Science.gov

Sample records for active stream channel

  1. Relating Field Observed Changes in the Active Stream Channel Network to Features of dQ/dt-Q Recession Curves

    NASA Astrophysics Data System (ADS)

    Shaw, S. B.

    2013-12-01

    Hydrologists have long plotted the rate of recession (dQ/dt) versus the absolute discharge (Q) to infer aquifer hydraulic properties. In recent years, these dQ/dt-Q plots have been examined in new ways, in particular, looking at individual event curves within the full dQ/dt-Q plot. When examining individual curves (in log-log space), in many cases one observes relatively constant slopes (usually near two) but finds that intercept values shift seasonally. Some have hypothesized that these two features of the dQ/dt-Q plots can be explained by the nature of the contraction of the stream channel network as flow diminishes (e.g. Biswal and Marani, 2010, GRL). To investigate this hypothesis, I have been mapping changes in the active channel network in a 250 ha catchment nested within the larger 69,000 ha Six Mile Creek watershed in central NY. Direct observations of the active channel network have been supplemented with streamflow measurements at 1st and 2nd order channels and the main channel. The larger Six Mile Creek watershed exhibits the expected constant dQ/dt-Q slopes and varying intercepts. However, the 250 ha catchment (assumed to be representative of the upland areas in the larger watershed) maintains a relatively constant active channel network, even during dry periods, and exhibits no systematic contraction of channel lengths. Most 1st order channels appear to be at least in part spring fed from their upper most point of origin. These field observations suggest that at least in this basin, the slope of two in log(dQ/dt) vs log(Q) plots is not directly related to contraction of the channel network. The fractional contribution of subbasins to total basin flow does indicate that these small upland basins contribute a decreased portion of total watershed flow during drier periods, supporting the notion that shifts in intercept may occur because of spatial changes in dominant contributing zones.

  2. Hydrology of Channelized and Natural Headwater Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding hydrology is paramount for optimal ecologic function and management of headwater streams. The objective of this study was to characterize and compare headwater streams within the Upper Big Walnut Creek watershed in Ohio. Two channelized and two unchannelized streams were instrumented w...

  3. THERMAL HETEROGENEITY, STREAM CHANNEL MORPHOLOGY, AND SALMONID ABUNDANCE IN NORTHEASTERN OREGON STREAMS

    EPA Science Inventory

    Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) in northeastern Oregon. Th...

  4. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, M.; Seitz, H.; Scott, J.

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies. ?? 1998 John Wiley & Sons, Ltd.

  5. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  6. Stream Channelization: Conflict Between Ditchers, Conservationists

    ERIC Educational Resources Information Center

    Gillette, Robert

    1972-01-01

    Summarizes the argument between the advocates of stream straightening for flood control, drainage, and navigation, and those concerned with the maintenance of ecological communities and the aesthetic values of natural" streams. (AL)

  7. A comparison of hydrology and channel hydraulics in headwater streams of the Central Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Lewis, S.

    2013-12-01

    Streams with distinctly different flow regimes can be found within close proximity of each other in the Central Oregon Cascades due to the unique hydrogeology of the region. Spring-fed streams with stable discharge regimes tend to have rectangular cross-sections, uniform grain sizes, and frequent channel-spanning wood. In contrast, flashier surface-runoff channels tend to have more variable cross-sections, a wider grain-size distribution, and woody debris accumulations along channel margins. To examine differences in channel hydraulics, we collected high-resolution 3-D maps of 12 channel reaches from tributaries of the McKenzie and Metolius Rivers, OR. Stream channel maps were then used to run a 2-D channel stability model (MD_SWMS). We also compared stream hydrology using 10+ years of stream gage data. We expect bed particles are mobilized more frequently in spring-fed systems, but the opportunity for channel form development-- which occurs when sediment is mobile and when flow reaches or exceeds the active channel flow--is higher in surface-runoff channels. Therefore, each channel-type is characterized by a unique set of hydraulic processes that lead to observed differences in channel form.

  8. Mean annual runoff and peak flow estimates based on channel geometry of streams in southeastern Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)

  9. Effects of Stream Channel Characteristics on Nitrate Delivery to Streams and In-Stream Denitrification Rates, Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; O'Connell, M.

    2004-05-01

    Streams in agricultural areas often exhibit significant channel and sediment modifications; they are often incised and transport more fine sediment than non-agricultural streams. These channel characteristics can influence stream water quality by modifying surface-groundwater interactions. In the Raccoon River basin, channel incision increases the delivery of nitrate from the groundwater to the streams. The sandy in-stream sediments, however, serve as very effective sites for in-stream denitrification. Nitrate delivery and in-stream denitrification was examined in 3 subwatersheds of the Raccoon River. Stream morphology, water quality, and sediment characteristics were measured at 35 sites with varying land uses. Headwater stream nitrate concentration increased with percent row crops and the amount of channel incision. Downstream sites showed a wide variation in nitrate concentration with land use. Stream nitrate concentrations were measured at 6 sites in each of 3 streams with high percentages of row crop land uses during high summer baseflow following the 1993 floods and during average summer baseflow in 1995. Nitrate concentrations were systematically higher for the high baseflow conditions of 1993 than the average year (1995). This change in nitrate concentration is interpreted as the increased effectiveness of nitrate delivery to the stream during periods of high water tables. The effect was most pronounced in incised reaches. All 3 streams show downstream decreases in nitrate concentration. Water samples for all the sites in the watersheds were analyzed for nitrogen isotopic composition. The nitrogen isotopic composition shifts with towards higher d 15N values with decreasing nitrate concentration. This is consistent with denitrification reactions that selectively remove the 14N leaving a higher proportion of 15N in the nitrate. This suggests that most of the downstream decrease in nitrate concentrations is a result of in-stream denitrification. The high rates

  10. Active channel for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the active, wetted channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The wetted channel boundary is equivalent to the extent of water observed during a 2-yr high flow event.

  11. MODELING STREAM CHANNEL ADJUSTMENT TO WOODY VEGETATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic, and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into a more functional, aesthetically-pleasing m...

  12. CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.

    USGS Publications Warehouse

    Simon, Andrew; Hupp, Cliff R.

