Science.gov

Sample records for active stability augmentation

  1. Development and flight evaluation of an augmented stability active controls concept with a small tail

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.

  2. The use of active controls to augment rotor/fuselage stability

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Warmbrodt, W.

    1985-01-01

    The use of active blade pitch control to increase helicopter rotor/body damping is studied. Control is introduced through a conventional nonrotating swashplate. State variable feedback of rotor and body states is used. Feedback parameters include cyclic rotor flap and lead-lag states, and body pitch and roll rotations. The use of position, rate, and acceleration feedback is studied for the various state variables. In particular, the influence of the closed loop feedback gain and phase on system stability is investigated. For the rotor/body configuration analyzed, rotor cyclic inplane motion and body roll-rate and roll-acceleration feedback can considerably augment system damping levels and eliminate ground resonance instabilities. Scheduling of the feedback state, phase, and gain with rotor rotation speed can be used to maximize the damping augmentation. This increase in lead-lag damping can be accomplished without altering any of the system modal frequencies. Investigating various rotor design parameters (effective hinge offset, blade precone, blade flap stiffness) indicates that active control for augmenting rotor/body damping will be particularly powerful for hingeless and bearingless rotor hubs.

  3. RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.

    1992-01-01

    The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.

  4. Development and flight evaluation of an augmented stability active controls concept: Executive summary

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.

    1982-01-01

    A pitch active control system (PACS) was developed and flight tested on a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. Discussions are given regarding piloted flight simulation and vehicle system simulation and vehicle system simulation tests that are performed to verify control laws and system operation prior to installation on the aircraft. Modifications to the basic aircraft included installation of the PACS, addition of a c.g. management system to provide a c.g. range from 25 to 39% mac, and downrigging of the geared elevator to provide the required nose down control authority for aft c.g. flight test conditions. Three pilots used the Cooper-Harper Rating Scale to judge flying qualities of the aircraft with PACS on and off. The handling qualities with the c.g. at 39% mac (41% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% mac (+15% stability margin) and PACS off.

  5. Development and flight evaluation of an augmented stability active controls concept with a small horizontal tail

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.

    1982-01-01

    A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.

  6. B-52 stability augmentation system reliability

    NASA Technical Reports Server (NTRS)

    Bowling, T. C.; Key, L. W.

    1976-01-01

    The B-52 SAS (Stability Augmentation System) was developed and retrofitted to nearly 300 aircraft. It actively controls B-52 structural bending, provides improved yaw and pitch damping through sensors and electronic control channels, and puts complete reliance on hydraulic control power for rudder and elevators. The system has experienced over 300,000 flight hours and has exhibited service reliability comparable to the results of the reliability test program. Development experience points out numerous lessons with potential application in the mechanization and development of advanced technology control systems of high reliability.

  7. Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.

  8. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic...-operated systems is necessary to show compliance with the flight characteristics requirements of this part... systems must not activate the control system. (b) The design of the stability augmentation system or...

  9. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic...-operated systems is necessary to show compliance with the flight characteristics requirements of this part... systems must not activate the control system. (b) The design of the stability augmentation system or...

  10. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic...-operated systems is necessary to show compliance with the flight characteristics requirements of this part... systems must not activate the control system. (b) The design of the stability augmentation system or...

  11. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It...

  12. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CATEGORY AIRPLANES Design and Construction Control Systems § 23.672 Stability augmentation and automatic... systems must not activate the control system. (b) The design of the stability augmentation system or of... thereof, or by overriding the failure by movement of the flight controls in the normal sense. (c) It...

  13. Status report of RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Mike; Demeo, Martha E.

    1993-01-01

    A status report of Remote Manipulator System (RMS) active damping augmentation is presented. Topics covered include: active damping augmentation; benefits of RMS ADA; simulated payload definition; sensor and actuator definition; ADA control law design; Shuttle Engineering Simulator (SES) real-time simulation; and astronaut evaluation.

  14. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Stability augmentation, automatic, and... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to...

  15. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Stability augmentation, automatic, and... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to...

  16. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the... compliance with the flight characteristics requirements of this part, such systems must comply with § 27.671... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the...

  17. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the... compliance with the flight characteristics requirements of this part, such systems must comply with § 25.671... the pilot were not aware of the failure. Warning systems must not activate the control systems....

  18. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the... compliance with the flight characteristics requirements of this part, the system must comply with § 29.671 of... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the...

  19. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the... compliance with the flight characteristics requirements of this part, such systems must comply with § 27.671... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the...

  20. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the... compliance with the flight characteristics requirements of this part, such systems must comply with § 25.671... the pilot were not aware of the failure. Warning systems must not activate the control systems....

  1. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the... compliance with the flight characteristics requirements of this part, the system must comply with § 29.671 of... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the...

  2. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the... compliance with the flight characteristics requirements of this part, such systems must comply with § 25.671... the pilot were not aware of the failure. Warning systems must not activate the control systems....

  3. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the... compliance with the flight characteristics requirements of this part, such systems must comply with § 27.671... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the...

  4. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the... compliance with the flight characteristics requirements of this part, the system must comply with § 29.671 of... unsafe condition if the pilot is unaware of the failure. Warning systems must not activate the...

  5. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... failed system. (c) It must be shown that after any single failure of the stability augmentation system or... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If...

  6. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... failed system. (c) It must be show that after any single failure of the stability augmentation system or... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If...

  7. Lean stability augmentation study. [on gas turbine combustion chambers

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An analytical conceptual design study and an experimental test program were conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. The use of hot gas pilots, catalyzed flameholder elements, and heat recirculation to augment lean stability limits was considered in the conceptual design study. Tests of flameholders embodying selected concepts were conducted at a pressure of 10 arm and over a range of entrance temperatures simulating conditions to be encountered during stratospheric cruise. The tests were performed using an axisymmetric flametube test rig having a nominal diameter of 10.2 cm. A total of sixteen test configurations were examined in which lean blowout limits, pollutant emission characteristics, and combustor performance were evaluated. The use of a piloted perforated plate flameholder employing a pilot fuel flow rate equivalent to 4 percent of the total fuel flow at a simulated cruise condition resulted in a lean blowout equivalence ratio of less than 0.25 with a design point (T sub zero = 600k, Phi = 0.6) NOx emission index of less than 1.0 g/kg.

  8. Development of a low risk augmentation system for an energy efficient transport having relaxed static stability

    NASA Technical Reports Server (NTRS)

    Sizlo, T. R.; Berg, R. A.; Gilles, D. L.

    1979-01-01

    An augmentation system for a 230 passenger, twin engine aircraft designed with a relaxation of conventional longitudinal static stability was developed. The design criteria are established and candidate augmentation system control laws and hardware architectures are formulated and evaluated with respect to reliability, flying qualities, and flight path tracking performance. The selected systems are shown to satisfy the interpreted regulatory safety and reliability requirements while maintaining the present DC 10 (study baseline) level of maintainability and reliability for the total flight control system. The impact of certification of the relaxed static stability augmentation concept is also estimated with regard to affected federal regulations, system validation plan, and typical development/installation costs.

  9. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  10. Control augmented structural synthesis with dynamic stability constraints

    NASA Technical Reports Server (NTRS)

    Thomas, H. L.; Schmit, L. A., Jr.

    1989-01-01

    Dynamic stability constraints are included in a computer program that simultaneously synthesizes a structure and its control system. Two measures of stability, the real part of the system complex eigenvalues and the damping ratio, are examined. The procedure for calculating the sensitivities of the two measures of stability to changes in the structure and its control system is explained. The sensitivities are used to formulate an approximate problem that is solved at each design iteration. The effects of structural damping and noncollated controllers on the synthesis process are discussed.

  11. Radiological Stability after Revision of Infected Total Knee Arthroplasty Using Modular Metal Augments

    PubMed Central

    Lee, Kyung-Jae; Cho, Chul-Hyun; Son, Eun-Seok; Jung, Jae-Won

    2016-01-01

    Purpose To evaluate the radiological stability according to the number of modular augments after revision of infected total knee arthroplasty (TKA). Materials and Methods Between February 2006 and September 2013, 37 patients (39 knees) followed ≥2 years after revision of infected TKA using modular metal augments for bone defects were reviewed retrospectively. We divided the patients into 3 groups according to the number of augments into group A (≤2 augments, 14 knees), group B (3–4 augments, 18 knees), and group C (5≥ augments, 7 knees) and evaluated the width of radiolucent zones around the implant at the last follow-up. Results There were 3 Anderson Orthopedic Research Institute type I, 33 type II, and 3 type III bone defects. The mean number of radiolucent zones of group A was 3 and the sum of width averaged 4.4 mm. In group B, the values were 4.8 and 6.2 mm, respectively. In group C, the values were 8.1 and 12.9 mm, respectively. The differences between the three groups were statistically significant. Conclusions In revision TKA with modular metal augmentation caused by infected TKA, increased modularity can result in radiological instability. PMID:26955613

  12. Can local muscles augment stability in the hip? A narrative literature review.

    PubMed

    Retchford, T H; Crossley, K M; Grimaldi, A; Kemp, J L; Cowan, S M

    2013-03-01

    Hip pain and dysfunction are increasingly recognised as important causes of morbidity in younger and older adults. Pathology compromising the passive stability of the hip joint, including acetabular labral injury, may lead to increased femoral head translation, greater joint contact pressures and ultimately degenerative hip disease. Activation of hip muscles may play an important role in augmenting the stability in the normal and the passively unstable hip. Research at other joints suggests that the local, rather than global, muscles are well suited to provide subtle joint compression, limiting translation, with minimal metabolic cost. Based on the known characteristics of local muscles and the limited research available on hip muscles, it is proposed that the local hip muscles; quadratus femoris, gluteus minimus, gemelli, obturator internus and externus, iliocapsularis and the deep fibres of iliopsoas, may be primary stabilisers of the hip joint. Interventions aimed at restoring isolated neuromuscular function of the primary hip stabilisers may be considered when treating people with passive hip instability prior to commencing global muscle rehabilitation. Finally, further research is needed to investigate the potential association between function of the hip muscles (including muscles likely to have a role in stabilising the hip) and hip pathology affecting hip stability such as acetabular labral lesions.

  13. Polymethylmethacrylate-augmented screw fixation for stabilization in metastatic spinal tumors. Technical note.

    PubMed

    Jang, Jee Soo; Lee, Sang Ho; Rhee, Chang Hun; Lee, Seung Hoon

    2002-01-01

    Screw fixation augmented with polymethylmethacrylate (PMMA) or some other biocompatible bone cement has been used in patients with osteoporosis requiring spinal fusion. No clinical studies have been conducted on PMMA-augmented screw fixation for stabilization of the vertebral column in patients with metastatic spinal tumors. The purpose of this study was to determine whether screw fixation augmented with PMMA might be suitable in patients treated for multilevel metastatic spinal tumors. Ten patients with metastatic spinal tumors involving multiple vertebral levels underwent stabilization procedures in which PMMA was used to augment screw fixation after decompression of the spinal cord. Within 15 days, partial or complete relief from pain was obtained in all patients postoperatively. Two of four patients in whom neurological deficits caused them to be nonambulatory before surgery were able to ambulate postoperatively. Neither collapse of the injected vertebral bodies nor failure of the screw fixation was observed during the mean follow-up period of 6.7 months. Screw fixation augmented with PMMA may offer stronger stabilization and facilitate the instrumentation across short segments in the treatment of multilevel metastatic spinal tumors. PMID:11795702

  14. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... by overriding the failure by movement of the flight controls in the normal sense. (c) It must be..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If...

  15. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by overriding the failure by movement of the flight controls in the normal sense. (c) It must be..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If...

  16. Effects of cement augmentation on the mechanical stability of multilevel spine after vertebral compression fracture

    PubMed Central

    Wang, Tian; Pelletier, Matthew H.; Walsh, William R.

    2016-01-01

    Background Studies on the effects of cement augmentation or vertebroplasty on multi-level spine after vertebral compression fractures are lacking. This paper seeks to establish a 3-vertebrae ovine model to determine the impact of compression fracture on spine biomechanics, and to discover if cement augmentation can restore mechanical stability to fractured spine. Methods Five lumbar spine segments (L1-L3) were obtained from 5-year-old female Merino sheep. Standardized wedge-compression fractures were generated in each L2 vertebra, and then augmented with polymethyl methacrylate (PMMA) cement mixed with 30% barium sulphate powder. Biomechanical pure moment testing in axial rotation (AR), flexion/extension (FE) and lateral bending (LB) was carried out in the intact, fractured and repaired states. Range of motion (ROM) and neutral zone (NZ) parameters were compared, and plain radiographs taken at every stage. Results Except for a significant increase in ROM between the intact and fractured states in AR between L1 and L2 (P<0.05), there were no other significant differences in ROM or NZ between the other groups. There was a trend towards an increase in ROM and NZ in all directions after fracture, but this did not reach significance. Normal biomechanics was only minimally restored after augmentation. Conclusions Results suggest that cement augmentation could not restore mechanical stability of fractured spine. Model-specific factors may have had a role in these findings. Caution should be exercised when applying these results to humans. PMID:27683707

  17. Effects of cement augmentation on the mechanical stability of multilevel spine after vertebral compression fracture

    PubMed Central

    Wang, Tian; Pelletier, Matthew H.; Walsh, William R.

    2016-01-01

    Background Studies on the effects of cement augmentation or vertebroplasty on multi-level spine after vertebral compression fractures are lacking. This paper seeks to establish a 3-vertebrae ovine model to determine the impact of compression fracture on spine biomechanics, and to discover if cement augmentation can restore mechanical stability to fractured spine. Methods Five lumbar spine segments (L1-L3) were obtained from 5-year-old female Merino sheep. Standardized wedge-compression fractures were generated in each L2 vertebra, and then augmented with polymethyl methacrylate (PMMA) cement mixed with 30% barium sulphate powder. Biomechanical pure moment testing in axial rotation (AR), flexion/extension (FE) and lateral bending (LB) was carried out in the intact, fractured and repaired states. Range of motion (ROM) and neutral zone (NZ) parameters were compared, and plain radiographs taken at every stage. Results Except for a significant increase in ROM between the intact and fractured states in AR between L1 and L2 (P<0.05), there were no other significant differences in ROM or NZ between the other groups. There was a trend towards an increase in ROM and NZ in all directions after fracture, but this did not reach significance. Normal biomechanics was only minimally restored after augmentation. Conclusions Results suggest that cement augmentation could not restore mechanical stability of fractured spine. Model-specific factors may have had a role in these findings. Caution should be exercised when applying these results to humans.

  18. Single stage and thrust augmented reusable launch vehicle stability and performance study

    NASA Astrophysics Data System (ADS)

    Tanck, Pamela A.; Steadman, Kimberly B.

    1998-01-01

    The requirement for routine, reliable, inexpensive launch service drives the interest in the development of a fully reusable launch vehicle (RLV). In theory, single-stage vehicle operations would resemble aircraft operations where high initial development costs are offset by relatively low recurring costs. However, the large size of a single-stage-to-orbit vehicle and the advanced engine and structural technology requirements could overshadow advantages gained through streamlined operations. This analysis explores the feasibility of using thrust augmentation on a fully reusable core vehicle in order to lessen the disadvantages of a fully single-stage vehicle. Advanced technology systems and two 86,000 kg solid strapon motors are incorporated into a vehicle designed to deliver an Atlas-class payload. This study shows that thrust augmentation significantly decreases vehicle size, decreases development risk and improves longitudinal stability characteristics. The thrust augmentation reduces vehicle insertion mass by 40% and reduces the vehicle's sensitivity to the increases in dry mass growth often experienced during development, thus reducing development risk. Thrust augmentation also moves the center of gravity location forward, thus improving longitudinal stability characteristics and maximizing the vehicle's reentry cross range capability.

  19. Improved Chemical Structure-Activity Modeling Through Data Augmentation.

    PubMed

    Cortes-Ciriano, Isidro; Bender, Andreas

    2015-12-28

    Extending the original training data with simulated unobserved data points has proven powerful to increase both the generalization ability of predictive models and their robustness against changes in the structure of data (e.g., systematic drifts in the response variable) in diverse areas such as the analysis of spectroscopic data or the detection of conserved domains in protein sequences. In this contribution, we explore the effect of data augmentation in the predictive power of QSAR models, quantified by the RMSE values on the test set. We collected 8 diverse data sets from the literature and ChEMBL version 19 reporting compound activity as pIC50 values. The original training data were replicated (i.e., augmented) N times (N ∈ 0, 1, 2, 4, 6, 8, 10), and these replications were perturbed with Gaussian noise (μ = 0, σ = σnoise) on either (i) the pIC50 values, (ii) the compound descriptors, (iii) both the compound descriptors and the pIC50 values, or (iv) none of them. The effect of data augmentation was evaluated across three different algorithms (RF, GBM, and SVM radial) and two descriptor types (Morgan fingerprints and physicochemical-property-based descriptors). The influence of all factor levels was analyzed with a balanced fixed-effect full-factorial experiment. Overall, data augmentation constantly led to increased predictive power on the test set by 10-15%. Injecting noise on (i) compound descriptors or on (ii) both compound descriptors and pIC50 values led to the highest drop of RMSEtest values (from 0.67-0.72 to 0.60-0.63 pIC50 units). The maximum increase in predictive power provided by data augmentation is reached when the training data is replicated one time. Therefore, extending the original training data with one perturbed repetition thereof represents a reasonable trade-off between the increased performance of the models and the computational cost of data augmentation, namely increase of (i) model complexity due to the need for optimizing

  20. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary.

    PubMed

    Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M

    2016-06-01

    The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control.

  1. Flight test results for a separate surface stability augmented Beech model 99

    NASA Technical Reports Server (NTRS)

    Jenks, G. E.; Henry, H. F.; Roskam, J.

    1977-01-01

    A flight evaluation of a Beech model 99 equipped with an attitude command control system incorporating separate surface stability augmentation (SSSA) was conducted to determine whether an attitude command control system could be implemented using separate surface controls, and to determine whether the handling and ride qualities of the aircraft were improved by the SSSA attitude command system. The results of the program revealed that SSSA is a viable approach to implementing attitude command and also that SSSA has the capability of performing less demanding augmentation tasks such as yaw damping, wing leveling, and pitch damping. The program also revealed that attitude command did improve the pilot rating and ride qualities of the airplane while flying an IFR mission in turbulence. Some disadvantages of the system included the necessity of holding aileron force in a banked turn and excessive stiffness in the pitch axis.

  2. Augmented reality to enhance an active telepresence system

    NASA Astrophysics Data System (ADS)

    Wheeler, Alison; Pretlove, John R. G.; Parker, Graham A.

    1996-12-01

    Tasks carried out remotely via a telerobotic system are typically complex, occur in hazardous environments and require fine control of the robot's movements. Telepresence systems provide the teleoperator with a feeling of being physically present at the remote site. Stereoscopic video has been successfully applied to telepresence vision systems to increase the operator's perception of depth in the remote scene and this sense of presence can be further enhanced using computer generated stereo graphics to augment the visual information presented to the operator. The Mechatronic Systems and Robotics Research Group have over seven years developed a number of high performance active stereo vision systems culminating in the latest, a four degree-of-freedom stereohead. This carries two miniature color cameras and is controlled in real time by the motion of the operator's head, who views the stereoscopic video images on an immersive head mounted display or stereo monitor. The stereohead is mounted on a mobile robot, the movement of which is controlled by a joystick interface. This paper describes the active telepresence system and the development of a prototype augmented reality (AR) application to enhance the operator's sense of presence at the remote site. The initial enhancements are a virtual map and compass to aid navigation in degraded visual conditions and a virtual cursor that provides a means for the operator to interact with the remote environment. The results of preliminary experiments using the initial enhancements are presented.

  3. Abdomen and spinal cord segmentation with augmented active shape models.

    PubMed

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC. PMID:27610400

  4. Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.

    1999-01-01

    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.

  5. Presentation of flight control design and handling quality commonality by separate surface stability augmentation for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Hensley, Douglas; Creighton, Thomas; Haddad, Raphael; Hendrich, Louis; Morgan, Louise; Russell, Mark; Swift, Gerald

    1987-01-01

    The methodology and results for a flight control design and implementation for common handling qualities by Separate Surface Stability Augmentation (SSSA) for the family of commuter airplanes are contained. The open and closed loop dynamics and the design results of augmenting for common handling qualities are presented. The physical and technology requirements are presented for implementing the SSSA system. The conclusion of this report and recommendations for changes or improvement are discussed.

  6. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a

  7. Linear Augmentation for Stabilizing Stationary Solutions: Potential Pitfalls and Their Application

    PubMed Central

    Karnatak, Rajat

    2015-01-01

    Linear augmentation has recently been shown to be effective in targeting desired stationary solutions, suppressing bistablity, in regulating the dynamics of drive response systems and in controlling the dynamics of hidden attractors. The simplicity of the procedure is the main highlight of this scheme but questions related to its general applicability still need to be addressed. Focusing on the issue of targeting stationary solutions, this work demonstrates instances where the scheme fails to stabilize the required solutions and leads to other complicated dynamical scenarios. Examples from conservative as well as dissipative systems are presented in this regard and important applications in dissipative predator—prey systems are discussed, which include preventative measures to avoid potentially catastrophic dynamical transitions in these systems. PMID:26544879

  8. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  9. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  10. Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies

    PubMed Central

    Townsend, Sue; Fennell, Brian J.; Apgar, James R.; Lambert, Matthew; McDonnell, Barry; Grant, Joanne; Wade, Jason; Franklin, Edward; Foy, Niall; Ní Shúilleabháin, Deirdre; Fields, Conor; Darmanin-Sheehan, Alfredo; King, Amy; Paulsen, Janet E.; Tchistiakova, Lioudmila; Cunningham, Orla; Finlay, William J. J.

    2015-01-01

    Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process. PMID:26621728

  11. Simulator investigations of side-stick controller/stability and control augmentation systems for night nap-of-earth flight

    NASA Technical Reports Server (NTRS)

    Landis, K. H.; Aiken, E. W.

    1984-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions. Previously announced in STAR as N82-23216

  12. Development of a snubber type magnetorheological fluid elastomeric lag damper for helicopter stability augmentation

    NASA Astrophysics Data System (ADS)

    Ngatu, Grum T.

    Most advanced helicopter rotors are typically fitted with lag dampers, such as elastomeric or hybrid fluid-elastomeric (FE) lag dampers, which have lower parts counts, are lighter in weight, easier to maintain, and more reliable than conventional hydraulic dampers. However, the damping and stiffness properties of elastomeric and fluid elastomeric lag dampers are non-linear functions of lag/rev frequency, dynamic lag amplitude, and operating temperature. It has been shown that elastomeric damping and stiffness levels diminish markedly as amplitude of damper motion increases. Further, passive dampers tend to present severe damping losses as damper operating temperature increases either due to in-service self-heating or hot atmospheric conditions. Magnetorheological (MR) dampers have also been considered for application to helicopter rotor lag dampers to mitigate amplitude and frequency dependent damping behaviors. MR dampers present a controllable damping with little or no stiffness. Conventional MR dampers are similar in configuration to linear stroke hydraulic type dampers, which are heavier, occupy a larger space envelope, and are unidirectional. Hydraulic type dampers require dynamic seal to prevent leakage, and consequently, frequent inspections and maintenance are necessary to ensure the reliability of these dampers. Thus, to evaluate the potential of combining the simplicity and reliability of FE and smart MR technologies in augmenting helicopter lag mode stability, an adaptive magnetorheological fluid-elastomeric (MRFE) lag damper is developed in this thesis as a retrofit to an actual fluid-elastomeric (FE) lag damper. Consistent with the loading condition of a helicopter rotor system, single frequency (lag/rev) and dual frequency (lag/rev at 1/rev) sinusoidal loading were applied to the MRFE damper at varying temperature conditions. The complex modulus method was employed to linearly characterize and compare the performance of the MRFE damper with the

  13. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  14. A flight investigation of the stability, control, and handling qualities of an augmented jet flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Vomaske, R. F.; Innis, R. C.; Swan, B. E.; Grossmith, S. W.

    1978-01-01

    The stability, control, and handling qualities of an augmented jet flap STOL airplane are presented. The airplane is an extensively modified de Havilland Buffalo military transport. The modified airplane has two fan-jet engines which provide vectorable thrust and compressed air for the augmentor jet flap and Boundary-Layer Control (BLC). The augmentor and BLC air is cross ducted to minimize asymmetric moments produced when one engine is inoperative. The modifications incorporated in the airplane include a Stability Augmentation System (SAS), a powered elevator, and a powered lateral control system. The test gross weight of the airplane was between 165,000 and 209,000 N (37,000 and 47,000 lb). Stability, control, and handling qualities are presented for the airspeed range of 40 to 180 knots. The lateral-directional handling qualities are considered satisfactory for the normal operating range of 65 to 160 knots airspeed when the SAS is functioning. With the SAS inoperative, poor turn coordination and spiral instability are primary deficiencies contributing to marginal handling qualities in the landing approach. The powered elevator control system enhanced the controllability in pitch, particularly in the landing flare and stall recovery.

  15. Requirements for PKC-augmented JNK activation by MKK4/7

    PubMed Central

    Lopez-Bergami, Pablo; Ronai, Ze'ev

    2008-01-01

    The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling. PMID:18182317

  16. Frontopolar activity and connectivity support dynamic conscious augmentation of creative state.

    PubMed

    Green, Adam E; Cohen, Michael S; Raab, Hillary A; Yedibalian, Christopher G; Gray, Jeremy R

    2015-03-01

    No ability is more valued in the modern innovation-fueled economy than thinking creatively on demand, and the "thinking cap" capacity to augment state creativity (i.e., to try and succeed at thinking more creatively) is of broad importance for education and a rich mental life. Although brain-based creativity research has focused on static individual differences in trait creativity, less is known about changes in creative state within an individual. How does the brain augment state creativity when creative thinking is required? Can augmented creative state be consciously engaged and disengaged dynamically across time? Using a novel "thin slice" creativity paradigm in 55 fMRI participants performing verb-generation, we successfully cued large, conscious, short-duration increases in state creativity, indexed quantitatively by a measure of semantic distance derived via latent semantic analysis. A region of left frontopolar cortex, previously associated with creative integration of semantic information, exhibited increased activity and functional connectivity to anterior cingulate gyrus and right frontopolar cortex during cued augmentation of state creativity. Individual differences in the extent of increased activity in this region predicted individual differences in the extent to which participants were able to successfully augment state creative performance after accounting for trait creativity and intelligence.

  17. Frontopolar activity and connectivity support dynamic conscious augmentation of creative state.

    PubMed

    Green, Adam E; Cohen, Michael S; Raab, Hillary A; Yedibalian, Christopher G; Gray, Jeremy R

    2015-03-01

    No ability is more valued in the modern innovation-fueled economy than thinking creatively on demand, and the "thinking cap" capacity to augment state creativity (i.e., to try and succeed at thinking more creatively) is of broad importance for education and a rich mental life. Although brain-based creativity research has focused on static individual differences in trait creativity, less is known about changes in creative state within an individual. How does the brain augment state creativity when creative thinking is required? Can augmented creative state be consciously engaged and disengaged dynamically across time? Using a novel "thin slice" creativity paradigm in 55 fMRI participants performing verb-generation, we successfully cued large, conscious, short-duration increases in state creativity, indexed quantitatively by a measure of semantic distance derived via latent semantic analysis. A region of left frontopolar cortex, previously associated with creative integration of semantic information, exhibited increased activity and functional connectivity to anterior cingulate gyrus and right frontopolar cortex during cued augmentation of state creativity. Individual differences in the extent of increased activity in this region predicted individual differences in the extent to which participants were able to successfully augment state creative performance after accounting for trait creativity and intelligence. PMID:25394198

  18. An Action Dependent Heuristic Dynamic Programming-controlled Superconducting Magnetic Energy Storage for Transient Stability Augmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xinpu; Yang, Jun; Zhang, Xiaodong; Yu, Xiaopeng

    To enhance the stability of power system, the active power and reactive power can be absorbed from or released to Superconducting magnetic energy storage (SMES) unit according to system power requirements. This paper proposes a control strategy based on action dependent heuristic dynamic programing (ADHDP) which can control SMES to improve the stability of electric power system with on-line learning ability. Based on back propagation (BP) neural network, ADHDP approximates the optimal control solution of nonlinear system through iteration step by step. This on-line learning ability improves its performance by learning from its own mistakes through reinforcement signal from external environment, so that it can adjust the neural network weights according to the back propagation error to achieve optimal control performance. To investigate the effectiveness of the proposed control strategy, simulation tests are carried out in Matlab/Simulink. And a conventional Proportional-Integral (PI) controlled method is used to compare the performance of ADHDP. Simulation results show that the proposed controller demonstrates superior damping performance on power system oscillation caused by three-phase fault and wind power fluctuation over the PI controller.

  19. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.

    PubMed

    Khan, A M; Lee, Y K; Kim, T S

    2008-01-01

    Automatic recognition of human activities is one of the important and challenging research areas in proactive and ubiquitous computing. In this work, we present some preliminary results of recognizing human activities using augmented features extracted from the activity signals measured using a single triaxial accelerometer sensor and artificial neural nets. The features include autoregressive (AR) modeling coefficients of activity signals, signal magnitude areas (SMA), and title angles (TA). We have recognized four human activities using AR coefficients (ARC) only, ARC with SMA, and ARC with SMA and TA. With the last augmented features, we have achieved the recognition rate above 99% for all four activities including lying, standing, walking, and running. With our proposed technique, real time recognition of some human activities is possible.

  20. In vitro augmentation of human natural cytotoxic activity.

    PubMed Central

    Potter, M R; Moore, M

    1981-01-01

    Stimulation of human blood lymphocyte preparations with mitomycin C-treated lymphoid cell lines produced increased levels of cytotoxicity against both NK-susceptible and NK-resistant target cell lines. The greatest effect was seen following stimulation by the B lymphocyte-derived lines, Bri8 and raji. K562 also stimulated high levels of activity while the T lymphocyte-derived lines, CCRF/CEM and MOLT 4, produced smaller increases activity was also found in PHA- and MLC-stimulated populations. Stimulation by lymphoid cell lines gave increased cytotoxic activity against all five cell lines when used as target cells and the pattern of target cell susceptibility was maintained, with K562, CCRF/CEM and MOLT 4 being more susceptible than Bri8 and Raji. No direct correlation was found between the level of cytotoxic activity and the level of 3H-thymidine uptake in stimulated effector cell populations. The B cell lines stimulated high levels of isotopic uptake, while the T cell lines gave no significant stimulation. Similarly, the level of 3H-thymidine incorporation following PHA and MLC stimulation showed no direct correlation with the level of cytotoxic activity. Stimulation of lymphocyte transformation did not appear to be necessary for the induction of cytotoxic activity, although the largest increases in cytotoxicity occurred in populations showing high isotope incorporation. No correlation was found between the target cell susceptibility of the different cell lines and their ability to stimulate cytotoxicity. PMID:7307338

  1. Optimal placement of active elements in control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  2. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  3. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  4. Phase diversity and polarization augmented techniques for active imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Peter M.

    A firm understanding of the space environment is necessary to defend US access to space-based systems. Conventional imaging systems have been developed to gather information on space-based objects, but they are incapable of imaging objects in the earth's shadow. In order close this gap in imaging-system coverage, an active-illumination based approach must be used. To facilitate this, a multi-frame active phase diversity imaging (APDI) algorithm is derived and demonstrated for the statistics of coherent light. In addition to conventional focal-plane and diversity-plane data, a statistical description for the pupil plane intensity distribution is formed and included in the derivation. The algorithm is implemented and characterized using a Monte Carlo approach. Analysis shows that the algorithm is robust, that the effect of system configuration on optimal algorithm parameters is minimal, that the algorithm is insensitive to detection noise for SNR ≥ 7, and that it performs well for SNRs as low as 2. Furthermore, it's shown that introduction of pupil-plane data on average results in a 60% better image reconstruction from dynamically aberrated data than is obtained using only focal-plane and diversity-plane data. Both an Expectation-Maximization algorithm and a lensless-APDI approach are presented for generating imagery directly from pupil-plane polarization measurements. Shortfalls of these methods and areas worthy of further consideration are identified. The use of pupil-plane polarization state measurements in place of pupil-plane intensity measurements in the APDI algorithm is explored. A framework for including polarization measurements into the APDI algorithm is demonstrated, and an initial statistical model and results are presented. Under the developed implementation, introduction of the polarization data doesn't result in better performance. Areas that may result in better reconstructions are discussed.

  5. Differential protease activity augments polyphagy in Helicoverpa armigera.

    PubMed

    Chikate, Y R; Tamhane, V A; Joshi, R S; Gupta, V S; Giri, A P

    2013-06-01

    Helicoverpa armigera (Lepidoptera: Noctuidae) and other polyphagous agricultural pests are extending their plant host range and emerging as serious agents in restraining crop productivity. Dynamic regulation, coupled with a diversity of digestive and detoxifying enzymes, play a crucial role in the adaptation of polyphagous insects. To investigate the functional intricacy of serine proteases in the development and polyphagy of H. armigera, we profiled the expression of eight trypsin-like and four chymotrypsin-like phylogenetically diverse mRNAs from different life stages of H. armigera reared on nutritionally distinct host plants. These analyses revealed diet- and stage-specific protease expression patterns. The trypsins expressed showed structural variations, which might result in differential substrate specificity and interaction with inhibitors. Protease profiles in the presence of inhibitors and their mass spectrometric analyses revealed insight into their differential activity. These findings emphasize the differential expression of serine proteases and their consequences for digestive physiology in promoting polyphagy in H. armigera. PMID:23432026

  6. Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane

    NASA Technical Reports Server (NTRS)

    Gera, Joseph; Bosworth, John T.

    1987-01-01

    Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.

  7. Cytochrome b5 augments 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity.

    PubMed

    Goosen, Pierre; Storbeck, Karl-Heinz; Swart, Amanda C; Conradie, Riaan; Swart, Pieter

    2011-11-01

    During adrenal steroidogenesis the competition between 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD) and cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) for Δ(5) steroid intermediates greatly influences steroidogenic output. Cytochrome-b(5) (Cyt-b(5)), a small electron transfer hemoprotein, known to augment the lyase activity of CYP17A1, has been shown to alter the steroidogenic outcome of this competition. In this study, the influence of Cyt-b(5) on 3βHSD activity was investigated. In COS-1 cells, Cyt-b(5) was shown to significantly increase the activity of both caprine and ovine 3βHSD towards pregnenolone, 17-OH pregnenolone and dehydroepiandrosterone in a substrate and species specific manner. Furthermore, kinetic studies revealed Cyt-b(5) to have no influence on the K(m) values while significantly increasing the V(max) values of ovine 3βHSD for all its respective substrates. In addition, the activity of ovine 3βHSD in microsomal preparations was significantly influenced by the addition of either purified Cyt-b(5) or anti-Cyt-b(5) IgG. The results presented in this study indicate that Cyt-b(5) augments 3βHSD activity and represents the first documentation of such augmentation in any species. PMID:21930205

  8. An assessment of various side-stick controller/stability and control augmentation systems for night nap-of-Earth flight using piloted simulation

    NASA Technical Reports Server (NTRS)

    Landis, K. H.; Aiken, E. W.

    1982-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.

  9. Cholesterol Side-Chain Cleavage Gene Expression in Theca Cells: Augmented Transcriptional Regulation and mRNA Stability in Polycystic Ovary Syndrome

    PubMed Central

    Nelson-DeGrave, Velen L.; Legro, Richard S.; Strauss, Jerome F.; McAllister, Jan M.

    2012-01-01

    Hyperandrogenism is characteristic of women with polycystic ovary syndrome (PCOS). Ovarian theca cells isolated from PCOS follicles and maintained in long-term culture produce elevated levels of progestins and androgens compared to normal theca cells. Augmented steroid production in PCOS theca cells is associated with changes in the expression of genes for several steroidogenic enzymes, including CYP11A1, which encodes cytochrome P450 cholesterol side-chain cleavage. Here, we further examined CYP11A1 gene expression, at both the transcriptional and post-transcriptional level in normal and PCOS theca cells propagated in long-term culture utilizing quantitative RT-PCR, functional promoter analyses, and mRNA degradation studies. The minimal element(s) that conferred increased basal and cAMP-dependent CYP11A1 promoter function were determined. CYP11A1 mRNA half-life in normal and PCOS theca cells was compared. Results of these cumulative studies showed that basal and forskolin stimulated steady state CYP11A1 mRNA abundance and CYP11A1 promoter activity were increased in PCOS theca cells. Deletion analysis of the CYP11A1 promoter demonstrated that augmented promoter function in PCOS theca cells results from increased basal regulation conferred by a minimal sequence between −160 and −90 bp of the transcriptional start site. The transcription factor, nuclear factor 1C2, was observed to regulate basal activity of this minimal CYP11A1 element. Examination of mRNA stability in normal and PCOS theca cells demonstrated that CYP11A1 mRNA half-life increased >2-fold, from approximately 9.22+/−1.62 h in normal cells, to 22.38+/−0.92 h in PCOS cells. Forskolin treatment did not prolong CYP11A1 mRNA stability in either normal or PCOS theca cells. The 5′-UTR of CYP11A1 mRNA confers increased basal mRNA stability in PCOS cells. In conclusion, these studies show that elevated steady state CYP11A1 mRNA abundance in PCOS cells results from increased transactivation of the CYP

  10. Augmented pressor and sympathetic responses to skeletal muscle metaboreflex activation in type 2 diabetes patients.

    PubMed

    Holwerda, Seth W; Restaino, Robert M; Manrique, Camila; Lastra, Guido; Fisher, James P; Fadel, Paul J

    2016-01-15

    Previous studies have reported exaggerated increases in arterial blood pressure during exercise in type 2 diabetes (T2D) patients. However, little is known regarding the underlying neural mechanism(s) involved. We hypothesized that T2D patients would exhibit an augmented muscle metaboreflex activation and this contributes to greater pressor and sympathetic responses during exercise. Mean arterial pressure (MAP), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were measured in 16 patients with T2D (8 normotensive and 8 hypertensive) and 10 healthy controls. Graded isolation of the muscle metaboreflex was achieved by postexercise ischemia (PEI) following static handgrip performed at 30% and 40% maximal voluntary contraction (MVC). A cold pressor test (CPT) was also performed as a generalized sympathoexcitatory stimulus. Increases in MAP and MSNA during 30 and 40% MVC handgrip were augmented in T2D patients compared with controls (P < 0.05), and these differences were maintained during PEI (MAP: 30% MVC PEI: T2D, Δ16 ± 2 mmHg vs. controls, Δ8 ± 1 mmHg; 40% MVC PEI: T2D, Δ26 ± 3 mmHg vs. controls, Δ16 ± 2 mmHg, both P < 0.05). MAP and MSNA responses to handgrip and PEI were not different between normotensive and hypertensive T2D patients (P > 0.05). Interestingly, MSNA responses were also greater in T2D patients compared with controls during the CPT (P < 0.05). Collectively, these findings indicate that muscle metaboreflex activation is augmented in T2D patients and this contributes, in part, to augmented pressor and sympathetic responses to exercise in this patient group. Greater CPT responses suggest that a heightened central sympathetic reactivity may be involved. PMID:26566729

  11. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  12. Augmented force output in skeletal muscle fibres of Xenopus following a preceding bout of activity.

    PubMed Central

    Bruton, J D; Westerblad, H; Katz, A; Lännergren, J

    1996-01-01

    1. The effect of a brief period of activity on subsequent isometric tetanic force production was investigated in single muscle fibres of Xenopus laevis. 2. Following a train of ten tetani separated by 4 s intervals, tetanic force was significantly augmented by about 10%. The tetanic force augmentation persisted for at least 15 min and then slowly subsided. A similar potentiation was seen following trains of five and twenty tetani. 3. During the period of tetanic force potentiation, tetanic calcium was reduced by more than 30%, and intracellular pH was reduced from 7.15 +/- 0.07 to 7.03 +/- 0.11 (n = 4). 4. Fibre swelling was greatest at 1 min and then subsided over 15-20 min and possibly accounted for a small part of the observed force potentiation. 5. A reduction in the inorganic phosphate (P1) concentration of more than 40% was found in fibres frozen in liquid nitrogen at the peak of force potentiation compared with resting fibres. 6. It is concluded that the augmentation of tetanic force found after a brief preceding bout of activity is due to a reduction in inorganic phosphate. This mechanism may underlie the improved performance observed in athletes after warm-up. Images Figure 2 PMID:8735706

  13. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    SciTech Connect

    Dey, Nandini . E-mail: Don_Durden@oz.ped.emory.edu

    2005-07-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation.

  14. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  15. Biomechanical Stability of Dental Implants in Augmented Maxillary Sites: Results of a Randomized Clinical Study with Four Different Biomaterials and PRF and a Biological View on Guided Bone Regeneration

    PubMed Central

    Angelo, Troedhan; Marcel, Wainwright; Andreas, Kurrek; Izabela, Schlichting

    2015-01-01

    Introduction. Bone regenerates mainly by periosteal and endosteal humoral and cellular activity, which is given only little concern in surgical techniques and choice of bone grafts for guided bone regeneration. This study investigates on a clinical level the biomechanical stability of augmented sites in maxillary bone when a new class of moldable, self-hardening calcium-phosphate biomaterials (SHB) is used with and without the addition of Platelet Rich Fibrin (aPRF) in the Piezotome-enhanced subperiosteal tunnel-technique (PeSPTT). Material and Methods. 82 patients with horizontal atrophy of anterior maxillary crest were treated with PeSPTT and randomly assigned biphasic (60% HA/40% bTCP) or monophasic (100% bTCP) SHB without or with addition of aPRF. 109 implants were inserted into the augmented sites after 8.3 months and the insertion-torque-value (ITV) measured as clinical expression of the (bio)mechanical stability of the augmented bone and compared to ITVs of a prior study in sinus lifting. Results. Significant better results of (bio)mechanical stability almost by two-fold, expressed by higher ITVs compared to native bone, were achieved with the used biomaterials and more constant results with the addition of aPRF. Conclusion. The use of SHB alone or combined with aPRF seems to be favourable to achieve a superior (bio)mechanical stable restored alveolar bone. PMID:25954758

  16. Augmentation of macrophage growth-stimulating activity of lipids by their peroxidation

    SciTech Connect

    Yui, S.; Yamazaki, M. )

    1990-02-15

    Previously, we reported that some kinds of lipids (cholesterol esters, triglycerides, and some negatively charged phospholipids) that are constituents of lipoproteins or cell membranes induce growth of peripheral macrophages in vitro. In this paper, we examined the effect of peroxidation of lipids on their macrophage growth-stimulating activity because lipid peroxidation is observed in many pathological states such as inflammation. When phosphatidylserine, one of the phospholipids with growth-stimulating activity, was peroxidized by UV irradiation, its macrophage growth-stimulating activity was augmented in proportion to the extent of its peroxidation. The activity of phosphatidylethanolamine was also increased by UV irradiation. On the other hand, phosphatidylcholine or highly unsaturated free fatty acids, such as arachidonic acid and eicosapentaenoic acid, did not induce macrophage growth irrespective of whether they were peroxidized. The augmented activity of UV-irradiated phosphatidylserine was not affected by the coexistence of an antioxidant, vitamin E or BHT. These results suggest that some phospholipids included in damaged cells or denatured lipoproteins which are scavenged by macrophages in vivo may induce growth of peripheral macrophages more effectively when they are peroxidized by local pathological processes.

