the normal behaviors of these tadpole species, G. rugosa remains immobile in benthic habitats, whereas H. japonica exhibits active swimming at the surface or in the middle of the water column. As we had hypothesized, these tadpole species, which have different general activity levels and microhabitats, detected different chemical cues that were exuded by their shared predator and responded by changing their activities to avoid predation. The specific chemical cues detected by each tadpole species are likely to have characteristics that optimize effective predator detection and encounter avoidance of the shared dragonfly predator.

  11. Species' traits influenced their response to recent climate change

    NASA Astrophysics Data System (ADS)

    Pacifici, Michela; Visconti, Piero; Butchart, Stuart H. M.; Watson, James E. M.; Cassola, Francesca M.; Rondinini, Carlo

    2017-02-01

    Although it is widely accepted that future climatic change--if unabated--is likely to have major impacts on biodiversity, few studies have attempted to quantify the number of species whose populations have already been impacted by climate change. Using a systematic review of published literature, we identified mammals and birds for which there is evidence that they have already been impacted by climate change. We modelled the relationships between observed responses and intrinsic (for example, body mass) and spatial traits (for example, temperature seasonality within the geographic range). Using this model, we estimated that 47% of terrestrial non-volant threatened mammals (out of 873 species) and 23.4% of threatened birds (out of 1,272 species) may have already been negatively impacted by climate change in at least part of their distribution. Our results suggest that populations of large numbers of threatened species are likely to be already affected by climate change, and that conservation managers, planners and policy makers must take this into account in efforts to safeguard the future of biodiversity.

  12. Population and species differences in treeline tree species germination in response to climate change

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Faist, A.; Castanha, C.

    2009-12-01

    The ability of plant species to recruit within and beyond their current geographic ranges in response to climate warming may be constrained by population differences in response. A number of studies have highlighted the degree to which genotype and environment are strongly linked in forest trees (i.e., provenances), but few studies have examined whether these local adaptations are at all predictive of population or species response to change. We report the results of lab germination experiments using high and low elevation populations of both limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii), which are important treeline species in the Rocky Mountains. Seeds collected in 2008 were germinated under two different temperature regimes (ambient and +5°C) and two different moisture regimes, and followed for 17 weeks. For both species and source elevations, warmer temperatures advanced the timing of emergence by up to 20 days, whereas the effects of moisture were less consistent. At harvest, high elevation limber pine had less root and shoot biomass, and a slightly lower root:shoot ratio, under the +5°C treatment, whereas low elevation limber pine seedling mass was not sensitive to temperature. Whether these differences persist under field conditions will be tested in a field experiment now established at Niwot Ridge, CO. The ability to accurately predict tree seedling recruitment and ultimately shifts in treeline position with climate change will improve our ability to model changes in surface albedo, water cycling and carbon cycling, all of which can generate feedbacks to regional and global climate.

  13. KERIS: kaleidoscope of gene responses to inflammation between species

    PubMed Central

    Li, Peng; Tompkins, Ronald G; Xiao, Wenzhong

    2017-01-01

    A cornerstone of modern biomedical research is the use of animal models to study disease mechanisms and to develop new therapeutic approaches. In order to help the research community to better explore the similarities and differences of genomic response between human inflammatory diseases and murine models, we developed KERIS: kaleidoscope of gene responses to inflammation between species (available at http://www.igenomed.org/keris/). As of June 2016, KERIS includes comparisons of the genomic response of six human inflammatory diseases (burns, trauma, infection, sepsis, endotoxin and acute respiratory distress syndrome) and matched mouse models, using 2257 curated samples from the Inflammation and the Host Response to Injury Glue Grant studies and other representative studies in Gene Expression Omnibus. A researcher can browse, query, visualize and compare the response patterns of genes, pathways and functional modules across different diseases and corresponding murine models. The database is expected to help biologists choosing models when studying the mechanisms of particular genes and pathways in a disease and prioritizing the translation of findings from disease models into clinical studies. PMID:27789704

  14. Morphological Response of Eight Quercus Species to Simulated Wind Load.

    PubMed

    Wu, Tonggui; Zhang, Peng; Zhang, Lei; Wang, Geoff G; Yu, Mukui

    Leaf shape, including leaf size, leaf dissection index (LDI), and venation distribution, strongly impacts leaf physiology and the forces of momentum exerted on leaves or the canopy under windy conditions. Yet, little has been known about how leaf shape affects the morphological response of trees to wind load. We studied eight Quercus species, with different leaf shapes, to determine the morphological response to simulated wind load. Quercus trees with long elliptical leaves, were significantly affected by wind load (P< 0.05), as indicted by smaller specific leaf area (SLA), stem base diameter and stem height under windy conditions when compared to the control. The Quercus trees with leaves characterized by lanceolate or sinuous edges, showed positive morphological responses to wind load, such as bigger leaf thickness, larger stem diameter, allocation to root biomass, and smaller stem height (P< 0.05). These morphological responses to wind can reduce drag and increase the mechanical strength of the tree. Leaf dissection index (LDI), an important index of leaf shape, was correlated with morphological response to wind load (P< 0.05), including differences in SLA, in stem base diameter and in allocation to root biomass. These results suggest that trees with higher LDI, such as those with more and/or deeper lobes, are better adapted to wind load.

  15. Morphological Response of Eight Quercus Species to Simulated Wind Load

    PubMed Central

    Zhang, Peng; Zhang, Lei; Wang, Geoff G.; Yu, Mukui

    2016-01-01

    Leaf shape, including leaf size, leaf dissection index (LDI), and venation distribution, strongly impacts leaf physiology and the forces of momentum exerted on leaves or the canopy under windy conditions. Yet, little has been known about how leaf shape affects the morphological response of trees to wind load. We studied eight Quercus species, with different leaf shapes, to determine the morphological response to simulated wind load. Quercus trees with long elliptical leaves, were significantly affected by wind load (P< 0.05), as indicted by smaller specific leaf area (SLA), stem base diameter and stem height under windy conditions when compared to the control. The Quercus trees with leaves characterized by lanceolate or sinuous edges, showed positive morphological responses to wind load, such as bigger leaf thickness, larger stem diameter, allocation to root biomass, and smaller stem height (P< 0.05). These morphological responses to wind can reduce drag and increase the mechanical strength of the tree. Leaf dissection index (LDI), an important index of leaf shape, was correlated with morphological response to wind load (P< 0.05), including differences in SLA, in stem base diameter and in allocation to root biomass. These results suggest that trees with higher LDI, such as those with more and/or deeper lobes, are better adapted to wind load. PMID:27662594

  16. Does diet influence salivary enzyme activities in elephant species?

    PubMed

    Boehlke, Carolin; Pötschke, Sandra; Behringer, Verena; Hannig, Christian; Zierau, Oliver

    2017-01-01

    Asian elephants (Elephas maximus) and African elephants (Loxodonta africana) are herbivore generalists; however, Asian elephants might ingest a higher proportion of grasses than Africans. Although some studies have investigated nutrition-specific morphological adaptations of the two species, broader studies on salivary enzymes in both elephant species are lacking. This study focuses on the comparison of salivary enzymes activity profiles in the two elephant species; these enzymes are relevant for protective and digestive functions in humans. We aimed to determine whether salivary amylase (sAA), lysozyme (sLYS), and peroxidase (sPOD) activities have changed in a species-specific pattern during evolutionary separation of the elephant genera. Saliva samples of 14 Asian and eight African elephants were collected in three German zoos. Results show that sAA and sLYS are salivary components of both elephant species in an active conformation. In contrast, little to no sPOD activity was determined in any elephant sample. Furthermore, sAA activity was significantly higher in Asian compared with African elephants. sLYS and sPOD showed no species-specific differences. The time of food provision until sample collection affected only sAA activity. In summary, the results suggest several possible factors modulating the activity of the mammal-typical enzymes, such as sAA, sLYS, and sPOD, e.g., nutrition and sampling procedure, which have to be considered when analyzing differences in saliva composition of animal species.

  17. Bronchial responsiveness in active steelworkers.

    PubMed

    Corhay, J L; Bury, T; Louis, R; Delavignette, J P; Kayembe, J M; Weber, G; Albert, A; Radermecker, M F

    1998-02-01

    Coke-oven workers are exposed to dust and irritant gases. Therefore they are at risk of developing lung diseases including chronic bronchitis. Nonspecific bronchial hyperresponsiveness (BHR) has been advocated as a potential risk factor predisposing to the development of chronic bronchitis. In a previous study, we showed that prevalence of BHR was higher in retired coke-oven workers than in retired blast furnace workers. The present study was carried out to determine the prevalence of BHR in active steelworkers. Thus, 137 coke-oven workers and 150 blast furnace workers underwent clinical examination, a standardized questionnaire for the study of respiratory symptoms, pulmonary function testing and methacholine aerosol challenge. The study demonstrates a higher prevalence and degree of BHR [provocative concentration of methacholine causing a 20% fall in forced expiratory volume in one second (PC20) < or = 8 mg x mL(-1)] in coke-oven workers than in blast furnace workers (31.4 versus 6.7%; p<0.001). Moreover, the frequency of respiratory symptoms and basal bronchial obstruction were greater among coke-oven workers with BHR in nonresponders. The basal maximum expiratory flow from 25-75% of forced vital capacity and the respiratory symptoms were correlated with bronchial responsiveness. The lack of correlation observed between BHR and the intensity of smoking or years spent in coke-oven environment may be explained by the high proportion of smokers, the worker turnover in the steel plant, and the "healthy worker effect". In conclusion, the higher prevalence and degree of bronchial hyperresponsiveness in coke-oven workers suggests that coke-oven pollutants are more intense irritants than those that escape from blast furnaces.

  18. Reclaiming an Endangered Species: The Male Responsibility Program.

    ERIC Educational Resources Information Center

    Cross, Michael; Foley, Ron

    1993-01-01

    Reviews number of social difficulties facing black families (delinquency, addiction, welfare dependence, family dissolution, unwed parents, school failure) and problems specific to black males. Describes activities undertaken by Male Responsibility Program (MRP) of Detroit (Michigan) Urban League, which works to develop culturally specific…

  19. No Effect of Host Species on Phenoloxidase Activity in a Mycophagous Beetle

    PubMed Central

    Formica, Vincent; Chan, Amanda Kar-Men

    2015-01-01

    Ecological immunology is an interdisciplinary field that helps elucidate interactions between the environment and immune response. The host species individuals experience have profound effects on immune response in many species of insects. However, this conclusion comes from studies of herbivorous insects even though species of mycophagous insects also inhabit many different host species. The goal of this study was to determine if fungal host species as well as individual, sex, body size, and host patch predict one aspect of immune function, phenoloxidase activity (PO). We sampled a metapopulation of Bolitotherus cornutus, a mycophagous beetle in southwestern Virginia. B. cornutus live on three species of fungus that differ in nutritional quality, social environment, and density. A filter paper phenoloxidase assay was used to quantify phenoloxidase activity. Overall, PO activity was significantly repeatable among individuals (0.57) in adult B. cornutus. While there was significant variance among individuals in PO activity, there were surprisingly no significant differences in PO activity among subpopulations, beetles living on different host species, or between the sexes; there was also no effect of body size. Our results suggest that other factors such as age, genotype, disease prevalence, or natal environment may be generating variance among individuals in PO activity. PMID:26513243

  20. Reactive oxygen species-mediated unfolded protein response pathways in preimplantation embryos

    PubMed Central

    Ali, Ihsan; Shah, Syed Zahid Ali; Jin, Yi; Li, Zhong-Shu; Ullah, Obaid

    2017-01-01

    Excessive production of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-mediated responses are critical to embryonic development in the challenging in vitro environment. ROS production increases during early embryonic development with the increase in protein requirements for cell survival and growth. The ER is a multifunctional cellular organelle responsible for protein folding, modification, and cellular homeostasis. ER stress is activated by a variety of factors including ROS. Such stress leads to activation of the adaptive unfolded protein response (UPR), which restores homeostasis. However, chronic stress can exceed the toleration level of the ER, resulting in cellular apoptosis. In this review, we briefly describe the generation and impact of ROS in preimplantation embryo development, the ROS-mediated activation mechanism of the UPR via the ER, and the subsequent activation of signaling pathways following ER stress in preimplantation embryos. PMID:28057903

  1. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species

    PubMed Central

    Olsen, Anne C.K.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellurlarly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: 1) G portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; 2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; 3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; 4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer. PMID:25046275

  2. Emergency Response and Management Activities

    EPA Pesticide Factsheets

    This quarterly report, highlighting accomplishments over the past several months, showcases EPA’s unique emergency response capabilities through the use of cutting-edge technologies and innovative cleanup strategies.

  3. Identification of the haemolytic activity of Malassezia species.

    PubMed

    Juntachai, Weerapong; Kummasook, Aksarakorn; Mekaprateep, Malee; Kajiwara, Susumu

    2014-03-01

    Malassezia species are part of the normal skin flora and are associated with a number of human and animal skin diseases. However, the mechanisms that mediate infection and host-fungal interactions are poorly understood. The haemolytic activity of several microorganisms is considered a factor that contributes to pathogenicity of the organism to humans and animals. This virulence factor was previously identified in several pathogenic fungi that cause systemic mycoses, such as Aspergillus and Candida. In this study, the haemolytic activity of six major Malassezia species, including M. furfur, M. globosa, M. pachydermatis, M. restricta, M. slooffiae and M. sympodialis, was investigated. The haemolytic activity of these species was tested on tryptone soya agar with 5% sheep blood. All the examined Malassezia species produced a halo zone of complete haemolysis. A quantitative analysis of the haemolytic activity was performed by incubating sheep erythrocytes with the extraction from culture of each Malassezia species. Interestingly, M. globosa and M. restricta showed significantly high haemolytic activity compared with the other Malassezia species. In addition, M. globosa also exhibited stable haemolytic activity after treatment at 100 °C and in the presence of some proteases, indicating that this haemolytic factor is different from those of other fungi.

  4. Volatile species in halide-activated-diffusion coating packs

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Jacobson, Nathan S.

    1992-01-01

    An atmospheric pressure sampling mass spectrometer was used to identify the vapor species generated in a halide-activated cementation pack. Pack powder mixtures containing a Cr-Al binary masteralloy powder, an NH4Cl activator salt, and either ZrO2 or Y2O3 (or neither) were analyzed at 1000 C. Both the equilibrium calculations for the pack and mass spectrometer results indicated that volatile AlCl(x) and CrCl(y) species were generated by the pack powder mixture; in packs containing the reactive element oxide, volatile ZrCl(z) and YCl(w) species were formed by the conversion of their oxide sources.

  5. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.

    PubMed

    Dell, Anthony I; Pawar, Samraat; Savage, Van M

    2014-01-01

    Environmental temperature has systematic effects on rates of species interactions, primarily through its influence on organismal physiology. We present a mechanistic model for the thermal response of consumer-resource interactions. We focus on how temperature affects species interactions via key traits - body velocity, detection distance, search rate and handling time - that underlie per capita consumption rate. The model is general because it applies to all foraging strategies: active-capture (both consumer and resource body velocity are important), sit-and-wait (resource velocity dominates) and grazing (consumer velocity dominates). The model predicts that temperature influences consumer-resource interactions primarily through its effects on body velocity (either of the consumer, resource or both), which determines how often consumers and resources encounter each other, and that asymmetries in the thermal responses of interacting species can introduce qualitative, not just quantitative, changes in consumer-resource dynamics. We illustrate this by showing how asymmetries in thermal responses determine equilibrium population densities in interacting consumer-resource pairs. We test for the existence of asymmetries in consumer-resource thermal responses by analysing an extensive database on thermal response curves of ecological traits for 309 species spanning 15 orders of magnitude in body size from terrestrial, marine and freshwater habitats. We find that asymmetries in consumer-resource thermal responses are likely to be a common occurrence. Overall, our study reveals the importance of asymmetric thermal responses in consumer-resource dynamics. In particular, we identify three general types of asymmetries: (i) different levels of performance of the response, (ii) different rates of response (e.g. activation energies) and (iii) different peak or optimal temperatures. Such asymmetries should occur more frequently as the climate changes and species' geographical

  6. Species-Specific Responses of Carnivores to Human-Induced Landscape Changes in Central Argentina

    PubMed Central

    Caruso, Nicolás; Lucherini, Mauro; Fortin, Daniel; Casanave, Emma B.

    2016-01-01

    The role that mammalian carnivores play in ecosystems can be deeply altered by human-driven habitat disturbance. While most carnivore species are negatively affected, the impact of habitat changes is expected to depend on their ecological flexibility. We aimed to identify key factors affecting the habitat use by four sympatric carnivore species in landscapes of central Argentina. Camera trapping surveys were carried out at 49 sites from 2011 to 2013. Each site was characterized by 12 habitat attributes, including human disturbance and fragmentation. Four landscape gradients were created from Principal Component Analysis and their influence on species-specific habitat use was studied using Generalized Linear Models. We recorded 74 events of Conepatus chinga, 546 of Pseudalopex gymnocercus, 193 of Leopardus geoffroyi and 45 of Puma concolor. We found that the gradient describing sites away from urban settlements and with low levels of disturbance had the strongest influence. L. geoffroyi was the only species responding significantly to the four gradients and showing a positive response to modified habitats, which could be favored by the low level of persecution by humans. P. concolor made stronger use of most preserved sites with low proportion of cropland, even though the species also used sites with an intermediate level of fragmentation. A more flexible use of space was found for C. chinga and P. gymnocercus. Our results demonstrate that the impact of human activities spans across this guild of carnivores and that species-specific responses appear to be mediated by ecological and behavioral attributes. PMID:26950300

  7. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    PubMed Central

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  8. Reactive Oxygen Species Tune Root Tropic Responses1[OPEN

    PubMed Central

    Krieger, Gat

    2016-01-01

    The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism. PMID:27535793

  9. Aquatic biofilms and their responses to disinfection and invading species

    NASA Technical Reports Server (NTRS)

    Smithers, G. A.; Rodgers, E. B.; Obenhuber, D. C.; Huff, T. L.

    1992-01-01

    The control of microbial contamination is a primary concern in the development of a water reclamation system for long-duration manned space flights. This paper describes bench-scale experiments, using both static and recycling water systems, investigating the interaction of bacterial species in the development of a biofilm and their response to the introduction of a disinfectant or of additional species. The results showed that iodine concentrations as high as 15 to 20 mg/l I2 are necessary to completely disinfect a stable biofilm. When S. aueus and E. coli were introduced into a system containing natural mixed culture biofilms, their colonization in the biofilms increased their survival time, from 3 to 5 days as unattached cells to over 60 days when protected in the biofilms. While iodine concentrations of 0.5 to 1 mg/l were enough to eliminate these organisms from the bulk water, concentrations higher than 4.0 mg/l were necessary to completely eliminate these organisms from the biofilm.

  10. Differential anatomical responses to elevated CO2 in saplings of four hardwood species.

    PubMed

    Watanabe, Yoko; Satomura, Takami; Sasa, Kaichiro; Funada, Ryo; Koike, Takayoshi

    2010-07-01

    To determine whether an elevated carbon dioxide concentration ([CO(2)]) can induce changes in the wood structure and stem radial growth in forest trees, we investigated the anatomical features of conduit cells and cambial activity in 4-year-old saplings of four deciduous broadleaved tree species - two ring-porous (Quercus mongolica and Kalopanax septemlobus) and two diffuse-porous species (Betula maximowicziana and Acer mono) - grown for three growing seasons in a free-air CO(2) enrichment system. Elevated [CO(2)] had no effects on vessels, growth and physiological traits of Q. mongolica, whereas tree height, photosynthesis and vessel area tended to increase in K. septemlobus. No effects of [CO(2)] on growth, physiological traits and vessels were seen in the two diffuse-porous woods. Elevated [CO(2)] increased larger vessels in all species, except B. maximowicziana and number of cambial cells in two ring-porous species. Our results showed that the vessel anatomy and radial stem growth of Q. mongolica, B. maximowicziana and A. mono were not affected by elevated [CO(2)], although vessel size frequency and cambial activity in Q. mongolica were altered. In contrast, changes in vessel anatomy and cambial activity were induced by elevated [CO(2)] in K. septemlobus. The different responses to elevated [CO(2)] suggest that the sensitivity of forest trees to CO(2) is species dependent.

  11. Differential response to green algal species to solvents

    SciTech Connect

    Tadros, M.G.; Philips, J.; Patel, H.; Pandiripally, V. )

    1994-03-01

    Unicellular algae in aquatic ecosystems are subjected to a variety of pollutants from sources such as runoff from agricultural lands and industrial outfalls. Organic solvents are natural components of oil deposits and commonly find their way into surface waters as a result discharges from refineries, waste oil, disposal, and accidental spills. Organic solvents can make their way into the environment as industrial wastes. Because of their carcinogenic potential, contamination of soil and water by solvents is cause for serious concern. Relatively few reports have been published on the comparative toxicity of solvents toward test organisms, and these dealt primarily with fish and aquatic invertebrates. However, limited data of toxicity effects of solvents on algae have been published. Algae have been considered to be good indicators of bioactivity of industrial wastes. Unicellular algae vary in their response to a variety of toxicants. Little is known, however, about toxicity of solvents to freshwater unicellular green algae. The work reported here was done to examine the effect of selected solvents on unicellular green algae species to determine whether they differed in their responses to these chemicals. 14 refs., 1 fig.

  12. The auditory brainstem response in two lizard species

    PubMed Central

    Brittan-Powell, Elizabeth F.; Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine; Dooling, Robert J.

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6–2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20–50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1–7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species. PMID:20707448

  13. Defining the Immune Response to Ehrlichia species Using Murine Models

    PubMed Central

    Chapes, Stephen K.; Ganta, Roman R.

    2008-01-01

    Pathogenic bacteria belonging to the family Anaplasmataceae include species of the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis, first known as the causative agent of human monocytic ehrlichiosis, also infects several vertebrate hosts including white-tailed deer, dogs, coyotes and goats. E. chaffeensis is transmitted from the bite of an infected hard tick, such as Amblyomma americanum. E. chaffeensis and other tick-transmitted pathogens have adapted to both the tick and vertebrate host cell environments. Although E. chaffeensis persists in both vertebrate and tick hosts for long periods of time, little is known about that process. Immunological studies will be valuable in assessing how the pathogen persists in nature in both vertebrate and invertebrate hosts. Understanding the host immune response to the pathogen originating from dual host backgrounds is also important to develop effective methods of diagnosis, control and treatment. In this paper, we provide our perspective of the current understanding of the immune response against E. chaffeensis in relation to other related Anaplasmataceae pathogens. PMID:19028013

  14. Response of tree growth and species coexistence to density and species evenness in a young forest plantation with two competing species

    PubMed Central

    Collet, Catherine; Ningre, François; Barbeito, Ignacio; Arnaud, Anthony; Piboule, Alexandre

    2014-01-01

    Background and Aims There is considerable evidence for the presence of positive species diversity–productivity relationships in plant populations, but the population parameters determining the type and strength of the relationship are poorly defined. Relationships between species evenness and tree survival or species coexistence are not well established. The objective of this study was to quantify the joint effects of density and species evenness on tree productivity and species coexistence. Methods A 12-year-old experimental tree plantation mixing two species according to a double gradient of density and species proportion was used. A neighbourhood approach was employed and descriptors of local competition were used to model individual tree growth. Fagus sylvatica and Acer pseudoplatanus were used as model species, as they can be considered as ecologically equivalent in their young stages. Key Results Density and tree size were primary factors determining individual growth and stand productivity. Species identity had a significant, but less pronounced, role. Stand productivity was highest when species evenness was close to 1 and slightly lower in uneven mixtures. The reduction in stand productivity when species evenness decreased was of similar magnitude irrespective of which species became dominant, indicating symmetric effects for the two species. When examining individual tree growth in response to species proportion for each species separately, it was observed for both species that individual trees exhibited greater growth in uneven mixtures in which the other species was more frequent. Conclusions The results suggest that mixtures of these two functionally similar species have the highest production at maximum evenness, indicating a complementary effect between them. The presence of a mixture combines both stabilizing mechanisms (individuals from both species show higher growth when surrounded by individuals from the other species) and equalizing mechanisms

  15. Comparison of cytotoxic activities of extracts from Selaginella species

    PubMed Central

    Li, Juan; Lei, Xiang; Chen, Ke-li

    2014-01-01

    Background: Selaginella species are resurrection plants, which are known, possess various molecular bioactivities depending on species, but only a few species have been detailed observe in the advanced research. Objective: The objective of the following study is to compare the chemical profiles of different species of Selaginella and to investigate cytotoxicity and induction of apoptosis activities of some species of Selaginella. Materials and Methods: The high-performance liquid chromatography (HPLC) method was developed for chemical analysis. Ethyl acetate, ethanol and water-soluble extracts from seven Selaginella species were submitted to 3-(4,5-dimenthyl thizol-2-yl)-2,5-diphenyl tetrazolium bromide assay, flow cytometry, deoxyribonucleic acid (DNA) laddering analysis and caspase-3 expression using Bel-7402, HT-29 and HeLa cells. Results: The HPLC analysis revealed two major common peaks, which were identified as amentoflavone and robustaflavone and another three main peaks in their chromatograms. The results showed that S. labordei, Selaginella tamariscina and Selaginella uncinata had relatively stronger activities on Bel-7402 and HeLa cells and Selaginella moellendorfii had moderate antiproliferation activities, but Selaginella remotifolia and Selaginella pulvinata had almost no inhibitory activities. The main active components were in the ethyl acetate extracts which had abundant biflavonoids. The effects of these extracts on cell proliferation and apoptosis in different cells were not the same, they were more apparent on HeLa cells than on HT-29 cells. The assay of DNA laddering analysis and caspase-3 expression further confirmed that inducing cell apoptosis was one of antitumor mechanisms and antitumor activities of Selaginella species were related to apoptosis induced by caspase family. Conclusion: S. labordei, S. tamariscina and S. uncinata would be potential antitumor agents. PMID:25422557

  16. Responses of Sorghum and Pennisetum Species to the N2-Fixing Bacterium Azospirillum brasilense†

    PubMed Central

    Smith, Rex L.; Schank, S. C.; Milam, J. R.; Baltensperger, A. A.

    1984-01-01

    Three field inoculation experiments, two in Florida and one in New Mexico, were conducted with Azospirillum brasilense Cd. Each of the Florida experiments evaluated two crop species. One species in each of the Florida experiments responded to inoculation with a significant dry matter yield increases of 11 to 24% and nitrogen yield increases of 9 to 39%. No inoculation response was noted in the New Mexico experiment. The responding species were Sorghum bicolor (L.) Moench (sorghum) and the interspecific hybrid between Pennisetum americanum (L.) K. Schum. (pearl millet) and P. purpureum Schumach. (napiergrass). Nonresponding species were pearl millet (Florida) and Sorghum sudanense (Piper) Staph. (New Mexico). Acetylene reduction activity of inoculated plots in Florida was low, showing no increase over the natural uninoculated background rates and, in one case, was negatively correlated with yield. Acetylene reduction activity was not measured in New Mexico. In Florida, A. brasilense populations were found to decline from 5 × 103 to 5 × 102 bacteria g of soil−1 in about 3 weeks (quadratic regressions). Continued decline to less than 102 by week 5 indicated that the inoculated bacteria did not become established in the soil in high numbers. The A. brasilense population declined at about the same rate in the New Mexico experiment. The erractic inoculation responses in these experiments are similar to those observed in earlier work at the University of Florida. The lack of acetylene reduction activity response to inoculation and the rapid population decline of the inoculated bacteria suggest that N2 fixation is not the major mechanism causing yield responses after inoculation. PMID:16346571

  17. Affective responses in tamarins elicited by species-specific music.

    PubMed

    Snowdon, Charles T; Teie, David

    2010-02-23

    Theories of music evolution agree that human music has an affective influence on listeners. Tests of non-humans provided little evidence of preferences for human music. However, prosodic features of speech ('motherese') influence affective behaviour of non-verbal infants as well as domestic animals, suggesting that features of music can influence the behaviour of non-human species. We incorporated acoustical characteristics of tamarin affiliation vocalizations and tamarin threat vocalizations into corresponding pieces of music. We compared music composed for tamarins with that composed for humans. Tamarins were generally indifferent to playbacks of human music, but responded with increased arousal to tamarin threat vocalization based music, and with decreased activity and increased calm behaviour to tamarin affective vocalization based music. Affective components in human music may have evolutionary origins in the structure of calls of non-human animals. In addition, animal signals may have evolved to manage the behaviour of listeners by influencing their affective state.

  18. The evolution of protected species studies to determine effects of offshore oil and gas activities

    SciTech Connect

    Lang, W.; Fairfield, C. )

    1990-01-09

    The Minerals Management Service (MMS) Environmental Studies Program (ESP) was initiated in 1973 to help ensure that the environmental information on which Outer Continental Shelf (OCS) oil and gas development decisions are based is the most definitive that can be assembled at the time. The majority of ESP studies are designed to provide information on the status of the environment, and to identify the extent of potential impact of OCS development activities. Federal OCS activities must comply with several environmental' acts, including the Marine Mammal Protection Act and the Endangered Species Act. In response to these acts, MMS has funded a significant amount of research on protected species. The basic intent of these studies is to determine if proposed OCS activities will affect protected species and whether means exist to mitigate any effects found. Over the 15 years of the ESP, protected species studies have evolved from literature syntheses and relatively simple survey efforts, to more complex studies attempting to understand complicated behavioral and physiological responses to OCS effects (e.g. noise, spilled oil), and to evaluate protected species within the context of habitat characterization. This last goal has produced a need for multidisciplinary field research. Two major field efforts have been undertaken in the Beaufort Sea and Georges Bank areas. The question of if' protected species are present has generally been answered for key OCS regions; the next step for effective environmental decision making is to understand why' protected species are present.

  19. Biological assessment for rare and endangered plant species: Related to CERCLA characterization activities

    SciTech Connect

    Sackschewsky, M.R.

    1992-04-01

    Environmental characterization in support of hazardous, radioactive, and mixed waste cleanup (in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980) can involve a large number of both nonintrusive and intrusive activities. Many of these activities could have a detrimental impact on listed plant species. These impacts can be minimized by following simple conservation policies while conducting the various field activities. For instance, frequent off-road vehicular traffic and have a severe impact on native habitats and, therefore, should be kept to a minimum. Personnel performing the field activities should be trained to preserve, respect, and minimize their impact on native habitat while performing work in the field. In addition, areas where sampling is planned should be surveyed for the presence of listed plant species before the initiation of the field activities. Extremely distributed areas could be exempted from this requirement provided adequate habitat assessments have been performed by qualified personnel. Twelve special status plant species are known to survive on or very near the Hanford Site. None of these species currently are listed as Federal Threatened or Endangered Species. However, four local species currently are candidates for federal protection. These species are the Northern Wormwood (Artemisia campestris ssp. borealis var. wormskioldii), Persistantsepal Yellowcress (Rorippa columbiae), Hoover`s Desert Parsley (Lomatium tuberosum), and Columbia Milkvetch (Astragalus columbianus).

  20. Biological assessment for rare and endangered plant species: Related to CERCLA characterization activities

    SciTech Connect

    Sackschewsky, M.R.

    1992-04-01

    Environmental characterization in support of hazardous, radioactive, and mixed waste cleanup (in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980) can involve a large number of both nonintrusive and intrusive activities. Many of these activities could have a detrimental impact on listed plant species. These impacts can be minimized by following simple conservation policies while conducting the various field activities. For instance, frequent off-road vehicular traffic and have a severe impact on native habitats and, therefore, should be kept to a minimum. Personnel performing the field activities should be trained to preserve, respect, and minimize their impact on native habitat while performing work in the field. In addition, areas where sampling is planned should be surveyed for the presence of listed plant species before the initiation of the field activities. Extremely distributed areas could be exempted from this requirement provided adequate habitat assessments have been performed by qualified personnel. Twelve special status plant species are known to survive on or very near the Hanford Site. None of these species currently are listed as Federal Threatened or Endangered Species. However, four local species currently are candidates for federal protection. These species are the Northern Wormwood (Artemisia campestris ssp. borealis var. wormskioldii), Persistantsepal Yellowcress (Rorippa columbiae), Hoover's Desert Parsley (Lomatium tuberosum), and Columbia Milkvetch (Astragalus columbianus).

  1. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    USGS Publications Warehouse

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  2. Multi-species analyses of direct activators of the constitutive androstane receptor.

    PubMed

    Omiecinski, Curtis J; Coslo, Denise M; Chen, Tao; Laurenzana, Elizabeth M; Peffer, Richard C

    2011-10-01

    The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily and functions as an important xenochemical sensor and transcriptional modulator in mammalian cells. Upon chemical activation, CAR undergoes nuclear translocation and heterodimerization with the retinoid X receptor subsequent to its DNA target interaction. CAR is unusual among nuclear receptors in that it possesses a high level of constitutive activity in cell-based assays, obscuring the detection of ligand activators. However, a human splice variant of CAR, termed CAR3, exhibits negligible constitutive activity. In addition, CAR3 is activated by ligands with similar specificity as the reference form of the receptor. In this study, we hypothesized that similar CAR3 receptors could be constructed across various mammalian species' forms of CAR that would preserve species-specific ligand responses, thus enabling a more sensitive and differential screening assessment of CAR response among animal models. A battery of CAR3 receptors was produced in mouse, rat, and dog and comparatively evaluated with selected ligands together with human CAR1 and CAR3 in mammalian cell reporter assays. The results demonstrate that the 5-amino acid insertion that typifies human CAR3 also imparts ligand-activated receptor function in other species' CAR while maintaining signature responses in each species to select CAR ligands. These variant constructs permit in vitro evaluation of differential chemical effector responses across species and coupled with in vivo assays, the species-selective contributions of CAR in normal physiology and in disease processes such as hepatocarcinogenesis.

  3. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage and turf grasses are utilized in diverse environments which exposes them to a variety of abiotic stresses, however very little is known concerning the perception or molecular responses to these various stresses. In the model grass species Lolium temulentum (Lt), a 46 kDa mitogen-activated pro...

  4. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA, ...

  5. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA,...

  6. Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species

    PubMed Central

    Lee, Changhan; Park, Chankyu

    2017-01-01

    Glyoxal (GO) and methylglyoxal (MG), belonging to α-oxoaldehydes, are produced by organisms from bacteria to humans by glucose oxidation, lipid peroxidation, and DNA oxidation. Since glyoxals contain two adjacent reactive carbonyl groups, they are referred to as reactive electrophilic species (RES), and are damaging to proteins and nucleotides. Therefore, glyoxals cause various diseases in humans, such as diabetes and neurodegenerative diseases, from which all living organisms need to be protected. Although the glyoxalase system has been known for some time, details on how glyoxals are sensed and detoxified in the cell have not been fully elucidated, and are only beginning to be uncovered. In this review, we will summarize the current knowledge on bacterial responses to glyoxal, and specifically focus on the glyoxal-associated regulators YqhC and NemR, as well as their detoxification mediated by glutathione (GSH)-dependent/independent glyoxalases and NAD(P)H-dependent reductases. Furthermore, we will address questions and future directions. PMID:28106725

  7. Hemolytic Activities of the Candida Species in Liquid Medium

    PubMed Central

    Malcok, Hilal Kuzucu; Aktas, Esin; Ayyildiz, Ahmet; Yigit, Nimet; Yazgi, Halil

    2009-01-01

    Objective The aim of this study was to evaluate the in vitro hemolytic activities of 107 Candida strains isolated from different clinical samples in liquid medium, and to examine the impact of glucose on this activity. Materials and Methods A total of 107 Candida isolates representing seven species (C. albicans, n=28; C. glabrata, n=23; C. tropicalis, n=17; C. parapsilosis, n=16; C. kefyr, n=14; C. krusei, n=5; C. guilliermondii, n=4) were included in the study. The hemolytic activities of the strains were tested on two different Sabouraud dextrose liquid media (SDB) containing 7% defibrinated human blood, one of which is supplemented with 3% glucose and the other without glucose. Cultures were evaluated at the end of a 48-hour incubation. The hemolysis in the media was detected spectrophotometrically by measuring the amount of released hemoglobin and compared with a standard hemolysate which was prepared prior to testing. The degree of hemolysis (percentage value) by an individual strain was calculated according to the following formula below: (Absorbance of supernatant media at 540 nm / Absorbance of standard hemolysate at 540 nm X 100). Results In the liquid medium without glucose, strains generally produced hemolysis at low levels. The degree of hemolysis produced by all species increased noticeably in the liquid medium with glucose. Strains of C. albicans and C.kefyr had demonstrated significant hemolytic activity, whereas others had lower activity. C. parapsilosis exerted very little hemolytic activity in the medium with glucose and showed no activity in the medium without glucose. Conclusion The hemolytic activities of most Candida species was found to be higher in the human blood-enriched SDB medium containing 3% additive glucose than in the one free from additives. This result indicates that increased blood glucose concentration may contribute to increased hemolytic activity in Candida species, and it suggests a parallel with possible pathogenesis of

  8. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands.

    PubMed

    Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, Louie

    2015-07-15

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.

  9. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  10. Retreating or Standing: Responses of Forest Species and Steppe Species to Climate Change in Arid Eastern Central Asia

    PubMed Central

    Zhang, Hong-Xiang; Zhang, Ming-Li; Sanderson, Stewart C.

    2013-01-01

    Background The temperature in arid Eastern Central Asia is projected to increase in the future, accompanied by increased variability of precipitation. To investigate the impacts of climate change on plant species in this area, we selected two widespread species as candidates, Clematis sibirica and C. songorica, from montane coniferous forest and arid steppe habitats respectively. Methodology/Principal Findings We employed a combined approach of molecular phylogeography and species distribution modelling (SDM) to predict the future responses of these two species to climate change, utilizing evidence of responses from the past. Genetic data for C. sibirica shows a significant phylogeographical signal (NST > FST, P<0.05) and demographic contraction during the glacial-interglacial cycles in the Pleistocene. This forest species would likely experience range reduction, though without genetic loss, in the face of future climate change. In contrast, SDMs predict that C. songorica, a steppe species, should maintain a consistently stable potential distribution under the Last Glacial Maximum (LGM) and the future climatic conditions referring to its existing potential distribution. Molecular results indicate that the presence of significant phylogeographical signal in this steppe species is rejected and this species contains a high level of genetic differentiation among populations in cpDNA, likely benefiting from stable habitats over a lengthy time period. Conclusions/Significance Evidence from the molecular phylogeography of these two species, the forest species is more sensitive to past climate changes than the steppe species. SDMs predict that the forest species will face the challenge of potential range contraction in the future more than the steppe species. This provides a perspective on ecological management in arid Eastern Central Asia, indicating that increased attention should be paid to montane forest species, due to their high sensitivity to disturbance. PMID

  11. Antioxidant, antimicrobial and antiproliferative activities of five lichen species.

    PubMed

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Comić, Ljiljana; Dačić, Dragana; Curčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  12. [L-lysine-alpha-oxidase activity of some Trichoderma species].

    PubMed

    Smirnova, I P; Khaduev, S Kh

    1984-01-01

    Trichoderma cultures were tested for their ability to produce L-lysine-alpha-oxidase. The highest enzyme activity was manifested by T. harzianum (MGU), T. longibrachiatum Rifai VKM F-2025 and T. aureoviride Rifai VKM F-2026. The biosynthesis of the enzyme did not depend on the growth of the cultures and did not vary among the species.

  13. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    PubMed Central

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  14. Metabolomic profiling and antioxidant activity of some Acacia species

    PubMed Central

    Abdel-Farid, I.B.; Sheded, M.G.; Mohamed, E.A.