    1987-01-01

    This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).

  13. Effects of permafrost on stream channel behavior in Arctic Alaska

    USGS Publications Warehouse

    Scott, Kevin M.

    1978-01-01

    Sites with drainage areas ranging from 88 to 12,200 sq km were monitored on five streams in northern Alaska during the breakup in 1976 to determine (1) the effects of frozen bed and bank material on channel behavior, and (2) the importance of the annual breakup flood in forming the channels of arctic streams. The thawing and concomitant erosion of channels varied with changes in bed-material size, channel pattern, drainage area, and climate. The response of channels to breakup flooding ranged from total permafrost control of channel processes, including both bed scour and lateral erosion, to only brief restriction of channel behavior early in the rise of the flooding. The watershed characteristic that appears to explain much of this variation is size of drainage area. (Woodard-USGS)

  14. Optimized transmission of JPEG2000 streams over wireless channels.

    PubMed

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-01-01

    The transmission of JPEG2000 images over wireless channels is examined using reorganization of the compressed images into error-resilient, product-coded streams. The product-code consists of Turbo-codes and Reed-Solomon codes which are optimized using an iterative process. The generation of the stream to be transmitted is performed directly using compressed JPEG2000 streams. The resulting scheme is tested for the transmission of compressed JPEG2000 images over wireless channels and is shown to outperform other algorithms which were recently proposed for the wireless transmission of images. PMID:16435536

  15. Reach-scale channel geometry of mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Merritt, David M.

    2008-01-01

    The basic patterns and processes of steep channels remain poorly known relative to lower-gradient channels. In this analysis, characteristics of step-pool, plane-bed, and pool-riffle channels are examined using a data set of 335 channel reaches from the western United States, Nepal, New Zealand, and Panama. We analyzed differences among the three channel types with respect to hydraulics, channel geometry, boundary roughness, and bedforms. Step-pool channels have significantly steeper gradients, coarser substrate, higher values of shear stress and stream power for a given discharge, and larger ratios of bedform amplitude/wavelength ( H/ L). Pool-riffle channels have greater width/depth ratios and relative grain submergence ( R/ D84) than the other channel types. Plane-bed channels tend to have intermediate values for most variables examined. Relative form submergence ( R/ H) is statistically similar for step-pool and pool-riffle channels. Despite the lesser relative grain submergence and greater bedform amplitude of step-pool channels, mean values of Darcy-Weisbach friction factor do not change in response to changes in relative grain submergence. These patterns suggest that adjustments along mountain streams effectively maximize resistance to flow and minimize downstream variability in resistance among the different channel types.

  16. Groundwater Discharge along a Channelized Coastal Plain Stream

    SciTech Connect

    LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit; Fryar, Alan E; Greb, Stephen F

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  17. Groundwater discharge along a channelized Coastal Plain stream

    NASA Astrophysics Data System (ADS)

    LaSage, Danita M.; Sexton, Joshua L.; Mukherjee, Abhijit; Fryar, Alan E.; Greb, Stephen F.

    2008-10-01

    SummaryIn the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  18. Groundwater discharge along a channelized Coastal Plain stream

    USGS Publications Warehouse

    LaSage, D.M.; Sexton, J.L.; Mukherjee, A.; Fryar, A.E.; Greb, S.F.

    2008-01-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel. ?? 2008 Elsevier B.V. All rights reserved.

  19. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  20. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  1. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    NASA Astrophysics Data System (ADS)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  2. Implications of fish-habitat relationships for designing restoration projects within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized headwater streams are common throughout agricultural watersheds in the Midwestern United States. Management of these streams focuses on drainage without consideration of the other ecosystem services they are capable of providing. Restoration of channelized agricultural headwater stream...

  3. Public Health Perspectives of Channelized and Unchannelized Headwater Streams in Central Ohio: A Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Headwater streams constitute the majority of watersheds in the United States and many headwater streams in the midwest have been channelized for agricultural drainage. Public health implications of water chemistry and aquatic macroinvertebrates within channelized and unchannelized headwater streams ...

  4. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  5. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  6. Antarctic ice streams and outflow channels on Mars

    USGS Publications Warehouse

    Lucchitta, B.K.

    2001-01-01

    New sonar images of the Antarctic sea floor reveal mega-scale glacial lineations that are strikingly similar to longitudinal flutes in martian outflow channels. The analogs suggest that ice moved through the martian channels in places and carved the flutes. The ice in martian channels may have moved like Antarctic ice streams on deformable debris saturated with water under high pore pressure. On Mars, water at the base of ice-filled channels may have come from residual water or melt water liberated during past warmer climates or higher heat flows.

  7. Multiple-channel Streaming Delivery for Omnidirectional Vision System

    NASA Astrophysics Data System (ADS)

    Iwai, Yoshio; Nagahara, Hajime; Yachida, Masahiko

    An omnidirectional vision is an imaging system that can capture a surrounding image in whole direction by using a hyperbolic mirror and a conventional CCD camera. This paper proposes a streaming server that can efficiently transfer movies captured by an omnidirectional vision system through the Internet. The proposed system uses multiple channels to deliver multiple movies synchronously. Through this method, the system enables clients to view the different direction of omnidirectional movies and also support the function to change the view are during playback period. Our evaluation experiments show that our proposed streaming server can effectively deliver multiple movies via multiple channels.

  8. A standardized sampling protocol for channel catfish in prairie streams

    USGS Publications Warehouse

    Vokoun, Jason C.; Rabeni, Charles F.

    2001-01-01

    Three alternative gears—an AC electrofishing raft, bankpoles, and a 15-hoop-net set—were used in a standardized manner to sample channel catfish Ictalurus punctatus in three prairie streams of varying size in three seasons. We compared these gears as to time required per sample, size selectivity, mean catch per unit effort (CPUE) among months, mean CPUE within months, effect of fluctuating stream stage, and sensitivity to population size. According to these comparisons, the 15-hoop-net set used during stable water levels in October had the most desirable characteristics. Using our catch data, we estimated the precision of CPUE and size structure by varying sample sizes for the 15-hoop-net set. We recommend that 11–15 repetitions of the 15-hoop-net set be used for most management activities. This standardized basic unit of effort will increase the precision of estimates and allow better comparisons among samples as well as increased confidence in management decisions.