  17. Ground and flight test methods for determining limit cycle and structural resonance characteristics of aircraft stability augmentation systems

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Sitterle, G. J.

    1972-01-01

    Performance criteria and test techniques are applied to stability augmentation systems (SAS) during ground testing to predict objectionable limit cycles and preclude structural resonance during flight. Factors that give rise to these problems, means of suppressing their effects, trade-offs to be considered, and ground test methods that have been developed are discussed. SAS performance predicted on the basis of these tests is compared with flight data obtained from three lifting body vehicles and the X-15 research airplane. Limit cycle and structural resonance test criteria, based upon ground and flight experience and data, were successfully applied to these vehicles. The criteria used were: The limit cycle amplitude (SAS gain multiplied by peak-to-peak angular rate) shall not exceed 0.5 deg for the highest product of control power and SAS gain that will be used in flight; the maximum in-flight SAS gain should never exceed 50 percent of the value at which a structural resonance can be sustained during ground test.

  18. Arsenic trioxide and reduced glutathione act synergistically to augment inhibition of thyroid peroxidase activity in vitro.

    PubMed

    Palazzolo, Dominic L; Ely, Emily A

    2015-05-01

    Thyroid peroxidase (TPO) is the enzyme involved in thyroid hormone synthesis. Arsenic trioxide (As2O3) is known to inhibit TPO activity in vitro. This inhibition is believed to occur when As2O3 binds to TPO's free sulfhydryl groups. Reduced glutathione (GSH) is also known to inhibit TPO activity in vitro. This inhibition may occur because GSH acts as a competitive substrate for hydrogen peroxide, or possibly reduce the oxidized form of iodide, requirements for TPO action. On the other hand, one could speculate that GSH reduces arsenic-induced TPO inhibition by interacting directly with arsenic or TPO, consequently limiting arsenic's ability to inhibit TPO activity. Since GSH is known to inhibit thyroid hormone synthesis while at the same time it is also known to be an important antioxidant preventing cellular damage induced by oxidative stress and protecting the thyroid gland from oxidative damage induced by arsenic, we wanted to determine if a combination of As2O3 and reduced GSH would either attenuate or augment the As2O3-induced inhibition on TPO activity. Using an in vitro system, TPO was assayed spectrophotometrically in the presence of As2O3 (0.01, 0.1, 1, and 10 ppm), GSH (0.1, 1, 5, and 10 ppm), and As2O3 (0.1 ppm) and GSH (0.01, 0.1, 1, or 10 ppm) combinations. Our results show that 0.1, 1.0, and 10 ppm As2O3 inhibit TPO activity. Similarly, 5 and 10 ppm GSH also inhibit TPO activity. When 0.1 ppm As2O3 (i.e., the lowest dose of arsenic able to partially inhibit TPO activity) is combined with 0.01, 0.1, 1.0, or 10 ppm GSH inhibition of in vitro TPO activity is augmented as indicated by complete inhibition of TPO. The mechanism of this augmentation and whether it translates to living systems remains unclear.

  19. Active crystals and their stability.

    PubMed

    Menzel, Andreas M; Ohta, Takao; Löwen, Hartmut

    2014-02-01

    A recently introduced active phase field crystal model describes the formation of ordered resting and traveling crystals in systems of self-propelled particles. Increasing the active drive, a resting crystal can be forced to perform collectively ordered migration as a single traveling object. We demonstrate here that these ordered migrating structures are linearly stable. In other words, during migration, the single-crystalline texture together with the globally ordered collective motion is preserved even on large length scales. Furthermore, we consider self-propelled particles on a substrate that are surrounded by a thin fluid film. We find that in this case the resulting hydrodynamic interactions can destabilize the order.

  20. Effect of stabilization on biomass activity.

    PubMed

    Cokgor, Emine Ubay; Okutman Tas, Didem; Zengin, Gulsum Emel; Insel, Guclu

    2012-02-20

    The study aimed to compare aerobic and aerobic/anoxic stabilization processes in terms of organic matter and the biomass removal efficiencies using a municipal sludge sample. The efficiency of stabilization process was assessed monitoring suspended solids (SS), volatile suspended solids (VSS), total and dissolved organic carbon (TOC, DOC), nitrate, nitrite, and phosphate parameters. The oxygen uptake rate (OUR) measurements were conducted to determine active biomass concentration. On the 30th day of the aerobic stabilization, the SS, VSS and TOC removal efficiencies were 22%, 28% and 55%, respectively. Under aerobic/anoxic conditions, removal efficiencies for SS, VSS and TOC were 25%, 27% and 67%. On the 17th day of the stabilization, SS and VSS removal rates were 60 mg SS/L day and 47 mg VSS/L day for aerobic and 102 mg SS/L day and 63 mg VSS/L day for aerobic/anoxic conditions, respectively. These findings reflected the higher stabilization performance of the aerobic/anoxic conditions. Based on respirometric results, the ratios of the active biomass were decreased to 30% and 24% for the 17th and 30th day of the aerobic stabilization, respectively. Such results have significant implications relative to the activity decrease quantification of the biomass as well as its further application potentials after aerobic or aerobic/anoxic sludge stabilization. PMID:21791229

  1. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  2. Active glass-type human augmented cognition system considering attention and intention

    NASA Astrophysics Data System (ADS)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  3. A piloted simulator investigation of side-stick controller/stability and control augmentation system requirements for helicopter visual flight tasks

    NASA Technical Reports Server (NTRS)

    Landis, K. H.; Dunford, P. J.; Aiken, E. W.; Hilbert, K. B.

    1984-01-01

    A piloted simulator experiment was conducted to assess the effects of side-stick controller characteristics and level of stability and control augmentation on handling qualities for several low-altitude control tasks. Visual flight tasks were simulated using four-window computer-generated imagery depicting either a nap-of-the-earth course or a runway with obstacles positioned to provide a slalom course. Both low speed and forward flight control laws were implemented, and a method for automatically switching control modes was developed. Variations in force-deflection characteristics and the number of axes controlled through an integrated side-stick were investigated. With high levels of stability and control augmentation, a four-axis controller with small-deflection in all four axes achieved satisfactory handling qualities for low-speed tasks.

  4. Flight evaluation of stabilization and command augmentation system concepts and cockpit displays during approach and landing of powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.; Hardy, G. H.

    1980-01-01

    A flight research program was conducted to assess the effectiveness of manual control concepts and various cockpit displays in improving altitude (pitch, roll, and yaw) and longitudinal path control during short takeoff aircraft approaches and landings. Satisfactory flying qualities were demonstrared to minimum decision heights of 30 m (100 ft) for selected stabilization and command augmentation systems and flight director combinations. Precise landings at low touchdown sink rates were achieved with a gentle flare maneuver.

  5. Aspirin augments carotid-cardiac baroreflex sensitivity during muscle mechanoreflex and metaboreflex activation in humans.

    PubMed

    Drew, Rachel C; Muller, Matthew D; Blaha, Cheryl A; Mast, Jessica L; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2013-10-15

    Muscle mechanoreflex activation decreases the sensitivity of carotid baroreflex (CBR)-heart rate (HR) control during local metabolite accumulation in humans. However, the contribution of thromboxane A2 (TXA2) toward this response is unknown. Therefore, the effect of inhibiting TXA2 production via low-dose aspirin on CBR-HR sensitivity during muscle mechanoreflex and metaboreflex activation in humans was examined. Twelve young subjects performed two trials during two visits, preceded by 7 days' low-dose aspirin (81 mg) or placebo. One trial involved 3-min passive calf stretch (mechanoreflex) during 7.5-min limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex). HR (ECG) and mean arterial pressure (Finometer) were recorded. CBR function was assessed using rapid neck pressures ranging from +40 to -80 mmHg. Aspirin significantly decreased baseline thromboxane B2 production by 84 ± 4% (P < 0.05) but did not affect 6-keto prostaglandin F1α. Following aspirin, stretch with metabolite accumulation significantly augmented maximal gain (GMAX) and operating point gain (GOP) of CBR-HR (GMAX; -0.71 ± 0.14 vs. -0.37 ± 0.08 and GOP; -0.69 ± 0.13 vs. -0.35 ± 0.12 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively; P < 0.05). CBR-HR function curves were reset similarly with aspirin and placebo during stretch with metabolite accumulation. In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in humans. This increased sensitivity appears linked to reduced TXA2 production, which likely plays a role in metabolite sensitization of muscle mechanoreceptors. PMID:23970529

  6. Stability of anterior vertebral body screws after kyphoplasty augmentation. An experimental study to compare anterior vertebral body screw fixation in soft and cured kyphoplasty cement.

    PubMed

    Linhardt, O; Lüring, C; Matussek, J; Hamberger, C; Herold, T; Plitz, W; Grifka, J

    2006-10-01

    The goal of this cadaver study was to compare the stability of anterior vertebral body screws after implantation in soft or cured kyphoplasty cement. Anterior vertebral body screws were inserted in a total of 30 thoracolumbar vertebrae of ten different human specimens: ten screws were implanted in non-augmented vertebrae (group 1), ten screws were placed in soft cement (group 2), and ten screws were placed in cured cement (group 3). The screws were then tested for biomechanical axial pullout resistance. Mean axial pullout strength was 192 N (range: 10-430 N) in group 1, 364 N (range: 65-875 N) in group 2, and 271 N (range: 35-625 N) in group 3. The paired Student's t-test demonstrated a significant difference between pullout strength of groups 1 and 2 (p= 0.0475). No significant difference was seen between pullout strength of groups 1 and 3 (p= 0.2646) and between groups 2 and 3 (p= 0.3863). We achieved a 1.9 times higher pullout strength with kyphoplasty augmentation of osteoporotic vertebrae compared with the pullout strength of non-augmented vertebrae. Implantation of anterior vertebral body screws in cured cement is a satisfactory method. With this method we found a 1.4 times higher pullout strength than non-augmented vertebrae.

  7. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study

    PubMed Central

    Rüger, Matthias; Sellei, Richard M.; Stoffel, Marcus; von Rüden, Christian

    2015-01-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw–bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw–bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability. PMID:26835201

  8. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study.

    PubMed

    Rüger, Matthias; Sellei, Richard M; Stoffel, Marcus; von Rüden, Christian

    2016-02-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw-bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw-bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability. PMID:26835201

  9. Augmented vagal heart rate modulation in active hypoestrogenic pre-menopausal women with functional hypothalamic amenorrhoea.

    PubMed

    O'Donnell, Emma; Goodman, Jack M; Morris, Beverly L; Floras, John S; Harvey, Paula J

    2015-11-01

    Compared with eumenorrhoeic women, exercise-trained women with functional hypothalamic amenorrhoea (ExFHA) exhibit low heart rates (HRs) and absent reflex renin-angiotensin-system activation and augmentation of their muscle sympathetic nerve response to orthostatic stress. To test the hypothesis that their autonomic HR modulation is altered concurrently, three age-matched (pooled mean, 24 ± 1 years; mean ± S.E.M.) groups of women were studied: active with either FHA (ExFHA; n=11) or eumenorrhoeic cycles (ExOv; n=17) and sedentary with eumenorrhoeic cycles (SedOv; n=17). Blood pressure (BP), HR and HR variability (HRV) in the frequency domain were determined during both supine rest and graded lower body negative pressure (LBNP; -10, -20 and -40 mmHg). Very low (VLF), low (LF) and high (HF) frequency power spectra (ms(2)) were determined and, owing to skewness, log10-transformed. LF/HF ratio and total power (VLF + LF + HF) were calculated. At baseline, HR and systolic BP (SBP) were lower (P<0.05) and HF and total power were higher (P<0.05) in ExFHA than in eumenorrhoeic women. In all groups, LBNP decreased (P<0.05) SBP, HF and total power and increased (P<0.05) HR and LF/HF ratio. However, HF and total power remained higher (P<0.05) and HR, SBP and LF/HF ratio remained lower (P<0.05) in ExFHA than in eumenorrhoeic women, in whom measures did not differ (P>0.05). At each stage, HR correlated inversely (P<0.05) with HF. In conclusion, ExFHA women demonstrate augmented vagal yet unchanged sympathetic HR modulation, both at rest and during orthostatic stress. Although the role of oestrogen deficiency is unclear, these findings are in contrast with studies reporting decreased HRV in hypoestrogenic post-menopausal women.

  10. beta. -endorphin augments the cytolytic activity and interferon production of natural killer cells

    SciTech Connect

    Mandler, R.N.; Biddison, W.E.; Mandler, R.; Serrate, S.A.

    1986-02-01

    The in vitro effects of the neurohormone ..beta..-endorphin (b-end) on natural killer (NK) activity and interferon (IFN) production mediated by large granular lymphocytes (LGL) were investigated. LGL-enriched fractions from peripheral blood mononuclear cells (PBMC) from normal human volunteers were obtained by fractionation over discontinuous Percoll gradients. LGL were preincubated with or without various concentrations of b-end or the closely related peptides ..cap alpha..-endorphin (a-end), ..gamma..-endorphin (g-end), or D-ALA/sub 2/-..beta..-endorphin (D-ALA/sub 2/-b-end), a synthetic b-end analogue. NK activity was assayed on /sup 51/Cr-labeled K562 target cells. Preincubation of LGL effectors (but not K562 targets) for 2 to 18 hr with concentrations of b-end between 10/sup -7/ M and 10/sup -10/ M produced significant augmentation of NK cytolytic activity (mean percentage increase: 63%). The classic opiate antagonist naloxone blocked the enhancing effect when used at a 100-fold molar excess relative to b-end. These findings demonstrate that b-end enhances NK activity and IFN production of purified LGL, and suggests that b-end might bind to an opioid receptor on LGL that can be blocked by naloxone. These results lend support to the concepts of regulation of the immune response by neurohormones and the functional relationship between the nervous and immune systems.

  11. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5

    PubMed Central

    Yan, Yi; Tsukamoto, Osamu; Nakano, Atsushi; Kato, Hisakazu; Kioka, Hidetaka; Ito, Noriaki; Higo, Shuichiro; Yamazaki, Satoru; Shintani, Yasunori; Matsuoka, Ken; Liao, Yulin; Asanuma, Hiroshi; Asakura, Masanori; Takafuji, Kazuaki; Minamino, Tetsuo; Asano, Yoshihiro; Kitakaze, Masafumi; Takashima, Seiji

    2015-01-01

    Augmented AMP-activated protein kinase (AMPK) activity inhibits cell migration, possibly contributing to the clinical benefits of chemical AMPK activators in preventing atherosclerosis, vascular remodelling and cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we identify PDZ and LIM domain 5 (Pdlim5) as a novel AMPK substrate and show that it plays a critical role in the inhibition of cell migration. AMPK directly phosphorylates Pdlim5 at Ser177. Exogenous expression of phosphomimetic S177D-Pdlim5 inhibits cell migration and attenuates lamellipodia formation. Consistent with this observation, S177D-Pdlim5 suppresses Rac1 activity at the cell periphery and displaces the Arp2/3 complex from the leading edge. Notably, S177D-Pdlim5, but not WT-Pdlim5, attenuates the association with Rac1-specific guanine nucleotide exchange factors at the cell periphery. Taken together, our findings indicate that phosphorylation of Pdlim5 on Ser177 by AMPK mediates inhibition of cell migration by suppressing the Rac1-Arp2/3 signalling pathway. PMID:25635515

  12. Augmentation by transferrin of IL-2-inducible killer activity and perforin production of human CD8+ T cells.

    PubMed Central

    Nakamura, A; Sone, S; Nabioullin, R; Sugihara, K; Munekata, M; Nishioka, Y; Nii, A; Ogura, T

    1993-01-01

    The effects of human transferrin (Tf) on lymphokine (IL-2)-activated killer (LAK) induction from blood lymphocytes of healthy donors was examined. LAK cells were induced by 6-day incubation in medium with recombinant human IL-2 of lymphocytes, and their cytotoxic activity was assessed by measuring 51Cr release from NK-resistant Daudi cells. Tf alone did not induce any LAK activity, but in combination with IL-2, it augmented LAK induction dose- and time-dependently. This augmenting effect was completely abolished by pretreatment with anti-Tf antiserum. Tf augmented the proliferative response of lymphocytes to IL-2 and their expressions of receptors for IL-2 and Tf. CD8+ T cells were isolated from purified blood lymphocytes using antibody-bound magnetic beads. Addition of Tf to cultures of CD8+ cells resulted in significant augmentation of killer cell induction and perforin (PFP) production after 4 days stimulation with IL-2. These results indicate that Tf is important in generation of IL-2-inducible killer properties and PFP activity of human CD8+ T cells. PMID:8467561

  13. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    PubMed Central

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  14. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain

    NASA Astrophysics Data System (ADS)

    Mintun, Mark A.; Vlassenko, Andrei G.; Rundle, Melissa M.; Raichle, Marcus E.

    2004-01-01

    The factors regulating cerebral blood flow (CBF) changes in physiological activation remain the subject of great interest and debate. Recent experimental studies suggest that an increase in cytosolic NADH mediates increased blood flow in the working brain. Lactate injection should elevate NADH levels by increasing the lactate/pyruvate ratio, which is in near equilibrium with the NADH/NAD+ ratio. We studied CBF responses to bolus lactate injection at rest and in visual stimulation by using positron-emission tomography in seven healthy volunteers. Bolus lactate injection augmented the CBF response to visual stimulation by 38-53% in regions of the visual cortex but had no effect on the resting CBF or the whole-brain CBF. These lactate-induced CBF increases correlated with elevations in plasma lactate/pyruvate ratios and in plasma lactate levels but not with plasma pyruvate levels. Our observations support the hypothesis that an increase in the NADH/NAD+ ratio activates signaling pathways to selectively increase CBF in the physiologically stimulated brain regions.

  15. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  16. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning.

    PubMed

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.

  17. SLC11A1 is expressed by innate lymphocytes and augments their activation1

    PubMed Central

    Hedges, Jodi F.; Kimmel, Emily; Snyder, Deann T.; Jerome, Maria; Jutila, Mark A.

    2013-01-01

    SLC11A1 is a divalent ion transporter formerly known as the natural resistance-associated macrophage protein (NRAMP1) and the Bcg/Lsh/Ity locus. SLC11A1 was thought to be exclusively expressed in monocyte/macrophages and to have roles in phagosome maturation and cell activation. We characterized the expression of SLC11A1 in the majority of human and bovine γδ T cells and NK cells, and in human CD3+CD45RO+ T cells. Consistent with a role for iron-dependent inhibition of protein tyrosine phosphatases, SLC11A1+ lymphocytes were moreprone to activation and retained tyrosine phosphorylation. Transfection of SLC11A1 into a human γδ T cell-like line rendered the cells more prone to activation. Non-adherent splenocytes from wild type mice expressed significantly greater IFN-γ compared to cells from Sv/129 (SLC11A1−/−) mice. Our data suggest that SLC11A1 has a heretofore unknown role in activation of a large subset of innate lymphocytes that are critical sources of IFN-γ. SLC11A1+ animals have enhanced innate IFN-γ expression in response to Salmonella infection compared to SLC11A1−mice, which includes commonly used inbred laboratory mice. Expression of SLC11A1 in innate lymphocytes and its role in augmenting their activation may account for inconsistencies in studies of innate lymphocytes in different animal models. PMID:23509347

  18. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds

    PubMed Central

    Lagrue, Kathryn; Carisey, Alex; Morgan, David J.; Chopra, Rajesh

    2015-01-01

    As multiple myeloma (MM) progresses, natural killer (NK)-cell responses decline against malignant plasma cells. The immunomodulatory drug lenalidomide is widely used for treatment of MM but its influence on NK-cell biology is unclear. Here, we report that lenalidomide lowers the threshold for NK-cell activation, causing a 66% decrease in the 50% effective concentration (EC50) for activation through CD16, and a 38% decrease in EC50 for NK group 2 member D (NKG2D)–mediated activation, allowing NK cells to respond to lower doses of ligand. In addition, lenalidomide augments NK-cell responses, causing a twofold increase in the proportion of primary NK cells producing interferon-γ (IFN-γ), and a 20-fold increase in the amount of IFN-γ produced per cell. Importantly, lenalidomide did not trigger IFN-γ production in unstimulated NK cells. Thus, lenalidomide enhances the NK-cell arm of the immune response, without activating NK cells inappropriately. Of particular clinical importance, lenalidomide also allowed NK cells to be activated by lower doses of rituximab, an anti-CD20 monoclonal antibody (mAb) widely used to treat B-cell malignancies. This supports combined use of lenalidomide and rituximab in a clinical setting. Finally, superresolution microscopy revealed that lenalidomide increased the periodicity of cortical actin at immune synapses, resulting in an increase in the area of the actin mesh predicted to be penetrable to vesicles containing IFN-γ. NK cells from MM patients also responded to lenalidomide in this way. This indicates that nanometer-scale rearrangements in cortical actin, a recently discovered step in immune synapse assembly, are a potential new target for therapeutic compounds. PMID:26002964

  19. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase.

    PubMed

    Klaus, Susanne; Keipert, Susanne; Rossmeisl, Martin; Kopecky, Jan

    2012-07-01

    Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction. PMID:22139637

  20. Functional Stability of Plasminogen Activator Inhibitor-1

    PubMed Central

    Kuru, Pinar; Toksoy Oner, Ebru; Agirbasli, Mehmet

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease. PMID:25386620

  1. An Experimental Evaluation of Generalized Predictive Control for Tiltrotor Aeroelastic Stability Augmentation in Airplane Mode of Flight

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.

  2. Integrating a Mobile Augmented Reality Activity to Contextualize Student Learning of a Socioscienti?c Issue

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…

  3. Ipilimumab augments antitumor activity of bispecific antibody-armed T cells

    PubMed Central

    2014-01-01

    Background Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). Methods PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt’s lymphoma cell line (Daudi). Results In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. Conclusions Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies. PMID:25008236

  4. Steroid hormones augment nitric oxide synthase activity and expression in rat uterus.

    PubMed

    Ogando, D; Farina, M; Ribeiro, M L; Perez Martinez, S; Cella, M; Rettori, V; Franchi, A

    2003-01-01

    Nitric oxide (NO) is synthesized in a variety of tissues, including rat uterus, from L-arginine by NO synthase (NOS), of which there are three isoforms, namely neuronal, endothelial and inducible NOS (nNOS, eNOS and iNOS, respectively). Nitric oxide is an important regulator of the biology and physiology of the organs of the reproductive system, including the uterus. Some studies have shown increased variation in NO production and NOS expression during the oestrous cycle. However, the factors that regulate NO production in the uterus remain unclear. Therefore, in the present study, we investigated the effect of sex steroids on NOS expression and activity in the ovariectomized rat uterus. Ovariectomized rats received progesterone (4 mg per rat) or 17beta-oestradiol (1 microg per rat). All rats were killed 18 h after treatment. Both progesterone and oestradiol were able to augment NOS activity. The effect of oestradiol was abolished by pre-incubation with 500 micro M aminoguanidine, an iNOS inhibitor, or by coadministration of oestradiol with 3 mg kg(-1) dexamethasone, but the effect of progesterone was not affected by these treatments. Uterine nNOS, eNOS and iNOS protein levels were assessed using Western blots. Ovariectomized rat uteri expressed iNOS and eNOS. Progesterone increased the expression of eNOS and iNOS, whereas oestradiol increased iNOS expression only. These results suggest that oestradiol and progesterone are involved in the regulation of NOS expression and activity during pregnancy and implantation in the rat. PMID:14588184

  5. The application of parameter estimation to flight measurements to obtain lateral-directional stability derivatives of an augmented jet-flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Stephenson, J. D.

    1983-01-01

    Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.

  6. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients.

    PubMed

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L; Mann, Sarah; Jurovcik, Andrew J; Demidova, Olga; Wilson, Thad E

    2015-09-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component.

  7. Asparagus racemosus ameliorates cisplatin induced toxicities and augments its antileishmanial activity by immunomodulation in vivo.

    PubMed

    Sachdeva, Heena; Sehgal, Rakesh; Kaur, Sukhbir

    2014-02-01

    Current drugs for the treatment of visceral leishmaniasis are inadequate and their efficacies are also compromised due to suppression of immune function associated during the course of infection. To overcome this problem, efforts are needed to develop therapies with effective immunomodulatory agents where decrease of parasitic burden and simultaneous enhancement of adaptive immunity can be achieved. In this study we have evaluated a new therapeutic approach based on combination of Asparagus racemosus, an immunomodulatory drug, in combination with cisplatin against Leishmania donovani infected BALB/c mice. We demonstrate that A. racemosus (650 mg/kg b.wt./day for 15 days, orally) in combination with cisplatin (5 mg/kg b.wt./day for 5 days, intraperitoneally) enhanced the clearance of parasites as determined by Giemsa-stained liver impression smears. Besides having better killing activity, this combination group achieved increased production of disease resolving Th-1 response (IFN-gamma, IL-2), heightened DTH (delayed type hypersensitivity) response and augmented levels of IgG2a. Moreover, A. racemosus in combination with cisplatin not only provided enhanced protective immune response but also resulted in remarkable improved kidney and liver function tests as manifested by normal levels of SGOT, SGPT, alkaline phosphatase, creatinine and urea in blood plasma with normal histological observations as compared to only cisplatin treated L. donovani infected BALB/c mice. Through this study we have ascertained that A. racemosus in combination with cisplatin in L. donovani infected BALB/c mice boosted as well as restored both cellular and humoral immunity. Thus in view of severe immunosuppression in visceral leishmaniasis, a better and effective strategy for optimum efficacy of future antileishmanial drugs would direct not only killing of parasite by the drug, but also simultaneous generation of immunity against the disease.

  8. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients.

    PubMed

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L; Mann, Sarah; Jurovcik, Andrew J; Demidova, Olga; Wilson, Thad E

    2015-09-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component. PMID:26133800

  9. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients

    PubMed Central

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L.; Mann, Sarah; Jurovcik, Andrew J.; Demidova, Olga

    2015-01-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm−2·min−1, P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component. PMID:26133800

  10. Augmented photocatalytic activity and luminescence response of Tb³⁺ doped nanoscale titania systems

    SciTech Connect

    Paul, Nibedita; Deka, Amrita; Mohanta, Dambarudhar

    2014-10-14

    The present work reports on the effect of Tb³⁺ doping on the luminescence and photocatalytic performance of nano-structured titania derived through a sol-gel route. X-ray diffraction patterns have revealed the existence of anatase phase with and without Tb³⁺ doping and with an improved orientation factor along (004) and (200) planes. Transmission electron microscopy and selective area electron diffraction studies, while exhibiting ample poly-crystallinity feature, have predicted an average particle size of ~9 nm and ~6 nm for the un-doped and 5% Tb³⁺ doped nano-titania samples; respectively. Apart from emissions accompanied by different types of defects, Tb³⁺ related transitions, such as, ⁵D₃ → ⁷F₅, ⁵D₃ → ⁷F₄, and ⁵D₄ → ⁷F₆ were identified in the photoluminescence spectra. Brunauer-Emmett-Teller surface area analysis, as carried out on a Tb³⁺ doped nano-titania system, has demonstrated a more-open hysteretic loop owing to significant difference of N₂ adsorption/desorption rates. The photocatalytic activity of nano-titania, as evaluated from the nature of degradation of methyl orange under UV illumination, exhibited the highest efficiency for a Tb³⁺ doping level of 2.5%. The augmented photocatalytic degradation has also been discussed in the light of a model based on pseudo first-order kinetics.

  11. Tetrahydrobiopterin lowers muscle sympathetic nerve activity and improves augmentation index in patients with chronic kidney disease

    PubMed Central

    Liao, Peizhou; Sher, Salman; Lyles, Robert H.; Deveaux, Don D.; Quyyumi, Arshed A.

    2014-01-01

    Chronic kidney disease (CKD) is characterized by overactivation of the sympathetic nervous system (SNS) that contributes to cardiovascular risk. Decreased nitric oxide (NO) bioavailability is a major factor contributing to SNS overactivity in CKD, since reduced neuronal NO leads to increased central SNS activity. Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthase that increases NO bioavailability in experimental models of CKD. We conducted a randomized, double-blinded, placebo-controlled trial testing the benefits of oral sapropterin dihydrochloride (6R-BH4, a synthetic form of BH4) in CKD. 36 patients with CKD and hypertension were randomized to 12 wk of 1) 200 mg 6R-BH4 twice daily + 1 mg folic acid once daily; vs. 2) placebo + folic acid. The primary endpoint was a change in resting muscle sympathetic nerve activity (MSNA). Secondary endpoints included arterial stiffness using pulse wave velocity (PWV) and augmentation index (AIx), endothelial function using brachial artery flow-mediated dilation and endothelial progenitor cells, endothelium-independent vasodilatation (EID), microalbuminuria, and blood pressure. We observed a significant reduction in MSNA after 12 wk of 6R-BH4 (−7.5 ± 2.1 bursts/min vs. +3.2 ± 1.3 bursts/min; P = 0.003). We also observed a significant improvement in AIx (by −5.8 ± 2.0% vs. +1.8 ± 1.7 in the placebo group, P = 0.007). EID increased significantly (by +2.0 ± 0.59%; P = 0.004) in the 6R-BH4 group, but there was no change in endothelial function. There was a trend toward a reduction in diastolic blood pressure by −4 ± 3 mmHg at 12 wk with 6R-BH4 (P = 0.055). 6R-BH4 treatment may have beneficial effects on SNS activity and central pulse wave reflections in hypertensive patients with CKD. PMID:25477424

  12. Tetrahydrobiopterin lowers muscle sympathetic nerve activity and improves augmentation index in patients with chronic kidney disease.

    PubMed

    Park, Jeanie; Liao, Peizhou; Sher, Salman; Lyles, Robert H; Deveaux, Don D; Quyyumi, Arshed A

    2015-02-01

    Chronic kidney disease (CKD) is characterized by overactivation of the sympathetic nervous system (SNS) that contributes to cardiovascular risk. Decreased nitric oxide (NO) bioavailability is a major factor contributing to SNS overactivity in CKD, since reduced neuronal NO leads to increased central SNS activity. Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthase that increases NO bioavailability in experimental models of CKD. We conducted a randomized, double-blinded, placebo-controlled trial testing the benefits of oral sapropterin dihydrochloride (6R-BH4, a synthetic form of BH4) in CKD. 36 patients with CKD and hypertension were randomized to 12 wk of 1) 200 mg 6R-BH4 twice daily + 1 mg folic acid once daily; vs. 2) placebo + folic acid. The primary endpoint was a change in resting muscle sympathetic nerve activity (MSNA). Secondary endpoints included arterial stiffness using pulse wave velocity (PWV) and augmentation index (AIx), endothelial function using brachial artery flow-mediated dilation and endothelial progenitor cells, endothelium-independent vasodilatation (EID), microalbuminuria, and blood pressure. We observed a significant reduction in MSNA after 12 wk of 6R-BH4 (-7.5 ± 2.1 bursts/min vs. +3.2 ± 1.3 bursts/min; P = 0.003). We also observed a significant improvement in AIx (by -5.8 ± 2.0% vs. +1.8 ± 1.7 in the placebo group, P = 0.007). EID increased significantly (by +2.0 ± 0.59%; P = 0.004) in the 6R-BH4 group, but there was no change in endothelial function. There was a trend toward a reduction in diastolic blood pressure by -4 ± 3 mmHg at 12 wk with 6R-BH4 (P = 0.055). 6R-BH4 treatment may have beneficial effects on SNS activity and central pulse wave reflections in hypertensive patients with CKD. PMID:25477424

  13. Augmentative and Alternative Communication and Language: Evidence-Based Practice and Language Activity Monitoring

    ERIC Educational Resources Information Center

    Hill, Katya

    2004-01-01

    The goal of augmentative and alternative communication (AAC) is the most effective communication possible. Speech-language pathologists are obligated to collect data, measure communication, and apply the principles of evidence-based practice (EBP). This article presents a model for EBP that represents how collecting and evaluating performance data…

  14. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    SciTech Connect

    Deng Xue; Tamai, Riyoko; Endo, Yasuo; Kiyoura, Yusuke

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, a promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.

  15. An investigation of side-stick-controller/stability and control-augmentation system requirements for helicopter terrain flight under reduced visibility conditions

    NASA Technical Reports Server (NTRS)

    Landis, K. H.; Glusman, S. I.; Aiken, E. W.; Hilbert, K. B.

    1984-01-01

    Simulation of the reduced visibility tasks is effected by providing the pilot with a visually coupled, helmet-mounted display of flight-control symbols superimposed upon terrain-board imagery. Forward-flight, low-speed, and precision-hover control modes are implemented, and a method is developed for the blending of control laws between each control mode. An investigation is made of the variations in the level of integration of primary control functions on a single side-stick controller. For most of the flight tasks investigated, separated controller configurations are preferred to a single, fully integrated side-stick device. Satisfactory handling qualities over all controller configurations are attained only for a precision-hover task conducted with a high level of stability and control augmentation. For most tasks flown with the helmet-mounted display significant degradation in handling qualities occurs relative to the identical tasks flown under visual flight conditions.

  16. Stability and variability: indicators for passive stability and active control in a rhythmic task.

    PubMed

    Wei, Kunlin; Dijkstra, Tjeerd M H; Sternad, Dagmar

    2008-06-01

    Using a rhythmic task where human subjects bounced a ball with a handheld racket, fine-grained analyses of stability and variability extricated contributions from open-loop control, noise strength, and active error compensation. Based on stability analyses of a stochastic-deterministic model of the task--a surface contacting the ball by periodic movements--open-loop or dynamic stability was assessed by the acceleration of the racket at contact. Autocovariance analyses of model and data were further used to gauge the contributions of open-loop stability and noise strength. Variability and regression analyses estimated active error compensation. Empirical results demonstrated that experienced actors exploited open-loop stability more than novices, had lower noise strength, and applied more active error compensations. By manipulating the model parameter coefficient of restitution, task stability was varied and showed that actors graded these three components as a function of task stability. It is concluded that actors tune into task stability when stability is high but use more active compensation when stability is reduced. Implications for the neural underpinnings for passive stability and active control are discussed. Further, results showed that stability and variability are not simply the inverse of each other but contain more quantitative information when combined with model analyses.

  17. Thrust Augmentation Through Active Flow Control: Lessons from a Bluegill Sunfish

    NASA Astrophysics Data System (ADS)

    Akhtar, Imran; Mittal, Rajat; Lauder, George

    2002-11-01

    Numerical simulations are being used to analyze the effect that vortices shed from the dorsal fin have on the thrust of the tail fin for a Bluegill Sunfish. The simulations are being carried out using a Cartesian grid method which allows us to simulate flows with complex moving boundararies on stationary Cartesian grids. The simulations attempt to model the kinematics of the fin motion and the flow conditions as measured by Drucker & Lauder (J. Exp. Bio. Vol. 202, pp 2393-2412, 1999) for a live specimen using PIV. Our simulations indicate that vortex shedding from the upstream dorsal fin is indeed capable of increasing the thrust of the tail fin significantly. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. Furthermore, the maximum thrust augmentation is found for phase angles that match those observed for the Bluegill Sunfish! The numerical simulation allow us to examine the underlying physical mechanism for this thrust augmentation and results pertaining to this will be presented.

  18. NADH augments blood flow in physiologically activated retina and visual cortex

    NASA Astrophysics Data System (ADS)

    Ido, Yasuo; Chang, Katherine; Williamson, Joseph R.

    2004-01-01

    The mechanism(s) that increase retinal and visual cortex blood flows in response to visual stimulation are poorly understood. We tested the hypothesis that increased transfer of electrons and protons from glucose to cytosolic free NAD+, reducing it to NADH, evoked by increased energy metabolism, fuels redox-signaling pathways that augment flow. The near-equilibrium between free cytosolic NADH/NAD+ and lactate/pyruvate ratios established by lactate dehydrogenase predicts that transfer of additional electrons and protons from injected lactate to NAD+ will augment the elevated blood flows in stimulated retina and cortex, whereas transfer of electrons and protons from NADH to injected pyruvate will attenuate the elevated flows. These predictions were tested and confirmed in rats. Increased flows evoked by stimulation also were prevented by inhibition of nitric oxide synthase. These findings support an important role for cytosolic free NADH in fueling a signaling cascade that increases NO production, which augments blood flow in photostimulated retina and visual cortex.

  19. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.

    PubMed

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-09-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer. PMID:24988892

  20. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation

    PubMed Central

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-01-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer. PMID:24988892

  1. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.

    PubMed

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-09-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer.

  2. Pilot-optimal augmentation synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1978-01-01

    An augmentation synthesis method usable in the absence of quantitative handling qualities specifications, and yet explicitly including design objectives based on pilot-rating concepts, is presented. The algorithm involves the unique approach of simultaneously solving for the stability augmentation system (SAS) gains, pilot equalization and pilot rating prediction via optimal control techniques. Simultaneous solution is required in this case since the pilot model (gains, etc.) depends upon the augmented plant dynamics, and the augmentation is obviously not a priori known. Another special feature is the use of the pilot's objective function (from which the pilot model evolves) to design the SAS.

  3. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  4. In search of augmentation at human SI: Somatosensory cortical responses to stimulus trains and their modulation by motor activity.

    PubMed

    Huttunen, Juha

    2010-05-17

    In many animal preparations, repeated stimulation at ca. 10 Hz in thalamic nuclei leads to rapid changes in the cortical evoked responses, known as the augmenting response. The present study was undertaken to evaluate whether anything similar to the augmenting response can be observed in awake human subjects when a peripheral nerve is stimulated, and whether a possible human correlate of augmenting would be modified when the subject is engaged in an active motor task. Somatosensory-evoked magnetic fields (SEFs) were recorded in healthy human subjects in response to stimulus trains (15 pulses at 10 Hz) applied to the left median nerve. SEFs were recorded in a resting condition and during a finger-tapping task performed with the stimulated hand. In the resting condition, the most marked change in the SEF configuration was a reduction of the P35m deflection and a concurrent enhancement of the N45m deflection during the 1st few stimuli of the trains. Another conspicuous feature was a prolongation of the latencies of the N45m and P60m deflections toward the end of the train. In the motor task, the response modulation during the pulse trains was in general similar to the resting condition. The most notable difference was that the P35m amplitude was markedly reduced already for the 1st pulse of the train when compared with rest. Also, the latencies of N45m and P60m were not prolonged during the train. We discuss the possibility that the reduction of P35m and a concurrent increase of N45m during a pulse train constitute a human analogue to the augmenting response, and suggest that these changes may reflect a decrease of inhibitory postsynaptic potentials (IPSPs, P35m) and an increase of secondary excitatory postsynaptic potentials (N45m) during stimulus train presentation. The reduction of P35m during motor activity compared with rest already at the beginning of stimulus trains suggests that postsynaptic IPSPs in response to afferent stimulation are reduced during active

  5. In search of augmentation at human SI: Somatosensory cortical responses to stimulus trains and their modulation by motor activity.

    PubMed

    Huttunen, Juha

    2010-05-17

    In many animal preparations, repeated stimulation at ca. 10 Hz in thalamic nuclei leads to rapid changes in the cortical evoked responses, known as the augmenting response. The present study was undertaken to evaluate whether anything similar to the augmenting response can be observed in awake human subjects when a peripheral nerve is stimulated, and whether a possible human correlate of augmenting would be modified when the subject is engaged in an active motor task. Somatosensory-evoked magnetic fields (SEFs) were recorded in healthy human subjects in response to stimulus trains (15 pulses at 10 Hz) applied to the left median nerve. SEFs were recorded in a resting condition and during a finger-tapping task performed with the stimulated hand. In the resting condition, the most marked change in the SEF configuration was a reduction of the P35m deflection and a concurrent enhancement of the N45m deflection during the 1st few stimuli of the trains. Another conspicuous feature was a prolongation of the latencies of the N45m and P60m deflections toward the end of the train. In the motor task, the response modulation during the pulse trains was in general similar to the resting condition. The most notable difference was that the P35m amplitude was markedly reduced already for the 1st pulse of the train when compared with rest. Also, the latencies of N45m and P60m were not prolonged during the train. We discuss the possibility that the reduction of P35m and a concurrent increase of N45m during a pulse train constitute a human analogue to the augmenting response, and suggest that these changes may reflect a decrease of inhibitory postsynaptic potentials (IPSPs, P35m) and an increase of secondary excitatory postsynaptic potentials (N45m) during stimulus train presentation. The reduction of P35m during motor activity compared with rest already at the beginning of stimulus trains suggests that postsynaptic IPSPs in response to afferent stimulation are reduced during active

  6. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.

  7. Towards Intravenous Drug Delivery: Augmenting the Stability and Dispersity of Bis-Demethoxy Curcumin Analog by Bottom-Up Strategy.