    2014-01-01

    Metabolomic profiling of different parts (leaves, flowers and pods) of Acacia species (Acacia nilotica, Acacia seyal and Acacia laeta) was evaluated. The multivariate data analyses such as principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were used to differentiate the distribution of plant metabolites among different species or different organs of the same species. A.nilotica was characterized with a high content of saponins and A.seyal was characterized with high contents of proteins, phenolics, flavonoids and anthocyanins. A.laeta had a higher content of carbohydrates than A. nilotica and A. seyal. On the basis of these results, total antioxidant capacity, DPPH free radical scavenging activity and reducing power of the methanolic extracts of studied parts were evaluated. A.nilotica and A.seyal extracts showed less inhibitory concentration 50 (IC50) compared to A.laeta extracts which means that these two species have the strongest radical scavenging activity whereas A. laeta extracts have the lowest radical scavenging activity. A positive correlation between saponins and flavonoids with total antioxidant capacity and DPPH radical scavenging activity was observed. Based on these results, the potentiality of these plants as antioxidants was discussed. PMID:25313274

  15. Physiological Response to Physical Activity in Children.

    ERIC Educational Resources Information Center

    Gilliam, Thomas B.

    This is a report on research in the field of physical responses of children to strenuous activity. The paper is divided into three subtopics: (1) peak performance measure in children; (2) training effects on children; and (3) importance of physical activity for children. Measurements used are oxygen consumption, ventilation, heart rate, cardiac…

  16. Female social response to male sexual harassment in poeciliid fish: a comparison of six species

    PubMed Central

    Dadda, Marco

    2015-01-01

    Sexual harassment is common among poeciliid fish. In some fishes, males show a high frequency of sneak copulation; such sexual activity is costly to the females in terms of foraging efficiency. In mosquitofish (Gambusia holbrooki), when males are present, the distance between females tends to decrease, and this behavior has been interpreted as an adaptive strategy to dilute the costs of male sexual activity. In this study, the tendency to reduce distance in the presence of a male has been investigated in females of six poeciliid species (Girardinus metallicus, Girardinus falcatus, G. holbrooki, Poecilia reticulata, Xiphophorus hellerii, and Xiphophorus mayae) that exhibit different male mating strategies and different levels of sexual activity. Results revealed large interspecific differences in the pattern of female aggregation. Females of species with a high frequency of sneak copulations tended to reduce their social distance in the presence of a male. By contrast, species that rely mainly on courtship showed little or no variation in social distance. The proportion of sneak copulations predicts the degree of variation in female social response, but the amount of total sexual activity does not, suggesting that the change in females' social distance when a male is present may indeed serve to reduce the costs of male sexual harassment. PMID:26483719

  17. Female social response to male sexual harassment in poeciliid fish: a comparison of six species.

    PubMed

    Dadda, Marco

    2015-01-01

    Sexual harassment is common among poeciliid fish. In some fishes, males show a high frequency of sneak copulation; such sexual activity is costly to the females in terms of foraging efficiency. In mosquitofish (Gambusia holbrooki), when males are present, the distance between females tends to decrease, and this behavior has been interpreted as an adaptive strategy to dilute the costs of male sexual activity. In this study, the tendency to reduce distance in the presence of a male has been investigated in females of six poeciliid species (Girardinus metallicus, Girardinus falcatus, G. holbrooki, Poecilia reticulata, Xiphophorus hellerii, and Xiphophorus mayae) that exhibit different male mating strategies and different levels of sexual activity. Results revealed large interspecific differences in the pattern of female aggregation. Females of species with a high frequency of sneak copulations tended to reduce their social distance in the presence of a male. By contrast, species that rely mainly on courtship showed little or no variation in social distance. The proportion of sneak copulations predicts the degree of variation in female social response, but the amount of total sexual activity does not, suggesting that the change in females' social distance when a male is present may indeed serve to reduce the costs of male sexual harassment.

  18. SPECIES-ABUNDANCE-BIOMASS RESPONSES BY ESTUARINE MACROBENTHOS TO SEDIMENT CHEMICAL CONTAMINATION.

    EPA Science Inventory

    Macrobenthic community responses can be measured through concerted changes in univariate metrics, including species richness, total abundance, and total biomass. The classic model of pollution effects on marine macroinvertebrate communities recognizes that species/abundance/bioma...

  19. Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring.

    PubMed

    Lange, Anke; Katsu, Yoshinao; Miyagawa, Shinichi; Ogino, Yukiko; Urushitani, Hiroshi; Kobayashi, Tohru; Hirai, Toshiaki; Shears, Janice A; Nagae, Masaki; Yamamoto, Jun; Ohnishi, Yuta; Oka, Tomohiro; Tatarazako, Norihisa; Ohta, Yasuhiko; Tyler, Charles R; Iguchi, Taisen

    2012-03-01

    Exposure to estrogenic chemicals discharged into the aquatic environment has been shown to induce feminization in wild freshwater fish and although fish species have been reported to differ in their susceptibility for these effects, empirical studies that directly address this hypothesis are lacking. In this study, in vitro ERα activation assays were applied in a range of fish species used widely in chemical testing (including, zebrafish, fathead minnow, medaka) and/or as environmental monitoring species (including, roach, stickleback, carp) to assess their comparative responsiveness to natural (estrone, estradiol, estriol) and synthetic (17α-ethinylestradiol (EE2), diethylstilbestrol (DES)) estrogens. In vivo exposures to EE2 via the water (nominal 2 and 10 ng/L for 7 days) were also conducted for seven fish species to compare their responsiveness for hepatic vitellogenin (VTG) mRNA induction (an ER mediated response). Of the fish species tested, zebrafish ERα was found to be the most responsive and carp and stickleback ERα the least responsive to natural steroid estrogens. This was also the case for exposure to EE2 with an ERα-mediated response sensitivity order of zebrafish > medaka > roach > fathead minnow > carp > stickleback. For VTG mRNA induction in vivo, the order of species responsiveness was: rainbow trout (not tested in the ERα activation assays) > zebrafish > fathead minnow > medaka > roach > stickleback > carp. Overall, the responses to steroid estrogens in vitro via ERα compared well with those seen in vivo (VTG induction for exposure to EE2) showing in vitro screening of chemicals using fish ERα-mediated responses indicative of estrogenic responses (VTG induction) in vivo.

  20. Activation mechanism of Gi and Go by reactive oxygen species.

    PubMed

    Nishida, Motohiro; Schey, Kevin L; Takagahara, Shuichi; Kontani, Kenji; Katada, Toshiaki; Urano, Yasuteru; Nagano, Tetsuo; Nagao, Taku; Kurose, Hitoshi

    2002-03-15

    Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.

  1. In vitro antioxidant and antiproliferative activities of nine Salvia species.

    PubMed

    Loizzo, Monica Rosa; Abouali, Morteza; Salehi, Peyman; Sonboli, Ali; Kanani, Mohammad; Menichini, Francesco; Tundis, Rosa

    2014-01-01

    Supported by a growing increase of scientific research attesting the health properties of salvia species, we have decided to investigate nine Salvia namely Salvia sclarea, Salvia atropatana, Salvia sahendica, Salvia hydrangea, Salvia xanthocheila, Salvia macrosiphon, Salvia glutinosa, Salvia chloroleuca and Salvia ceratophylla species for their antioxidant and antiproliferative activities. In order to correlate the bioactivity with their phytochemical content, the total phenol and total flavonoid contents were also determined. S. ceratophylla exhibited the strongest activity against C32 cells with an IC50 value of 20.8 μg mL(- 1), while S. glutinosa exhibited an IC50 value of 29.5 μg mL(- 1) against ACHN cell line. Interestingly, S. glutinosa displayed also the highest DPPH radical-scavenging activity with an IC50 of 3.2 μg mL(- 1). These species are characterised by the highest total phenol and flavonoid contents. The obtained results suggest that Salvia species are healthy plant foods.

  2. Radical scavenging, antioxidant and antimicrobial activities of halophytic species.

    PubMed

    Meot-Duros, Laetitia; Le Floch, Gaëtan; Magné, Christian

    2008-03-05

    For the first time, both antioxidant and antimicrobial activities are simultaneously reported in halophytic plants, particularly on polar fractions. Chloroformic and methanolic extracts of the halophytes Eryngium maritimum L., Crithmum maritimum L. and Cakile maritima Scop. were tested for their antimicrobial activities against 12 bacterial and yeast strains. In addition, radical scavenging and antioxidant activities were assessed, as well as total phenol contents. Only one bacterial strain (Listeria monocytogenes) was not inhibited by plants extracts, and apolar (chloroformic) fractions were generally more active than polar (methanolic) ones. Eryngium maritimum presented the weakest radical scavenging activity (ABTS IC(50)=0.28 mg ml(-1)), as well as the lowest total phenol content (16.4 mg GAE g(-1) DW). However, the three halophytic species had relatively strong total antioxidant activities (from 32.7 to 48.6 mg ascorbate equivalents g (-1) DW). Consequences on the potential use of these plants in food or cosmetic industry are discussed.

  3. Ketamine Suppresses the Ventral Striatal Response to Reward Anticipation: A Cross-Species Translational Neuroimaging Study

    PubMed Central

    Francois, Jennifer; Grimm, Oliver; Schwarz, Adam J; Schweiger, Janina; Haller, Leila; Risterucci, Celine; Böhringer, Andreas; Zang, Zhenxiang; Tost, Heike; Gilmour, Gary; Meyer-Lindenberg, Andreas

    2016-01-01

    Convergent evidence implicates regional neural responses to reward anticipation in the pathogenesis of several psychiatric disorders, such as schizophrenia, where blunted ventral striatal responses to positive reward are observed in patients and at-risk populations. In vivo oxygen amperometry measurements in the ventral striatum in awake, behaving rats reveal reward-related tissue oxygen changes that closely parallel blood oxygen level dependent (BOLD) signal changes observed in human functional magnetic resonance imaging (fMRI), suggesting that a cross-species approach targeting this mechanism might be feasible in psychopharmacology. The present study explored modulatory effects of acute, subanaesthetic doses of ketamine—a pharmacological model widely used in psychopharmacological research, both preclinically and clinically—on ventral striatum activity during performance of a reward anticipation task in both species, using fMRI in humans and in vivo oxygen amperometry in rats. In a region-of-interest analysis conducted following a cross-over placebo and ketamine study in human subjects, an attenuated ventral striatal response during reward anticipation was observed following ketamine relative to placebo during performance of a monetary incentive delay task. In rats, a comparable attenuation of ventral striatal signal was found after ketamine challenge, relative to vehicle, in response to a conditioned stimulus that predicted delivery of reward. This study provides the first data in both species demonstrating an attenuating effect of acute ketamine on reward-related ventral striatal (O2) and fMRI signals. These findings may help elucidate a deeper mechanistic understanding of the potential role of ketamine as a model for psychosis, show that cross-species pharmacological experiments targeting reward signaling are feasible, and suggest this phenotype as a promising translational biomarker for the development of novel compounds, assessment of disease status, and

  4. Are Mussels Always the Best Bioindicators? Comparative Study on Biochemical Responses of Three Marine Invertebrate Species to Chronic Port Pollution.

    PubMed

    Laitano, María V; Fernández-Gimenez, Analía V

    2016-07-01

    Bivalves have traditionally been considered good bioindicators due to their sensitivity to pollution, among other features. This characteristic is shared by several other non-bivalve species as well, though studies in this respect remain scarce. This work aims to compare biomarker sensitivity to chronic port pollution among three intertidal invertebrate species with good bioindicator characteristics. Mussels' immunological (phenoloxidase and peroxidases) and biotransformation (glutathione-S-transferase) responses were contrasted against those of limpets and barnacles. The three species under study evidenced activity of all the enzymes measured, although with differences. Barnacle Balanus glandula was the most sensitive species showing pollution modulation of the three enzymes, which suggests that mussels would not always be the best bioindicator species among marine invertebrates depending on the responses that are assessed.

  5. Delphinid behavioral responses to incidental mid-frequency active sonar.

    PubMed

    Henderson, E Elizabeth; Smith, Michael H; Gassmann, Martin; Wiggins, Sean M; Douglas, Annie B; Hildebrand, John A

    2014-10-01

    Opportunistic observations of behavioral responses by delphinids to incidental mid-frequency active (MFA) sonar were recorded in the Southern California Bight from 2004 through 2008 using visual focal follows, static hydrophones, and autonomous recorders. Sound pressure levels were calculated between 2 and 8 kHz. Surface behavioral responses were observed in 26 groups from at least three species of 46 groups out of five species encountered during MFA sonar incidents. Responses included changes in behavioral state or direction of travel, changes in vocalization rates and call intensity, or a lack of vocalizations while MFA sonar occurred. However, 46% of focal groups not exposed to sonar also changed their behavior, and 43% of focal groups exposed to sonar did not change their behavior. Mean peak sound pressure levels when a behavioral response occurred were around 122 dB re: 1 μPa. Acoustic localizations of dolphin groups exhibiting a response gave insight into nighttime movement patterns and provided evidence that impacts of sonar may be mediated by behavioral state. The lack of response in some cases may indicate a tolerance of or habituation to MFA sonar by local populations; however, the responses that occur at lower received levels may point to some sensitization as well.

  6. Effect of scale on trait predictors of species responses to agriculture.

    PubMed

    Gilroy, James J; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2015-04-01

    Species persistence in human-altered landscapes can depend on factors operating at multiple spatial scales. To understand anthropogenic impacts on biodiversity, it is useful to examine relationships between species traits and their responses to land-use change. A key knowledge gap concerns whether these relationships vary depending on the scale of response under consideration. We examined how local- and large-scale habitat variables influence the occupancy dynamics of a bird community in cloud forest zones in the Colombian Chocó-Andes. Using data collected across a continuum of forest and agriculture, we examined which traits best predict species responses to local variation in farmland and which traits best predict species responses to isolation from contiguous forest. Global range size was a strong predictor of species responses to agriculture at both scales; widespread species were less likely to decline as local habitat cover decreased and as distance from forest increased. Habitat specialization was a strong predictor of species responses only at the local scale. Open-habitat species were particularly likely to increase as pasture increased, but they were relatively insensitive to variation in distance to forest. Foraging plasticity and flocking behavior were strong predictors of species responses to distance from forest, but not their responses to local habitat. Species with lower plasticity in foraging behaviors and obligate flock-following species were more likely to decline as distance from contiguous forest increased. For species exhibiting these latter traits, persistence in tropical landscapes may depend on the protection of larger contiguous blocks of forest, rather than the integration of smaller-scale woodland areas within farmland. Species listed as threatened or near threatened on the International Union for Conservation of Nature Red List were also more likely to decline in response to both local habitat quality and isolation from forest relative

  7. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  8. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    PubMed

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  9. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specified surface of the body. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes: (1) operating the isolator at the same temperature as the constant temperature of the sensor and (2) establishing a fixed boundary temperature which is either less than or equal to or slightly greater than the sensor constant temperature.

  10. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    DTIC Science & Technology

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Measurement of Metabolic Activity in Dormant Spores of Bacillus Species...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 spores, Bacillus , spore dormancy, 3-phosphoglycerate REPORT DOCUMENTATION PAGE 11

  11. An Activation Threshold Model for Response Inhibition

    PubMed Central

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.

    2017-01-01

    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  12. Community and species-level responses of phyllostomid bats to a disturbance gradient in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Montaño-Centellas, Flavia; Moya, M. Isabel; Aguirre, Luis F.; Galeón, Raquel; Palabral, Oswaldo; Hurtado, Rosember; Galarza, Isabel; Tordoya, Julieta

    2015-01-01

    Understanding animal responses to habitat change and habitat loss is central to the development of conservation and management strategies. Behavioral responses could allow for early detection of animal responses even to small scale disturbances, becoming of increasing importance for conservation. Here, we explore the effects of a low to moderate disturbance gradient on a phyllostomid bat assemblage in a tropical Andean forest of Bolivia, focusing on both community-level (changes in species richness and composition) and species-level (temporal and spatial activity patterns) responses. Although few differences were found in bat assemblages along the disturbance gradient, strong changes in behavioral patterns were noted; activity patterns varied spatially and temporarily. Spatially, some species increased their activity in more disturbed areas whereas others concentrated their activity towards more forested areas. Temporally, niche overlap among frugivores varied along the disturbance gradient: higher temporal niche overlap occurred in disturbed areas whereas a more segregated temporal pattern was observed in forest habitats. Nectarivores did not change their temporal niche patterns, but they segregated their activities in space. Altogether, our results suggest that comparisons based only on community-level responses might be misleading, failing to detect effects of habitat conversion when organisms are actually responding to disturbances.

  13. Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry.

    PubMed

    Honkanen, Merja; Sorjanen, Aili-Maria; Mönkkönen, Mikko

    2011-06-01

    Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.

  14. ModuleBlast: identifying activated sub-networks within and across species.

    PubMed

    Zinman, Guy E; Naiman, Shoshana; O'Dee, Dawn M; Kumar, Nishant; Nau, Gerard J; Cohen, Haim Y; Bar-Joseph, Ziv

    2015-02-18

    Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein.

  15. Screening the Brazilian flora for antihypertensive plant species for in vitro angiotensin-I-converting enzyme inhibiting activity.

    PubMed

    Castro Braga, F; Wagner, H; Lombardi, J A; de Oliveira, A B

    2000-06-01

    The evaluation of several antihypertensive activity of Brazilian plant species was performed using in vitro inhibition of the angiotensin I-converting enzyme (ACE). Nineteen species belonging to 13 families were investigated. Plants were selected based on their use as diuretics and on a chemosystematic consideration. Extracts of the following species presented the highest ACE inhibition rate, at concentrations of 0.33 mg/ml: Ouratea semiserrata (Mart. & Nees) Engl. stems (68%), Cuphea cartagenesis (Jacq.) Macbride leaves (50%) and Mansoa hirsuta DC. leaves (54%). Some hypotheses about the nature of the compounds that may be responsible for the activity of these species are discussed in the paper.

  16. Rigor and Responsiveness in Classroom Activity

    ERIC Educational Resources Information Center

    Thomspon, Jessica; Hagenah, Sara; Kang, Hosun; Stroupe, David; Braaten, Melissa; Colley, Carolyn; Windschitl, Mark

    2016-01-01

    Background/Context: There are few examples from classrooms or the literature that provide a clear vision of teaching that simultaneously promotes rigorous disciplinary activity and is responsive to all students. Maintaining rigorous and equitable classroom discourse is a worthy goal, yet there is no clear consensus of how this actually works in a…

  17. Enhancing Engagement through Active Student Response

    ERIC Educational Resources Information Center

    Tincani, Matt; Twyman, Janet S.

    2016-01-01

    Student engagement is critical to academic success. High-Active Student Response (ASR) teaching techniques are an effective way to improve student engagement and are an important component of evidence-based practice. High-ASR teaching strategies accompany important assumptions: (1) ASR is an alterable variable; (2) teachers can increase ASR in…

  18. Teaching Responsibility through Physical Activity. Second Edition.

    ERIC Educational Resources Information Center

    Hellison, Don

    This book guides teachers in using physical activity to foster personal and social responsibility. Focusing on teaching in school settings, the book features comments from real students to motivate teachers to apply the concept; take-aways that summarize each chapter and help teachers consider their own situations; new chapters on the lesson plan…

  19. Salinity effects on viability, metabolic activity and proliferation of three Perkinsus species

    USGS Publications Warehouse

    La, Peyre M.; Casas, S.; La, Peyre J.

    2006-01-01

    Little is known regarding the range of conditions in which many Perkinsus species may proliferate, making it difficult to predict conditions favorable for their expansion, to identify conditions inducing mortality, or to identify instances of potential cross-infectivity among sympatric host species. In this study, the effects of salinity on viability, metabolic activity and proliferation of P. marinus, P. olseni and P. chesapeaki were determined. Specifically, this research examined the effects of 5 salinities (7, 11, 15, 25, 35???), (1) without acclimation, on the viability and metabolic activity of 2 isolates of each Perkinsus species, and (2) with acclimation, on the viability, metabolic activity, size and number of 1 isolate of each species. P. chesapeaki showed the widest range of salinity tolerance of the 3 species, with high viability and cell proliferation at all salinities tested. Although P. chesapeaki originated from low salinity areas (i.e. <15???), several measures (i.e. cell number and metabolic activity) indicated that higher salinities (15, 25???) were more favorable for its growth. P. olseni, originating from high salinity areas, had better viability and proliferation at the higher salinities (15, 25, 35???). Distinct differences in acute salinity response of the 2 P. olseni isolates at lower salinities (7, 11???), however, suggest the need for a more expansive comparison of isolates to better define the lower salinity tolerance. Lastly, P. marinus was more tolerant of the lower salinities (7 and 11???) than P. olseni, but exhibited reduced viability at 7???, even after acclimation. ?? Inter-Research 2006.

  20. Response to "How many species of giraffe are there?"

    PubMed

    Fennessy, Julian; Winter, Sven; Reuss, Friederike; Kumar, Vikas; Nilsson, Maria A; Vamberger, Melita; Fritz, Uwe; Janke, Axel

    2017-02-20

    It is not unexpected that a proposal, such as ours [1], of four new mammalian species stirs up controversy, as evident in the correspondence by Bercovitch et al.[2]. We appreciate that their concerns are unrelated to the quality of the genetic data, the methodological approach or analyses, but are focused on the interpretation. Thus, we provided an analysis of giraffe speciation based on genomic sequence data, and not just "another viewpoint on giraffe taxonomy" [2]. We maintain our perspective that there is not only one but four species of giraffe (Figure 1).

  1. Magnetically active biosorbent for chromium species removal from aqueous media.

    PubMed

    Abdel-Fattah, Tarek M; Mahmoud, Mohamed E; Osmam, Maher M; Ahmed, Somia B

    2014-01-01

    A magnetically active composite as adsorbent was synthesized via a facile in situ one-pot impregnation of magnetic nano-iron oxide (Fe₃O₄) on the surface of activated carbon (AC) for the formation of AC-Fe₃O₄. Baker(')s yeast was physically loaded on the resultant adsorbent AC-Fe₃O₄ to form a novel yeast coated magnetic composite AC-Fe₃O₄-Yst as biosorbent. The two synthesized adsorbents were characterized by using a scanning electron microscope (SEM) and assessed using Langmuir, the Brunauer-Emmet-Teller (BET) and Dubinin-Radushkevich (D-R) isotherm models. The validity and applicability of these two sorbents in adsorptive removal of chromium species, Cr(VI) and Cr(III), from aqueous solutions under the effect of a magnetic field were studied and evaluated in the presence of various controlling parameters in order to identify the optimal pH, contact time, mass dose and chromium concentrations for such adsorption process. Also, single and multi-stage micro-column techniques were used to study the potential applications of AC-Fe₃O₄ as magnetically active adsorbents and AC-Fe₃O₄-Yst as magnetically active biosorbents, for the removal of chromium species from various real water samples.

  2. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level.

  3. Chemical constituents and biological activities of two Iranian Cystoseira species.

    PubMed

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-07-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles.

  4. Chemical constituents and biological activities of two Iranian Cystoseira species

    PubMed Central

    Yegdaneh, Afsaneh; Ghannadi, Alireza; Dayani, Ladan

    2016-01-01

    The marine environment represents approximately half of the global biodiversity and could provide unlimited biological resources for the production of therapeutic drugs. Marine seaweeds comprise few thousands of species representing a considerable part of the littoral biomass. Extracts of the Cystoseira indica and Cystoseira merica were subjected to phytochemical and cytotoxicity evaluation. The amount of total phenol was determined with Folin-Ciocalteu reagent. Cytotoxicity was characterized by IC50 of human cancer cell lines including MCF-7 (human breast adenocarcinoma), HeLa (cervical carcinoma), and HT-29 (human colon adenocarcinoma) using Sulforhodamin assay. Antioxidant activities were evaluated using 2,2-diphenylpicrylhydrazyl (DPPH) method. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant constituents in these Cystoseira species while cyanogenic and cardiac glycosides were the least ones. C. indica had the higher content of total phenolics and also showed higher antioxidant activity. Cytotoxic results showed that both species inhibited cell growth effectively, especially against MCF-7 cell line. The present findings suggest potential pharmacological applications of selected seaweeds but require further investigation and identification of their bioactive principles. PMID:27651811

  5. Familiarity modulates motor activation while other species' actions are observed: a magnetic stimulation study.

    PubMed

    Amoruso, Lucia; Urgesi, Cosimo

    2016-03-01

    Observing other people's actions facilitates the observer's motor system as compared with observing the same individuals at rest. This motor activation is thought to result from mirror-like activity in fronto-parietal areas, which enhances the excitability of the primary motor cortex via cortico-cortical pathways. Although covert motor activation in response to observed actions has been widely investigated between conspecifics, how humans cope with other species' actions has received less attention. For example, it remains unclear whether the human motor system is activated by observing other species' actions, and whether prior familiarity with the non-conspecific agent modulates this activation. Here, we combined single-pulse transcranial magnetic stimulation and motor-evoked potential recording to explore the impact of familiarity on motor activation during the observation of non-conspecific actions. Videos displaying actions performed either by a conspecific (human) or by a non-conspecific (dog) were shown to individuals who had prior familiarity or no familiarity at all with the non-conspecific agent. We found that, whereas individuals with long-lasting familiarity showed similar levels of motor activation for human and canine actions, individuals who had no familiarity showed higher motor activation for human than for canine actions. These findings suggest that the human motor system is flexible enough to resonate with other species, and that familiarity plays a key role in tuning this ability.

  6. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species

    PubMed Central

    2013-01-01

    Background Extracts from Potentilla species have been applied in traditional medicine and exhibit antioxidant, hypoglycemic, anti-inflammatory, antitumor and anti-ulcerogenic properties, but little has been known about the diversity of phytochemistry and pharmacology on this genus. This study investigated and compared the phytochemical profiles, antioxidant and antimicrobial activities of leaf extracts from three Potentilla species (Potentilla fruticosa, Potentilla glabra and Potentilla parvifolia) in order to discover new resources for lead structures and pharmaceutical products. Methods Chemical composition and content of six phenolic compounds were evaluated and determined by RP-HPLC; Total phenolic and total flavonoid content were determined using Folin-Ciocalteau colourimetric method and sodium borohydride/chloranil-based method (SBC); Antioxidant activities were determined using DPPH, ABTS and FRAP assays; Antimicrobial properties were investigated by agar dilution and mycelial growth rate method. Results The results showed hyperoside was the predominant phenolic compound in three Potentilla species by RP-HPLC assay, with the content of 8.86 (P. fruticosa), 2.56 (P. glabra) and 2.68 mg/g (P. parvifolia), respectively. The highest content of total identified phenolic compounds (hyperoside, (+)-catechin, caffeic acid, ferulic acid, rutin and ellagic acid) was observed in P. parvifolia (14.17 mg/g), follow by P. fruticosa (10.01 mg/g) and P. glabra (7.01 mg/g). P. fruticosa possessed the highest content of total phenolic (84.93 ± 0.50 mmol gallic acid equivalent/100 g) and total flavonoid (84.14 ± 0.03 mmol quercetin equivalent/100 g), which were in good correlation with its significant DPPHIC50 (16.87 μg/mL), ABTS (2763.48 μmol Trolox equivalent/g) and FRAP (1398.70 μmol Trolox equivalent/g) capacities. Furthermore, the effective methodology to distinguish the different species of Potentilla was also established by chromatographic fingerprint analysis for

  7. Studies on the effects on growth and antioxidant responses of two marine microalgal species to uniconazole

    NASA Astrophysics Data System (ADS)

    Mei, Xueqiao; Zheng, Kang; Wang, Lingdong; Li, Yantuan

    2014-10-01

    Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations (0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica ( P < 0.05). Higher concentrations (≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis ( P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production (MDA) at higher concentrations (≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.

  8. Species and sexual differences in behavioural responses of a specialist and generalist parasitoid species to host-related volatiles.

    PubMed

    Ngumbi, E; Fadamiro, H

    2012-12-01

    The relationship between the degree of specialization of parasitoids and their responses to host-related volatiles is an important and current evolutionary question. Specialist parasitoids which have evolved to attack fewer host species are predicted to be more responsive to host-related volatiles than generalists. We tested the above prediction by comparing behavioural responses of both sexes of two parasitoids (Hymenoptera: Braconidae) with different degrees of host specificity, Microplitis croceipes (Cresson) (specialist) and Cotesia marginiventris (generalist), to different suites of synthetic host-related volatile compounds. The compounds tested at two doses (1 and 100 μg) include two green leaf volatiles (GLVs: hexanal and (Z)-3-hexen-1-ol) and four herbivore-induced plant volatiles (HIPVs: (Z)-3-hexenyl acetate, linalool, (Z)-3-hexenyl butyrate and (E,E)-α-farnesene). Two hypotheses were tested: (i) M. croceipes (specialist) would show relatively greater behavioural responses to the HIPVs, whereas C. marginiventris (generalist) would show greater behavioural responses to the GLVs, and (ii) females of both species would show greater responses than conspecific males to the host-related volatiles. At the low dose (1 μg), females of the specialist showed significantly greater responses than females of the generalist to three of the tested HIPVs, (Z)-3-hexenyl acetate, linalool and (Z)-3-hexenyl butyrate. In contrast, females of the generalist showed relatively greater responses to the GLVs. The same trends were recorded at the high dose but fewer significant differences were detected. In general, similar results were recorded for males, with the exception of linalool (an HIPV) which elicited significantly greater response in the generalist than the specialist. Comparing the sexes, females of both species showed greater responses than conspecific males to most of the tested volatiles. The ecological significance of these findings is discussed.

  9. Antimicrobial activity of some Clerodendrum species from Egypt.

    PubMed

    Abouzid, Sameh F; Wahba, Haytham M; Elshamy, Ali; Cos, Paul; Maes, Louis; Apers, Sandra; Pieters, Luc; Shahat, Abdelaaty A

    2013-01-01

    Chloroformic and methanolic extracts of four Clerodendrum species cultivated in Egypt were screened for antimicrobial activities. Chloroformic extracts of the flowers of Clerodendrum chinense and Clerodendrum splendens were active against Plasmodium falciparum (IC50 < 10 µg mL(-1)). Chloroformic extracts of the stem and flowers of C. chinense were active against Trypanosoma cruzi (IC50 = 1.21 and 1.12 µg mL(-1), respectively) with marginal cytotoxicity. Chloroformic extracts of the leaves of C. chinense and C. splendens showed promising activities against T. cruzi (IC50 = 3.39 and 1.98 µg mL(-1), respectively) without cytotoxic effect on a human cell line. None of the selected plants showed significant activity against Gram-negative or Gram-positive bacteria or Candida albicans. Verbascoside, a phenyl propanoid glycoside isolated from the leaves of C. chinense, showed marginal activity against T. cruzi. Rengyolone, a cyclohexyl ethanoid isolated from the leaves of C. chinense, showed a broad but not specific activity against the tested organisms.

  10. Migration potential of tundra plant species in a warming Arctic: Responses of southern ecotypes of three species to experimental warming in the High Arctic

    NASA Astrophysics Data System (ADS)

    Bjorkman, Anne; Henry, Greg; Vellend, Mark

    2013-04-01

    Climatic changes due to anthropogenic activity are predicted to have a profound effect on the world's biodiversity and ecosystem functioning. The response of natural communities to climate change will depend primarily on two factors: 1) the ability of species to adapt quickly to changing temperatures and precipitation trends, and 2) the ability of species and populations from southern latitudes to migrate northward and establish in new environments. The assumption is often made that species and populations will track their optimal climate northward as the earth warms, but this assumption ignores a host of other potentially important factors, including the lack of adaptation to photoperiod, soil moisture, and biotic interactions at higher latitudes. In this study, we aim to better understand the ability of southern populations to establish and grow at northern latitudes under warmer temperatures. We collected seeds or ramets of three Arctic plant species (Papaver radicatum, Oxyria digyna, and Arctagrostis latifolia) from Alexandra Fiord on Ellesmere Island, Canada and from southern populations at Cornwallis Island, Canada, Barrow, Alaska, and Latnjajaure, Sweden. These seeds were planted into experimentally warmed and control plots at Alexandra Fiord in 2011. We have tracked their survival, phenology, and growth over two growing seasons. Here, we will present the preliminary results of these experiments. In particular, we will discuss whether individuals originating from southern latitudes exhibit higher growth rates in warm plots than control plots, and whether southern populations survive and grow as well as or better than individuals from Alexandra Fiord in the warmed plots. In both cases, a positive response would indicate that a warming climate may facilitate a migration northward of more southerly species or populations, and that the lack of adaptation to local conditions (soil chemistry, microhabitat, etc.) will not limit this migration. Alternately, a

  11. Behavioral Response of Nothanguina phyllobia to Selected Plant Species

    PubMed Central

    Robinson, A. F.; Orr, C. C.; Abernathy, J. R.

    1979-01-01

    The silver-leaf nightshade nenmtode, Nothanguina phyllobia, is a promising biological control agent for its only reported host, Solanum elaeagnifolium Cav. When infective larvae of N. phyllobia and stem tissue of 39 econmnically important plant species were suspended in 0.5% water agar, nematodes aggregated about S. elaeagnifolium, Solanum carolinense L., Solanum melongena L., Solanum tuberosum L., and Prunus caroliniana (Mill.) Ait. Nematodes responded to Solanum spp. via positive chemotaxis and/or klinokinesis, but aggregated near tissue of P. caroliniana as a result of orthokinetic effects. Nematodes aggregated away from tissue of Hibiscus esculentus L., Triticum aestivum L., Santolina sp., Rosa sp., and Kochia scoparia (L.) Schrad. in the absence of orthokinetic effects. Experiments that excluded light and maintained relative humidity at 100% showed N. phyllobia to ascend the stems of 35 plant species to a height of > 9 cm within 12 h. Differences in stem ascension were not attributable to stem surface characteristics. PMID:19305532

  12. Place versus response learning in fish: a comparison between species.

    PubMed

    McAroe, Claire L; Craig, Cathy M; Holland, Richard A

    2016-01-01

    Place learning is thought to be an adaptive and flexible facet of navigation. Due to the flexibility of this learning, it is thought to be more complex than the simpler strategies such as learning a particular route or navigating through the use of cues. Place learning is crucial in a familiar environment as it allows an individual to successfully navigate to the same endpoint, regardless of where in the environment the journey begins. Much of the research to date focusing on different strategies employed for navigation has used human subjects or other mammals such as rodents. In this series of experiments, the spatial memory of four different species of fish (goldfish, killifish, zebrafish and Siamese fighting fish) was analysed using a plus maze set-up. Results suggest that three of the species showed a significant preference for the adoption of a place strategy during this task, whereas zebrafish showed no significant preference. Furthermore, zebrafish took significantly longer to learn the task than the other species. Finally, results suggest that zebrafish took the least amount of time (seconds) to complete trials both during training and probe.

  13. Large Roads Reduce Bat Activity across Multiple Species

    PubMed Central

    Kitzes, Justin; Merenlender, Adina

    2014-01-01

    Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations. PMID:24823689

  14. Large roads reduce bat activity across multiple species.

    PubMed

    Kitzes, Justin; Merenlender, Adina

    2014-01-01

    Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations.

  15. Lectin activity in mycelial extracts of Fusarium species.

    PubMed

    Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

    2016-01-01

    Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age.

  16. Trisomy 21 consistently activates the interferon response.

    PubMed

    Sullivan, Kelly D; Lewis, Hannah C; Hill, Amanda A; Pandey, Ahwan; Jackson, Leisa P; Cabral, Joseph M; Smith, Keith P; Liggett, L Alexander; Gomez, Eliana B; Galbraith, Matthew D; DeGregori, James; Espinosa, Joaquín M

    2016-07-29

    Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits.

  17. Improved ex vivo method for microbiocidal activity across vertebrate species

    PubMed Central

    French, Susannah S.; Neuman-Lee, Lorin A.

    2012-01-01

    Summary The field of ecoimmunology is currently undergoing rapid expansion, whereby biologists from a wide range of ecological disciplines are increasingly interested in assessing immunocompetence in their study organisms. One of the key challenges to researchers is determining what eco-immune measures to use in a given experiment. Moreover, there are limitations depending on study species, requirements for specific antibodies, and relevance of the methodology to the study organism. Here we introduce an improved ex vivo method for microbiocidal activity across vertebrate species. The utility of this assay is that it determines the ability of an organism to remove a pathogen that could be encountered in the wild, lending ecological relevancy to the technique. The applications of this microbiocidal assay are broad, as it is readily adaptable to different types of microbes as well as a wide variety of study species. We describe a method of microbiocidal analysis that will enable researchers across disciplines to effectively employ this method to accurately quantify microbial killing ability, using readily available microplate absorbance readers. PMID:23213440

  18. Anticancer activities of selected species of North American lichen extracts.

    PubMed

    Shrestha, Gajendra; El-Naggar, Atif M; St Clair, Larry L; O'Neill, Kim L

    2015-01-01

    Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.

  19. Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia.

    PubMed

    Vladimir-Knežević, Sanda; Blažeković, Biljana; Štefan, Maja Bival; Alegro, Antun; Koszegi, Tamás; Petrik, József

    2011-02-10

    Antioxidant activities of three selected Micromeria species growing in Croatia (M. croatica, M. juliana and M. thymifolia) were evaluated using five different antioxidant assays, in comparison with plant polyphenolic constituents and reference antioxidants. All studied ethanolic extracts exhibited considerable activity to scavenge DPPH and hydroxyl free radicals, reducing power, iron chelating ability and total antioxidant capacity in the order: M. croatica > M. juliana > M. thymifolia. Total polyphenol (9.69-13.66%), phenolic acid (5.26-6.84%), flavonoid (0.01-0.09%) and tannin (3.07-6.48%) contents in dried plant samples were determined spectrophotometrically. A strong positive correlation between antioxidant activities and contents of phenolic acids and tannins was found, indicating their responsibility for effectiveness of tested plants. Our findings established Micromeria species as a rich source of antioxidant polyphenols, especially the endemic M. croatica.

  20. Evolutionary responses of native plant species to invasive plants: a review.

    PubMed

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  1. Species-specific antennal responses to tibial fragrances by male orchid bees.

    PubMed

    Eltz, Thomas; Ayasse, Manfred; Lunau, Klaus

    2006-01-01

    Male neotropical orchid bees (Euglossini) collect odoriferous substances from orchids and other sources and store them in tibial pouches, accumulating complex and species-specific bouquets. These fragrances are later exposed at display sites, presumably to attract females or conspecific males or both. We hypothesized that the necessity to detect and recognize specific fragrance bouquets has led to peripheral chemosensory specializations in different species of orchid bees. To test this, excised male antennae of four species of Euglossa were stimulated with complete tibial extracts of the same four species in a crosswise experiment. In the majority of the tested extracts, the amplitude of the electroantennogram (EAG) response was significantly different between species and always maximal in males of the extracted species. This effect did not appear to result from a given species' increased sensitivity toward certain attractive components: gas chromatography with electroantennographic detection (GC-EAD) of one extract of Euglossa tridentata evoked similar and generalized response patterns in all four species, encompassing a total of 34 peaks that elicited antennal responses. Therefore, the species effect in EAG responses to complete extracts likely resulted from species-specific interactions of compounds at the receptor level. Antennal specialization to conspecific bouquets adds additional strength to the argument that specificity is an important evolutionary aspect of euglossine tibial fragrances.

  2. Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species.

    PubMed

    Rosenblum, Erica Bree; Poorten, Thomas J; Settles, Matthew; Murdoch, Gordon K

    2012-07-01

    Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And do different host species have a similar response to Bd infection? Here, we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely related endangered frog species (Rana muscosa and Rana sierrae) and analyse whole genome expression profiles from frogs in controlled Bd infection experiments. We integrate the Rana results with a comparable data set from a more distantly related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs.

  3. Response to heat shock of different sea urchin species.

    PubMed

    Roccheri, M C; Sconzo, G; La Rosa, M; Oliva, D; Abrignani, A; Giudice, G

    1986-03-01

    It is demonstrated that sea urchin embryos of the species Sphaerechinus granularis are able to respond to heat shock by producing heat shock proteins at the same stage as embryos of Paracentrotus lividus, i.e. after hatching. Arbacia lixula embryos are able to synthesize heat shock proteins already at the stage of 64-128 blastomeres. Embryonic survival is observed if the embryos are heated at the stages at which they can synthesize the heat shock proteins. The inhibition of the bulk protein synthesis after heating at 31 degrees C is never less than 50%.

  4. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  5. Characterization and chillproofing activity of two enzymes from Streptomyces species.