  9. The stream channel incision syndrome and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed development often triggers channel incision, which accounts for 60-90% of sediments leaving many disturbed watersheds. Impacts of such incision on water quality processes and the implication of such impairment on stream biota are relevant to issues associated with establishing total maxim...

  10. Man-induced channel adjustment in Tennessee streams

    USGS Publications Warehouse

    Robbins, C.H.; Simon, Andrew

    1983-01-01

    Channel modifications in Tennessee, particularly in the western part, have led to large-scale instabilities in the channelized rivers and may have contributed to several bridge failures. These modifications, together with land-use practices, led to downcutting, headward erosion, downstream aggradation, accelerated scour, and bank instabilities. Changes in gradient by channel straightening caused more severe channel response than did dredging or clearing. Large-scale changes continue to occur in all the channelized rivers: the Obion River, its forks, and the South Fork Forked Deer River. However, the non-channelized Hatchie River in west Tennessee not only withstood the natural stresses imposed by the wet years of 1973 to 1975 but continues to exhibit characteristics of stability. Water-surface slope, the primary dependent variable, proved to be a sensitive and descriptive parameter useful in determining channel adjustment. Adjustments to man-induced increases in channel-slope are described by inverse exponential functions of the basic form S=ae(-b(t)); where ' S ' is some function describing channel-slope, ' t ' is the number of years since completion of channel work, and ' a ' and ' b ' are coefficients. Response times for the attainment of ' equilibrium ' channel slopes are a function of the magnitude and extent of the imposed modifications. The adjusted profile gradients attained by the streams following channelization are similar to the predisturbed profile gradients, where no alteration to channel length was made. Where the channels were straightened by constructing cut-offs, thus shortening channel length, then slope adjustments (reduction) proceed past the predisturbed profile gradients, to new profiles with lower gradients. (USGS)

  11. Discrimination between mountain stream channel types using independent control variables

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Merritt, D. M.

    2004-12-01

    We use a large and diverse dataset from mountain streams around the world to explore our ability to classify reach-scale channel morphology using easily measurable control variables. The dataset includes 136 step-pool reaches, 44 plane-bed reaches, and 93 pool-riffle reaches from streams in the western United States, Panama, and New Zealand. We used stepwise discriminant analysis to select the most parsimonious subset of variables for classifying channel type. A 3-variable discriminant function using slope, D84, and channel width produced a classification error rate of 24% (103 reaches correctly classified). Seventy percent of plane-bed reaches were correctly classified (16% incorrectly classified as pool-riffle, 14% incorrectly classified as step-pool). Sixty-seven percent of pool-riffle channels were correctly classified (31% incorrectly classified as plane-bed, 2% as step-pool). Eighty-nine percent of step-pool reaches were correctly classified (9% incorrectly classified as plane-bed, 2% as pool-riffle). The partial R2-values indicate that slope is by far the most significant single explanatory variable. The ability to accurately classify channel type in other regions using the elegant 3-variable discriminant function developed from the entire dataset has important implications for water-resources management and for understanding relationships between process and form in mountain streams.

  12. Recent (circa 1998 to 2011) channel-migration rates of selected streams in Indiana

    USGS Publications Warehouse

    Robinson, Bret A.

    2013-01-01

    An investigation was completed to document recent (circa 1998 to 2011) channel-migration rates at 970 meander bends along 38 of the largest streams in Indiana. Data collection was completed by using the Google Earth™ platform and, for each selected site, identifying two images with capture dates separated by multiple years. Within each image, the position of the meander-bend cutbank was measured relative to a fixed local landscape feature visible in both images, and an average channel-migration rate was calculated at the point of maximum cutbank displacement. From these data it was determined that 65 percent of the measured sites have recently been migrating at a rate less than 1 ft/yr, 75 percent of the sites have been migrating at a rate less than 10 ft/yr, and while some sites are migrating in excess of 20 ft/yr, these occurrences are rare. In addition, it is shown that recent channel-migration activity is not evenly distributed across Indiana. For the stream reaches studied, far northern and much of far southern Indiana are drained by streams that recently have been relatively stationary. At the same time, this study shows that most of the largest streams in west-central Indiana and many of the largest streams in east-central Indiana have shown significant channel-migration activity during the recent past. It is anticipated that these results will support several fluvial-erosion-hazard mitigation activities currently being undertaken in Indiana.

  13. Guidelines for Surveying Bankfull Channel Geometry and Developing Regional Hydraulic-Geometry Relations for Streams of New York State

    USGS Publications Warehouse

    Powell, Rocky O.; Miller, Sarah J.; Westergard, Britt E.; Mulvihill, Christiane I.; Baldigo, Barry P.; Gallagher, Anne S.; Starr, Richard R.

    2004-01-01

    Many disturbed streams within New York State are being restored in an effort to provide bank and bed stability and thereby decrease sedimentation and erosion. Efforts to identify and provide accurate indicators for stable-channel characteristics for ungaged streams have been hampered by the lack of regional equations or relations that relate drainage area to bankfull discharge and to channel depth, width, and cross-sectional area (bankfull hydraulic-geometry relations). Regional equations are needed to confirm bankfull hydraulic-geometry, assess stream stability, evaluate restoration needs, and verify restoration design for ungaged streams that lack stage-to-discharge ratings or historic peak-flow records. This report presents guidelines for surveying bankfull channel geometry at USGS stream gages and developing regional hydraulic-geometry relations (equations) for wadeable streams in New York. It summarizes methods to (1) compile and assess existing hydrologic, geometric, photographic, and topographic data, (2) conduct stream-reconnaissance inspections, (3) identify channel-bankfull characteristics, (4) conduct longitudinal and cross-section surveys, (5) measure stream discharge, (6) develop and refine bankfull hydraulic-geometry equations, and (7) analyze and assure data completeness and quality. The techniques primarily address wadeable streams with either active or discontinued surface-water and crest-stage gages. The relations can be applied to ungaged or actively gaged streams that are wadeable, and may be extended to non-wadeable streams (with some limitations) if they have drainage areas comparable to those used to develop the relations.