    PubMed

    Francis, Arul Prakash; Ramaprabhu, Sundara; Devasena, Thiyagarajan

    2016-01-01

    Intravenous route is the best strategy to accomplish fastest and highest delivery of drugs. Hydrophobic drugs like curcumin and its analog exhibit disadvantages like low bioavailability, poor absorption and rapid precipitation on intravenous delivery, all leading to its poor therapeutic value. These can be by-passed by enhancing the dispersity, stability and decreasing the size of the drug by nanotization. Thus, with an intention to deliver bis-demethoxy curcumin analog via intravenous route, we have studied the effect of DMSO, ethanol and acetone on the size, size distribution, stability and yield and identified the best solvent in terms of smallest size, narrow size distribution, more stability and high yield of nano bis-demethoxy curcumin analog (NBDMCA). NBDMCA prepared using DMSO showed the lowest mean particle size cum polydispersity index and highest zeta potential when compared to ethanol and acetone. Hence the DMSO based formulation can provide prolonged action and better efficacy at minimal doses. Thus, the DMSO based NBDMCA can emerge as an ideal therapeutic tool for human use. PMID:27398584

  8. Mutants of lymphotoxin-α with augmented cytotoxic activity via TNFR1 for use in cancer therapy.

    PubMed

    Morishige, Tomohiro; Yoshioka, Yasuo; Narimatsu, Shogo; Ikemizu, Shinji; Tsunoda, Shin-ichi; Tsutsumi, Yasuo; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku

    2013-02-01

    The cytokine lymphotoxin-α (LTα) is a promising candidate for use in cancer therapy. However, the instability of LTαin vivo and the insufficient levels of tumor necrosis factor receptor 1 (TNFR1)-mediated bioactivity of LTα limit its therapeutic potential. Here, we created LTα mutants with increased TNFR1-mediated bioactivity by using a phage display technique. We constructed a phage library displaying lysine-deficient structural variants of LTα with randomized amino acid residues. After affinity panning, we screened three clones of lysine-deficient LTα mutant, and identified a LTα mutant with TNFR1-mediated bioactivity that was 32 times that of the wild-type LTα (wtLTα). When compared with wtLTα, the selected clone showed augmented affinity to TNFR1 due to slow dissociation rather than rapid association. In contrast, the mutant showed only 4 times the TNFR2-mediated activity of wtLTα. In addition, the LTα mutant strongly and rapidly activated caspases that induce TNFR1-mediated cell death, whereas the mutant and wtLTα activated nuclear factor-kappa B to a similar extent. Our data suggest that the kinetics of LTα binding to TNFR1 play an important role in signal transduction patterns, and a TNFR1-selective LTα mutant with augmented bioactivity would be a superior candidate for cancer therapy. PMID:23246116

  9. Statin Attenuates Experimental Anti-Glomerular Basement Membrane Glomerulonephritis Together with the Augmentation of Alternatively Activated Macrophages

    PubMed Central

    Fujita, Emiko; Shimizu, Akira; Masuda, Yukinari; Kuwahara, Naomi; Arai, Takashi; Nagasaka, Shinya; Aki, Kaoru; Mii, Akiko; Natori, Yasuhiro; Iino, Yasuhiko; Katayama, Yasuo; Fukuda, Yuh

    2010-01-01

    Macrophages are heterogeneous and include classically activated M1 and alternatively activated M2 macrophages, characterized by pro- and anti-inflammatory functions, respectively. Macrophages that express heme oxygenase-1 also exhibit anti-inflammatory effects. We assessed the anti-inflammatory effects of statin in experimental anti-glomerular basement membrane glomerulonephritis and in vitro, focusing on the macrophage heterogeneity. Rats were induced anti-glomerular basement membrane glomerulonephritis and treated with atorvastatin (20 mg/kg/day) or vehicle (control). Control rats showed infiltration of macrophages in the glomeruli at day 3 and developed crescentic glomerulonephritis by day 7, together with increased mRNA levels of the M1 macrophage-associated cytokines, interferon-γ, tumor necrosis factor-α, and interleukin-12. In contrast, statin reduced the level of proteinuria, reduced infiltration of macrophages in glomeruli with suppression of monocyte chemotactic protein-1 expression, and inhibited the formation of necrotizing and crescentic lesions. The number of glomerular ED3-positive macrophages decreased with down-regulation of M1 macrophage-associated cytokines. Furthermore, statin augmented ED2-positive M2 macrophages with up-regulation of the M2 macrophage-associated chemokines and cytokines, chemokine (C-C motif) Iigand-17 and interleukin-10. Statin also increased the glomerular interleukin-10-expressing heme oxygenase-1-positive macrophages. Statin inhibited macrophage development, and suppressed ED3-positive macrophages, but augmented ED2-positive macrophages in M2-associated cytokine environment in vitro. We conclude that the anti-inflammatory effects of statin in glomerulonephritis are mediated through inhibition of macrophage infiltration as well as augmentation of anti-inflammatory macrophages. PMID:20696778

  10. Lip augmentation.

    PubMed

    Byrne, Patrick J; Hilger, Peter A

    2004-02-01

    Lip augmentation has become increasingly popular in recent years as a reflection of cultural trends emphasizing youth and beauty. Techniques to enhance the appearance of the lips have evolved with advances in biotechnology. An understanding of lip anatomy and aesthetics forms the basis for successful results. We outline the pertinent anatomy and aesthetics of the preoperative evaluation. A summary of various filler materials available is provided. Augmentation options include both injectable and open surgical techniques. The procedures and materials currently favored by the authors are described in greater detail.

  11. Augmentation cheiloplasty.

    PubMed

    Ho, L C

    1994-06-01

    A technique of augmentation cheiloplasty with prior correction of a thin vermillion is described. Preserving and accentuating the natural contours of the lips is emphasised in vermillion correction and volume expansion with fat cell grafts. Thin vermillion correction, lip volume expansion and the state of fat cell grafts are reviewed.

  12. Least-Squares Regression and Spectral Residual Augmented Classical Least-Squares Chemometric Models for Stability-Indicating Analysis of Agomelatine and Its Degradation Products: A Comparative Study.

    PubMed

    Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A

    2016-01-01

    Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components. PMID:26987554

  13. Aromatic Interactions in Organocatalyst Design: Augmenting Selectivity Reversal in Iminium Ion Activation.

    PubMed

    Holland, Mareike C; Metternich, Jan Benedikt; Daniliuc, Constantin; Schweizer, W Bernd; Gilmour, Ryan

    2015-07-01

    Substituting N-methylpyrrole for N-methyindole in secondary-amine-catalysed Friedel-Crafts reactions leads to a curious erosion of enantioselectivity. In extreme cases, this substrate dependence can lead to an inversion in the sense of enantioinduction. Indeed, these closely similar transformations require two structurally distinct catalysts to obtain comparable selectivities. Herein a focussed molecular editing study is disclosed to illuminate the structural features responsible for this disparity, and thus identify lead catalyst structures to further exploit this selectivity reversal. Key to effective catalyst re-engineering was delineating the non-covalent interactions that manifest themselves in conformation. Herein we disclose preliminary validation that intermolecular aromatic (CH-π and cation-π) interactions between the incipient iminium cation and the indole ring system is key to rationalising selectivity reversal. This is absent in the N-methylpyrrole alkylation, thus forming the basis of two competing enantio-induction pathways. A simple L-valine catalyst has been developed that significantly augments this interaction. PMID:25982418

  14. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation

    PubMed Central

    Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong

    2015-01-01

    During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8+ T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential. PMID:26442863

  15. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8(+) T Cell Activation.

    PubMed

    Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong

    2015-10-01

    During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8(+) T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential. PMID:26442863

  16. Healthy older humans exhibit augmented carotid-cardiac baroreflex sensitivity with aspirin during muscle mechanoreflex and metaboreflex activation.

    PubMed

    Drew, Rachel C; Blaha, Cheryl A; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2015-10-01

    Low-dose aspirin inhibits thromboxane production and augments the sensitivity of carotid baroreflex (CBR) control of heart rate (HR) during concurrent muscle mechanoreflex and metaboreflex activation in healthy young humans. However, it is unknown how aging affects this response. Therefore, the effect of low-dose aspirin on carotid-cardiac baroreflex sensitivity during muscle mechanoreflex with and without metaboreflex activation in healthy older humans was examined. Twelve older subjects (6 men and 6 women, mean age: 62 ± 1 yr) performed two trials during two visits preceded by 7 days of low-dose aspirin (81 mg) or placebo. One trial involved 3 min of passive calf stretch (mechanoreflex) during 7.5 min of limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise (mechanoreflex and metaboreflex). HR (ECG) and mean arterial blood pressure (MAP; Finometer) were recorded. CBR function was assessed using rapid neck pressure application (+40 to -80 mmHg). Aspirin significantly decreased baseline thromboxane B2 production by 83 ± 4% (P < 0.05) but did not affect 6-keto-PGF1α. After aspirin, CBR-HR maximal gain and operating point gain were significantly higher during stretch with metabolite accumulation compared with placebo (maximal gain: -0.23 ± 0.03 vs. -0.14 ± 0.02 and operating point gain: -0.11 ± 0.03 vs. -0.04 ± 0.01 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively, P < 0.05). In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in healthy older humans. This increased sensitivity appears linked to reduced thromboxane sensitization of muscle mechanoreceptors, which consequently improves CBR-HR control. PMID:26371168

  17. Healthy older humans exhibit augmented carotid-cardiac baroreflex sensitivity with aspirin during muscle mechanoreflex and metaboreflex activation.

    PubMed

    Drew, Rachel C; Blaha, Cheryl A; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2015-10-01

    Low-dose aspirin inhibits thromboxane production and augments the sensitivity of carotid baroreflex (CBR) control of heart rate (HR) during concurrent muscle mechanoreflex and metaboreflex activation in healthy young humans. However, it is unknown how aging affects this response. Therefore, the effect of low-dose aspirin on carotid-cardiac baroreflex sensitivity during muscle mechanoreflex with and without metaboreflex activation in healthy older humans was examined. Twelve older subjects (6 men and 6 women, mean age: 62 ± 1 yr) performed two trials during two visits preceded by 7 days of low-dose aspirin (81 mg) or placebo. One trial involved 3 min of passive calf stretch (mechanoreflex) during 7.5 min of limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise (mechanoreflex and metaboreflex). HR (ECG) and mean arterial blood pressure (MAP; Finometer) were recorded. CBR function was assessed using rapid neck pressure application (+40 to -80 mmHg). Aspirin significantly decreased baseline thromboxane B2 production by 83 ± 4% (P < 0.05) but did not affect 6-keto-PGF1α. After aspirin, CBR-HR maximal gain and operating point gain were significantly higher during stretch with metabolite accumulation compared with placebo (maximal gain: -0.23 ± 0.03 vs. -0.14 ± 0.02 and operating point gain: -0.11 ± 0.03 vs. -0.04 ± 0.01 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively, P < 0.05). In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in healthy older humans. This increased sensitivity appears linked to reduced thromboxane sensitization of muscle mechanoreceptors, which consequently improves CBR-HR control.

  18. New stability and stabilization criteria for fuzzy neural networks with various activation functions

    NASA Astrophysics Data System (ADS)

    Mathiyalagan, K.; Sakthivel, R.; Anthoni, S. Marshal

    2011-07-01

    In this paper, the stability analysis and control design of Takagi-Sugeno (TS) fuzzy neural networks with various activation functions and continuously distributed time delays are addressed. By implementing the delay-fractioning technique together with the linear matrix inequality (LMI) approach , a new set of sufficient conditions is derived in terms of linear matrix inequalities, which ensure the stability of the considered fuzzy neural networks. Further, based on the above-mentioned techniques, a control law with an appropriate gain control matrix is derived to achieve stabilization of the fuzzy neural networks. In addition, the results are extended to the study of the stability and stabilization results for TS fuzzy uncertain neural networks with parameter uncertainties. The stabilization criteria are obtained in terms LMIs and hence the gain control matrix can be easily determined by the MATLAB LMI control toolbox. Two numerical examples with simulation results are given to illustrate the effectiveness of the obtained result.

  19. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong

    2010-09-01

    Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.

  20. Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities.

    PubMed

    Lin, Chien-Yu; Chang, Yu-Ming

    2015-02-01

    This study uses a body motion interactive game developed in Scratch 2.0 to enhance the body strength of children with disabilities. Scratch 2.0, using an augmented-reality function on a program platform, creates real world and virtual reality displays at the same time. This study uses a webcam integration that tracks movements and allows participants to interact physically with the project, to enhance the motivation of children with developmental disabilities to perform physical activities. This study follows a single-case research using an ABAB structure, in which A is the baseline and B is the intervention. The experimental period was 2 months. The experimental results demonstrated that the scores for 3 children with developmental disabilities increased considerably during the intervention phrases. The developmental applications of these results are also discussed. PMID:25460214

  1. Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities.

    PubMed

    Lin, Chien-Yu; Chang, Yu-Ming

    2015-02-01

    This study uses a body motion interactive game developed in Scratch 2.0 to enhance the body strength of children with disabilities. Scratch 2.0, using an augmented-reality function on a program platform, creates real world and virtual reality displays at the same time. This study uses a webcam integration that tracks movements and allows participants to interact physically with the project, to enhance the motivation of children with developmental disabilities to perform physical activities. This study follows a single-case research using an ABAB structure, in which A is the baseline and B is the intervention. The experimental period was 2 months. The experimental results demonstrated that the scores for 3 children with developmental disabilities increased considerably during the intervention phrases. The developmental applications of these results are also discussed.

  2. Chin augmentation.

    PubMed

    Choe, K S; Stucki-McCormick, S U

    2000-01-01

    The primary goal of facial aesthetic surgery is to restore, enhance, and rejuvenate the aging face to a more youthful appearance, achieving balance and harmony. The mental area must be addressed in order to have a complete synthesis of the face. The concept of augmenting the mental area with implants has evolved so significantly that it now stands by itself as an important procedure. Various autogenous implants for chin augmentation have been in use for over 100 years but have complications. The advent of synthetic materials has given rise to various types of alloplastic implants: Gore-Tex, Medpor, Supramid, Silastic, and Mersilene. No one implant is perfect for every face. This article overviews several alloplastic implants--their advantages, disadvantages, and complications, in addition to the different techniques of preparing and delivering the implants.

  3. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain.

    PubMed

    Wang, Wen-Jie; Cheng, Wang; Luo, Ming; Yan, Qingyu; Yu, Hong-Mei; Li, Qiong; Cao, Dong-Dong; Huang, Shengfeng; Xu, Anlong; Mariuzza, Roy A; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 Å crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lys-type PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1~3 novel PGRPs of augmented catalytic activity and broad recognition spectrum.

  4. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain

    PubMed Central

    Wang, Wen-Jie; Cheng, Wang; Luo, Ming; Yan, Qingyu; Yu, Hong-Mei; Li, Qiong; Cao, Dong-Dong; Huang, Shengfeng; Xu, Anlong; Mariuzza, Roy A.; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 Å crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lys-type PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1~3 novel PGRPs of augmented catalytic activity and broad recognition spectrum. PMID:26479246

  5. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain.

    PubMed

    Wang, Wen-Jie; Cheng, Wang; Luo, Ming; Yan, Qingyu; Yu, Hong-Mei; Li, Qiong; Cao, Dong-Dong; Huang, Shengfeng; Xu, Anlong; Mariuzza, Roy A; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 Å crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lys-type PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1~3 novel PGRPs of augmented catalytic activity and broad recognition spectrum. PMID:26479246

  6. Musical Peddy-Paper: A Collaborative Learning Activity Suported by Augmented Reality

    ERIC Educational Resources Information Center

    Gomes, José Duarte Cardoso; Figueiredo, Mauro Jorge Guerreiro; Amante, Lúcia da Graça Cruz Domingues; Gomes, Cristina Maria Cardoso

    2014-01-01

    Gaming activities are an integral part of the human learning process, in particular for children. Game-based learning focuses on motivation and children's engagement towards learning. Educational game-based activities are becoming effective strategies to enhance the learning process. This paper presents an educational activity focusing to merge…

  7. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.

  8. Pomegranate Juice Augments Memory and fMRI Activity in Middle-Aged and Older Adults with Mild Memory Complaints

    PubMed Central

    Bookheimer, Susan Y.; Renner, Brian A.; Ekstrom, Arne; Henning, Susanne M.; Brown, Jesse A.; Jones, Mike; Moody, Teena; Small, Gary W.

    2013-01-01

    Despite increasing emphasis on the potential of dietary antioxidants in preventing memory loss and on diet as a precursor of neurological health, rigorous studies investigating the cognitive effects of foods and their components are rare. Recent animal studies have reported memory and other cognitive benefits of polyphenols, found abundantly in pomegranate juice. We performed a preliminary, placebo-controlled randomized trial of pomegranate juice in older subjects with age-associated memory complaints using memory testing and functional brain activation (fMRI) as outcome measures. Thirty-two subjects (28 completers) were randomly assigned to drink 8 ounces of either pomegranate juice or a flavor-matched placebo drink for 4 weeks. Subjects received memory testing, fMRI scans during cognitive tasks, and blood draws for peripheral biomarkers before and after the intervention. Investigators and subjects were all blind to group membership. After 4 weeks, only the pomegranate group showed a significant improvement in the Buschke selective reminding test of verbal memory and a significant increase in plasma trolox-equivalent antioxidant capacity (TEAC) and urolithin A-glucuronide. Furthermore, compared to the placebo group, the pomegranate group had increased fMRI activity during verbal and visual memory tasks. While preliminary, these results suggest a role for pomegranate juice in augmenting memory function through task-related increases in functional brain activity. PMID:23970941

  9. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  10. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention.

  11. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity

    PubMed Central

    Kim, Jong H.; Chan, Kathleen L.; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated “structure-activity relationship” for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  12. Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation

    PubMed Central

    Zhang, Qi; Deng, Yafei; Lai, Wenjing; Guan, Xiao; Sun, Xiongshan; Han, Qi; Wang, Fangjie; Pan, Xiaodong; Ji, Yan; Luo, Hongqin; Huang, Pei; Tang, Yuan; Gu, Liangqi; Dan, Guorong; Yu, Jianhua; Namaka, Michael; Zhang, Jianxiang; Deng, Youcai; Li, Xiaohui

    2016-01-01

    Maternal inflammation contributes to the increased incidence of adult cardiovascular disease. The current study investigated the susceptibility of cardiac damage responding to isoproterenol (ISO) in adult offspring that underwent maternal inflammation (modeled by pregnant Sprague-Dawley rats with lipopolysaccharides (LPS) challenge). We found that 2 weeks of ISO treatment in adult offspring of LPS-treated mothers led to augmented heart damage, characterized by left-ventricular systolic dysfunction, cardiac hypertrophy and myocardial fibrosis. Mechanistically, prenatal exposure to LPS led to up-regulated expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, antioxidant enzymes, and p38 MAPK activity in left ventricular of adult offspring at resting state. ISO treatment exaggerated ROS generation, p38 MAPK activation but down-regulated reactive oxygen species (ROS) elimination capacity in the left ventricular of offspring from LPS-treated mothers, while antioxidant N-acetyl-L-cysteine (NAC) reversed these changes together with improved cardiac functions. The p38 inhibitor SB202190 alleviated the heart damage only via inhibiting the expression of NADPH oxidases. Collectively, our data demonstrated that prenatal inflammation programs pre-existed ROS activation in the heart tissue, which switches on the early process of oxidative damages on heart rapidly through a ROS-p38 MAPK-NADPH oxidase-ROS positive feedback loop in response to a myocardial hypertrophic challenge in adulthood. PMID:27443826

  13. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  14. Real-time RMS active damping augmentation: Heavy and very light payload evaluations

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Lepanto, Janet A.; Flueckiger, Karl W.; Bains, Elizabeth M.; Jensen, Mary C.

    1994-01-01

    Controls-Structures Integration Technology has been applied to the Space Shuttle Remote Manipulator System (RMS) to improve on-orbit performance. The objective was to actively damp undesired oscillatory motions of the RMS following routine payload maneuvering and Shuttle attitude control thruster firings. Simulation of active damping was conducted in the real-time, man-in-the-loop Systems Engineering Simulator at NASA's Johnson Space Center. The simulator was used to obtain qualitative and quantitative data on active damping performance from astronaut operators. Using a simulated three-axis accelerometer mounted on the RMS, 'sensed' vibration motions were used to generate joint motor commands that reduced the unwanted oscillations. Active damping of the RMS with heavy and light attached payloads was demonstrated in this study. Five astronaut operators examined the performance of active damping following operator commanded RMS maneuvers and Shuttle thruster firings. Noticeable improvements in the damping response of the RMS with the heavy, Hubble Space Telescope payload and the very light, astronaut in Manipulator Foot Restraint payload were observed. The potential of active damping to aid in precisely maneuvering payloads was deemed significant.

  15. An Augmented Reality-Based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities

    ERIC Educational Resources Information Center

    Chiang, Tosti H. C.; Yang, Stephen J. H.; Hwang, Gwo-Jen

    2014-01-01

    In this study, an augmented reality-based mobile learning system is proposed for conducting inquiry-based learning activities. An experiment has been conducted to examine the effectiveness of the proposed approach in terms of learning achievements and motivations. The subjects were 57 fourth graders from two classes taught by the same teacher in…

  16. Isolated neuronal growth cones from developing rat forebrain possess adenylate cyclase activity which can be augmented by various receptor agonists.

    PubMed

    Lockerbie, R O; Hervé, D; Blanc, G; Tassin, J P; Glowinski, J

    1988-01-01

    Isolated neuronal growth cones from neonatal rat forebrain were found to contain a high specific activity of adenylate cyclase (61 pmol cyclic AMP/min/mg protein) compared to the pelleted starting homogenate (5 pmol cyclic AMP/min/mg protein). Forskolin at 10(-4) M increased adenylate cyclase activity in both the pelleted homogenate and growth cone fraction by 70 and 217 pmol cyclic AMP/min/mg protein, respectively, over basal levels. The incremental effect of forskolin was 3-fold greater in the growth cone fraction than in the pelleted homogenate. However, relative to basal levels in each of the two fractions, forskolin increased adenylate cyclase activity in the growth cone fraction by only approx. 5-fold compared to 15-fold in the pelleted homogenate. Dopamine (10(-4) M), vasoactive intestinal polypeptide (10(-6) M) and isoproterenol (10(-5) M) also augmented adenylate cyclase activity in the two fractions. In the growth cone fraction, dopamine and vasoactive intestinal polypeptide produced a stimulation over basal levels by approx. 20 pmol cyclic AMP/min/mg protein while isoproterenol produced a stimulation of approx. 10 pmol cAMP/min/mg protein. The incremental effects of these receptor agonists in the growth cone fraction are approx. 5-fold greater than in the pelleted homogenate. The dopamine-sensitive adenylate cyclase activity in the growth cone fraction could be blocked by the compound SCH23390, a selective D1 receptor antagonist. At saturating concentrations, all combinations of dopamine, vasoactive intestinal polypeptide and isoproterenol were found to be completely additive on adenylate cyclase activity in the growth cone fraction.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization.

    PubMed

    Lee, Ho-Seong

    2015-12-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization.

  18. Calcium promotes activity and confers heat stability on plant peroxidases

    PubMed Central

    Plieth, Christoph; Vollbehr, Sonja

    2012-01-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca2+ ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca2+ concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca2+ binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance. PMID:22580695

  19. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization

    PubMed Central

    Lee, Ho-Seong

    2015-01-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization. PMID:26730390

  20. Augmentation of GG2EE macrophage cell line-mediated anti-Candida activity by gamma interferon, tumor necrosis factor, and interleukin-1.

    PubMed Central

    Blasi, E; Farinelli, S; Varesio, L; Bistoni, F

    1990-01-01

    The expression of anti-Candida activity in the GG2EE macrophage cell line, generated by immortalization of fresh bone marrow with v-raf and v-myc oncogenes, was studied. GG2EE cells spontaneously inhibited the growth of an agerminative mutant of Candida albicans in vitro. The anti-Candida activity was maximal after 8 h of coculture and was proportional to the effector-to-target ratio. Gamma interferon (IFN-gamma), interleukin-1 (IL-1), and tumor necrosis factor (TNF) all significantly enhanced the anti-Candida activity of GG2EE cells. In contrast, IL-3, IL-4, and colony-stimulating factor 1 were ineffective. The augmentation of anti-Candida activity was not always concomitant with enhancement of phagocytosis, since IFN-gamma and colony-stimulating factor 1, but not IL-1 or TNF, augmented the phagocytic ability of GG2EE cells. Furthermore, the augmentation of anti-Candida activity in GG2EE cells did not correlate with the acquisition of antitumor activity. In fact, none of the cytokines alone were able to induce antitumor activity in GG2EE cells, which, however, could be activated to a tumoricidal stage by IFN-gamma plus heat-killed Listeria monocytogenes. These findings demonstrate that GG2EE cells exhibit spontaneous anti-Candida activity and that such activity is enhanced by TNF, IL-1, and IFN-gamma. PMID:2108087

  1. Indomethacin augments lymphokine-activated killer cell generation by patients with malignant mesothelioma

    SciTech Connect

    Manning, L.S.; Bowman, R.V.; Davis, M.R.; Musk, A.W.; Robinson, B.W. )

    1989-10-01

    Human malignant mesothelioma (MM) cells are resistant to natural killer (NK) cell lysis but susceptible to lysis by lymphokine-activated killer (LAK) cells from control individuals. The present study was performed to determine the capacity of patients with MM (n = 22) and individuals occupationally exposed to asbestos (the major population at risk of developing this disease, n = 52) to generate LAK cells capable of effectively lysing human mesothelioma cells. Compared to controls (n = 20), both patient groups demonstrated significantly depressed LAK cell activity against mesothelioma tumor cell targets (55 +/- 3% lysis by controls vs 34 +/- 3% lysis by patients with MM, P less than 0.005; and 45 +/- 3% lysis by asbestos-exposed individuals, P less than 0.025). Addition of 10 micrograms/ml indomethacin during LAK cell generation restored normal LAK cell activity for patients with MM (52 +/- 6% lysis of cultured human MM cells, P = NS compared to controls), suggesting that the defective cytolytic cell function observed in some patients with MM is a result of prostaglandin-induced immunosuppression. The ability of indomethacin to restore suppressed LAK cell activity in patients with MM suggests that the concomitant use of this agent in ex vivo LAK cell generation and in patients undergoing interleukin/LAK cell therapy may be beneficial.

  2. Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion.

    PubMed

    Desfougères, Yann; Neumann, Heinz; Mayer, Andreas

    2016-07-15

    Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.

  3. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells*

    PubMed Central

    Wittmann, Alexandra; Lamprinaki, Dimitra; Bowles, Kristian M.; Katzenellenbogen, Ewa; Knirel, Yuriy A.; Whitfield, Chris; Nishimura, Takashi; Matsumoto, Naoki; Yamamoto, Kazuo; Iwakura, Yoichiro; Saijo, Shinobu; Kawasaki, Norihito

    2016-01-01

    LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2. PMID:27358401

  4. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells.

    PubMed

    Wittmann, Alexandra; Lamprinaki, Dimitra; Bowles, Kristian M; Katzenellenbogen, Ewa; Knirel, Yuriy A; Whitfield, Chris; Nishimura, Takashi; Matsumoto, Naoki; Yamamoto, Kazuo; Iwakura, Yoichiro; Saijo, Shinobu; Kawasaki, Norihito

    2016-08-19

    LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2. PMID:27358401

  5. An application of active surface heating for augmenting lift and reducing drag of an airfoil

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Badavi, Forooz F.; Noonan, Kevin W.

    1988-01-01

    Application of active control to separated flow on the RC(6)-08 airfoil at high angle of attack by localized surface heating is numerically simulated by integrating the compressible 2-D nonlinear Navier-Stokes equation solver. Active control is simulated by local modification of the temperature boundary condition over a narrow strip of the upper surface of the airfoil. Both mean and perturbed profiles are favorably altered when excited with the same natural frequency of the shear layer by moderate surface heating for both laminar and turbulent separation. The shear layer is found to be very sensitive to localized surface heating in the vicinity of the separation point. The excitation field at the surface sufficiently altered both the local as well as the global circulation to cause a significant increase in lift and reduction in drag.

  6. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    SciTech Connect

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  7. Augmentation of the in vitro activity of azlocillin against Bacteroides fragilis by clavulanic acid.

    PubMed Central

    Bansal, M B; Chuah, S K; Thadepalli, H

    1984-01-01

    Azlocillin was active against 90% of 154 strains of Bacteroides fragilis at a concentration of 64 micrograms/ml. Twenty-eight strains of B. fragilis with an azlocillin MIC of greater than or equal to 8 micrograms/ml were retested with a combination of azlocillin plus clavulanic acid. Of these strains, 71% showed a 4- to 32-fold decrease in the MIC of azlocillin plus clavulanic acid. PMID:6517552

  8. Leptin into the rostral ventral lateral medulla (RVLM) augments renal sympathetic nerve activity and blood pressure

    PubMed Central

    Barnes, Maria J.; McDougal, David H.

    2014-01-01

    Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM) is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb). Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3 μg; 40 nL) into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP) and renal sympathetic nerve activity (RSNA). When the 3 μg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1 ng), it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin's actions within the RVLM may influence blood pressure and renal sympathetic nerve activity. PMID:25152707

  9. Emotional stability, anxiety, and natural killer activity under examination stress.

    PubMed

    Borella, P; Bargellini, A; Rovesti, S; Pinelli, M; Vivoli, R; Solfrini, V; Vivoli, G

    1999-08-01

    This study was performed to evaluate the relation between a stable personality trait, a mood state and immune response to an examination stress. A self-reported measure of emotional stability (BFQ-ES scale) was obtained in a sample (n = 39) randomly selected from 277 cadets; this personality trait was also investigated by completing a neuroticism scale (Eysenck personality inventory) and a trait-anxiety scale (STAI). Natural killer (NK) cell activity was measured at baseline, long before the examination time and the examination day. The state-anxiety scale evaluated the response to the stressful stimulus. Taking subjects all together, the academic task did not result in significant modification over baseline in NK cell activity. Subjects were then divided into three groups based on emotional stability and state-anxiety scores: high emotional stability/low anxiety, medium, and low emotional stability/high anxiety. Examination stress induced significant increases in NK cell activity in the high emotional stability/low anxiety group, no effect in the medium group, and significant decreases in the low emotional stability/high anxiety group. The repeated-measure ANOVA revealed a significant interaction of group x period (baseline vs. examination) for both lytic units and percent cytolysis. The results did not change after introducing coffee and smoking habits as covariates. Our findings suggest that the state-anxiety acts in concert with a stable personality trait to modulate NK response in healthy subjects exposed to a psychological naturalistic stress. The relation between anxiety and poor immune control has been already described, whereas the ability of emotional stability to associate with an immunoenhancement has not yet reported. The peculiarity of our population, a very homogeneous and healthy group for life style and habits, can have highlighted the role of emotional stability, and may account for the difference with other studies.

  10. Augmented expression of urokinase plasminogen activator and extracellular matrix proteins associates with multiple myeloma progression.

    PubMed

    Khan, Rehan; Gupta, Nidhi; Kumar, Raman; Sharma, Manoj; Kumar, Lalit; Sharma, Alpana

    2014-06-01

    Multiple myeloma (MM) represents a B cell malignancy, characterized by a monoclonal proliferation of malignant plasma cells. Interactions between tumor cells and extracellular matrix (ECM) are of importance for tumor invasion and metastasis. Protein levels of urokinase plasminogen activator (uPA) and fibulin 1, nidogen and laminin in plasma and serum respectively and mRNA levels of these molecules in peripheral blood mononuclear cells were determined in 80 subjects by using ELISA and quantitative PCR and data was analyzed with severity of disease. Pearson correlation was determined to observe interrelationship between different molecules. A statistical significant increase for ECM proteins (laminin, nidogen and fibulin 1) and uPA at circulatory level as well as at mRNA level was observed compared to healthy controls. The levels of these molecules in serum might be utilized as a marker of active disease. Significant positive correlation of all ECM proteins with uPA was found and data also correlates with severity of disease. Strong association found between ECM proteins and uPA in this study supports that there might be interplay between these molecules which can be targeted. This study on these molecules may help to gain insight into processes of growth, spread, and clinical behavior of MM.

  11. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters

    PubMed Central

    Bradley, Sean P.; Prendergast, Brian J.

    2014-01-01

    Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9 h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5 h interval of the light phase. Running wheel activity occurring within a 3 h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce. PMID:24666779

  12. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters.

    PubMed

    Bradley, Sean P; Prendergast, Brian J

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5h interval of the light phase. Running wheel activity occurring within a 3h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce.

  13. Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-03-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.

  14. Whole Abdominal Wall Segmentation using Augmented Active Shape Models (AASM) with Multi-Atlas Label Fusion and Level Set

    PubMed Central

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-01-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes. PMID:27127333

  15. Interleukin 2 secretion by lectin-activated human blood lymphocytes is markedly augmented by vascular endothelial cells

    SciTech Connect

    Guinan, E.C.; Pober, J.S.

    1986-03-01

    Since the initial interaction (and possible activation) of a blood borne T lymphocyte involves contact with the endothelial lining of the vasculature at the site of an immune response, the authors have examined the effect of cultured human endothelial cells (HEC) upon polyclonal T cell activation. Addition of 10/sup 4/ HEC to 10/sup 4/-10/sup 5/ peripheral blood lymphocytes (PBL) stimulated with phytohemagglutinin (PHA, 0.3-10 ..mu..g/ml) leads to marked augmentation of interleukin 2 (IL-2) production. The relative increase in IL-2 (mean of 3 expts. +/- SEM) is present at 24 h (5.8 fold +/- 1.5) and become more marked at 48 h (12.6 fold +/- 3.5) and 72 h (18.5 fold +/- 3.7). This relative enhancement is greater for HEC added to 10/sup 4/ than 10/sup 5/ PBL and is also greater when 10/sup 4/ rather than 2 x 10/sup 3/ HEC are added to a given number of PBL. This increased IL-2 concentration has two biological consequences. First, at suboptimal PHA doses or at low PBL number, PBL proliferation as measured by /sup 3/H-thymidine incorporation is increased up to two fold. Second, the phenotype of the proliferating cells appears altered, including a decrease in mean density of IL-2 receptor. The authors hypothesize that such modulation of the concentration of locally produced IL-2 may play a key role in the nature of an immune response, influencing both its magnitude and the functional profile of the activated and amplified effector cells.

  16. Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells.

    PubMed

    Roepke, Martin; Diestel, Antje; Bajbouj, Khuloud; Walluscheck, Diana; Schonfeld, Peter; Roessner, Albert; Schneider-Stock, Regine; Gali-Muhtasib, Hala

    2007-02-01

    We have recently shown that thymoquinone (TQ) is an antineoplastic drug that induces p53-dependent apoptosis in human colon cancer cells. This study evaluated the antiproliferative and pro-apoptotic effects of TQ in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts. Flow cytometric analysis showed that TQ induced a much greater increase in the PreG(1) (apoptotic) cell population, but no cell cycle arrest in MG63. G(2)/M arrest in MNNG/HOS cells was associated with p21(WAF1) upregulation. Using three DNA damage assays, TQ was confirmed to result in a significantly greater extent of apoptosis in p53 null MG63 cells. Although the Bax/Bcl-2 ratios were not differentially modulated in both cell lines, the mitochondrial pathway appeared to be involved in TQ-induced apoptosis in MG63 by showing the cleavage of caspases-9 and -3. Oxidative stress and mitochondrial O(2)(*-) generation in isolated rat mitochondria were enhanced by TQ as measured by the dose-dependent reduction in aconitase enzyme activity and Amplex Red oxidation respectively. TQ-induced oxidative damage, reflected by an increase in gamma-H2AX foci and increased protein expression levels of gamma-H2AX and the DNA repair enzyme, NBS1, was more pronounced in MNNG/HOS than in MG63. We suggest that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell cycle arrest and allows to repair DNA damage. Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, our data suggest

  17. Activation and stabilization of enzymes in ionic liquids.

    PubMed

    Moniruzzaman, Muhammad; Kamiya, Noriho; Goto, Masahiro

    2010-06-28

    As environmentally benign "green" solvents, room temperature ionic liquids (ILs) have been used as solvents or (co)solvents in biocatalytic reactions and processes for a decade. The technological utility of enzymes can be enhanced greatly by their use in ionic liquids (ILs) rather than in conventional organic solvents or in their natural aqueous reaction media. In fact, the combination of green properties and unique tailor-made physicochemical properties make ILs excellent non-aqueous solvents for enzymatic catalysis with numerous advantages over other solvents, including high conversion rates, high selectivity, better enzyme stability, as well as better recoverability and recyclability. However, in many cases, particularly in hydrophilic ILs, enzymes show relative instability and/or lower activity compared with conventional solvents. To improve the enzyme activity as well as stability in ILs, various attempts have been made by modifying the form of the enzymes. Examples are enzyme immobilization onto support materials via adsorption or multipoint attachment, lyophilization in the presence of stabilizing agents, chemical modification with stabilizing agents, formation of cross-linked enzyme aggregates, pretreatment with polar organic solvents or enzymes combined with suitable surfactants to form microemulsions. The use of these enzyme preparations in ILs can dramatically increase the solvent tolerance, enhance activity as well as stability, and improve enantioselectivity. This perspective highlights a number of pronounced strategies being used successfully for activation and stabilization of enzymes in non-aqueous ILs media. This review is not intended to be comprehensive, but rather to present a general overview of the potential approaches to activate enzymes for diverse enzymatic processes and biotransformations in ILs. PMID:20445940

  18. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  19. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots.

  20. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  1. Active stabilization to prevent surge in centrifugal compression systems

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Greitzer, Edward M.; Simon, Jon S.; Valavani, Lena

    1993-01-01

    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range

  2. Proteolytically stabilizing fibronectin without compromising cell and gelatin binding activity.

    PubMed

    Zhang, Chen; Ramanathan, Anand; Karuri, Nancy Wangechi

    2015-01-01

    Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds.

  3. [Augmented anterior cruciate ligament replacement with the Kennedy-LAD (ligament augmentation device)--long term outcome].

    PubMed

    Riel, K A

    1998-01-01

    The ligament augmentation device (Kennedy-LAD) is used to protect tendon grafts during the posttransplantation decrease in strength in anterior cruciate ligament (acl) reconstructions. The augmentation with the LAD is based on the concept of load sharing. Since 1983 we used the LAD in acl-reconstructions in 856 patients. In 63 cases we had to treat complications like infection (8), recurrent effusions (21), arthrofibrosis (34). The overall results are good with respect to stability, regain of strength and sports activity. In 73 cases resurgery was necessary because of synovitis (7), LAD-rupture due to re-injury (9), fatigue-rupture of the LAD (22), meniscal tears (35), 2.7 +/- 2.3 years (range: 2 months to 10 years) after LAD implantation. Modern techniques in acl reconstruction lead to comparable results without synthetic augmentation. Therefore, we now recommend the use of a LAD only in cases of repeated acl replacement with week tendon grafts, to avoid an allograft.

  4. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  5. RNF4-Dependent Oncogene Activation by Protein Stabilization.

    PubMed

    Thomas, Jane J; Abed, Mona; Heuberger, Julian; Novak, Rostislav; Zohar, Yaniv; Beltran Lopez, Angela P; Trausch-Azar, Julie S; Ilagan, Ma Xenia G; Benhamou, David; Dittmar, Gunnar; Kopan, Raphael; Birchmeier, Walter; Schwartz, Alan L; Orian, Amir

    2016-09-20

    Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including β-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate's phosphorylation, rather than SUMOylation, and binding to RNF4's arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation. PMID:27653698

  6. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  7. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function

    PubMed Central

    Liu, Xuefeng; Roberts, Jeffrey; Dakic, Aleksandra; Zhang, Yiyu; Schlegel, Richard

    2009-01-01

    The E6 and E7 proteins of high-risk HPVs are both required for the immortalization of primary human keratinocytes and the maintenance of the malignant phenotype of HPV-positive cancer cell lines. Our previous studies have shown that E6 protein binds Myc protein and that both E6 and Myc associate with and cooperatively activate the hTERT promoter, thereby increasing cellular telomerase activity. In this study, we evaluated the role of E7 in the maintenance and activation of telomerase in immortalized and tumorigenic cells. siRNA knockdown of either E6 or E7 (or both) in HPV-immortalized cells or an HPV-positive cancer cell line reduced hTERT transcription and telomerase activity. Since telomerase was inhibited by E7 siRNA in cells that independently expressed the E6 and E7 genes, our results reveal an independent role for E7 in the maintenance of telomerase activity. However, E7 alone was insufficient to increase endogenous hTERT mRNA or telomerase activity, although it significantly augmented E6-induced hTERT transcription and telomerase activity. To further explore this apparent E7-induced promoter augmentation, we analyzed an exogenous hTERT core promoter in transduced keratinocytes. E7 alone induced the wt hTERT promoter and augmented E6-induced hTERT promoter activity. Mutation of the E2F site in the hTERT promoter abrogated the ability of E7 to induce the hTERT promoter or to enhance the ability of E6 to induce the promoter. Correspondingly, keratinocytes expressing E6 and a mutant E7 (defective for binding pRb pocket proteins) showed lower telomerase activity than cells expressing wt E6 and wt E7. Thus, HPV E7 plays a role in the maintenance of telomerase activity in stable cell lines and augments acute, E6-induced hTERT promoter activity. PMID:18367227

  8. Trading off stability against activity in extremophilic aldolases

    PubMed Central

    Dick, Markus; Weiergräber, Oliver H.; Classen, Thomas; Bisterfeld, Carolin; Bramski, Julia; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    Understanding enzyme stability and activity in extremophilic organisms is of great biotechnological interest, but many questions are still unsolved. Using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) as model enzyme, we have evaluated structural and functional characteristics of different orthologs from psychrophilic, mesophilic and hyperthermophilic organisms. We present the first crystal structures of psychrophilic DERAs, revealing a dimeric organization resembling their mesophilic but not their thermophilic counterparts. Conversion into monomeric proteins showed that the native dimer interface contributes to stability only in the hyperthermophilic enzymes. Nevertheless, introduction of a disulfide bridge in the interface of a psychrophilic DERA did confer increased thermostability, suggesting a strategy for rational design of more durable enzyme variants. Constraint network analysis revealed particularly sparse interactions between the substrate pocket and its surrounding α-helices in psychrophilic DERAs, which indicates that a more flexible active center underlies their high turnover numbers. PMID:26783049

  9. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity

    PubMed Central

    Ando, Kanae; Maruko-Otake, Akiko; Ohtake, Yosuke; Hayashishita, Motoki; Sekiya, Michiko; Iijima, Koichi M.