    PubMed

    Etok, C A; Eka, O U

    1996-01-01

    Two enzymes, amylase and protease of Streptomyces species were purified by a combination of ion exchange chromatography and gel filtration and characterized. The amylase had an exoaction on starch yielding maltose as a major end product and was identified as beta-amylase. The purified amylase had a molecular weight of 48,000 and was maximally active at 35 degrees C and at pH 6.0. On the other hand, protease had a molecular weight of 21,000 and was most active at pH 10.0 and at a temperature of 30 degrees C. The Km or MICHAELIS constant of amylase for maize starch was 0.333 mg/ml while that of protease for casein was 2.5 mg/ml. The feasibility of using the purified protease for various industrial application especially in the chillproofing of beer is discussed.

  6. ALDH2 Mediates 5-Nitrofuran Activity in Multiple Species

    PubMed Central

    Zhou, Linna; Ishizaki, Hironori; Spitzer, Michaela; Taylor, Kerrie L.; Temperley, Nicholas D.; Johnson, Stephen L.; Brear, Paul; Gautier, Philippe; Zeng, Zhiqiang; Mitchell, Amy; Narayan, Vikram; McNeil, Ewan M.; Melton, David W.; Smith, Terry K.; Tyers, Mike; Westwood, Nicholas J.; Patton, E. Elizabeth

    2012-01-01

    Summary Understanding how drugs work in vivo is critical for drug design and for maximizing the potential of currently available drugs. 5-nitrofurans are a class of prodrugs widely used to treat bacterial and trypanosome infections, but despite relative specificity, 5-nitrofurans often cause serious toxic side effects in people. Here, we use yeast and zebrafish, as well as human in vitro systems, to assess the biological activity of 5-nitrofurans, and we identify a conserved interaction between aldehyde dehydrogenase (ALDH) 2 and 5-nitrofurans across these species. In addition, we show that the activity of nifurtimox, a 5-nitrofuran anti-trypanosome prodrug, is dependent on zebrafish Aldh2 and is a substrate for human ALDH2. This study reveals a conserved and biologically relevant ALDH2-5-nitrofuran interaction that may have important implications for managing the toxicity of 5-nitrofuran treatment. PMID:22840776

  7. Induced responses to herbivory and jasmonate in three milkweed species.

    PubMed

    Rasmann, Sergio; Johnson, M Daisy; Agrawal, Anurag A

    2009-11-01

    We studied constitutive and induced defensive traits (latex exudation, cardenolides, proteases, and C/N ratio) and resistance to monarch caterpillars (Danaus plexippus) in three closely related milkweed species (Asclepias angustifolia, A. barjoniifolia and A. fascicularis). All traits showed significant induction in at least one of the species. Jasmonate application only partially mimicked the effect of monarch feeding. We found some correspondence between latex and cardenolide content and reduced larval growth. Larvae fed cut leaves of A. angustifolia grew better than larvae fed intact plants. Addition of the cardenolide digitoxin to cut leaves reduced larval growth but ouabain (at the same concentration) had no effect. We, thus, confirm that latex and cardenolides are major defenses in milkweeds, effective against a specialist herbivore. Other traits such as proteases and C/N ratio additionally may be integrated in the defense scheme of those plants. Induction seems to play an important role in plants that have an intermediate level of defense, and we advocate incorporating induction as an additional axis of the plant defense syndrome hypothesis.

  8. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    EPA Science Inventory

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  9. Responses of cells in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  10. Differential responses of photosystems I and II to seasonal drought in two Ficus species

    NASA Astrophysics Data System (ADS)

    Zhang, Shubin; Huang, Wei; Zhang, Jiaolin; Cao, Kunfang

    2016-05-01

    Hemiepiphytic Ficus species exhibit more conservative water use strategy and are more drought-tolerant compared with their non-hemiepiphytic congeners, but a difference in the response of photosystem I (PSI) and photosystem II (PSII) to drought stress has not been documented to date. The enhancement of non-photochemical quenching (NPQ) and cyclic electron flow (CEF) have been identified as important mechanisms that protect the photosystems under drought conditions. Using the hemiepiphytic Ficus tinctoria and the non-hemiepiphytic Ficus racemosa, we studied the water status and the electron fluxes through PSI and PSII under seasonal water stress. Our results clearly indicated that the decline in the leaf predawn water potential (ψpd), the maximum photosynthetic rate (Amax) and the predawn maximum quantum yield of PSII (Fv/Fm) were more pronounced in F. racemosa than in F. tinctoria at peak drought. The Fv/Fm of F. racemosa was reduced to 0.69, indicating net photoinhibition of PSII. Concomitantly, the maximal photo-oxidizable P700 (Pm) decreased significantly in F. racemosa but remained stable in F. tinctoria. The fraction of non-photochemical quenching [Y(NPQ)] and the ratio of effective quantum yield of PSI to PSII [Y(I)/Y(II)] increased for both Ficus species at peak drought, with a stronger increase in F. racemosa. These results indicated that the enhancement of NPQ and the activation of CEF contributed to the photoprotection of PSI and PSII for both Ficus species under seasonal drought, particularly for F. racemosa.

  11. Extensive Differences in Antifungal Immune Response in Two Drosophila Species Revealed by Comparative Transcriptome Analysis

    PubMed Central

    2013-01-01

    The innate immune system of Drosophila is activated by ingestion of microorganisms. D. melanogaster breeds on fruits fermented by Saccharomyces cerevisiae, whereas D. virilis breeds on slime flux and decaying bark of tree housing a variety of bacteria, yeasts, and molds. In this study, it is shown that D. virilis has a higher resistance to oral infection of a species of filamentous fungi belonging to the genus Penicillium compared to D. melanogaster. In response to the fungal infection, a transcriptome profile of immune-related genes was considerably different between D. melanogaster and D. virilis: the genes encoding antifungal peptides, Drosomycin and Metchnikowin, were highly expressed in D. melanogaster whereas, the genes encoding Diptericin and Defensin were highly expressed in D. virilis. On the other hand, the immune-induced molecule (IM) genes showed contrary expression patterns between the two species: they were induced by the fungal infection in D. melanogaster but tended to be suppressed in D. virilis. Our transcriptome analysis also showed newly predicted immune-related genes in D. virilis. These results suggest that the innate immune system has been extensively differentiated during the evolution of these Drosophila species. PMID:24151578

  12. Species differences in the winner effect disappear in response to post-victory testosterone manipulations.

    PubMed

    Fuxjager, Matthew J; Montgomery, Jon L; Marler, Catherine A

    2011-12-07

    Evolutionary processes can interact with the mechanisms of steroid hormone action to drive interspecific variation in behavioural output, yet the exact nature of these interactions is poorly understood. To investigate this issue, we compare the endocrine machinery underlying the winner effect (an ability to increase winning behaviour in response to past victories) in two closely related species of Peromyscus mice. Typically, after winning a fight, California mice (Peromyscus californicus) experience a testosterone (T) surge that helps enhance their future winning behaviour, whereas white-footed mice (Peromyscus leucopus) experience neither a T surge nor a change in subsequent winning behaviour. However, our results indicate that when the post-victory T response of male white-footed mice is phenotypically engineered to resemble that of California mice, individuals are capable of developing a strong and lasting winner effect. Moreover, this 'induced' winner effect in white-footed mice qualitatively matches the winner effect that develops naturally in California mice. Taken together, these findings suggest that white-footed mice have the physiological machinery necessary to form a robust winner effect comparable to that formed by California mice, but are unable to endogenously activate this machinery after achieving winning experiences. We speculate that evolutionary processes, like selection, operate on the physiological substrates that govern post-victory T release to guide divergence in the winner effect between these two species.

  13. Species-specific responses to landscape fragmentation: implications for management strategies

    PubMed Central

    Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine

    2010-01-01

    Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem. PMID:25567925

  14. Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana.

    PubMed Central

    Rusterucci, C.; Stallaert, V.; Milat, M. L.; Pugin, A.; Ricci, P.; Blein, J. P.

    1996-01-01

    Excised leaves of Nicotiana tabacum var Xanthi and Nicotiana rustica were treated with cryptogein and capsicein, basic and acidic elicitins, respectively. Both compounds induced leaf necrosis, the intensity of which depended on concentration and duration of treatment. N. tabacum var Xanthi was the most sensitive species and cryptogein was the most active elicitin. Lipid peroxidation in elicitin-treated Nicotiana leaves was closely correlated with the appearance of necrosis. Elicitin treatments induced a rapid and transient burst of active oxygen species (AOS) in cell cultures of both Nicotiana species, with the production by Xanthi cells being 6-fold greater than that by N. rustica. Similar maximum AOS production levels were observed with both elicitins, but capsicein required 10-fold higher concentrations than those of cryptogein. Phytoalexin production was lower in response to both elicitins in N. tabacum var Xanthi cells than in N. rustica cells, and capsicein was the most efficient elicitor of this response. In cryptogein-treated cell suspensions, phytoalexin synthesis was unaffected by diphenyleneiodonium, which inhibited AOS generation, nor was it affected by tiron or catalase, which suppressed AOS accumulation in the extracellular medium. These results suggest that AOS production, lipid peroxidation, and necrosis are directly related, whereas phytoalexin production depends on neither the presence nor the intensity of these responses. PMID:12226334

  15. The growth responses of coastal dune species are determined by nutrient limitation and sand burial.

    PubMed

    Gilbert, Matthew; Pammenter, Norman; Ripley, Brad

    2008-05-01

    Past work suggests that burial and low nutrient availability limit the growth and zonal distribution of coastal dune plants. Given the importance of these two factors, there is a surprising lack of field investigations of the interactions between burial and nutrient availability. This study aims to address this issue by measuring the growth responses of four coastal dune plant species to these two factors and their interaction. Species that naturally experience either high or low rates of burial were selected and a factorial burial by nutrient addition experiment was conducted. Growth characteristics were measured in order to determine which characteristics allow a species to respond to burial. Species that naturally experience high rates of burial (Arctotheca populifolia and Scaevola plumieri) displayed increased growth when buried, and this response was nutrient-limited. Stable-dune species had either small (Myrica cordifolia, N-fixer) or negligible responses to burial (Metalasia muricata), and were not nutrient-limited. This interspecific difference in response to burial and/or fertiliser is consistent with the idea that burial maintains the observed zonation of species on coastal dunes. Species that are unable to respond to burial are prevented from occupying the mobile dunes. Species able to cope with high rates of burial had high nitrogen-use efficiencies and low dry mass costs of production, explaining their ability to respond to burial under nutrient limitation. The interaction between burial and nutrient limitation is understudied but vital to understanding the zonation of coastal dune plant species.

  16. Function of reactive oxygen species during animal development: passive or active?

    PubMed

    Covarrubias, Luis; Hernández-García, David; Schnabel, Denhí; Salas-Vidal, Enrique; Castro-Obregón, Susana

    2008-08-01

    Oxidative stress is considered causal of aging and pathological cell death, however, very little is known about its function in the natural processes that support the formation of an organism. It is generally thought that cells must continuously protect themselves from the possible damage caused by reactive oxygen species (ROS) (passive ROS function). However, presently, ROS are recognized as physiologically relevant molecules that mediate cell responses to a variety of stimuli, and the activities of several molecules, some developmentally relevant, are directly or indirectly regulated by oxidative stress (active ROS function). Here we review recent data that are suggestive of specific ROS functions during development of animals, particularly mammals.

  17. Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen.

    PubMed Central

    Lewis, D F; Ioannides, C; Parke, D V

    1998-01-01

    The importance of cytochrome P450 isoforms to species differences in the metabolism of foreign compounds and activation of procarcinogens has been identified. The possible range of P450 isozymes in significant variations in toxicity exhibited by experimental rodent species may have a relevance to chemical risk assessment, especially as human P450s are likely to show changes in the way they metabolize xenobiotics. Consequently, in the safety evaluation of chemicals, we should be cautious in extrapolating results from experimental animal models to humans. This paper focuses on examples in which species differences in P450s lead to significant alterations in carcinogenic response, and includes a discussion of the current procedures for toxicity screening, with an emphasis on short-term tests. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9755138

  18. Anticholinesterase and Antityrosinase Activities of Ten Piper Species from Malaysia

    PubMed Central

    Salleh, Wan Mohd Nuzul Hakimi Wan; Hashim, Nur Athirah; Ahmad, Farediah; Heng Yen, Khong

    2014-01-01

    Purpose: The aim of this study was to investigate acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and antityrosinase activities of extracts from ten Piper species namely; P. caninum, P. lanatum, P. abbreviatum, P. aborescens, P. porphyrophyllum, P. erecticaule, P. ribesioides, P. miniatum, P. stylosum, and P. majusculum. Methods: Anticholinesterase and antityrosinase activities were evaluated against in vitro Ellman spectroscopy method and mushroom tyrosinase, respectively. Results: The EtOAc extract of P. erecticaule showed the highest AChE and BChE inhibitory with 22.9% and 70.9% inhibition, respectively. In antityrosinase activity, all extracts of P. porphyrophyllum showed the highest inhibitory effects against mushroom tyrosinase, compared to standard, kojic acid. Conclusion: This study showed that P. erecticaule and P. porphyrophyllum have potential AChE/BChE and tyrosinase inhibition activities. The respective extracts can be explored further for the development of novel lead as AChE/BChE and tyrosinase inhibitors in therapeutic management of Alzheimer’s disease. PMID:25671185

  19. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    PubMed

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon.

  20. Fungal-mediated mortality explains the different effects of dung leachates on the germination response of grazing increaser and decreaser species

    NASA Astrophysics Data System (ADS)

    Carmona, Carlos P.; Navarro, Elena; Peco, Begoña

    2016-01-01

    Depending on their response to grazing, grassland species can be categorized as grazing increasers or decreasers. Grazing by livestock includes several different activities that can impact species differently. Recent evidence suggest that one of these actions, dung deposition, can reduce the germinative performance of decreaser species, thus favouring increasers. The present study tested the hypothesis that decreased germinative success of decreaser species is caused by a greater activity of fungal pathogens under the influence of dung leachates. We performed a phytotron experiment analysing the germination and fungal infections of fourteen species from Mediterranean grasslands. Species were grouped into phylogenetically-related pairs, composed of an increaser and a decreaser species. Seeds of each species were germinated under four different treatments (control, dung leachate addition, fungicide addition and dung leachate and fungicide addition), and the differences in germination percentage, germination speed and infection rate between each increaser species and its decreaser counterpart were analysed. Decreaser species were more affected by mortality than increaser ones, and these differences were higher under the presence of dung leachates. The differences in germinative performance after excluding the effect of seed mortality did not differ between treatments, showing that the main mechanism by which dung leachates favour increaser species is through increased mortality of the seeds of decreaser species. Drastic reductions in the number of dead seeds in the treatments including fungicide addition further revealed that fungal pathogens are responsible for these differences between species with different grazing response. The different vulnerabilities of increaser and decreaser species to the increased activity of fungal pathogens under the presence of dung leachates seems the main reason behind the differential effect of these leachates on species with

  1. Emotions and BIS/BAS components affect brain activity (ERPs and fNIRS) in observing intra-species and inter-species interactions.

    PubMed

    Balconi, Michela; Vanutelli, Maria Elide

    2016-09-01

    Affective response to observation of intra-species and inter-species interactions was considered in the present research. The brain activity (optical imaging: functional Near-Infrared Spectroscopy, fNIRS; and event-related potentials, ERPs, N200) was monitored when subjects observed interactive situations (human-human, HH; human-animal, HA) with a positive (cooperative), negative (uncooperative) or neutral (no emotional) content. In addition, cortical lateralization (more left or right prefrontal activity) and personality component (Behavioral Activation System, BAS; Behavioral Inhibition System, BIS) effects were explored. Both ERP and fNIRS showed significant brain activity increasing in response to positive and negative compared with neutral interactions for HH and HA. However, some differences were found between HH (more "negative valence" effect) and HA (more "positive valence" effect). Finally BAS and BIS were related respectively to more left (positive conditions) or right (negative conditions) hemispheric activity. These results supported the significance of affective behavior differentiating the species-specific and species-aspecific relationships.

  2. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  3. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  4. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  5. Species' traits help predict small mammal responses to habitat homogenization by an invasive grass.

    PubMed

    Ceradini, Joseph P; Chalfoun, Anna D

    2017-03-20

    Invasive plants can negatively affect native species, however, the strength, direction, and shape of responses may vary depending on the type of habitat alteration and the natural history of native species. To prioritize conservation of vulnerable species, it is therefore critical to effectively predict species' responses to invasive plants, which may be facilitated by a framework based on species' traits. We studied the population and community responses of small mammals and changes in habitat heterogeneity across a gradient of cheatgrass (Bromus tectorum) cover, a widespread invasive plant in North America. We live-trapped small mammals over two summers and assessed the effect of cheatgrass on native small mammal abundance, richness, and species-specific and trait-based occupancy, while accounting for detection probability and other key habitat elements. Abundance was only estimated for the most common species, deer mice (Peromyscus maniculatus). All species were pooled for the trait-based occupancy analysis to quantify the ability of small mammal traits (habitat association, mode of locomotion, and diet) to predict responses to cheatgrass invasion. Habitat heterogeneity decreased with cheatgrass cover. Deer mouse abundance increased marginally with cheatgrass. Species richness did not vary with cheatgrass, however, pocket mouse (Perognathus spp.) and harvest mouse (Reithrodontomys spp.) occupancy tended to decrease and increase, respectively, with cheatgrass cover, suggesting a shift in community composition. Cheatgrass had little effect on occupancy for deer mice, 13-lined ground squirrels (Spermophilus tridecemlineatus), and Ord's kangaroo rat (Dipodomys ordii). Species' responses to cheatgrass primarily corresponded with our a priori predictions based on species' traits. The probability of occupancy varied significantly with a species' habitat association but not with diet or mode of locomotion. When considered within the context of a rapid habitat change

  6. The relationship between total cholinesterase activity and mortality in four butterfly species

    USGS Publications Warehouse

    Bargar, Timothy A.

    2012-01-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 μg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 μM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality.

  7. Larval life history responses to food deprivation in three species of predatory lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied life history responses of larvae of three coccinellid species, Coleomegilla maculata (DeGeer), Hippodamia convergens Guerin-Meneville, and Harmonia axyridis (Pallas), when deprived of food for different periods of time during the fourth stadium. The coccinellid species did not differ in ...

  8. THE MILLENNIUM CHALLENGE: THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S RESPONSE TO INVASIVE SPECIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is responding to the scientific and regulatory challenges of invasive species in a variety of ways. One response has been to use existing programs and regulations, as appropriate, to address invasive species. A recent example is th...

  9. Metabolic responses to simulated extravehicular activity

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca C.; Sharer, Peter J.; Webbon, Bruce W.; Rendon, Lisa R.

    1992-01-01

    Automatic control of the liquid cooling garment (LCG) worn by astronauts during extravehicular activity (EVA) would more efficiently regulate astronaut thermal comfort and improve astronaut productivity. An experiment was conducted in which subjects performed exercise profiles on a unique, supine upper body ergometer to elicit physiological and thermal responses similar to those achieved during zero-g EVAs. Results were analyzed to quantify metabolic rate, various body temperatures, and other heat balance parameters. Such data may lead to development of a microprocessor-based system to automatically maintain astronaut heat balance during extended EVAs.

  10. Idiosyncratic species effects confound size-based predictions of responses to climate change

    PubMed Central

    Twomey, Marion; Brodte, Eva; Jacob, Ute; Brose, Ulrich; Crowe, Tasman P.; Emmerson, Mark C.

    2012-01-01

    Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism–body mass and consumption–body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change. PMID:23007085

  11. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico

    NASA Astrophysics Data System (ADS)

    Zuloaga-Aguilar, Susana; Briones, Oscar; Orozco-Segovia, Alma

    2011-05-01

    In many fire-prone ecosystems, seed germination is triggered by heat shock, smoke, ash and charred wood. However, few studies concerning the effect of these fire products on the germination of tropical and subtropical species exist. We assessed the effect of fire products and their interactions on seed germination in 12 species that frequently grow in burned areas of pine-oak and mixed forest in a mountainous subtropical area. Each species was exposed to a predetermined treatment of heat shock, which was optimised in accordance with a previous study. For smoke treatments, seeds were immersed in smoke water, whereas for ash treatments, 1.5 g of ash was added to the incubation medium. Germination increased in 92% of the species in response to the products of fire. Both the smoke water and the ash treatments promoted germination in four species that had permeable seed covers and physiological dormancy. Six species with physical dormancy required both heat shock and smoke water or ash to break dormancy. Our results indicate that seed germination response to fire products depends on the species and/or dormancy type. The germination response to the fire products varied between species; therefore, fire products may influence the species composition in post-fire regeneration.

  12. Abscisic acid regulates seed germination of Vellozia species in response to temperature.

    PubMed

    Vieira, B C; Bicalho, E M; Munné-Bosch, S; Garcia, Q S

    2017-03-01

    The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature. Seeds were incubated in GA (GA3 or GA4 ) or ABA and their respective biosynthesis inhibitors (paclobutrazol - PAC, and fluridone - FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination. Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA3 stimulated germination in the dark at 25 °C (GA4 being more effective than GA3 ). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea. We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature.

  13. Activation of the DNA Damage Response by RNA Viruses

    PubMed Central

    Ryan, Ellis L.; Hollingworth, Robert; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  14. Habitat associations of species show consistent but weak responses to climate

    PubMed Central

    Suggitt, Andrew J.; Stefanescu, Constantí; Páramo, Ferran; Oliver, Tom; Anderson, Barbara J.; Hill, Jane K.; Roy, David B.; Brereton, Tom; Thomas, Chris D.

    2012-01-01

    Different vegetation types can generate variation in microclimates at local scales, potentially buffering species from adverse climates. To determine if species could respond to such microclimates under climatic warming, we evaluated whether ectothermic species (butterflies) can exploit favourable microclimates and alter their use of different habitats in response to year-to-year variation in climate. In both relatively cold (Britain) and warm (Catalonia) regions of their geographical ranges, most species shifted into cooler, closed habitats (e.g. woodland) in hot years, and into warmer, open habitats (e.g. grassland) in cooler years. Additionally, three-quarters of species occurred in closed habitats more frequently in the warm region than in the cool region. Thus, species shift their local distributions and alter their habitat associations to exploit favourable microclimates, although the magnitude of the shift (approx. 1.3% of individuals from open to shade, per degree Celsius) is unlikely to buffer species from impacts of regional climate warming. PMID:22491762

  15. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light

  16. Biologic interactions determining geographic range size: a one species response to phylogenetic community structure

    PubMed Central

    Herrera-Alsina, Leonel; Villegas-Patraca, Rafael

    2014-01-01

    Range size variation in closely related species suggests different responses to biotic and abiotic heterogeneity across large geographic regions. Species turnover generates a wide spectrum of species assemblages, resulting in different competition intensities among taxa, creating restrictions as important as environmental constraints. We chose to adopt the widely used phylogenetic relatedness (NRI) measurement to define a metric that depicts competition strength (via phylogenetic similarity), which one focal species confronts in its environment. This new approach (NRIfocal) measures the potential of the community structure effect over performance of a single species. We chose two ecologically similar Peucaea sparrows, which co-occur and have highly dissimilar range size to test whether the population response to competition intensity is different between species. We analyzed the correlation between both Peucaea species population sizes and NRIfocal using data from point counts. Results indicated that the widespread species population size was not associated with NRIfocal, whereas the population of restricted-sized species exhibited a negative relationship with competition intensity. Consequently, a species' sensitivity to competition might be a limiting factor to range expansion, which provides new insights into geographic range analysis and community ecology. PMID:24772275

  17. Trisomy 21 consistently activates the interferon response

    PubMed Central

    Sullivan, Kelly D; Lewis, Hannah C; Hill, Amanda A; Pandey, Ahwan; Jackson, Leisa P; Cabral, Joseph M; Smith, Keith P; Liggett, L Alexander; Gomez, Eliana B; Galbraith, Matthew D; DeGregori, James; Espinosa, Joaquín M

    2016-01-01

    Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits. DOI: http://dx.doi.org/10.7554/eLife.16220.001 PMID:27472900

  18. Cerebral blood flow response to functional activation

    PubMed Central

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill; Knudsen, Gitte Moos; Pelligrino, Dale

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only increases to a minor degree—the so-called uncoupling of CBF and oxidative metabolism. Several studies have dealt with these issues, and theories have been forwarded regarding the underlying mechanisms. Some reports have speculated about the existence of a potentially deficient oxygen supply to the tissue most distant from the capillaries, whereas other studies point to a shift toward a higher degree of non-oxidative glucose consumption during activation. In this review, we argue that the key mechanism responsible for the regional CBF (rCBF) increase during functional activation is a tight coupling between rCBF and glucose metabolism. We assert that uncoupling of rCBF and oxidative metabolism is a consequence of a less pronounced increase in oxygen consumption. On the basis of earlier studies, we take into consideration the functional recruitment of capillaries and attempt to accommodate the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation. PMID:19738630

  19. Comparison of the pathogen species-specific immune response in udder derived cell types and their models.

    PubMed

    Günther, Juliane; Koy, Mirja; Berthold, Anne; Schuberth, Hans-Joachim; Seyfert, Hans-Martin

    2016-02-01

    The outcome of an udder infection (mastitis) largely depends on the species of the invading pathogen. Gram-negative pathogens, such as Escherichia coli often elicit acute clinical mastitis while Gram-positive pathogens, such as Staphylococcus aureus tend to cause milder subclinical inflammations. It is unclear which type of the immune competent cells residing in the udder governs the pathogen species-specific physiology of mastitis and which established cell lines might provide suitable models. We therefore profiled the pathogen species-specific immune response of different cell types derived from udder and blood. Primary cultures of bovine mammary epithelial cells (pbMEC), mammary derived fibroblasts (pbMFC), and bovine monocyte-derived macrophages (boMdM) were challenged with heat-killed E. coli, S. aureus and S. uberis mastitis pathogens and their immune response was scaled against the response of established models for MEC (bovine MAC-T) and macrophages (murine RAW 264.7). Only E. coli provoked a full scale immune reaction in pbMEC, fibroblasts and MAC-T cells, as indicated by induced cytokine and chemokine expression and NF-κB activation. Weak reactions were induced by S. aureus and none by S. uberis challenges. In contrast, both models for macrophages (boMdM and RAW 264.7) reacted strongly against all the three pathogens accompanied by strong activation of NF-κB factors. Hence, the established cell models MAC-T and RAW 264.7 properly reflected key aspects of the pathogen species-specific immune response of the respective parental cell type. Our data imply that the pathogen species-specific physiology of mastitis likely relates to the respective response of MEC rather to that of professional immune cells.

  20. Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants.

    PubMed

    Pelini, Shannon L; Diamond, Sarah E; Maclean, Heidi; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2012-12-01

    Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding of the causes of compositional and spatial variation in responses to warming. Such experiments are useful for determining if geographically separated populations and co-occurring species respond differently to warming, and they provide the opportunity to compare effects of warming on fitness (survivorship and reproduction). We exposed colonies of two common ant species in the eastern United States, Aphaenogaster rudis and Temnothorax curvispinosus, collected along a latitudinal gradient from Massachusetts to North Carolina, to growth chamber treatments that simulated current and projected temperatures in central Massachusetts and central North Carolina within the next century. Regardless of source location, colonies of A. rudis, a keystone seed disperser, experienced high mortality and low brood production in the warmest temperature treatment. Colonies of T. curvispinosus from cooler locations experienced increased mortality in the warmest rearing temperatures, but colonies from the warmest locales did not. Our results suggest that populations of some common species may exhibit uniform declines in response to warming across their geographic ranges, whereas other species will respond differently to warming in different parts of their geographic

  1. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  2. Larvicidal activity of selected aloe species against Aedes aegypti (Diptera: Culiciade).

    PubMed

    Chore, Judith K; Obonyo, Meshack; Wachira, Francis N; Mireji, Paul O

    2014-01-01

    Management of mosquito vectors by current classes of mosquitocides is relatively ineffective and necessitates prospecting for novel insecticides with different modes of action. Larvicidal activities of 15 crude extracts from three geographically isolated Aloe ngongensis (Christian), Aloe turkanensis (Christian), and Aloe fibrosa (Lavranos & L.E.Newton) (Xanthorrhoeaceae) species (five each) were evaluated against Aedes aegypti (Linnaeus in Hasselquist) (Diptera: Culiciade L.) yellow fever mosquito. Freshly collected leaves were separately shade-dried to constant weight at room temperature (25 ± 2°C) and powdered. Each powder was macerated in solvents of increasing polarity (hexane, chloroform, ethyl acetate, acetone, and methanol) for 72 h and subsequently filtered. Third-instar larvae (n = 25) of the mosquito were exposed to the extracts at different concentrations for 24 h to establish dose response relationships. All the fractions of A. ngongensis were active below 1 mg/ml except A. fibrosa and A. turkanensis. The highest activity (LC50) mg/ml was obtained with extracts of A. fibrosa hexane (0.05 [0.04-0.06]), followed by A. ngongensis hexane (0.11 [0.08-0.15]) and A. turkanensis ethyl acetate (0.11 [0.09-0.12]). The activities are apparently Aloe species specific and extraction solvent dependent. These findings suggest that extracts from selected Aloe species have mosquitocidal principles that can be exploited in development of new insecticides.

  3. Sphaerophysa kotschyana, an endemic species from Central Anatolia: antioxidant system responses under salt stress.

    PubMed

    Yildiztugay, Evren; Ozfidan-Konakci, Ceyda; Kucukoduk, Mustafa

    2013-09-01

    Sphaerophysa kotschyana is a Turkish endemic and endangered plant that grows near Salt Lake, in Konya, Turkey. However, little is known about the ability of this plant to generate/remove reactive oxygen species (ROS) or its adaptive biochemical responses to saline environments. After exposure of S. kotschyana to 0, 150, and 300 mM NaCl for 7 and 14 days, we investigated (1) the activities and isozyme compositions of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), and glutathione reductase (GR); (2) the oxidative stress parameters NADPH oxidase (NOX) activity, lipid peroxidation (MDA), total ascorbate (tAsA) content, and total glutathione content (tGlut); and (3) ROS levels for superoxide anion radical (O 2 (·-) ), hydrogen peroxide (H2O2), hydroxyl radicals (OH·), and histochemical staining of O 2 (·-) and H2O2. H2O2 content increased after 14 days of salt stress, which was consistent with the results from histochemical staining and NOX activity measurements. In contrast, oxidative stress induced by 150 mM NaCl was more efficiently prevented, as indicated by low malondialdehyde (MDA) levels and especially at 7 days, by increased levels of SOD, POX, APX, and GR. However, at 300 mM NaCl, decreased levels of protective enzymes such as SOD, CAT, POX, and GR, particularly with long-term stress (14 days), resulted in limited ROS scavenging activity and increased MDA levels. Moreover, at 300 mM NaCl, the high H2O2 content caused oxidative damage rather than inducing protective responses against H2O2. These results suggest that S. kotschyana is potentially tolerant to salt-induced damage only at low salt concentrations.

  4. Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species.

    PubMed

    Gálvez, Francisco Javier; Baghour, Mourad; Hao, Gangping; Cagnac, Olivier; Rodríguez-Rosales, María Pilar; Venema, Kees

    2012-02-01

    In general, wild tomato species are more salt tolerant than cultivated species, a trait that is related to enhanced Na(+) accumulation in aerial parts in the wild species, but the molecular basis for these differences is not known. Plant NHX proteins have been suggested to be important for salt tolerance by promoting accumulation of Na(+) or K(+) inside vacuoles. Therefore, differences in expression or activity of NHX proteins in tomato could be at the basis of the enhanced salt tolerance in wild tomato species. To test this hypothesis, we studied the expression level of four NHX genes in the salt sensitive cultivated species Solanum lycopersicum L. cv. Volgogradskij and the salt tolerant wild species Solanum pimpinelifolium L in response to salt stress. First, we determined that in the absence of salt stress, the RNA abundance of LeNHX2, 3 and 4 was comparable in both species, while more LeNHX1 RNA was detected in the tolerant species. LeNHX2 and LeNHX3 showed comparable expression levels and were present in all tissues, while LeNHX4 was expressed above all in stem and fruit tissues. Next, we confirmed that the wild species was more tolerant and accumulated more Na(+) in aerial parts of the plant. This correlated with the observation that salt stress induced especially the LeNHX3 and LeNHX4 isoforms in the tolerant species. These results support a role of NHX genes as determinants of salt tolerance in tomato, inducing enhanced Na(+) accumulation observed in the wild species when grown in the presence of NaCl.

  5. Anthelmintic activity of the latex of Ficus species.

    PubMed

    de Amorin, A; Borba, H R; Carauta, J P; Lopes, D; Kaplan, M A

    1999-03-01

    The latex of some species of Ficus (Moraceae) has been traditionally used as vermifuge in Central and South America. It has been accepted that anthelmintic activity is due to a proteolytic fraction called ficin. In the present study, the anthelmintic activity of the latex of Ficus insipida Willd. and Ficus carica L. has been investigated in NIH mice naturally infected with Syphacia obvelata, Aspiculuris tetraptera and Vampirolepis nana. The latex of F. insipida, administered by intragastric route in doses of 4 ml/kg/day during three consecutive days, were effective in the removal of 38.6% of the total number of S. obvelata, being inexpressive in the removal of A. tetraptera (8.4%) and segments of V. nana (6.3%). The latex of F. carica, administered in doses of 3 ml/kg/day, during three consecutive days, was effective in the removal of S. obvelata (41.7%) and it did not produce significant elimination of A. tetraptera (2.6%) and V. nana (8.3%). The observed high acute toxicity with hemorrhagic enteritis, in addition to a weak anthelmintic efficacy, do not recommend the use of these lattices in traditional medicine.

  6. Generation and remote delivery of plasma activated species

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Rutherford, David; Mariotti, Davide; Macias-Montero, Manuel; Perez-Martin, Fatima; Diver, Declan

    2016-09-01

    Plasma interactions with microdroplets offer new opportunities to deliver active chemical agents and nanoparticles to remote substrates downstream with many potential applications from cancer theranostics and wound healing in biomedicine, gentle food decontamination and seed germination in plasma agriculture to catalyst production and photonic structures fabrication, among others. We demonstrate plasma-liquid based pristine nanomaterials synthesis in flight and subsequent delivery up to 120mm from the atmospheric pressure plasma source. Monosized and non-aggregating metal nanoparticles are formed in the rf plasma in less than 100us, representing an increase in precursor reduction rate that is many (>4) orders of magnitude faster than that observed with standard colloidal chemistry or via high energy radiolytic techniques. Also the collection and purification limitations of the latter are avoided. Plasma activated liquid including OH radicals and H2O2 are transported over 120mm and have demonstrated high efficacy bacterial decontamination. These results will be compared with charge species and radical transport from the rf plasma without microdroplets. Reaction models based on high solvated surface electron concentrations will be presented. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  7. Coupling Genetic and Species Distribution Models to Examine the Response of the Hainan Partridge (Arborophila ardens) to Late Quaternary Climate

    PubMed Central

    Chang, Jiang; Chen, De; Ye, Xinping; Li, Shouhsien; Liang, Wei; Zhang, Zhengwang; Li, Ming

    2012-01-01

    Understanding the historical dynamics of animal species is critical for accurate prediction of their response to climate changes. During the late Quaternary period, Southeast Asia had a larger land area than today due to lower sea levels, and its terrestrial landscape was covered by extensive forests and savanna. To date, however, the distribution fluctuation of vegetation and its impacts on genetic structure and demographic history of local animals during the Last Glacial Maximum (LGM) are still disputed. In addition, the responses of animal species on Hainan Island, located in northern Southeast Asia, to climate changes during the LGM are poorly understood. Here, we combined phylogeographic analysis, paleoclimatic evidence, and species distribution models to examine the response of the flightless Hainan Partridge (Arborophila ardens) to climate change. We concluded that A. ardens survived through LGM climate changes, and its current distribution on Hainan Island was its in situ refuge. Range model results indicated that A. ardens once covered a much larger area than its current distribution. Demographic history described a relatively stable pattern during and following the LGM. In addition, weak population genetic structure suggests a role in promoting gene flow between populations with climate-induced elevation shifts. Human activities must be considered in conservation planning due to their impact on fragmented habitats. These first combined data for Hainan Partridge demonstrate the value of paired genetic and SDMs study. More related works that might deepen our understanding of the responses of the species in Southeast Asia to late Quaternary Climate are needed. PMID:23185599

  8. Species-specific differences in biomarker responses in two ecologically different earthworms exposed to the insecticide dimethoate.

    PubMed

    Velki, Mirna; Hackenberger, Branimir K

    2012-08-01

    Earthworms ingest large amounts of soil and therefore are continuously exposed to contaminants through their alimentary surfaces. Additionally, several studies have shown that earthworm skin is a significant route of contaminant uptake as well. In order to determine effects of dimethoate, a broad-spectrum organophosphorous insecticide, two ecologically different earthworm species were used - Eisenia andrei and Octolasion lacteum. Although several studies used soil organisms to investigate the effects of dimethoate, none of these studies included investigations of dimethoate effects on biochemical biomarkers in earthworms. Earthworms were exposed to 0.001, 0.005, 0.01, 0.5 and 1 μg/cm(2) of dimethoate for 24 h, and the activities of acetylcholinesterase, carboxylesterase, catalase and efflux pump were measured. In both earthworm species dimethoate caused significant inhibition of acetylcholinesterase and carboxylesterase activities, however in E. andrei an hormetic effect was evident. Efflux pump activity was inhibited only in E. andrei, and catalase activity was significantly inhibited in both earthworm species. Additionally, responses of earthworm acetylcholinesterase, carboxylesterase and catalase activity to dimethoate were examined through in vitro experiments. Comparison of responses between E. andrei and O. lacteum has shown significant differences, and E. andrei has proved to be less susceptible to dimethoate exposure.

  9. Differences in copper bioaccumulation and biological responses in three Mytilus species.

    PubMed

    Brooks, Steven J; Farmen, Eivind; Heier, Lene Sørlie; Blanco-Rayón, Esther; Izagirre, Urtzi

    2015-03-01

    Mytilus species are important organisms in marine systems being highly abundant and widely distributed along the coast of Europe and worldwide. They are typically used in biological effects studies and have a suite of biological effects endpoints that are frequently measured and evaluated for stress effects in laboratory experiments and field monitoring programmes. Differences in bioaccumulation and biological responses of the three Mytilus species following exposure to copper (Cu) were investigated. A laboratory controlled exposure study was performed with three genetically confirmed Mytilus species; M. galloprovincialis, M. edulis and M. trossulus. Chemical bioaccumulation and biomarkers were assessed in all three Mytilus species following a 4 day and a 21 day exposure to waterborne copper concentrations (0, 10, 100 and 500μg/L). Differences in copper bioaccumulation were measured after both 4 and 21 days, which suggests some physiological differences between the species. Furthermore, differences in response for some of the biological effects endpoints were also found to occur following exposure. These differences were discussed in relation to either real physiological differences between the species or merely confounding factors relating to the species natural habitat and seasonal cycles. Overall the study demonstrated that differences in chemical bioaccumulation and biomarker responses between the Mytilus spp. occur with potential consequences for mussel exposure studies and biological effects monitoring programmes. Consequently, the study highlights the importance of identifying the correct species when using Mytilus in biological effects studies.

  10. Avian responses to selective logging shaped by species traits and logging practices.

    PubMed

    Burivalova, Zuzana; Lee, Tien Ming; Giam, Xingli; Şekercioğlu, Çağan Hakkı; Wilcove, David S; Koh, Lian Pin

    2015-06-07

    Selective logging is one of the most common forms of forest use in the tropics. Although the effects of selective logging on biodiversity have been widely studied, there is little agreement on the relationship between life-history traits and tolerance to logging. In this study, we assessed how species traits and logging practices combine to determine species responses to selective logging, based on over 4000 observations of the responses of nearly 1000 bird species to selective logging across the tropics. Our analysis shows that species traits, such as feeding group and body mass, and logging practices, such as time since logging and logging intensity, interact to influence a species' response to logging. Frugivores and insectivores were most adversely affected by logging and declined further with increasing logging intensity. Nectarivores and granivores responded positively to selective logging for the first two decades, after which their abundances decrease below pre-logging levels. Larger species of omnivores and granivores responded more positively to selective logging than smaller species from either feeding group, whereas this effect of body size was reversed for carnivores, herbivores, frugivores and insectivores. Most importantly, species most negatively impacted by selective logging had not recovered approximately 40 years after logging cessation. We conclude that selective timber harvest has the potential to cause large and long-lasting changes in avian biodiversity. However, our results suggest that the impacts can be mitigated to a certain extent through specific forest management strategies such as lengthening the rotation cycle and implementing reduced impact logging.