  14. Influence of herbaceous riparian buffers on physical habitat, water chemistry, and stream communities within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous riparian buffers are a widely used agricultural conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The ecological impacts of herbaceous riparian buffers on the channelized agricultural headwater streams that are comm...

  15. Ecohydrologic function and disturbance of desert ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Bedford, D.; Macias, M.; Miller, D. M.; Newlander, A.; Perkins, K. S.; Sandquist, D. R.; Schwinning, S.

    2011-12-01

    In response to rare high-intensity or long duration rainstorms, runoff in desert ephemeral channels can redistribute water through landscapes and potentially serve as a resource subsidy. We are using transect studies, mapping, monitoring and manipulation experiments to investigate the ecohydrologic relations of these pervasive features with vegetation in the eastern Mojave Desert, USA. We focus on a gently sloping piedmont transected by a ~100 year old railroad that alters natural channel flow by diverting it through staggered culverts to areas downslope of the railroad. This creates three distinct ecohydrologic zones: 1) relatively undisturbed areas above the railroad, 2) areas below the railroad that receive enhanced flow where water is diverted through culverts (enhanced zones), and 3) areas below the railroad where water flow from upslope has been blocked (deprived zones). In all areas we found that vegetation cover and density are higher adjacent to stream channels and decrease with distance from the channels. Relative to the undisturbed areas, vegetation cover is higher in the enhanced areas, and lower in the deprived. Species-specific vegetation changes included higher cover of the drought deciduous sub-shrub Ambrosia dumosa in deprived zones and higher cover of the evergreen drought-tolerant shrub Larrea tridentata in enhanced zones. Using simulated channel runoff experiments, we found that most Larrea within 3 m, and Ambrosia within 1.5 m of an undisturbed stream channel physiologically responded to a water pulse and the responses persisted for over a month. Less pronounced responses were seen adjacent to channels in the deprived zones, and did not persist as long. Electrical resistance imaging of the watering experiments shows that water infiltrates vertically in channels and spreads laterally at depth; vegetation use of channel water in the deprived zones appears to be reduced. While we have no information on the pace of vegetation change due to channel

  16. Small mammal habitat use within restored riparian habitats adjacent to channelized streams in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of channelized agricultural streams in northwestern Mississippi typically consist of narrow vegetative corridors low in habitat diversity and lacking riparian wetlands. Land clearing practices and stream channelization has led to the development of gully erosion and further fragmenta...

  17. Similarities in fish-habitat relationships within channelized agricultural headwater streams in Ohio and Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are common throughout agricultural watersheds in the Midwestern United States. Understanding the fish-habitat relationships within these streams will provide information that can assist with developing restoration strategies for these degraded streams. We...

  18. Influence of watershed-scale pesticide management on channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are streams that have been created or modified for agricultural drainage. Elevated pesticide concentrations frequently occur within these modified streams and represent a threat to their ecological integrity. Pesticide management (i.e., use of alternative ...

  19. Linking Denitrification to Channel Geomorphology in Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Opdyke, M. R.; David, M. B.; Rhoads, B. L.

    2005-05-01

    Agricultural streams in east-central Illinois have elevated nitrate concentrations (10 to 20 mg N L-1) contributing to greater denitrification rates in sediments. However, reduced retention times and extensive stream channelization limit the effectiveness of denitrification as a removal mechanism for water column nitrate. In this study, we compared geomorphic controls of denitrification in six channel reaches varying in geomorphology, organic matter, and nitrate concentration. Denitrification rates were measured monthly between June 2003 and February 2005 using the acetylene inhibition procedure (chloramphenicol was added to control for denitrifier growth). We found in meandering and channelized reaches of greater nitrate concentrations and fine substrate, denitrification rates averaged 19 mg N m-2 h-1. In areas of lesser nitrate concentrations and coarse substrates, denitrification rates were comparably lower at 3.0 mg N m-2 h-1 in meandering reaches and 0.80 mg N m-2 h-1 in channelized reaches. Our study concluded that denitrification rates were strongly linked to geomorphic variability, organic matter, substrate composition, and nitrate concentration. A strong geomorphic connection appeared with substrate composition showing that greater nitrogen removal in channel conditions of fine substrate are more effective.

  20. Effects of Snow-making, Grading, and Timber Harvest on Stream Channel Morphology in the White River National Forest, Colorado

    NASA Astrophysics Data System (ADS)

    David, G. C.; Bledsoe, B. P.; Merritt, D. M.; Wohl, E.

    2005-12-01

    The White River National Forest Service is responsible for managing and protecting the ecological integrity of many streams in some of the major ski resorts in Colorado. The combined effects of timber harvesting, snow-making, grading and road construction can increase streamflows but the effects of these four activities on stream channel stability are not well documented. Increased flow can result in bank failure, increased amounts of large woody debris, pool scour and bed coarsening. Specific stream channel response to increased flows associated with ski resort activities partly depends on the type of vegetation growing along stream banks and the amount of human development in the basin. We hypothesize that a threshold of development must be attained for each vegetation type before the stream channel is significantly impacted. To test this hypothesis, we surveyed channel condition, channel dimensions, and vegetation along 49 stream reaches (200 - 300 m in length). Twenty-four of these streams are within ski areas (project streams), either adjacent to or downstream from ski slopes. Twenty-five ""reference"" streams have very little to no development in their basins. These streams are used to define reference conditions bank stability, bank undercutting, bank height, bank angle, percent of large woody debris, pool depth, sediment size, and vegetation structure. A Principle Component Analysis will be utilized to ordinate and allow comparison of project and reference streams. The effects of overstory and understory vegetation on bank height, angle and stability will also be determined. A larger percentage of willows adjacent to stream channels may decrease bank height and angle thereby increasing stability. These data will help in the revision of a forest management plan to provide guidelines for planning and development of ski areas on public lands.

  1. Scour and deposition patterns in complex flow around stream restoration structures in a meandering stream channel

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Plott, J. R.; Diplas, P.; Sotiropoulos, F.; Lightbody, A.