    2016-01-01

    Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. PMID:27023670

  10. Synaptic scaling stabilizes persistent activity driven by asynchronous neurotransmitter release.

    PubMed

    Volman, Vladislav; Gerkin, Richard C

    2011-04-01

    Small networks of cultured hippocampal neurons respond to transient stimulation with rhythmic network activity (reverberation) that persists for several seconds, constituting an in vitro model of synchrony, working memory, and seizure. This mode of activity has been shown theoretically and experimentally to depend on asynchronous neurotransmitter release (an essential feature of the developing hippocampus) and is supported by a variety of developing neuronal networks despite variability in the size of populations (10-200 neurons) and in patterns of synaptic connectivity. It has previously been reported in computational models that "small-world" connection topology is ideal for the propagation of similar modes of network activity, although this has been shown only for neurons utilizing synchronous (phasic) synaptic transmission. We investigated how topological constraints on synaptic connectivity could shape the stability of reverberations in small networks that also use asynchronous synaptic transmission. We found that reverberation duration in such networks was resistant to changes in topology and scaled poorly with network size. However, normalization of synaptic drive, by reducing the variance of synaptic input across neurons, stabilized reverberation in such networks. Our results thus suggest that the stability of both normal and pathological states in developing networks might be shaped by variance-normalizing constraints on synaptic drive. We offer an experimental prediction for the consequences of such regulation on the behavior of small networks.

  11. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  12. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  13. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration. PMID:21517529

  14. Weakly sheared active suspensions: Hydrodynamics, stability, and rheology

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: The apparent viscosity may decrease with the increase of the concentration.

  15. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept.

  16. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept. PMID:25016978

  17. Freeze-dried vaccine against Rinderpest: stability and activity study.

    PubMed

    Languet, B; Precausta, P; Mackowiak, M; Dubourget, P; Reynaud, G; Duret, C

    1985-01-01

    A freeze-dried vaccine against Rinderpest was prepared from modified virus multiplied in calf kidney cell culture. Characteristics of the vaccine are as follows: high titre after freeze-drying (10(4) CCID50/dose), well-adapted freeze-drying stabilizer which ensures maintenance of the infective titre of the vaccinal virus, even under severe conditions (3.5 days at +45 degrees C), use of an appropriate solvent: magnesium sulphate molar solution or more simply physiological saline (for stability after reconstitution even at high temperatures--up to 4 h at +45 degrees C). The activity of the vaccine, tested in cattle by antibody titration and resistance to specific challenge perfectly satisfies requirements set by the WHO and OIE.

  18. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  19. Loss of Consciousness Is Associated with Stabilization of Cortical Activity

    PubMed Central

    Solovey, Guillermo; Alonso, Leandro M.; Yanagawa, Toru; Fujii, Naotaka; Magnasco, Marcelo O.; Cecchi, Guillermo A.

    2015-01-01

    What aspects of neuronal activity distinguish the conscious from the unconscious brain? This has been a subject of intense interest and debate since the early days of neurophysiology. However, as any practicing anesthesiologist can attest, it is currently not possible to reliably distinguish a conscious state from an unconscious one on the basis of brain activity. Here we approach this problem from the perspective of dynamical systems theory. We argue that the brain, as a dynamical system, is self-regulated at the boundary between stable and unstable regimes, allowing it in particular to maintain high susceptibility to stimuli. To test this hypothesis, we performed stability analysis of high-density electrocorticography recordings covering an entire cerebral hemisphere in monkeys during reversible loss of consciousness. We show that, during loss of consciousness, the number of eigenmodes at the edge of instability decreases smoothly, independently of the type of anesthetic and specific features of brain activity. The eigenmodes drift back toward the unstable line during recovery of consciousness. Furthermore, we show that stability is an emergent phenomenon dependent on the correlations among activity in different cortical regions rather than signals taken in isolation. These findings support the conclusion that dynamics at the edge of instability are essential for maintaining consciousness and provide a novel and principled measure that distinguishes between the conscious and the unconscious brain. SIGNIFICANCE STATEMENT What distinguishes brain activity during consciousness from that observed during unconsciousness? Answering this question has proven difficult because neither consciousness nor lack thereof have universal signatures in terms of most specific features of brain activity. For instance, different anesthetics induce different patterns of brain activity. We demonstrate that loss of consciousness is universally and reliably associated with stabilization

  20. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  1. Embedding Augmentative Communication within Early Childhood Classrooms.

    ERIC Educational Resources Information Center

    DiCarlo, Cynthia; Banajee, Meher; Stricklin, Sarintha Buras

    2000-01-01

    This article first describes various augmentative communication systems including sign language, picture symbols, and voice output communication devices. It then explains ways to embed augmentative communication within four types of early childhood classroom activities: (1) special or planned activities, (2) meal time, (3) circle time, and (4)…

  2. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats.

    PubMed

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-08-01

    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  3. Research on Social Stability Mechanisms Based on Activation Energy and Gradual Activation Reaction Theory

    NASA Astrophysics Data System (ADS)

    Ning, Miao; Gu, Jifa

    This paper draws a comparison between social stability and chemical reaction process, and brings forward the concept of “social temperature” and “activation energy of social agent”. It is considered that social temperature turns out to be the macro symptom of social average energy, and its unceasing up-climbing roots in the energy accumulation of “inferiorization” process of social system; that “activation energy of social agent” stands for the social energy or temperature where individuals or groups reach the limit of their psychological bearing ability. This paper, basing on above concepts, elaborates on and demonstrates the gradual activation reaction mechanisms of social stability by a lot of concrete examples. It is thought that there is a threshold value for social stability, and the society will be unstable if social temperature goes higher than this value; that the larger the social average activation energy is, the higher the temperature threshold value of social stability will be; and considering that different groups have different activation energy, those fragile groups with low activation energy are often the risk source which might pose a threat to social stability.

  4. Primary implant stability in augmented sinuslift-sites after completed bone regeneration: a randomized controlled clinical study comparing four subantrally inserted biomaterials.

    PubMed

    Troedhan, Angelo; Schlichting, Izabela; Kurrek, Andreas; Wainwright, Marcel

    2014-01-01

    Implant-Insertion-Torque-Value (ITV) proved to be a significant clinical parameter to predict long term implant success-rates and to decide upon immediate loading. The study evaluated ITVs, when four different and commonly used biomaterials were used in sinuslift-procedures compared to natural subantral bone in two-stage-implant-procedures. The tHUCSL-INTRALIFT-method was chosen for sinuslifting in 155 sinuslift-sites for its minimal invasive transcrestal approach and scalable augmentation volume. Four different biomaterials were inserted randomly (easy-graft CRYSTAL n = 38, easy-graft CLASSIC n = 41, NanoBone n = 42, BioOss n = 34), 2 ccm in each case. After a mean healing period of 8,92 months uniform tapered screw Q2-implants were inserted and Drill-Torque-Values (DTV) and ITV were recorded and compared to a group of 36 subantral sites without need of sinuslifting. DTV/ITV were processed for statistics by ANOVA-tests. Mean DTV/ITV obtained in Ncm were: Control Group 10,2/22,2, Bio-Oss 12,7/26,2, NanoBone 17,5/33,3, easy-graft CLASSIC 20,3/45,9, easy-graft CRYSTAL 23,8/56,6 Ncm, significance-level of differences throughout p < 0,05. Within the limits of this study the results suggest self-hardening solid-block-like bone-graft-materials to achieve significantly better DTV/ITV than loose granulate biomaterials for its suspected improvement of vascularization and mineralization of the subantral scaffold by full immobilization of the augmentation site towards pressure changes in the human sinus at normal breathing. PMID:25073446

  5. Primary implant stability in augmented sinuslift-sites after completed bone regeneration: a randomized controlled clinical study comparing four subantrally inserted biomaterials.

    PubMed

    Troedhan, Angelo; Schlichting, Izabela; Kurrek, Andreas; Wainwright, Marcel

    2014-07-30

    Implant-Insertion-Torque-Value (ITV) proved to be a significant clinical parameter to predict long term implant success-rates and to decide upon immediate loading. The study evaluated ITVs, when four different and commonly used biomaterials were used in sinuslift-procedures compared to natural subantral bone in two-stage-implant-procedures. The tHUCSL-INTRALIFT-method was chosen for sinuslifting in 155 sinuslift-sites for its minimal invasive transcrestal approach and scalable augmentation volume. Four different biomaterials were inserted randomly (easy-graft CRYSTAL n = 38, easy-graft CLASSIC n = 41, NanoBone n = 42, BioOss n = 34), 2 ccm in each case. After a mean healing period of 8,92 months uniform tapered screw Q2-implants were inserted and Drill-Torque-Values (DTV) and ITV were recorded and compared to a group of 36 subantral sites without need of sinuslifting. DTV/ITV were processed for statistics by ANOVA-tests. Mean DTV/ITV obtained in Ncm were: Control Group 10,2/22,2, Bio-Oss 12,7/26,2, NanoBone 17,5/33,3, easy-graft CLASSIC 20,3/45,9, easy-graft CRYSTAL 23,8/56,6 Ncm, significance-level of differences throughout p < 0,05. Within the limits of this study the results suggest self-hardening solid-block-like bone-graft-materials to achieve significantly better DTV/ITV than loose granulate biomaterials for its suspected improvement of vascularization and mineralization of the subantral scaffold by full immobilization of the augmentation site towards pressure changes in the human sinus at normal breathing.

  6. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    SciTech Connect

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  7. Protein kinase A activity at the endoplasmic reticulum surface is responsible for augmentation of human ether-a-go-go-related gene product (HERG).

    PubMed

    Sroubek, Jakub; McDonald, Thomas V

    2011-06-17

    Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. PMID:21536683

  8. Protein Kinase A Activity at the Endoplasmic Reticulum Surface Is Responsible for Augmentation of Human ether-a-go-go-related Gene Product (HERG)*

    PubMed Central

    Sroubek, Jakub; McDonald, Thomas V.

    2011-01-01

    Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. PMID:21536683

  9. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  10. Attosecond beamline with actively stabilized and spatially separated beam paths

    NASA Astrophysics Data System (ADS)

    Huppert, M.; Jordan, I.; Wörner, H. J.

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  11. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids. PMID:26724005

  12. Control of Foxp3 stability through modulation of TET activity

    PubMed Central

    Yue, Xiaojing; Trifari, Sara; Äijö, Tarmo; Tsagaratou, Ageliki; Pastor, William A.; Zepeda-Martínez, Jorge A.; Lio, Chan-Wang J.; Li, Xiang; Huang, Yun; Vijayanand, Pandurangan; Lähdesmäki, Harri

    2016-01-01

    Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine and other oxidized methylcytosines, intermediates in DNA demethylation. In this study, we examine the role of TET proteins in regulating Foxp3, a transcription factor essential for the development and function of regulatory T cells (T reg cells), a distinct lineage of CD4+ T cells that prevent autoimmunity and maintain immune homeostasis. We show that during T reg cell development in the thymus, TET proteins mediate the loss of 5mC in T reg cell–specific hypomethylated regions, including CNS1 and CNS2, intronic cis-regulatory elements in the Foxp3 locus. Similar to CNS2-deficient T reg cells, the stability of Foxp3 expression is markedly compromised in T reg cells from Tet2/Tet3 double-deficient mice. Vitamin C potentiates TET activity and acts through Tet2/Tet3 to increase the stability of Foxp3 expression in TGF-β–induced T reg cells. Our data suggest that targeting TET enzymes with small molecule activators such as vitamin C might increase induced T reg cell efficacy. PMID:26903244

  13. Passive and Active Stabilization of Liquid Bridges in Low Gravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Niederhaus, Charles E.; Truong, Duc K.

    2001-01-01

    Tests are planned in the low gravity environment of the International Space Station (ISS) of new methods for the suppression of the capillary instability of liquid bridges. Our suppression methods are unusual in that they are not limited to liquid bridges having very special properties and may impact a variety of low-gravity and earth-based technologies. There are two main approaches to be investigated: (1) Passive Acoustic Stabilization (PAS); and (2) Active Electrostatic Stabilization (AES). In PAS, the suppression of the mode growth is accomplished by placing the bridge in an acoustic field having the appropriate properties such that the acoustic radiation pressure automatically pulls outward on the thinnest portion of the bridge. In AES, the bridge deformation is sensed optically and counteracted by actively adjusting the electrostatic Maxwell stresses via two ring electrodes concentric with the slightly conducting bridge to offset the growth of the unstable mode. While the present work emphasizes cylindrical bridges, the methods need not be restricted to that case. The methods to be explored are relevant to the suppression of capillary instabilities in floating zone crystal growth, breakup of liquid jets and columns, bubbles, and annular films as well as the management of coolants or propellants in low-gravity.

  14. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  15. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  16. Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity.

    PubMed

    Hong, Chansik; Kwak, Misun; Myeong, Jongyun; Ha, Kotdaji; Wie, Jinhong; Jeon, Ju-Hong; So, Insuk

    2015-04-01

    Crucial cysteine residues can be involved in the modulation of protein activity via the modification of thiol (-SH) groups. Among these reactions, disulfide bonds (S-S) play a key role in the folding, stability, and activity of membrane proteins. However, the regulation of extracellular cysteines in classical transient receptor potential (TRPC) channels remains controversial. Here, we examine the functional importance of the extracellular disulfide bond in TRPC5 in modulating channel gating and trafficking. Specifically, we investigated TRPC5 activity in transiently transfected HEK293 cells with wild-type (WT) or cysteine (C553 and C558) mutants in the pore loop. Using reducing agents, we determined that a disulfide linkage mediates the tetrameric formation of the TRPC5 channel. By measuring the TRPC5 current, we observed that C553S or C558S mutants completely lose channel activity induced by lanthanides or receptor stimulation. Co-expression of TRPC5 (WT) with mutants demonstrated a dominant-negative function in mutants, which inhibited the activity of TRPC5 (WT). We generated TRPC5-TRPC5 dimers and observed reduced activity of WT-mutant (C553S or C558S) dimers compared to WT-WT dimers. When pretreated with reducing agents for 12 h, the TRPC5 current decreased due to a reduction in membrane TRPC5 distribution. In addition, we identified a reduced expression of C553S mutant in plasma membrane. We analyzed a dimeric interaction of wild-type and mutant TRPC5 using co-immunoprecipitation and FRET method, indicating a weak interaction between dimeric partners. These results indicated that the disulfide bond between conserved extracellular cysteines, especially C553, is essential for functional TRPC5 activity by channel multimerization and trafficking.

  17. Antimicrobial activity and stability of weakly acidified chlorous acid water.

    PubMed

    Horiuchi, Isanori; Kawata, Hiroyuki; Nagao, Tamiko; Imaohji, Haruyuki; Murakami, Kazuya; Kino, Yasuhiro; Yamasaki, Hisashi; Koyama, A Hajime; Fujita, Yatsuka; Goda, Hisataka; Kuwahara, Tomomi

    2015-01-01

    The antimicrobial activity of weakly acidified chlorous acid water (WACAW) against Staphylococcus aureus, non-pathogenic Escherichia coli, enterohemorrhagic E. coli (EHEC O157:H7), Candida albicans, and spore-forming Bacillus and Paenibacillus species was evaluated in vitro. The antiviral activity was also examined using feline calicivirus (FCV). Diluted WACAW (>100 ppm) effectively reduced the number of non-spore-forming bacteria (>4 log10 CFU reductions) within 5 min. Treatment with this sanitizer at 400 ppm for 30 min achieved>5 log10 CFU reductions in spore-forming Bacillus and Paenibacillus species while an equivalent concentration of sodium hypochlorite (NaClO) resulted in only a 0.98 and 2.72 log10 CFU reduction, respectively. The effect of this sanitizer against FCV was equivalent to that of NaClO. Immersion in WACAW (400 ppm) achieved >4 and 2.26 log10 CFU reductions in Campylobacter jejuni and EHEC, respectively, on artificially contaminated broiler carcass pieces. Finally, theantimicrobial activity of this sanitizer was shown to be maintained for at least 28 d when in contact with nonwoven fabric (100% cotton). This study showed that pH control of chlorous acid is expected to modify its antimicrobial activity and stability. WACAW is expected to have applications in various settings such as the food processing and healthcare industries. PMID:25817812

  18. Active electrostatic control of liquid bridge dynamics and stability.

    PubMed

    Thiessen, David B; Wei, Wei; Marston, Philip L

    2004-11-01

    Stabilization of cylindrical liquid bridges beyond the Rayleigh-Plateau limit has been demonstrated in both Plateau-tank experiments and in short-duration low gravity on NASA KC-135 aircraft using an active electrostatic control method. The method controls the (2,0) capillary mode using an optical modal-amplitude detector and mode-coupled electrostatic feedback stress. The application of mode-coupled stresses to a liquid bridge is also a very useful way to study mode dynamics. A pure (2,0)-mode oscillation can be excited by periodic forcing and then the forcing can be turned off to allow for a free decay from which the frequency and damping of the mode is measured. This can be done in the presence or absence of feedback control. Mode-coupled feedback stress applied in proportion to modal amplitude with appropriate gain leads to stiffening of the mode allowing for stabilization beyond the Rayleigh-Plateau limit. If the opposite sign of gain is applied the mode frequency is reduced. It has also been demonstrated that, by applying feedback in proportion to the modal velocity, the damping of the mode can be increased or decreased depending on the velocity gain. Thus, both the mode frequency and damping can be independently controlled at the same time and this has been demonstrated in Plateau-tank experiments. The International Space Station (ISS) has its own modes of oscillation, some of which are in a low frequency range comparable to the (2,0)-mode frequency of typical liquid bridges. In the event that a vibration mode of the ISS were close to the frequency of a capillary mode it would be possible, with active electrostatic control, to shift the capillary-mode frequency away from that of the disturbance and simultaneously add artificial damping to further reduce the effect of the g-jitter. In principle, this method could be applied to any fluid configuration with a free surface.

  19. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    SciTech Connect

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. )

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  20. Combined stimulation of IL-2 and 4-1BB receptors augments the antitumor activity of E7 DNA vaccines by increasing Ag-specific CTL responses.

    PubMed

    Kim, Ha; Kwon, Byungsuk; Sin, Jeong-Im

    2013-01-01

    Human papillomavirus (HPV) infection is a major cause of cervical cancer. Here, we investigate whether concurrent therapy using HPV E7 DNA vaccines (pE7) plus IL-2 vs. IL-15 cDNA and anti-4-1BB Abs might augment antitumor activity against established tumors. IL-2 cDNA was slightly better than IL-15 cDNA as a pE7 adjuvant. Co-delivery of pE7+IL-2 cDNA increased tumor cure rates from 7% to 27%, whereas co-delivery of pE7+IL-2 cDNA with anti-4-1BB Abs increased tumor cure rates from 27% to 67% and elicited long-term memory responses. This increased activity was concomitant with increased induction of Ag-specific CTL activity and IFN-γ responses, but not with Ag-specific IgG production. Moreover, the combined stimulation of IL-2 and 4-1BB receptors with rIL-2 and anti-4-1BB Abs resulted in enhanced production of IFN-γ from Ag-specific CD8+ T cells. However, this effect was abolished by treatment with anti-IL-2 Abs and 4-1BB-Fc, suggesting that the observed effect was IL-2- and anti-4-1BB Ab-specific. A similar result was also obtained for Ag-specific CTL activity. Thus, these studies demonstrate that combined stimulation through the IL-2 and 4-1BB receptors augments the Ag-specific CD8+ CTL responses induced by pE7, increasing tumor cure rates and long-term antitumor immune memory. These findings may have implications for the design of DNA-based therapeutic vaccines against cancer. PMID:24391824

  1. A single mutation within a Ca(2+) binding loop increases proteolytic activity, thermal stability, and surfactant stability.

    PubMed

    Okuda, Mitsuyoshi; Ozawa, Tadahiro; Tohata, Masatoshi; Sato, Tsuyoshi; Saeki, Katsuhisa; Ozaki, Katsuya

    2013-03-01

    We improved the enzymatic properties of the oxidatively stable alkaline serine protease KP-43 through protein engineering to make it more suitable for use in laundry detergents. To enhance proteolytic activity, the gene encoding KP-43 was mutagenized by error-prone PCR. Screening identified a Tyr195Cys mutant enzyme that exhibited increased specific activity toward casein between pH 7 and 11. At pH 10, the mutant displayed 1.3-fold higher specific activity for casein compared to the wild-type enzyme, but the activity of the mutant was essentially unchanged toward several synthetic peptides. Furthermore, the Tyr195Cys mutation significantly increased thermal stability and surfactant stability of the enzyme under oxidizing conditions. Examination of the crystal structure of KP-43 revealed that Tyr195 is a solvent exposed residue that forms part of a flexible loop that binds a Ca(2+) ion. This residue lies 15-20Å away from the residues comprising the catalytic triad of the enzyme. These results suggest that the substitution at position 195 does not alter the structure of the active center, but instead may affect a substrate-enzyme interaction. We propose that the Tyr195Cys mutation enhances the interaction with Ca(2+) and affects the packing of the Ca(2+) binding loop, consequently increasing protein stability. The simultaneously increased proteolytic activity, thermal stability, and surfactant stability of the Tyr195Cys mutant enzyme make the protein an ideal candidate for laundry detergent application.

  2. Enhanced Raman sensitivity using an actively stabilized external resonator

    NASA Astrophysics Data System (ADS)

    Taylor, David J.; Glugla, Manfred; Penzhorn, Ralf-Dieter

    2001-04-01

    An enhancement up to 250-fold in laser Raman signals for real-time gas analysis has been achieved within an actively stabilized external resonator (ASER), whose length is actively matched to the single-frequency excitation laser using the Pound-Drever technique. With the Raman cell present, enhancements up to 50-fold are achieved, and the resulting detection limit for hydrogen in ambient-pressure gas mixtures is about ten parts-per-million in a 1 min analysis period at unity signal-to-noise ratio. Based upon the recent development of a fiber-pumped Nd:YVO4 laser with single-frequency output exceeding 5 W at 532 nm, this highly sensitive instrument is applied to detection of tritiated gases, wherein the compactness and low heat of this laser head permit placing the entire optical system, including laser head, charge coupled Raman detector, and ASER, within the glove box necessary for secondary containment of tritium, thereby accomplishing a robust, highly sensitive Raman analytical system for hazardous substances.

  3. Synthesis, thermal stability, and photocatalytic activity of nanocrystalline titanium carbide

    SciTech Connect

    Chen, Youjian; Zhang, Hong; Ma, DeKun; Ma, Jianhua; Ye, Hongnan; Qian, Gaojin; Ye, Yi

    2011-11-15

    Highlights: {yields} The synthesized temperature is lower than some conventional methods. {yields} These raw materials are safe; all manipulations are rather safe and convenient. {yields} The product exhibits photocatalytic activity in degradation of Rhodamine-B. -- Abstract: Titanium carbide (TiC) was prepared via one simple route by the reaction of metallic magnesium powders with titanium dioxide (TiO{sub 2}) and potassium acetate (CH{sub 3}COOK) in an autoclave at 600 {sup o}C and 8 h. Phase structure and morphology were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). The results indicated that the product was cubic TiC, which consisted of particles with an average size of about 100 nm in diameter. The product was also studied by the thermogravimetric analysis (TGA) and its photocatalysis. It had good thermal stability and oxidation resistance below 350 {sup o}C in air. In addition, we discovered that the cubic TiC powders exhibited photocatalytic activity in degradation of Rhodamine-B (RhB) under 500 W mercury lamp light irradiation.

  4. Augmentation-related brain plasticity.

    PubMed

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  5. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  6. Augmentation-related brain plasticity.

    PubMed

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self.

  7. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  8. Micron: an Actively Stabilized Handheld Tool for Microsurgery

    PubMed Central

    MacLachlan, Robert A.; Becker, Brian C.; Tabarés, Jaime Cuevas; Podnar, Gregg W.; Lobes, Louis A.; Riviere, Cameron N.

    2011-01-01

    We describe the design and performance of a hand-held actively stabilized tool to increase accuracy in micro-surgery or other precision manipulation. It removes involuntary motion such as tremor by actuating the tip to counteract the effect of the undesired handle motion. The key components are a three-degree-of-freedom piezoelectric manipulator that has 400 μm range of motion, 1 N force capability, and bandwidth over 100 Hz, and an optical position measurement subsystem that acquires the tool pose with 4 μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By considering the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three non-surgeons showed a reduction in position error of between 32% and 52%, depending on the error metric. PMID:23028266

  9. SUMOylation of Pancreatic Glucokinase Regulates Its Cellular Stability and Activity*

    PubMed Central

    Aukrust, Ingvild; Bjørkhaug, Lise; Negahdar, Maria; Molnes, Janne; Johansson, Bente B.; Müller, Yvonne; Haas, Wilhelm; Gygi, Steven P.; Søvik, Oddmund; Flatmark, Torgeir; Kulkarni, Rohit N.; Njølstad, Pål R.

    2013-01-01

    Glucokinase is the predominant hexokinase expressed in hepatocytes and pancreatic β-cells, with a pivotal role in regulating glucose-stimulated insulin secretion, illustrated by glucokinase gene mutations causing monogenic diabetes and congenital hyperinsulinemic hypoglycemia. A complex tissue-specific network of mechanisms regulates this enzyme, and a major unanswered question in glucokinase biology is how post-translational modifications control the function of the enzyme. Here, we show that the pancreatic isoform of human glucokinase is SUMOylated in vitro, using recombinant enzymes, and in insulin-secreting model cells. Three N-terminal lysines unique for the pancreatic isoform (Lys-12/Lys-13 and/or Lys-15) may represent one SUMOylation site, with an additional site (Lys-346) common for the pancreatic and the liver isoform. SUMO-1 and E2 overexpression stabilized preferentially the wild-type human pancreatic enzyme in MIN6 β-cells, and SUMOylation increased the catalytic activity of recombinant human glucokinase in vitro and also of glucokinase in target cells. Small ubiquitin-like modifier conjugation represents a novel form of post-translational modification of the enzyme, and it may have an important regulatory function in pancreatic β-cells. PMID:23297408

  10. Antioxidant Activities and Oxidative Stabilities of Some Unconventional Oilseeds.

    PubMed

    Uluata, Sibel; Ozdemir, Nurhayat

    2012-04-01

    The oils of some unconventional oilseeds (hemp, radish, terebinth, stinging nettle, laurel) were obtained by a cold-press method in which the total oil content, fatty acids, tocopherol isomers, some metal contents (Ca, Mg, Fe, Cu), antioxidant activity and oxidative stability were determined. The total oil content was determined ranging between 30.68 and 43.12%, and the oil samples had large amounts of unsaturated fatty acids, with oleic acid and linoleic acid. Of all the oils, terebinth seed oil had the highest α-tocopherol content (102.21 ± 1.01 mg/kg oil). Laurel oilseed had the highest antiradical activity in both the DPPH and ABTS assays. The peroxide value of the non-oxidized oils ranged between 0.51 and 3.73 mequiv O(2)/kg oil. The TBARS value of the non-oxidized oils ranged between 0.68 ± 0.02 and 6.43 ± 0.48 mmol MA equiv/g oil. At 110 °C, the Rancimat induction period of the oils ranged between 1.32 and 43.44 h. The infrared spectra of the samples were recorded by FTIR spectroscopy. The absorbance values of the spectrum bands were observed and it was determined that some of the chemical groups of oxidized oils caused changes in absorbance. As a result of the present research, the analyzed oils could be evaluated as an alternative to traditionally consumed vegetable oils or as additives to them.

  11. Activity Level from Birth through First Grade: Stability or Inversion of Intensity?

    ERIC Educational Resources Information Center

    McBride-Chang, Catherine; And Others

    1996-01-01

    Examined two hypotheses regarding activity level: (1) early appearing stability; and (2) inversion of intensity. Measured behavioral intensity or activity level six times between the neonatal period and first grade. Results indicated that parent ratings supported activity level stability. Observations revealed that intense neonatal activity…

  12. Equating of Augmented Subscores

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Haberman, Shelby J.

    2011-01-01

    Recently, there has been an increasing level of interest in subscores for their potential diagnostic value. Haberman (2008b) suggested reporting an augmented subscore that is a linear combination of a subscore and the total score. Sinharay and Haberman (2008) and Sinharay (2010) showed that augmented subscores often lead to more accurate…

  13. Confronting an Augmented Reality

    ERIC Educational Resources Information Center

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  14. Malar and submalar augmentation.

    PubMed

    Binder, William J; Azizzadeh, Babak

    2008-02-01

    Over the past four decades, revolutionary improvements in the design and manufacture of facial implants have broadened the application of midface augmentation. The contemporary practice of facial rejuvenation reflects a 20-year culmination of rapid advances made in the understanding and treatment of midface aging. This article highlights the practice of malar and submalar augmentation: when and how it should be used.

  15. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  16. Robust stability analysis of delayed Takagi-Sugeno fuzzy Hopfield neural networks with discontinuous activation functions

    PubMed Central

    Huang, Lihong; Zuo, Yi

    2010-01-01

    In this paper, the global robust stability problem of delayed Takagi–Sugeno fuzzy Hopfield neural networks with discontinuous activation functions (TSFHNNs) is considered. Based on Lyapunov stability theory and M-matrices theory, we derive a stability criterion to guarantee the global robust stability of TSFHNNs. Compared with the existing literature, we remove the assumptions on the neuron activations such as Lipschitz conditions, bounded, monotonic increasing property or the assumption that the right-limit value is bigger than the left one at the discontinuous point. Finally, two numerical examples are given to show the effectiveness of the proposed stability results. PMID:22132043

  17. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release.

    PubMed

    Ilyinskii, Petr O; Roy, Christopher J; O'Neil, Conlin P; Browning, Erica A; Pittet, Lynnelle A; Altreuter, David H; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A; Iannacone, Matteo; Radovic-Moreno, Aleksandar F; Langer, Robert S; Farokhzad, Omid C; von Andrian, Ulrich H; Johnston, Lloyd P M; Kishimoto, Takashi Kei

    2014-05-19

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required.

  18. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release.

    PubMed

    Ilyinskii, Petr O; Roy, Christopher J; O'Neil, Conlin P; Browning, Erica A; Pittet, Lynnelle A; Altreuter, David H; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A; Iannacone, Matteo; Radovic-Moreno, Aleksandar F; Langer, Robert S; Farokhzad, Omid C; von Andrian, Ulrich H; Johnston, Lloyd P M; Kishimoto, Takashi Kei

    2014-05-19

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  19. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  20. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    SciTech Connect

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  1. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV.

    PubMed

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H; Wang, Yijin; Hakim, Mohamad S; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M; van der Laan, Luc J W; van der Woude, C Janneke; Sprengers, Dave; Metselaar, Herold J; Smits, Ron; Poot, Raymond A; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-01-01

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV. PMID:27150018

  2. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV

    PubMed Central

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H.; Wang, Yijin; Hakim, Mohamad S.; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M.; van der Laan, Luc J. W.; van der Woude, C. Janneke; Sprengers, Dave; Metselaar, Herold J.; Smits, Ron; Poot, Raymond A.; Peppelenbosch, Maikel P.; Pan, Qiuwei

    2016-01-01

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV. PMID:27150018

  3. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion.

    PubMed

    Zhen, Wenlong; Li, Bo; Lu, Gongxuan; Ma, Jiantai

    2015-01-31

    A novel, highly active catalyst Ni@MOF-5 showed unexpected activity at low temperature for CO2 methanation. The characterization results indicated that Ni was uniformly and highly dispersed over MOF-5. This catalyst showed high stability and almost no deactivation in long term stability tests up to 100 h. PMID:25518948

  4. Control Augmented Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Lust, Robert V.; Schmit, Lucien A.

    1988-01-01

    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.

  5. SUMO-specific protease 1 modulates cadmium-augmented transcriptional activity of androgen receptor (AR) by reversing AR SUMOylation.

    PubMed

    Wu, Ruiqin; Cui, Yaxiong; Yuan, Xiaoyan; Yuan, Haitao; Wang, Yimei; He, Jun; Zhao, Jun; Peng, Shuangqing

    2014-09-01

    Cadmium is a potential prostate carcinogen and can mimic the effects of androgen by a mechanism that involves the hormone-binding domain of the androgen receptor (AR), which is a key transcriptional factor in prostate carcinogenesis. We focused on transcriptional activity of AR to investigate the toxicity of cadmium exposure on human prostate cell lines. Cadmium increased the proliferative index of LNCaP and the proliferative effect was obstructed significantly by AR blocking agent. In luciferase assay, cadmium activated the transcriptional activity of AR in 293T cells co-transfected with wild-type AR and an ARE (AR response elements)-luciferase reporter gene. Cadmium also increased expression of PSA, a downstream gene of AR, whereas the metal had no significant effect on AR amount. AR is regulated by multiple posttranslational modifications including SUMOylation. SUMOylated AR shows a lower transcriptional activity. SUMO-specific protease 1 (SENP1) decreases AR SUMOylation by deconjugating AR-SUMO covalent bond. We detected that cadmium increased the amount of SENP1 in a dose and time dependent manner. Knocking down of SENP1 by RNAi led to decrease of PSA expression and transcriptional activity of AR in luciferase assay. Furthermore, co-immunoprecipitation (Co-IP) results showed that SUMOylation level of AR was decreased after cadmium treatment. In conclusion, our results indicated that cadmium-induced SENP1 enhanced AR transcriptional activity by decreasing AR SUMOylation.

  6. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  7. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries. PMID:22559183

  8. The HART I augmented electric gun facility

    SciTech Connect

    Fikse, D.A.; Ciesar, J.A.; Wehrli, H.A.; Rimersma, H.; Docherty, E.F.; Pipich, C.W. )

    1991-01-01

    This paper reports on an augmented electric gun system that has been commissioned. This system, called HART I (Hypervelocity Augmented Railgun Test), is built around a double augmented rail arrangement with a 1.27-cm square bore. It is powered by the SUVAC II 5.6-MJ distributed capacitor power supply. This arrangement allows operation in a simple, series augmented, or transaugmented gun system configuration. The objective of this facility is to perform materials research augmentation studies, and armature development in the 10-km/s regime. Armature masses of 2 to 4 g will be accelerated in a 4-m long barrel. Baseline bore materials will begin with conventional G9/GlidCop systems and then move into pyrolytic boron nitride/refractory materials. Hybrids, plasma, and ablation stabilized armature systems are planned. The gun system is instrumented with plasma and rail B-dot probes for inbore velocity measurements. In addition, breech and muzzle voltages, currents, and external velocities are measured. The HART I system is currently performing hypervelocity experiments to verify the augmentation models.

  9. Augmentation of the Lipopolysaccharide-Neutralizing Activities of Human Cathelicidin CAP18/LL-37-Derived Antimicrobial Peptides by Replacement with Hydrophobic and Cationic Amino Acid Residues

    PubMed Central

    Nagaoka, Isao; Hirota, Satoko; Niyonsaba, François; Hirata, Michimasa; Adachi, Yoshiyuki; Tamura, Hiroshi; Tanaka, Shigenori; Heumann, Didier

    2002-01-01

    Mammalian myeloid and epithelial cells express various peptide antibiotics (such as defensins and cathelicidins) that contribute to the innate host defense against invading microorganisms. Among these peptides, human cathelicidin CAP18/LL-37 (L1 to S37) possesses not only potent antibacterial activity against gram-positive and gram-negative bacteria but also the ability to bind to gram-negative lipopolysaccharide (LPS) and neutralize its biological activities. In this study, to develop peptide derivatives with improved LPS-neutralizing activities, we utilized an 18-mer peptide (K15 to V32) of LL-37 as a template and evaluated the activities of modified peptides by using the CD14+ murine macrophage cell line RAW 264.7 and the murine endotoxin shock model. By replacement of E16 and K25 with two L residues, the hydrophobicity of the peptide (18-mer LL) was increased, and by further replacement of Q22, D26, and N30 with three K residues, the cationicity of the peptide (18-mer LLKKK) was enhanced. Among peptide derivatives, 18-mer LLKKK displayed the most powerful LPS-neutralizing activity: it was most potent at binding to LPS, inhibiting the interaction between LPS and LPS-binding protein, and attaching to the CD14 molecule, thereby suppressing the binding of LPS to CD14+ cells and attenuating production of tumor necrosis factor alpha (TNF-α) by these cells. Furthermore, in the murine endotoxin shock model, 18-mer LLKKK most effectively suppressed LPS-induced TNF-α production and protected mice from lethal endotoxin shock. Together, these observations indicate that the LPS-neutralizing activities of the amphipathic human CAP18/LL-37-derived 18-mer peptide can be augmented by modifying its hydrophobicity and cationicity, and that 18-mer LLKKK is the most potent of the peptide derivatives, with therapeutic potential for gram-negative bacterial endotoxin shock. PMID:12204946

  10. Spacecraft stability and control

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Today, satellite stability and control has become a higher priority. For a satellite design that is to have a life expectancy of 14 years, appropriate spacecraft flight control systems will be reviewed, stability requirements investigated, and an appropriate flight control system recommended in order to see the design process. Disturbance torques, including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques, will be assessed to quantify the disturbance environment so that the required compensating torques can be determined. The control torques, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, inertia augmentation techniques, three-axis control, and reaction control systems (RCSs), will be considered. Conditions for stability will also be considered.

  11. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor.

    PubMed

    Resch, Jon M; Albano, Rebecca; Liu, XiaoQian; Hjelmhaug, Julie; Lobner, Doug; Baker, David A; Choi, SuJean

    2014-07-28

    In the central nervous system, cystine import in exchange for glutamate through system xc(-) is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc(-) activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally-derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc(-) . In the current study, 24-hour treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc(-) function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc(-) inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc(-) activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc(-) . Furthermore, the potentiation of system xc(-) activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc(-) activity. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  12. Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils.

    PubMed Central

    Coffey, M J; Phare, S M; George, S; Peters-Golden, M; Kazanjian, P H

    1998-01-01

    Neutrophil (PMN) dysfunction occurs in HIV infection. Leukotrienes (LT) are mediators derived from the 5-lipoxygenase (5-LO) pathway that play a role in host defense and are synthesized by PMN. We investigated the synthesis of LT by PMN from HIV-infected subjects. There was a reduction (4.0+/-1.3% of control) in LT synthesis in PMN from HIV-infected compared with normal subjects. This was associated with reduced expression of 5-LO-activating protein (31.2+/-9.6% of normal), but not of 5-LO itself. Since HIV does not directly infect PMN, we considered that these effects were due to reduced release of cytokines, such as granulocyte colony-stimulating factor (G-CSF). We examined the effect of G-CSF treatment (300 microgram daily for 5 d) on eight HIV-infected subjects. PMN were studied in vitro before therapy (day 1) and on days 4 and 7. LTB4 synthesis was increased on day 4 of G-CSF treatment, and returned toward day 1 levels on day 7. 5-LO and 5-LO-activating protein expression were increased in parallel. As a functional correlate to this increase in PMN LT synthesis by G-CSF, we examined the effects on killing of Cryptococcus neoformans. Anticryptococcal activity of PMN from HIV-infected subjects was less than that of PMN from normal subjects. G-CSF treatment improved fungistatic activity of PMN. This increase in antifungal activity was attenuated by in vitro treatment with the LT synthesis inhibitor, MK-886. In conclusion, PMN from HIV-infected subjects demonstrate reduced 5-LO metabolism and antifungal activity in vitro, which was reversed by in vivo G-CSF therapy. PMID:9710433

  13. Media-Augmented Exercise Machines

    NASA Astrophysics Data System (ADS)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  14. Active stabilization of a diode laser injection lock

    NASA Astrophysics Data System (ADS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  15. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  16. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed. PMID:27370428

  17. Catalysts possessing augmented C-O and C-N hydrogenolysis activity. Preliminary progress report, August-September 1983

    SciTech Connect

    Massoth, F.E.; Shabtai, J.S.

    1983-10-31

    The aim of the proposed research is to synthesize and investigate new sulfided catalyst systems having higher carbon-heteroatom hydrogenolysis activity as compared to ring hydrogenation activity. A fundamental approach is planned to gain understanding of the basic catalytic properties which relate to hydrogenolysis, hydrogenation and cracking functions of the catalysts. This will involve preparation of new catalysts, characterization of their properties and model compound reactivity studies. In another part of the project, selected catalysts will be applied in studies of more complex O- and N-containing model compounds with the objective of providing fundamental data on the stereochemistry of HDO and HDN reactions. These data will be used to develop steric surface-reactant models for sulfided catalysts. These new catalysts should be of particular importance for upgrading of coal-derived liquids and solids, as well as other heavy feedstocks. The research is divided into four tasks: (1) catalyst preparation and activity testing; (2) catalyst characterization; (2) study of catalyst activity under hydroprocessing conditions; and (4) stereochemical studies. This report covers a period of only one month. Work was initiated on catalyst preparation. A brief literature search was made to ascertain what different preparation methods can be applied to supported sulfide catalysts besides the standard wetness method. Several Cr/Al/sub 2/O/sub 3/ catalysts containing Co or Ni were prepared by the standard impregnation method. 3 references.

  18. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes.

    PubMed

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-09-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.

  19. Augmentation of platelet and endothelial cell eNOS activity decreases sepsis-related neutrophil-endothelial cell interactions.

    PubMed

    Khan, Raymond; Kirschenbaum, Linda A; LaRow, Catherine; Berna, Gioiamaria; Griffin, Kelly; Astiz, Mark E

    2010-03-01

    NO is an important mediator of microvascular patency and blood flow. The purpose of this study was to examine the role of enhanced eNOS activity in attenuating sepsis-induced neutrophil-endothelial cell interactions. Microslides coated with human umbilical vein endothelial cells were stimulated with plasma from patients with septic shock. Neutrophil and platelets from control subjects were also stimulated with plasma from patients in septic shock and perfused over stimulated endothelial cells. l-Arginine (LA) with and without NG-monomethyl l-arginine (LNMMA), a nonselective NOS inhibitor, and N-(3-(aminomethyl) benzyl acetamide) ethanimidamide dihydrochloride (1400W), a highly selective iNOS inhibitor, were added to the septic plasma. The number of neutrophils adherent to endothelial cells, neutrophil rolling velocity, and the number of neutrophil aggregates were determined. Cell activation and the formation of platelet-neutrophil aggregates were assessed by flow cytometry. Separate experiments were done with isolated platelets using platelet aggregometry. l-Arginine significantly decreased sepsis-related neutrophil adhesion and aggregation and increased rolling velocity. The addition of LNMMA to LA and cell suspensions reversed the effects of LA on these parameters, whereas the addition of 1400W had no effect on LA-related changes. Platelet-neutrophil aggregation, platelet aggregation, platelet activation, and neutrophil activation induced by septic plasma were also significantly decreased by LA. Again, the addition of LNMMA reversed the effects of LA on these parameters, whereas 1400W had no effect on LA-related changes. These data suggest that enhancement of platelet and endothelial cell eNOS activity decreases sepsis-induced neutrophil-endothelial cell interactions and may play a role in maintaining microvascular patency in septic shock.