  11. Avian responses to selective logging shaped by species traits and logging practices

    PubMed Central

    Burivalova, Zuzana; Lee, Tien Ming; Giam, Xingli; Şekercioğlu, Çağan Hakkı; Wilcove, David S.; Koh, Lian Pin

    2015-01-01

    Selective logging is one of the most common forms of forest use in the tropics. Although the effects of selective logging on biodiversity have been widely studied, there is little agreement on the relationship between life-history traits and tolerance to logging. In this study, we assessed how species traits and logging practices combine to determine species responses to selective logging, based on over 4000 observations of the responses of nearly 1000 bird species to selective logging across the tropics. Our analysis shows that species traits, such as feeding group and body mass, and logging practices, such as time since logging and logging intensity, interact to influence a species' response to logging. Frugivores and insectivores were most adversely affected by logging and declined further with increasing logging intensity. Nectarivores and granivores responded positively to selective logging for the first two decades, after which their abundances decrease below pre-logging levels. Larger species of omnivores and granivores responded more positively to selective logging than smaller species from either feeding group, whereas this effect of body size was reversed for carnivores, herbivores, frugivores and insectivores. Most importantly, species most negatively impacted by selective logging had not recovered approximately 40 years after logging cessation. We conclude that selective timber harvest has the potential to cause large and long-lasting changes in avian biodiversity. However, our results suggest that the impacts can be mitigated to a certain extent through specific forest management strategies such as lengthening the rotation cycle and implementing reduced impact logging. PMID:25994673

  12. Leishmania major, the predominant Leishmania species responsible for cutaneous leishmaniasis in Mali.

    PubMed

    Paz, Carlos; Samake, Sibiry; Anderson, Jennifer M; Faye, Ousmane; Traore, Pierre; Tall, Koureishi; Cisse, Moumine; Keita, Somita; Valenzuela, Jesus G; Doumbia, Seydou

    2013-03-01

    Leishmania major is the only species of Leishmania known to cause cutaneous leishmanisis (CL) in Mali. We amplified Leishmania DNA stored on archived Giemsa-stained dermal scraping slides obtained from self-referral patients with clinically suspected CL seen in the Center National d'Appui A La Lutte Contre La Maladie (CNAM) in Bamako, Mali, to determine if any other Leishmania species were responsible for CL in Mali and evaluate its geographic distribution. Polymerase chain reaction (PCR) amplification was performed using a Leishmania species-specific primer pair that can amplify DNA from L. major, L. tropica, L. infantum, and L. donovani parasites, possible causative agents of CL in Mali. L. major was the only species detected in 41 microscopically confirmed cases of CL from five regions of Mali (Kayes, Koulikoro, Ségou, Mopti, and Tombouctou). These results implicate L. major as the predominant, possibly exclusive species responsible for CL in Mali.

  13. Discovering Engangered Species. A Learning and Activity Book.

    ERIC Educational Resources Information Center

    Field, Nancy; Machlis, Sally

    Up to 33 million species share the earth; no one knows the exact number for sure. All over the world, many species are becoming extinct. This workbook is designed to help children become more aware of the concept of extinction, and to develop personal strategies for helping with the problem of endangered species. Included are 31 activities…

  14. To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors.

    PubMed

    Merilo, Ebe; Jõesaar, Indrek; Brosché, Mikael; Kollist, Hannes

    2014-04-01

    Plant stomatal responses to single environmental factors are well studied; however, responses to a change in two (or more) factors - a common situation in nature - have been less frequently addressed. We studied the stomatal responses to a simultaneous application of opposing environmental factors in six evolutionarily distant mono- and dicotyledonous herbs representing different life strategies (ruderals, competitors and stress-tolerators) to clarify whether the crosstalk between opening- and closure-inducing pathways leading to stomatal response is universal or species-specific. Custom-made gas exchange devices were used to study the stomatal responses to a simultaneous application of two opposing factors: decreased/increased CO2 concentration and light availability or reduced air humidity. The studied species responded similarly to changes in single environmental factors, but showed species-specific and nonadditive responses to two simultaneously applied opposing factors. The stomata of the ruderals Arabidopsis thaliana and Thellungiella salsuginea (previously Thellungiella halophila) always opened, whereas those of competitor-ruderals either closed in all two-factor combinations (Triticum aestivum), remained relatively unchanged (Nicotiana tabacum) or showed a response dominated by reduced air humidity (Hordeum vulgare). Our results, indicating that in changing environmental conditions species-specific stomatal responses are evident that cannot be predicted from studying one factor at a time, might be interesting for stomatal modellers, too.

  15. Total Phenolic Content and Antioxidant Activity of Some Malvaceae Family Species

    PubMed Central

    de Oliveira, Adriana Maria Fernandes; Pinheiro, Lilian Sousa; Pereira, Charlane Kelly Souto; Matias, Wemerson Neves; Gomes, Roosevelt Albuquerque; Chaves, Otemberg Souza; de Souza, Maria de Fátima Vanderlei; de Almeida, Reinaldo Nóbrega; de Assis, Temilce Simões

    2012-01-01

    The antioxidant activity of four species of the Malvaceae family (Sidastrum micranthum (A. St.-Hil.) Fryxell, Wissadula periplocifolia (L.) C. Presl, Sida rhombifolia (L.) E. H. L and Herissantia crispa L. (Brizicky)) were studied using the total phenolic content, DPPH radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC) assays. The antioxidant activity of the crude extract, phases and two isolated flavonoids, kaempferol 3,7-di-O-α-L-rhamnopyranoside (lespedin) and kaempferol 3-O-β-D-(6''-E-p-coumaroil) glucopyranoside (tiliroside) was determined. The results showed that there is a strong correlation between total polyphenol contents and antioxidant activity of the crude extract of Sidastrum micranthum and Wissadula periplocifolia; however, this was not observed between Sida rhombifolia and Herissantia crispa. The ethyl acetate (EaF) phase showed the best antioxidant effect in the total phenolics, DPPH and TEAC assays, followed by the chloroform (CfF) phase, in most species tested. Lespedin, isolated from the EaF phase of W. periplocifolia and H. crispa may not be responsible for the antioxidant activity due to its low antioxidant activity (IC50: DPPH: 1,019.92 ± 68.99 mg/mL; TEAC: 52.70 ± 0.47 mg/mL); whereas tiliroside, isolated from W. periplocifolia, H. crispa and S. micrantum presented a low IC50 value (1.63 ± 0.86 mg/mL) compared to ascorbic acid in the TEAC assay. PMID:26787614

  16. Reactive Oxygen Species Mediated Prostaglandin E2 Contributes to Acute Response of Epithelial Injury

    PubMed Central

    Hu, Yi-Ping; Zhang, Yi-Fan; Wang, Ying; Yu, Wei-Rong

    2017-01-01

    Reactive oxygen species (ROS) generated after tissue injury play a crucial role during wound healing through initiating acute inflammation, clarifying infection and dead tissue, and mediating various intracellular signal transduction. Prostaglandin E2 (PGE2) has been identified as one of the major factors responsible for inflammation and tissue repair. In this study, we tested our hypothesis that ROS produced by damaged human keratinocytes induces the synthesis of PGE2. In vitro epithelial wounding model was used to observe the production of ROS and secretion of PGE2 as well as the involved signal pathway. The mechanical injury caused the rapid production of ROS in in vitro cultured keratinocytes, which was significantly blocked by an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase. The increased intracellular ROS caused by mechanical injury stimulates PGE2 production in a time-dependent manner via the activation of cyclooxygenase-2 (COX-2), which was stimulated by phosphorylation of extracellular signal-regulated protein kinase (ERK). These results indicate ROS-induced ERK activation leading to the activation of COX-2 and the synthesis of PGE2 in human keratinocytes responding to mechanical injury in the acute phase. PMID:28280524

  17. Life-history traits predict perennial species response to fire in a desert ecosystem

    PubMed Central

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. PMID:25247062

  18. Life-history traits predict perennial species response to fire in a desert ecosystem.

    PubMed

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-08-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.

  19. Life-history traits predict perennial species response to fire in a desert ecosystem

    USGS Publications Warehouse

    Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.

  20. Rubisco and PEP carboxylase responses to changing irradiance in a Brazilian Cerrado tree species, Qualea grandiflora Mart. (Vochysiaceae).

    PubMed

    Paulilo, M T; Besford, R T; Wilkins, D

    1994-02-01

    The activities of ribulose-1,5-bisphosphate carboxylase-oxygenase, Rubisco (E.C. 4.1.1.39) and phosphoenolpyruvate carboxylase, PEPc (E.C. 4.1.1.31), and concentrations of protein and chlorophyll were measured in extracts from cotyledons and first leaves of Qualea grandiflora Mart. (Vochysiaceae) seedlings after transfer from high-light (20 days at 320 micro mol m(-2) s(-1), PAR) to low-light (35 days at 120 micro mol m(-2) s(-1), PAR) conditions. When Tween 20 and glycerol were added to the extraction medium, Rubisco activities obtained for Qualea grandiflora were comparable to published values for several coniferous species and the broad-leaved species, Prunus avium L. Stella, grown in a similar light environment. Rubisco activity in cotyledons of Q. grandiflora grown in high light for 20 days and then transferred to low light for a further 35 days was similar to the activity in cotyledons of plants grown continuously in high light. However, the first leaf above the cotyledons showed a greater response to the change in irradiance; in high light, Rubisco activity of the first leaf was 1.8 times higher on a fresh weight basis and 2.7 times higher on an area basis than that of leaves transferred from high to low light. Fresh weight and chlorophyll concentration expressed on a unit leaf area basis were also higher in the high-light treatment. These responses to irradiance are indicative of a species adapted to growth in an unshaded habitat. The PEPc activity in leaves was 15% of Rubisco activity, which is typical of species with a C(3) photosynthetic pathway. The relatively slow growth rate of Q. grandiflora observed in these experiments could not be attributed to a low carboxylation capacity per unit leaf area.

  1. Context-Dependent Plastic Response during Egg-Laying in a Widespread Newt Species

    PubMed Central

    Tóth, Zoltán

    2015-01-01

    Previous research on predator-induced phenotypic plasticity mostly focused on responses in morphology, developmental time and/or behaviour during early life stages, but the potential significance of anticipatory parental responses has been investigated less often. In this study I examined behavioural and maternal responses of gravid female smooth newts, Lissotriton vulgaris, in the presence of chemical cues originating from invertebrate predators, Acilius sulcatus water beetles and Aeshna cyanea dragonfly larvae. More specifically, I tested the extent of oviposition preference, plasticity in egg-wrapping behaviour and plasticity in egg size when females had the possibility to lay eggs at oviposition sites with and without predator cues during overnight trials. I found that individuals did not avoid laying eggs in the environment with predator cues; however, individuals that deposited eggs into both environments adjusted the size of the laid eggs to the perceived environment. Females deposited larger eggs earlier in the season but egg size decreased with time in the absence of predator cues, whereas individuals laid eggs of average size throughout the investigated reproductive period when such cues were present. Also, egg size was found to be positively related to hatching success. Individuals did not adjust their wrapping behaviour to the presence of predator cues, but females differed in the extent of egg-wrapping between ponds. Females’ body mass and tail depth were also different between ponds, whereas their body size was positively associated with egg size. According to these results, female smooth newts have the potential to exhibit activational plasticity and invest differently into eggs depending on temporal and environmental factors. Such an anticipatory response may contribute to the success of this caudate species under a wide range of predator regimes at its natural breeding habitats. PMID:26291328

  2. Warm acclimation and oxygen depletion induce species-specific responses in salmonids.

    PubMed

    Anttila, Katja; Lewis, Mario; Prokkola, Jenni M; Kanerva, Mirella; Seppänen, Eila; Kolari, Irma; Nikinmaa, Mikko

    2015-05-15

    Anthropogenic activities are greatly altering the habitats of animals, whereby fish are already encountering several stressors simultaneously. The purpose of the current study was to investigate the capacity of fish to respond to two different environmental stressors (high temperature and overnight hypoxia) separately and together. We found that acclimation to increased temperature (from 7.7±0.02°C to 14.9±0.05°C) and overnight hypoxia (daily changes from normoxia to 63-67% oxygen saturation), simulating climate change and eutrophication, had both antagonistic and synergistic effects on the capacity of fish to tolerate these stressors. The thermal tolerance of Arctic char (Salvelinus alpinus) and landlocked salmon (Salmo salar m. sebago) increased with warm acclimation by 1.3 and 2.2°C, respectively, but decreased when warm temperature was combined with overnight hypoxia (by 0.2 and 0.4°C, respectively). In contrast, the combination of the stressors more than doubled hypoxia tolerance in salmon and also increased hypoxia tolerance in char by 22%. Salmon had 1.2°C higher thermal tolerance than char, but char tolerated much lower oxygen levels than salmon at a given temperature. The changes in hypoxia tolerance were connected to the responses of the oxygen supply and delivery system. The relative ventricle mass was higher in cold- than in warm-acclimated salmon but the thickness of the compact layer of the ventricle increased with the combination of warm and hypoxia acclimation in both species. Char had also significantly larger hearts and thicker compact layers than salmon. The results illustrate that while fish can have protective responses when encountering a single environmental stressor, the combination of stressors can have unexpected species-specific effects that will influence their survival capacity.

  3. Responses to shading of naturalized and non-naturalized exotic woody species

    PubMed Central

    Feng, Yanhao; van Kleunen, Mark

    2014-01-01

    Background and Aims Recent studies have suggested that responses to shading gradients may play an important role in establishment success of exotic plants, but hitherto few studies have tested this. Therefore, a common-garden experiment was conducted using multiple Asian woody plant species that were introduced to Europe >100 years ago in order to test whether naturalized and non-naturalized species differ in their responses to shading. Specifically, a test was carried out to determine whether naturalized exotic woody species maintained better growth under shaded conditions, and whether they expressed greater (morphological and physiological) adaptive plasticity in response to shading, relative to non-naturalized species. Methods Nineteen naturalized and 19 non-naturalized exotic woody species were grown under five light levels ranging from 100 to 7 % of ambient light. For all plants, growth performance (i.e. biomass), morphological and CO2 assimilation characteristics were measured. For the CO2 assimilation characteristics, CO2 assimilation rate was measured at 1200 μmol m–2 s–1 (i.e. saturated light intensity, A1200), 50 μmol m–2 s–1 (i.e. low light intensity, A50) and 0 μmol m–2 s–1 (A0, i.e. dark respiration). Key Results Overall, the naturalized and non-naturalized species did not differ greatly in biomass production and measured morphological and CO2 assimilation characteristics across the light gradient. However, it was found that naturalized species grew taller and reduced total leaf area more than non-naturalized species in response to shading. It was also found that naturalized species were more capable of maintaining a high CO2 assimilation rate at low light intensity (A50) when grown under shading. Conclusions The results indicate that there is no clear evidence that the naturalized species possess a superior response to shading over non-naturalized species, at least not at the early stage of their growth. However, the higher CO2

  4. Responses of alkaline phosphatase activity in Daphnia to poor nutrition.

    PubMed

    Wagner, Nicole D; Frost, Paul C

    2012-09-01

    The use of biochemical and molecular indices of nutritional stress have recently been promoted for their potential ability to assess the in situ nutritional state of zooplankton. The development and application of these indicators should at least consider the cross-reactivity with other nutritional stressors. We examined the potential usefulness of body alkaline phosphatase activity (APA) as an indicator of dietary phosphorus (P) stress in Daphnia. We measured growth rate, body P-content, and body APA of two species of Daphnia (D. magna, D. pulex) grown for different periods under diverse dietary conditions. We found P-poor food reduced daphnid growth rates and body P-content, while body APA increased in both species. However, body APA increased in P-sufficient D. magna and D. pulex that were feeding on cyanobacterial compared to green algal food, despite no differences in animal body P content. Body APA increased in D. magna fed P-poor food whether cyanobacterial or algal. Body APA also varied with age and other nutritional stresses (low food quantity, nitrogen-poor algae) in both daphnid species. Our results demonstrate that whole body homogenate APA in Daphnia is not singularly responsive to P-poor food, which will complicate or limit its future usefulness and application as an indicator of dietary P-stress in metazoans.

  5. Dangers of predicting bird species distributions in response to land-cover changes.

    PubMed

    Vallecillo, Sara; Brotons, Lluís; Thuiller, Wilfried

    2009-03-01

    Land-cover changes from the last decades are leading to important declines in habitat quality, giving rise to changes in bird species distribution all over the world. However, land-cover changes result from a variety of different processes, and it is not clear how effective species distribution models are in capturing species responses to these changes. In this study, we evaluated our ability to predict the effects of land-cover changes on shifts in species distributions at large spatial and temporal scales using Mediterranean landscapes and early-successional, open-habitat birds as study models. Based on presence-absence data from the second Catalan Breeding Bird Atlas (1999-2002), we applied six different species distribution modeling techniques for 10 bird species using climate, topographic, and land-cover data as predictor variables. Then we back-projected the models on land-cover conditions from 1980 to evaluate the projections with field observation data from the first Catalan Breeding Bird Atlas (1975-1983). Finally, we assessed if, in addition to changes in habitat suitability resulting from land-cover shifts, descriptors of fire impact contributed to further explain species distribution dynamics: colonization and local extinction. We developed accurate model projections of current and past global patterns of species distribution, but our ability to predict species distribution dynamics was reduced. Colonization dynamics were generally more strongly related to fire descriptors than to changes in overall habitat suitability derived from land-cover changes. Our results warn of the dangers of projecting species distribution models onto future conditions if processes behind species distribution dynamics are not explicitly included. Consideration of ecologically meaningful processes for species (i.e., fire disturbance) when modeling species' distribution might contribute to a better explanation of species' colonization dynamics.

  6. "Invented Invaders": An Engaging Activity to Teach Characteristics Control of Invasive Species

    ERIC Educational Resources Information Center

    Lampert, Evan

    2015-01-01

    Invasive species, defined as exotic species that reach pest status, are major threats to global biodiversity. Although invasive species can belong to any taxonomic group, general characteristics such as rapid growth and reproduction are shared by many invasive species. "Invented Invaders" is a collaborative activity in which students…

  7. Ecological traits affect the response of tropical forest bird species to land-use intensity.

    PubMed

    Newbold, Tim; Scharlemann, Jörn P W; Butchart, Stuart H M; Sekercioğlu, Cağan H; Alkemade, Rob; Booth, Hollie; Purves, Drew W

    2013-01-07

    Land-use change is one of the main drivers of current and likely future biodiversity loss. Therefore, understanding how species are affected by it is crucial to guide conservation decisions. Species respond differently to land-use change, possibly related to their traits. Using pan-tropical data on bird occurrence and abundance across a human land-use intensity gradient, we tested the effects of seven traits on observed responses. A likelihood-based approach allowed us to quantify uncertainty in modelled responses, essential for applying the model to project future change. Compared with undisturbed habitats, the average probability of occurrence of bird species was 7.8 per cent and 31.4 per cent lower, and abundance declined by 3.7 per cent and 19.2 per cent in habitats with low and high human land-use intensity, respectively. Five of the seven traits tested affected the observed responses significantly: long-lived, large, non-migratory, primarily frugivorous or insectivorous forest specialists were both less likely to occur and less abundant in more intensively used habitats than short-lived, small, migratory, non-frugivorous/insectivorous habitat generalists. The finding that species responses to land use depend on their traits is important for understanding ecosystem functioning, because species' traits determine their contribution to ecosystem processes. Furthermore, the loss of species with particular traits might have implications for the delivery of ecosystem services.

  8. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    PubMed Central

    Iler, Amy M.; Høye, Toke T.; Inouye, David W.; Schmidt, Niels M.

    2013-01-01

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions. PMID:23836793

  9. Plastic Responses to Elevated Temperature in Low and High Elevation Populations of Three Grassland Species

    PubMed Central

    Frei, Esther R.; Ghazoul, Jaboury; Pluess, Andrea R.

    2014-01-01

    Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate. PMID:24901500

  10. Behavioral responses of north American Elk to recreational activity

    USGS Publications Warehouse

    Naylor, L.M.; Wisdom, M.J.; Anthony, R.G.

    2009-01-01

    Off-road recreation on public lands in North America has increased dramatically in recent years. Wild ungulates are sensitive to human activities, but the effect of off-road recreation, both motorized and nonmotorized, is poorly understood. We measured responses of elk (Cervus elaphus) to recreational disturbance in northeast Oregon, USA, from April to October, 2003 and 2004. We subjected elk to 4 types of recreational disturbance: all-terrain vehicle (ATV) riding, mountain biking, hiking, and horseback riding. Motion sensors inside radiocollars worn by 13 female elk recorded resting, feeding, and travel activities at 5-minute intervals throughout disturbance and control periods. Elk fed and rested during control periods, with little time spent traveling. Travel time increased in response to all 4 disturbances and was highest in mornings. Elk travel time was highest during ATV exposure, followed by exposure to mountain biking, hiking, and horseback riding. Feeding time decreased during ATV exposure and resting decreased when we subjected elk to mountain biking and hiking disturbance in 2003. Our results demonstrated that activities of elk can be substantially affected by off-road recreation. Mitigating these effects may be appropriate where elk are a management priority. Balancing management of species like elk with off-road recreation will become increasingly important as off-road recreational uses continue to increase on public lands in North America.

  11. Antifungal activities of azole agents against the Malassezia species.

    PubMed

    Miranda, Karla Carvalho; de Araujo, Crystiane Rodrigues; Costa, Carolina Rodrigues; Passos, Xisto Sena; de Fátima Lisboa Fernandes, Orionalda; do Rosário Rodrigues Silva, Maria

    2007-03-01

    In this paper, we identified 95 Malassezia isolates by morphological and biochemical criteria and assessed the in vitro activity of fluconazole, itraconazole, ketoconazole and voriconazole by broth microdilution against these species using slightly modified Leeming-Notman medium. The Malassezia isolates were identified as M. furfur (74), M. sympodialis (11), M. obtusa (8) and M. globosa (2). The modified Leeming-Notman medium used for susceptibility testing allowed good growth of Malassezia spp. Visual reading of the minimal inhibitory concentration (MIC) was readily achieved until Day 5 of incubation at 32 degrees C. Although high MIC values of 16 microg/mL for fluconazole were observed in 9.5% of Malassezia isolates, in general these microorganisms were susceptible to all drugs studied. Interestingly, one M. globosa isolate showed high MIC values for voriconazole, itraconazole and fluconazole. For the 95 strains, the MIC ranges were <0.03-4 microg/mL for ketoconazole, <0.03 to >16 microg/mL for voriconazole, <0.125 to >64 microg/mL for fluconazole and <0.03-16 microg/mL for itraconazole. In summary, the good reproducibility and visual readings obtained using modified Leeming-Notman medium suggest that this medium should be proposed for antifungal testing of drugs against Malassezia spp.

  12. Functional responses of cougars (Puma concolor) in a multiple prey-species system.

    PubMed

    Soria-Díaz, Leroy; Fowler, Mike S; Monroy-Vilchis, Octavio; Oro, Daniel

    2017-03-06

    The study of predator-prey interactions is commonly analyzed using functional responses to gain an understanding of predation patterns and the impact they have on prey populations. Despite this, little is known about predator-prey systems with multiple prey species in sites near the equator. Here we studied the functional response of cougars (Puma concolor) in Sierra Nanchititla Natural Reserve (Mexico), in relation to their main prey, armadillo (Dasypus novemcinctus), coati (Nasua narica) and white-tailed deer (Odocoileus virginianus). Between 2004 and 2010, cougar scats were collected along five transects to estimate the consumption of different prey species. A relative abundance index (RAI) was calculated for each prey species and cougar using 18 camera traps. We compared Holling type I, II and III functional response models to determine patterns in prey consumption based on the relative abundance and biomass of each prey species consumed. The three main prey species comprised 55% (armadillo), 17% (coati) and 8% (white-tailed deer) of the diet. Type I and II functional responses described consumption of the two most common prey species armadillos and coati similarly well, while a type I response best characterized consumption of white-tailed deer. A negative correlation between the proportions of armadillo versus coati and white-tailed deer biomass in cougar scats suggests switching to consume alternative prey, confirming high foraging plasticity of this carnivore. This work represents one of the few studies to compare functional responses across multiple prey species, combined with evidence for prey-switching at low densities of preferred prey. This article is protected by copyright. All rights reserved.

  13. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses.

  14. Peroxiredoxin-3 Is Involved in Bactericidal Activity through the Regulation of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Lee, Sena; Wi, Sae Mi; Min, Yoon

    2016-01-01

    Peroxiredoxin-3 (Prdx3) is a mitochondrial protein of the thioredoxin family of antioxidant peroxidases and is the principal peroxidase responsible for metabolizing mitochondrial hydrogen peroxide. Recent reports have shown that mitochondrial reactive oxygen species (mROS) contribute to macrophage-mediated bactericidal activity in response to Toll-like receptors. Herein, we investigated the functional effect of Prdx3 in bactericidal activity. The mitochondrial localization of Prdx3 in HEK293T cells was confirmed by cell fractionation and confocal microscopy analyses. To investigate the functional role of Prdx3 in bactericidal activity, Prdx3-knockdown (Prdx3KD) THP-1 cells were generated. The mROS levels in Prdx3KD THP-1 cells were significantly higher than those in control THP-1 cells. Moreover, the mROS levels were markedly increased in response to lipopolysaccharide. Notably, the Salmonella enterica serovar Typhimurium infection assay revealed that the Prdx3KD THP-1 cells were significantly resistant to S. Typhimurium infection, as compared with control THP-1 cells. Taken together, these results indicate that Prdx3 is functionally important in bactericidal activity through the regulation of mROS. PMID:28035213

  15. Provenance, life span, and phylogeny do not affect grass species' responses to nitrogen and phosphorus.

    PubMed

    Seabloom, Eric W; Benfield, Cara D; Borer, Elizabeth T; Stanley, Amanda G; Kaye, Thomas N; Dunwiddie, Peter W

    2011-09-01

    Successful conservation management requires an understanding of how species respond to intervention. Native and exotic species may respond differently to management interventions due to differences arising directly from their origin (i.e., provenance) or indirectly due to biased representations of different life history types (e.g., annual vs. perennial life span) or phylogenetic lineages among provenance (i.e., native or exotic origin) groups. Thus, selection of a successful management regime requires knowledge of the life history and provenance-bias in the local flora and an understanding of the interplay between species characteristics across existing environmental gradients in the landscape. Here we tested whether provenance, phylogeny, and life span interact to determine species distributions along natural gradients of soil chemistry (e.g., soil nitrogen and phosphorus) in 10 upland prairie sites along a 600-km latitudinal transect running from southern Vancouver Island in British Columbia, Canada, to the Willamette Valley in Oregon, USA. We found that soil nitrate, phosphorus, and pH exerted strong control over community composition. However, species distributions along environmental gradients were unrelated to provenance, life span, or phylogenetic groupings. We then used a greenhouse experiment to more precisely measure the response of common grass species to nitrogen and phosphorus supply. As with the field data, species responses to nutrient additions did not vary as a function of provenance, life span, or phylogeny. Native and exotic species differed strongly in the relationship between greenhouse-measured tolerance of low nutrients and field abundance. Native species with the greatest ability to maintain biomass production at low nutrient supply rates were most abundant in field surveys, as predicted by resource competition theory. In contrast, there was no relationship between exotic-species biomass at low nutrient levels and field abundance. The

  16. Different responses of two Mosla species to potassium limitation in relation to acid rain deposition.

    PubMed

    Wang, Meng; Gu, Bao-jing; Ge, Ying; Liu, Zhen; Jiang, De-an; Chang, Scott X; Chang, Jie

    2009-08-01

    The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance to K-deficiency. A hydroponic study was conducted on the growth of two Mosla species and their morphological, physiological and stoichiometric traits in response to limited (0.35 mmol K/L), normal (3.25 mmol K/L) and excessive (6.50 mmol K/L) K concentrations. Mosla hangchowensis is an endangered plant, whereas Mosla dianthera a widespread weed. In the case of M. hangchowensis, in comparison with normal K concentration, K-limitation induced a significant reduction in net photosynthetic rate (P(n)), soluble protein content, and superoxide dismutase (SOD) activity, but an increase in malondialdehyde (MDA) concentration. However, leaf mass ratio (LMR) and root mass ratio (RMR) were changed little by K-limitation. In contrast, for M. dianthera, K-limitation had little effect on P(n), soluble protein content, SOD activity, and MDA concentration, but increased LMR and RMR. Critical values of N (nitrogen):K and K:P (phosphorus) ratios in the shoots indicated that limitation in acquiring K occurred under K-limited conditions for M. hangchowensis but not for M. dianthera. We found that low K content in natural habitats was a restrictive factor in the growth and distribution of M. hangchowensis, and soil K-deficiency caused by acid rain worsened the situation of M. hangchowensis, while M. dianthera could well acclimate to the increasing K-deficiency. We suggest that controlling the acid rain and applying K fertilizers may be an effective way to rescue the endangered M. hangchowensis.

  17. Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species.

    PubMed

    Zimmer-Prados, Lucas Martins; Moreira, Ana Sílvia Franco Pinheiro; Magalhaes, Jose Ronaldo; França, Marcel Giovanni Costa

    2014-07-01

    Drought stress is one of the most intensively studied and widespread constraints, and nitric oxide (NO) is a key signaling molecule involved in the mediation of abiotic stresses in plants. We demonstrated that a sprayed solution of NO from donor sodium nitroprusside increased drought stress tolerance responses in both sensitive (Phaseolus vulgaris) and tolerant (Vigna unguiculata) beans. In intact plants subjected to halting irrigation, NO increased the leaf relative water content and stomatal conductance in both species. After cutting leaf discs and washing them, NO induced increased electrolyte leakage, which was more evident in the tolerant species. These leaf discs were then subjected to different water deficits, simulating moderate and severe drought stress conditions through polyethylene glycol solutions. NO supplied at moderate drought stress revealed a reduced membrane injury index in sensitive species. In hydrated discs and at this level of water deficit, NO increased the electron transport rate in both species, and a reduction of these rates was observed at severe stress levels. Taken together, it can be shown that NO has an effective role in ameliorating drought stress effects, activating tolerance responses at moderate water deficit levels and in both bean species which present differential drought tolerance.

  18. Application of microcosmic system for assessment of insecticide effects on biomarker responses in ecologically different earthworm species.

    PubMed

    Velki, Mirna; Hackenberger, Branimir K; Lončarić, Zeljka; Hackenberger, Davorka K

    2014-06-01

    Earthworms from different ecological categories--epigeic Eisenia andrei and Lumbricus rubellus, endogeic Octolasion lacteum and anecic Lumbricus terrestris--were exposed in a microcosmic system to three commonly used insecticides. The effects of the insecticides were evaluated by measuring the following molecular biomarkers-the activities of AChE, CES, CAT, GST and the concentration of GSH. The results showed that environmentally relevant doses of organophosphates dimethoate and pirimiphos-methyl significantly affected the measured biomarkers, whereas pyrethroid deltamethrin did not affect the earthworms at the recommended agricultural dose. Considering the ecological category of earthworms, the results were inhomogeneous and species-specific differences in the biomarker responses were recorded. Since the biomarker responses of the investigated earthworm species were different after exposure to organophosphates in a microcosm compared to the exposure via standardized toxicity tests, two types of species sensitivity should be distinguished-physiological and environmental sensitivity. In addition, the hormetic effect of organophosphates on AChE and CES activities was recorded. The detection of hormesis in a microcosm is of great importance for future environmental research and soil biomonitoring, since in a realistic environment pollutants usually occur at low concentrations that could cause a hormetic effect. The results demonstrate the importance of the application of microcosmic systems in the assessment of the effects of environmental pollutants and the necessity of taking into account the possible differences between physiological and environmental species sensitivity.

  19. Stress response to handling is short lived but may reflect personalities in a wild, Critically Endangered tortoise species

    PubMed Central

    Louis, Edward E.; Crocker, Daniel E.

    2017-01-01

    Abstract We investigated the acute stress response associated with animal personalities by measuring plasma glucocorticoids throughout handling and collected ~2 years of movement and behavioural data in a wild, Critically Endangered animal, Astrochelys radiata (radiated tortoise). To determine whether our standard, brief conscientious handling procedures induce a stress response in our target species, we applied a stressor by way of initial animal processing and deployment of telemetry equipment. During surveys and processing, we sampled animals immediately upon detection, again after completing transmitter attachment and processing, and a final time the following day. We then used radiotelemetry to follow a subset of the animals for 22 months while collecting behavioural, climatic and location data. We found that brief and conscientious handling did not illicit consistent changes in plasma concentrations of the stress hormone corticosterone (CORT) but did reveal tremendous individual variation in response. The CORT concentration ranged more than 200-fold after imposing the stressor and returned to near-baseline values by the following day. When we accounted for the wide variation by calculating the degree of each individual's stress response relative to its baseline over its processing time, we discovered two non-overlapping physiological response types; those in which CORT concentrations increased dramatically in response to handling (219 ± 89.8 pg/ml/min) and those in which CORT varied only slightly (5.3 ± 8.9 pg/ml/min). The response types (strong vs. mild) also predicted body condition, home range size, activity, and behavioural tendencies. The degree of the individual's stress response in this species may be one component of correlated physiological and behavioural traits (animal personalities), which have previously been obscured in other chelonian studies by the use of mean values and should be considered in future conservation management applications

  20. Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle.

    PubMed

    Etxebeste, Iñaki; Lencina, José L; Pajares, Juan

    2013-10-01

    Some bark beetle species (Coleoptera: Scolytinae) produce aggregation pheromones that allow coordinated attack on their conifer hosts. As a new saproxylic habitat is founded, an assemblage of associated beetles kairomonally respond to bark beetle infochemicals. Ips sexdentatus is one of the major damaging insects of Pinus spp. in Southern Europe. Its response to varying ipsenol (Ie) percentages in relation to ipsdienol (Id) was studied in northwestern Spain, along with the entire saproxylic beetle assemblage captured at multiple-funnel traps. Response profile modeling was undertaken for I. sexdentatus sexes and sex-ratios, associated species and for selected trophic groups using a reference Gaussian model. In addition, the effects on the saproxylic assemblages were analyzed. I. sexdentatus response curve peaked at 22.7% Ie content, while remaining taxa that could be modeled, peaked above ca. 40% Ie. Predator guilds showed a linear relationship with Ie proportion, while competitors showed a delayed response peak. Consequently, species assemblages differed markedly between varying pheromone component mixtures. Given that the evaluated pheromonal proportions mimicked that of logs being colonized by I. sexdentatus, results suggested that the registered differential responses at different levels might provide I. sexdentatus with a temporal window that maximizes conspecific attraction while reducing interference with competitor and predatory guilds. Described responses might help improve the monitoring of the population status of target bark beetles and their associates, but also point toward the by-catch of many natural enemies, as well as rare saproxylic beetle species, interfering with the aims of sustainable forest management.

  1. The effects of carbamazepine on macroinvertebrate species: Comparing bivalves and polychaetes biochemical responses.

    PubMed

    Freitas, Rosa; Almeida, Ângela; Pires, Adília; Velez, Cátia; Calisto, Vânia; Schneider, Rudolf J; Esteves, Valdemar I; Wrona, Frederick J; Figueira, Etelvina; Soares, Amadeu M V M

    2015-11-15

    In the present study, the bivalve Scrobicularia plana and the polychaete Diopatra neapolitana were exposed to an increasing carbamazepine (CBZ) concentration gradient. Both species are among the most widely used bioindicators, and CBZ is one of the most commonly found drugs in the aquatic environment. After a chronic exposure (28 days), the results obtained revealed that CBZ induced biochemical alterations in both species. Our findings demonstrated that S. plana and D. neapolitana reduced the CBZ accumulation rate at higher CBZ concentrations, probably due to their capacity to decrease their feeding rates at stressful conditions. Nevertheless, this defence mechanism was not enough to prevent both species from oxidative stress. In fact, S. plana and D. neapolitana were not able to efficiently activate their antioxidant defence mechanisms which resulted in the increase of lipid peroxidation, especially at the highest CBZ concentrations. Comparing both species, it seems that S. plana was the most sensitive species since stronger biochemical alterations were observed in this species.

  2. Ecological and methodological drivers of species' distribution and phenology responses to climate change.

    PubMed

    Brown, Christopher J; O'Connor, Mary I; Poloczanska, Elvira S; Schoeman, David S; Buckley, Lauren B; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Pandolfi, John M; Parmesan, Camille; Richardson, Anthony J

    2016-04-01

    Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy

  3. Species-Specific Minimal Sequence Motif for Oligodeoxyribonucleotides Activating Mouse TLR9.

    PubMed

    Pohar, Jelka; Lainšček, Duško; Fukui, Ryutaro; Yamamoto, Chikako; Miyake, Kensuke; Jerala, Roman; Benčina, Mojca

    2015-11-01

    Synthetic oligodeoxyribonucleotides (ODNs) containing unmethylated CpG recapitulate the activation of TLR9 by microbial DNA. ODNs are potent stimulators of the immune response in cells expressing TLR9. Despite extensive use of mice as experimental animals in basic and applied immunological research, the key sequence determinants that govern the activation of mouse TLR9 by ODNs have not been well defined. We performed a systematic investigation of the sequence motif of B class phosphodiester ODNs to identify the sequence properties that govern mouse TLR9 activation. In contrast to ODNs activating human TLR9, where the minimal sequence motif for the receptor activation comprises a pair of closely positioned CpGs we found that the mouse TLR9 requires a single CpG positioned 4-6 nt from the 5'-end. Activation is augmented by a 5'TCC sequence one to three nucleotides from the CG. The distance of the CG dinucleotide of four to six nucleotides from the 5'-end and the ODN's length fine-tunes activation of mouse macrophages. Length of the ODN <23 and >29 nt decreases activation of dendritic cells. The ODNs with minimal sequence induce Th1-type cytokine synthesis in dendritic cells and confirm the expression of cell surface markers in B cells. Identification of the minimal sequence provides an insight into the sequence selectivity of mouse TLR9 and points to the differences in the receptor selectivity between species probably as a result of differences in the receptor binding sites.

  4. The response of European tree species to drought: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Irschick, C.; Mayr, S.; Wohlfahrt, G.

    2012-04-01

    Here we provide first results of a meta-analysis of the response of European tree species to drought. A literature search was conducted in order to collect available studies of the response of the gas exchange of European tree species to either natural or imposed water shortage. The resulting publications were screened and parameters at organ (e.g. leaf or shoot), individual (i.e. tree) and ecosystem scale were transferred to a data base. Here we present preliminary results from queries of the data base aiming at identifying differences in the drought response between species that may have implications for forest productivity and composition under likely future warmer and drier conditions.

  5. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  6. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes.

    PubMed

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-19

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  7. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  8. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    PubMed Central

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices. PMID:28102323

  9. Hierarchical Multi-Species Modeling of Carnivore Responses to Hunting, Habitat and Prey in a West African Protected Area

    PubMed Central

    Burton, A. Cole; Sam, Moses K.; Balangtaa, Cletus; Brashares, Justin S.