    2010-12-01

    Instream structures are often employed in stream restoration projects to minimize erosion on the outside of a meander bend where shear stresses are highest, but guidelines for installation are often based on subjective criteria or professional experience. As part of a multiphase study to develop comprehensive quantitative design guidelines for instream structures, a series of experiments were conducted in the sand-bed meandering stream channel in the Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Following an experiment with a single rock vane, three arrays of three evenly spaced structures (rock vanes, J-hooks, and bendway weirs) were installed in a single meander bend. To improve fundamental understanding of the interaction of the complex flow field around these structures with the sediment bed in a field-scale meandering stream, high resolution channel topography data were obtained for the entire meander bend at bankfull flow conditions (280 LPS) with and without structure arrays. Three-dimensional flow velocity and turbulence was measured using acoustic Doppler velocimetry for each scenario in nine cross sections located before, after, between, and over the structure installation locations. Velocity point spacing was decreased close to boundaries (bed, bank, or structure). The velocity data confirmed that the velocity core moved away from the outside of the meander bend in the presence of structures; however, increased local shear stresses around the structures increased scour which threatened structure stability. For each structure array, individual structures introduced different velocity patterns including visible recirculation zones and turbulent structures depending on the structure type and where in the meander bend the structure was placed. The results from these experiments will inform stream restoration structure design in a meandering stream.

  2. Grazed Riparian Management and Stream Channel Response in Southeastern Minnesota (USA) Streams

    NASA Astrophysics Data System (ADS)

    Magner, Joseph A.; Vondracek, Bruce; Brooks, Kenneth N.

    2008-09-01

    The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response.

  3. Grazed riparian management and stream channel response in southeastern Minnesota (USA) streams.

    PubMed

    Magner, Joseph A; Vondracek, Bruce; Brooks, Kenneth N

    2008-09-01

    The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response. PMID:18481141

  4. Characteristics of channel steps and reach morphology in headwater streams, southeast Alaska

    NASA Astrophysics Data System (ADS)

    Gomi, Takashi; Sidle, Roy C.; Woodsmith, Richard D.; Bryant, Mason D.

    2003-03-01

    The effect of timber harvesting and mass movement on channel steps and reach morphology was examined in 16 headwater streams of SE Alaska. Channel steps formed by woody debris and boulders are significant channel units in headwater streams. Numbers, intervals, and heights of steps did not differ among management and disturbance regimes. A negative exponential relationship between channel gradient and mean length of step intervals was observed in the fluvial reaches (<0.25 unit gradient) of recent landslide and old-growth channels. No such relationship was found in upper reaches (≥0.25 gradient) where colluvial processes dominated. Woody debris and sediment recruitment from regenerating riparian stands may have obscured any strong relationship between step geometry and channel gradient in young alder, young conifer, and recent clear-cut channels. Channel reaches are described as pool-riffles, step-pools, step-steps, cascades, rapids, and bedrock. Geometry of channel steps principally characterized channel reach types. We infer that fluvial processes dominated in pool-riffle and step-pool reaches, while colluvial processes dominated in bedrock reaches. Step-step, rapids, and cascade reaches occurred in channels dominated by both fluvial processes and colluvial processes. Step-step reaches were transitional from cascades (upstream) to step-pool reaches (downstream). Woody debris recruited from riparian corridors and logging activities formed steps and then sequentially might modify channel reach types from step-pools to step-steps. Scour, runout, and deposition of sediment and woody debris from landslides and debris flows modified the distribution of reach types (bedrock, cascade, and step-pool) and the structure of steps within reaches.

  5. Streaming potentials reveal a short ryanodine-sensitive selectivity filter in cardiac Ca2+ release channel.

    PubMed Central

    Tu, Q; Vélez, P; Brodwick, M; Fill, M

    1994-01-01

    Single cardiac sarcoplasmic reticulum Ca2+ release channels were reconstituted into planar bilayer membranes. Streaming potentials were measured in osmotically asymmetric solutions as a shift in the reversal potential. Potential changes induced by water movement through the bilayer (concentration polarization) and reduced ion activity in the concentrated non-electrolyte solutions were determined using valinomycin. In 400 mM symmetrical CsCH3SO3, the average streaming potential was 2.74 +/- 0.2 mV (n = 5, mean +/- SE; 2 osmol/kg) and independent of the osmoticant used (sucrose or diglycine). Identical streaming potential magnitudes were obtained regardless of which side of the membrane the nonelectrolyte was placed. This suggests that the narrow part of the pore where single file diffusion occurs is relatively short (i.e., accommodates a minimum of 3 H2O molecules). This value is comparable to similar measurements in a variety of surface membrane channels. Ryanodine-modified channels had no measurable streaming potential, an increased Tris+ permeability relative to Cs+, and decreased divalent selectivity (PCs/PTris 5.1 +/- 1.1 to 1.7 +/- 0.3, n = 3; PBa/PCs 8.2 +/- 0.7 to 1.8 +/- 0.5, n = 4). Cation/anion selectivity was essentially unaltered in ryanodine-modified channels. These results suggests that the narrow region of the permeation pathway (i.e., the selectivity filter) is relatively short and widens after ryanodine modification. PMID:7696468

  6. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  7. Developing restoration strategies for channelized headwater streams within a central Ohio watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized headwater streams are a common landscape feature in the midwestern United States. These streams have been channelized and maintained for removal of excess water from agricultural fields without regard for the aquatic biota. Development of restoration strategies for channelized headwater ...

  8. Importance of instream wood characteristics for developing restoration designs for channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instr...

  9. Characteristics of instream wood within channelized agricultural headwater streams in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channelized agricultural headwater streams are a common feature within agricultural watersheds of the Midwestern United States. These small streams have been impacted by the physical and chemical habitat alterations incurred to facilitate agricultural drainage. Quantitative information on the instre...

  10. Differences in instream wood characteristics between channelized and unchannelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...

  11. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  12. Influence of Gully Erosion Control on Amphibian and Reptile Communities within Riparian Zones of Channelized Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...

  13. Stream Channel Change in an Intensively Managed Agricultural Landscape: Implications for Critical Zone Processes

    NASA Astrophysics Data System (ADS)

    Lewis, Q. W.; Rhoads, B. L.; Andresen, W.