  20. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    that an MHD accelerator can be an effective augmentation system for increasing engine exhaust velocity. More specifically, the experiment is intended to show that electromagnetic effects are effective at producing flow acceleration whereas electrothermal effects do not cause unacceptable heating of the working fluid. The MHD accelerator was designed as an externally diagonalized segmented Faraday channel, which will be inserted into an existing 2-tesla electromagnet. This allows the external power to be connected through two terminals thereby minimizing the complexity and cost associated with powering each segment independently. The design of the accelerator and other components in the flow path has been completed and fabrication activities are underway. This paper provides a full description of MAPX including performance analysis, design, and test plans, and current status.

  1. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen

    PubMed Central

    Dutta, Noton K.; He, Rongjun; Pinn, Michael L.; He, Yantao; Burrows, Francis; Zhang, Zhong-Yin; Karakousis, Petros C.

    2016-01-01

    Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. PMID:27478867

  2. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.

    PubMed

    Hall, Christopher J; Boyle, Rachel H; Astin, Jonathan W; Flores, Maria Vega; Oehlers, Stefan H; Sanderson, Leslie E; Ellett, Felix; Lieschke, Graham J; Crosier, Kathryn E; Crosier, Philip S

    2013-08-01

    Evidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid β-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function.

  3. Catalysts possessing augmented C-O and C-N hydrogenolysis activity. Progress report No. 3, April-June 1984

    SciTech Connect

    Massoth, F.E.; Shabtai, J.S.

    1984-07-01

    The aim this research project is to synthesize and investigate new sulfided catalyst systems having higher carbon-heteroatom hydrogenolysis activity as compared with ring hydrogenation activity. A fundamental approach is being applied to gain understanding of the basic catalytic properties which relate to hydrogenolysis, hydrogenation and cracking functions of the catalysts. This involves preparation of new catalysts, characterization of their properties and model compound reactivity studies. In another part of the project, selected catalysts are being applied in studies of more complex O- and N- containing model compounds with the objective of providing fundamental data on the stereochemistry of HDO and HDN reactions. These data will be used to develop steric surface-reactant models for sulfided catalysts. Supported noble metal catalysts containing Rh and Pd were prepared by incipient wetness impregnation of ..gamma..-Al/sub 2/O/sub 3/ using nitrate solutions. Catalysts containing also Co and Cr were similarly prepared. Catalyst activities for HDO and HDN were evaluated using the model compounds dibenzofuran and indole. Characterization work by ESCA and oxygen chemisorption, of CoMo catalysts, and stereochemical studies with several catalysts were also initiated. 15 references, 1 figure, 3 tables.

  4. Catalysts possessing augmented C-O and C-N hydrogenolysis activity. Progress report No. 1, October-December 1983

    SciTech Connect

    Massoth, F.E.; Shabtai, J.S.

    1984-01-09

    The aim of the proposed research is to synthesize and investigate new sulfided catalyst systems having higher carbon-heteroatom hydrogenolysis activity as compared to ring hydrogenation activity. A fundamental approach is planned to gain understanding of the basic catalytic properties which relate to hydrogenolysis, hydrogenation and cracking functions of the catalysts. This will involve preparation of new catalysts, characterization of their properties and model compound reactivity studies. In another part of the project, selected catalysts will be applied in studies of more complex O- and N- containing model compounds with the objective of providing fundamental data on the stereochemistry of HDO and HDN reactions. These data will be used to develop steric surface-reactant models for sulfided catalysts. During this quarter additional catalysts were prepared by incipient wetness impregnation using solutions at various pH levels. Catalysts prepared by this method included: 3% and 6% Co, or 3% and 6% Ni with either 8% Mo or with 4.5% Cr supported on ..gamma.. alumina. Five catalysts were tested for hydrodeoxygenation (HDO) and hydrodenitrogenation (HDN) activity using model compounds indole and dibenzofuran. 5 references, 5 figures, 1 table.

  5. 3D active stabilization system with sub-micrometer resolution.

    PubMed

    Kursu, Olli; Tuukkanen, Tuomas; Rahkonen, Timo; Vähäsöyrinki, Mikko

    2012-01-01

    Stable positioning between a measurement probe and its target from sub- to few micrometer scales has become a prerequisite in precision metrology and in cellular level measurements from biological tissues. Here we present a 3D stabilization system based on an optoelectronic displacement sensor and custom piezo-actuators driven by a feedback control loop that constantly aims to zero the relative movement between the sensor and the target. We used simulations and prototyping to characterize the developed system. Our results show that 95% attenuation of movement artifacts is achieved at 1 Hz with stabilization performance declining to ca. 70% attenuation at 10 Hz. Stabilization bandwidth is limited by mechanical resonances within the displacement sensor that occur at relatively low frequencies, and are attributable to the sensor's high force sensitivity. We successfully used brain derived micromotion trajectories as a demonstration of complex movement stabilization. The micromotion was reduced to a level of ∼1 µm with nearly 100 fold attenuation at the lower frequencies that are typically associated with physiological processes. These results, and possible improvements of the system, are discussed with a focus on possible ways to increase the sensor's force sensitivity without compromising overall system bandwidth. PMID:22900045

  6. Probing impact of active site residue mutations on stability and activity of Neisseria polysaccharea amylosucrase.

    PubMed

    Daudé, David; Topham, Christopher M; Remaud-Siméon, Magali; André, Isabelle

    2013-12-01

    The amylosucrase from Neisseria polysaccharea is a transglucosidase from the GH13 family of glycoside-hydrolases that naturally catalyzes the synthesis of α-glucans from the widely available donor sucrose. Interestingly, natural molecular evolution has modeled a dense hydrogen bond network at subsite -1 responsible for the specific recognition of sucrose and conversely, it has loosened interactions at the subsite +1 creating a highly promiscuous subsite +1. The residues forming these subsites are considered to be likely involved in the activity as well as the overall stability of the enzyme. To assess their role, a structure-based approach was followed to reshape the subsite -1. A strategy based on stability change predictions, using the FoldX algorithm, was considered to identify the best candidates for site-directed mutagenesis and guide the construction of a small targeted library. A miniaturized purification protocol was developed and both mutant stability and substrate promiscuity were explored. A range of 8 °C between extreme melting temperature values was observed and some variants were able to synthesize series of oligosaccharides with distributions differing from that of the parental enzyme. The crucial role of subsite -1 was thus highlighted and the biocatalysts generated can now be considered as starting points for further engineering purposes.

  7. Evidence for an atypical receptor mediating the augmented bronchoconstrictor response to adenosine induced by allergen challenge in actively sensitized Brown Norway rats.

    PubMed

    Hannon, J P; Tigani, B; Wolber, C; Williams, I; Mazzoni, L; Howes, C; Fozard, J R

    2002-02-01

    The bronchoconstrictor response to adenosine is markedly and selectively increased following ovalbumin (OA) challenge in actively sensitized, Brown Norway rats. We present a pharmacological analysis of the receptor mediating this response. Like adenosine, the broad-spectrum adenosine receptor agonist, NECA, induced dose-related bronchoconstriction in actively sensitized, OA-challenged animals. In contrast, CPA, CGS 21680 and 2-Cl-IB-MECA, agonists selective for A(1) A(2A) and A(3) receptors, respectively, induced no, or minimal, bronchoconstriction. Neither the selective A(1) receptor antagonist, DPCPX, nor the selective A(2A) receptor antagonist, ZM 241385, blocked the bronchoconstrictor response to adenosine. MRS 1754, which has similar affinity for rat A(2B) and A(1) receptors, failed to block the bronchoconstrictor response to adenosine despite blockade of the A(1) receptor-mediated bradycardia induced by NECA. 8-SPT and CGS 15943, antagonists at A(1), A(2A), and A(2B) but not A(3) receptors, inhibited the bronchoconstrictor response to adenosine. However, the degree of blockade (approximately 3 fold) did not reflect the plasma concentrations, which were 139 and 21 times greater than the K(B) value at the rat A(2B) receptor, respectively. Adenosine and NECA, but not CPA, CGS 21680 or 2-Cl-IB-MECA, induced contraction of parenchymal strip preparations from actively sensitized OA-challenged animals. Responses to adenosine could not be antagonized by 8-SPT or MRS 1754 at concentrations >50 times their affinities at the rat A(2B) receptor. The receptor mediating the bronchoconstrictor response to adenosine augmented following allergen challenge in actively sensitized BN rats cannot be categorized as one of the four recognized adenosine receptor subtypes.

  8. Effects of pelvic stabilization on lumbar muscle activity during dynamic exercise.

    PubMed

    San Juan, Jun G; Yaggie, James A; Levy, Susan S; Mooney, Vert; Udermann, Brian E; Mayer, John M

    2005-11-01

    Many commonly utilized low-back exercise devices offer mechanisms to stabilize the pelvis and to isolate the lumbar spine, but the value of these mechanisms remains unclear. The purpose of this study was to examine the effect of pelvic stabilization on the activity of the lumbar and hip extensor muscles during dynamic back extension exercise. Fifteen volunteers in good general health performed dynamic extension exercise in a seated upright position on a lumbar extension machine with and without pelvic stabilization. During exercise, surface electromyographic activity of the lumbar multifidus and biceps femoris was recorded. The activity of the multifidus was 51% greater during the stabilized condition, whereas there was no difference in the activity of the biceps femoris between conditions. This study demonstrates that pelvic stabilization enhances lumbar muscle recruitment during dynamic exercise on machines. Exercise specialists can use these data when designing exercise programs to develop low back strength.

  9. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells.

    PubMed

    Gill, R; Jen, K L; McCabe, M J J; Rosenspire, A

    2016-10-15

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune sequelae of

  10. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells.

    PubMed

    Gill, R; Jen, K L; McCabe, M J J; Rosenspire, A

    2016-10-15

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune sequelae of

  11. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation

    PubMed Central

    Carpenter, Erica L; Mick, Rosemarie; Rüter, Jens; Vonderheide, Robert H

    2009-01-01

    ligation augments the effect of CP-870,893 alone. These results provide further rationale for combining CD40 and TLR9 activation using available clinical reagents in strategies of novel tumor immunotherapy. PMID:19906293

  12. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    PubMed

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions. PMID:21420786

  13. Inter-α/β subunits coupling mediating pre-inactivation and augmented activation of BKCa(β2).

    PubMed

    Hou, Panpan; Zeng, Wenping; Gan, Geliang; Lv, Caixia; Guo, Xiying; Zhang, Zheng; Liu, Haowen; Wu, Ying; Yao, Jing; Wei, Aguan D; Wang, Sheng; Ding, Jiuping

    2013-01-01

    Large-conductance calcium-activated potassium (BK) channels regulate the electric properties and neurotransmitter release in excitable cells. Its auxiliary β2 subunits not only enhance gating, but also confer inactivation via a short-lived preinactivated state. However, the mechanism of enhancement and preinactivation of BK channels by β2 remains elusive. Using our newly developed methods, we demonstrated that electrostatic forces played a crucial role in forming multiple complementary pairs of binding sites between α and β subunits including a "PI site" required for channel preinactivation, an "E site" enhancing calcium sensitivity and an "ECaB" coupling site transferring force to gate from the Ca(2+)-bowl via the β2(K33, R34, K35), E site and S6-C linker, independent of another Ca(2+) binding site mSlo1(D362,D367). A comprehensive structural model of the BK(β2) complex was reconstructed based on these functional studies, which paves the way for a clearer understanding of the structural mechanisms of activation and preinactivation of other BK(β) complexes. PMID:23588888

  14. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis

    PubMed Central

    Fukata, Masayuki; Shang, Limin; Santaolalla, Rebeca; Sotolongo, John; Pastorini, Cristhine; España, Cecilia; Ungaro, Ryan; Harpaz, Noam; Cooper, Harry S.; Elson, Greg; Kosco-Vilbois, Marie; Zaias, Julia; Perez, Maria T.; Mayer, Lloyd; Vamadevan, Arunan S.; Lira, Sergio A.; Abreu, Maria T.

    2010-01-01

    Chronic intestinal inflammation culminates in cancer and a link to TLR4 has been suggested by our observation that TLR4 deficiency prevents colitis-associated neoplasia. In the current study, we address the effect of the aberrant activation of epithelial TLR4 on induction of colitis and colitis-associated tumor development. We take a translational approach to address the consequences of increased TLR signaling in the intestinal mucosa. Mice transgenic for a constitutively-active TLR4 under the intestine-specific villin promoter (villin-TLR4 mice) were treated with DSS for acute colitis and azoxymethane-dextran sulfate sodium. TLR4 expression was analyzed by immunohistochemistry in colonic tissue from patients with ulcerative colitis and ulcerative colitis associated cancer. The effect of an antagonist TLR4 Ab was tested in prevention of colitis-associated neoplasia in the AOM-DSS model. Villin-TLR4 mice were highly susceptible to both acute colitis and colitis-associated neoplasia. Villin-TLR4 mice had increased epithelial expression of COX-2 and mucosal PGE2 production at baseline. Increased severity of colitis in villin-TLR4 mice was characterized by enhanced expression of inflammatory mediators and increased neutrophilic infiltration. In human UC samples, TLR4 expression was upregulated in almost all CAC and progressively increases with grade of dysplasia. As a proof of principle, a TLR4/MD-2 antagonist antibody inhibited colitis-associated neoplasia in the mouse model. Our results show that regulation of TLR's can affect the outcome of both acute colitis and its consequences—cancer. Targeting TLR4 and other TLR's may ultimately play a role in prevention or treatment of colitis-associated cancer. PMID:21674704

  15. Ovariectomy augments hypertension through rho-kinase activation in the brain stem in female spontaneously hypertensive rats.

    PubMed

    Ito, Koji; Hirooka, Yoshitaka; Kimura, Yoshikuni; Sagara, Yoji; Sunagawa, Kenji

    2006-10-01

    Estrogen protects against increases in arterial pressure (AP) by acting on blood vessels and on cardiovascular centers in the brain. The mechanisms underlying the effects of estrogen in the brain stem, however, are not clear. The aim of the present study was to determine whether ovariectomy affects AP via the Rho/Rho-kinase pathway in the brain stem. We performed bilateral ovariectomy in 12-week-old female spontaneously hypertensive rats. AP and heart rate (HR), measured using radiotelemetry in awake rats, were increased in ovariectomized rats compared with control rats (mean AP: 163+/-3 versus 144+/-4 mm Hg; HR: 455+/-4 versus 380+/-6 bpm). Continuous intracisternal infusion of Y-27632 significantly attenuated the ovariectomy-induced increase in AP and HR (mean AP: 137+/-6 versus 163+/-3 mm Hg; HR: 379+/-10 versus 455+/-4 bpm). In addition, we confirmed the increase of Rho-kinase activity in the brain stem in ovariectomized rats, and the increase was attenuated by intracisternal infusion of Y-27632 via the phosphorylated ezrin, radixin, and moesin (ERM) family, which are Rho-kinase target proteins. Furthermore, angiotensin II type 1 receptor expression in the brain stem was significantly greater in ovariectomized rats than in control rats, and the increase was partially reduced by intracisternal infusion of Y-27632. In a separate group of animals, we confirmed that the serum and cerebrospinal fluid 17beta-estradiol concentrations decreased in ovariectomized rats. These results suggest that depletion of endogenous estrogen by ovariectomy, at least in part, induces hypertension in female spontaneously hypertensive rats via activation of the renin-angiotensin system and the Rho/Rho-kinase pathway in the brain stem.

  16. Nonsmooth finite-time stabilization of neural networks with discontinuous activations.

    PubMed

    Liu, Xiaoyang; Park, Ju H; Jiang, Nan; Cao, Jinde

    2014-04-01

    This paper is concerned with the finite-time stabilization for a class of neural networks (NNs) with discontinuous activations. The purpose of the addressed problem is to design a discontinuous controller to stabilize the states of such neural networks in finite time. Unlike the previous works, such stabilization objective will be realized for neural networks when the activations and controllers are both discontinuous. Based on the famous finite-time stability theorem of nonlinear systems and nonsmooth analysis in mathematics, sufficient conditions are established to ensure the finite-time stability of the dynamics of NNs. Then, the upper bound of the settling time for stabilization can be estimated in two forms due to two different methods of proof. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design method.

  17. [Augmented anterior cruciate ligament replacement with the Kennedy-LAD (ligament augmentation device)--long term outcome].

    PubMed

    Riel, K A

    1998-01-01

    The ligament augmentation device (Kennedy-LAD) is used to protect tendon grafts during the posttransplantation decrease in strength in anterior cruciate ligament (acl) reconstructions. The augmentation with the LAD is based on the concept of load sharing. Since 1983 we used the LAD in acl-reconstructions in 856 patients. In 63 cases we had to treat complications like infection (8), recurrent effusions (21), arthrofibrosis (34). The overall results are good with respect to stability, regain of strength and sports activity. In 73 cases resurgery was necessary because of synovitis (7), LAD-rupture due to re-injury (9), fatigue-rupture of the LAD (22), meniscal tears (35), 2.7 +/- 2.3 years (range: 2 months to 10 years) after LAD implantation. Modern techniques in acl reconstruction lead to comparable results without synthetic augmentation. Therefore, we now recommend the use of a LAD only in cases of repeated acl replacement with week tendon grafts, to avoid an allograft. PMID:9816660

  18. The comparison of abdominal muscle activation on unstable surface according to the different trunk stability exercises

    PubMed Central

    Lee, Jung-seok; Kim, Da-yeon; Kim, Tae-ho

    2016-01-01

    [Purpose] This study aimed to determine the effect of abdominal muscle activities and the activation ratio related to trunk stabilization to compare the effects between the abdominal drawing-in maneuver and lumbar stabilization exercises on an unstable base of support. [Subjects and Methods] Study subjects were 20 male and 10 female adults in their 20s without lumbar pain, who were equally and randomly assigned to either the abdominal drawing-in maneuver group and the lumbar stabilization exercise group. Abdominal muscle activation and ratio was measured using a wireless TeleMyo DTS during right leg raise exercises while sitting on a Swiss ball. [Results] Differences in rectus abdominis, external oblique abdominis, and internal oblique abdominis muscle activation were observed before and after treatment. Significant differences were observed between the groups in the muscle activation of the external oblique abdominis and internal oblique abdominis, and the muscle activation ratio of external oblique abdominis/rectus abdominis and internal oblique abdominis/rectus abdominis. [Conclusion] Consequently trunk stability exercise enhances internal oblique abdominis activity and increases trunk stabilization. In addition, the abdominal drawing-in maneuver facilitates the deep muscle more than LSE in abdominal muscle. Therefore, abdominal drawing-in maneuver is more effective than lumbar stabilization exercises in facilitating trunk stabilization. PMID:27134401

  19. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy.

    PubMed

    Xu, Cheng-Xiong; Zhao, Liqun; Yue, Ping; Fang, Guofu; Tao, Hui; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2011-09-15

    Autophagy is a cellular lysosomal degradation pathway essential for regulation of cell survival and death to maintain homeostasis. This process is negatively regulated by mammalian target of rapamycin (mTOR) signaling and often counteracts efficacy of certain cancer therapeutic agents. NVP-BEZ235 (BEZ235) is a novel, orally bioavailable dual PI3K/mTOR inhibitor that has exhibited promising activity against non-small cell lung cancer (NSCLC) in preclinical models. The current study focuses on evaluating the role of BEZ235 in regulating autophagy. BEZ235 was effective in inhibiting the growth of NSCLC cells including induction of apoptosis. It also potently induced the expression of type-II LC3, indicating induction of autophagy. When BEZ235 was used in combination with the lysosomal or autophagic inhibitor chloroquine (CQ), enhanced inhibitory effects on monolayer growth and colony formation of NSCLC cells was observed. In addition, enhanced induction of apoptosis was also detected in cells exposed to the combination of BEZ235 and CQ. Moreover, the combination of BEZ235 and CQ was more effective than each single agent alone in inhibiting the growth of NSCLC xenografts in nude mice. Thus, induction of autophagy by BEZ235 appears to be a survival mechanism that may counteract its anticancer effects. Based on these, we suggest a strategy to enhance BEZ235's anticancer efficacy by blockade of autophagy. PMID:21738008

  20. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy

    PubMed Central

    Xu, Cheng-Xiong; Zhao, Liqun; Yue, Ping; Fang, Guofu; Tao, Hui; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R

    2011-01-01

    Autophagy is a cellular lysosomal degradation pathway essential for regulation of cell survival and death to maintain homeostasis. This process is negatively regulated by mammalian target of rapamycin (mTOR) signaling and often counteracts efficacy of certain cancer therapeutic agents. NVP-BEZ235 (BEZ235) is a novel, orally bioavailable dual PI3K/mTOR inhibitor that has exhibited promising activity against non-small cell lung cancer (NSCLC) in preclinical models. The current study focuses on evaluating the role of BEZ235 in regulating autophagy. BEZ235 was effective in inhibiting the growth of NSCLC cells including induction of apoptosis. It also potently induced the expression of type-II LC3, indicating induction of autophagy. When BEZ235 was used in combination with the lysosomal or autophagic inhibitor chloroquine (CQ), enhanced inhibitory effects on monolayer growth and colony formation of NSCLC cells was observed. In addition, enhanced induction of apoptosis was also detected in cells exposed to the combination of BEZ235 and CQ. Moreover, the combination of BEZ235 and CQ was more effective than each single agent alone in inhibiting the growth of NSCLC xenografts in nude mice. Thus, induction of autophagy by BEZ235 appears to be a survival mechanism that may counteract its anticancer effects. Based on these, we suggest a strategy to enhance BEZ235's anticancer efficacy by blockade of autophagy. PMID:21738008

  1. A complex dietary supplement augments spatial learning, brain mass, and mitochondrial electron transport chain activity in aging mice.

    PubMed

    Aksenov, Vadim; Long, Jiangang; Liu, Jiankang; Szechtman, Henry; Khanna, Parul; Matravadia, Sarthak; Rollo, C David

    2013-02-01

    We developed a complex dietary supplement designed to offset five key mechanisms of aging and tested its effectiveness in ameliorating age-related cognitive decline using a visually cued Morris water maze test. All younger mice (<1 year old) learned the task well. However, older untreated mice (>1 year) were unable to learn the maze even after 5 days, indicative of strong cognitive decline at older ages. In contrast, no cognitive decline was evident in older supplemented mice, even when ∼2 years old. Supplemented older mice were nearly 50% better at locating the platform than age-matched controls. Brain weights of supplemented mice were significantly greater than controls, even at younger ages. Reversal of cognitive decline in activity of complexes III and IV by supplementation was significantly associated with cognitive improvement, implicating energy supply as one possible mechanism. These results represent proof of principle that complex dietary supplements can provide powerful benefits for cognitive function and brain aging.

  2. In vitro augmented photodynamic bactericidal activity of tetracycline and chitosan against Clostridium difficile KCTC5009 in the planktonic cultures.

    PubMed

    Choi, SungSook; Lee, HaeKyung; Yu, JiHan; Chae, HiunSuk

    2015-12-01

    Infection with Clostridium difficile (C. difficile) causes a severe colitis with high recurrence. Treatment of C. difficile infection (CDI) is based on antibiotics in spite of the increase of resistance. To interrupt the vicious cycles such as new antibiotics treatment and appearance of resistance strains, photodynamic therapy (PDT) might be a possible alternative therapy for CDI. Tetracycline (TC) has been used as a broad spectrum antibiotic with low risk of CDI and a photosensitizer (PS) in PDT. In vitro PDT against C. difficile was conducted using UVA and TC as a PS before in vivo study. To enhance the photodynamic antibacterial activity of TC, we applied chitosan as a boostering agent. Bactericidal effects after PDT, were measured by counting viable cells, DNA damage and membrane integrity. At 1mg/mL of TC, chitosan treatment combined with PDT, increased the bactericidal effect by >10,000-fold of the effect of PDT alone. Membrane damage and cellular DNA damage demonstrated by EMA-qPCR were also greater in the group treated with PDT+chitosan than in that treated PDT alone. The present study showed that PDT using a combination of TC and chitosan is an effective method for killing C. difficile.

  3. Insights into the interactions between enzyme and co-solvents: stability and activity of stem bromelain.

    PubMed

    Rani, Anjeeta; Venkatesu, Pannuru

    2015-02-01

    In present study, an attempt is made to elucidate the effects of various naturally occurring osmolytes and denaturants on BM at pH 7.0. The effects of the varying concentrations of glycerol, sorbitol, sucrose, trehalose, urea and guanidinium chloride (GdnHCl) on structure, stability and activity of BM are explored by fluorescence spectroscopy, circular dichroism (CD), UV-vis spectroscopy and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Our experimental observations reveal that glycerol and sorbitol are acting as stabilizers at all concentrations while sucrose and trehalose are found to be destabilizers at lower concentrations, however, acted as stabilizers at higher concentrations. On the other hand, urea and GdnHCl are denaturants except at lower concentrations. There is a direct relationship between activity and conformational stability as the activity data are found to be in accordance with conformational stability parameters (ΔGu, Tm, ΔCp) and BM profile on SDS-PAGE.

  4. Activity and stability of catalase in nonionic micellar and reverse micellar systems.

    PubMed

    Gebicka, Lidia; Jurgas-Grudzinska, Monika

    2004-01-01

    Catalase activity and stability in the presence of simple micelles of Brij 35 and entrapped in reverse micelles of Brij 30 have been studied. The enzyme retains full activity in aqueous micellar solution of Brij 35. Catalase exhibits "superactivity" in reverse micelles composed of 0.1 M Brij 30 in dodecane, n-heptane or isooctane, and significantly lowers the activity in decaline. The incorporation of catalase into Brij 30 reverse micelles enhances its stability at 50 degrees C. However, the stability of catalase incubated at 37 degrees C in micellar and reverse micellar solutions is lower than that in homogeneous aqueous solution. PMID:15666551

  5. Augmenting computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1984-01-01

    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.

  6. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  7. Delay-dependent robust stabilization and H∞ control for neural networks with various activation functions

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Mathiyalagan, K.; Anthoni, S. Marshal

    2012-04-01

    This paper considers the problem of robust stabilization for a class of uncertain neural networks with various activation functions and mixed time delays. The aim is to derive a H∞ control law to ensure the robust stability of the closed-loop system about its equilibrium with parameter uncertainties. By employing the Lyapunov stability theory and the matrix inequality technique, a new set of sufficient conditions is presented for the existence of the H∞ control problem. The stability criteria are derived in terms of linear matrix inequalities (LMIs) which can be solved easily by the Matlab LMI toolbox. In addition to the requirement of global robust stabilization, for a prescribed H∞ performance level the stabilizing controller gain matrices for all delays to satisfy the upper bound of the time-varying delay are required to be obtained. Numerical examples are presented to illustrate the effectiveness of the proposed method.

  8. Live Soap: Stability, Order, and Fluctuations in Apolar Active Smectics

    NASA Astrophysics Data System (ADS)

    Adhyapak, Tapan Chandra; Ramaswamy, Sriram; Toner, John

    2013-03-01

    We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension d=2 and long ranged in d=3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in our simplest model in d=2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in these systems.

  9. HPV16 E6 and E6AP differentially cooperate to stimulate or augment Wnt signaling

    SciTech Connect

    Sominsky, Sophia; Kuslansky, Yael; Shapiro, Beny; Jackman, Anna; Haupt, Ygal; Rosin-Arbesfeld, Rina; Sherman, Levana

    2014-11-15

    The present study investigated the roles of E6 and E6AP in the Wnt pathway. We showed that E6 levels are markedly reduced in cells in which Wnt signaling is activated. Coexpression of wild-type or mutant E6AP (C820A) in Wnt-activated cells stabilized E6 and enhanced Wnt/β-catenin/TCF transcription. Expression of E6AP alone in nonstimulated cells elevated β-catenin level, promoted its nuclear accumulation, and activated β-catenin/TCF transcription. A knockdown of E6AP lowered β-catenin levels. Coexpression with E6 intensified the activities of E6AP. Further experiments proved that E6AP/E6 stabilize β-catenin by protecting it from proteasomal degradation. This function was dependent on the catalytic activity of E6AP, the kinase activity of GSK3β and the susceptibility of β-catenin to GSK3β phosphorylation. Thus, this study identified E6AP as a novel regulator of the Wnt signaling pathway, capable of cooperating with E6 in stimulating or augmenting Wnt/β-catenin signaling, thereby possibly contributing to HPV carcinogenesis. - Highlights: • The roles of E6 and E6AP in the Wnt pathway were investigated. • E6AP stabilizes E6 and enhances E6 activity in augmentation of Wnt signaling. • E6AP cooperates with E6 to stabilize β-catenin and stimulate Wnt/β-catenin signaling. • E6AP and E6 act through different mechanisms to augment or stimulate Wnt signaling.

  10. Local dynamic stability of spine muscle activation and stiffness patterns during repetitive lifting.

    PubMed

    Graham, Ryan B; Brown, Stephen H M

    2014-12-01

    To facilitate stable trunk kinematics, humans must generate appropriate motor patterns to effectively control muscle force and stiffness and respond to biomechanical perturbations and/or neuromuscular control errors. Thus, it is important to understand physiological variables such as muscle force and stiffness, and how these relate to the downstream production of stable spine and trunk movements. This study was designed to assess the local dynamic stability of spine muscle activation and rotational stiffness patterns using Lyapunov analyses, and relationships to the local dynamic stability of resulting spine kinematics, during repetitive lifting and lowering at varying combinations of lifting load and rate. With an increase in the load lifted at a constant rate there was a trend for decreased local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness; although the only significant change was for the full state space muscle activation stability (p < 0.05). With an increase in lifting rate with a constant load there was a significant decrease in the local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness (p ≤ 0.001 for all measures). These novel findings suggest that the stability of motor inputs and the muscular contributions to spine rotational stiffness can be altered by external task demands (load and lifting rate), and therefore are important variables to consider when assessing the stability of the resulting kinematics.

  11. Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability.

    PubMed

    Severn, John R; Chadwick, John C

    2013-07-01

    The activity and stability of homogeneous olefin polymerisation catalysts, when immobilised on a support, are dependent on both chemical and physical effects. Chemical factors affecting catalyst activity include the ease of formation of the active species, which is strongly dependent on the transition metal. Catalyst productivity is dependent on the balance between activity and stability. Immobilisation can lead to a lower proportion of active species and therefore lower initial polymerisation activity, but nevertheless give higher polymer yields in cases where increased catalyst stability is obtained. Important physical factors are support porosity and the ability of a support to undergo progressive fragmentation during polymerisation, facilitating monomer diffusion through the growing catalyst/polymer particle. This article illustrates the importance of these factors in olefin polymerisation with both early- and late-transition metal catalysts, with particular reference to the use of silica and magnesium chloride supports as well as to effects of immobilisation on polymer structure and properties. PMID:23467461

  12. Soft tissue augmentation.

    PubMed

    Hirsch, Ranella J; Cohen, Joel L

    2006-09-01

    Recent additions to the soft tissue augmentation armamentarium have greatly increased the dermatologic surgeon's choices in optimizing facial contouring and the treatment of acne scars. In this article, we review the science of fillers and look at the future of dermal fillers.

  13. Augmented Reality Binoculars.

    PubMed

    Oskiper, Taragay; Sizintsev, Mikhail; Branzoi, Vlad; Samarasekera, Supun; Kumar, Rakesh

    2015-05-01

    In this paper we present an augmented reality binocular system to allow long range high precision augmentation of live telescopic imagery with aerial and terrain based synthetic objects, vehicles, people and effects. The inserted objects must appear stable in the display and must not jitter and drift as the user pans around and examines the scene with the binoculars. The design of the system is based on using two different cameras with wide field of view and narrow field of view lenses enclosed in a binocular shaped shell. Using the wide field of view gives us context and enables us to recover the 3D location and orientation of the binoculars much more robustly, whereas the narrow field of view is used for the actual augmentation as well as to increase precision in tracking. We present our navigation algorithm that uses the two cameras in combination with an inertial measurement unit and global positioning system in an extended Kalman filter and provides jitter free, robust and real-time pose estimation for precise augmentation. We have demonstrated successful use of our system as part of information sharing example as well as a live simulated training system for observer training, in which fixed and rotary wing aircrafts, ground vehicles, and weapon effects are combined with real world scenes. PMID:26357208

  14. Augmentative & Alternative Communication

    ERIC Educational Resources Information Center

    Murphy, Patti

    2007-01-01

    There is no definitive recipe for augmentative and alternative communication (AAC) success, but its universal ingredients can be found at home. The main ones are: (1) Understanding that all children need to express themselves, however outgoing or shy they may be; (2) Willingness to embrace the technology that may help your child regardless of your…

  15. Augmented thermal bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1993-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.

  16. Augmented Thermal Bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1996-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.

  17. Vertebral Augmentation: State of the Art

    PubMed Central

    Nabhane, Linda; Issa El Khoury, Fouad; Kreichati, Gaby; El Rachkidi, Rami

    2016-01-01

    Osteoporotic vertebral compression fractures (OVF) are an increasing public health problem. Cement augmentation (vertebroplasty of kyphoplasty) helps stabilize painful OVF refractory to medical treatment. This stabilization is thought to improve pain and functional outcome. Vertebroplasty consists of injecting cement into a fractured vertebra using a percutaneous transpedicular approach. Balloon kyphoplasty uses an inflatable balloon prior to injecting the cement. Although kyphoplasty is associated with significant improvement of local kyphosis and less cement leakage, this does not result in long-term clinical and functional improvement. Moreover, vertebroplasty is favored by some due to the high cost of kyphoplasty. The injection of cement increases the stiffness of the fracture vertebrae. This can lead, in theory, to adjacent OVF. However, many studies found no increase of subsequent fracture when comparing medical treatment to cement augmentation. Kyphoplasty can have a protective effect due to restoration of sagittal balance. PMID:27114782

  18. Enzyme-polymer composites with high biocatalytic activity and stability

    SciTech Connect

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  19. The role of hydration in enzyme activity and stability: 2. Alcohol dehydrogenase activity and stability in a continuous gas phase reactor.

    PubMed

    Yang, F; Russell, A J

    1996-03-20

    The degree of enzyme hydration is the one of the most important factors which can affect enzyme activity and stability in water-limited environments. Alcohol dehydrogenase from baker's yeast (YADH) has been used as a model enzyme to study the effects of hydration on activity, stability, and cofactor stability with gas phase substrates. In all cases, the enzyme is essentially inactive until a temperature-independent degree of surface coverage by water molecules has been reached. The critical water content corresponds to 40-50% of a single monolayer. Careful control of the degree of hydration, by adjustments to gas humidity and temperature, enables the enzyme to be stabilized for periods exceeding 1 month, whereas in water the half-life of the enzyme is 30 min. The reaction with gas phase substrates follows a pseudo-first-order mechanism with an activation energy of 7.5 +/- kcal/mol, which is almost half of that in aqueous solution. (c) 1996 John Wiley & Sons, Inc.

  20. Pindolol does not act only on 5-HT1A receptors in augmenting antidepressant activity in the mouse forced swimming test.

    PubMed

    Bourin, M; Redrobe, J P; Baker, G B

    1998-04-01

    The present study was undertaken to identify the receptor subtypes involved in (+/-) pindolol's ability to enhance the effects of antidepressant drugs in the mouse forced swimming test. Interaction studies were performed with S 15535 (presynaptic 5-HT1A receptor agonist) and methiothepin (5-HT1B autoreceptor antagonist) in an attempt to attenuate or potentiate antidepressant-like activity. (+/-) Pindolol was tested in combination with selective agonists and antagonists at 5-HT1, 5-HT2 and 5-HT3 receptor subtypes. Pretreatment with S 15535 and methiothepin attenuated the activity of paroxetine, fluvoxamine and citalopram (32 mg/kg, i.p.; P < 0.01). (+/-) Pindolol (32 mg/kg, i.p.) induced significant anti-immobility effects when tested in combination with 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU 24969) (1 mg/kg, i.p.; P < 0.05), 1-(2-methoxyphenyl)-4-[-(2-phthalimido) butyl]piperazine) (NAN 190) (0.5 mg/kg; P < 0.05) and ondansetron (0.00001 mg/kg, i.p.; P < 0.01). Pretreatment with NAN 190 (0.5 mg/kg, i.p.) potentiated the effects of RU 24969 (1 mg/kg, i.p.; P < 0.05) and (+/-) pindolol (32 mg/kg, i.p.; P < 0.05) in the forced swimming test, as did ondansetron (0.00001 mg/kg, i.p.). Significant additive effects were induced when RU 24969 (1 mg/kg, i.p.) was tested in combination with NAN 190 (0.5 mg/kg, i.p.; P < 0.05), (+/-) pindolol (32 mg/kg, i.p.; P < 0.05) and ondansetron (0.0000 mg/kg, i.p.; P < 0.05). 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, i.p.) or ketanserin (8 mg/kg, i.p.) did not induce significant antidepressant-like effects with any of the agonists/antagonists tested. The results of the present study suggest that pindolol is acting at presynaptic 5-HT1B serotonergic receptors, in addition to the 5-HT1A subtype, in augmenting the activity of antidepressants in the mouse forced swimming test.

  1. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  2. Elaboration, activity and stability of silica-based nitroaromatic sensors.

    PubMed

    Mercier, Dimitri; Pereira, Franck; Méthivier, Christophe; Montméat, Pierre; Hairault, Lionel; Pradier, Claire-Marie

    2013-08-21

    Functionalized silica-based thin films, modified with hydrophobic groups, were synthesized and used as sensors for nitroaromatic compound (NAC) specific detection. Their performance and behavior, in terms of stability, ageing and regeneration, have been fully characterized by combining chemical characterization techniques and electron microscopy. NAC was efficiently and specifically detected using these silica-based sensors, but showed a great degradation in the presence of humidity. Moreover, the sensor sensitivity seriously decreases with storage time. Methyl- and phenyl-functionalization helped to overcome this humidity sensitivity. Surface characterization enabled us to establish a direct correlation between the appearance, and increasing amount, of adsorbed carbonyl-containing species, and sensor efficiency. This contamination, appearing after only one month, was particularly important when sensors were stored in plastic containers. Rinsing with cyclohexane enables us to recover part of the sensor performance but does not yield a complete regeneration of the sensors. This work led us to the definition of optimized elaboration and storage conditions for nitroaromatic sensors. PMID:23812282

  3. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1.

    PubMed

    Sun, Xiao-Xin; Challagundla, Kishore B; Dai, Mu-Shui

    2012-02-01

    The ubiquitin (Ub)-proteasome system plays a pivotal role in the regulation of p53 protein stability and activity. p53 is ubiquitinated and destabilized by MDM2 and several other Ub E3s, whereas it is deubiquitinated and stabilized by Ub-specific protease (USP)7 and USP10. Here we show that the ovarian tumour domain-containing Ub aldehyde-binding protein 1 (Otub1) is a novel p53 regulator. Otub1 directly suppresses MDM2-mediated p53 ubiquitination in cells and in vitro. Overexpression of Otub1 drastically stabilizes and activates p53, leading to apoptosis and marked inhibition of cell proliferation in a p53-dependent manner. These effects are independent of its catalytic activity but require residue Asp88. Mutation of Asp88 to Ala (Otub1(D88A)) abolishes activity of Otub1 to suppress p53 ubiquitination. Further, wild-type Otub1 and its catalytic mutant (Otub1(C91S)), but not Otub1(D88A), bind to the MDM2 cognate E2, UbcH5, and suppress its Ub-conjugating activity in vitro. Overexpression of Otub1(D88A) or ablation of endogenous Otub1 by siRNA markedly impaired p53 stabilization and activation in response to DNA damage. Together, these results reveal a novel function for Otub1 in regulating p53 stability and activity.

  4. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  5. Ballistic abdominal exercises: muscle activation patterns during three activities along the stability/mobility continuum.

    PubMed

    McGill, Stuart M; Karpowicz, Amy; Fenwick, Chad M J

    2009-05-01

    The purpose of this study was to document the muscle activity and spine motion during several tasks requiring rapid abdominal contraction. Eight healthy men from a university population were instrumented to obtain surface electromyography of selected trunk and hip muscles, together with video analysis to calculate joint moments and electromagnetic lumbar spine position sensor to track spine posture. Exercises included a punch, throw, and a ballistic torso-stiffening maneuver. This study found that no muscle turned on significantly before any other muscle during both the 1-in. punch and ballistic torso-stiffening maneuver. Conversely, there was a significant order or muscle onset during the baseball throw. Muscles reached peak activation significantly before any other muscle during the baseball throw and 1-in. punch, but there were no significant differences for the torso-stiffening maneuver. The exercises quantified in this study demonstrated how muscle contraction dynamics change to meet differing demands for stiffening, for force/moment production, and for rapid movements. Specifically, it seems that there is an order of contraction when movement is the goal but not when just spine stability is required. Thus, a different intensity of abdominal bracing is required to achieve the different objectives of sports tasks and exercises.

  6. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  7. Reciprocal Regulation of ERα and ERβ Stability and Activity by Diptoindonesin G.

    PubMed

    Zhao, Zibo; Wang, Lu; James, Taryn; Jung, Youngeun; Kim, Ikyon; Tan, Renxiang; Hoffmann, F Michael; Xu, Wei

    2015-12-17

    ERβ is regarded as a "tumor suppressor" in breast cancer due to its anti-proliferative effects. However, unlike ERα, ERβ has not been developed as a therapeutic target in breast cancer due to loss of ERβ in aggressive cancers. In a small-molecule library screen for ERβ stabilizers, we identified Diptoindonesin G (Dip G), which significantly increases ERβ protein stability while decreasing ERα protein levels. Dip G enhances the transcription and anti-proliferative activities of ERβ, while attenuating the transcription and proliferative effects of ERα. Further investigation revealed that instead of targeting ER, Dip G targets the CHIP E3 ubiquitin ligase shared by ERα and ERβ. Thus, Dip G is a dual-functional moiety that reciprocally controls ERα and ERβ protein stability and activities via an indirect mechanism. The ERβ stabilization effects of Dip G may enable the development of ERβ-targeted therapies for human breast cancers. PMID:26670079

  8. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles.