    2012-01-01

    Protected areas (PAs) are a cornerstone of global efforts to shield wildlife from anthropogenic impacts, yet their effectiveness at protecting wide-ranging species prone to human conflict – notably mammalian carnivores – is increasingly in question. An understanding of carnivore responses to human-induced and natural changes in and around PAs is critical not only to the conservation of threatened carnivore populations, but also to the effective protection of ecosystems in which they play key functional roles. However, an important challenge to assessing carnivore communities is the often infrequent and imperfect nature of survey detections. We applied a novel hierarchical multi-species occupancy model that accounted for detectability and spatial autocorrelation to data from 224 camera trap stations (sampled between October 2006 and January 2009) in order to test hypotheses about extrinsic influences on carnivore community dynamics in a West African protected area (Mole National Park, Ghana). We developed spatially explicit indices of illegal hunting activity, law enforcement patrol effort, prey biomass, and habitat productivity across the park, and used a Bayesian model selection framework to identify predictors of site occurrence for individual species and the entire carnivore community. Contrary to our expectation, hunting pressure and edge proximity did not have consistent, negative effects on occurrence across the nine carnivore species detected. Occurrence patterns for most species were positively associated with small prey biomass, and several species had either positive or negative associations with riverine forest (but not with other habitat descriptors). Influences of sampling design on carnivore detectability were also identified and addressed within our modeling framework (e.g., road and observer effects), and the multi-species approach facilitated inference on even the rarest carnivore species in the park. Our study provides insight for the

  10. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    PubMed

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-03-01

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies.

  11. Predicting invasive species impacts: a community module functional response approach reveals context dependencies

    PubMed Central

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-01-01

    Summary Predatory functional responses play integral roles in predator–prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator–prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  12. Inter- and intraspecific phenotypic plasticity of three phytoplankton species in response to ocean acidification.

    PubMed

    Hattich, Giannina S I; Listmann, Luisa; Raab, Julia; Ozod-Seradj, Dorthe; Reusch, Thorsten B H; Matthiessen, Birte

    2017-02-01

    Phenotypic plasticity describes the phenotypic adjustment of the same genotype to different environmental conditions and is best described by a reaction norm. We focus on the effect of ocean acidification on inter- and intraspecific reaction norms of three globally important phytoplankton species (Emiliania huxleyi, Gephyrocapsa oceanica and Chaetoceros affinis). Despite significant differences in growth rates between the species, they all showed a high potential for phenotypic buffering (similar growth rates between ambient and high CO2 conditions). Only three coccolithophore genotypes showed a reduced growth in high CO2 Diverging responses to high CO2 of single coccolithophore genotypes compared with the respective mean species responses, however, raise the question of whether an extrapolation to the population level is possible from single-genotype experiments. We therefore compared the mean response of all tested genotypes with a total species response comprising the same genotypes, which was not significantly different in the coccolithophores. Assessing species reaction norms to different environmental conditions on short time scale in a genotype-mix could thus reduce sampling effort while increasing predictive power.

  13. Inter- and intraspecific phenotypic plasticity of three phytoplankton species in response to ocean acidification

    PubMed Central

    Raab, Julia; Ozod-Seradj, Dorthe; Reusch, Thorsten B. H.; Matthiessen, Birte

    2017-01-01

    Phenotypic plasticity describes the phenotypic adjustment of the same genotype to different environmental conditions and is best described by a reaction norm. We focus on the effect of ocean acidification on inter- and intraspecific reaction norms of three globally important phytoplankton species (Emiliania huxleyi, Gephyrocapsa oceanica and Chaetoceros affinis). Despite significant differences in growth rates between the species, they all showed a high potential for phenotypic buffering (similar growth rates between ambient and high CO2 conditions). Only three coccolithophore genotypes showed a reduced growth in high CO2. Diverging responses to high CO2 of single coccolithophore genotypes compared with the respective mean species responses, however, raise the question of whether an extrapolation to the population level is possible from single-genotype experiments. We therefore compared the mean response of all tested genotypes with a total species response comprising the same genotypes, which was not significantly different in the coccolithophores. Assessing species reaction norms to different environmental conditions on short time scale in a genotype-mix could thus reduce sampling effort while increasing predictive power. PMID:28148833

  14. Binding site of amiloride to urokinase plasminogen activator depends on species.

    PubMed

    Jankun, J; Skrzypczak-Jankun, E

    2001-10-01

    A novel drug candidate is checked on its potency on animal models before it can advance to human phase of the research. Usually negative results on animal phase disqualify it. Targeting specific enzymes by small chemicals raises the question about the appropriateness of this approach. As an example, the urokinase (uPA) is recognized as an important enzyme responsible for cancer metastasis and angiogenesis. It is therefore important to ask the question if a small chemical will inhibit uPA of different species with the same or different potency. Using DNA sequence and known structure of uPA we have modeled 3D structures of uPAs for several different species. By theoretical calculations we have determined most probable structure of amiloride/uPAs complexes. Catalytic triad (B57, B102, B195) and specificity pocket (B187-B197, B212-B229) are highly conserved in all cases, and are the regions responsible for proteolytic activity and recognition of the substrate. Significant differences were observed in a different region (loop B93-B101), that we identified as binding site of amiloride to the tissue plasminogen activator (tPA). Although tPA shares the same function of activating plasminogen and it is structurally similar to uPA. Amiloride is a specific inhibitor of uPA but does not inhibit tPA. Our study shows that predicted position of amiloride depends on species and in some cases was located, as expected, in the specificity pocket, but in the other cases close to the loop B93-B101. This location could weaken affinity of binding or prevent inhibition of uPA. Therefore, drug screening and elimination process based solely on animal study, without careful structural analysis, could lead to the elimination of potential drugs for humans.

  15. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium.

    PubMed

    Zinovkin, Roman A; Romaschenko, Valeria P; Galkin, Ivan I; Zakharova, Vlada V; Pletjushkina, Olga Yu; Chernyak, Boris V; Popova, Ekaterina N

    2014-08-01

    Vascular aging is accompanied by increases in circulatory proinflammatory cytokines leading to inflammatory endothelial response implicated in early atherogenesis. To study the possible role of mitochondria-derived reactive oxygen species (ROS) in this phenomenon, we applied the effective mitochondria-targeted antioxidant SkQ1, the conjugate of plastoquinone with dodecyltriphenylphosphonium. Eight months treatment of (CBAxC57BL/6) F1 mice with SkQ1 did not prevent age-related elevation of the major proinflammatory cytokines TNF and IL-6 in serum, but completely abrogated the increase in adhesion molecule ICAM1 expression in aortas of 24-month-old animals. In endothelial cell culture, SkQ1 also attenuated TNF-induced increase in ICAM1, VCAM, and E-selectin expression and secretion of IL-6 and IL-8, and prevented neutrophil adhesion to the endothelial monolayer. Using specific inhibitors to transcription factor NF-κB and stress-kinases p38 and JNK, we demonstrated that TNF-induced ICAM1 expression depends mainly on NF-κB activity and, to a lesser extent, on p38. SkQ1 had no effect on p38 phosphorylation (activation) but significantly reduced NF-κB activation by inhibiting phosphorylation and proteolytic cleavage of the inhibitory subunit IκBα. The data indicate an important role of mitochondrial reactive oxygen species in regulation of the NF-κB pathway and corresponding age-related inflammatory activation of endothelium.

  16. Comparison of innate immune activation after prolonged feeding of milk fermented with three species of Lactobacilli.

    PubMed

    Kapila, Rajeev; Sebastian, Renjith; Varma D, Vivek Phani; Sharma, Rohit; Kapasiya, Meena; Salingati, Vamshi; Kapila, Suman; Dang, Ajay K

    2013-11-01

    The present investigation aimed at identifying the abilities of three different species of probiotic lactobacilli to modulate cellular immune responses in mouse neutrophils and macrophages in vivo over a study period of 60 days. Neutrophil respiratory burst enzymes (cytochrome c reductase and MPO) showed remarkable increased activity (P ≤ 0.01) after consumption of milks fermented by different species of probiotics over 30 and 60 days of feeding trials. Enzyme activities (β-galactosidase and β-glucuronidase) and nitric oxide production also increased considerably (P ≤ 0.01) in macrophages, both in peritoneal fluid and in enriched cell cultures. The effects of enhanced enzyme activities were corroborated by simultaneous increases in the phagocytic activities of neutrophils and macrophages. The increases in cellular functions were invariably maximal during the first 30 days of study and were maintained, but did not increase, over the next 30 days. Further, Lactobacillus helveticus-fed groups were most effective at modulating neutrophil functions whereas Lactobacillus paracasei-fed groups were more potent at enhancing macrophage functions. Together, our results indicate that probiotics have strain specific effects on stimulating cellular functions while not causing excessive stimulation of the immune system over longer feeding periods, thereby resulting in maximum and stable health benefits.

  17. Reef flattening effects on total richness and species responses in the Caribbean.

    PubMed

    Newman, Steven P; Meesters, Erik H; Dryden, Charlie S; Williams, Stacey M; Sanchez, Cristina; Mumby, Peter J; Polunin, Nicholas V C

    2015-11-01

    There has been ongoing flattening of Caribbean coral reefs with the loss of habitat having severe implications for these systems. Complexity and its structural components are important to fish species richness and community composition, but little is known about its role for other taxa or species-specific responses. This study reveals the importance of reef habitat complexity and structural components to different taxa of macrofauna, total species richness, and individual coral and fish species in the Caribbean. Species presence and richness of different taxa were visually quantified in one hundred 25-m(2) plots in three marine reserves in the Caribbean. Sampling was evenly distributed across five levels of visually estimated reef complexity, with five structural components also recorded: the number of corals, number of large corals, slope angle, maximum sponge and maximum octocoral height. Taking advantage of natural heterogeneity in structural complexity within a particular coral reef habitat (Orbicella reefs) and discrete environmental envelope, thus minimizing other sources of variability, the relative importance of reef complexity and structural components was quantified for different taxa and individual fish and coral species on Caribbean coral reefs using boosted regression trees (BRTs). Boosted regression tree models performed very well when explaining variability in total (82·3%), coral (80·6%) and fish species richness (77·3%), for which the greatest declines in richness occurred below intermediate reef complexity levels. Complexity accounted for very little of the variability in octocorals, sponges, arthropods, annelids or anemones. BRTs revealed species-specific variability and importance for reef complexity and structural components. Coral and fish species occupancy generally declined at low complexity levels, with the exception of two coral species (Pseudodiploria strigosa and Porites divaricata) and four fish species (Halichoeres bivittatus, H

  18. Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming

    PubMed Central

    Gibson-Reinemer, Daniel K.; Rahel, Frank J.

    2015-01-01

    Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013

  19. Reactive Carbonyl Species Activate Caspase-3-Like Protease to Initiate Programmed Cell Death in Plants.

    PubMed

    Biswas, Md Sanaullah; Mano, Jun'ichi

    2016-07-01

    Reactive oxygen species (ROS)-triggered programmed cell death (PCD) is a typical plant response to biotic and abiotic stressors. We have recently shown that lipid peroxide-derived reactive carbonyl species (RCS), downstream products of ROS, mediate oxidative signal to initiate PCD. Here we investigated the mechanism by which RCS initiate PCD. Tobacco Bright Yellow-2 cultured cells were treated with acrolein, one of the most potent RCS. Acrolein at 0.2 mM caused PCD in 5 h (i.e. lethal), but at 0.1 mM it did not (sublethal). Specifically, these two doses caused critically different effects on the cells. Both lethal and sublethal doses of acrolein exhausted the cellular glutathione pool in 30 min, while the lethal dose only caused a significant ascorbate decrease and ROS increase in 1-2 h. Prior to such redox changes, we found that acrolein caused significant increases in the activities of caspase-1-like protease (C1LP) and caspase-3-like protease (C3LP), the proteases which trigger PCD. The lethal dose of acrolein increased the C3LP activity 2-fold more than did the sublethal dose. In contrast, C1LP activity increments caused by the two doses were not different. Acrolein and 4-hydroxy-(E)-2-nonenal, another RCS, activated both proteases in a cell-free extract from untreated cells. H2O2 at 1 mM added to the cells increased C1LP and C3LP activities and caused PCD, and the RCS scavenger carnosine suppressed their activation and PCD. However, H2O2 did not activate the proteases in a cell-free extract. Thus the activation of caspase-like proteases, particularly C3LP, by RCS is an initial biochemical event in oxidative signal-stimulated PCD in plants.

  20. The combined effect of anthracene and cadmium on photosynthetic activity of three Desmodesmus (Chlorophyta) species.

    PubMed

    Pokora, Wojciech; Tukaj, Zbigniew

    2010-09-01

    Individual toxicity of heavy metals (HM) and polycyclic aromatic hydrocarbons (PAH) to plants living in water bodies is well-documented. In view of frequent joint occurrence of these compounds in the environment, plants are subjected to damage from their combined action. Cadmium and anthracene can generate production of reactive oxygen species (ROS). We have recently detected elevated activity of Fe- and Mn-SOD isoforms, indicating chloroplast and mitochondrion as the main sites of combined toxicity of HM and PAH. In the present paper, short-term (1-24 h) experiments on the mechanism of combined toxicity of anthracene and cadmium to the photosynthesis of three Desmodesmus species are reported. Inhibition, stimulation or no effect on the oxygen evolution was observed following the treatment with the contaminants when applied either separately or jointly. The response pattern was both strongly species- and time-dependent. In contrast, the photosynthetic activity of cells, expressed by chlorophyll fluorescence parameters, was substantially unaffected, since no effect or, in several cases, a slight stimulation of PS II quantum efficiency (Phi PS II) were noted. A characteristic relationship between the SOD activity and the qN values was observed. The treatment of Desmodesmus cells with anthracene or cadmium had either no effect or slightly enhanced either the SOD activity or the qN value, whereas the mixture of the contaminants resulted in a multifold increase in both the SOD activity and the qN values. The results suggest that chloroplasts of algae are well protected against the combined action of the two contaminants the toxicity of which should be attributed to nucleocytoplasmic compartments and reproductive processes of the cell cycle.

  1. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    PubMed Central

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  2. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    PubMed

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics.

  3. Long-term successional forest dynamics: species and community responses to climatic variability

    SciTech Connect

    Kardol, Paul; Todd Jr, Donald E; Hanson, Paul J; Mulholland, Patrick J

    2010-01-01

    Question: Are tree dynamics sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Hence, is vulnerability of forest communities to climatic variability depending on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East-Tennessee, USA. Methods: Using a long-term data set (1967-2006), we analyzed temporal forest dynamics at the tree and species level, and we analyzed community dynamics for forest stands that different in their initial species composition (i.e., Chestnut Oak, Oak-Hickory, Pine, and Yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the 4-decade studied period, forest communities underwent successional change and substantially increased their biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand-level responses to climatic variability were shown to be related to responses of specific component species; however, not for Pine stands. Pinus echinata, the dominant species in stands initially identified as Pine stands, decreased over time due to periodical outbreaks of the pine bark beetle (Dendroctonus frontalis). The outbreaks on Walker Branch could not be directly related to climatic conditions. Conclusions: Our results imply that vulnerability of developing forests to predicted climate conditions is stand-type dependent, and hence, is a function of species composition. Autogenic successional processes (or insect outbreaks) were found to prevail over climatic variability in determining long-term forest dynamics for stands dominated by sensitive species, emphasizing the importance of studying interactions between forest succession and climate change.

  4. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span.

    PubMed Central

    Grube, K; Bürkle, A

    1992-01-01

    Poly(ADP-ribosyl)ation is a eukaryotic posttranslational modification of proteins that is strongly induced by the presence of DNA strand breaks and plays a role in DNA repair and the recovery of cells from DNA damage. We compared poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) activities in Percoll gradient-purified, permeabilized mononuclear leukocytes from mammalian species of different maximal life span. Saturating concentrations of a double-stranded octameric oligonucleotide were applied to provide a direct and maximal stimulation of PARP. Our results on 132 individuals from 13 different species yield a strong positive correlation between PARP activity and life span (r = 0.84; P << 0.001), with human cells displaying approximately 5 times the activity of rat cells. Intraspecies comparisons with both rat and human cells from donors of all age groups revealed some decline of PARP activity with advancing age, but it was only weakly correlated. No significant polymer degradation was detectable under our assay conditions, ruling out any interference by poly(ADP-ribose) glycohydrolase activity. By Western blot analysis of mononuclear leukocytes from 11 species, using a crossreactive antiserum directed against the extremely well-conserved NAD-binding domain, no correlation between the amount of PARP protein and the species' life spans was found, suggesting a greater specific enzyme activity in longer-lived species. We propose that a higher poly(ADP-ribosyl)ation capacity in cells from long-lived species might contribute to the efficient maintenance of genome integrity and stability over their longer life span. Images PMID:1465394

  5. Response of Microtermes mycophagus (Isoptera: Termitidae) to twenty one wood species

    PubMed Central

    Saeed, Shafqat

    2015-01-01

    The responses of termite species to bait depend upon the quality of the food used in the stations. Woods are the most common food sources for termites but different termite species behave differently to different wood species and types. The knowledge of the preference status of different wood species to a termite species helps in effective monitoring and baiting program. The current study was carried out to evaluate the preference of 21 wood species to the termite, Microtermes mycophagus in the field by no-choice and choice feeding tests. The results indicated silk cotton tree and sacred fig woods as the most preferred wood species with mean mass losses of 71.21 ± 5.09% and 68.38 ± 7.27% in no-choice test and 95.02 ± 1.65% and 91.69 ± 2.07% in choice tests, respectively. White cedar was the least preferred wood species with mean mass losses of 7.49 ± 1.64% and 13.92 ± 1.89% in no choice and choice feeding tests, respectively. Based on present studies, sapwood of silk cotton tree and sacred fig may be used in effective monitoring and baiting program against M. mycophagus. PMID:26312171

  6. The initial phase of a Longleaf Pine-Wiregrass Savanna restoration: species establishment and community responses.

    SciTech Connect

    Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.

    2010-09-01

    AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non-matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in June 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 ×3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.

  7. Regulation of Rac1 and Reactive Oxygen Species Production in Response to Infection of Gastrointestinal Epithelia.

    PubMed

    den Hartog, Gerco; Chattopadhyay, Ranajoy; Ablack, Amber; Hall, Emily H; Butcher, Lindsay D; Bhattacharyya, Asima; Eckmann, Lars; Harris, Paul R; Das, Soumita; Ernst, Peter B; Crowe, Sheila E

    2016-01-01

    Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.

  8. Regulation of Rac1 and Reactive Oxygen Species Production in Response to Infection of Gastrointestinal Epithelia

    PubMed Central

    Ablack, Amber; Hall, Emily H.; Butcher, Lindsay D.; Bhattacharyya, Asima; Eckmann, Lars; Harris, Paul R.; Das, Soumita; Ernst, Peter B.; Crowe, Sheila E.

    2016-01-01

    Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections. PMID:26761793

  9. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae).

    PubMed

    Oosthuizen, Maria K; Cooper, Howard M; Bennett, Nigel C

    2003-12-01

    Mole-rats are strictly subterranean and hardly, if ever, come into contact with external light. As a result, their classical visual system is severely regressed and the circadian system proportionally expanded. The family Bathyergidae presents a unique opportunity to study the circadian system in the absence of the classical visual system in a range of species. Daily patterns of activity were studied in the laboratory under constant temperature but variable lighting regimes in individually housed animals from 3 species of mole-rat exhibiting markedly different degrees of sociality. All 3 species possessed individuals that exhibited endogenous circadian rhythms under constant darkness that entrained to a light-dark cycle. In the solitary species, Georychus capensis, 9 animals exhibited greater activity during the dark phase of the light cycle, while 2 individuals expressed more activity in the light phase of the light cycle. In the social, Cryptomys hottentotus pretoriae, 5 animals displayed the majority of their activity during the dark phase of the light cycle and the remaining 2 exhibited more activity during the light phase of the light cycle. Finally in the eusocial Cryptomys damarensis, 6 animals displayed more activity during the light phase of the light cycle, and the other 2 animals displayed more activity during the dark phase of the light cycle. Since all three mole-rat species are able to entrain their locomotor activity to an external light source, light must reach the SCN, suggesting a functional circadian clock. In comparison to the solitary species, the 2 social species display a markedly poorer response to light in all aspects. Thus, in parallel with the sociality continuum, there exists a continuum of sensitivity of the circadian clock to light.

  10. Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species

    PubMed Central

    Quetglas, Antoni; Rueda, Lucía; Alvarez-Berastegui, Diego; Guijarro, Beatriz; Massutí, Enric

    2016-01-01

    According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides

  11. Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species.

    PubMed

    Quetglas, Antoni; Rueda, Lucía; Alvarez-Berastegui, Diego; Guijarro, Beatriz; Massutí, Enric

    2016-01-01

    According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides

  12. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species.

    PubMed

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T

    2016-08-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.

  13. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species

    PubMed Central

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T.

    2016-01-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses. PMID:27330405

  14. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    USGS Publications Warehouse

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  15. Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley M.; Bohrer, Gil; Vogel, Christoph S.; Morin, Timothy H.; He, Lingli; Frasson, Renato Prata de Moraes; Mirfenderesgi, Golnazalsadat; Schäfer, Karina V. R.; Gough, Christopher M.; Ivanov, Valeriy Y.; Curtis, Peter S.

    2014-12-01

    Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early successional trees to simulate an accelerated age-related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species-specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteith model for LE to demonstrate that these species-specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration.

  16. Species-specific effects of pigmentation negation on the neural response to faces

    PubMed Central

    Balas, Benjamin; Stevenson, Kate

    2013-01-01

    Face processing is limited in scope as a function of experience – discrimination ability and face-specific behavioral effects are reduced in out-group faces. Nonetheless, other-species faces phylogenetically close to our own may be processed by similar mechanisms as human faces. Presently, we asked whether or not the well-known effect of contrast-negation on face recognition (Galper, 1970) was exclusive to human faces or generalized to monkey faces. Negation disrupts face pigmentation substantially, allowing us to examine species-specific use of surface cues as a function of expertise. We tested adult observers behaviorally and electrophysiologically: Participants completed a 4AFC discrimination task subject to manipulations of face species and independent negation of image luminance and image chroma, and the same stimuli were used to collect event-related potentials in a go/no-go task. We predicted that expertise for human faces would lead to larger deleterious effects of negation for human faces in both tasks, reflected in longer RTs for correct responses in the discrimination task and species-specific modulation of the N170 and P200 by contrast-negation. Our results however, indicate that behaviorally, luminance and chroma negation affect discrimination performance in a species-independent manner, while similar effects of contrast-negation effects are evident in each species at different components of the ERP response. PMID:23792327

  17. Making mistakes when predicting shifts in species range in response to global warming.

    PubMed

    Davis, A J; Jenkinson, L S; Lawton, J H; Shorrocks, B; Wood, S

    1998-02-19

    Many attempts to predict the biotic responses to climate change rely on the 'climate envelope' approach, in which the current distribution of a species is mapped in climate-space and then, if the position of that climate-space changes, the distribution of the species is predicted to shift accordingly. The flaw in this approach is that distributions of species also reflect the influence of interactions with other species, so predictions based on climate envelopes may be very misleading if the interactions between species are altered by climate change. An additional problem is that current distributions may be the result of sources and sinks, in which species appear to thrive in places where they really persist only because individuals disperse into them from elsewhere. Here we use microcosm experiments on simple but realistic assemblages to show how misleading the climate envelope approach can be. We show that dispersal and interactions, which are important elements of population dynamics, must be included in predictions of biotic responses to climate change.

  18. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    ERIC Educational Resources Information Center

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  19. Species-specific calls evoke asymmetric activity in the monkey's temporal poles.

    PubMed

    Poremba, Amy; Malloy, Megan; Saunders, Richard C; Carson, Richard E; Herscovitch, Peter; Mishkin, Mortimer

    2004-01-29

    It has often been proposed that the vocal calls of monkeys are precursors of human speech, in part because they provide critical information to other members of the species who rely on them for survival and social interactions. Both behavioural and lesion studies suggest that monkeys, like humans, use the auditory system of the left hemisphere preferentially to process vocalizations. To investigate the pattern of neural activity that might underlie this particular form of functional asymmetry in monkeys, we measured local cerebral metabolic activity while the animals listened passively to species-specific calls compared with a variety of other classes of sound. Within the superior temporal gyrus, significantly greater metabolic activity occurred on the left side than on the right, only in the region of the temporal pole and only in response to monkey calls. This functional asymmetry was absent when these regions were separated by forebrain commissurotomy, suggesting that the perception of vocalizations elicits concurrent interhemispheric interactions that focus the auditory processing within a specialized area of one hemisphere.

  20. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly.

    PubMed

    Mainwaring, David E; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N; Wu, Alex H-F; Marchant, Richard; Crawford, Russell J; Ivanova, Elena P

    2016-03-28

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.

  1. Pollution Response Score of Tree Species in Relation to Ambient Air Quality in an Urban Area.

    PubMed

    Mukherjee, Arideep; Agrawal, Madhoolika

    2016-02-01

    Multivariate statistical techniques were employed on twelve leaf traits in four selected common tree species (Mangifera indica L., Polyalthia longifolia Sonn., Ficus benghalensis L. and Psidium guajava L.) to evaluate their responses with respect to major air pollutants in an urban area. Discriminant analysis (DA) identified chlorophyll/carotenoid ratio, leaf dry matter content, carotenoids, net water content and ascorbic acid as the major discriminating leaf traits, which varied maximally with respect to the pollution status. Pollution response score (PRS), calculated on the basis of discriminate functional coefficient values, increased with an increase in air pollution variables for all the tested species, with the highest increase in P. longifolia and the lowest in F. benghalensis. The study highlights the usefulness of DA for evaluation of plant specific traits and PRS for selection of tolerant species.

  2. Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species.

    PubMed

    Jang, Young-Su; Jeon, Ju-Hyun; Lee, Hoi-Seon

    2005-12-01

    Mosqutio larvicidal activity of Chamaecyparis obtusa leaf-derived materials against the 4th-stage larvae of Aedes aegypti (L.), Ochlerotatus togoi (Theobald), and Culex pipiens pallens (Coquillett) was examined in the laboratory. A crude methanol extract of C. obtusa leaves was found to be active (percent mortality rough) against the 3 species larvae; the hexane fraction of the methanol extract showed a strong larvicidal activity (100% mortality) at 100 ppm. The bioactive component in the C. obtusa leaf extract was characterized as beta-thujaplicin by spectroscopic analyses. The LC50 value of beta-thujaplicin was 2.91, 2.60, and 1.33 ppm against Ae. aegypti, Oc. togoi, and Cx. pipiens pallens larvae. This naturally occurring C. obtusa leaves-derived compound merits further study as a potential mosquito larval control agent or lead compound.

  3. Characterization of the ice nucleation activity of an airborne Penicillium species

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gary D.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Microorganisms are ubiquitous both on and above the Earth. Several bacterial and fungal spe-cies are the focus of atmospheric studies due to their ability to trigger ice formation at high subzero temperatures. Thus, they have potential to modify cloud albedo, lifetime and precipita-tion, and ultimately the hydrological cycle. Several fungal strains have already been identified as possessing ice nucleation (IN) activity, and recent studies have shown that IN active fungi are present in the cultivable community of air and soil samples [1, 2]. However, the abundance, diversity, and sources of fungal ice nuclei in the atmosphere are still poorly characterized. In this study, fungal colonies obtained from air samples were screened for IN activity in the droplet-freezing assay described in Fröhlich-Nowoisky et al., 2015 [2]. Out of 128 tested iso-lates, two were found to catalyze ice formation at temperatures up to -4°C. By DNA analysis, both isolates were classified as Penicillium spp. The freezing activity of both was further char-acterized after different filtration, heat, and enzymatic treatments in the temperature range from -4°C to -15°C. Preliminary results show that a proteinaceous compound is responsible for the IN activity. Furthermore, ongoing experiments indicate that the activity is associated only with the hyphae. [1] Huffman, et al. (2013): Atmos. Chem. Phys., 13, 6151-6164. [2] Fröhlich-Nowoisky et al. (2015): Biogeosciences, 12: 1057-1071.

  4. Killer activity of yeasts isolated from natural environments against some medically important Candida species.

    PubMed

    Vadkertiová, Renata; Sláviková, Elena

    2007-01-01

    Twenty-five yeast cultures, mainly of human origin, belonging to four pathogenic yeast species--Candida albicans, Candida krusei, Candida parapsilosis, and Candida tropicalis were tested for their sensitivity to ten basidiomycetous and eleven ascomycetous yeast species isolated from the water and soil environments and from tree leaves. The best killer activity among basidiomycetous species was exhibited by Rhodotorula glutinis, and R. mucilaginosa. The other carotenoid producing species Cystofilobasidium capitatum, Sporobolomyces salmonicolor, and S. roseus were active only against about 40% of the tested strains and exhibited weak activity. The broadest killer activity among ascomycetous yeasts was shown by the strains Pichia anomala and Metschnikowia pulcherrima. The species Debaryomyces castellii, Debaryomyces hansenii, Hanseniaspora guilliermondii, Pichia membranifaciens, and Williopsis californica did not show any killer activity. The best killer activity exhibited the strains isolated from leafy material. The lowest activity pattern was found among strains originating from soil environment.

  5. New flux based dose-response relationships for ozone for European forest tree species.

    PubMed

    Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D

    2015-11-01

    To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate.

  6. Response latencies to postural disturbances in three species of teleostean fishes.

    PubMed

    Webb, Paul W

    2004-02-01

    Flow in aquatic systems is characterized by unsteadiness that creates destabilizing perturbations. Appropriate correction responses depend on response latency. The time between a disturbance induced by either removal of a flow refuge or striking various parts of the body with a narrow water jet was measured for three species, chosen as examples of modes in teleostean body/fin organization that are expected to affect stability. Creek chub Semotilus atromaculatus is representative of fusiform-bodied soft-rayed teleosts, smallmouth bass Micropterus dolomieu of fusiform-bodied spiny-rayed forms and bluegill Lepomis macrochirus of deep-bodied spiny-rayed forms. Observations were made at 23 degrees C. Loss of refuge resulted in a surge that fish corrected by starting to swim within 129+/-29 ms (mean +/- 2 S.E.M.) for chub, which was significantly shorter than minimal times of approximately 200 ms for bluegill and bass. Slips and heaves induced by water jets initially resulted in extension of the median and paired fins that would damp growth of the disturbance, but otherwise these disturbances were ignored. Yaws and pitches were more likely to cause fish to swim away from the stimulus, making corrections as they did so. There were no differences in latencies for slip, heave, yaw and pitch disturbances within each species, but latencies varied among species. For these disturbances, responses averaged 123+/-19 ms for chub, again significantly smaller than those of 201+/-24 ms for bass and 208+/-52 ms for bluegill. Values for the two centrarchids were not significantly different (P>0.08). The response latency for rolling disturbances did not differ among species but was significantly smaller than that for other disturbances, with an overall latency of 70+/-15 ms. The greater responsiveness to hydrostatic rolling instability is attributed to functions requiring an upright posture and differences among species in habitat preferences.

  7. Space use variation in co-occurring sister species: response to environmental variation or competition?

    PubMed

    Dufour, Claire M S; Meynard, Christine; Watson, Johan; Rioux, Camille; Benhamou, Simon; Perez, Julie; du Plessis, Jurie J; Avenant, Nico; Pillay, Neville; Ganem, Guila

    2015-01-01

    Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence.

  8. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma

    PubMed Central

    Singer, E; Judkins, J; Salomonis, N; Matlaf, L; Soteropoulos, P; McAllister, S; Soroceanu, L

    2015-01-01

    Glioblastoma (GBM) resistance to therapy is the most common cause of tumor recurrence, which is ultimately fatal in 90% of the patients 5 years after initial diagnosis. A sub-population of tumor cells with stem-like properties, glioma stem cells (GSCs), is specifically endowed to resist or adapt to the standard therapies, leading to therapeutic resistance. Several anticancer agents, collectively termed redox therapeutics, act by increasing intracellular levels of reactive oxygen species (ROS). In this study, we investigated mechanisms underlying GSC response and resistance to cannabidiol (CBD), a non-toxic, non-psychoactive cannabinoid and redox modulator. Using primary GSCs, we showed that CBD induced a robust increase in ROS, which led to the inhibition of cell survival, phosphorylated (p)-AKT, self-renewal and a significant increase in the survival of GSC-bearing mice. Inhibition of self-renewal was mediated by the activation of the p-p38 pathway and downregulation of key stem cell regulators Sox2, Id1 and p-STAT3. Following CBD treatment, a subset of GSC successfully adapted, leading to tumor regrowth. Microarray, Taqman and functional assays revealed that therapeutic resistance was mediated by enhanced expression of the antioxidant response system Xc catalytic subunit xCT (SLC7A11 (solute carrier family 7 (anionic amino-acid transporter light chain), member 11)) and ROS-dependent upregulation of mesenchymal (MES) markers with concomitant downregulation of proneural (PN) markers, also known as PN–MES transition. This ‘reprogramming' of GSCs occurred in culture and in vivo and was partially due to activation of the NFE2L2 (NRF2 (nuclear factor, erythroid 2-like)) transcriptional network. Using genetic knockdown and pharmacological inhibitors of SLC7A11, we demonstrated that combining CBD treatment with the inhibition of system Xc resulted in synergistic ROS increase leading to robust antitumor effects, that is, decreased GSC survival, self-renewal, and

  9. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    PubMed Central

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  10. Reactive oxygen species regulatory mechanisms associated with rapid response of MC3T3-E1 cells for vibration stress.

    PubMed

    Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli; Yang, Yang; He, Yuting; Yu, Haiyang

    2016-02-12

    Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1 signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress.

  11. Capping Protein Modulates Actin Remodeling in Response to Reactive Oxygen Species during Plant Innate Immunity1[OPEN

    PubMed Central

    Cao, Lingyan

    2017-01-01

    Plants perceive microbe-associated molecular patterns and damage-associated molecular patterns to activate innate immune signaling events, such as bursts of reactive oxygen species (ROS). The actin cytoskeleton remodels during the first 5 min of innate immune signaling in Arabidopsis (Arabidopsis thaliana) epidermal cells; however, the immune signals that impinge on actin cytoskeleton and its response regulators remain largely unknown. Here, we demonstrate that rapid actin remodeling upon elicitation with diverse microbe-associated molecular patterns and damage-associated molecular patterns represent a conserved plant immune response. Actin remodeling requires ROS generated by the defense-associated NADPH oxidase, RBOHD. Moreover, perception of flg22 by its cognate receptor complex triggers actin remodeling through the activation of RBOHD-dependent ROS production. Our genetic studies reveal that the ubiquitous heterodimeric capping protein transduces ROS signaling to the actin cytoskeleton during innate immunity. Additionally, we uncover a negative feedback loop between actin remodeling and flg22-induced ROS production. PMID:27909046

  12. Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin.

    PubMed

    Parent, Claire; Crèvecoeur, Michèle; Capelli, Nicolas; Dat, James F

    2011-07-01

    Soil flooding is an environmental constraint that is increasingly important for forest ecosystems, affecting tree growth and regeneration. As a result, selection pressure will alter forest diversity and distribution by favouring tree species tolerant of soil oxygen deprivation. Sessile and pedunculate oaks are the most abundant oak species and they exhibit a strong differential tolerance to waterlogging. In order to gain some understanding of the mechanisms of tolerance of both species to hypoxia, we undertook the characterization of the physiological, morphological, cellular and molecular responses of both species to flooding stress. Our results indicate that pedunculate oak, the more tolerant species, succeeded in maintaining its growth, water status and photosynthetic activity at a higher level than sessile oak. Furthermore, pedunculate oak developed aerenchyma in its root cortex as well as adventitious roots. The later exhibited a strong accumulation of class1 non-symbiotic haemoglobin localized by in situ hybridization in the protoderm and in some cortical cells. In conclusion, the higher tolerance of pedunculate oak to flooding was associated with an enhanced capacity to maintain photosynthesis and water homeostasis, coupled with the development of adaptive features (aerenchyma, adventitious roots) and with a higher expression of non-symbiotic haemoglobin in the roots.

  13. Body size and activity times mediate mammalian responses to climate change.

    PubMed

    McCain, Christy M; King, Sarah R B

    2014-06-01

    Model predictions of extinction risks from anthropogenic climate change are dire, but still overly simplistic. To reliably predict at-risk species we need to know which species are currently responding, which are not, and what traits are mediating the responses. For mammals, we have yet to identify overarching physiological, behavioral, or biogeographic traits determining species' responses to climate change, but they must exist. To date, 73 mammal species in North America and eight additional species worldwide have been assessed for responses to climate change, including local extirpations, range contractions and shifts, decreased abundance, phenological shifts, morphological or genetic changes. Only 52% of those species have responded as expected, 7% responded opposite to expectations, and the remaining 41% have not responded. Which mammals are and are not responding to climate change is mediated predominantly by body size and activity times (phylogenetic multivariate logistic regressions, P < 0.0001). Large mammals respond more, for example, an elk is 27 times more likely to respond to climate change than a shrew. Obligate diurnal and nocturnal mammals are more than twice as likely to respond as mammals with flexible activity times (P < 0.0001). Among the other traits examined, species with higher latitudinal and elevational ranges were more likely to respond to climate change in some analyses, whereas hibernation, heterothermy, burrowing, nesting, and study location did not influence responses. These results indicate that some mammal species can behaviorally escape climate change whereas others cannot, analogous to paleontology's climate sheltering hypothesis. Including body size and activity flexibility traits into future extinction risk forecasts should substantially improve their predictive utility for conservation and management.

  14. Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms.

    PubMed

    Halac, S R; Villafañe, V E; Gonçalves, R J; Helbling, E W

    2014-12-01

    We carried out experiments using long-term (5-7 days) exposure of marine phytoplankton species to solar radiation, in order to assess the joint effects of ultraviolet radiation (UVR) and temperature on the photochemical responses and photoprotective mechanisms. In the experiments, carried out at Atlantic coast of Patagonia (43°18.7'S; 65°2.5'W) in spring-summer 2011, we used three species as model organisms: the dinoflagellate Prorocentrum micans, the chlorophyte Dunaliella salina and the haptophyte Isochrysis galbana. They were exposed under: (1) two radiation quality treatments (by using different filters): P (PAR, >400 nm) and PAB (PAR+UV-A+UV-B, >280 nm); (2) two radiation intensities (100% and 50%) and (3) two experimental temperatures: 18 °C and 23 °C during summer and 15 °C and 20 °C in spring experiments, simulating a 5 °C increase under a scenario of climate change. In addition, short-term (4h) artificial radiation exposure experiments were implemented to study vertical migration of cells pre- and non-acclimated to solar radiation. We observed species-specific responses: P. micans displayed a better photochemical performance and a lower inhibition induced by UVR than D. salina and I. galbana. In accordance, P. micans was the only species that showed a synthesis of UV-absorbing compounds (UVACs) during the experiment. On the other hand, non-photochemical quenching (NPQ) was activated in D. salina at noon throughout the exposure, while I. galbana did not show a regular NPQ pattern. This mechanism was almost absent in P. micans. Regarding vertical migration, I. galbana showed the most pronounced displacement to deepest layers since the first two hours of exposure in pre- and non-acclimated cells, while only non-acclimated D. salina cells moved to depth at the end of the experiment. Finally, temperature partially counteracted solar radiation inhibition in D. salina and I. galbana, whereas no effect was observed upon P. micans. In particular, significant

  15. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice.

    PubMed

    Schmidt, Romy; Mieulet, Delphine; Hubberten, Hans-Michael; Obata, Toshihiro; Hoefgen, Rainer; Fernie, Alisdair R; Fisahn, Joachim; San Segundo, Blanca; Guiderdoni, Emmanuel; Schippers, Jos H M; Mueller-Roeber, Bernd

    2013-06-01

    Early detection of salt stress is vital for plant survival and growth. Still, the molecular processes controlling early salt stress perception and signaling are not fully understood. Here, we identified salt-responsive ERF1 (SERF1), a rice (Oryza sativa) transcription factor (TF) gene that shows a root-specific induction upon salt and hydrogen peroxide (H2O2) treatment. Loss of SERF1 impairs the salt-inducible expression of genes encoding members of a mitogen-activated protein kinase (MAPK) cascade and salt tolerance-mediating TFs. Furthermore, we show that SERF1-dependent genes are H2O2 responsive and demonstrate that SERF1 binds to the promoters of MAPK kinase kinase6 (MAP3K6), MAPK5, dehydration-responsive element bindinG2A (DREB2A), and zinc finger protein179 (ZFP179) in vitro and in vivo. SERF1 also directly induces its own gene expression. In addition, SERF1 is a phosphorylation target of MAPK5, resulting in enhanced transcriptional activity of SERF1 toward its direct target genes. In agreement, plants deficient for SERF1 are more sensitive to salt stress compared with the wild type, while constitutive overexpression of SERF1 improves salinity tolerance. We propose that SERF1 amplifies the reactive oxygen species-activated MAPK cascade signal during the initial phase of salt stress and translates the salt-induced signal into an appropriate expressional response resulting in salt tolerance.