    2014-12-01

    During the Anthropocene, humans have had a substantial impact on fluvial systems throughout the world. Perhaps nowhere is the human imprint on stream systems more pronounced than in the intensively managed agriculture landscapes of the midwestern United States. This study examines changes in the structure of the stream network and in the planform dynamics of stream channels within the upper Sangamon River basin in Illinois - a watershed that is part of a new Critical Zone Observatory focusing on intensively managed landscapes (IML-CZO). The research explores changes in network structure as the landscape changed from prairie and forest into drained farmland dominated by row crop agriculture. It also documents the planform dynamics of stream and river channels over the past 80 to 100 years. Results show that the spatial extent of channels within the stream network expanded greatly as land was cleared and drained for agriculture. Expansion of the network into headwater portions of the watershed occurred through the construction of drainage ditches that serve as outlets for tile drainage systems underlying relatively flat, poorly drained farmland. Analysis of planform dynamics reveals that most of these drainage ditches have not changed alignment since initial construction. Although drainage ditches are maintained by local drainage districts, these human-created channels also are remarkably resistant to change in planform over time. The major type of planform change in headwater streams involves artificial straightening of meandering channels to expand the extent of drainage channels. Many sections of the meandering Sangamon River are heavily forested and exhibit little or no planform change over the past 80-100 years. Sections that are most active tend to occur where forest cover is less prevalent due to clearing of trees for pasture or cropland. Overall, the results demonstrate the pronounced imprint of humans on the structure and planform dynamics of a fluvial

  14. Long-term impacts of land cover changes on stream channel loss

    EPA Science Inventory

    Land cover change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land cover change impact stream channel loss across a large urbanizing watershed with large areas of...

  15. Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.

    2014-03-01

    Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.

  16. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  17. Meteorite impact - A suggestion for the origin of some stream channels on Mars

    NASA Technical Reports Server (NTRS)

    Maxwell, T. A.; Otto, E. P.; Picard, M. D.; Wilson, R. C.

    1973-01-01

    The appearance of many streamlike features on Mars indicates the formation of channels through erosion by liquid water. We suggest that streams originating at meteorite crater boundaries are the result of impact which released subsurface water trapped below the Martian surface by a layer of permafrost. Features indicating surface erosion are the presence of alluvial plains at the downstream ends of channels, an increase in stream width with distance from the meteorite craters, and a direct correlation among several examples between crater diameter and stream length. Water released from the subsurface is preferred over rainfall as a mechanism for the origin of stream channels originating from craters on Mars.

  18. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    NASA Astrophysics Data System (ADS)

    Constantz, J.; Naranjo, R.; Niswonger, R.; Allander, K.; Neilson, B.; Rosenberry, D.; Smith, D.; Rosecrans, C.; Stonestrom, D.

    2016-03-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both "unmodified" (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  19. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    USGS Publications Warehouse

    Constantz, James; Naranjo, Ramon C.; Niswonger, Richard; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.

    2016-01-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  20. Channel erosion in steep gradient, gravel-paved streams

    SciTech Connect

    Lepp, L.R.; Koger, C.J.; Wheeler, J.A.

    1993-12-01

    Discharges were measured in steep gradient (> 5 percent) gravel-paved streams from 1988 to 1991 in order to empirically determine erosional thresholds based on sediment size, related to critical velocity, tractive force, and unit stream power. Results suggest that the empirical relationship between sediment size and unit stream power provides an accurate and simple methodology for determining the minimum erosion threshold discharge for steep gradient streams common in western Washington and other similar mountain terrains.

  1. Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Boll, J.; Brooks, E. S.

    2013-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.

  2. Long-term impacts of land cover changes on stream channel loss.

    PubMed

    Julian, Jason P; Wilgruber, Nicholas A; de Beurs, Kirsten M; Mayer, Paul M; Jawarneh, Rana N

    2015-12-15

    Land cover change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land cover change impact stream channel loss across a large urbanizing watershed. We present historical land cover in the 666-km(2) Lake Thunderbird watershed in central Oklahoma (USA) over a 137 year period and coinciding stream channel length changes for the most recent 70 years of this period. Combining these two datasets allowed us to assess the interaction of land cover changes with stream channel loss. Over this period, the upper third of the watershed shifted from predominantly native grassland to an agricultural landscape, followed by widespread urbanization. The lower two-thirds of the watershed changed from a forested landscape to a mosaic of agriculture, urban, forest, and open water. Most channel length lost in the watershed over time was replaced by agriculture. Urban development gradually increased channel loss and disconnection from 1942 to 2011, particularly in the headwaters. Intensities of channel loss for both agriculture and urban increased over time. The two longest connected segments of channel loss came from the creation of two large impoundments, resulting in 46 km and 25 km of lost stream channel, respectively. Overall, the results from this study demonstrate that multiple and various land-use changes over long time periods can lead to rapid losses of large channel lengths as well as gradual (but increasing) losses of small channel lengths across all stream sizes. When these stream channel losses are taken into account, the environmental impacts of anthropogenic land-use change are compounded. PMID:26282774

  3. Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams

    NASA Astrophysics Data System (ADS)

    Plitzuweit, S. J.; Springer, G. S.

    2008-12-01

    surveys in order to analyze whether stream power and shear stress are adjusted to reflect CNG at the reach- scale. These models are compared to those with discharges calculated using drainage area and precipitation totals alone. We conclude that gradients in bedrock mountain streams may reflect basin-scale hydrology (CNG) and not simply local geological or geomorphic factors. This challenges the conclusions of others who ascribe local channel adjustments to: i) lithology and structure alone, or ii) local colluvium grain sizes.