    PubMed

    Tan, Yulong; Ma, Su; Liu, Chenguang; Yu, Wengong; Han, Feng

    2015-09-01

    A β-N-acetyl-glucosaminidase (DspB) from Aggregatibacter actinomycetemcomitans CU1000 has been proved to inhibit and detach the biofilms formed by Staphylococcus epidermidis, Staphylococcus aureus and A. actinomycetemcomitans. However, the application of this enzyme is limited by its poor stability. In the present study, a β-N-acetyl-glucosaminidase encoding gene, dspB, was cloned from A. actinomycetemcomitans HK1651 and expressed in Escherichia coli. The recombinant DspB was loaded on hydrogel nanoparticles, which was prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. The nanoparticles were almost saturated by DspB at 0.3 mg/ml, which gave a loading capacity of 76.7%. The immobilization enhanced thermal stability, storage stability and reusability of DspB significantly. Moreover, it also increased antibiofilm activity due to the dual mechanism, including the improvement of the enzyme stability and the antibiofilm activity of CMCS nanoparticles. PMID:26302845

  9. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  10. ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity.

    PubMed

    Biener, Monika M; Biener, Juergen; Wichmann, Andre; Wittstock, Arne; Baumann, Theodore F; Bäumer, Marcus; Hamza, Alex V

    2011-08-10

    Nanoporous metals have many technologically promising applications, but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only 1 nm thick oxide films can stabilize the nanoscale morphology of np-Au up to 1,000°C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO(2) ALD coatings. Our results open the door to high-temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  11. Formation and decomposition of chemically activated and stabilized hydrazine.

    PubMed

    Asatryan, Rubik; Bozzelli, Joseph W; da Silva, Gabriel; Swinnen, Saartje; Nguyen, Minh Tho

    2010-06-01

    Recombination of two amidogen radicals, NH(2) (X(2)B1), is relevant to hydrazine formation, ammonia oxidation and pyrolysis, nitrogen reduction (fixation), and a variety of other N/H/X combustion, environmental, and interstellar processes. We have performed a comprehensive analysis of the N(2)H(4) potential energy surface, using a variety of theoretical methods, with thermochemical kinetic analysis and master equation simulations used to treat branching to different product sets in the chemically activated NH(2) + NH(2) process. For the first time, iminoammonium ylide (NH(3)NH), the less stable isomer of hydrazine, is involved in the kinetic modeling of N(2)H(4). A new, low-energy pathway is identified for the formation of NH(3) plus triplet NH, via initial production of NH(3)NH followed by singlet-triplet intersystem crossing. This new reaction channel results in the formation of dissociated products at a relatively rapid rate at even moderate temperatures and above. A further novel pathway is described for the decomposition of activated N(2)H(4), which eventually leads to the formation of the simple products N(2) + 2H(2), via H(2) elimination to cis-N(2)H(2). This process, termed as "dihydrogen catalysis", may have significant implications in the formation and decomposition chemistry of hydrazine and ammonia in diverse environments. In this mechanism, stereoselective attack of cis-N(2)H(2) by molecular hydrogen results in decomposition to N(2) with a fairly low barrier. The reverse termolecular reaction leading to the gas-phase formation of cis-N(2)H(2) + H(2) achieves non-heterogeneous catalytic nitrogen fixation with a relatively low activation barrier (77 kcal mol(-1)), much lower than the 125 kcal mol(-1) barrier recently reported for bimolecular addition of H(2) to N(2). This termolecular reaction is an entropically disfavored path, but it does describe a new means of activating the notoriously unreactive N(2). We design heterogeneous analogues of this

  12. Improved granular activated carbon for the stabilization of wastewater PH

    SciTech Connect

    Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.

    1996-12-31

    Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.

  13. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.

    PubMed

    Shi, Caijun; Fernández-Jiménez, A

    2006-10-11

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement.

  14. Simple Implant Augmentation Rhinoplasty.

    PubMed

    Nguyen, Anh H; Bartlett, Erica L; Kania, Katarzyna; Bae, Sang Mo

    2015-11-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  15. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity

    PubMed Central

    Bartolini, Francesca; Moseley, James B.; Schmoranzer, Jan; Cassimeris, Lynne; Goode, Bruce L.; Gundersen, Gregg G.

    2008-01-01

    A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity. PMID:18458159

  16. Multi-site Phosphorylation Regulates Bim Stability and Apoptotic Activity

    PubMed Central

    Hübner, Anette; Barrett, Tamera; Flavell, Richard A.; Davis, Roger J.

    2008-01-01

    The pro-apoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multi-site phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the anti-apoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses. PMID:18498746

  17. Chemical modification of L-asparaginase from Cladosporium sp. for improved activity and thermal stability.

    PubMed

    Mohan Kumar, N S; Kishore, Vijay; Manonmani, H K

    2014-01-01

    L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.

  18. Relationship between protein stability and functional activity in the presence of macromolecular crowding agents alone and in mixture: An insight into stability-activity trade-off.

    PubMed

    Shahid, Sumra; Ahmad, Faizan; Hassan, Md Imtaiyaz; Islam, Asimul

    2015-10-15

    The cellular environment is crowded with different kinds of molecules with varying sizes, shapes and compositions. Most of the experiments studying the nature and behaviour of a protein have been done on the isolated protein in dilute buffer solutions which actually do not imitate the in vivo situation. To understand the consequences of such crowded environment, we investigated the effect of macromolecular crowding on the stability and activity of hen egg white lysozyme. Two crowding agents, dextran 70 and ficoll 70 which have different shapes and composition, have been employed in this study. To mimic the cellular condition from physiological point of view, the effect of mixtures of both the crowding agents has been also studied. The results indicate that owing to volume exclusion, lysozyme is stabilized while its activity decays with the increasing concentration of both the crowders elucidating the hypothesis of stability-activity trade-off. Mixed macromolecular crowding exerts greater effect than the sum of constituent crowding agents (dextran 70 and ficoll 70).

  19. Crystal structure of plasminogen activator inhibitor-1 in an active conformation with normal thermodynamic stability.

    PubMed

    Jensen, Jan K; Thompson, Lawrence C; Bucci, Joel C; Nissen, Poul; Gettins, Peter G W; Peterson, Cynthia B; Andreasen, Peter A; Morth, J Preben

    2011-08-26

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 Å resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting β-strand 3A with the F helix, in which a previously observed 3(10)-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1.

  20. Crystal Structure of Plasminogen Activator Inhibitor-1 in an Active Conformation with Normal Thermodynamic Stability*

    PubMed Central

    Jensen, Jan K.; Thompson, Lawrence C.; Bucci, Joel C.; Nissen, Poul; Gettins, Peter G. W.; Peterson, Cynthia B.; Andreasen, Peter A.; Morth, J. Preben

    2011-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 Å resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting β-strand 3A with the F helix, in which a previously observed 310-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1. PMID:21697084

  1. Transpedicle body augmenter for vertebral augmentation in symptomatic multiple osteoporotic compression fractures

    PubMed Central

    Li, Allen; Li, Kung-Chia; Hsieh, Ching-Hsiang

    2010-01-01

    level, blood loss was 74 cc per level and hospitalization was 4.4 days. No patient had neurological deterioration. There was no dislodgement of implant in the final visit. Forty-eight patients (77.4%) could walk within 6-8 h after operation and the others, within 24 h. The anterior vertebral restoration was 7.3 mm initially and 6.2 mm at final follow-up. Wedge angle correction was 10.4° initially and was 9.3° at final follow-up. Pain, by the visual analog scale, was 8.5 preoperatively, 2.7 at day 7 follow-up and 2.9 at final follow-up. By the questionnaire, 52 of 58 respondents reported a decrease in discomfort after TpBA and 48 of 58 patients reported a return to normal activity after operation. The final satisfaction rate was 89.7%. Discussion: The symptoms of multiple osteoporotic compression fracture may be due to unstable fracture, radiculopathy, and global traumatic kyphosis with posture changes, which can be corrected by multiple TpBA. The transpedicle body augmenter was initially stabilized by the sinking and locking mechanism and finally by bone ingrowth. Conclusions: TpBA via a minimally invasive method led to early and medium-term clinical improvements and anatomic restoration of multiple symptomatic VCFs. PMID:20419007

  2. Determination of Pulmozyme (dornase alpha) stability using a kinetic colorimetric DNase I activity assay.

    PubMed

    Lichtinghagen, Ralf

    2006-07-01

    An enzymatic activity assay was developed for the determination of dornase alpha human recombinant desoxyribonuclease (DNase I) stability. The method was adapted from a colorimetric endpoint enzyme activity assay for DNase I based on the degradation of a DNA/methyl green complex. With the described modifications the kinetic measurement of enzyme activity is feasible on an automated analyzer system within a rather short time. The development of this assay was based on the need for reliable detection of a possible loss of enzyme activity after transferring the commercial therapeutic agent into sealed glass vials required for a placebo-controlled study. The measuring range of this stability test was from 0 to 3000 U/L corresponding to 0-120% of the original enzyme activity; CV values of control solutions inside the measuring range were between 3% and 5%. The enzyme activity decreased less than 15% during the observation period of 180 days. In conclusion the current kinetic assay is a reliable method for a simple time-saving determination of DNase I activity to test Pulmozyme stability as required for quality control. As dornase alpha is used for inhalation, this method also proved its reliability in testing DNase stability during aerosolization with new inhalation devices (e-flow). PMID:16682175

  3. Effect of copper on soil functional stability measured by relative soil stability index (RSSI) based on two enzyme activities.

    PubMed

    Dussault, Marylène; Bécaert, Valérie; François, Matthieu; Sauvé, Sébastien; Deschênes, Louise

    2008-06-01

    Copper can affect essential processes in soils, often for long periods. Enzyme activity is considered a sensitive indicator to evaluate soil health and the potential toxic impact of a soil contaminant. Nevertheless, there is heterogeneity in the responses from enzyme activity assays because of the influence of pH and other physicochemical parameters on both enzyme activity and metal speciation. This leads to complications when comparing soils and limits the validity of the results. To overcome these problems, this paper evaluates resistance and recovery, quantified by using a relative soil stability index (RSSI), of the beta-glucosidase and protease activities towards an additional heat disturbance (17 h at 60 degrees C) in soils where soil organic matter, pH and Cu content were modified in a factorial setup. Chemical analyses (dissolved Cu, pCu(2+), dissolved organic carbon, pH) were performed both before the heat-perturbation and after the enzyme activity monitoring period. Results show that soil pH did not interfere with the RSSI scores of both enzymes. beta-glucosidase RSSI scores were scarcely affected by copper, making it inappropriate for evaluating copper-induced stress to soils. Protease activity shows stimulations of up to 2.5 times the activity of the unperturbed control in uncontaminated samples only. Thus, the protease RSSI score seems a good indicator for soil health relative to copper contamination given that all samples were affected by the presence of copper and high correlations were observed between RSSI scores and the different copper forms.

  4. Augmented intrinsic activity of Factor VIIa by replacement of residues 305, 314, 337 and 374: evidence of two unique mutational mechanisms of activity enhancement.

    PubMed

    Persson, Egon; Bak, Helle; Østergaard, Anette; Olsen, Ole H

    2004-04-15

    Coagulation Factor VIIa (FVIIa) lacks the ability to spontaneously complete the conversion to a fully active enzyme after specific cleavage of an internal peptide bond (Arg152-Ile153) in the zymogen. Recently, several variants of FVIIa with enhanced intrinsic activity have been constructed. The in vitro characterization of these variants has shed light on molecular determinants that put restrictions on FVIIa in favour of a zymogen-like conformation and warrants continued efforts. Here we describe a new FVIIa variant with high intrinsic activity containing the mutations Leu305-->Val, Ser314-->Glu, Lys337-->Ala, and Phe374-->Tyr. The variant, called FVIIa(VEAY), processes a tripeptidyl substrate very efficiently because of an unprecedented, 5.5-fold lowering of the K(m) value. Together with a 4-fold higher substrate turnover rate this gives the variant a catalytic efficiency 22 times that of wild-type FVIIa, which is reflected in a considerably enhanced susceptibility to inhibition by antithrombin and other inhibitors. For instance, the affinity of FVIIa(VEAY) for the S1 probe and inhibitor p -aminobenzamidine is represented by an 8-fold lower K(i) value compared with that of FVIIa. Activation of Factor X in solution occurs about 10 times faster with FVIIa(VEAY) than with FVIIa, due virtually exclusively to an increased kcat value. The high activity of FVIIa(VEAY) is not accompanied by an increased burial of the N-terminus of the protease domain. A comparison of the kinetic parameters and molecular properties of FVIIa(VEAY) with those of the previously described mutant V158D/E296V/M298Q-FVIIa (FVIIa(IIa)), and the locations of the substitutions in the two variants, reveals what appear to be two profoundly different structural mechanisms dictating improvements in enzymic performance. PMID:14686879

  5. Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene.

    PubMed

    Zong, Chenghang; So, Lok-hang; Sepúlveda, Leonardo A; Skinner, Samuel O; Golding, Ido

    2010-11-30

    The ability of living cells to maintain an inheritable memory of their gene-expression state is key to cellular differentiation. Bacterial lysogeny serves as a simple paradigm for long-term cellular memory. In this study, we address the following question: in the absence of external perturbation, how long will a cell stay in the lysogenic state before spontaneously switching away from that state? We show by direct measurement that lysogen stability exhibits a simple exponential dependence on the frequency of activity bursts from the fate-determining gene, cI. We quantify these gene-activity bursts using single-molecule-resolution mRNA measurements in individual cells, analyzed using a stochastic mathematical model of the gene-network kinetics. The quantitative relation between stability and gene activity is independent of the fine details of gene regulation, suggesting that a quantitative prediction of cell-state stability may also be possible in more complex systems. PMID:21119634

  6. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis.

    PubMed

    Jakoblinnert, Andre; van den Wittenboer, Anne; Shivange, Amol V; Bocola, Marco; Heffele, Lora; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich

    2013-05-10

    The carbonyl reductase from Candida parapsilosis (CPCR2) is an industrially attractive biocatalyst for producing chiral alcohols from ketones. The homodimeric enzyme has a broad substrate spectrum and an excellent stereoselectivity, but is rapidly inactivated at aqueous-organic interfaces. The latter limits CPCR2's application in biphasic reaction media. Reengineering the protein surface of CPCR2 yielded a variant CPCR2-(A275N, L276Q) with 1.5-fold increased activity, 1.5-fold higher interfacial stability (cyclohexane/buffer system), and increased thermal resistance (ΔT50=+2.7 °C). Site-directed and site-saturation mutagenesis studies discovered that position 275 mainly influences stability and position 276 governs activity. After single site-saturation of position 275, amino acid exchanges to asparagine and threonine were discovered to be stabilizing. Interestingly, both positions are located at the dimer interface and close to the active site and computational analysis identified an inter-subunit hydrogen bond formation at position 275 to be responsible for stabilization. Finally, the variant CPCR2-(A275S, L276Q) was found by simultaneous site-saturation of positions 275 and 276. CPCR2-(A275S, L276Q) has compared to wtCPCR2 a 1.4-fold increased activity, a 1.5-fold higher interfacial stability, and improved thermal resistance (ΔT50=+5.2 °C). PMID:23471075

  7. Orthobiologics in the augmentation of osteoporotic fractures.

    PubMed

    Watson, J Tracy; Nicolaou, Daemeon A

    2015-02-01

    Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined-the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing. PMID:25431160

  8. Effect of ionic liquids on the structure, stability and activity of two related α-amylases.

    PubMed

    Dabirmanesh, Bahareh; Daneshjou, Sara; Sepahi, Abbas Akhavan; Ranjbar, Bijan; Khavari-Nejad, Ramazan Ali; Gill, Pooria; Heydari, Akbar; Khajeh, Khosro

    2011-01-01

    Ionic liquids are recognized as green solvents for carbohydrates dissolution. However, only a limited number of studies have been carried out to investigate their effect on carbohydrate hydrolyzing enzymes. We have investigated the influence of two water miscible ionic liquids on the activity, stability and structure of two related α-amylases from Bacillus amyloliquefaciens and Bacillus lichiniformis. Upon changes in ionic liquids concentrations, both enzymes activity and stability were reduced. Associated thermodynamic and conformational changes were observed using differential scanning calorimetry and fluorescence techniques. Thermal denaturation was accompanied by aggregation in both aqueous buffer and [BMIm][Cl] but [HMIm][Cl] significantly suppressed aggregation.

  9. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  10. Damping augmentation of helicopter rotors using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongsheng

    This dissertation describes an investigation exploring the use of magnetorheological (MR) dampers to augment the stability of helicopter rotors. Helicopters with advanced soft in-plane rotors are susceptible to ground resonance instabilities due to the coupling of the lightly damped rotor lag modes and fuselage modes. Traditional passive lag dampers, such as hydraulic or elastomeric dampers, can be used to alleviate these instabilities. However, these passive dampers suffer from the disadvantages that they produce large damper loads in forward flight conditions. These damper forces increase fatigue loads and reduce component life. Thus, it is desirable to have lag dampers controllable or adaptable, so that the damper can apply loads only when needed. MR fluid based dampers have recently been considered for helicopter lag damping augmentation because the forces generated by these dampers can be controlled by an applied magnetic field. In this dissertation, control schemes to integrate MR dampers with helicopters are developed and the influences of the MR dampers on rotorcraft ground resonance are studied. Specifically, the MR dampers are incorporated into the ground resonance model in two ways: using a linear equivalent viscous damping and using a nonlinear damper model. The feasibility of using MR dampers to stabilize ground resonance is studied. The open loop on-off control is utilized where MR dampers are turned on over RPM where ground resonance occurs, and turned off otherwise. To further explore the damping control ability of MR dampers, the nonlinear semi-active closed loop feedback control strategies are developed: feedback linearization control and sliding mode control. The performance of the two control strategies is evaluated using two examples: to stabilize an unstable rotor and to augment the stability of a marginally stable rotor. In addition, the robustness of the closed loop control strategies is studied using two cases: damper degradation and

  11. Mutually Augmented Cognition

    NASA Astrophysics Data System (ADS)

    Friesdorf, Florian; Pangercic, Dejan; Bubb, Heiner; Beetz, Michael

    In mac, an ergonomic dialog-system and algorithms will be developed that enable human experts and companions to be integrated into knowledge gathering and decision making processes of highly complex cognitive systems (e.g. Assistive Household as manifested further in the paper). In this event we propose to join algorithms and methodologies coming from Ergonomics and Artificial Intelligence that: a) make cognitive systems more congenial for non-expert humans, b) facilitate their comprehension by utilizing a high-level expandable control code for human experts and c) augment representation of such cognitive system into “deep representation” obtained through an interaction with human companions.

  12. Postural stability of older female Scottish country dancers in comparison with physically active controls.

    PubMed

    Dewhurst, Susan; Peacock, Leslie; Bampouras, Theodoros M

    2015-01-01

    Physical activity assists older individuals' functional ability and postural stability. Recently, Scottish country dance (SCD) was reported as being a beneficial form of physical activity for functional ability in older females. This study aims to examine the effect of SCD on postural stability. Scottish country dancers (n = 20) were compared with physically active controls (n = 33) for static postural sway measured on a force platform. The Romberg and Tandem stances were used under 'eyes open' and 'eyes closed' conditions. Ninety-five percent ellipse area and sway velocity were calculated from the center of pressure displacement. Ninety-five percent ellipse area was the same for both groups in all tests. The control group had greater sway velocity for all tests (P < .01) except Tandem eyes closed. SCD participation resulted in similar postural sway as participation in other physical activities, however nondancers may need a greater amount of regulatory activity to maintain balance.

  13. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  14. Coadministration of the FNIII14 Peptide Synergistically Augments the Anti-Cancer Activity of Chemotherapeutic Drugs by Activating Pro-Apoptotic Bim

    PubMed Central

    Akari, Shougo; Otsuka, Kazuki; Fujita, Motomichi; Itagaki, Keisuke; Takizawa, You-ichi; Orita, Hiroaki; Owaki, Toshiyuki; Taira, Jyunichi; Hayashi, Ryo; Kodama, Hiroaki; Fukai, Fumio

    2016-01-01

    The acquisition of drug resistance mediated by the interaction of tumor cells with the extracellular matrix (ECM), commonly referred to as cell adhesion-mediated drug resistance (CAM-DR), has been observed not only in hematopoietic tumor cells but also in solid tumor cells. We have previously demonstrated that a 22-mer peptide derived from fibronectin, FNIII14, can inhibit cell adhesion through the inactivation of β1 integrin; when coadministered with cytarabine, FNIII14 completely eradicates acute myelogenous leukemia by suppressing CAM-DR. In this study, we show that our FNIII14 peptide also enhances chemotherapy efficacy in solid tumors. Coadministration of FNIII14 synergistically enhances the cytotoxicity of doxorubicin and aclarubicin in mammary tumor and melanoma cells, respectively. The solid tumor cell chemosensitization induced by FNIII14 is dependent upon the upregulation and activation of the pro-apoptotic protein, Bim. Furthermore, the metastasis of tumor cells derived from ventrally transplanted mammary tumor grafts is suppressed by the coadministration of FNIII14 and doxorubicin. These results suggest that the coadministration of our FNIII14 peptide with chemotherapy could achieve efficient solid tumor eradication by increasing chemosensitivity and decreasing metastasis. The major causes of tumor recurrence are the existence of chemotherapy-resistant primary tumor cells and the establishment of secondary metastatic lesions. As such, coadministering FNIII14 with anti-cancer drugs could provide a promising new approach to improve the prognosis of patients with solid tumors. PMID:27622612

  15. Coadministration of the FNIII14 Peptide Synergistically Augments the Anti-Cancer Activity of Chemotherapeutic Drugs by Activating Pro-Apoptotic Bim.

    PubMed

    Iyoda, Takuya; Nagamine, Yumi; Nakane, Yoshitomi; Tokita, Yuya; Akari, Shougo; Otsuka, Kazuki; Fujita, Motomichi; Itagaki, Keisuke; Takizawa, You-Ichi; Orita, Hiroaki; Owaki, Toshiyuki; Taira, Jyunichi; Hayashi, Ryo; Kodama, Hiroaki; Fukai, Fumio

    2016-01-01

    The acquisition of drug resistance mediated by the interaction of tumor cells with the extracellular matrix (ECM), commonly referred to as cell adhesion-mediated drug resistance (CAM-DR), has been observed not only in hematopoietic tumor cells but also in solid tumor cells. We have previously demonstrated that a 22-mer peptide derived from fibronectin, FNIII14, can inhibit cell adhesion through the inactivation of β1 integrin; when coadministered with cytarabine, FNIII14 completely eradicates acute myelogenous leukemia by suppressing CAM-DR. In this study, we show that our FNIII14 peptide also enhances chemotherapy efficacy in solid tumors. Coadministration of FNIII14 synergistically enhances the cytotoxicity of doxorubicin and aclarubicin in mammary tumor and melanoma cells, respectively. The solid tumor cell chemosensitization induced by FNIII14 is dependent upon the upregulation and activation of the pro-apoptotic protein, Bim. Furthermore, the metastasis of tumor cells derived from ventrally transplanted mammary tumor grafts is suppressed by the coadministration of FNIII14 and doxorubicin. These results suggest that the coadministration of our FNIII14 peptide with chemotherapy could achieve efficient solid tumor eradication by increasing chemosensitivity and decreasing metastasis. The major causes of tumor recurrence are the existence of chemotherapy-resistant primary tumor cells and the establishment of secondary metastatic lesions. As such, coadministering FNIII14 with anti-cancer drugs could provide a promising new approach to improve the prognosis of patients with solid tumors. PMID:27622612

  16. Electromyographic activity of selected trunk muscles during stabilization exercises using a gym ball.

    PubMed

    Mori, A

    2004-01-01

    Trunk stabilization is very important for the injured lower back. The use of a gym ball, the surface of which is labile, is becoming more popular for strengthening the trunk muscles and challenging the motor control system in trunk stabilization exercises. However, little is known about the activity of the trunk muscles during such exercises. The purpose of this study was to compare the electromyographic (EMG) activity of the trunk muscles during seven stabilization exercises using a gym ball. Eleven healthy men (19.9 +/- 1.8 years old) without low back pain volunteered to participate in the study. Bipolar surface electrodes were attached to the right side of the upper and lower rectus abdominis, the obliquus externus abdominis and the upper and lower back extensor muscles. EMG signals were recorded during seven types of stabilization exercises using a gym ball and normalized to maximal voluntary contraction (% MVC). A two-way analysis of variance (ANOVA) was performed on % MVC from each task for each of the five trunk muscle sites (p < 0.05). Push-up exercise, supporting with both hands on the gym ball and toes on the floor in prone position, resulted in the highest activity of all abdominal muscles, and an exercise of the lifting the gym ball up, holding it actively between both legs with both knees flexed in supine position resulted in the lowest. Lifting up of the pelvis in a bridged position exercise, supporting the head with the gym ball and with the feet on the floor in supine position, resulted in higher muscle activity of the back extensor muscles than another exercise. It is very important for physical therapists to make clear the purpose of the trunk stabilization exercises, because different kinds of exercises with the gym ball demand various levels of muscular activity and use of various parts of the trunk muscles.

  17. Improvement of helicopter attitude stability by active control of the conventional swash plate

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.

    1993-01-01

    The Final Report on improvement of helicopter attitude stability by active control of the conventional swash plate covering the period from Nov. 1986 to Dec. 1993 is presented. A paper on the history, principles, and applications of helicopter individual-blade-control is included.

  18. Cellulase variants with improved expression, activity and stability, and use thereof

    DOEpatents

    Aehle, Wolfgang; Bott, Richard R; Bower, Benjamin; Caspi, Jonathan; Estell, David A; Goedegebuur, Frits; Hommes, Ronaldus W.J.; Kaper, Thijs; Kelemen, Bradley; Kralj, Slavko; Van Lieshout, Johan; Nikolaev, Igor; Van Stigt Thans, Sander; Wallace, Louise; Vogtentanz, Gudrun; Sandgren, Mats

    2014-03-25

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  19. 17 CFR 242.104 - Stabilizing and other activities in connection with an offering.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Stabilizing and other activities in connection with an offering. 242.104 Section 242.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) REGULATIONS M, SHO, ATS, AC, AND NMS AND CUSTOMER...

  20. Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application.

    PubMed

    Liu, Baocang; Yu, Shengli; Wang, Qin; Hu, Wenting; Jing, Peng; Liu, Yang; Jia, Wenjing; Liu, Yongxin; Liu, Lixia; Zhang, Jun

    2013-05-01

    Novel hollow mesoporous @M/CeO(2) (M = Au, Pd, and Au-Pd) nanospheres are created. The nanospheres can be used as effective nanoreactors with superior catalytic activity and stability for reduction of 4-nitrophenol due to their hollow mesoporous structural features.

  1. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  2. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  3. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  4. Conformational Stability and Catalytic Activity of PTEN Variants Linked to Cancers and Autism Spectrum Disorders

    PubMed Central

    Johnston, Sean B.; Raines, Ronald T.

    2015-01-01

    Phosphoinositides are membrane components that play critical regulatory roles in mammalian cells. The enzyme PTEN, which catalyzes the dephosphorylation of the phosphoinositide PIP3, is damaged in most sporadic tumors. Mutations in the PTEN gene have also been linked to autism spectrum disorders and other forms of delayed development. Here, human PTEN is shown to be on the cusp of unfolding under physiological conditions. Variants of human PTEN linked to somatic cancers and disorders on the autism spectrum are shown to be impaired in their conformational stability, catalytic activity, or both. Those variants linked only to autism have higher activity than those linked to cancers. PTEN-L, which is a secreted trans-active isoform, has greater conformational stability than does the wild-type enzyme. These data indicate that PTEN is a fragile enzyme cast in a crucial role in cellular metabolism, and suggest that PTEN-L is a repository for a critical catalytic activity. PMID:25647146

  5. Anti-oxidative activity of pectin and its stabilizing effect on retinyl palmitate.

    PubMed

    Ro, Jieun; Kim, Yeongseok; Kim, Hyeongmin; Jang, Soung Baek; Lee, Hyun Joo; Chakma, Suharto; Jeong, Ji Hoon; Lee, Jaehwi

    2013-06-01

    The purpose of this study was to examine the anti-oxidative activity of pectin and other polysaccharides in order to develop a cosmeceutical base having anti-oxidative effects towards retinyl palmitate (RP). The anti-oxidative stabilizing effects of pectin and other polysaccharides on RP were evaluated by DPPH assay and then the stabilizing effect of pectin on RP was examined as a function of time. Among the polysaccharides we examined, pectin exhibited a considerably higher anti-oxidative activity, with an approximately 5-fold greater DPPH radical scavenging effect compared to other polysaccharides. The DPPH radical scavenging effect of pectin increased gradually with increasing concentrations of pectin. At two different RP concentrations, 0.01 and 0.1% in ethanol, addition of pectin improved the stability of RP in a concentration dependent manner. The stabilizing effect of pectin on RP was more effective for the lower concentration of RP (0.01%, v/v). Further, degradation of RP was reduced following the addition of pectin as measured over 8 hours. From the results obtained, it can be suggested that pectin may be a promising ingredient for cosmeceutical bases designed to stabilize RP or other pharmacological agents subject to degradation by oxidation. PMID:23776395

  6. A coexisting fungal-bacterial community stabilizes soil decomposition activity in a microcosm experiment.

    PubMed

    Ushio, Masayuki; Miki, Takeshi; Balser, Teri C

    2013-01-01

    How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity-stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community) are more stable against changes in substrate quality (plant leaf materials) than those of a fungi-dominated or a bacteria-dominated community (less diverse community). Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity-stability relationship. Our experiment demonstrated that the previously found positive diversity-stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate-ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities.

  7. The effect of trunk stabilization exercises with a swiss ball on core muscle activation in the elderly.

    PubMed

    Kim, Seong Gil; Yong, Min Sik; Na, Sang Su

    2014-09-01

    [Purpose] The purpose of this study was to investigate the effects of trunk stabilization exercise on the muscle EMG activations related to core stability. [Subjects and Methods] Fifteen elderly people in a geriatric hospital performed trunk stabilization exercises with a Swiss ball for 20 minutes five times per week for 8 weeks. Trunk muscle activations were measured using electromyography before and after the intervention. [Results] After the intervention, the muscle activations of the rectus abdominis, erector spinae, lateral low-back (quadratus lumborum and external oblique), and gluteus medius muscles increased significantly. [Conclusion] The trunk stabilization exercise with a Swiss ball significantly increased the muscle activities of the elderly.

  8. Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method.

    PubMed

    Li, Yu; Poon, Andrew W

    2016-09-19

    We propose and experimentally demonstrate actively stabilized silicon microrings with integrated surface-state-absorption (SSA) photodetectors using a slope-detection method. Our proof-of-concept experiments reveal that the active stabilization using multiple discrete-step slope thresholds can effectively reduce the microring transmitted intensity variations upon various temperature modulation conditions. We demonstrate an actively stabilized microring transmission with intensity modulations within ~2.5 dB upon a 5mHz temperature modulation between 17 °C and 31 °C, which is ~7.5dB improved from without stabilization. The active alignment tolerance between the stabilized microring resonance wavelength and a carrier wavelength is ~0.16 nm over a 14°C temperature modulation. We observe open eye-diagrams at a data transmission rate of up to 30 Gb/s under temperature modulations with actively stabilized silicon microrings. PMID:27661872

  9. Stability and activity of alcohol dehydrogenases in W/O-microemulsions: enantioselective reduction including cofactor regeneration.

    PubMed

    Orlich, B; Berger, H; Lade, M; Schomäcker, R

    2000-12-20

    Microemulsions provide an interesting alternative to classical methods for the conversion of less water-soluble substrates by alcohol dehydrogenase, but until now stability and activity were too low for economically useful processes. The activity and stability of the enzymes are dependent on the microemulsion composition, mostly the water and the surfactant concentration. Therefore, it is necessary to know the exact phase behavior of a given microemulsion reaction system and the corresponding enzyme behavior therein. Because of their economic and ecologic suitability polyethoxylated fatty alcohols were investigated concerning their phase behavior and their compatibility with enzymes in ternary mixtures. The phase behavior of Marlipal O13-60 (C13EO6 in industrial quality)/cyclohexane/water and its effect on the activity and stability of alcohol dehydrogenase from Yeast (YADH) and horse liver (HLADH) and the carbonyl reductase from Candida parapsilosis (CPCR) is presented in this study. Beside the macroscopic phase behavior of the reaction system, the viscosity of the system indicates structural changes of aggregates in the microemulsion. The changes of the enzyme activities with the composition are discussed on the basis of transitions from reverse micelles to swollen reverse micelles and finally, the transition to the phase separation. The formate dehydrogenase from Candida boidinii was used for the NADH-regeneration during reduction reactions. While the formate dehydrogenase did not show any kinetic effect on the microemulsion composition, the other enzymes show significant changes of activity and stability varying the water or surfactant concentration of the microemulsion. Under certain conditions, stability could be maintained with HLADH for several weeks. Successful experiments with semi-batch processes including cofactor regeneration and product separation were performed.

  10. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration.

    PubMed

    Li, Xuefeng; He, Sisi; Li, Rongpeng; Zhou, Xikun; Zhang, Shuang; Yu, Min; Ye, Yan; Wang, Yongsheng; Huang, Canhua; Wu, Min

    2016-01-01

    MicroRNAs (miRNAs) play critical roles in various biological processes, including cell proliferation, development and host defence. However, the molecular mechanism for miRNAs in regulating bacterial-induced inflammation remains largely unclear. Here, we report that miR-301b augments pro-inflammatory response during pulmonary infection, and caffeine suppresses the effect of miR-301b and thereby augments respiratory immunity. LPS treatment or Pseudomonas aeruginosa infection induces miR-301b expression via a TLR4/MyD88/NF-κB pathway. Importantly, caffeine decreases miR-301b expression through negative regulation of the cAMP/PKA/NF-κB axis. Further, c-Myb is identified as a target of miR-301b, which positively modulates anti-inflammatory cytokines IL-4 and TGF-β1, but negatively regulates pro-inflammatory cytokines MIP-1α and IL-17A. Moreover, repression of miR-301b results in increased transcription of c-Myb and elevated levels of neutrophil infiltration, thereby alleviating infectious symptoms in mice. These findings reveal miR-301b as a new controller of inflammatory response by repressing c-Myb function to inhibit the anti-inflammatory response to bacterial infection, representing a novel mechanism for balancing inflammation. PMID:27670114

  11. Apoferritin Nanoparticle: A Novel and Biocompatible Carrier for Enzyme Immobilization with Enhanced Activity and Stability

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong J.; Lin, Chiann Tso; Lin, Yuehe

    2011-11-01

    Apoferritin is a nanostructured material with a uniform size and spherical structure, and it has excellent bio-compatibility. In this work, we report the use of apoferritin as a novel and biocompatible carrier for stabilizing enzymes and their activities. We used glucose oxidase (GOx) as a model enzyme. GOx was immobilized on the surface of the apoferritin through a green synthetic approach taking advantage of bioaffinity binding between streptavidin and biotin. As a result, a glucose oxidase-biotin/streptavidin/biotin-apoferritin conjugate (Apo-GOx) was prepared using streptavidin as a bridge. The synthesized Apo-GOx was characterized with transmission electron microscopy, ultraviolet, and fluorescence spectroscopy. The activity and stability of GOx on the surface of the apoferritin were studied in different environments, such as temperature, chemicals, and pH, in comparison with the biotinylated GOx (B-GOx). The results showed that the activity of GOx on the apoferritin surface was significantly enhanced. The thermal and chemical stability of the GOx on the apoferritin was also greatly improved compared to free B-GOx in a solution. It was found that the activity of the GOx on the apoferritin only lost 30% in comparison to a 70% loss of free B-GOx after a 2 h incubation at 50oC. There was almost no decrease in activity for the GOx on the apoferritin as compared to an 80% activity decrease for free B-GOx after 30 min incubation in a 5 M urea solution. Glucose detection was used as a model application for the enzyme immobilization method developed in this work. The GOx immobilized apoferritin nanoparticles exhibited high sensitivity for glucose detection with a detection limit of 3 nM glucose. This work offers a novel approach for immobilizing enzymes with enhanced stability and activity, and this method may find a number of applications, such as in enzyme catalysis, DNA assays and immunoassays.

  12. Augmented reality system

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  13. NASA Communications Augmentation network

    NASA Astrophysics Data System (ADS)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-09-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  14. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  15. NAESA Augmentation Pilot Project

    NASA Technical Reports Server (NTRS)

    Hoover, John J.

    1998-01-01

    This project was one project within the Native American Earth and Space Academy (NAESA). NAESA is a national initiative comprised of several organizations that support programs which focus on 1) enhancing the technological, scientific and pedagogical skills of K-14 teachers who instruct Native Americans, 2) enhancing the understanding and applications of science, technology, and engineering of college-bound Native Americans and teaching them general college "survival skills" (e.g., test taking, time management, study habits), 3) enhancing the scientific and pedagogical skills of the faculty of tribally-controllcd colleges and community colleges with large Native American enrollments, and 4) strengthening the critical relationships between students, their parents, tribal elders, and their communities. This Augmentation Pilot Project focused on the areas of community-school alliances and intemet technology use in teaching and learning and daily living addressing five major objectives.

  16. Augmented kinematic feedback system

    NASA Astrophysics Data System (ADS)

    Andert, Ed P., Jr.; Archipley-Smith, Donna K.

    1994-07-01

    This paper discusses a real-time augmented kinematic feedback system which can be used as a diagnosis tool for individuals with motor disabilities. The system captures and analyzes movement via color targets attached to an individual and then feeds back information about movement kinematics. This target tracking approach has a high potential for achieving a real- time kinematic assessment capability. The approach recognizes distinct moving colored targets using video data. Multiple colored targets are attached to an individual at strategic locations and then target movement is tracked using a video data acquisition system. The ability to track and assess movement in real-time allows researchers and practitioners to better study and potentially treat various motor disabilities. Recent research has suggested that kinematic feedback can enhance motor recovery of disabled individuals. This approach addresses the need for a real-time measure of human movement and discusses using kinematic feedback to enhance disability recovery.

  17. Augmented Virtual Reality Laboratory

    NASA Technical Reports Server (NTRS)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  18. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  19. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH.

    PubMed

    Han, Binghong; Risch, Marcel; Lee, Yueh-Lin; Ling, Chen; Jia, Hongfei; Shao-Horn, Yang

    2015-09-21

    Perovskite oxides (ABO3) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an eg occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH. PMID:26271910

  20. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH.

    PubMed

    Han, Binghong; Risch, Marcel; Lee, Yueh-Lin; Ling, Chen; Jia, Hongfei; Shao-Horn, Yang

    2015-09-21

    Perovskite oxides (ABO3) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an eg occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH.

  1. The Effect of an Augmented Reality Enhanced Mathematics Lesson on Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Estapa, Anne; Nadolny, Larysa

    2015-01-01

    The purpose of the study was to assess student achievement and motivation during a high school augmented reality mathematics activity focused on dimensional analysis. Included in this article is a review of the literature on the use of augmented reality in mathematics and the combination of print with augmented reality, also known as interactive…

  2. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion. PMID:21806056

  3. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  4. Augmented Reality Comes to Physics

    ERIC Educational Resources Information Center

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  5. Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control.

    PubMed

    Wang, Leimin; Shen, Yi; Sheng, Yin

    2016-04-01

    This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.

  6. Introduction to augmented and virtual reality

    NASA Astrophysics Data System (ADS)

    Caudell, Thomas P.

    1995-12-01

    This paper introduces the field of augmented reality as a prolog to the body of papers in the remainder of this session. I describe the use of head-mounted display technologies to improve the efficiency and quality of human workers in their performance of engineering design, manufacturing, construction, testing, and maintenance activities. This technology is used to `augment' the visual field of the wearer with information necessary in the performance of the current task. The enabling technology is head-up (see-through) display head sets (HUDsets) combined with head position sensing, real world registration systems, and database access software. A primary difference between virtual reality (VR) and `augmented reality' (AR) is in the complexity of the perceived graphical objects. In AR systems, only simple wire frames, template outlines, designators, and text is displayed. An immediate result of this difference is that augmented reality systems can be driven by standard and inexpensive microprocessors. Many research issues must be addressed before this technology can be widely used, including tracking and registration, human 3D perception and reasoning, and human task performance issues.

  7. Activations of Deep Lumbar Stabilizing Muscles by Transcutaneous Neuromuscular Electrical Stimulation of Lumbar Paraspinal Regions

    PubMed Central

    Baek, Seung Ok; Ahn, Sang Ho; Jones, Rodney; Cho, Hee Kyung; Jung, Gil Su; Cho, Yun Woo

    2014-01-01

    Objective To investigate changes in lumbar multifidus (LM) and deep lumbar stabilizing abdominal muscles (transverse abdominis [TrA] and obliquus internus [OI]) during transcutaneous neuromuscular electrical stimulation (NMES) of lumbar paraspinal L4-L5 regions using real-time ultrasound imaging (RUSI). Methods Lumbar paraspinal regions of 20 healthy physically active male volunteers were stimulated at 20, 50, and 80 Hz. Ultrasound images of the LM, TrA, OI, and obliquus externus (OE) were captured during stimulation at each frequency. Results The thicknesses of superficial LM and deep LM as measured by RUSI were greater during NMES than at rest for all three frequencies (p<0.05). The thicknesses in TrA, OI, and OE were also significantly greater during NMES of lumbar paraspinal regions than at rest (p<0.05). Conclusion The studied transcutaneous NMES of the lumbar paraspinal region significantly activated deep spinal stabilizing muscle (LM) and the abdominal lumbar stabilizing muscles TrA and OI as evidenced by RUSI. The findings of this study suggested that transcutaneous NMES might be useful for improving spinal stability and strength in patients having difficulty initiating contraction of these muscles. PMID:25229029

  8. Nanocrystalline brookite with enhanced stability and photocatalytic activity: influence of lanthanum(III) doping.

    PubMed

    Perego, Céline; Wang, Yu-Heng; Durupthy, Olivier; Cassaignon, Sophie; Revel, Renaud; Jolivet, Jean-Pierre

    2012-02-01

    Metastable TiO(2) polymorphs are more promising materials than rutile for specific applications such as photocatalysis or catalysis support. This was clearly demonstrated for the anatase phase but still under consideration for brookite, which is difficult to obtain as pure phase. Moreover, the surface doping of anatase with lanthanum ions is known to both increase the thermal stability of the metastable phase and improve its photocatalytic activity. In this study, TiO(2) nanoparticles of almost only the brookite structure were prepared by a simple sol-gel procedure in aqueous solution. The nanoparticles were then doped with lanthanum(III) ions. The thermal stability of the nanoparticles was analyzed by X-ray diffraction and kinetic models were successfully applied to quantify phases evolutions. The presence of surface-sorbed lanthanum(III) ions increased the phase stability of at least 200 °C and this temperature shift was attributed to the selective phase stabilization of metastable TiO(2) polymorphs. Moreover, the combination of the surface doping ions and the thermal treatment induces the vanishing of the secondary anatase phase, and the photocatalytic tests on the doped brookite nanoparticles demonstrated that the doping increased photocatalytic activity and that the extent depended on the duration of the sintering treatment.