  16. Dose Response Data for Hormonally Active Chemicals ...

    EPA Pesticide Factsheets

    The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. For noncancer effects the default assumption is that noncancer effects generally display threshold rather than LNT responses. More recently, claims have arisen that the chemicals, like endocrine disrupters (EDS), which act via high affinity, low capacity nuclear receptors, may display LNT or nonmonotonic low dose responses: responses that could be missed in multigenerational guideline toxicity testing. This presentation will discuss LNT, threshold and nonmonotonic dose response relationships from case studies of chemicals that disrupt reproductive development and function via the ER, AR and AhR pathways and will include in vitro and in vivo multigenerational data. The in vivo studies in this discussion include only robust, well designed, comprehensive studies that administered the chemical via a relevant route(s) of exposure over a broad dose response range, including low dose(s) in the microgram/kg/d range. The chemicals include ethinyl estradiol, estradiol, genistein, bisphenol a, trenbolone, finasteride, flutamide, phthalate esters and 2,3,7,8 TCDD. The objective is to critically evaluate the data from well done studies in this field to address concerns that current multigenerational reproductive test gui

  17. Antitrypanosomal activity of some pregnane glycosides isolated from Caralluma species.

    PubMed

    Abdel-Sattar, Essam; Shehab, Naglaa G; Ichino, Chikara; Kiyohara, Hiroaki; Ishiyama, Aki; Otoguro, Kazuhiko; Omura, Satoshi; Yamada, Haruki

    2009-06-01

    Pregnane glycosides previously isolated from genus Caralluma (C. Penicillata, C. tuberculata and C. russelliana) were tested for their antitrypanosomal activity. Penicilloside E showed the highest antitrypanosomal activity (IC(50) 1.01 microg/ml) followed by caratuberside C (IC(50) 1.85 microg/ml), which exhibited the highest selectivity index (SI 12.04). It was noticed that acylation is required for the antitrypanosomal activity while glycosylation at C-20 has no significant effect on the activity.

  18. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses.

    PubMed

    Clements, William H; Cadmus, Pete; Brinkman, Stephen F

    2013-07-02

    Field surveys of metal-contaminated streams suggest that some aquatic insects, particularly mayflies (Ephemeroptera) and stoneflies (Plecoptera), are highly sensitive to metals. However, results of single species toxicity tests indicate these organisms are quite tolerant, with LC50 values often several orders of magnitude greater than those obtained using standard test organisms (e.g., cladocerans and fathead minnows). Reconciling these differences is a critical research need, particularly since water quality criteria for metals are based primarily on results of single species toxicity tests. In this research we provide evidence based on community-level microcosm experiments to support the hypothesis that some aquatic insects are highly sensitive to metals. We present results of three experiments that quantified effects of Cu and Zn, alone and in combination, on stream insect communities. EC50 values, defined as the metal concentration that reduced abundance of aquatic insects by 50%, were several orders of magnitude lower than previously published values obtained from single species tests. We hypothesize that the short duration of laboratory toxicity tests and the failure to evaluate effects of metals on sensitive early life stages are the primary factors responsible for unrealistically high LC50 values in the literature. We also observed that Cu alone was significantly more toxic to aquatic insects than the combination of Cu and Zn, despite the fact that exposure concentrations represented theoretically similar toxicity levels. Our results suggest that water quality criteria for Zn were protective of most aquatic insects, whereas Cu was highly toxic to some species at concentrations near water quality criteria. Because of the functional significance of aquatic insects in stream ecosystems and their well-established importance as indicators of water quality, reconciling differences between field and laboratory responses and understanding the mechanisms responsible

  19. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species.

    PubMed

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2011-01-12

    Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals.

  20. Individualistic Population Responses of Five Frog Species in Two Changing Tropical Environments over Time

    PubMed Central

    Ryan, Mason J.; Fuller, Michael M.; Scott, Norman J.; Cook, Joseph A.; Poe, Steven; Willink, Beatriz; Chaves, Gerardo; Bolaños, Federico

    2014-01-01

    Roughly 40% of amphibian species are in decline with habitat loss, disease, and climate change being the most cited threats. Heterogeneity of extrinsic (e.g. climate) and intrinsic (e.g. local adaptations) factors across a species’ range should influence population response to climate change and other threats. Here we examine relative detectability changes for five direct-developing leaf litter frogs between 42-year sampling periods at one Lowland Tropical Forest site (51 m.a.s.l.) and one Premontane Wet Forest site (1100 m.a.s.l.) in southwest Costa Rica. We identify individualistic changes in relative detectability among populations between sampling periods at different elevations. Both common and rare species showed site-specific declines, and no species exhibited significant declines at both sites. Detection changes are correlated with changes in temperature, dry season rainfall, and leaf litter depth since1969. Our study species share Least Concern conservation status, life history traits, and close phylogenetic relationship, yet their populations changed individualistically both within and among species. These results counter current views of the uniformity or predictability of amphibian decline response and suggest additional complexity for conservation decisions. PMID:24878504

  1. Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress

    PubMed Central

    Pérez-Torrado, Roberto; Oliveira, Bruno M.; Zemančíková, Jana; Sychrová, Hana; Querol, Amparo

    2016-01-01

    Production and balance of glycerol is essential for the survival of yeast cells in certain stressful conditions as hyperosmotic or cold shock that occur during industrial processes as winemaking. These stress responses are well-known in S. cerevisiae, however, little is known in other phylogenetically close related Saccharomyces species associated with natural or fermentation environments such as S. uvarum, S. paradoxus or S. kudriavzevii. In this work we have investigated the expression of four genes (GPD1, GPD2, STL1, and FPS1) crucial in the glycerol pool balance in the four species with a biotechnological potential (S. cerevisiae; S. paradoxus; S. uvarum; and S. kudriavzevii), and the ability of strains to grow under osmotic and cold stresses. The results show different pattern and level of expression among the different species, especially for STL1. We also studied the function of Stl1 glycerol symporter in the survival to osmotic changes and cell growth capacity in winemaking environments. These experiments also revealed a different functionality of the glycerol transporters among the different species studied. All these data point to different strategies to handle glycerol accumulation in response to winemaking stresses as hyperosmotic or cold-hyperosmotic stress in the different species, with variable emphasis in the production, influx, or efflux of glycerol. PMID:27064588

  2. Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation.

    PubMed

    Smith, Andrew R; Lukac, Martin; Hood, Robin; Healey, John R; Miglietta, Franco; Godbold, Douglas L

    2013-04-01

    In a free-air carbon dioxide (CO(2)) enrichment study (BangorFACE), Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one-, two- and three-species mixtures (n = 4). The trees were exposed to ambient or elevated CO(2) (580 μmol mol(-1)) for 4 yr, and aboveground growth characteristics were measured. In monoculture, the mean effect of CO(2) enrichment on aboveground woody biomass was + 29, + 22 and + 16% for A. glutinosa, F. sylvatica and B. pendula, respectively. When the same species were grown in polyculture, the response to CO(2) switched to + 10, + 7 and 0% for A. glutinosa, B. pendula and F. sylvatica, respectively. In ambient atmosphere, our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 to 18.9 ± 1.0 kg m(-2), whereas, in an elevated CO(2) atmosphere, aboveground woody biomass increased from 15.2 ± 0.6 to 20.2 ± 0.6 kg m(-2). The overyielding effect of polyculture was smaller (+ 7%) in elevated CO(2) than in an ambient atmosphere (+ 18%). Our results show that the aboveground response to elevated CO(2) is affected significantly by intra- and interspecific competition, and that the elevated CO(2) response may be reduced in forest communities comprising tree species with contrasting functional traits.

  3. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island.

    PubMed

    Park, Myung Soo; Lee, Seobihn; Oh, Seung-Yoon; Cho, Ga Youn; Lim, Young Woon

    2016-10-01

    A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea.

  4. Characterizing fish responses to a river restoration over 21 years based on species traits.

    PubMed

    Höckendorff, Stefanie; Tonkin, Jonathan D; Haase, Peter; Bunzel-Drüke, Margret; Zimball, Olaf; Scharf, Matthias; Stoll, Stefan

    2017-02-20

    Understanding restoration effectiveness is often impaired by a lack of quality, long-term monitoring data and, to date, few studies have used species trait information to gain insight into the processes that drive the reaction of fish communities to restoration. We examined fish community responses using a highly resolved dataset with 21 consecutive years of data (4 years pre- and 17 years post-restoration) at multiple restored and unrestored sampling reaches from a river restoration project at the Lippe River, Germany. This restoration led to a doubling of both species richness and abundance. Abundance exhibited an overshooting response immediately following restoration and both richness and abundance stabilized approximately seven years after the restoration. However, interannual variability remained high, illustrating the challenge to reliably assess restoration outcomes based on data from individual samplings, especially in the first years following restoration. We found that life-history and reproduction-related traits were the most important traits in explaining the differences in species' responses to this restoration. Opportunistic short-lived species with early female maturity and multiple spawning runs per year exhibited the strongest increase in abundance, reflecting their ability to rapidly colonize new habitats. These often small-bodied and fusiform fishes typically live in dynamic and ephemeral instream and floodplain habitats that river habitat restorations often aim at, indicating successful restoration in this case. This study suggests that a stronger consideration of species traits may enhance the causal understanding of community processes and the coupling of restoration to functional ecology. It would furthermore allow for easier transfer of knowledge to other biogeographic areas than studies on the basis of species taxonomy. This article is protected by copyright. All rights reserved.

  5. Physiological and biochemical responses of two keystone polychaete species: Diopatra neapolitana and Hediste diversicolor to Multi-walled carbon nanotubes.

    PubMed

    De Marchi, Lucia; Neto, Victor; Pretti, Carlo; Figueira, Etelvina; Chiellini, Federica; Soares, Amadeu M V M; Freitas, Rosa

    2017-04-01

    Multi-walled carbon nanotubes (MWCNTs) are one of the most important carbon Nanomaterials (NMs). The production and use of these carbon NMs is increasing rapidly and, therefore, the need to assess their presence in the environment and associated risks has become increasingly important. However, limited literature is available regarding the impacts induced in aquatic organisms by this pollutant, namely in invertebrate species. Diopatra neapolitana and Hediste diversicolor are keystone polychaete species inhabiting estuaries and shallow water bodies intertidal mudflats, frequently used to evaluate the impact of environmental disturbances in these systems. To our knowledge, no information is available on physiological and biochemical alterations on these two species due to MWCNTs exposure. Thus, the present study aimed to assess the toxic effects of different MWCNTs concentrations (0.01; 0.10 and 1.00mg/L) in both species physiological (regenerative capacity and respiration rate) and biochemical (energy reserves, metabolic activities, oxidative stress related biomarkers and neurotoxicity markers) performance, after 28 days of exposure. The results obtained revealed that exposure to MWCNTs induced negative effects on the regenerative capacity of D. neapolitana. Additionally, higher MWCNTs concentrations induced increased respiration rates in D. neapolitana. MWCNTs altered energy-related responses, with higher values of electron transport system activity, glycogen and protein concentrations in both polychaetes exposed to this contaminant. Furthermore, when exposed to MWCNTs both species showed oxidative stress with higher lipid peroxidation, lower ratio between reduced and oxidized glutathione, and higher activity of antioxidant (catalase and superoxide dismutase) and biotransformation (glutathione-S-transferases) enzymes in exposed organisms.

  6. Response of transpiration to rain pulses for two tree species in a semiarid plantation.

    PubMed

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration (Ec) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall Ec development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance (Gc) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-dG c/dlnVPD to Gcref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low Ec. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand Ec. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the Ec recovery. Further, the stand Ec was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. Ec enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall Ec recovery. Ec recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall Ec increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of Ec in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  7. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species

    PubMed Central

    2010-01-01

    Background Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood. Results Early transcriptional changes associated with P. viticola infection in susceptible V. vinifera and resistant V. riparia plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in V. riparia, as determined by microscopic analysis. Our data indicate that resistance in V. riparia is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in V. vinifera. More interestingly, resistance in V. riparia also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in V. vinifera represents a weak attempted defense response rather than the activation of compatibility-specific pathways. Conclusions Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in V. riparia resistance to P. viticola. PMID:20167053

  8. Biotic Interactions Overrule Plant Responses to Climate, Depending on the Species' Biogeography

    PubMed Central

    Welk, Astrid; Welk, Erik; Bruelheide, Helge

    2014-01-01

    This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account. PMID:25356912

  9. Tree species diversity interacts with elevated CO2 to induce a greater root system response.

    PubMed

    Smith, Andrew R; Lukac, Martin; Bambrick, Michael; Miglietta, Franco; Godbold, Douglas L

    2013-01-01

    As a consequence of land-use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2 . However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2 , Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol(-1) ) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change.

  10. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    PubMed

    Welk, Astrid; Welk, Erik; Bruelheide, Helge

    2014-01-01

    This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  11. An approach to consider behavioral plasticity as a source of uncertainty when forecasting species' response to climate change

    PubMed Central

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2015-01-01

    The rapid ecological shifts that are occurring due to climate change present major challenges for managers and policymakers and, therefore, are one of the main concerns for environmental modelers and evolutionary biologists. Species distribution models (SDM) are appropriate tools for assessing the relationship between species distribution and environmental conditions, so being customarily used to forecast the biogeographical response of species to climate change. A serious limitation of species distribution models when forecasting the effects of climate change is that they normally assume that species behavior and climatic tolerances will remain constant through time. In this study, we propose a new methodology, based on fuzzy logic, useful for incorporating the potential capacity of species to adapt to new conditions into species distribution models. Our results demonstrate that it is possible to include different behavioral responses of species when predicting the effects of climate change on species distribution. Favorability models offered in this study show two extremes: one considering that the species will not modify its present behavior, and another assuming that the species will take full advantage of the possibilities offered by an increase in environmental favorability. This methodology may mean a more realistic approach to the assessment of the consequences of global change on species' distribution and conservation. Overlooking the potential of species' phenotypical plasticity may under- or overestimate the predicted response of species to changes in environmental drivers and its effects on species distribution. Using this approach, we could reinforce the science behind conservation planning in the current situation of rapid climate change. PMID:26120426

  12. An approach to consider behavioral plasticity as a source of uncertainty when forecasting species' response to climate change.

    PubMed

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2015-06-01

    The rapid ecological shifts that are occurring due to climate change present major challenges for managers and policymakers and, therefore, are one of the main concerns for environmental modelers and evolutionary biologists. Species distribution models (SDM) are appropriate tools for assessing the relationship between species distribution and environmental conditions, so being customarily used to forecast the biogeographical response of species to climate change. A serious limitation of species distribution models when forecasting the effects of climate change is that they normally assume that species behavior and climatic tolerances will remain constant through time. In this study, we propose a new methodology, based on fuzzy logic, useful for incorporating the potential capacity of species to adapt to new conditions into species distribution models. Our results demonstrate that it is possible to include different behavioral responses of species when predicting the effects of climate change on species distribution. Favorability models offered in this study show two extremes: one considering that the species will not modify its present behavior, and another assuming that the species will take full advantage of the possibilities offered by an increase in environmental favorability. This methodology may mean a more realistic approach to the assessment of the consequences of global change on species' distribution and conservation. Overlooking the potential of species' phenotypical plasticity may under- or overestimate the predicted response of species to changes in environmental drivers and its effects on species distribution. Using this approach, we could reinforce the science behind conservation planning in the current situation of rapid climate change.

  13. Antibody response of five bird species after vaccination with a killed West Nile virus vaccine.

    PubMed

    Okeson, Danelle M; Llizo, Shirley Yeo; Miller, Christine L; Glaser, Amy L

    2007-06-01

    West Nile virus has been associated with numerous bird mortalities in the United States since 1999. Five avian species at three zoological parks were selected to assess the antibody response to vaccination for West Nile virus: black-footed penguins (Spheniscus demersus), little blue penguins (Eudyptula minor), American flamingos (Phoenicopterus ruber), Chilean flamingos (Phoenicopterus chilensis), and Attwater's prairie chickens (Tympanuchus cupido attwateri). All birds were vaccinated intramuscularly at least twice with a commercially available inactivated whole virus vaccine (Innovator). Significant differences in antibody titer over time were detected for black-footed penguins and both flamingo species.

  14. A Hands-On Activity to Introduce the Effects of Transmission by an Invasive Species

    ERIC Educational Resources Information Center

    May, Barbara Jean

    2013-01-01

    This activity engages students to better understand the impact of transmission by invasive species. Using dice, poker chips, and paper plates, an entire class mimics the spread of an invasive species within a geographic region. The activity can be modified and conducted at the K-16 levels.

  15. Protective activity of propofol, Diprivan and intralipid against active oxygen species.

    PubMed Central

    Mathy-Hartert, M; Deby-Dupont, G; Hans, P; Deby, C; Lamy, M

    1998-01-01

    We separately studied the antioxidant properties of propofol (PPF), Diprivan (the commercial form of PPF) and intralipid (IL) (the vehicle solution of PPF in Diprivan) on active oxygen species produced by phorbol myristate acetate (10(-6) M)-stimulated human polymorphonuclear leukocytes (PMN: 5 x 10(5) cells/assay), human endothelial cells (5 x 10(5) cells/assay) or cell-free systems (NaOCl or H2O2/peroxidase systems), using luminol (10(-4) M)-enhanced chemiluminescence (CL). We also studied the protective effects of Diprivan on endothelial cells submitted to an oxidant stress induced by H2O2/MPO system: cytotoxicity was assessed by the release of preincorporated 51Cr. Propofol inhibited the CL produced by stimulated PMN in a dose dependent manner (until 5 x 10(-5) M, a clinically relevant concentration), while Diprivan and IL were not dose-dependent inhibitors. The CL produced by endothelial cells was dose-dependently inhibited by Diprivan and PPF, and weakly by IL (not dose-dependent). In cell free systems, dose-dependent inhibitions were obtained for the three products with a lower effect for IL. Diprivan efficaciously protected endothelial cells submitted to an oxidant stress, while IL was ineffective. By HPLC, we demonstrated that PPF was not incorporated into the cells. The drug thus acted by scavenging the active oxygen species released in the extracellular medium. IL acted in the same manner, but was a less powerful antioxidant. PMID:9883967

  16. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity.

    PubMed

    Overholt, Will A; Marks, Kala P; Romero, Isabel C; Hollander, David J; Snell, Terry W; Kostka, Joel E

    2015-11-06

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration.

  17. Snake (Colubridae: Thamnophis) predatory responses to chemical cues from native and introduced prey species

    USGS Publications Warehouse

    Mullin, S.J.; Imbert, H.; Fish, J.M.; Ervin, E.L.; Fisher, R.N.

    2004-01-01

    Several aquatic vertebrates have been introduced into freshwater systems in California over the past 100 years. Some populations of the two-striped garter snake (Thamnophis hammondii) have lived in sympatry with these species since their introduction; other populations have never encountered them. To assess the possible adaptation to a novel prey, we tested the predatory responses of T. hammondii from different populations to different chemosensory cues from native and introduced prey species. We presented chemical extracts from potential prey types and 2 control odors to individual snakes on cotton swabs and recorded the number of tongue flicks and attacks directed at each swab. Subject response was higher for prey odors than control substances. Odors from introduced centrarchid fish (Lepomis) elicited higher response levels than other prey types, including native anuran larvae (Pseudacris regilla). The pattern of response was similar for both populations of snakes (experienced and nai??ve, with respect to the introduced prey). We suggest that the generalist aquatic lifestyle of T. hammondii has allowed it to take advantage of increasing populations of introduced prey. Decisions on the management strategies for some of these introduced prey species should include consideration of how T. hammondii populations might respond in areas of sympatry.

  18. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation

    SciTech Connect

    Barnes, P.W.; Flint, S.D.; Caldwell, M.M. )

    1990-10-01

    Recent evidence of a general, global decline of stratospheric ozone has heightened concern about possible ecological consequences of increases in solar ultraviolet-B (UV-B, 280-320 nm) radiation resulting from ozone depletion. The influence of UV-B radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots.

  19. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

    NASA Astrophysics Data System (ADS)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)

  20. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    PubMed

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming.

  1. Hatching asynchrony vs. foraging efficiency: the response to food availability in specialist vs. generalist tit species.

    PubMed

    Barrientos, R; Bueno-Enciso, J; Sanz, J J

    2016-11-28

    Breeding mistiming is increasingly frequent in several ecosystems in the face of current climate change. Species belonging to higher trophic levels must employ mechanisms to reduce it. One of these mechanisms is hatching asynchrony, with the eggs in a clutch hatching over a period of several days. Some authors have suggested it to be adaptive when food is unpredictable. However, these birds can also suffer associated costs. We tested whether a species with higher foraging efficiency avoid hatching asynchrony compared to its sister species. We studied hatching asynchrony and nestling provisioning in relation to food availability in sympatric populations of blue and great tits. For the first time, we show that sister species respond to food availability with different strategies. Blue tit feeding rates readily responded to the abundance of their main prey, and also reduced the impact of nestling size hierarchy on mean nestling weight, consequently increasing fledging rate. Our results suggest that levels of hatching asynchrony seem to be influenced by species-specific life history traits, as generalist foragers rely less on it. They also highlight the importance of multi-species approaches when studying the response of organisms to environmental unpredictability.

  2. Multiple phenological responses to climate change among 42 plant species in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2013-09-01

    Phenological data of 42 woody plants in a temperate deciduous forest from the Chinese Phenological Observation Network (CPON) and the corresponding meteorological data from 1963 to 2011 in Xi'an, Shaanxi Province, China were collected and analyzed. The first leaf date (FLD), leaf coloring date (LCD) and first flower date (FFD) are revealed as strong biological signals of climatic change. The FLD, LCD and FFD of most species are sensitive to average temperature during a certain period before phenophase onset. Regional precipitation also has a significant impact on phenophases of about half of the species investigated. Affected by climate change, the FLD and FFD of these species have advanced by 5.54 days and 10.20 days on average during 2003-2011 compared with the period 1963-1996, respectively. Meanwhile, the LCD has delayed by 10.59 days, and growing season length has extended 16.13 days. Diverse responses of phenology commonly exist among different species and functional groups during the study period. Especially for FFD, the deviations between the above two periods ranged from -20.68 to -2.79 days; biotic pollination species showed a significantly greater advance than abiotic pollination species. These results were conducive to the understanding of possible changes in both the structure of plant communities and interspecific relationships in the context of climate change.

  3. Cadmium accumulation and growth response to cadmium stress of eighteen plant species.

    PubMed

    Shi, Gangrong; Xia, Shenglan; Liu, Caifeng; Zhang, Zheng

    2016-11-01

    This study investigated the cadmium (Cd) accumulation and growth response to Cd stress of 18 plant species. After growth for 30 days in the sand containing 0, 2, or 10 mg Cd kg(-1), seedlings were evaluated for growth parameters, specific root length, and Cd accumulation. The 18 species differ greatly in Cd accumulation and resistance to Cd stress, depending on Cd concentrations in the sand. Under high Cd condition (10 mg kg(-1)), the 18 species were classified into two groups: (1) Indian mustard and rapeseed having high Cd tolerance and increased accumulation capacity in shoots could be considered as Cd accumulators, and (2) the remaining 16 non-accumulators constitute a species continuum from the indicators to excluders. Shoot Cd concentration showed exponential decay relationships with biomass production, absolute growth rate, and growth ratio, indicating that biomass production negatively relates to the shoot Cd concentration in non-accumulators via dilution or concentration effect. Species with high biomass generally accumulate low Cd in the shoots and display high Cd-tolerant capacity. Indian mustard and rapeseed are promising species for long-term phytoextraction of Cd-contaminated farmlands for bioenergy production.

  4. Hatching asynchrony vs. foraging efficiency: the response to food availability in specialist vs. generalist tit species

    PubMed Central

    Barrientos, R.; Bueno-Enciso, J.; Sanz, J. J.

    2016-01-01

    Breeding mistiming is increasingly frequent in several ecosystems in the face of current climate change. Species belonging to higher trophic levels must employ mechanisms to reduce it. One of these mechanisms is hatching asynchrony, with the eggs in a clutch hatching over a period of several days. Some authors have suggested it to be adaptive when food is unpredictable. However, these birds can also suffer associated costs. We tested whether a species with higher foraging efficiency avoid hatching asynchrony compared to its sister species. We studied hatching asynchrony and nestling provisioning in relation to food availability in sympatric populations of blue and great tits. For the first time, we show that sister species respond to food availability with different strategies. Blue tit feeding rates readily responded to the abundance of their main prey, and also reduced the impact of nestling size hierarchy on mean nestling weight, consequently increasing fledging rate. Our results suggest that levels of hatching asynchrony seem to be influenced by species-specific life history traits, as generalist foragers rely less on it. They also highlight the importance of multi-species approaches when studying the response of organisms to environmental unpredictability. PMID:27892941

  5. Moving forward: dispersal and species interactions determine biotic responses to climate change.

    PubMed

    Urban, Mark C; Zarnetske, Phoebe L; Skelly, David K

    2013-09-01

    We need accurate predictions about how climate change will alter species distributions and abundances around the world. Most predictions assume simplistic dispersal scenarios and ignore biotic interactions. We argue for incorporating the complexities of dispersal and species interactions. Range expansions depend not just on mean dispersal, but also on the shape of the dispersal kernel and the population's growth rate. We show how models using species-specific dispersal can produce more accurate predictions than models applying all-or-nothing dispersal scenarios. Models that additionally include species interactions can generate distinct outcomes. For example, species interactions can slow climate tracking and produce more extinctions than models assuming no interactions. We conclude that (1) just knowing mean dispersal is insufficient to predict biotic responses to climate change, and (2) considering interspecific dispersal variation and species interactions jointly will be necessary to anticipate future changes to biological diversity. We advocate for collecting key information on interspecific dispersal differences and strong biotic interactions so that we can build the more robust predictive models that will be necessary to inform conservation efforts as climates continue to change.

  6. Effects of local adaptation and interspecific competition on species' responses to climate change.

    PubMed

    Bocedi, Greta; Atkins, Katherine E; Liao, Jishan; Henry, Roslyn C; Travis, Justin M J; Hellmann, Jessica J

    2013-09-01

    Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research.

  7. Animal Related Activities as Determinants of Species Knowledge

    ERIC Educational Resources Information Center

    Randler, Christoph

    2010-01-01

    Previous work has established a relationship between knowledge and environmental concern. Different factors may contribute to this knowledge and animal-related leisure activities may also contribute to this knowledge. 390 participants in Leipzig, Germany were interviewed to assess their animal-related leisure activities, their demographic status…

  8. Dose and Hg species determine the T-helper cell activation in murine autoimmunity.

    PubMed

    Havarinasab, Said; Björn, Erik; Ekstrand, Jimmy; Hultman, Per

    2007-01-05

    Inorganic mercury (mercuric chloride--HgCl(2)) induces in mice an autoimmune syndrome (HgIA) with T cell-dependent polyclonal B cell activation and hypergammaglobulinemia, dose- and H-2-dependent production of autoantibodies targeting the 34 kDa nucleolar protein fibrillarin (AFA), and systemic immune-complex deposits. The organic mercury species methylmercury (MeHg) and ethylmercury (EtHg--in the form of thimerosal) induce AFA, while the other manifestations of HgIA seen after treatment with HgCl(2) are present to varying extent. Since these organic Hg species are converted to the autoimmunogen Hg(2+) in the body, their primary autoimmunogen potential is uncertain and the subject of this study. A moderate dose of HgCl(2) (8 mg/L drinking water--internal dose 148 micro gHg/kg body weight [bw]/day) caused the fastest AFA response, while the induction was delayed after higher (25 mg/L) and lower (1.5 and 3 mg/L) doses. The lowest dose of HgCl(2) inducing AFA was 1.5 mg/L drinking water which corresponded to a renal Hg(2+) concentration of 0.53 micro g/g. Using a dose of 8 mg HgCl(2)/L this threshold concentration was reached within 24 h, and a consistent AFA response developed after 8-10 days. The time lag for the immunological part of the reaction leading to a consistent AFA response was therefore 7-9 days. A dose of thimerosal close to the threshold dose for induction of AFA (2 mg/L drinking water--internal dose 118 micro gHg/kg bw per day), caused a renal Hg(2+) concentration of 1.8 micro g/g. The autoimmunogen effect of EtHg might therefore be entirely due to Hg(2+) formed from EtHg in the body. The effect of organic and inorganic Hg species on T-helper type 1 and type 2 cells during induction of AFA was assessed as the presence and titre of AFA of the IgG1 and IgG2a isotype, respectively. EtHg induced a persistent Th1-skewed response irrespectively of the dose and time used. A low daily dose of HgCl(2) (1.5-3 mg/L) caused a Th1-skewed AFA response, while a

  9. Antimicrobial activity of some Salvia species essential oils from Iran.

    PubMed

    Yousefzadi, Morteza; Sonboli, Ali; Karimic, Farah; Ebrahimi, Samad Nejad; Asghari, Behvar; Zeinalia, Amineh

    2007-01-01

    The aerial parts of Salvia multicaulis, S. sclarea and S. verticillata were collected at full flowering stage. The essential oils were isolated by hydrodistillation and analyzed by combination of capillary GC and GC-MS. The in vitro antimicrobial activity of the essential oils were studied against eight Gram-positive and Gram-negative bacteria (Bacillus subtilis, Bacillus pumulis, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The results of antibacterial activity tests of the essential oils according to the disc diffusion method and MIC values indicated that all the samples have moderate to high inhibitory activity against the tested bacteria except for P. aeruginosa which was totally resistant. In contrast to antibacterial activity, the oils exhibited no or slight antifungal property, in which only the oil of S. multicaulis showed weak activity against two tested yeasts, C. albicans and S. cerevisiae.

  10. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep

  11. Seasonal greening of an Arctic ecosystem in response to early snowmelt and climate warming: do plant community responses differ from species responses?

    NASA Astrophysics Data System (ADS)

    Steltzer, H.; Weintraub, M. N.; Sullivan, P.; Wallenstein, M. D.; Schimel, J.; Darrouzet-Nardi, A.; Shory, R.; Livensperger, C.; Melle, C.; Segal, A. D.; Daly, K.; Tsosie, T.

    2011-12-01

    In the Arctic and around the world, earlier plant growth and a longer growing season are indications that warmer temperatures or other global changes are changing the seasonality of the Earth's ecosystems. These changes in plant life histories have multi-trophic level consequences that affect food webs and biogeochemical cycles. Both the response of the plant community and of individual species can affect food and habitat resources for animals or nutrient resources for microbes. Our aim was to determine if the response of an Arctic plant community differs from individual species responses to climate change. For two years in an early snowmelt and climate warming experiment in moist acidic tussock tundra, we observed the seasonal greening of the ecosystem through near-surface measurements of surface greenness and through direct observations of the timing of plant life history events for five to eight common species that differ in growth form. In 2010 when snowmelt was accelerated by 4 days, earlier snowmelt alone or in combination with climate warming extended the life history of the dominant graminoids (E. vaginatum and C. bigelowii) and willow (S. pulchra) by 3 to 4 days. For these species, new leaf production began earlier, while the timing of senescence was similar to the controls. The effect of earlier snowmelt on the life histories of birch (B. nana) and cranberry (V. vitis-idaea) was less, but warming alone tended to increase life history duration. Warming led to earlier leaf expansion for birch and delayed senescence for cranberry. We found that the onset of greening for the plant community began four days earlier, due to the earlier loss of snow cover, and that warming accelerated the rate of greening. Peak season ended 4 days earlier in response to earlier snowmelt and climate warming, due to earlier senescence by birch. In 2011, our manipulation of the snowpack by increasing energy absorption accelerated snowmelt by 15 days and control plots were snowfree

  12. Interaction of Bovine Peripheral Blood Polymorphonuclear Cells and Leptospira Species; Innate Responses in the Natural Bovine Reservoir Host

    PubMed Central

    Wilson-Welder, Jennifer H.; Frank, Ami T.; Hornsby, Richard L.; Olsen, Steven C.; Alt, David P.

    2016-01-01

    Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and Leptospira interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia, and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs) and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2) was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of Leptospira strains

  13. Flavonoid profiles of three Bupleurum species and in vitro hepatoprotective of activity Bupleurum flavum Forsk.

    PubMed Central

    Gevrenova, Reneta; Kondeva-Burdina, Magdalena; Denkov, Nikolay; Zheleva-Dimitrova, Dimitrina

    2015-01-01

    Background: Bupleurum L. (Aspiaceae) species are used as herbal remedy in Chinese traditional medicine. Objective: The aim was to investigate the flavonoids in three annual European Bupleurum species, including B. baldense, B. affine and B. flavum, and to test their antioxidant and possible hepatoprotective effects. Materials and Methods: Flavonoids from the methanol-aqueous extracts were quantified by solid-phase extraction-high-performance liquid chromatography. Bupleurum extracts (1–220 mg/ml) were tested for their antioxidant activity in DPPH and ABTS assays, as well as on isolated liver rat microsomes. In vitro hepatoprotective activity of B. flavum flavonoid (BFF) mixture and rutin, and narcissin, isolated from the same mixture, were evaluated on carbon tetrachloride (CCl4) and tert-butyl hydroperoxide (t-BuOOH) toxicity models in isolated rat hepatocytes. Results: Narcissin was the dominant flavonol glycoside in B. flavum being present at 24.21 ± 0.19 mg/g, whilst the highest content of rutin (28.63 ± 1.57 mg/g) was found in B. baldense. B. flavum possessed the strongest DPPH (IC50 22.12 μg/ml) and ABTS (IC50 118.15 μg/ml) activity. At a concentration 1 mg/ml of BFF (rutin 197.58 mg/g, narcissin 75.74 mg/g), a stronger antioxidant effect in microsomes was evidenced in comparison with silymarin, rutin and narcissin. The hepatoprotective effect of BFF significantly reduced the elevated levels of lactate dehydrogenase and malondialdehyde, and ameliorated glutathione, being most active in t-BuOOH-induced injury model when compared with CCl4 toxicity (P < 0.001). Conclusion: In BFF, synergism of rutin and narcissin could be responsible for stronger protection against mitochondrial induced oxidative stress. PMID:25709205

  14. Comparison of compounds of three Rubus species and their antioxidant activity.

    PubMed

    Caidan, Rezeng; Cairang, Limao; Pengcuo, Jiumei; Tong, Li

    2015-12-01

    Rubus amabilis, Rubus niveus Thunb., and Rubus sachalinensis are three Rubus species that are alternatively found in Manubzhithang, a Tibetan medicine, in different areas of China. The current study analyzed HPLC/UV chromatograms and it compared compounds of these three Rubus species in contrast to reference substances such as 2,6-dimethoxy-4-hydroxyphenol-1-O-β-D-glucopyranoside, procyanidin B4, and isovitexin-7-O-glucoside. The three Rubus species produced similar peaks in chromatograms. The antioxidant activity of the three Rubus species was determined using an assay for DPPH free radical scavenging activity. Results indicated that the three Rubus species extracts had almost the same level of free radical scavenging activity. Thus, findings indicated the rationality of substituting these species for one another as an ingredient in Manubzhithang.

  15. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-02-01

    In spite of the relative importance of groundwater in coastal dune systems, the number of studies concerning the responsiveness of vegetation to ground water (GW) variability, in particularly in Mediterranean regions, is scarce. In this study, we established 5 study sites within a meso-mediterranean sand dune Pinus pinaster forest on the Atlantic coast of Portugal, taking advantage of natural topographic variability and artificial GW exploitation, which resulted in substantial variability in depth to GW between microsites. Here we identify the degree of usage and dependence on GW of different plant functional groups (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous microsites. Our results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). The species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to microsite differences in GW use in deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring rather than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understorey drought adapted shrub, across seasons and microsites seemed to be independent of water availability. Thus, the susceptibility to changing GW availability in sand dune plant species is variable, being particularly relevant for deep rooted species and phreatophytes, which have typically been less exposed to GW fluctuations.

  16. Role of alveolar macrophage chemotaxis and phagocytosis in pulmonary clearance responses to inhaled particles: Comparisons among rodent species

    SciTech Connect

    Warheit, D.B.; Hartsky, M.A. . Du Pont Haskell Lab.)

    1993-12-01

    Alveolar macrophages (AM) play an important role in clearing inhaled particles from the lung. The mechanisms through which macrophages identify particles that have been deposited in the alveolar regions is not well understood, although macrophage motility and phagocytic functions appear to be prerequisites for efficient clearance of inhaled materials. The current studies were undertaken to compare pulmonary clearance responses in several rodent species exposed to carbonyl iron (CI) particles. In vitro and in vivo pulmonary clearance responses were evaluated using one strain each of mouse, hamster, rat, and guinea pig. In vitro studies showed that hamster AM had the greatest phagocytic activity and that rat AM migrated best to complement-dependent chemotactic factors. Subsequently, groups of animals from each species were exposed to CI particles for 1 or 6 hr at aerosol concentrations of 100 mg/m[sup 3]. Particle deposition patterns in the distal lung were nearly identical for all species, although enhanced numbers of CI particles were deposited on alveolar duct bifurcations of either rats or mice compared to hamsters, and particle deposition in guinea pigs was substantially lower. Time course studies showed that enhanced numbers of rat AM migrated to deposition sites and phagocytized particles, and this correlated with increased numbers and percentages of phagocytic macrophages recovered by lavage (P < 0.01). In vivo phagocytic rates were the lowest in the mouse, and this correlated with reduced phagocytic rates in vitro.

  17. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3- concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  18. Elevated Nitrogen Deposition from Alberta Oil Sands Development Stimulates Phosphatase Activity in Dominant Sphagnum Moss Species

    NASA Astrophysics Data System (ADS)

    Kashi, N. N.; Wieder, R.; Vile, M. A.

    2013-12-01

    Emissions of NOx associated with Alberta oil sands (AOS) development are leading to locally elevated atmospheric N deposition, in a region where background N deposition has been historically quite low (< 1 kg/ha/yr). This elevated N deposition has the potential to alter the ecosystem structure and function of nutrient-poor boreal peatlands. Nitrogen enrichment may alter soil microbial activity, which could be manifested in changes in extracellular enzyme activities. Since 2011, we have been experimentally adding N as NH4NO3 in simulated precipitation at 0, 5, 10, 15, 20, and 25 kg N ha/yr/ plus no-water controls to a boreal bog and a poor fen (3 replicate plots per treatment). In 2013, acid phosphatase activities in living plant capitulum of Sphagnum angustifolium, Sphagnum fuscum, and Sphagnum magellanicum were quantified in June and July using 4-methyumbelliferylphosphate and fluorescence detection of the enzymatically released methylumbelliferone (MUF). Phosphatase activities did not differ with N treatment for S. angustifolium in the bog (p=0.3409) or the poor fen (p=0.0629), or for S. fuscum in the bog (p=0.1950), averaging 35.0 × 0.7, 61.6 × 1.2, and 41.6 × 0.9 μmol MUF/g DWT/hr, respectively. For S. fuscum in the poor fen, phosphatase activities differed between N treatments (p=0.0275), ranging 40.6 × 1.1 μmol MUF/g DWT/hr in the control plots to 73.7 × 2.0 μmol MUF/g DWT/hr in the 5 kg/ha/yr N treatment plots; increasing N deposition did not result in a gradual change in enzyme activity. On the other hand, S. magellanicum phosphatase activities differed between N treatments (p=0.0189) and showed a pattern of generally increasing activity with increasing N deposition (37.4 × 0.5 μmol MUF/g DWT/hr in control plots; 97.9 × 4.5 μmol MUF/g DWT/hr in the 25 kg/ha/yr N treatment plots). The differing phosphatase responses between these dominant Sphagnum species suggest unique differences in nutrient balance and/or microbial activity. Combining the

  19. Nitrate enhancement of CAM activity in two Kalanchoë species is associated with increased vacuolar proton transport capacity.