  4. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  5. Instream Wood Loads and Channel Complexity in Headwater Streams Under Alternative Stable States

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2014-12-01

    Channel morphology and irregularities in stream boundaries can create zones of flow separation, where lower velocities trap fine sediment and organic matter and increase opportunities for nutrient processing and biological uptake. This effect is most pronounced with channel-spanning structures such as logjams. Humans have changed the spatial and temporal characteristics of wood distribution in streams, with lasting effects on instream wood recruitment, wood loads, logjam distribution, and hydraulic roughness. Previous studies in the Colorado Front Range show that contemporary headwater streams flowing through old-growth, unmanaged forests have more wood than streams flowing through younger-growth, managed forests, but do not evaluate the effects of wood on channel complexity. 'Managed' versus 'unmanaged' refers to whether forests were or are currently exposed to human alteration. Although some alteration has long since ceased, reduced wood loads in managed streams persist. Our primary objective was to quantify differences in logjams, wood volumes, stream complexity, and organic carbon storage on streams with different management and disturbance histories in order to examine legacy effects across a gradient of stream management. Data were collected during the summers of 2013 and 2014 in the Southern Rocky Mountains. The 25 stream reaches studied are 2nd to 3rd order, subalpine streams that are categorized into: old-growth unmanaged forests; younger, naturally disturbed unmanaged forests; and younger managed forests. We assessed instream and floodplain wood loads and logjams and evaluated the role that large wood plays in local channel complexity, pool volume, and storage of organic carbon. Preliminary results show that greatest wood and carbon storage in sediments, as well as channel complexity, occurs in streams in old-growth, unmanaged forests and the least wood and carbon storage and channel complexity occurs in younger-growth, managed forests.

  6. Channel stability downstream from a dam assessed using aerial photographs and stream-gage information

    USGS Publications Warehouse

    Juracek, K.E.

    2000-01-01

    The stability of the Neosho River channel downstream from John Redmond Dam, in southeast Kansas, was investigated using multiple-date aerial photographs and stream-gage information. Bankfull channel width was used as the primary indicator variable to assess pre- and post-dam channel change. Five six-mile river reaches and four stream gages were used in the analysis. Results indicated that, aside from some localized channel widening, the overall channel change has been minor with little post-dam change in bankfull channel width. The lack of a pronounced postdam channel change may be attributed to a substantial reduction in the magnitude of the post-dam annual peak discharges in combination with the resistance to erosion of the bed and bank materials. Also, the channel may have been overwidened by a series of large floods that predated construction of the dam, including one with an estimated 500-year recurrence interval.

  7. Computer-aided mapping of stream channels beneath the Lawrence Livermore National Laboratory Super Fund Site

    SciTech Connect

    Sick, M.

    1994-12-01

    The Lawrence Livermore National Laboratory (LLNL) site rests upon 300-400 feet of highly heterogeneous braided stream sediments which have been contaminated by a plume of Volatile Organic Compounds (VOCs). The stream channels are filled with highly permeable coarse grained materials that provide quick avenues for contaminant transport. The plume of VOCs has migrated off site in the TFA area, making it the area of greatest concern. I mapped the paleo-stream channels in the TFA area using SLICE an LLNL Auto-CADD routine. SLICE constructed 2D cross sections and sub-horizontal views of chemical, geophysical, and lithologic data sets. I interpreted these 2D views as a braided stream environment, delineating the edges of stream channels. The interpretations were extracted from Auto-CADD and placed into Earth Vision`s 3D modeling and viewing routines. Several 3D correlations have been generated, but no model has yet been chosen as a best fit.

  8. The importance of instream habitat modifications for restoring channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Science based information on the influence of restoration practices on fishes within channelized agricultural headwater streams in the Midwestern United States is currently lacking. Understanding fish-habitat relationships and fish responses to specific restoration practices will provide informatio...

  9. Design and performance of a channel reconstruction project in a coastal California gravel-bed stream.

    PubMed

    Kondolf, G M; Smeltzer, M W; Railsback, S F

    2001-12-01

    A 0.9 km-reach of Uvas Creek, California, was reconstructed as a sinuous, meandering channel in November 1995. In February 1996, this new channel washed out. We reviewed project documents to determine the basis for the project design and conducted our own historical geomorphological study to understand the processes operating in the catchment and project reach. The project was designed using a popular stream classification system, based on which the designers assumed that a "C4" channel (a meandering gravel-bed channel) would be stable at the site. Our historical geomorphological analysis showed that the reach had been braided historically, typical of streams draining the Franciscan Formation in the California Coast Ranges, with episodic flows and high sand and gravel transport. After the project washed out, Uvas Creek reestablished an irregular, braided sand-and-gravel channel, although the channel here was narrower than it had been historically, probably due to such factors as incision caused by gravel mining. Our study casts doubt on several assumptions common in many stream restoration projects: that channel stability is always an appropriate goal; that channel forms are determined by flows with return periods of about 1.5 years; that a channel classification system is an easy, appropriate basis for channel design; and that a new channel form can be imposed without addressing the processes that determine channel form. PMID:11915965

  10. HOW WELL CAN YOU ESTIMATE LOW FLOW AND BANKFULL DISCHARGE FROM STREAM CHANNEL HABITAT DATA?

    EPA Science Inventory

    Modeled estimates of stream discharge are becoming more important because of reductions in the number of gauging stations and increases in flow alteration from land development and climate change. Field measurements of channel morphology are available at thousands of streams and...

  11. Relationships between water chemistry and fish communities within channelized headwater streams in Indiana and Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States were channelized for draining agricultural fields. Agricultural conservation practices are implemented to reduce nutrient and pesticide loadings within these altered streams. The impact of these practices is uncertain because the influence of wa...

  12. Substrate, sediment, and slope controls on bedrock channel geometry in postglacial streams

    NASA Astrophysics Data System (ADS)

    Whitbread, Katie; Jansen, John; Bishop, Paul; Attal, Mikaël.

    2015-05-01

    The geometry of channels controls the erosion rate of rivers and the evolution of topography following environmental change. We examine how sediment, slope, and substrate interact to constrain the development of channels following deglaciation and test whether theoretical relationships derived from streams reacting to tectonic uplift apply in these settings. Using an extensive data set of channel geometry measurements from postglacial streams in the Scottish Highlands, we find that a power law width-drainage area scaling model accounts for 81% of the spatial variation in channel width. Substrate influences channel form at the reach scale, with bedrock channels found to be narrower and deeper than alluvial channels. Bedrock channel width does not covary with slope, which may be due to downstream variations in sediment flux. Bedrock channel width-to-depth ratios increase with discharge (or area) and sediment flux, consistent with increasing bed cover promoting lateral widening. We find steep, wide, and shallow bedrock channels immediately below lakes, which we interpret as the result of limited erosion due to a lack of sediment "tools." Where sediment supply is sufficient to exceed transport capacity, alluvial channels develop wider, shallower geometries constrained primarily by flow hydraulics. Our results indicate that simple scaling models of channel width with drainage area are applicable at regional scale, but locally, channel width varies with substrate, and in the case of bedrock channels, with sediment flux.