  9. Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2007-08-01

    This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature. PMID:17658750

  10. Alkyl Caffeates Improve the Antioxidant Activity, Antitumor Property and Oxidation Stability of Edible Oil

    PubMed Central

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  11. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    PubMed

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization.

  12. Alkyl caffeates improve the antioxidant activity, antitumor property and oxidation stability of edible oil.

    PubMed

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC₅₀ (14-23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24-51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4-78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  13. Formation of disulfide bonds in insect prophenoloxidase enhances immunity through improving enzyme activity and stability.

    PubMed

    Lu, Anrui; Peng, Qin; Ling, Erjun

    2014-06-01

    Type 3 copper proteins, including insect prophenoloxidase (PPO), contain two copper atoms in the active site pocket and can oxidize phenols. Insect PPO plays an important role in immunity. Insects and other invertebrates show limited recovery from pathogen invasion and wounds if phenoloxidase (PO) activity is low. In most insect PPOs, two disulfide bonds are present near the C-terminus. However, in Pimpla hypochondriaca (a parasitoid wasp), each PPO contains one disulfide bond. We thus questioned whether the formation of two sulfide bonds in insect PPOs improved protein stability and/or increased insect innate immunity over time. Using Drosophila melanogaster PPO1 as a model, one or two disulfide bonds were deleted to evaluate the importance of disulfide bonds in insect immunity. rPPO1 and mutants lacking disulfide bonds could be expressed and showed PO activity. However, the PO activities of mutants lacking one or two disulfide bonds significantly decreased. Deletion of disulfide bonds also reduced PPO thermostability. Furthermore, antibacterial activities against Escherichia coli and Bacillus subtilis significantly decreased when disulfide bonds were deleted. Therefore, the formation of two disulfide bond(s) in insect PPO enhances antibacterial activity by increasing PO activity and stability.

  14. Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity.

    PubMed

    Yoshimoto, Makoto; Sato, Mami; Yoshimoto, Noriko; Nakao, Katsumi

    2008-01-01

    Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NAD+) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD+-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD+ concentrations were 2.3 mg/mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD+ was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD+ as well as the free YADH with and without NAD+. Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD+ at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NAD+ was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD+ revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD+. This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD+. On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD+ and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD+ at 50 degrees C than at 45 degrees C. This was

  15. Characterization of the activity and stability of amylase from saliva and detergent: laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents.

    PubMed

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-07-01

    This article presents two integrated laboratory exercises intended to show students the role of α-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test (qualitative) under different conditions (e.g. variations in temperature and alkalinity). This work also proposes the study of enzyme stability in the presence of several surfactants and oxidizing agents using the same technical approach. The proposed laboratory exercises promote the understanding of the physiological function of this enzyme and the biotechnological applications of AAMYs in the detergent industry. The exercises also promote the understanding that the enzymatic stability and performance are dependent on the organism of origin, and if necessary, these properties could be modified by genetic engineering. In addition, this article reinforces the development of laboratory skills, problem-solving capabilities, and the ability to write a laboratory report. The exercises are proposed primarily as an undergraduate project for advanced students in the biochemical and biotechnological sciences. These laboratory practicals are complementary to the previously published BAMBED article (Biochemistry and Molecular Biology Education Vol. 39, No. 4, pp. 280-290, 2011) on detergent proteases.

  16. Why do active and stabilized dunes coexist under the same climatic conditions?

    PubMed

    Yizhaq, Hezi; Ashkenazy, Yosef; Tsoar, Haim

    2007-05-01

    Sand dunes can be active (mobile) or stable, mainly as a function of vegetation cover and wind power. However, there exists as yet unexplained evidence for the coexistence of bare mobile dunes and vegetated stabilized dunes under the same climatic conditions. We propose a model for dune vegetation cover driven by wind power that exhibits bistabilty and hysteresis with respect to the wind power. For intermediate wind power, mobile and stabilized dunes can coexist, whereas for low (or high) wind power they can be fixed (or mobile). Climatic change or human intervention can turn active dunes into stable ones and vice versa; our model predicts that prolonged droughts with stronger winds can result in dune reactivation.

  17. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  18. Body stability and muscle and motor cortex activity during walking with wide stance.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Beloozerova, Irina N; Sirota, Mikhail G; Prilutsky, Boris I

    2014-08-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion.

  19. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  20. Active stabilization of the optical part in fiber optic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2016-03-01

    The method of active stabilization of the polarization and other parameters of the optical part of a two-pass fiber optic quantum cryptography has been proposed and implemented. The method allows the completely automated maintenance of the visibility of interference close to an ideal value ( V ≥ 0.99) and the reduction of the instrumental contribution to the error in primary keys (QBER) to 0.5%.

  1. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  2. Augmented Likelihood Image Reconstruction.

    PubMed

    Stille, Maik; Kleine, Matthias; Hägele, Julian; Barkhausen, Jörg; Buzug, Thorsten M

    2016-01-01

    The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.

  3. Structural consequences of railgun augmentation

    SciTech Connect

    Wellman, G.W.; Schuler, K.W.

    1988-01-01

    An augmented railgun can provide the same driving force on a projectile at a lower plasma arc current and thus less potential erosion and barrel damage as an unaugmented railgun. However, there are structural consequences to railgun augmentation which must be overcome before the advantages of lower plasma arc currents can be realized. To investigate these consequences, a bolted V-block supporting structure is considered with two cores; unaugmented (a single pair of conducting rails), and augmented (conducting rails augmented by a second tandem set of conductors). The mechanical load on the cores consist of the static bolt preload, the plasma pressure behind the projectile, and the magnetic pressure induced by currents flowing in the rails or augmenting conductors. Assuming no current diffusion into the conductors, the magnetic pressure distribution on the conductors is determined by solving the two-dimensional magnetostatic field equations using an analogy with heat transfer. These loads are then used in a dynamic finite element structural model. The maximum rail current is found at which the unaugmented railgun can be repetitively fired without detrimental gaps forming at the bore. For the augmented railgun, at the same projectile acceleration, large permanent deformations can occur. Thus successful implementation of rail gun augmentation will require improvement of the supporting structure.

  4. Structural consequences of railgun augmentation

    SciTech Connect

    Wellman, G.W.; Schuler, K.W. . Applied Mechanics Div. III)

    1989-01-01

    An augmented railgun can provide the same driving force on a projectile at a lower plasma arc current and thus less potential erosion and barrel damage as an unaugmented railgun. However, there are structural consequences to railgun augmentation which must be overcome before the advantages of lower plasma arc currents can be realized. To investigate these consequences, a bolted V-block supporting structure is considered with two cores; unaugmented (a single pair of conducting rails), and augmented (conducting rails augmented by a second tandem set of conductors). The mechanical load on the cores consist of the static bolt preload, the plasma pressure behind the projectile, and the magnetic pressure induced by currents flowing in the rails or augmenting conductors. Assuming no current diffusion into the conductors, the magnetic pressure distribution on the conductors is determined by solving the two dimensional magnetostatic field equations using an analogy with heat transfer. These loads are then used in a dynamic finite element structural model. The maximum rail current is found at which the unaugmented railgun can be repetitively fired without detrimental gaps forming at the bore. For the augmented railgun, at the same projectile acceleration, large permanent deformations can occur. Thus successful implementation of rail gun augmentation will require improvement of the supporting structure.

  5. A dynamic model for generating actuator specifications for small arms barrel active stabilization

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan; Lavigna, Chris

    2006-03-01

    Due to stresses encountered in combat, it is known that soldier marksmanship noticeably decreases regardless of prior training. Active stabilization systems in small arms have potential to address this problem to increase soldier survivability and mission effectiveness. The key to success is proper actuator design, but this is highly dependent on proper specification which is challenging due to the human/weapon interaction. This paper presents a generic analytical dynamic model which is capable of defining the necessary actuation specifications for a wide range of small arms platforms. The model is unique because it captures the human interface--shoulder and arm--that introduces the jitter disturbance in addition to the geometry, inertial properties and active stabilization stiffness of the small arms platform. Because no data to date is available for actual shooter-induced disturbance in field conditions, a method is given using the model to back-solve from measured shooting range variability data the disturbance amplitude information relative to the input source (arm or shoulder). As examples of the applicability of the model to various small arms systems, two different weapon systems were investigated: the M24 sniper weapon and the M16 assault rifle. In both cases, model based simulations provided valuable insight into impact on the actuation specifications (force, displacement, phase, frequency) due to the interplay of the human-weapon-active stabilization interface including the effect of shooter-disturbance frequency, disturbance location (shoulder vs. arm), and system parameters (stiffness, barrel rotation).

  6. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  7. Chemical stability of plasmon-active silver tips for tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalbacova, Jana; Rodriguez, Raul D.; Desale, Vivek; Schneider, Maximilian; Amin, Ihsan; Jordan, Rainer; Zahn, Dietrich R. T.

    2015-01-01

    Silver nanostructures are used in tip- and surface-enhanced Raman spectroscopy due to their high electric field enhancement over almost the entire visible spectral range. However, the low chemical stability of silver, compared to other noble metals, promotes silver sulfide and sulfate formation which decreases its plasmonic activity. This is why silver tips are usually prepared on the same day of the experiments or are disregarded in favour of gold that is chemically more stable. Since silver degradation cannot be avoided, we hypothesized that a protection layer may be able to minimize or control degradation. In this contribution, we report the successful preparation of 4-biphenylthiol and 4'-nitro-4-biphenylthiol self-assembled monolayers on silver tips in order to protect them against tarnishing and to investigate the effect on the life-time of the plasmonic activity. The electrochemically etched wire surface was probed via Raman spectroscopy and scanning electron microscopy. The best long term stability and resistance against corrosion was shown by a monolayer of 4-biphenylthiol formed from dimethylformamide which did not display any degradation of the metallic tip during the observed period. Here, we demonstrate an easy and straightforward approach towards increasing the chemical stability of silver TERS-active probes.

  8. Iridium-Tin oxide solid-solution nanocatalysts with enhanced activity and stability for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Li, Guangfu; Yu, Hongmei; Yang, Donglei; Chi, Jun; Wang, Xunying; Sun, Shucheng; Shao, Zhigang; Yi, Baolian

    2016-09-01

    Addressing major challenges from the material cost, efficiency and stability, it is highly desirable to develop high-performance catalysts for oxygen evolution reaction (OER). Herein we explore a facile surfactant-assisted approach for fabricating Irsbnd Sn (Ir/Sn = 0.6/0.4, by mol.) nano-oxide catalysts with good morphology control. Direct proofs from XRD and X-ray photoelectron spectra indicate hydrophilic triblock polymer (TBP, like Pluronic® F108) surfactant can boost the formation of stable solid-solution structure. With the TBP hydrophilic and block-length increase, the fabricated Irsbnd Sn oxides undergoing the rod-to-sphere transition obtain the relatively lower crystallization, decreased crystallite size, Ir-enriched surface and incremental available active sites, all of which can bolster the OER activity and stability. Meanwhile, it is observed that the coupled Ir oxidative etching takes a crucial role in determining the material structure and performance. Compared with commercial Ir black, half-cell tests confirm F108-assistant catalysts with over 40 wt% Ir loading reduction show 2-fold activity enhancement as well as significant stability improvement. The lowest cell voltage using 0.88 mg cm-2 Ir loading is only 1.621 V at 1000 mA cm-2 and 80 °C with a concomitant energy efficiency of 75.8% which is beyond the DOE 2017 efficiency target of 74%.

  9. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  10. Stability and antioxidant activity of gossypol derivative immobilized on N-polyvinylpyrrolidone.

    PubMed

    Ionov, Maksim; Gordiyenko, Nataliya V; Zukowska, Izabela; Tokhtaeva, Elmira; Mareninova, Olga A; Baram, Nina; Ziyaev, Khairulla; Rezhepov, Kuralbay; Zamaraeva, Maria

    2012-12-01

    The objective of this study is analysis of stability and antioxidant and antiradical activities of the gossypol derivative - megosin conjugated with N-polyvinylpyrrolidone (PVP). The results of study have shown the greater stability of megosin+PVP than megosin in aqueous solution of wide range of pH. Here we also demonstrated that megosin+PVP, named rometin, possess high antioxidant activity in the same range as well known antioxidant trolox as determined by its ability to scavenge free ABTS(+) and DPPH radicals in vitro. In addition, megosin+PVP was able to prevent accumulation of products of lipid peroxidation (thiobarbituric acid reactive substances and diene conjugates) and lysophospholipids formation in mitochondria membranes caused by CCl(4)-induced oxidative stress in rat liver in vivo. Furthermore, megosin+PVP rescued mitochondrial functions, such as respiration and oxidative phosphorylation, which declined after CCl(4) administration. Thus we present that the conjugation of megosin to PVP increase its stability and remain antioxidant activity in vivo and in vitro.

  11. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  12. Remarkable enhancement of O₂ activation on yttrium-stabilized zirconia surface in a dual catalyst bed.

    PubMed

    Richard, Mélissandre; Can, Fabien; Duprez, Daniel; Gil, Sonia; Giroir-Fendler, Anne; Bion, Nicolas

    2014-10-13

    Yttrium-stabilized zirconia (YSZ) has been extensively studied as an electrolyte material for solid oxide fuel cells (SOFC) but its performance in heterogeneous catalysis is also the object of a growing number of publications. In both applications, oxygen activation on the YSZ surface remains the step that hinders utilization at moderate temperature. It was demonstrated by oxygen isotope exchange that a dual catalyst bed system consisting of two successive LaMnO3 and YSZ beds without intimate contact drastically enhances oxygen activation on the YSZ surface at 698 K. It can be concluded that LaMnO3 activates the triplet ground-state of molecular oxygen into a low-lying singlet state, thereby facilitating the activation of the O2 molecule on the YSZ oxygen vacancy sites. This phenomenon is shown to improve the catalytic activity of the LaMnO3-Pd/YSZ system for the partial oxidation of methane.

  13. Augmentation cystoplasty in neurogenic bladder

    PubMed Central

    Kocjancic, Ervin; Demirdağ, Çetin

    2016-01-01

    The aim of this review is to update the indications, contraindications, technique, complications, and the tissue engineering approaches of augmentation cystoplasty (AC) in patients with neurogenic bladder. PubMed/MEDLINE was searched for the keywords "augmentation cystoplasty," "neurogenic bladder," and "bladder augmentation." Additional relevant literature was determined by examining the reference lists of articles identified through the search. The update review of of the indications, contraindications, technique, outcome, complications, and tissue engineering approaches of AC in patients with neurogenic bladder is presented. Although some important progress has been made in tissue engineering AC, conventional AC still has an important role in the surgical treatment of refractory neurogenic lower urinary tract dysfunction.

  14. Augmented Reality Comes to Physics

    NASA Astrophysics Data System (ADS)

    Buesing, Mark; Cook, Michael

    2013-04-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.

  15. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo. PMID:26573275

  16. Macrolide-Based Microtubule-Stabilizing Agents - Chemistry and Structure-Activity Relationships

    NASA Astrophysics Data System (ADS)

    Pfeiffer, B.; Kuzniewski, C. N.; Wullschleger, C.; Altmann, K.-H.

    This article provides an overview on the chemistry and structure-activity relationships of macrolide-based microtubule-stabilizing agents. The primary focus will be on the total synthesis or examples thereof, but a brief summary of the current state of knowledge on the structure-activity relationships of epothilones, laulimalide, dictyostatin, and peloruside A will also be given. This macrolide class of compounds, over the last decade, has become the subject of growing interest due to their ability to inhibit human cancer cell proliferation through a taxol-like mechanism of action.

  17. Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change

    DOE R&D Accomplishments Database

    Teller, E.; Hyde, T.; Wood, L.

    2002-04-18

    We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.

  18. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    PubMed

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds.

  19. Surface active stabilizer Tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells

    SciTech Connect

    Kristl, Julijana; Teskac, Karmen; Milek, Miha; Mlinaric-Rascan, Irena

    2008-10-15

    Solid lipid nanoparticles (SLN) have been praised for their advantageous drug delivery properties such as biocompatibility, controlled release and passive drug targeting. However, the cytotoxicity of SLN and their ingredients, especially over a longer time period, has not been investigated in detail. We examined the critical issues regarding the use of a surface active stabilizer Tyloxapol (Tyl) for the preparation of solid lipid particles (SLP) and their effects on cellular functions and viability. SLP composed of behenate, phospholipids and a stabilizer, Tyloxapol or Lutrol (Lut), were prepared by the lipid melt method, labeled with a fluorescent dye and tested on Jurkat or HEK293 cells. The nano-sized particles were rapidly internalized and exhibited cytoplasmic localization. Incubation of cells with SLP-Tyl resulted in a dose- and time-dependent cytostatic effect, and also caused moderate and delayed cytotoxicity. Tyloxapol solution or SLP-Tyl dispersion caused the detachment of HEK293 cells, a decrease in cell proliferation and alterations in cellular morphology. Cell cycle analysis revealed that, while the unfavourable effects of SLP-Tyl and Tyloxapol solution are similar initially, longer incubation results in partial recovery of cells incubated with the dispersion of SLP-Tyl, whereas the presence of Tyloxapol solution induces apoptotic cell death. These findings indicate that Tyloxapol is an unfavourable stabilizer of SLP used for intracellular delivery and reinforce the role of stabilizers in a design of SLP with minimal cytotoxic properties.

  20. Vertical bone augmentation procedures: basics and techniques in dental implantology.

    PubMed

    Draenert, F G; Huetzen, D; Neff, A; Mueller, W E G

    2014-05-01

    An appropriate bony situation is essential for dental implant placement and bony support of soft tissues (pink esthetic). Loss of teeth often results in complex horizontal and vertical alveolar ridge defects. They demand advanced bone augmentation techniques for reconstruction. We present the different techniques and materials used in complex bone augmentation. Clinical cases show the application of the methods in the clinical setting. We present current techniques and materials used in complex bone augmentations. Clinical cases show the application of the methods in the clinical setting. Applied techniques include stabilized-guided bone regeneration (GBR), autologous local block augmentation, modified techniques such as Gellrich shell technique including piezosurgery, pelvic bone blocks, complex materials such as graft-derived bone blocks and their unique handling problems. Successful basic principles are reduction of cortical bone healing due to long remodeling time and possible late loss; extended application of materials with interconnecting porous system and particulate material resulting in fast healing analogous to cancellous bone; mechanical stabilization of the augmentation to allow bony healing in vertical defect situations. GBR and autologous bone blocks with minimal cortical thickness and a high volume of particulated material are most favorable techniques.

  1. Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity.

    PubMed

    Franje, Catherine A; Chang, Shao-Kuang; Shyu, Ching-Lin; Davis, Jennifer L; Lee, Yan-Wen; Lee, Ren-Jye; Chang, Chao-Chin; Chou, Chi-Chung

    2010-12-01

    Heat stability of amphenicols and the relationship between structural degradation and antimicrobial activity after heating has not been well investigated. Florfenicol (FF), thiamphenicol (TAP), and chloramphenicol (CAP) were heated at 100 degrees C in water, salt water, soybean sauce and chicken meat for up to 2h. Degradation and antimicrobial activity of the compounds was evaluated using capillary electrophoresis (CE) with UV-DAD spectrometry, minimum inhibitory concentration (MIC) assay, and gas chromatography with electron impact ionization mass spectrometry (GC-EI-MS). Heat stability of amphenicols in matrices was ranked as water> or =salt water>soybean sauce>meat, suggesting that heat degradation of amphenicols was accelerated in soybean sauce and was not protected in meat. Heat stability by drug and matrices was ranked as FF>TAP=CAP in water, FF=TAP>CAP in salt water, TAP> or =FF=CAP in soybean sauce, and TAP> or =FF=CAP in meat, indicating differential heat stability of amphenicols among the 3 drugs and in different matrices. In accordance with the less than 20% degradation, the MIC against Escherichia coli and Staphylococcus aureus did not change after 2h heating in water. A 5-min heating of amphenicols in water by microwave oven generated comparable percentage degradation to boiling in water bath for 30 min to 1h. Both CE and GC-MS analysis showed that heating of FF produced TAP but not FF amine as one of its breakdown products. In conclusion, despite close similarity in structure; amphenicols exhibited differential behavior toward heating degradation in solutions and protein matrices. Although higher degradations of amphenicols were observed in soybean sauce and meat, heating treatment may generate product with antimicrobial activity (FF to TAP), therefore, heating of amphenicol residues in food cannot always be assumed safe.

  2. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    PubMed

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses.

  3. Sorption and stability of mercury on activated carbon for emission control.

    PubMed

    Graydon, John W; Zhang, Xinzhi; Kirk, Donald W; Jia, Charles Q

    2009-09-15

    A leading strategy for control of mercury emissions from combustion processes involves removal of elemental mercury from the flue gas by injection of activated carbon sorbent. After particulate capture and disposal in a landfill, it is critical that the captured mercury remains permanently sequestered in the sorbent. The environmental stability of sorbed mercury was determined on two commercial, activated carbons, one impregnated using gaseous sulfur, and on two activated carbons that were impregnated with sulfur by reaction with SO(2). After loading with mercury vapor using a static technique, the stability of the sorbed mercury was characterized by two leaching methods. The standard toxicity characteristic leaching procedure showed leachate concentrations well below the limit of 0.2mg/L for all activated carbons. The nature of the sorbed mercury was further characterized by a sequential extraction scheme that was specifically optimized to distinguish clearly among the highly stable phases of mercury. This analysis revealed that there are two forms in which mercury is sequestered. In the sorbent that was impregnated by gaseous sulfur at a relatively low temperature, the mercury is present predominantly as HgS. In the other three sorbents, including two impregnated using SO(2), the mercury is predominantly present in the elemental form, physisorbed and chemisorbed to thiophene groups on the carbon surface. Both forms of binding are sufficiently stable to provide permanent sequestration of mercury in activated carbon sorbents after disposal.

  4. A small RNA activates CFA synthase by isoform-specific mRNA stabilization

    PubMed Central

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-01-01

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5′ end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. PMID:24141880

  5. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    PubMed

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses. PMID:26520823

  6. Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yeong; Choi, Jihui; Kim, Ho Young; Hwang, Eunkyoung; Kim, Hyoung-Juhn; Ahn, Sang Hyun; Kim, Soo-Kil

    2015-12-01

    The activity and stability of Ru metal and its thermal oxide films for the oxygen evolution reaction (OER) were investigated. The metallic Ru films were prepared by electrodeposition on a Ti substrate and then thermally oxidized at various temperatures under atmospheric conditions. During long-term operation of the OER with cyclic voltammetry (CV) in H2SO4 electrolyte, changes in the properties of the Ru and its thermal oxides were monitored in terms of their morphology, crystal structure, and electronic structure. In the initial stages of the OER, all of the Ru thermal oxide films underwent an activation process that was related to the continuous removal of low-activity Ru oxides from the surface. With further cycling, the OER activity decreased. The rate of decrease was different for each Ru film and was related to the annealing temperatures. Monitoring of material properties indicates that the amount of stable anhydrous RuO2 is important for OER stability because it prevents both the severe dissolution of metallic Ru beneath the oxide surface and the formation of a less active hydrous RuO2 at the surface.

  7. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization.

    PubMed

    Orru, Roberto; Dudek, Hanna M; Martinoli, Christian; Torres Pazmiño, Daniel E; Royant, Antoine; Weik, Martin; Fraaije, Marco W; Mattevi, Andrea

    2011-08-19

    Baeyer-Villiger monooxygenases catalyze the oxidation of carbonylic substrates to ester or lactone products using NADPH as electron donor and molecular oxygen as oxidative reactant. Using protein engineering, kinetics, microspectrophotometry, crystallography, and intermediate analogs, we have captured several snapshots along the catalytic cycle which highlight key features in enzyme catalysis. After acting as electron donor, the enzyme-bound NADP(H) forms an H-bond with the flavin cofactor. This interaction is critical for stabilizing the oxygen-activating flavin-peroxide intermediate that results from the reaction of the reduced cofactor with oxygen. An essential active-site arginine acts as anchoring element for proper binding of the ketone substrate. Its positively charged guanidinium group can enhance the propensity of the substrate to undergo a nucleophilic attack by the flavin-peroxide intermediate. Furthermore, the arginine side chain, together with the NADP(+) ribose group, forms the niche that hosts the negatively charged Criegee intermediate that is generated upon reaction of the substrate with the flavin-peroxide. The fascinating ability of Baeyer-Villiger monooxygenases to catalyze a complex multistep catalytic reaction originates from concerted action of this Arg-NADP(H) pair and the flavin subsequently to promote flavin reduction, oxygen activation, tetrahedral intermediate formation, and product synthesis and release. The emerging picture is that these enzymes are mainly oxygen-activating and "Criegee-stabilizing" catalysts that act on any chemically suitable substrate that can diffuse into the active site, emphasizing their potential value as toolboxes for biocatalytic applications.

  8. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens

    SciTech Connect

    Suzuki, Tomoharu; Kitamura, Shigeyuki . E-mail: skitamu@hiroshima-u.ac.jp; Khota, Ryuki; Sugihara, Kazumi; Fujimoto, Nariaki; Ohta, Shigeru

    2005-02-15

    Estrogenic and antiandrogenic activities of benzophenone and 16 of its derivatives, which are used as UV stabilizers, were comparatively examined with hormone-responsive reporter assay in various cell lines. Hydroxylated benzophenones exhibited estrogenic activity in human breast cancer cell line MCF-7, but their activities varied markedly. The highest activity was observed with 2,4,4'-trihydroxybenzophenone (2.4.4'-triOH-BP), followed by 2,3',4,4'-tetrahydroxybenzophenone, 4,4'-dihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 4-hydroxybenzophenone and 2,4-dihydroxybenzophenone. Benzophenone itself showed little activity in the assay. In contrast, benzophenone and some related compounds showed significant inhibitory effects on the androgenic activity of dihydrotestosterone in rat fibroblast cell line NIH3T3. The highest activity was observed with 2,4,4'-triOH-BP, followed by 2,3',4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 3-hydroxybenzophenone and 2,2'-dihydroxybenzophenone. However, 2,3,4,4'-tetrahydroxybenzophenone and 2,3,4-trihydroxybenzophenone showed little activity. 2,4-Dihydroxybenzophenone, 2,4,4'-triOH-BP and benzophenone gave positive responses in uterotrophic assay using ovariectomized rats, and 2,4,4'-triOH-BP was positive in the Hershberger assay using castrated rats. These results suggest that a 4-hydroxyl group on the phenyl ring of benzophenone derivatives is essential for high hormonal activities, and the presence of other hydroxyl groups markedly alters these activities.

  9. Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity

    PubMed Central

    Stavenuiter, Fabian

    2014-01-01

    Endothelial barrier protective effects of activated protein C (APC) require the endothelial protein C receptor (EPCR), protease-activated receptor (PAR) 1, and PAR3. In contrast, PAR1 and PAR3 activation by thrombin results in barrier disruption. Noncanonical PAR1 and PAR3 activation by APC vs canonical activation by thrombin provides an explanation for the functional selectivity of these proteases. Here we found that factor Xa (FXa) activated PAR1 at canonical Arg41 similar to thrombin but cleaved PAR3 at noncanonical Arg41 similar to APC. This unique PAR1-PAR3 activation profile permitted the identification of noncanonical PAR3 activation as a novel activation pathway for barrier protective tunica intima endothelial receptor tyrosine kinase 2 (Tie2). APC, FXa, and the noncanonical PAR3 tethered-ligand peptide induced prolonged activation of Tie2, whereas thrombin and the canonical PAR3 tethered-ligand peptide did not. Tie2 activation by FXa required PAR3 and EPCR. FXa and the noncanonical PAR3 tethered-ligand peptide induced Tie2- and PAR3-dependent upregulation of tight-junction-associated protein zona occludens 1 (ZO-1), translocation of ZO-1 to cell-cell borders, and the formation of typical ZO-1 honeycomb patterns that are indicative of tight-junction stabilization. These data provide intriguing novel insights into the diversification of functional selectivity of protease signaling achievable by canonical and noncanonical PAR activation, such as the activation of vascular-protective Tie2 by noncanonical PAR3 activation. PMID:25320242

  10. Ras enhances Myc protein stability.

    PubMed

    Sears, R; Leone, G; DeGregori, J; Nevins, J R

    1999-02-01

    Various experiments have demonstrated a collaborative action of Myc and Ras, both in normal cell growth control as well as during oncogenesis. We now show that Ras enhances the accumulation of Myc activity by stabilizing the Myc protein. Whereas Myc has a very short half-life when produced in the absence of mitogenic signals, due to degradation by the 26S proteasome, the half-life of Myc increases markedly in growth-stimulated cells. This stabilization is dependent on the Ras/Raf/MAPK pathway and is not augmented by proteasome inhibition, suggesting that Ras inhibits the proteasome-dependent degradation of Myc. We propose that one aspect of Myc-Ras collaboration is an ability of Ras to enhance the accumulation of transcriptionally active Myc protein.

  11. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors. PMID:26972256

  12. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  13. [Stability and antioxidant activity of black currant and black aronia berry juices].

    PubMed

    Kasparaviciene, Giedre; Briedis, Vitalis

    2003-01-01

    The berries of black currant and black aronia are rich in polyphenolic compounds and especially in anthocyanins, demonstrating antioxidant activity. The aim of the study was to evaluate the possible effect of thermal technological processes on the quantity of polyphenols and anthocyanins in berry juice concentrates, and on the antioxidant activity. After 8 hour storage of black currant and black aronia berry juice concentrates at 60 degrees C, the amount of polyphenols decreased by 46% and 22%, anthocyanins 31% and 35%, respectively. Antioxidant activity decreased by 26% and 56%, respectively. The results demonstrated insufficient stability of juice concentrates, and impropriety of application of long lasting drying processes in manufacturing of black currant and black aronia berry dry products. Fast and efficient drying methods for liquid products should be applied to preserve qualitative and quantitative composition and their antioxidant activity.

  14. Stability of Recombinant Tissue Plasminogen Activator at −30 °C Over One Year

    PubMed Central

    Alkatheri, Abdulmalik

    2012-01-01

    Recombinant tissue plasminogen activator (rt-PA) is used to restore patency and avoid inadvertent removal of peripheral and central venous catheters. rt-PA was reconstituted (1 mg/mL) then cryopreserved at −30 °C for 1, 2, 3, 6, 8, and 12 months and, then its stability was determined. After cryopreservation for one and two months, rt-PA kept more than 95% of its activity compared to standard samples, while cryopreservation for three months caused 8% loss of activity. However, after cryopreservation for six months or more, rt-PA retained only 87.5% or less activity compared to standard samples. Therefore, it is recommended that reconstituted rt-PA be cryopreserved at −30 °C for a maximum period of three months. PMID:24275785

  15. CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides

    PubMed Central

    Porto, William F.; Pires, Állan S.; Franco, Octavio L.

    2012-01-01

    The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at and runs on any Linux machine. PMID:23240023

  16. PEGylation of lysine residues improves the proteolytic stability of fibronectin while retaining biological activity.

    PubMed

    Zhang, Chen; Desai, Raj; Perez-Luna, Victor; Karuri, Nancy

    2014-08-01

    Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine-PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine-PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN-PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2-kDa FN-PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN-PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.

  17. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    PubMed

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3 ml of 0.02% lignin and 1mM silver nitrate incubated for 30 min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430 nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50 nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500 μg/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles.

  18. Active and Passive Interferometric Fringe Stabilization for Quantum Communications in Space

    NASA Astrophysics Data System (ADS)

    Chapman, Joseph; Graham, Trent; Kwiat, Paul

    2015-05-01

    In interferometry, the relative phase between the paths is liable to drift over time due to environmental factors, i.e., vibrations in the components and from turbulence and temperature fluctuations in the air. If time-bin encoded photons are received from a moving space platform, e.g., a satellite or the International Space Station, there would be an additional large relative temporal shift because of the movement of the source toward or away from the receiver. This shift would alter the temporal coherence of adjacent timebins-as measured by a suitable temporally-unbalanced interferometer-in addition to the relative phase errors from the environment. To achieve accurate measurements in this situation, the interferometer needs to be stabilized against phase drifts. We have employed an active and passive stabilization scheme for a double unbalanced Mach-Zehnder interferometer configuration; while passive damping reduces most of the phase drift due to vibrations and fluctuations from the air, we designed and implemented an active feedback correction system to stabilize the remaining phase drift and the simulated temporal drift.

  19. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity

    PubMed Central

    2013-01-01

    Background Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. Results DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. Conclusions Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition. PMID:24359024

  20. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    PubMed

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3 ml of 0.02% lignin and 1mM silver nitrate incubated for 30 min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430 nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50 nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500 μg/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles. PMID:26434518

  1. Integrated Stability and Activity Control of the Drosophila Rbf1 Retinoblastoma Protein*

    PubMed Central

    Zhang, Liang; Wei, Yiliang; Pushel, Irina; Heinze, Karolin; Elenbaas, Jared; Henry, R. William; Arnosti, David N.

    2014-01-01

    The retinoblastoma (RB) family transcriptional corepressors regulate diverse cellular events including cell cycle, senescence, and differentiation. The activity and stability of these proteins are mediated by post-translational modifications; however, we lack a general understanding of how distinct modifications coordinately impact both of these properties. Previously, we showed that protein turnover and activity are tightly linked through an evolutionarily conserved C-terminal instability element (IE) in the Drosophila RB-related protein Rbf1; surprisingly, mutant proteins with enhanced stability were less, not more active. To better understand how activity and turnover are controlled in this model RB protein, we assessed the impact of Cyclin-Cdk kinase regulation on Rbf1. An evolutionarily conserved N-terminal threonine residue is required for Cyclin-Cdk response and showed a dominant impact on turnover and activity; however, specific residues in the C-terminal IE differentially impacted Rbf1 activity and turnover, indicating an additional level of regulation. Strikingly, specific IE mutations that impaired turnover but not activity induced dramatic developmental phenotypes in the Drosophila eye. Mutation of the highly conserved Lys-774 residue induced hypermorphic phenotypes that mimicked the loss of phosphorylation control; mutation of the corresponding codon of the human RBL2 gene has been reported in lung tumors. Our data support a model in which closely intermingled residues within the conserved IE govern protein turnover, presumably through interactions with E3 ligases, and protein activity via contacts with E2F transcription partners. Such functional relationships are likely to similarly impact mammalian RB family proteins, with important implications for development and disease. PMID:25049232

  2. Soft tissue augmentation using Restylane.

    PubMed

    Biesman, Brian

    2004-05-01

    Soft tissue augmentation plays an important role in facial rejuvenation. To accomplish this goal, numerous materials have been used. Hyaluronic acids represent the latest family of products to become available in the United States. This article provides an introduction to the proper use of Restylane, the first hyaluronic acid product to be approved by the United States Food and Drug Administration for soft tissue augmentation.

  3. Development of new polysilsesquioxane spherical particles as stabilized active ingredients for sunscreens

    NASA Astrophysics Data System (ADS)

    Tolbert, Stephanie Helene

    Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment

  4. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    PubMed Central

    Ambati, Ranga Rao; Siew Moi, Phang; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  5. Effects of Inhibiting Acylated Homoserine Lactones (AHLs) on Anammox Activity and Stability of Granules'.

    PubMed

    Zhao, Ran; Zhang, Hanmin; Zou, Xiang; Yang, Fenglin

    2016-07-01

    In this study, the effects of AHL-based QS signals on anammox activity and stability of granules' were investigated. Results clearly showed that the vanillin and porcine kidney acylase I could reduce the AHLs in anammox bacteria. Inactivation of AHLs by vanillin and porcine kidney acylase I depressed the nitrogen removal ability of anammox bacteria. A significant inhibition of specific anammox activity was observed when the concentration of vanillin and porcine kidney acylase I increased to 1 g/L. Anammox activity was depressed on enzyme level. Moreover, degradation of AHLs under vanillin and AHL-acylase exposure could result in anammox granules' disintegration. Further research showed that the contents of protein (PN) and polysaccharides (PS) in extracellular polymeric substances were reduced with AHLs blocked, and it further explained the instability and weakening strength of the anammox granules. The results of our investigation provided new insight into the AHL-based QS-regulated anammox activity, leading a potential way to enhance stability of anammox granules. PMID:27061587

  6. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review.

    PubMed

    Ambati, Ranga Rao; Phang, Siew Moi; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  7. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  8. Influence of cysteine and methionine availability on protein peroxide scavenging activity and phenolic stability in emulsions.

    PubMed

    Zhou, Lisa; Elias, Ryan J

    2014-03-01

    Plant phenolics are secondary metabolites that have been shown to confer beneficial health effects in humans. However, many of these compounds undergo metal-catalysed oxidation reactions, leading to the generation of hydrogen peroxide (H2O2) and other reactive oxygen species that may negatively impact product stability. In proteins, methionine (Met) and cysteine (Cys) are capable of reacting directly with peroxides. Thus, the dairy proteins, casein (CAS) and β-lactoglobulin (BLG), were examined for their ability to scavenge H2O2 (400μM) and influence (-)-epigallocatechin-3-gallate (EGCG) oxidation (400μM) in Tween- or sodium dodecyl sulphate (SDS)-stabilised hexadecane emulsions. To examine the effect that the accessibility of these amino acids have on their peroxide scavenging activities, proteins were pre-treated with tert-butyl hydroperoxide (TBHP), a bulky peroxide, to oxidise only solvent accessible Met residues or H2O2, the smallest peroxide, to oxidise buried Met residues. In CAS treatments, higher Met content yielded greater peroxide scavenging activity and EGCG stability. CAS treatments also showed significantly higher peroxide scavenging activity compared to the corresponding BLG treatment. However, BLG peroxide scavenging activity was greatly enhanced in SDS-stabilised emulsions due to protein denaturation and subsequent exposure of previously buried Cys residues.

  9. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review.

    PubMed

    Ambati, Ranga Rao; Phang, Siew Moi; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-07

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.

  10. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    PubMed Central

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-01-01

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail. PMID:26610529

  11. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  12. Redesigned and chemically-modified hammerhead ribozymes with improved activity and serum stability

    PubMed Central

    Hendry, Philip; McCall, Maxine J; Stewart, Tom S; Lockett, Trevor J

    2004-01-01

    Background Hammerhead ribozymes are RNA-based molecules which bind and cleave other RNAs specifically. As such they have potential as laboratory reagents, diagnostics and therapeutics. Despite having been extensively studied for 15 years or so, their wide application is hampered by their instability in biological media, and by the poor translation of cleavage studies on short substrates to long RNA molecules. This work describes a systematic study aimed at addressing these two issues. Results A series of hammerhead ribozyme derivatives, varying in their hybridising arm length and size of helix II, were tested in vitro for cleavage of RNA derived from the carbamoyl phosphate synthetase II gene of Plasmodium falciparum. Against a 550-nt transcript the most efficient (t1/2 = 26 seconds) was a miniribozyme with helix II reduced to a single G-C base pair and with twelve nucleotides in each hybridising arm. Miniribozymes of this general design were targeted to three further sites, and they demonstrated exceptional cleavage activity. A series of chemically modified derivatives was prepared and examined for cleavage activity and stability in human serum. One derivative showed a 103-fold increase in serum stability and a doubling in cleavage efficiency compared to the unmodified miniribozyme. A second was almost 104-fold more stable and only 7-fold less active than the unmodified parent. Conclusion Hammerhead ribozyme derivatives in which helix II is reduced to a single G-C base pair cleave long RNA substrates very efficiently in vitro. Using commonly available phosphoramidites and reagents, two patterns of nucleotide substitution in this derivative were identified which conferred both good cleavage activity against long RNA targets and good stability in human serum. PMID:15588292

  13. Backstepping Control Augmented by Neural Networks For Robot Manipulators

    NASA Astrophysics Data System (ADS)

    Belkheiri, Mohammed; Boudjema, Farès

    2008-06-01

    A new control approach is proposed to address the tracking problem of robot manipulators. In this approach, one relies first on a partially known model to the system to be controlled using a backstepping control strategy. The obtained controller is then augmented by an online neural network that serves as an approximator for the neglected dynamics and modeling errors. The proposed approach is systematic, and exploits the known nonlinear dynamics to derive the stepwise virtual stabilizing control laws. At the final step, an augmented Lyapunov function is introduced to derive the adaptation laws of the network weights. The effectiveness of the proposed controller is demonstrated through computer simulation on PUMA 560 robot.

  14. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  15. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts. PMID:25487127

  16. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  17. Design of Surface-Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for High-Performance Biphasic Biocatalysis.

    PubMed

    Chen, Zhaowei; Zhao, Chuanqi; Ju, Enguo; Ji, Haiwei; Ren, Jinsong; Binks, Bernard P; Qu, Xiaogang

    2016-02-24

    Surface-active artificial enzymes (SAEs) are designed and constructed by a general and novel strategy. These SAEs can simultaneously stabilize Pickering emulsions and catalyze biphasic biotransformation with superior enzymatic stability and good re-usability; for example, for the interfacial conversion of hydrophobic p-nitrophenyl butyrate into yellow water-soluble p-nitrophenolate catalyzed by esterase-mimic SAE.