    PubMed

    Pereira, Paula Natália; Smith, James Andrew Charles; Mercier, Helenice

    2017-04-09

    Among species that perform CAM photosynthesis, members of the genus Kalanchoë have been studied frequently to investigate the effect of environmental factors on the magnitude of CAM activity. In particular, different nitrogen sources have been shown to influence the rate of nocturnal CO2 fixation and organic-acid accumulation in several species of Kalanchoë. However, there has been little investigation of the interrelationship between nitrogen source (nitrate versus ammonium), concentration, and the activity of the vacuolar proton pumps responsible for driving nocturnal organic-acid accumulation in these species. In the present study with Kalanchoë laxiflora and Kalanchoë delagoensis cultivated on different nitrogen sources, both species were found to show highest total nocturnal organic-acid accumulation and highest rates of ATP- and PPi-dependent vacuolar proton transport on 2.5 mM nitrate, whereas plants cultivated on 5.0 mM ammonium showed the lowest values. In both species malate was the principal organic-acid accumulated during the night, but the second-most accumulated organic-acid was fumarate for K. laxiflora and citrate for K. delagoensis. Higher ATP- and PPi-dependent vacuolar proton transport rates and greater nocturnal acid accumulation were observed in K. delagoensis compared with K. laxiflora. These results show that the effect of nitrogen source on CAM activity in Kalanchoë species is reflected in corresponding differences in activity of the tonoplast proton pumps responsible for driving sequestration of these acids in the vacuole of CAM-performing cells.

  20. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species.

    PubMed

    Avolio, Meghan L; Tuininga, Amy R; Lewis, J D; Marchese, Michael

    2009-08-01

    While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha(-1) y(-1) for eight weeks, to achieve a total application of 35 kg ha(-1) during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33-83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33-66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in

  1. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species.

    PubMed

    Lee, Ho-Sung; Hwang, Chae Young; Shin, Sung-Young; Kwon, Ki-Sun; Cho, Kwang-Hyun

    2014-06-03

    Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.

  2. Reactive Oxygen Species Function to Mediate the Fe Deficiency Response in an Fe-Efficient Apple Genotype: An Early Response Mechanism for Enhancing Reactive Oxygen Production

    PubMed Central

    Sun, Chaohua; Wu, Ting; Zhai, Longmei; Li, Duyue; Zhang, Xinzhong; Xu, Xuefeng; Ma, Huiqin; Wang, Yi; Han, Zhenhai

    2016-01-01

    Reactive oxygen species (ROS) are important signaling molecules in plants that contribute to stress acclimation. This study demonstrated that ROS play a critical role in Fe deficiency-induced signaling at an early stage in Malus xiaojinensis. Once ROS production has been initiated, prolonged Fe starvation leads to activation of ROS scavenging mechanisms. Further, we demonstrated that ROS scavengers are involved in maintaining the cellular redox homeostasis during prolonged Fe deficiency treatment. Taken together, our results describe a feedback repression loop for ROS to preserve redox homeostasis and maintain a continuous Fe deficiency response in the Fe-efficient woody plant M. xiaojinensis. More broadly, this study reveals a new mechanism in which ROS mediate both positive and negative regulation of plant responses to Fe deficiency stress. PMID:27899933

  3. Reactive Oxygen Species Function to Mediate the Fe Deficiency Response in an Fe-Efficient Apple Genotype: An Early Response Mechanism for Enhancing Reactive Oxygen Production.

    PubMed

    Sun, Chaohua; Wu, Ting; Zhai, Longmei; Li, Duyue; Zhang, Xinzhong; Xu, Xuefeng; Ma, Huiqin; Wang, Yi; Han, Zhenhai

    2016-01-01

    Reactive oxygen species (ROS) are important signaling molecules in plants that contribute to stress acclimation. This study demonstrated that ROS play a critical role in Fe deficiency-induced signaling at an early stage in Malus xiaojinensis. Once ROS production has been initiated, prolonged Fe starvation leads to activation of ROS scavenging mechanisms. Further, we demonstrated that ROS scavengers are involved in maintaining the cellular redox homeostasis during prolonged Fe deficiency treatment. Taken together, our results describe a feedback repression loop for ROS to preserve redox homeostasis and maintain a continuous Fe deficiency response in the Fe-efficient woody plant M. xiaojinensis. More broadly, this study reveals a new mechanism in which ROS mediate both positive and negative regulation of plant responses to Fe deficiency stress.

  4. Activation of Steroid and Xenobiotic Receptor (SXR, NR1I2) and Its Orthologs in Laboratory, Toxicologic, and Genome Model Species

    PubMed Central

    Milnes, Matthew R.; Garcia, Adriana; Grossman, Emily; Grün, Felix; Shiotsugu, Jason; Tabb, Michelle M.; Kawashima, Yukio; Katsu, Yoshinao; Watanabe, Hajime; Iguchi, Taisen; Blumberg, Bruce

    2008-01-01

    Background Nuclear receptor subfamily 1, group I, member 2 (NR1I2), commonly known as steroid and xenobiotic receptor (SXR) in humans, is a key ligand-dependent transcription factor responsible for the regulation of xenobiotic, steroid, and bile acid metabolism. The ligand-binding domain is principally responsible for species-specific activation of NR1I2 in response to xenobiotic exposure. Objectives Our objective in this study was to create a common framework for screening NR1I2 orthologs from a variety of model species against environmentally relevant xenobiotics and to evaluate the results in light of using these species as predictors of xenobiotic disposition and for assessment of environmental health risk. Methods Sixteen chimeric fusion plasmid vectors expressing the Gal4 DNA-binding domain and species-specific NR1I2 ligand-binding domain were screened for activation against a spectrum of 27 xenobiotic compounds using a standardized cotransfection receptor activation assay. Results NR1I2 orthologs were activated by various ligands in a dose-dependent manner. Closely related species show broadly similar patterns of activation; however, considerable variation to individual compounds exists, even among species varying in only a few amino acid residues. Conclusions Interspecies variation in NR1I2 activation by various ligands can be screened through the use of in vitro NR1I2 activation assays and should be taken into account when choosing appropriate animal models for assessing environmental health risk. PMID:18629309

  5. Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition.

    PubMed

    Wiedermann, Magdalena M; Gunnarsson, Urban; Ericson, Lars; Nordin, Annika

    2009-01-01

    Here, it was investigated whether Sphagnum species have adjusted their nitrogen (N) uptake in response to the anthropogenic N deposition that has drastically altered N-limited ecosystems, including peatlands, worldwide. A lawn species, Sphagnum balticum, and a hummock species, Sphagnum fuscum, were collected from three peatlands along a gradient of N deposition (2, 8 and 12 kg N ha(-1) yr(-1)). The mosses were subjected to solutions containing a mixture of four N forms. In each solution one of these N forms was labeled with (15)N (namely (15)NH(+)(4), (15)NO(-)(3) and the amino acids [(15)N]alanine (Ala) and [(15)N]glutamic acid (Glu)). It was found that for both species most of the N taken up was from , followed by Ala, Glu, and very small amounts from NO(-)(3). At the highest N deposition site N uptake was reduced, but this did not prevent N accumulation as free amino acids in the Sphagnum tissues. The reduced N uptake may have been genetically selected for under the relatively short period with elevated N exposure from anthropogenic sources, or may have been the result of plasticity in the Sphagnum physiological response. The negligible Sphagnum NO(-)(3) uptake may make any NO(-)(3) deposited readily available to co-occurring vascular plants.

  6. Gene expression in closely related species mirrors local adaptation: consequences for responses to a warming world.

    PubMed

    O'Neil, Shawn T; Dzurisin, Jason D K; Williams, Caroline M; Lobo, Neil F; Higgins, Jessica K; Deines, Jillian M; Carmichael, Rory D; Zeng, Erliang; Tan, John C; Wu, Grace C; Emrich, Scott J; Hellmann, Jessica J

    2014-06-01

    Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion. These genes were primarily involved in energy metabolism and oxidative stress, and expression levels were most divergent between populations in the same environment in which we previously detected divergence for metabolism. We found no localized genes in the species with less population structure and for which no local adaptation was previously detected. These results challenge the assumption that species are functionally similar across their ranges and poleward peripheral populations are preadapted to warmer conditions. Rather, some taxa deserve population-level consideration when predicting the effects of climate change because they respond in genetically based, distinctive ways to changing conditions.

  7. Species-specific responses of Late Quaternary megafauna to climate and humans.

    PubMed

    Lorenzen, Eline D; Nogués-Bravo, David; Orlando, Ludovic; Weinstock, Jaco; Binladen, Jonas; Marske, Katharine A; Ugan, Andrew; Borregaard, Michael K; Gilbert, M Thomas P; Nielsen, Rasmus; Ho, Simon Y W; Goebel, Ted; Graf, Kelly E; Byers, David; Stenderup, Jesper T; Rasmussen, Morten; Campos, Paula F; Leonard, Jennifer A; Koepfli, Klaus-Peter; Froese, Duane; Zazula, Grant; Stafford, Thomas W; Aaris-Sørensen, Kim; Batra, Persaram; Haywood, Alan M; Singarayer, Joy S; Valdes, Paul J; Boeskorov, Gennady; Burns, James A; Davydov, Sergey P; Haile, James; Jenkins, Dennis L; Kosintsev, Pavel; Kuznetsova, Tatyana; Lai, Xulong; Martin, Larry D; McDonald, H Gregory; Mol, Dick; Meldgaard, Morten; Munch, Kasper; Stephan, Elisabeth; Sablin, Mikhail; Sommer, Robert S; Sipko, Taras; Scott, Eric; Suchard, Marc A; Tikhonov, Alexei; Willerslev, Rane; Wayne, Robert K; Cooper, Alan; Hofreiter, Michael; Sher, Andrei; Shapiro, Beth; Rahbek, Carsten; Willerslev, Eske

    2011-11-02

    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.

  8. Species-specific responses of Late Quaternary megafauna to climate and humans

    PubMed Central

    Lorenzen, Eline D.; Nogués-Bravo, David; Orlando, Ludovic; Weinstock, Jaco; Binladen, Jonas; Marske, Katharine A.; Ugan, Andrew; Borregaard, Michael K.; Gilbert, M. Thomas P.; Nielsen, Rasmus; Ho, Simon Y. W.; Goebel, Ted; Graf, Kelly E.; Byers, David; Stenderup, Jesper T.; Rasmussen, Morten; Campos, Paula F.; Leonard, Jennifer A.; Koepfli, Klaus-Peter; Froese, Duane; Zazula, Grant; Stafford, Thomas W.; Aaris-Sørensen, Kim; Batra, Persaram; Haywood, Alan M.; Singarayer, Joy S.; Valdes, Paul J.; Boeskorov, Gennady; Burns, James A.; Davydov, Sergey P.; Haile, James; Jenkins, Dennis L.; Kosintsev, Pavel; Kuznetsova, Tatyana; Lai, Xulong; Martin, Larry D.; McDonald, H. Gregory; Mol, Dick; Meldgaard, Morten; Munch, Kasper; Stephan, Elisabeth; Sablin, Mikhail; Sommer, Robert S.; Sipko, Taras; Scott, Eric; Suchard, Marc A.; Tikhonov, Alexei; Willerslev, Rane; Wayne, Robert K.; Cooper, Alan; Hofreiter, Michael; Sher, Andrei; Shapiro, Beth; Rahbek, Carsten; Willerslev, Eske

    2014-01-01

    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change. PMID:22048313

  9. Are cactus growth forms related to germination responses to light? A test using Echinopsis species

    NASA Astrophysics Data System (ADS)

    Ortega-Baes, Pablo; Aparicio-González, Mónica; Galíndez, Guadalupe; del Fueyo, Patricia; Sühring, Silvia; Rojas-Aréchiga, Mariana

    2010-05-01

    In this study, we investigated the effect of light regimen (white light vs. darkness) on the germination of 12 species of the Echinopsis genus (tribe Trichocereeae, Cactaceae). This genus presents a variety of growth forms and relatively small and uniform seed size. These traits allowed us to test, within the same linage and removing seed mass effect, the hypothesis that the germination response to light (indifferent to light or positive photoblastic) is related to growth form. Our results reject this hypothesis since no seeds germinated in darkness, so all of the species can be classified as being positively photoblastic. The proportion of seed germination with white light was significantly different among cactus growth forms. Columnar cacti (arborescent, creeping and short) showed a greater proportion of seed germination than barrel and globose cacti. The germination rate differed among growth forms and species. At constant temperatures, creeping columnar cacti presented a significantly higher germination rate than the other growth forms. With alternating temperatures, columnar cacti showed higher germination rates than the other growth forms. The low proportion of seeds that germinated for some species indicates that they show seed dormancy. Our results suggest that germination responses to light in the cactus family could be related to seed mass and phylogenetic constraints.

  10. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.

    PubMed

    Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R

    2014-02-01

    Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations

  11. Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species.

    PubMed

    O'Hara, Thomas; Rudy, Yoram

    2012-03-01

    Explanations for arrhythmia mechanisms at the cellular level are usually based on experiments in nonhuman myocytes. However, subtle electrophysiological differences between species may lead to different rhythmic or arrhythmic cellular behaviors and drug response given the nonlinear and highly interactive cellular system. Using detailed and quantitatively accurate mathematical models for human, dog, and guinea pig ventricular action potentials (APs), we simulated and compared cell electrophysiology mechanisms and response to drugs. Under basal conditions (absence of β-adrenergic stimulation), Na(+)/K(+)-ATPase changes secondary to Na(+) accumulation determined AP rate dependence for human and dog but not for guinea pig where slow delayed rectifier current (I(Ks)) was the major rate-dependent current. AP prolongation with reduction of rapid delayed rectifier current (I(Kr)) and I(Ks) (due to mutations or drugs) showed strong species dependence in simulations, as in experiments. For humans, AP prolongation was 80% following I(Kr) block. It was 30% for dog and 20% for guinea pig. Under basal conditions, I(Ks) block was of no consequence for human and dog, but for guinea pig, AP prolongation after I(Ks) block was severe. However, with β-adrenergic stimulation, I(Ks) played an important role in all species, particularly in AP shortening at fast rate. Quantitative comparison of AP repolarization, rate-dependence mechanisms, and drug response in human, dog, and guinea pig revealed major species differences (e.g., susceptibility to arrhythmogenic early afterdepolarizations). Extrapolation from animal to human electrophysiology and drug response requires great caution.

  12. Oxygen Metabolic Responses of Three Species of Large Benthic Foraminifers with Algal Symbionts to Temperature Stress

    PubMed Central

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m−2 s−1. In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  13. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species.

  14. Oxygen metabolic responses of three species of large benthic foraminifers with algal symbionts to temperature stress.

    PubMed

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m(-2) s(-1). In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  15. Behavioral responses to odors from other species: introducing a complementary model of allelochemics involving vertebrates

    PubMed Central

    Nielsen, Birte L.; Rampin, Olivier; Meunier, Nicolas; Bombail, Vincent

    2015-01-01

    It has long been known that the behavior of an animal can be affected by odors from another species. Such interspecific effects of odorous compounds (allelochemics) are usually characterized according to who benefits (emitter, receiver, or both) and the odors categorized accordingly (allomones, kairomones, and synomones, respectively), which has its origin in the definition of pheromones, i.e., intraspecific communication via volatile compounds. When considering vertebrates, however, interspecific odor-based effects exist which do not fit well in this paradigm. Three aspects in particular do not encompass all interspecific semiochemical effects: one relates to the innateness of the behavioral response, another to the origin of the odor, and the third to the intent of the message. In this review we focus on vertebrates, and present examples of behavioral responses of animals to odors from other species with specific reference to these three aspects. Searching for a more useful classification of allelochemical effects we examine the relationship between the valence of odors (attractive through to aversive), and the relative contributions of learned and unconditioned (innate) behavioral responses to odors from other species. We propose that these two factors (odor valence and learning) may offer an alternative way to describe the nature of interspecific olfactory effects involving vertebrates compared to the current focus on who benefits. PMID:26161069

  16. Enhanced innate immune responses in a brood parasitic cowbird species: degranulation and oxidative burst

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses.

  17. Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response.

    PubMed

    Quaggiotti, Silvia; Barcaccia, Gianni; Schiavon, Michela; Nicolé, Silvia; Galla, Giulio; Rossignolo, Virginia; Soattin, Marica; Malagoli, Mario

    2007-11-01

    In this research a differential display based on the detection of cDNA-AFLP markers was used to identify candidate genes potentially involved in the regulation of the response to chromium in four different willow species (Salix alba, Salix eleagnos, Salix fragilis and Salix matsudana) chosen on the basis of their suitability in phytoremediation techniques. Our approach enabled the assay of a large set of mRNA-related fragments and increased the reliability of amplification-based transcriptome analysis. The vast majority of transcript-derived fragments were shared among samples within species and thus attributable to constitutively expressed genes. However, a number of differentially expressed mRNAs were scored in each species and a total of 68 transcripts displaying an altered expression in response to Cr were isolated and sequenced. Public database querying revealed that 44.1% and 4.4% of the cloned ESTs score significant similarity with genes encoding proteins having known or putative function, or with genes coding for unknown proteins, respectively, whereas the remaining 51.5% did not retrieve any homology. Semi-quantitative RT-PCR analysis of seven candidate genes fully confirmed the expression patterns obtained by cDNA-AFLP. Our results indicate the existence of common mechanisms of gene regulation in response to Cr, pathogen attack and senescence-mediated programmed cell death, and suggest a role for the genes isolated in the cross-talk of the signaling pathways governing the adaptation to biotic and abiotic stresses.

  18. Solar activity, the QBO, and tropospheric responses

    NASA Technical Reports Server (NTRS)

    Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.

    1989-01-01

    The suggestion that galactic cosmic rays (GCR) as modulated by the solar wind are the carriers of the component of solar variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year solar cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following solar flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of solar variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.

  19. Antioxidant, antimicrobial, and anticancer activity of 3 Umbilicaria species.

    PubMed

    Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana

    2012-01-01

    The aim of this study is to investigate in vitro antioxidant, antimicrobial, and anticancer activity of the acetone extracts of the lichens Umbilicaria crustulosa, U. cylindrica, and U. polyphylla. Antioxidant activity was evaluated by 5 separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds, and determination of total flavonoid content. Of the lichens tested, U. polyphylla had largest free radical scavenging activity (72.79% inhibition at a concentration of 1 mg/mL), which was similar as standard antioxidants in the same concentration. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. Total content of phenol and flavonoid in extracts was determined as pyrocatechol equivalent, and as rutin equivalent, respectively. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was extract of U. polyphylla with minimum inhibitory concentration values ranging from 1.56 to 12.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. All extracts were found to be strong anticancer activity toward both cell lines with IC₅₀ values ranging from 28.45 to 97.82 μg/mL. The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggests that lichens may be used as possible natural antioxidant, antimicrobial, and anticancer agents.

  20. Morphoanatomical responses induced by excess iron in roots of two tolerant grass species.

    PubMed

    de Araújo, Talita Oliveira; de Freitas-Silva, Larisse; Santana, Brenda Vila Nova; Kuki, Kacilda Naomi; Pereira, Eduardo Gusmão; Azevedo, Aristéa Alves; da Silva, Luzimar Campos

    2015-02-01

    We aimed to verify whether morphoanatomic alterations occur in response to excess iron, in roots of Setaria parviflora and Paspallum urvillei (Poaceae), and to localize the presence of the sites of iron accumulation. Plants were subjected to 0.009, 1, 2, 4, and 7 mM Fe-EDTA in nutrient solution. Both species presented iron contents in the roots above the critical toxicity level. The presence of iron plaque on roots of the two species was confirmed, and it may have reduced iron absorption by the plants. Roots from the two species showed typical visual symptoms of stress by excess iron: change in color and mucilaginous and flaccid appearance. Anatomical damage was observed in both species: aerenchyma disruption, alterations in endodermal cells, and irregular shape of both vessel and sieve tube elements. The metal was histolocalized in the cortex and in protoxylem and metaxylem cell walls in both species, which suggests a detoxification strategy for the excess iron. Phenolic compounds were not histolocalized in roots. Microscopic analyses were therefore effective in evaluating the real damage caused by excess iron.

  1. Nest site selection and induced response in a dominant arboreal ant species

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme; Gibernau, Marc

    2008-09-01

    It is well known that arboreal ants, both territorially dominant species and plant ants (e.g., species associated with myrmecophytes or plants housing them in hollow structures), protect their host trees from defoliators. Nevertheless, the presence of an induced defense, suggested by the fact that the workers discovering a leaf wound recruit nestmates, is only known for plant ants. Based on the results from a field study, we show here (1) that colonies of Azteca chartifex, a territorially dominant, neotropical arboreal ant species, mostly selected Goupia glabra (Goupiaceae) trees in which to build their principal carton nests and (2) that plant signals induced workers to recruit nestmates, which patrol the leaves, likely providing the plant with a biotic defense. Furthermore, the number of recruited workers was clearly higher on G. glabra, their most frequently selected host tree species, than on other tree species. These results show that contrary to what was previously believed, induced responses are also found in territorially dominant arboreal ants and so are not limited to the specific associations between myrmecophytes and plant ants.

  2. Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites.

    PubMed

    Bongers, F J; Olmo, M; Lopez-Iglesias, B; Anten, N P R; Villar, R

    2017-01-05

    Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade-off between drought survival and phenotypic plasticity. Throughout the summer we measured physiological traits (photosynthesis - Amax , stomatal conductance - gs , transpiration - E, leaf water potential - ψl) and structural traits (specific leaf area - SLA, leaf density - LD, leaf dry matter content - LDMC, leaf relative water content - LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north- versus south-facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period. We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade-off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period. Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade-off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.

  3. Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages.

    PubMed

    Lord, Joshua; Whitlatch, Robert

    2015-05-01

    Many terrestrial plant and marine benthic communities involve intense competition for space as a means to survive and reproduce. Superior competitors can dominate other species numerically with high reproductive rates, indirectly with high growth rates that facilitate space acquisition, or directly with competitive overgrowth. To assess how climate change could affect competitive interactions, we examined latitudinal patterns in growth rates and overgrowth competition via field surveys and experiments with marine epibenthic communities. Epibenthic fouling communities are dominated by invasive tunicates, bryozoans, and other species that grow on docks, boats, and other artificial structures. Fouling communities are space limited, so growth rate and overgrowth competition play an important role in shaping abundance patterns. We experimentally assessed temperature-dependent growth rates of several tunicates and bryozoans in eight regions spanning the U.S. east and west coasts. Several species displayed positive growth responses to warmer temperature in the northern portions of their latitudinal ranges, and vice versa. We used photo surveys of floating docks in at least 16 harbors in each region to compare communities and overgrowth competition. There was a strong correlation across species and regions between growth rate and competitive ability, indicating that growth plays an important role in competitive outcomes. Because growth rates are typically temperature dependent for organisms that compete for space, including terrestrial plants, fungi, algae, bacteria, and sessile benthic organisms, global warming could affect competitive outcomes. Our results suggest that these competitive shifts can be predicted by species' relative growth rates and latitudinal ranges.

  4. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells.

    PubMed

    Einbond, Linda Saxe; Wen-Cai, Ye; He, Kan; Wu, Hsan-au; Cruz, Erica; Roller, Marc; Kronenberg, Fredi

    2008-06-01

    The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER(-) Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays. Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC(50) of 3.2microg/ml (5microM) compared to 7.2microg/ml (12.1microM) for the parent compound 7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity. The purified triterpene glycoside actein (beta-d-xylopyranoside), with an IC(50) equal to 5.7microg/ml (8.4microM), exhibited activity comparable to cimigenol 3-O-beta-d-xyloside. MCF7 (ER(+)Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER(+)Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells. These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and

  5. Biodegradable Plastic-degrading Activity of Various Species of Paraphoma.

    PubMed

    Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Koike, Hideaki; Sato, Toyozo; Moriwaki, Jouji; Morita, Tomotake; Watanabe, Takashi; Yoshida, Shigenobu; Kitamoto, Hiroko

    2016-07-01

    The fungal strain B47-9, isolated from barley, was previously selected as an effective degrader of various biodegradable plastic (BP) films such as poly(butylene succinate-co-adipate) (PBSA) and poly(butylene succinate) (PBS). The strain has not been identified based on mycological methods because it does not form fruiting bodies, which are the key to morphological identification. Here, we performed molecular phylogenetic analyses of the nuclear ribosomal RNA gene regions and their internal transcribed spacer region of B47-9 and related fungi. The results suggest that B47-9 is closely related to the genus Paraphoma. Investigation of the abilities of six strains belonging to the genus Paraphoma to degrade BPs indicated that all strains could degrade PBSA and PBS films to varying degrees. Based on our approach, we conclude that strain B47-9 is a species belonging to the genus Paraphoma.

  6. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances.

    PubMed

    Creese, Chris; Oberbauer, Steve; Rundel, Phil; Sack, Lawren

    2014-10-01

    The stomatal behavior of ferns provides an excellent system for disentangling responses to different environmental signals, which balance carbon gain against water loss. Here, we measured responses of stomatal conductance (gs ) to irradiance, CO2 , and vapor pressure deficit (VPD) for 13 phylogenetically diverse species native to open and shaded habitats, grown under high- and low-irradiance treatments. We tested two main hypotheses: that plants adapted and grown in high-irradiance environments would have greater responsiveness to all stimuli given higher flux rates; and that species' responsiveness to different factors would be correlated because of the relative simplicity of fern stomatal control. We found that species with higher light-saturated gs had larger responses, and that plants grown under high irradiance were more responsive to all stimuli. Open habitat species showed greater responsiveness to irradiance and CO2 , but lower responsiveness to VPD; a case of plasticity and adaptation tending in different directions. Responses of gs to irradiance and VPD were positively correlated across species, but CO2 responses were independent and highly variable. The novel finding of correlations among stomatal responses to different stimuli suggests coordination of hydraulic and photosynthetic signaling networks modulating fern stomatal responses, which show distinct optimization at growth and evolutionary time-scales.

  7. Evaluation of estrogenic activity of licorice species in comparison with hops used in botanicals for menopausal symptoms.

    PubMed

    Hajirahimkhan, Atieh; Simmler, Charlotte; Yuan, Yang; Anderson, Jeffrey R; Chen, Shao-Nong; Nikolić, Dejan; Dietz, Birgit M; Pauli, Guido F; van Breemen, Richard B; Bolton, Judy L

    2013-01-01

    The increased cancer risk associated with hormone therapies has encouraged many women to seek non-hormonal alternatives including botanical supplements such as hops (Humulus lupulus) and licorice (Glycyrrhiza spec.) to manage menopausal symptoms. Previous studies have shown estrogenic properties for hops, likely due to the presence of 8-prenylnarigenin, and chemopreventive effects mainly attributed to xanthohumol. Similarly, a combination of estrogenic and chemopreventive properties has been reported for various Glycyrrhiza species. The major goal of the current study was to evaluate the potential estrogenic effects of three licorice species (Glycyrrhiza glabra, G. uralensis, and G. inflata) in comparison with hops. Extracts of Glycyrrhiza species and spent hops induced estrogen responsive alkaline phosphatase activity in endometrial cancer cells, estrogen responsive element (ERE)-luciferase in MCF-7 cells, and Tff1 mRNA in T47D cells. The estrogenic activity decreased in the order H. lupulus > G. uralensis > G. inflata > G. glabra. Liquiritigenin was found to be the principle phytoestrogen of the licorice extracts; however, it exhibited lower estrogenic effects compared to 8-prenylnaringenin in functional assays. Isoliquiritigenin, the precursor chalcone of liquiritigenin, demonstrated significant estrogenic activities while xanthohumol, a metabolic precursor of 8-prenylnaringenin, was not estrogenic. Liquiritigenin showed ERβ selectivity in competitive binding assay and isoliquiritigenin was equipotent for ER subtypes. The estrogenic activity of isoliquiritigenin could be the result of its cyclization to liquiritigenin under physiological conditions. 8-Prenylnaringenin had nanomolar estrogenic potency without ER selectivity while xanthohumol did not bind ERs. These data demonstrated that Glycyrrhiza species with different contents of liquiritigenin have various levels of estrogenic activities, suggesting the importance of precise labeling of botanical

  8. Anti-inflammatory activity of four Bolivian Baccharis species (Compositae).

    PubMed

    Abad, M J; Bessa, A L; Ballarin, B; Aragón, O; Gonzales, E; Bermejo, P

    2006-02-20

    Hexanic, dichloromethanic, ethanolic and aqueous extracts from Baccharis obtusifolia HBK, Baccharis latifolia (R. et P.) Pers., Baccharis pentlandii D.C. and Baccharis subulata Wedd., plants used in the traditional medicine of South America have been studied for their in vitro anti-inflammatory activity in cellular systems. Calcium ionophore A23187-stimulated mouse peritoneal macrophages were validated as a source of cyclooxygenase-1 (COX-1) (prostaglandin E2, PGE2) and 5-lipoxygenase (5-LOX) (leukotriene C4, LTC4), and mouse peritoneal macrophages stimulated with Escherichia coli lipopolysaccharide (LPS) were used for testing cyclooxygenase-2 (COX-2) (PGE2), nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha) activity. Most of the extracts tested were active in all assays.

  9. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species.

    PubMed

    Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

    2010-06-01

    The antifungal activity of eugenol in a model system against aspergilli (Aspergillus niger, Aspergillus terreus, and Emericella nidulans), penicilli (Penicillium expansum, Penicillium glabrum, and Penicillium italicum), and fusaria (Fusarium oxysporum and Fusarium avenaceum) was investigated. Minimum detection time (time to attain a colony diameter of 1 cm) and the kinetic parameters were evaluated. The effectiveness of the active compound seemed to be strain or genus dependent; 100 mg/liter represented a critical value for P. expansum, P. glabrum, P. italicum, A. niger, and E. nidulans because a further increase of eugenol resulted in fungistatic activity. The radial growth of A. terreus and F. avenaceum was inhibited at 140 mg/liter, and growth of F. oxysporum was completely inhibited at 150 mg/liter.

  10. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    PubMed Central

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  11. Infection of J774A.1 with different Mycobacterium species induces differential immune and miRNA-related responses.

    PubMed

    Elizabeth, Mendoza-Coronel; Hernández de la Cruz, Olga Nohemí; Mauricio, Castañón-Arreola

    2016-05-01

    Macrophages act as a reservoir for Mycobacterium tuberculosis, producing latent infection in approximately 90% of infected people. In this study, J774A.1 mouse macrophage cell line response and microRNA (miRNA) expression during infection with the most relevant mycobacterial strains for humans (M. tuberculosis, M. bovis and M. bovis BCG) was explored. No significant differences in bacillary loads were observed between activate and naive macrophages infected with M. tuberculosis and M. bovis. Nitrite production inhibition and infection control were in accordance with the virulence of the strain. Expression of let-7e, miR-21, miR-155, miR-210 and miR-223 was opposite in the two species and miR-146b* and miR-1224 expression seemed to be part of the general response to infection.

  12. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  13. Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis.

    PubMed

    Sewelam, Nasser; Kazan, Kemal; Thomas-Hall, Skye R; Kidd, Brendan N; Manners, John M; Schenk, Peer M

    2013-01-01

    Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses.

  14. Rotor Flapping Response to Active Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  15. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    . Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. Finally, however, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.

  16. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways.

    PubMed

    Smallwood, Heather S; López-Ferrer, Daniel; Squier, Thomas C

    2011-11-15

    . Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. However, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.

  17. Responses to water depth and clipping of twenty−three plant species in an Indian monsoonal wetland

    USGS Publications Warehouse

    Middleton, Beth A.; van der Valk, Arnold; Davis, Craig B.

    2015-01-01

    Responses of species to disturbances give insights into how species might respond to future wetland changes. In this study, species of monsoonal wetlands belonging to various functional types (graminoid and non−graminoid emergents, submersed aquatic, floating−leaved aquatic) varied in their growth responses to water depth and harvesting. We tested the effects of water depth (moist soil, flooded) and clipping (unclipped, and clipped) on the biomass and longevity of twenty−three dominant plant species of monsoonal wetlands in the Keoladeo National Park, India in a controlled experiment. With respect to total biomass and survival, six species responded positively to flooding and twelve species responded negatively to clipping. Responses to flooding and clipping, however, sometimes interacted. Individualistic responses of species to water levels and clipping regimes were apparent; species within a functional group did not always respond similarly. Therefore, detailed information on the individualistic responses of species may be needed to predict the vegetation composition of post−disturbance wetlands. In particular, as demands for fresh water increase around the world, studies of life history constraints and responses to hydrological changes will aid wetland managers in developing strategies to conserve biodiversity.

  18. Suppression of Cancer Growth by Nonviral Gene Therapy Based on a Novel Reactive Oxygen Species-responsive Promoter

    PubMed Central

    Policastro, Lucía L; Ibañez, Irene L; Durán, Hebe A; Soria, Gastón; Gottifredi, Vanesa; Podhajcer, Osvaldo L

    2009-01-01

    Increased reactive oxygen species (ROS) production has been reported as a distinctive feature of different pathologies including cancer. Therefore, we assessed whether increased ROS production in the cancer microenvironment could be selectively exploited to develop a selective anticancer therapy. For this purpose, we constructed a novel chimeric promoter, based on a ROS-response motif located in the VEGF gene promoter placed, in turn, downstream of a second ROS-response motif obtained from the early growth response 1 (Egr-1) gene promoter. The activity of the chimeric promoter was largely dependent on variations in intracellular ROS levels and showed a high inducible response to exogenous H2O2. Transient expression of the thymidine kinase (TK) gene driven by the chimeric promoter, followed by gancyclovir (GCV) administration, inhibited human colorectal cancer and melanoma cell growth in vitro and in vivo. Moreover, electrotransfer of the TK gene followed by GCV administration exerted a potent therapeutic effect on established tumors. This response was improved when combined with chemotherapeutic drugs. Thus, we show for the first time that a distinctive pro-oxidant state can be used to develop new selective gene therapeutics for cancer. PMID:19436270

  19. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  20. Characterization of Serum Phospholipase A2 Activity in Three Diverse Species of West African Crocodiles

    PubMed Central

    Merchant, Mark; Juneau, Kate; Gemillion, Jared; Falconi, Rodolfo; Doucet, Aaron; Shirley, Matthew H.

    2011-01-01

    Secretory phospholipase A2, an enzyme that exhibits substantial immunological activity, was measured in the serum of three species of diverse West African crocodiles. Incubation of different volumes of crocodile serum with bacteria labeled with a fluorescent fatty acid in the sn-2 position of membrane lipids resulted in a volume-dependent liberation of fluorescent probe. Serum from the Nile crocodile (Crocodylus niloticus) exhibited slightly higher activity than that of the slender-snouted crocodile (Mecistops cataphractus) and the African dwarf crocodile (Osteolaemus tetraspis). Product formation was inhibited by BPB, a specific PLA2 inhibitor, confirming that the activity was a direct result of the presence of serum PLA2. Kinetic analysis showed that C. niloticus serum produced product more rapidly than M. cataphractus or O. tetraspis. Serum from all three species exhibited temperature-dependent PLA2 activities but with slightly different thermal profiles. All three crocodilian species showed high levels of activity against eight different species of bacteria. PMID:22110960

  1. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species.

    PubMed

    Green, R.; Fluhr, R.

    1995-02-01

    Depletion of the stratospheric ozone layer may result in an increase in the levels of potentially harmful UV-B radiation reaching the surface of the earth. We have found that UV-B is a potent inducer of the plant pathogenesis-related protein PR-1 in tobacco leaves. UV-B fluences required for PR-1 accumulation are similar to those of other UV-B-induced responses. The UV-B-induced PR-1 accumulation was confined precisely to the irradiated area of the leaf but displayed no leaf tissue specificity. A study of some of the possible components of the signal transduction pathway between UV-B and PR-1 induction showed that photosynthetic processes are not essential, and photoreversible DNA damage is not involved. Antioxidants and cycloheximide were able to block the induction of PR-1 by UV-B, and treatment of leaves with a generator of reactive oxygen resulted in the accumulation of PR-1 protein. These results demonstrate an absolute requirement for active oxygen species and protein synthesis in this UV-B signal transduction pathway. In contrast, we also show that other elicitors, notably salicylic acid, are able to elicit PR-1 via nonreactive oxygen species-requiring pathways.

  2. Role of activated oxygen species on the mutagenicity of benzo[a]pyrene.

    PubMed

    Wei, C E; Allen, K; Misra, H P

    1989-06-01

    Different scavengers of active oxygen species (superoxide dismutase, catalase, mannitol and dimethylfuran) were tested in the Ames Salmonella assay to determine the role of the reactive oxygen species in the benzo[a]pyrene (B[a]P) mutagenesis process. Exogenously added superoxide dismutase or catalase at 10-100 micrograms ml-1 top agar, or 3-12 mM mannitol showed no effect on B[a]P mutagenicity in the presence of S9 mix. However, dimethylfuran (DMF), a singlet oxygen scavenger, inhibited in a dose-related manner the mutagenic response of B[a]P in the presence of the microsomal fraction. DMF at 3 and 6 mM inhibited the number of revertants by 69 and 93% for strain TA 100, and 76 and 78% for TA98, respectively. DMF at these levels was neither toxic nor mutagenic to the bacteria. The result indicates that singlet oxygen may play an important role in promoting B[a]P mutagenicity.

  3. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  4. Hydrazide derivatives produce active oxygen species as hydrazine.

    PubMed

    Timperio, Anna Maria; Rinalducci, Sara; Zolla, Lello

    2005-12-01

    It is well documented that some hydrazines are quite sensitive to oxidation and may serve as the electron donor for the reduction of oxygen, whereas hydrazides are not believed to react directly with oxygen. Data presented in this paper show that both hydrazides and hydrazines share an N-N moiety, which is assumed to react with atmospheric oxygen and produce oxygen radicals, at various degrees of efficiency. Since spectrometric measurements of hydrazide just after solubilization showed that the molecular mass remains constant in the absence of oxygen, we can conclude that hydrazides do not react with the oxygen through a slow spontaneous hydrolytic release of hydrazine. However, hydrazine is more reactive than hydrazide, which requires hours rather than minutes to produce measurable quantities of radical species. Differences were also apparent for various substituted derivatives. The reaction was significantly enhanced by the presence of metal ions. Data reported here demonstrate that hydrazides cause irreversible damage to the prosthetic group of proteins as well as causing degradation of the polypeptide chain into small fragments.

  5. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD.

    PubMed

    Liu, Yukun; He, Chengzhong

    2016-05-01

    Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.

  6. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology.

  7. Biological response of tissues with macrophagic activity to titanium dioxide.

    PubMed

    Olmedo, Daniel G; Tasat, Deborah R; Evelson, Pablo; Guglielmotti, María B; Cabrini, Rómulo L

    2008-03-15

    The titanium dioxide layer is composed mainly of anatase and rutile. This layer is prone to break, releasing particles to the milieu. Therefore, corrosion may cause implant failure and body contamination. We have previously shown that commercial anatase-titanium dioxide (TiO(2)-anatase) is deposited in organs with macrophagic activity, transported in the blood by phagocytic-mononuclear cells, and induces an increase in the production of reactive oxygen species (ROS). In this study, we evaluated the effects of rutile-titanium dioxide (TiO(2)-rutile). Male Wistar rats were injected i.p. with a suspension of TiO(2)-rutile powder at a dose of 1.60 g/100 g b.w. Six months postinjection, the presence of Ti was assessed in serum, blood cells, liver, spleen, and lung. Titanium was found in phagocytic mononuclear cells, serum, and in the parenchyma of all the organs tested. TiO(2)-rutile generated a rise in the percentage of reactive cells, which was smaller than that observed when TiO(2)-anatase was employed in a previous study. Although TiO(2)-rutile provoked an augmentation of ROS, it failed to induce damage to membrane lipids, possibly due to an adaptive response. The present study reveals that TiO(2)-rutile is less bioreactive than TiO(2)-anatase.

  8. Photosynthetic response of two seaweed species along an urban pollution gradient: evidence of selection of pollution-tolerant species.

    PubMed

    Scherner, F; Bonomi Barufi, J; Horta, P A

    2012-11-01

    Urbanization leads to the expansion of ephemeral seaweed species and the decline of important perennial, canopy-forming seaweed species. Understanding the mechanisms that lead to these changes is a current challenge. In the present study, laboratory assays and field transplantations were performed with two seaweed species: the perennial, canopy-forming seaweed Sargassum stenophyllum and the ephemeral seaweed Ulva lactuca. Photosynthetic efficiency was assessed using modulated chlorophyll fluorometry. Brief exposure to urban waters does not appear to be a major stressor to the photosynthetic efficiency of either species. However, after 26 days of transplantation in urban waters, S. stenophyllum declined, whereas U. lactuca had enhanced photosynthetic efficiency. This difference reflects their divergent abilities to regulate the energy distribution at the PSII and shows that urban stressors alter these mechanisms. Our results provide evidence of the physiological causes for the decline of Sargassum species and the expansion of Ulva species in impacted urban areas.

  9. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Sasaki, Yasuyuki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-07-01

    Malassezia globosa is a major pathogen of Malassezia folliculitis (MF) and the predominant species on human skin. The aim of this study was to clarify the differences between M. globosa and other cutaneous Malassezia species, M. restricta, M. dermatis, M. sympodialis and M. furfur. The optimum growth temperature, effects of compounds of sweat and free fatty acids on growth, and lipase activities of five cutaneous Malassezia species were determined. The growth of M. globosa was promoted strongly by the compounds of sweat and high temperature unlike that of other cutaneous Malassezia species. This result clarified that M. globosa tended to grow actively in summer conditions more than other cutaneous Malassezia species. Furthermore, M. globosa showed high lipase activity. We consider these characteristics of M. globosa to relate to the pathogenesis of MF.

  10. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity

    PubMed Central

    Overholt, Will A.; Marks, Kala P.; Romero, Isabel C.; Hollander, David J.; Snell, Terry W.

    2015-01-01

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426

  11. Light-exposed shoots of seven coexisting deciduous species show common photosynthetic responses to tree height.

    PubMed

    Miyata, Rie; Kohyama, Takashi S

    2016-10-01

    Functional traits of light-exposed leaves have been reported to show tree height-dependent change. However, it remains unknown how plastic response of leaf traits to tree height is linked with shoot-level carbon gain. To answer this question, we examined the photosynthetic properties of fully lit current-year shoots in crown tops with various heights for seven deciduous broad-leaved species dominated in a cool-temperate forest in northern Japan. We measured leaf mass, stomatal conductance, nitrogen content, light-saturated net photosynthetic rate (all per leaf lamina area), foliar stable carbon isotope ratio, and shoot mass allocation to leaf laminae. We employed hierarchical Bayesian models to simultaneously quantify inter-trait relationships for all species. We found that leaf and shoot traits were co-varied in association with height, and that there was no quantitative inter-specific difference in leaf- and shoot-level plastic responses to height. Nitrogen content increased and stomatal conductance decreased with height. Reflecting these antagonistic responses to height, photosynthetic rate was almost unchanged with height. Photosynthetic rate divided by stomatal conductance as a proxy of photosynthetic water use efficiency sufficiently explained the variation of foliar carbon isotope ratio. The increase in mass allocation to leaves in a shoot compensated for the height-dependent decline in photosynthetic rate per leaf lamina mass. Consequently, photosynthetic gain at the scale of current-year shoot mass was kept unchanged with tree height. We suggest that the convergent responses of shoot functional traits across species reflect common requirements for trees coexisting in a forest.

  12. Do host species evolve a specific response to slave-making ants?

    PubMed Central

    2012-01-01

    Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections) towards parasite than toward non

  13. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

    PubMed

    Berthier, Celine C; Bethunaickan, Ramalingam; Gonzalez-Rivera, Tania; Nair, Viji; Ramanujam, Meera; Zhang, Weijia; Bottinger, Erwin P; Segerer, Stephan; Lindenmeyer, Maja; Cohen, Clemens D; Davidson, Anne; Kretzler, Matthias

    2012-07-15

    Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these preclinical models. In this study, we used an unbiased transcriptional network approach to define, in molecular terms, similarities and differences among three lupus models and human LN. Genome-wide gene-expression networks were generated using natural language processing and automated promoter analysis and compared across species via suboptimal graph matching. The three murine models and human LN share both common and unique features. The 20 commonly shared network nodes reflect the key pathologic processes of immune cell infiltration/activation, endothelial cell activation/injury, and tissue remodeling/fibrosis, with macrophage/dendritic cell activation as a dominant cross-species shared transcriptional pathway. The unique nodes reflect differences in numbers and types of infiltrating cells and degree of remodeling among the three mouse strains. To define mononuclear phagocyte-derived pathways in human LN, gene sets activated in isolated NZB/W renal mononuclear cells were compared with human LN kidney profiles. A tissue compartment-specific macrophage-activation pattern was seen, with NF-κB1 and PPARγ as major regulatory nodes in the tubulointerstitial and glomerular networks, respectively. Our study defines which pathologic processes in murine models of LN recapitulate the key transcriptional processes active in human LN and suggests that there are functional differences between mononuclear phagocytes infiltrating different renal microenvironments.

  14. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    PubMed

    Grider, John F; Larsen, Angela L; Homyack, Jessica A; Kalcounis-Rueppell, Matina C

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

  15. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities

    PubMed Central

    Larsen, Angela L.; Homyack, Jessica A.; Kalcounis-Rueppell, Matina C.

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

  16. Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species.

    PubMed

    Gulías, J; Flexas, J; Abadía, A; Madrano, H

    2002-07-01

    We sought to explain the declining distribution in the Balearic Islands of the endemic shrub Rhamnus ludovici-salvatoris R. Chodat, by comparing its photosynthetic response to drought with that of several widely distributed, competing Mediterranean species (R. alaternus L., Quercus ilex L., Pistacia lentiscus L., Q. humilis Mill. and P. terebinthus L.). All of the study species, except for the two Rhamnus species, avoided desiccation by rapidly adjusting their stomatal conductance at the onset of drought, and maintaining constant leaf relative water content. The two Rhamnus species showed desiccation-tolerant behavior; i.e., as drought progressed, their predawn leaf relative water content decreased simultaneously with stomatal closure. All four desiccation-avoiding species showed a significant positive correlation between leaf thermal dissipation (estimated by the fluorescence parameter NPQ (non-photochemical quenching)) and the de-epoxidation state of the xanthophyll cycle (DPS). The two Rhamnus species exhibited maximum DPS regardless of treatment, but only R. alaternus increased NPQ in response to drought. Rhamnus ludovici-salvatoris had a high ratio of photorespiration to photosynthesis and a low intrinsic water-use efficiency; traits that are likely to be unfavorable for plant productivity under arid conditions. It also had the lowest DPS and thermal dissipation among the six species. We conclude that the photosynthetic traits of R. ludovici-salvatoris account for its limited ability to compete with other species in the Mediterranean region.

  17. Reactive oxygen species mediate phorbol ester-stimulated cAMP response in human eosinophils.

    PubMed

    Ezeamuzie, Charles I; Taslim, Najla

    2006-08-14

    Recently, we showed that phorbol 12-myristate 13-acetate (PMA) can cause a direct, PKC-dependent, stimulation of intracellular cAMP in human eosinophils. Since PMA also stimulates the release of reactive oxygen species in these cells, we have investigated whether reactive oxygen species are involved in the cAMP response. Provided eosinophils were incubated for <20 min at 37 degrees C before stimulation, PMA potently stimulated cAMP generation that surpassed that of histamine. Pre-treatment of the cells with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI) and apocynin, strongly inhibited the cAMP production induced by PMA, but not that induced by histamine. This treatment also strongly inhibited the release of superoxide anions (O(2)(-)). The cAMP response was also inhibited by pre-treatment with the specific peroxide scavenger, ebselen, but not superoxide dismutase, or NG-nitro-l-arginine methyl ester (L-NAME), thus, suggesting the possible involvement of a peroxide rather than O(2)(-) or nitric oxide (NO). These results reveal a novel involvement of intracellular reactive oxygen species in protein kinase C (PKC)-dependent stimulation of cAMP production in human eosinophils.

  18. Modeling phenological responses of Inner Mongolia grassland species to regional climate change

    NASA Astrophysics Data System (ADS)

    Li, Qiuyue; Xu, Lin; Pan, Xuebiao; Zhang, Lizhen; Li, Chao; Yang, Ning; Qi, Jiaguo

    2016-01-01

    Plant phenology is an important indicator of ecosystem dynamics and services. However, little is understood of its responses to climate change, particularly in ecologically sensitive regions such as arid and semi-arid grasslands. In this study, we analyzed a long-term climate and plant phenology dataset of thirteen grassland species in the Inner Mongolia of China, collected during 1981-2011 time period, to understand temporal patterns of plant phenology and then developed a simple chilling-adjusted physiological model to simulate phenological responses of each plant species to climate change. The results of regional climate analysis suggested that the minimum temperature was increasing at a greater rate than mean and maximum temperatures in the region and the climate variability had significant impacts on vegetation phenology. Chilling from an early stage in spring in general slowed down the phenological development in most plant species, although there were some inconsistencies among sites and years. Specifically, we found lower precipitation during green-up resulted in delayed flowering, which may attribute to plant self-adjustment strategy to respond changes in climate. These climate dependent phenologies were characterized by a simple physiological model. Scenario analysis suggested that by 2071-2100 significant shifts in plant phenology are expected in Inner Mongolia, including as much as 6-11 days earlier in green-up time and 8-11 days shorter in growing season due to earlier senescence.

  19. Ionospheric Response Due to Seismic Activity

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar

    2016-07-01

    Signatures of the seismic activity in the ionospheric F2 region have been studied by analyzing the measurement of electron and ion temperatures during the occurrence of earthquake. The ionospheric electron and ion temperatures data recorded by the RPA payload aboard the Indian SROSS-C2 satellite during the period from January 1995 to December 2000 were used for the altitude range 430-630 km over Indian region. The normal day's electron and ion temperatures have been compared to the temperatures recorded during the seismic activity. The details of seismic events were obtained from USGS earthquake data information website. It has been found that the average electron temperature is enhanced during the occurrence of earthquakes by 1.2 to 1.5 times and this enhancement was for ion temperature ranging from 1.1to 1.3 times over the normal day's average temperatures. The above careful quantitative analysis of ionospheric electron and ion temperatures data shows the consistent enhancement in the ionospheric electron and ion temperatures. It is expected that the seismogenic vertical electrical field propagates up to the ionospheric heights and induces Joule heating that may cause the enhancement in ionospheric temperatures.

  20. Identification of endangered or threatened Costa Rican tree species by wood anatomy and fluorescence activity.

    PubMed

    Moya, Róger; Wiemann, Michael C; Olivares, Carlos

    2013-09-01

    A total of 45 native Costa Rican tree species are threatened or in danger of extinction, but the Convention on International Trade Endangered Species (CITES) includes only eight of these in its Appendices. However, the identification of other species based on their wood anatomy is limited. The present study objective was to describe and to compare wood anatomy and fluorescence activity in some endangered or threatened species of Costa Rica. A total of 45 (22 endangered and 23 threatened with extinction) wood samples of these species, from the xylaria of the Instituto Tecnológico de Costa Rica and the Forest Products Laboratory in Madison, Wisconsin, were examined. Surface fluorescence was positive in eight species, water extract fluorescence was positive in six species and ethanol extract fluorescence was positive in 24 species. Almost all species were diffuse porous except for occasional (Cedrela odorata, C. fissilis, Cordia gerascanthus) or regular (C. salvadorensis and C. tonduzii) semi-ring porosity. A dendritic vessel arrangement was found in Sideroxylon capari, and pores were solitary in Guaiacum sanctum and Vantanea barbourii. Vessel element length was shortest in Guaiacum sanctum and longest in Humiriastrum guianensis, Minquartia guianensis and Vantanea barbourii. Finally, anatomical information and fluorescence activity were utilized to construct an identification key of species, in which fluorescence is a feature used in identification.

  1. Bioflocculant production by a consortium of Streptomyces and Cellulomonas species and media optimization via surface response model.

    PubMed

    Nwodo, Uchechukwu U; Green, Ezekiel; Mabinya, Leonard V; Okaiyeto, Kunle; Rumbold, Karl; Obi, Lawrence C; Okoh, Anthony I

    2014-04-01

    Species of actinobacteria previously isolated from Tyume River in the Eastern Cape Province of South Africa and identified by 16S rDNA sequence as Cellulomonas and Streptomyces species were evaluated as a consortium for the production of bioflocculant. Sucrose, peptone and magnesium chloride were the nutritional sources which supported optimal production of bioflocculant resulting in flocculation activities of 91%, 82% and 78% respectively. Response surface design revealed sucrose, peptone and magnesium chloride as critical media components following Plackett-Burman design, while the central composite design showed optimum concentration of the critical nutritional source as 16.0 g/L (sucrose), 1.5 g/L (peptone) and 1.6g/L (magnesium chloride) yielding optimal flocculation activity of 98.9% and bioflocculant yield of 4.45 g/L. FTIR spectrometry of the bioflocculant indicated the presence of carboxyl, hydroxyl and amino groups, typical for heteropolysaccharide, while SEM imaging revealed an interwoven clump-like structure. The molecular weight distribution of the constituents of the bioflocculants ranged 494.81-18,300.26 Da thus, an indication of heterogeneity in composition. Additionally, the chemical analyses of the purified bioflocculant revealed the presence of polysaccharides and proteins with neutral sugar, amino sugar and uronic acids in the following concentration: 5.7 mg, 9.3mg and 17.8 mg per 100mg. The high flocculation activity of the bioflocculant suggests commercial potential.

  2. Species- and community-level responses combine to drive phenology of lake phytoplankton

    USGS Publications Warehouse

    Walters, Annika; Sagrario, María de los Ángeles González; Schindler, Daniel E.

    2013-01-01

    Global change is leading to shifts in the seasonal timing of growth and maturation for primary producers. Remote sensing is increasingly used to measure the timing of primary production in both aquatic and terrestrial ecosystems, but there is often a poor correlation between these results and direct observations of life-history responses of individual species. One explanation may be that in addition to phenological shifts, global change is also causing shifts in community composition among species with different seasonal timing of growth and maturation. We quantified how shifts in species phenology and in community composition translated into phenological change in a diverse phytoplankton community from 1962-2000. During this time the aggregate community spring-summer phytoplankton peak has shifted 63 days earlier. The mean taxon shift was only 3 days earlier and shifts in taxa phenology explained only 40% of the observed community phenological shift. The remaining community shift was attributed to dominant early season taxa increasing in abundance while a dominant late season taxon decreased in abundance. In diverse producer communities experiencing multiple stressors, changes in species composition must be considered to fully understand and predict shifts in the seasonal timing of primary production.

  3. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  4. Drought responses of three closely related Caragana species: implication for their vicarious distribution.

    PubMed

    Ma, Fei; Na, Xiaofan; Xu, Tingting

    2016-05-01

    Drought is a major environmental constraint affecting growth and distribution of plants in the desert region of the Inner Mongolia plateau. Caragana microphylla, C. liouana, and C. korshinskii are phylogenetically close but distribute vicariously in Mongolia plateau. To gain a better understanding of the ecological differentiation between these three species, we examined the leaf gas exchange, growth, water use efficiency, biomass accumulation and allocation by subjecting their seedlings to low and high drought treatments in a glasshouse. Increasing drought stress had a significant effect on many aspects of seedling performance in all species, but the physiology and growth varied with species in response to drought. C. korshinskii exhibited lower sensitivity of photosynthetic rate and growth, lower specific leaf area, higher biomass allocation to roots, higher levels of water use efficiency to drought compared with the other two species. Only minor interspecific differences in growth performances were observed between C. liouana and C. microphylla. These results indicated that faster seedling growth rate and more efficient water use of C. korshinskii should confer increased drought tolerance and facilitate its establishment in more severe drought regions relative to C. liouana and C. microphylla.

  5. In vitro pollen responses of two birch species to acidity and temperature

    SciTech Connect

    Hughes, R.N.; Cox, R.M.

    1993-10-01

    Paper birch (Betula papyrifera Marsh.) and mountain paper birch (Betula cordifolia Regel) near the Bay of Fundy coast frequently intercept acidic advection marine fogs. Chemical deposition by these fogs is thought to be a factor contributing to the observed foliar browning symptoms associated with a marked deterioration of these trees in the area. In vitro experiments were performed to test whether pollen germination in these two birch species would be affected by acidity at levels routinely found in the fog. The combined effect of temperature with acidity was also examined. Pollen germination in both species was inhibited below pH 5.6 (P < 0.0001) and the effect of incubation temperature was also significant (P < 0.01) in both species. There was no difference in in vitro pollen germination between species (P > 0.05) in response to acidity, based on combined data from 12 trees of each; the optimum germination temperature was 22{degrees}C for B. papyrifera and 21{degrees}C for B. cordifolia.

  6. Climate modifies response of non-native and native species richness to nutrient enrichment.

    PubMed

    Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; MacDougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; McCulley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T

    2016-05-19

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.

  7. Behavioral responses of three armadillo species (Mammalia: Xenarthra) to an environmental enrichment program in Villavicencio, Colombia.

    PubMed

    Cortés Duarte, Alexandra; Trujillo, Fernando; Superina, Mariella

    2016-07-01

    Enrichment is a powerful tool to improve the welfare of animals under human care. Stress-related health and behavioral problems, as well as reproductive failure, are frequent in armadillos (Xenarthra, Cingulata, Dasypodidae) under human care, which hinders the development of successful ex situ conservation programs. Nevertheless, scientific studies on the effect of enrichment programs on armadillos are virtually non-existent. The objective of this study was to assess the impact of an enrichment program on the behavior of armadillos under human care. The behavior of 12 individuals of three species (Dasypus novemcinctus, D. sabanicola, and Cabassous unicinctus) maintained at Finca El Turpial, Villavicencio, Colombia, was recorded using scan sampling during three daily time blocks of 2 hr each before (4 weeks) and after (4 weeks) implementing an enrichment program. Enrichment did not stimulate the armadillos to change or extend their activity period. In general, activity levels were low during the entire study, and virtually no activity was recorded in the morning in any species, neither without nor with enrichment. The latter did, however, improve welfare by reducing abnormal and increasing natural foraging behaviors. All species were attracted by artificial termite mounds. Dasypus spp. showed special interest in cardboard boxes with food, while Cabassous was mainly attracted to hollow plastic balls filled with food. Our results suggest that separate enrichment programs need to be developed for different armadillo species, and that they should be applied during the time of day at which they are most active. Zoo Biol. 35:304-312, 2016. © 2016 Wiley Periodicals, Inc.

  8. The relative importance of respiratory water loss in scorpions is correlated with species habitat type and activity pattern.

    PubMed

    Gefen, Eran

    2011-01-01

    Scorpions exhibit some of the lowest recorded water loss rates compared with those of other terrestrial arthropods of similar body size. Evaporative water loss (EWL) includes cuticular transpiration and respiratory water loss (RWL) from gas exchange surfaces, that is, book lung lamellae. Estimated fractions of cuticular and respiratory losses currently available from the literature show considerable variation, at least partly as a result of differences in methodology. This study reports RWL rates and their relative importance in scorpions from two families (Buthidae and Scorpionidae), including both xeric and mesic species (or subspecies). Two of the included Buthidae were surface-dwelling species, and another inhabits empty burrows of other terrestrial arthropods. This experimental design enabled correlating RWL importance with scorpion phylogeny, habitat type, and/or homing behavior. Buthidae species exhibited significantly lower EWL rates compared with those of Scorpionidae, whereas effects of habitat type and homing behavior were not significant. Resting RWL rates were not significantly affected by scorpion phylogeny, but rates for the xeric species (totaling ~10% of EWL rates at 30°C) were significantly lower compared with those of mesic species. These lower RWL values were correlated with significantly lower H(2)O/CO(2) emission rates in xeric species. The experimental setup and ~24-h duration of each individual recording allowed estimating the effect of interspecific variation in activity on RWL proportions. The high respiratory losses in active hydrated Scorpio maurus fuscus, totaling 30% of EWL, suggest that behavioral discretion in this species is a more likely mechanism for body water conservation under stressful conditions when compared with the responses of other studied species.

  9. Diuretic and natriuretic activity of two mistletoe species in rats

    PubMed Central

    Jadhav, Namita; Patil, C. R.; Chaudhari, K. B.; Wagh, J. P.; Surana, S. J.; Jadhav, R. B.

    2010-01-01

    In different cultural groups, the hemiparasitic plants of the families Loranthaceae and Viscaceae (mistletoes) are frequently used in the treatment of hypertension and/or as diuretic agents. However, it remains unclear as to what commonality makes them diuretic agents or a remedy for hypertension. In this article, the diuretic activity of methanol extracts of Viscum articulatum (VA) Burm. f. and Helicanthus elastica (HE) (Ders.) Dans. in rats is reported. The extracts were administered orally at doses of 100, 200 and 400 mg/kg to rats that had been fasted and deprived of water for 18 hours. Investigations were carried out for diuretic, saluretic and natriuretic effects. The polyphenolic and triterpenoid contents were determined quantitatively using chemical assays and high performance liquid chromatography (HPLC) analysis, respectively. The extracts of VA and HE demonstrated significant and dose-dependent diuretic activity in rats. It was found that while VA mimics the furosemide pattern, HE demonstrated a dose-dependent increase in diuresis, along with an increase in potassium-sparing effects. Phytochemical analysis revealed that polyphenolics and triterpenoids, such as oleanolic acid and lupeol, are the major phytochemicals involved. It was also found that in different combinations, these phytochemicals differed in the way they influenced the electrolyte excretion. A higher content of polyphenolics in association with lower triterpenoid content was found to favor potassium-sparing effects. PMID:21808540

  10. Daily activity and light exposure levels for five species of lemurs at the Duke Lemur Center.

    PubMed

    Rea, Mark S; Figueiro, Mariana G; Jones, Geoffrey E; Glander, Kenneth E

    2014-01-01

    Light is the primary synchronizer of all biological rhythms, yet little is known about the role of the 24-hour luminous environment on nonhuman primate circadian patterns, making it difficult to understand the photic niche of the ancestral primate. Here we present the first data on proximate light-dark exposure and activity-rest patterns in free-ranging nonhuman primates. Four individuals each of five species of lemurs at the Duke Lemur Center (Eulemur mongoz, Lemur catta, Propithecus coquereli, Varecia rubra, and Varecia variegata variegata) were fitted with a Daysimeter-D pendant that contained light and accelerometer sensors. Our results reveal common as well as species-specific light exposure and behavior patterns. As expected, all five species were more active between sunrise and sunset. All five species demonstrated an anticipatory increase in their pre-sunrise activity that peaked at sunrise with all but V. rubra showing a reduction within an hour. All five species reduced activity during mid-day. Four of the five stayed active after sunset, but P. coquereli began reducing their activity about 2 hours before sunset. Other subtle differences in the recorded light exposure and activity patterns suggest species-specific photic niches and behaviors. The eventual application of the Daysimeter-D in the wild may help to better understand the adaptive evolution of ancestral primates.

  11. Enzyme activity control by responsive redoxpolymers.

    PubMed

    Nagel, Birgit; Warsinke, Axel; Katterle, Martin

    2007-06-05

    A new thermoresponsive poly-N-isopropylacrylamide (PNIPAM)-ferrocene polymer was synthesized and characterized. PNIPAMFoxy bears additional oxirane groups which were used for attachment by a self-assembly process on a cysteamine-modified gold electrode to create a thin hydrophilic film. The new redox polymer enabled electrical communication between the cofactor pyrrolinoquinoline quinone (PQQ) of soluble glucose dehydrogenase (sGDH) and the electrode for sensitive detection of this enzyme as a prospective protein label. The temperature influence on the redox polymer/enzyme complex was investigated. An inverse temperature response behavior of surface bound PNIPAMFoxy compared to the soluble polymer was found and is discussed in detail. The highest efficiency of mediated electron transfer for the immobilized PNIPAMFoxy with sGDH was observed at 24 degrees C, which was twice as high as that of its soluble counterpart. A steady-state electrooxidation current densitiy of 4.5 microA.cm-2 was observed in the presence of 10 nM sGDH and 5 mM glucose. A detection limit of 0.5 nM of soluble PQQ-sGDH was obtained.

  12. Photosynthetic responses to leaf surface wetness in tropical plant species of Costa Rica with varying leaf traits

    NASA Astrophysics Data System (ADS)

    Aparecido, L. M. T.; Moore, G. W.; Miller, G. R.; Cahill, A. T.

    2015-12-01

    Wet tropical forests are some of the environments with the greatest annual precipitation, but are also considered as the world's major carbon sink; however, literature postulates that phothsynthesis rates are inhibited while leaves are wet. Yet measurements of photosynthesis during wet conditions are challenging to obtain due to equipment limitations and the extreme complexity of canopy-atmosphere interactions in tropical environments. The objective of this study was to evaluate tropical species reactions to simulated leaf wetness and test the hypothesis that leaf wetness reduces rates of photosynthesis. In a central Costa Rica site with an average 4200 mm annual rainfall, we selected six tropical species with distinct leaf traits in which five sun-exposed leaf replicates from each species were subjected to gas exchange measurements using a LI-6400 IRGA (LICOR Inc., Lincoln, NE) under dry and wet/misted leaf conditions. Relationships between photosynthesis (As) and stomatal conductance (gs) with leaf to air temperature difference (DT), VPD, and relative humidity were evaluated using linear regression analysis. We found that the responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf As was a significant percentage of total leaf As. Stachytarpheta jamaicens had an 18.7% reduction in As, while others, like Zamia skinneri, had a 7% increase in As. Tibouchina heteromalla showed a rapid stomatal recovery of 2 mins, while Carapa guianensis was slower with 7 mins. This variability between species suggests that leaf traits, such as presence or absence of trichomes, water repellency, vein distribution and size and leaf angle variation, may be critical for optimizing photosynthesis under wet conditions. Relative humidity and leaf temperature were the strongest secondary influences on As and gs under wet leaf conditions. While tropical vegetation-atmosphere interactions are complex, such

  13. Reactive Oxygene Species and Thioredoxin Activity in Plants at Development of Hypergravity and Oxidative Stresses

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    Early increasing of reactive oxygen species (ROS) content, including H2O2, occurs in plant cells under various impacts and than these ROS can function as signaling molecules in starting of cell stress responses. At the same time thioredoxins (TR) are significant ROS and H2O2 sensors and transmitters to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study was aimed to investigate early increasing of ROS and H2O2 contents and TR activity in the pea roots and in tissue culture under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12-14 days old tissue culture of Arabidopsis thaliana were studied. The pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 10 and 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and TR activity were determined. All experiments were repeated by 3-5 times. Early and reliable increasing of ChL intensity and H2O2 contents in the pea roots and in the tissue culture took place under hypergravity and oxidative stresses to 30, 60 and 90 min. At the same time TR activity increased on 11 and 19 percents only to 60 and 90 min. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers lead to increasing of TR activity with creating of ROS-TR stress signaling pathway.

  14. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    PubMed Central

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-01-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst. PMID:27671143

  15. Epigenetic regulation of adaptive responses of forest tree species to the environment

    PubMed Central

    Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa

    2013-01-01

    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802

  16. Evaluating metabolic response to light exposure in Lactobacillus species via targeted metabolic profiling.

    PubMed

    Xu, Mengyang; Zhong, Fanyi; Zhu, Jiangjiang

    2017-02-01

    This study reported metabolic profiles of three representative strains from Lactobacillus species, and explored their metabolic response to visible light exposure. We utilized strains from three Lactobacillus species, Lactobacillus acidophilus, Lactobacillus fermentum and Lactobacillus delbrueckii as our model bacteria and applied mass spectrometry base targeted metabolomics to specifically investigate 221 metabolites within multiple metabolic pathways. Similar and diverse metabolome from three tested strains were discovered. Furthermore, all three Lactobacillus strains demonstrated different metabolic profiles in comparison between light expose verse control. In all three strains, 12 metabolites were detected to have significant differences (p-value<0.01) in light exposure culture compared to the control samples (culture grown without light exposure). Principal components analysis using these significantly changed metabolites clearly separated the exposure and control groups in all three studied Lactobacillus strains. Additionally, metabolic pathway impact analysis indicated that several commonly impacted pathways can be observed.

  17. Species-Specific Differences and Structure-Activity Relationships in the Debromination of PBDE Congeners in Three Fish Species

    PubMed Central

    Roberts, Simon C.; Noyes, Pamela D.; Gallagher, Evan P.

    2011-01-01

    Previous studies have suggested that there may be species-specific differences in the metabolism of polybrominated diphenyl ethers (PBDEs) among different fish species. In this study, we investigated the in vitro hepatic metabolism of eleven individual PBDE congeners (tri- through decaBDEs) in three different fish species: rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and Chinook salmon (O. tschwatcha). In addition, we evaluated the influence of PBDE structural characteristics (i.e., bromine substitution patterns) on metabolism. Six of the eleven congeners we evaluated, BDEs 99, 153, 183, 203, 208, and 209, were metabolically debrominated to lower brominated congeners. All of the congeners that were metabolized contained at least one meta-substituted bromine. Metabolites were not detected for congeners without one meta-substituted bromine (e.g., BDEs 28, 47, and 100). Metabolite formation rates were generally 10–100 times faster in carp than in trout and salmon. BDEs 47, 49, 101, 154, and 183 were the major metabolites observed in all three species with the exception of BDE 47, which was only detected in carp. Carp demonstrated a preference towards meta-debromination, while trout and salmon debrominated meta- and para- bromine atoms to an equal extent. We compared glutathione-S-transferase (GST) and deiodinase (DI) activity among all three species as these enzyme systems have been hypothesized to play a role in PBDE debromination among teleosts. Carp exhibited a preference for meta-deiodination of the thyroid hormone thyroxine, which was consistent with the preference for meta-debromination of PBDEs observed in carp. PMID:21291240

  18. Geographical variation in species' population responses to changes in temperature and precipitation

    PubMed Central

    Pearce-Higgins, James W.; Ockendon, Nancy; Baker, David J.; Carr, Jamie; White, Elizabeth C.; Almond, Rosamunde E. A.; Amano, Tatsuya; Bertram, Esther; Bradbury, Richard B.; Bradley, Cassie; Butchart, Stuart H. M.; Doswald, Nathalie; Foden, Wendy; Gill, David J. C.; Green, Rhys E.; Sutherland, William J.; Tanner, Edmund V. J.

    2015-01-01

    Despite increasing concerns about the vulnerability of species' populations to climate change, there has been little overall synthesis of how individual population responses to variation in climate differ between taxa, with trophic level or geographically. To address this, we extracted data from 132 long-term (greater than or equal to 20 years) studies of population responses to temperature and precipitation covering 236 animal and plant species across terrestrial and freshwater habitats. Our results identify likely geographical differences in the effects of climate change on populations and communities in line with macroecological theory. Temperature tended to have a greater overall impact on populations than precipitation, although the effects of increased precipitation varied strongly with latitude, being most positive at low latitudes. Population responses to increased temperature were generally positive, but did not vary significantly with latitude. Studies reporting significant climatic trends through time tended to show more negative effects of temperature and more positive effects of precipitation upon populations than other studies, indicating climate change has already impacted many populations. Most studies of climate change impacts on biodiversity have focused on temperature and are from middle to high northern latitudes. Our results suggest their findings may be less applicable to low latitudes. PMID:26511054

  19. Geographical variation in species' population responses to changes in temperature and precipitation.

    PubMed

    Pearce-Higgins, James W; Ockendon, Nancy; Baker, David J; Carr, Jamie; White, Elizabeth C; Almond, Rosamunde E A; Amano, Tatsuya; Bertram, Esther; Bradbury, Richard B; Bradley, Cassie; Butchart, Stuart H M; Doswald, Nathalie; Foden, Wendy; Gill, David J C; Green, Rhys E; Sutherland, William J; Tanner, Edmund V J

    2015-11-07

    Despite increasing concerns about the vulnerability of species' populations to climate change, there has been little overall synthesis of how individual population responses to variation in climate differ between taxa, with trophic level or geographically. To address this, we extracted data from 132 long-term (greater than or equal to 20 years) studies of population responses to temperature and precipitation covering 236 animal and plant species across terrestrial and freshwater habitats. Our results identify likely geographical differences in the effects of climate change on populations and communities in line with macroecological theory. Temperature tended to have a greater overall impact on populations than precipitation, although the effects of increased precipitation varied strongly with latitude, being most positive at low latitudes. Population responses to increased temperature were generally positive, but did not vary significantly with latitude. Studies reporting significant climatic trends through time tended to show more negative effects of temperature and more positive effects of precipitation upon populations than other studies, indicating climate change has already impacted many populations. Most studies of climate change impacts on biodiversity have focused on temperature and are from middle to high northern latitudes. Our results suggest their findings may be less applicable to low latitudes.

  20. Multiple species of Bacillus subtilis DNA alkyltransferase involved in the adaptive response to simple alkylating agents

    SciTech Connect

    Morohoshi, F.; Munakata, N.

    1987-02-01

    Three molecular species of methyl-accepting proteins exist in Bacillus subtilis cells, which collect methyl groups from methylated DNA. A 20-kilodalton (kDa) protein was constitutively present in the cells of the ada/sup +/ (proficient in adaptive response) strain as well as in those of six ada (deficient in adaptive response) mutant strains and was assigned to the O/sup 6/-methylguanine:DNA methyltransferase. Another species of O/sup 6/-methylguanine:DNA methyltransferase, which had a molecular size of 22 kDa, emerged after adaptive treatment of the ada/sup +/ but not any of the ada mutant cells. A 27-kDa methyl-accepting protein, which preferred methylated poly(dT) to methylated calf thymus DNA as a substrate, was assigned to the methylphosphotriester:DNA methyltransferase. It was produced, after adaptive treatment, in the cells of ada/sup +/, ada-3, ada-4, and ada-6 strains but not in the cells of ada-1, ada-2, or ada-5 strains. These results support and extend the authors proposition that ada mutants can be classified into two groups; one (the ada-4 group) is defective only in the inducible synthesis of O/sup 6/-methylguanine:DNA methyltransferase (22-kDa protein), and the other (the ada-1 group) is deficient in the adaptive response in toto.

  1. The consistency of a species' response to press perturbations with high food web uncertainty.

    PubMed

    Tunney, Tyler D; Carpenter, Stephen R; Vander Zanden, M Jake

    2017-04-12

    Predicting species responses to perturbations is a fundamental challenge in ecology. Decision makers must often identify management perturbations that are the most likely to deliver a desirable management outcome despite incomplete information on the pattern and strength of food web links. Motivated by a current fishery decline in inland lakes of the Midwestern United States, we evaluate consistency of the responses of a target species (walleye (Sander vitreus)) to press perturbations. We represented food web uncertainty with 196 plausible topological models and applied four perturbations to each one. Frequently the direction of the focal predator response to the same perturbation is not consistent across food web topologies. Simultaneous application of management perturbations led to less consistent outcomes compared to the best single perturbation. However, direct manipulation of the adult focal predator produced a desirable outcome in 78% of 196 plausible topologies. Identifying perturbations that produce consistent outcomes in the face of food web uncertainty can have important implications for natural resource conservation and management efforts. This article is protected by copyright. All rights reserved.

  2. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    PubMed

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  3. Motor cortex activity predicts response alternation during sensorimotor decisions

    PubMed Central

    Pape, Anna-Antonia; Siegel, Markus

    2016-01-01

    Our actions are constantly guided by decisions based on sensory information. The motor cortex is traditionally viewed as the final output stage in this process, merely executing motor responses based on these decisions. However, it is not clear if, beyond this role, the motor cortex itself impacts response selection. Here, we report activity fluctuations over motor cortex measured using MEG, which are unrelated to choice content and predict responses to a visuomotor task seconds before decisions are made. These fluctuations are strongly influenced by the previous trial's response and predict a tendency to switch between response alternatives for consecutive decisions. This alternation behaviour depends on the size of neural signals still present from the previous response. Our results uncover a response-alternation bias in sensorimotor decision making. Furthermore, they suggest that motor cortex is more than an output stage and instead shapes response selection during sensorimotor decision making. PMID:27713396

  4. Ecosystem response to elevated CO(2) levels limited by nitrogen-induced plant species shift.

    PubMed

    Langley, J Adam; Megonigal, J Patrick

    2010-07-01

    Terrestrial ecosystems gain carbon through photosynthesis and lose it mostly in the form of carbon dioxide (CO(2)). The extent to which the biosphere can act as a buffer against rising atmospheric CO(2) concentration in global climate change projections remains uncertain at the present stage. Biogeochemical theory predicts that soil nitrogen (N) scarcity may limit natural ecosystem response to elevated CO(2) concentration, diminishing the CO(2)-fertilization effect on terrestrial plant productivity in unmanaged ecosystems. Recent models have incorporated such carbon-nitrogen interactions and suggest that anthropogenic N sources could help sustain the future CO(2)-fertilization effect. However, conclusive demonstration that added N enhances plant productivity in response to CO(2)-fertilization in natural ecosystems remains elusive. Here we manipulated atmospheric CO(2) concentration and soil N availability in a herbaceous brackish wetland where plant community composition is dominated by a C(3) sedge and C(4) grasses, and is capable of responding rapidly to environmental change. We found that N addition enhanced the CO(2)-stimulation of plant productivity in the first year of a multi-year experiment, indicating N-limitation of the CO(2) response. But we also found that N addition strongly promotes the encroachment of C(4) plant species that respond less strongly to elevated CO(2) concentrations. Overall, we found that the observed shift in the plant community composition ultimately suppresses the CO(2)-stimulation of plant productivity by the third and fourth years. Although extensive research has shown that global change factors such as elevated CO(2) concentrations and N pollution affect plant species differently and that they may drive plant community changes, we demonstrate that plant community shifts can act as a feedback effect that alters the whole ecosystem response to elevated CO(2) concentrations. Moreover, we suggest that trade-offs between the abilities

  5. Vertical migration and motility responses in three marine phytoplankton species exposed to solar radiation.

    PubMed

    Richter, Peter R; Häder, Donat-P; Gonçalves, Rodrigo J; Marcoval, M Alejandra; Villafañe, Virginia E; Helbling, E Walter

    2007-01-01

    Diurnal vertical migration in the water column and the impact of solar radiation on motility were investigated in three marine phytoplankton species: Tetraselmis suecica, Dunaliella salina and Gymnodinium chlorophorum. Cells were exposed to solar radiation either in ultraviolet radiation (UVR, 280-400 nm) transparent Plexiglas tubes (45 cm length, 10 cm diameter) or in quartz tubes under three radiation treatments: PAB (280-700 nm), PA (320-700 nm) and P (400-700 nm). The three species displayed different behavior after exposure to solar radiation. Tetraselmis suecica was insensitive to UVR and under high solar radiation levels, cells accumulated preferentially near the surface. Exposure experiments did not indicate any significant changes in swimming speed nor in the percentage of motile cells after 5 h of exposure. On the other hand, D. salina was sensitive to UV-B displaying a significant decrease in swimming speed and percentage of motile cells after 2-3 h of exposure. Moreover, D. salina cells migrated deep in the water column when irradiance was high. The response of G. chlorophorum was in between that of the other two species tested, with a slight (but significant) decrease in swimming speed and percentage of motile cells in all radiation treatments after 5 h of exposure. While G. chlorophorum cells were more or less homogenously distributed in the water column, a slight (but significant) avoidance response to high radiation was observed at local noon, with cells migrating deep in the water column. Our data clearly indicate that these sub-lethal effects of solar radiation are species-specific and they might have important implications for the aquatic ecosystem.

  6. Ecophysiological responses of three evergreen woody Mediterranean species to water stress

    NASA Astrophysics Data System (ADS)

    Abril, Mireia; Hanano, Ralph

    1998-08-01

    The ecophysiological response to drought in three different evergreen Mediterranean species were compared. For a better interpretation of the mechanisms regulating physiological processes, the choice of species was based on evident differences in morphological and structural features (leaf size, leaf specific weight, water-conducting system). Seedlings of Ceanothus thyrsiflorus, Quercus agrifolia and Buxus microphylla grown in pots were subjected to natural stressing conditions during late spring in Southern California. Gas exchange, xylem water potential and abscisic acid concentration in xylem s