  18. Activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micelles.

    PubMed

    Sarcar, S; Jain, T K; Maitra, A

    1992-02-20

    The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307 degrees C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.

  19. Periodic patterning of the Drosophila eye is stabilized by the diffusible activator Scabrous

    PubMed Central

    Gavish, Avishai; Shwartz, Arkadi; Weizman, Abraham; Schejter, Eyal; Shilo, Ben-Zion; Barkai, Naama

    2016-01-01

    Generation of periodic patterns is fundamental to the differentiation of multiple tissues during development. How such patterns form robustly is still unclear. The Drosophila eye comprises ∼750 units, whose crystalline order is set during differentiation of the eye imaginal disc: an activation wave sweeping across the disc is coupled to lateral inhibition, sequentially selecting pro-neural cells. Using mathematical modelling, here we show that this template-based lateral inhibition is highly sensitive to spatial variations in biochemical parameters and cell sizes. We reveal the basis of this sensitivity, and suggest that it can be overcome by assuming a short-range diffusible activator. Clonal experiments identify Scabrous, a previously implicated inhibitor, as the predicted activator. Our results reveal the mechanism by which periodic patterning in the fly eye is stabilized against spatial variations, highlighting how the need to maintain robustness shapes the design of patterning circuits. PMID:26876750

  20. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT.

  1. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity.

    PubMed

    Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia; Zhang, Jiaguang; De, Sudipta; Yan, Ning

    2016-07-11

    In coordination chemistry, catalytically active metal complexes in a zero- or low-valent state often adopt four-coordinate square-planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single-atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)-modified active carbon. This was achieved by anchoring Pt on the four-fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square-planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities.

  2. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle.

    PubMed

    Pal, Indrani; Brahmkhatri, Varsha P; Bera, Swapna; Bhattacharyya, Dipita; Quirishi, Yasrib; Bhunia, Anirban; Atreya, Hanudatta S

    2016-12-01

    The conjugation of nanoparticles with antimicrobial peptides (AMP) is emerging as a promising route to achieve superior antimicrobial activity. However, the nature of peptide-nanoparticle interactions in these systems remains unclear. This study describes a system consisting of a cysteine containing antimicrobial peptide conjugated with silver nanoparticles, in which the two components exhibit a dynamic interaction resulting in a significantly enhanced stability and biological activity compared to that of the individual components. This was investigated using NMR spectroscopy in conjunction with other biophysical techniques. Using fluorescence assisted cell sorting and membrane mimics we carried out a quantitative comparison of the activity of the AMP-nanoparticle system and the free peptide. Taken together, the study provides new insights into nanoparticle-AMP interactions at a molecular level and brings out the factors that will be useful for consideration while designing new conjugates with enhanced functionality. PMID:27585423

  3. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers

    SciTech Connect

    Kim, Byoung Chan; Nair, Sujith; Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.; Kim, Seong H.; Gu, Man Bock

    2005-04-01

    We have developed a unique approach for the fabrication of enzyme coating on the surface of electrospun polymer nanofibers. This approach employs covalent attachment of seed enzymes onto nanofibers, followed by the glutaraldehyde treatment that crosslinks additional enzymes onto the seed enzyme molecules. These crosslinked enzyme aggregates, covalently attached to the nanofibers via seed enzyme linker, would improve not only the enzyme activity due to increased enzyme loading, but also the enzyme stability. To demonstrate the principle of concept, we fabricated the coating of alpha-chymotrypsin (CT) on the nanofibers electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The addition of poly(styrene-co-maleic anhydride) makes it much easier to attach the seed enzyme molecules onto electrospun nanofibers without any rigorous functionalization of nanofibers for the attachment of enzymes. The initial activity of final CT coating was 17 and 9 times higher than those of simply-adsorbed CT and covalently-attached CT, respectively. While adsorbed and covalently-attached CT resulted in a serious enzyme leaching during initial incubation in a shaking condition, the CT coating did not show any leaching from the beginning of incubation in the same condition. As a result, the enzyme stability of CT coating was impressively improved with a half-life of 686 days under rigorous shaking while the half-life of covalently-attached CT was only 21 hours. This new approach of enzyme coating with high stability and activity will make a great impact in various applications of enzymes such as bioconversion, bioremediation, and biosensors.

  4. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts.

    PubMed

    Di Mambro, Valéria M; Fonseca, Maria J V

    2005-02-23

    In the present investigation the changes on physical stability (pH, viscosity, flow index and tixotropy) of topical formulations were evaluated following inclusion of different plant extracts containing flavonoids. Also, the antioxidant effect of these plant extracts alone and after addition in the formulation was evaluated using chemiluminescence and the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH(.-)) assays, as well as the inhibition of lipid peroxidation. Formulation added with dl-alpha-tocopherol was used to compare the physical stability and antioxidant activity. Formulations with plant extracts showed pseudoplastic behavior with decreasing on viscosity and tixotropy. The Glycyrrhiza glabra (GG) and Ginkgo biloba (GB) extracts alone and the formulations containing these extracts showed great antioxidant and free radical scavenging activities while the other extracts studied (mixture of Glycyrrhiza glabra, Symphytum officinale L and Arctium majus root, Nelumbium speciosum and soybean) showed lower activity. The results suggest that GG and GB extracts may be used in topical formulations in order to protect skin against damage caused by free radical and reactive oxygen species. PMID:15708669

  5. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability.

  6. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers

    NASA Astrophysics Data System (ADS)

    Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

    2014-04-01

    Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

  7. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  8. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    PubMed Central

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. Results: FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. Conclusions: PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%. PMID:26605215

  9. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  10. Transition state stabilization by six arginines clustered in the active site of creatine kinase.

    PubMed

    Jourden, Michael J; Geiss, Paul R; Thomenius, Michael J; Horst, Lindsay A; Barty, Melissa M; Brym, Melissa J; Mulligan, Guy B; Almeida, Ryan M; Kersteen, Betsy A; Myers, Nichole R; Snider, Mark J; Borders, Charles L; Edmiston, Paul L

    2005-08-10

    Six fully conserved arginine residues (R129, R131, R235, R291, R319, and R340) closely grouped in the nucleotide binding site of rabbit muscle creatine kinase (rmCK) were mutated; four to alanine and all six to lysine. Kinetic analyses in the direction of phosphocreatine formation showed that all four alanine mutants led to substantial losses of activity with three (R129A, R131A, and R235A) having no detectable activity. All six lysine mutants retained variable degrees of reduced enzymatic activity. Static quenching of intrinsic tryptophan fluorescence was used to measure the binding constants for MgADP and MgATP. Nucleotide binding was at most only modestly affected by mutation of the arginine residues. Thus, the cluster of arginines seem to be primarily responsible for transition state stabilization which is further supported by the observation that none of the inactive mutants demonstrated the ability to form a transition analogue complex of MgADP.nitrate.creatine as determined by fluorescence quenching assays. As a whole, the results suggest that the most important role these residues play is to properly align the substrates for stabilization of the phosphoryl transfer reaction.

  11. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    PubMed

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. PMID:27529608

  12. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  13. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    PubMed

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %.

  14. Stability Assessment of 10 Active Pharmaceutical Ingredients Compounded in SyrSpend SF.

    PubMed

    Geiger, Christine M; Sorenson, Bridget; Whaley, Paul

    2015-01-01

    The stability of 10 active pharmaceutical ingredients was studied in SyrSpend SF PH4 or SyrSpend SF Alka at room and/or refrigerated temperature (2°C to 8°C). An oral suspension of each active pharmaceutical ingredient was compounded in low actinic plastic bottles at a specific concentration in SyrSpend SF PH4 or SyrSpend SF Alka. Samples were assessed for stability immediately after preparation (day 0) followed by storage at room temperature and/or at refrigerated temperature. At set time points, the samples were removed from storage and assayed using a high-performance liquid chromatographic stability- indicating method. The active pharmaceutical ingredient was considered stable if the suspension retained 90% to 110% of the initial concentration. Furosemide was stable for at least 14 days in SyrSpend SF Alka at refrigerated conditions. Prednisolone sodium phosphate in SyrSpend SF PH4 was stable for at least 30 days at room temperature and refrigerated conditions. Ranitidine hydrochloride suspensions in SyrSpend SF PH4 at room temperature and refrigerated conditions were stable for at least 30 days and 58 days, respectively. Hydrocortisone hemisuccinate and sodium phosphate retained greater than 90% for at least 60 days at both room temperature and refrigerated samples in SyrSpend SF PH4. Amiodarone hydrochloride and nifedipine suspensions at both room temperature and refrigerated conditions retained greater than 90% of the initial concentrations for at least 90 days in SyrSpend SF PH4. Refrigerated samples of simvastatin in SyrSpend SF PH4 were stable for at least 90 days. Spironolactone in SyrSpend SF PH4 at room temperature retained more than 90% of the initial concentration for at least 90 days. Phenobarbital in SyrSpend SF PH4 retained above 90% of initial concentration for at least 154 days at room temperature. This study demonstrated the stability of a wide range of frequently used active pharmaceutical ingredients, tested in SyrSpend SF PH4 and Syr

  15. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes. PMID:27259687

  16. Experimental study of the stability and activity of brines on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Altheide, Travis S.

    This work contributes to the understanding of liquid water stability, with an emphasis on the role that dissolved solutes may have had on liquid water formation on Mars, past and present. In chapter 2, the stability of liquid water under martian conditions is explored through experiments on ferric sulfate brines. First, it is demonstrated that such brines can be formed starting from typical martian mineralogy. Ferric sulfates are quite soluble, up to 48 wt%, and can form solutions which remain liquid down to 205 +/-1 K at the eutectic. As a result of low water activities, these solutions exhibit evaporation rates 20 times lower than pure water. The combination of a low eutectic point and low evaporation rates allow subsurface liquids to be stable at high martian latitudes, where the majority of gullies and viscous flow features are located. Thus, the characteristics of ferric sulfate brines were further investigated in chapter 3, where the viscous properties of such solutions were measured, with respect to changing temperature and concentration. Using these results, the viscosity of these solutions on the formation of gullies was considered, where calculated fluid flow velocities were found to be in accordance with some estimates from image analyses of gully formations. In chapter 4, other Mars-relevant brines were studied and characterized under martian surface conditions. Magnesium and ferrous sulfate, and magnesium and ferric chloride brines were found to stabilize water, through lower evaporation rates and freezing point depression, much like the ferric sulfate brines. For these sulfate brines, it was found that the thermodynamic process of phase change, i.e. ice formation and/or salt crystallization, can affect the kinetic process of evaporation, through very low water activities in solution. Furthermore, in chapter 5 these studies were extended to recent results from the Phoenix mission, by examining the stability of perchlorate brines under conditions

  17. Correction: Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface.

    PubMed

    Pandiri, Manjula; Shaham-Waldmann, Nurit; Hossain, Mohammad S; Foss, Frank W; Rajeshwar, Krishnan; Paz, Yaron

    2016-09-14

    Correction for 'Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface' by Manjula Pandiri et al., Phys. Chem. Chem. Phys., 2016, 18, 18575-18583. PMID:27509005

  18. A larger critical shoulder angle requires more rotator cuff activity to preserve joint stability.

    PubMed

    Viehöfer, Arnd F; Gerber, Christian; Favre, Philippe; Bachmann, Elias; Snedeker, Jess G

    2016-06-01

    Shoulders with rotator cuff tears (RCT) tears are associated with significantly larger critical shoulder angles (CSA) (RCT CSA = 38.2°) than shoulders without RCT (CSA = 32.9°). We hypothesized that larger CSAs increase the ratio of glenohumeral joint shear to joint compression forces, requiring substantially increased compensatory supraspinatus loads to stabilize the arm in abduction. A previously established three dimensional (3D) finite element (FE) model was used. Two acromion shapes mimicked the mean CSA of 38.2° found in patients with RCT and that of a normal CSA (32.9°). In a first step, the moment arms for each muscle segment were obtained for 21 different thoracohumeral abduction angles to simulate a quasi-static abduction in the scapular plane. In a second step, the muscle forces were calculated by minimizing the range of muscle stresses able to compensate an external joint moment caused by the arm weight. If the joint became unstable, additional force was applied by the rotator cuff muscles to restore joint stability. The model showed a higher joint shear to joint compressive force for the RCT CSA (38.2°) for thoracohumeral abduction angles between 40° and 90° with a peak difference of 23% at 50° of abduction. To achieve stability in this case additional rotator cuff forces exceeding physiological values were required. Our results document that a higher CSA tends to destabilize the glenohumeral joint such that higher than normal supraspinatus forces are required to maintain modeled stability during active abduction. This lends strong support to the concept that a high CSA can induce supraspinatus (SSP) overload. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:961-968, 2016. PMID:26572231

  19. A pro-apoptotic function of iASPP by stabilizing p300 and CBP through inhibition of BRMS1 E3 ubiquitin ligase activity

    PubMed Central

    Kramer, D; Schön, M; Bayerlová, M; Bleckmann, A; Schön, M P; Zörnig, M; Dobbelstein, M

    2015-01-01

    The p53 family and its cofactors are potent inducers of apoptosis and form a barrier to cancer. Here, we investigated the impact of the supposedly inhibitory member of the apoptosis-stimulating protein of p53, iASPP, on the activity of the p53 homolog TAp73, and its cofactors p300 and CBP. We found that iASPP interacted with and stabilized the histone acetyltransferase p300 and its homolog CBP upon cisplatin treatment. Vice versa, iASPP depletion by shRNA resulted in decreased amounts of p300 and CBP, impaired binding of p300 and TAp73 to target site promoters, reduced induction of pro-apoptotic TAp73 target genes, and impaired apoptosis. Mechanistically, we observed that the p300-regulatory E3 ubiquitin ligase BRMS1 could rescue the degradation of p300 and CBP in cisplatin-treated, iASPP-depleted cells. This argues that iASPP stabilizes p300 and CBP by interfering with their BRMS1-mediated ubiquitination, thereby contributing to apoptotic susceptibility. In line, iASPP overexpression partially abolished the interaction of BRMS1 and CBP upon DNA damage. Reduced levels of iASPP mRNA and protein as well as CBP protein were observed in human melanoma compared with normal skin tissue and benign melanocytic nevi. In line with our findings, iASPP overexpression or knockdown of BRMS1 each augmented p300/CBP levels in melanoma cell lines, thereby enhancing apoptosis upon DNA damage. Taken together, destabilization of p300/CBP by downregulation of iASPP expression levels appears to represent a molecular mechanism that contributes to chemoresistance in melanoma cells. PMID:25675294

  20. Flash NanoPrecipitation of organic actives via confined micromixing and block copolymer stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, Brian K.

    This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation

  1. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability.

    PubMed

    Altinkaynak, Cevahir; Yilmaz, Ismail; Koksal, Zeynep; Özdemir, Hasan; Ocsoy, Ismail; Özdemir, Nalan

    2016-03-01

    We report a green approach to synthesize lactoperoxidase (LPO) enzyme and metal ions hybrid nanoflowers (HNFs) and investigate mechanism underlying formation and enhanced catalytic activity and stability under different experimental parameters. The HNFs formed of LPO enzyme purified from bovine milk and copper ions (Cu(2+)) were synthesized at two different temperatures (+4 °C and 20 °C) in PBS (pH 7.4). The effects of experimental conditions, pH and storage temperatures, on the activity and stability of LPO-copper phosphate HNFs were evaluated using guaiacol as a substrate in the presence of hydrogen peroxide (H2O2). Optimum pHs were determined as pH 8 and pH 6 for LPO-copper phosphate HNF and free LPO, respectively. LPO-copper phosphate HNF has higher activity than free LPO at each pHs. Activities of LPO-copper phosphate HNF at pH 6 and pH 8 were calculated as 70.48 EU/mg, 107.23 EU/mg, respectively while free LPO shows 45.78 EU/mg and 30.12 EU/mg, respectively. Compared with free LPO, LPO-copper phosphate HNFs exhibited ∼160% and ∼360% increase in activities at pH 6 and pH 8, respectively. Additionally, LPO-copper phosphate HNFs displayed perfect reusability after six cycles. Finally, we demonstrated that LPO-copper phosphate HNFs can be utilized as a nanosensor for detection of dopamine and epinephrine.

  2. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  3. TASK-SPECIFIC STABILITY IN MUSCLE ACTIVATION SPACE DURING UNINTENTIONAL MOVEMENTS

    PubMed Central

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L.

    2014-01-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multi-dimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back towards the initial position. Inter-trial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two sub-spaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former sub-space in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  4. Accelerated Stability Studies on Dried Extracts of Centella asiatica Through Chemical, HPLC, HPTLC, and Biological Activity Analyses.

    PubMed

    Kaur, Ishtdeep; Suthar, Nancy; Kaur, Jasmeen; Bansal, Yogita; Bansal, Gulshan

    2016-10-01

    Regulatory guidelines recommend systematic stability studies on a herbal product to establish its shelf life. In the present study, commercial extracts (Types I and II) and freshly prepared extract (Type III) of Centella asiatica were subjected to accelerated stability testing for 6 months. Control and stability samples were evaluated for organoleptics, pH, moisture, total phenolic content (TPC), asiatic acid, kaempherol, and high-performance thin layer chromatography fingerprints, and for antioxidant and acetylcholinesterase inhibitory activities. Markers and TPC and both the activities of each extract decreased in stability samples with respect to control. These losses were maximum in Type I extract and minimum in Type III extract. Higher stability of Type III extract than others might be attributed to the additional phytoconstituents and/or preservatives in it. Pearson correlation analysis of the results suggested that TPC, asiatic acid, and kaempferol can be taken as chemical markers to assess chemical and therapeutic shelf lives of herbal products containing Centella asiatica.

  5. Bayesian Alternation during Tactile Augmentation

    PubMed Central

    Goeke, Caspar M.; Planera, Serena; Finger, Holger; König, Peter

    2016-01-01

    A large number of studies suggest that the integration of multisensory signals by humans is well-described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study, we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC) task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition), rotation only (native condition), and both augmented and native information (bimodal condition). Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants' responses with a probit model and calculated the just notable difference (JND). Then, we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67) than the Bayesian integration model (χred2 = 4.34). Slightly higher accuracy showed a non-Bayesian winner takes all (WTA) model (χred2 = 1.64), which either used only native or only augmented values per subject for prediction. However, the performance of the Bayesian alternation model could be substantially improved (χred2 = 1.09) utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in

  6. Assessment of Augmented Immune Surveillance and Tumor Cell Death by Cytoplasmic Stabilization of p53 as a Chemopreventive Strategy of 3 Promising Medicinal Herbs in Murine 2-Stage Skin Carcinogenesis.

    PubMed

    Ali, Farrah; Khan, Rehan; Khan, Abdul Quaiyoom; Lateef, Md Abdul; Maqbool, Tahir; Sultana, Sarwat

    2014-07-01

    Cancer is the final outcome of a plethora of events. Targeting the proliferation or inducing programmed cell death in a proliferating population is a major standpoint in the cancer therapy. However, proliferation is regulated by several cellular and immunologic processes. This study reports the inhibition of proliferation by augmenting immune surveillance, silencing acute inflammation, and inducing p53-mediated apoptosis of skin cancer by 3 promising medicinal extracts. We used the well-characterized model for experimental skin carcinogenesis in mice for 32 weeks to study the chemopreventive effect of the methanolic extracts of Trigonella foenumgraecum, Eclipta alba, and Calendula officinalis. All 3 extracts reduced the number, incidence, and multiplicity of tumors, which was confirmed by the pathologic studies that showed regressed tumors. There was a significant reduction in the PCNA+ nuclei in all treatment groups 32 weeks after the initiation. Mechanistic studies revealed that proliferative population in tumors is diminished by the restoration of the endogenous antioxidant defense, inhibition of the stress-related signal-transducing element NFκB, reduction of inflammation, enhancement of immunosurveillance of the genetically mutated cells, along with silencing of the cell cycle progression signals. Finally, all 3 medicinal extracts induced stable expression of p53 within the tumors, confirmed by the CFDA-Cy3 apoptosis assay. Results of our study confirm that these extracts not only limit the rate of proliferation by inhibition of the processes integral to cancer development but also induce stable cytoplasmic expression of p53-mediated apoptosis, leading to fewer and regressed tumors in mice.

  7. Improving the activity of Trichoderma reesei cel7B through stabilizing the transition state.

    PubMed

    Wang, Yefei; Song, Xiangfei; Zhang, Shujun; Li, Jingwen; Shu, Zhiyu; He, Chunyan; Huang, Qingshan; Yao, Lishan

    2016-06-01

    Trichoderma reesei (Tr.) cellulases, which convert cellulose to reducing sugars, are a promising catalyst used in the lignocellulosic biofuel production. Improving Tr. cellulases activity, though very difficult, is highly desired due to the recalcitrance of lignocellulose. Meanwhile, it is preferable to enhance the cellulase's promiscuity so that substrates other than cellulose can also be hydrolyzed. In this work, an attempt is made to improve the catalytic activity of a major endogluanase Tr. Cel7B against xylan which crosslinks with cellulose in lignocellulose. By using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the transition state of the xylo-oligosaccharide hydrolysis is identified. Then, mutations are introduced and their effect on the transition state stabilization is ranked based on the free energy calculations. Seven top ranked mutants are evaluated experimentally. Three mutants A208Q, A222D, and G230R show a higher activity than the wild-type Tr. Cel7B in the hydrolysis of xylan (by up to 47%) as well as filter paper (by up to 50%). The combination of the single mutants can further improve the enzyme activity. Our work demonstrates that the free energy method is effective in engineering the Tr. Cel7B activity against xylan and cellulose, and thus may also be useful for improving the activity of other Tr. cellulases. Biotechnol. Bioeng. 2016;113: 1171-1177. © 2015 Wiley Periodicals, Inc. PMID:26616246

  8. Improving the activity of Trichoderma reesei cel7B through stabilizing the transition state.

    PubMed

    Wang, Yefei; Song, Xiangfei; Zhang, Shujun; Li, Jingwen; Shu, Zhiyu; He, Chunyan; Huang, Qingshan; Yao, Lishan

    2016-06-01

    Trichoderma reesei (Tr.) cellulases, which convert cellulose to reducing sugars, are a promising catalyst used in the lignocellulosic biofuel production. Improving Tr. cellulases activity, though very difficult, is highly desired due to the recalcitrance of lignocellulose. Meanwhile, it is preferable to enhance the cellulase's promiscuity so that substrates other than cellulose can also be hydrolyzed. In this work, an attempt is made to improve the catalytic activity of a major endogluanase Tr. Cel7B against xylan which crosslinks with cellulose in lignocellulose. By using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the transition state of the xylo-oligosaccharide hydrolysis is identified. Then, mutations are introduced and their effect on the transition state stabilization is ranked based on the free energy calculations. Seven top ranked mutants are evaluated experimentally. Three mutants A208Q, A222D, and G230R show a higher activity than the wild-type Tr. Cel7B in the hydrolysis of xylan (by up to 47%) as well as filter paper (by up to 50%). The combination of the single mutants can further improve the enzyme activity. Our work demonstrates that the free energy method is effective in engineering the Tr. Cel7B activity against xylan and cellulose, and thus may also be useful for improving the activity of other Tr. cellulases. Biotechnol. Bioeng. 2016;113: 1171-1177. © 2015 Wiley Periodicals, Inc.

  9. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers

    NASA Astrophysics Data System (ADS)

    Lin, Jiang-Jen; Lin, Wen-Chun; Dong, Rui-Xuan; Hsu, Shan-hui

    2012-02-01

    Silver nanoparticles (AgNPs) are known for their excellent antibacterial activities. The possible toxicity, however, is a major concern for their applications. Three types of AgNPs were prepared in this study by chemical processes. Each was stabilized by a polymer surfactant, which was expected to reduce the exposure of cells to AgNPs and therefore their cytotoxicity. The polymer stabilizers included poly(oxyethylene)-segmented imide (POEM), poly(styrene-co-maleic anhydride)-grafting poly(oxyalkylene) (SMA) and poly(vinyl alcohol) (PVA). The cytotoxicity of these chemically produced AgNPs to mouse skin fibroblasts (L929), human hepatocarcinoma cells (HepG2), and mouse monocyte macrophages (J774A1) was compared to that of physically produced AgNPs and gold nanoparticles (AuNPs) as well as the standard reference material RM8011 AuNPs. Results showed that SMA-AgNPs were the least cytotoxic among all materials, but cytotoxicity was still observed at higher silver concentrations (>30 ppm). Macrophages demonstrated the inflammatory response with cell size increase and viability decrease upon exposure to 10 ppm of the chemically produced AgNPs. SMA-AgNPs did not induce hemolysis at a silver concentration below 1.5 ppm. Regarding the antibacterial activity, POEM-AgNPs and SMA-AgNPs at 1 ppm silver content showed 99.9% and 99.3% growth inhibition against E. coli, while PVA-AgNPs at the same silver concentration displayed 79.1% inhibition. Overall, SMA-AgNPs demonstrated better safety in vitro and greater antibacterial effects than POEM-AgNPs and PVA-AgNPs. This study suggested that polymer stabilizers may play an important role in determining the toxicity of AgNPs.

  10. Insulin inhibits inflammation and promotes atherosclerotic plaque stability via PI3K-Akt pathway activation.

    PubMed

    Yan, Hao; Ma, Ying; Li, Yan; Zheng, Xiaohui; Lv, Ping; Zhang, Yuan; Li, Jia; Ma, Meijuan; Zhang, Le; Li, Congye; Zhang, Rongqing; Gao, Feng; Wang, Haichang; Tao, Ling

    2016-02-01

    Toll-like receptor (TLR) 4 induced inflammation was reported to play an important role in atherosclerotic plaque stability. Recent studies indicated that insulin could inhibit inflammation by activating phosphatidylinositol 3-kinase-Akt-dependent (PI3K-Akt) signaling pathway. In the current study, we hypothesized that insulin would inhibit TLR4 induced inflammation via promoting PI3K-Akt activation, thus enhancing the stabilization of atherosclerotic plaques. In order to mimic the process of plaque formation, monocyte-macrophage lineage RAW264.7 were cultured and induced to form foam cells by oxidized LDL (ox-LDL). Oil red O staining results showed that insulin significantly restrained ox-LDL-induced foam cell formation. Analysis of inflammatory reaction during foam cell formation indicated that insulin significantly down-regulated the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 levels, inhibited TLR4, myeloid differentiation primary response gene (MyD) 88 and nuclear factor (NF)-κB. Further mechanism analysis showed that pretreating with the PI3K blocker, wortmannin dramatically dampened the insulin-induced up-regulation of pAkt expression. Additionally, blockade of PI3K-Akt signaling also dampened the immunosuppression effect brought by insulin. Following the construction of a rodent atherosclerosis model, pretreatment of insulin resulted in an evident decrease in lipid deposition of the blood vessel wall, serum levels of TNF-α and IL-6, and numbers of infiltrated macrophages and foam cells. Taken together, these results suggested that insulin might inhibit inflammation and promote atherosclerotic plaque stability via the PI3K-Akt pathway by targeting TLR4-MyD88-NF-κB signaling. Our findings may provide a potential target for the prevention of cardiovascular disease. PMID:26681144

  11. Tyrosine hydroxylase activity of immobilized tyrosinase on enzacryl-AA and CPG-AA supports: Stabilization and properties.

    PubMed

    Vilanova, E; Manjon, A; Iborra, J L

    1984-11-01

    Frog epidermis tyrosinase has been immobilized on Enzacryl-AA (a polyacrylamide-based support) and CPG(zirclad)-Arylamine (a controlled pore glass support) in order to stabilize the tyrosine hydroxylase activity of the enzyme; in this way, the immobilized enzyme could be used to synthesize L-dopa from L-tyrosine. The activity immobilization yield Y(IME) (act) (higher than 86%), coupling efficiency (up to 90%), storage stability (no loss in 120 days), and reaction stability (t(1/2) was higher than 20 h in column reactors) were measured for tyrosinase after its immobilization. The results showed a noticeable improvement (in immobilization yield, coupling efficiency, and storage and operational stabilities) over previous reports in which tyrosinase was immobilized for L-dopa production. The activity and stability of immobilized enzyme preparations working in three different reactor types have been compared when used in equivalent conditions with respect to a new proposed parameter of the reactor (R(p)), which allows different reactor configurations to be related to the productivity of the reactor during its useful life time. The characteristic reaction inactivation which soluble tyrosinase shows after a short reaction time has been avoided by immobilization, and the stabilization was enhanced by the presence of ascorbate. However, another inactivation process appeared after a prolonged use of the immobilized enzyme. The effects of reactor type and operating conditions on immobilized enzyme activity and stability are discussed.

  12. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  13. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa

    PubMed Central

    Shaw, Kevin L.; Grimsley, Gerald R.; Yakovlev, Gennady I.; Makarov, Alexander A.; Pace, C. Nick

    2001-01-01

    The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not. PMID:11369859

  14. Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions.

    PubMed

    Gupta, Renuka; Rousseau, Dérick

    2012-03-01

    Oil-in-water (O/W) emulsions solely stabilized by surface-active solid lipid nanoparticles (SLNs) were developed. The SLNs were generated by quench-cooling hot O/W nanoemulsions consisting of 7.5% glyceryl stearyl citrate (GSC) dispersed in water. Their initial volume-weighted mean particle diameter (∼152 nm) and zeta potential (ca.-49 mV) remained unchanged for 24 weeks. O/W emulsions (oil phase volume fraction: 0.2) containing 7.5% (w/w) GSC SLNs in the aqueous phase were kinetically-stable for 12 weeks and did not visually phase-separate over 24 weeks. The O/W emulsions generated with solid-state GSC SLNs had a volume-weighted mean oil droplet diameter of ∼459 nm and a zeta potential of ca.-43 mV. Emulsion microstructure evaluated with TEM revealed dispersed oil droplets sparsely covered with adsorbed Pickering-type SLNs as well aggregated SLNs present in the continuous phase. Gradual emulsion destabilization resulted from GSC SLN dissolution during the experimental timeframe. Overall, surface-active SLNs developed via nanoemulsions effectively kinetically stabilized O/W emulsions.

  15. Effect of magnesium cations on the activity and stability of β-galactosidases

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Pilipenko, O. S.; Poltorak, O. M.; Chukhrai, E. S.

    2007-07-01

    It was shown that the presence of magnesium cations in the reaction mixture increases, approximately twofold, the activity of bacterial Escherichia coli and yeast Kluyveromyces lactis β-galactosidases but does not affect the activity of bovine liver and fungous Penicillium canescens β-galactosidases. The catalytic constants for E. coli and yeast K. lactis β-galactosidases in the presence of 0.01 M and in the absence of Mg2+ cations were determined (490 and 220 s-1 and 59.8 and 37.4 s-1, respectively). It was shown that the Michaelis constants for these two enzymes are higher in the presence of Mg2+ cations, that the thermal stability of E. coli and K. Lactis β-galactosidases is higher in the presence of 0.01 M Mg2+, and that the effective rate constants of thermal inactivation of the enzymes are two-to eightfold lower, depending on conditions, in the presence of Mg2+ cations. The maximum stabilizing effect of magnesium cations was observed at weak alkaline pH values (7.5-8.5).

  16. Contributors to Enhanced CO2 Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst.

    PubMed

    Kim, Haeri; Jeon, Hyo Sang; Jee, Michael Shincheon; Nursanto, Eduardus Budi; Singh, Jitendra Pal; Chae, Keunhwa; Hwang, Yun Jeong; Min, Byoung Koun

    2016-08-23

    The formation of a nanostructure is a popular strategy for catalyst applications because it can generate new surfaces that can significantly improve the catalytic activity and durability of the catalysts. However, the increase in the surface area resulting from nanostructuring does not fully explain the substantial improvement in the catalytic properties of the CO2 electroreduction reaction, and the underlying mechanisms have not yet been fully understood. Here, based on a combination of extended X-ray absorption fine structure analysis, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy, we observed a contracted Au-Au bond length and low work function with the nanostructured Au surface that had enhanced catalytic activity for electrochemical CO2 reduction. The results may improve the understanding of the enhanced stability of the nanostructured Au electrode based on the resistance of cation adhesion during the CO2 reduction reaction. PMID:27466025

  17. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality. PMID:25977015

  18. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  19. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent.

    PubMed

    Harish, B S; Uppuluri, Kiran Babu; Anbazhagan, Veerappan

    2015-11-01

    A facile synthesis of highly stable silver nanoparticles (AgNPs) was reported using a biopolymer, xylan as both a reducing and stabilizing agent. Xylan was isolated from waste biomass, wheat bran (WB) by alkaline treatment and was characterized by Fehling's test, dinitrosalicylic acid assay, FTIR, (1)H NMR and (13)C NMR. The synthesized nanoparticles were characterized by UV-Vis spectroscopy and transmission electron microscopy. The nanoparticles were polydispersed with the size ranging from 20 to 45 nm. The synthesized WB-xylan AgNPs showed excellent free radical scavenging activity. In addition, WB-xylan AgNPs showed fibrinolytic activity as evidenced by the zone of clearance in fibrin plate assay. The biomedical potential of the WB-xylan AgNPs was demonstrated by dissolution of preformed blood clots. These results suggest that the development of xylan-metal nanoparticle composite would be feasible to treat thrombus related diseases. PMID:26256330

  20. Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

    SciTech Connect

    Herbst, A.K.; Marshall, D.W.; McCray, J.A.

    1998-02-01

    The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

  1. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    PubMed

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  2. A comparative treatment of stabilized landfill leachate: coagulation and activated carbon adsorption vs. electrochemical oxidation.

    PubMed

    Papastavrou, Chrystalla; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2009-12-14

    This work investigated the treatment of a landfill leachate that had previously undergone biological treatment. Two treatment schemes were compared: the first one involved coagulation followed by activated carbon adsorption, whilst the second was electrochemical treatment. Coagulation with alum resulted in a 50% removal of chemical oxygen demand (COD). The optimum aluminium dose was 3 mM Al3+. Activated carbon adsorption of stabilized leachate that had been previously treated by coagulation resulted in an overall 80% removal of COD. However, a significant part of the organic matter (corresponding to 170 mg/L) was non-adsorbable. Electrochemical oxidation over a boron-doped diamond electrode led to about 90% COD removal in 240 min with the resulting stream having a COD content as low as 50 mg/L. An increase in current intensity from 15 A to 21 A had no practical effect on the overall COD removal, which followed first-order kinetics. PMID:20183999

  3. Thermal Stability and Catalytic Activity of Gold Nanoparticles Supported on Silica

    SciTech Connect

    Veith, G.; Lupini, A; Rashkeev, S; Pennycook, S; Mullins, D; Schwartz, V; Bridges, C; Dudney, N

    2009-01-01

    2.5 nm gold nanoparticles were grown on a fumed silica support, using the physical vapor deposition technique of magnetron sputtering, that are thermally stable when annealed in an oxygen containing environment up to at least 500 C. Traditional Au/TiO{sub 2} catalysts rapidly sinter to form large 13.9 nm gold clusters under these annealing conditions. This surprising stability of Au/SiO{sub 2} is attributed to the absence of residual impurities (ensured by the halide-free production method) and a strong bond between gold and defects at the silica surface (about 3 eV per bond) estimated from density functional theory (DFT) calculations. The Au/SiO{sub 2} catalysts are less active for CO oxidation than the prototypical Au/TiO2 catalysts, however they can be regenerated far more easily, allowing the activity of a catalyst to be fully recovered after deactivation.

  4. Vertical Alveolar Ridge Augmentation by Distraction Osteogenesis

    PubMed Central

    Kumar, N. Nanda; Ravindran, C.

    2015-01-01

    Introduction Compromised alveolar ridge in vertical and horizontal dimension is a common finding in patients visiting practitioners for dental prosthesis. Various treatment modalities are available for correction of deficient ridges among which alveolar distraction osteogenesis is one. Aim To study the efficacy of alveolar distraction osteogenesis in augmentation of alveolar ridges deficient in vertical dimension. Materials and Methods Ten patients aged 16 to 46 years with deficient alveolar ridge underwent ridge augmentation in 11 alveolar segments using the distraction osteogenesis method. For each patient a custom made distraction device was fabricated. The device was indigenously manufactured with SS-316 (ISO 3506). Results The vertical bone gain reached more than 10mm without the use of bone transplantation. Certain complications like incorrect vector of distraction, paresthesia, pain and loss of transport segment were encountered during the course of the study. Conclusion Alveolar vertical distraction osteogenesis is a reliable and predictable technique for both hard and soft tissue genesis. Implant placement is feasible with primary stability in neogenerated bone at the level of the distracted areas. PMID:26816991

  5. Augmentation cystoplasty in neurogenic bladder.

    PubMed

    Çetinel, Bülent; Kocjancic, Ervin; Demirdağ, Çetin

    2016-09-01

    The aim of this review is to update the indications, contraindications, technique, complications, and the tissue engineering approaches of augmentation cystoplasty (AC) in patients with neurogenic bladder. PubMed/MEDLINE was searched for the keywords "augmentation cystoplasty," "neurogenic bladder," and "bladder augmentation." Additional relevant literature was determined by examining the reference lists of articles identified through the search. The update review of of the indications, contraindications, technique, outcome, complications, and tissue engineering approaches of AC in patients with neurogenic bladder is presented. Although some important progress has been made in tissue engineering AC, conventional AC still has an important role in the surgical treatment of refractory neurogenic lower urinary tract dysfunction. PMID:27617312

  6. Augmentation cystoplasty in neurogenic bladder

    PubMed Central

    Kocjancic, Ervin; Demirdağ, Çetin

    2016-01-01

    The aim of this review is to update the indications, contraindications, technique, complications, and the tissue engineering approaches of augmentation cystoplasty (AC) in patients with neurogenic bladder. PubMed/MEDLINE was searched for the keywords "augmentation cystoplasty," "neurogenic bladder," and "bladder augmentation." Additional relevant literature was determined by examining the reference lists of articles identified through the search. The update review of of the indications, contraindications, technique, outcome, complications, and tissue engineering approaches of AC in patients with neurogenic bladder is presented. Although some important progress has been made in tissue engineering AC, conventional AC still has an important role in the surgical treatment of refractory neurogenic lower urinary tract dysfunction. PMID:27617312

  7. Augmented Reality Tower Technology Assessment

    NASA Technical Reports Server (NTRS)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  8. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis. PMID:27164865

  9. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    PubMed

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  10. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    SciTech Connect

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  11. Variability and Stability in Daily Moderate-to-Vigorous Physical Activity among 10 Year Old Children

    PubMed Central

    Pereira, Sara; Gomes, Thayse Natacha; Borges, Alessandra; Santos, Daniel; Souza, Michele; dos Santos, Fernanda K.; Chaves, Raquel N.; Katzmarzyk, Peter T.; Maia, José A. R.

    2015-01-01

    Day-to-day variability and stability of children’s physical activity levels across days of the week are not well understood. Our aims were to examine the day-to-day variability of moderate-to-vigorous physical activity (MVPA), to determine factors influencing the day-to-day variability of MVPA and to estimate stability of MVPA in children. The sample comprises 686 Portuguese children (10 years of age). MVPA was assessed with an accelerometer, and BMI was computed from measured height and weight. Daily changes in MVPA and their correlates (gender, BMI, and maturity) were modeled with a multilevel approach, and tracking was calculated using Foulkes & Davies γ. A total of 51.3% of boys and 26.2% of girls achieved 60 min/day of MVPA on average. Daily MVPA was lower during the weekend (23.6% of boys and 13.6% of girls comply with the recommended 60 min/day of MVPA) compared to weekdays (60.8% and 35.4%, boys and girls, respectively). Normal weight children were more active than obese children and no effect was found for biological maturation. Tracking is low in both boys (γ = 0.59 ± 0.01) and girls (γ = 0.56 ± 0.01). Children’s MVPA levels during a week are highly unstable. In summary, boys are more active than girls, maturation does not affect their MVPA, and obese children are less likely to meet 60 min/day of MVPA. These results highlight the importance of providing opportunities for increasing children’s daily MVPA on all days of week, especially on the weekend. PMID:26262632

  12. Abrus precatorius Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

    PubMed Central

    Reddy Palvai, Vanitha; Mahalingu, Sowmya; Urooj, Asna

    2014-01-01

    Natural antioxidants present in foods and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic effects. Antioxidant constituents of plant materials act as radical scavengers and convert the radicals to less reactive species. Abrus precatorius (AP) was analyzed for its proximate and phytochemical composition. The leaves were extracted with methanol (ME) and analyzed for antioxidant activity by radical scavenging method, reducing power, ferric reducing capacity, and in vitro inhibition of Fenton's reagent-induced oxidation in oil emulsion and microsomes. In addition, the effect of temperature (100°C, 15, and 30 min) and pH (4.5, 7, and 9) C on the antioxidant activity of ME was investigated. The leaves were rich in total polyphenols, flavonoids, β-carotene, glutathione, α-tocopherol, and ascorbic acid. The ME exhibited varying degree of antioxidant activity in a dose-dependent manner. The AP exhibited more inhibition of oxidation in microsomes (73%) than compared to oil emulsion (21%). Heat treatment resulted in an increase of radical scavenging activity of extract (28% to 43%). At pH 4.5 the extract exhibited more antioxidant activity and stability compared to pH 7 and 9. Data indicates that potential exists for the utilization of Abrus precatorius as a natural antioxidant. PMID:25383222

  13. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  14. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol.

    PubMed

    Lacatusu, I; Badea, N; Stan, R; Meghea, A

    2012-11-16

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol-sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  15. Superconducting augmented rail gun (SARG)

    SciTech Connect

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-11-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance.

  16. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  17. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range. PMID:26567596

  18. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures. PMID:26838013

  19. Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions.

    PubMed

    Tange, Yoshie; Chikashige, Yuji; Takahata, Shinya; Kawakami, Kei; Higashi, Masato; Mori, Chie; Kojidani, Tomoko; Hirano, Yasuhiro; Asakawa, Haruhiko; Murakami, Yota; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-08-01

    Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability. PMID:27334362

  20. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst).

    PubMed

    Lopes, Jose L S; Yoneda, Juliana S; Martins, Julia M; DeMarco, Ricardo; Jameson, David M; Castro, Aline M; Bossolan, Nelma R S; Wallace, B A; Araujo, Ana P U

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data