  13. Activity Recognition on Streaming Sensor Data

    PubMed Central

    Krishnan, Narayanan C; Cook, Diane J

    2012-01-01

    Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition. PMID:24729780

  14. Activity Recognition on Streaming Sensor Data.

    PubMed

    Krishnan, Narayanan C; Cook, Diane J

    2014-02-01

    Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition. PMID:24729780

  15. The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks

    PubMed Central

    Kasprak, Alan; Hough-Snee, Nate

    2016-01-01

    Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment’s dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a framework’s decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form

  16. The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks.

    PubMed

    Kasprak, Alan; Hough-Snee, Nate; Beechie, Tim; Bouwes, Nicolaas; Brierley, Gary; Camp, Reid; Fryirs, Kirstie; Imaki, Hiroo; Jensen, Martha; O'Brien, Gary; Rosgen, David; Wheaton, Joseph

    2016-01-01

    Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment's dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a framework's decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form

  17. Influence of gully erosion control on amphibian and reptile communities within riparian zones of channelized streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Gully erosion is the most severe form of erosion and has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used c...

  18. Influence of Gully Erosion Control on Amphibian and Reptile Communities Within Riparian Zones of Channelized Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Gully erosion is the most severe form of erosion and has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used c...

  19. Stream Corridor Lowering for Servicing: Considerations and Approaches to Natural Channel Design in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Villard, P. V.

    2009-05-01

    Although there are numerous approaches to natural channel design, all approaches generally advocate application of geomorphic principles to develop stable watercourses with improved habitat function. In southern Ontario, natural channel design approaches are increasingly utilized in stream corridor management. In numerous greenfield developments within southern Ontario, creek corridors are lowered and relocated to address potential hazards and facilitate development. These projects usually utilize natural channel design approaches. Although lowering for servicing can be a controversial technique, this approach has resulted in the maintenance of channels that may have previously been enclosed and lost. In the southern Ontario context mimicking natural corridor form and function is complicated by a surficial geology dominated by glacial sediments. Approaches to natural channel design have evolved over time to address this encumbrance. This presentation examines the geomorphology of streams and stream corridors within southern Ontario. Case studies from southern Ontario are provided to illustrate many of the impediments to, and innovations in, natural channel design. This lays the foundation for illustrating how these design approaches address potential hazards, provide for stream form and function, and mimic much of the physical and biological interactions found within natural stream corridors.

  20. Hierarchical influences on the biophysical properties of natural stream channels

    NASA Astrophysics Data System (ADS)

    Stanfield, L. W.; Kilgour, B.

    2005-05-01

    In this paper we focus on how catchment and proximity effects influence the biophysical properties of streams and these conditions are modified by overall landuse in the catchment and site conditions. Biophysical data (fish, inverts, instream habitat, temperature and baseflow) were collected on wadable streams flowing into the Lake Ontario basin. A GIS application was developed to characterize the landscape conditions for each site. For each of 700 -1400 sites, biophysical and GIS data (drainage area, geology, landuse, slope, stream length, and climatic conditions) were summarized. We explored the relationship between slope and drainage area and two composite indices, one the baseflow index (BFI) combined geology and drainage potential and the other, percent impervious cover (PIC) provided a single metric of disturbance on the landscape. Multivariate approaches were used to develop models to relate each metric to landscape conditions, and PIC. Residuals of this analysis were related to local conditions to determine how much of the remaining variance was explained by these conditions. Our results indicate that several metrics demonstrate a threshold response to PIC and that local conditions have minimal capacity to mitigate these effects. Below the threshold several metrics demonstrated a linear response to PIC that enables predictions to be made of effects from development in a catchment. Instream habitat conditions were more important for some biota (e.g. brown trout) than others. We demonstrate how model results can be used to classify sites or stream segments based on predicted conditions and how results can be used to generate coarse population estimates

  1. On the ecohydrologic function and disturbance effects of ephemeral desert stream channels

    NASA Astrophysics Data System (ADS)

    Bedford, David; Schwinning, Susan; Newlander, April; Miller, David; Sandquist, Darren

    2010-05-01

    Ephemeral stream channels are widespread features throughout desert landscapes, particularly on alluvial fans. These channels range in width from a few tens of centimeters to many meters. Runoff in these channels can redistribute water from upper portions of the landscape in response to rare high-intensity or long duration rainstorms. Visual observations suggest that shrubland vegetation is often clustered at higher cover alongside these channels. We are using transect studies, mapping, monitoring and manipulation experiments to investigate the hydrologic relations of these features to vegetation in the eastern Mojave Desert of the USA. We use a piedmont that is perpendicularly transected by a ~100 year old railroad that alters natural flow by diverting it through staggered culverts to areas below the railroad. This creates an opportunity to study: 1) relatively undisturbed areas above the railroad, 2) areas below the railroad that receive enhanced flow where water is diverted through culverts (enhanced) and, 3) areas below the railroad where water flow from upslope has been blocked (deprived). In all areas we found that vegetation cover and density is higher alongside stream channels and decreases with distance from the channels. In all but the deprived areas, vegetation is nearly absent in the stream channels. Relative to the upper undisturbed areas, vegetation cover is higher in the enhanced areas, and lower in the deprived areas; however, when diversion is not considered cover above and below the road is equal overall. Furthermore, species-specific differences were present. The drought deciduous sub-shrub Ambrosia dumosa shows increased cover in deprived areas and in all areas peaked closer to the channel margin than the evergreen drought-tolerant shrub Larrea tridentata, we believe due to differences in root morphology. In a simulated channel runoff event, we found that vegetation within 3 meters of the stream channel physiologically responded (elevated water

  2. In situ production of methylmercury within a stream channel in northern California.

    PubMed

    Tsui, Martin Tsz Ki; Finlay, Jacques C; Balogh, Steven J; Nollet, Yabing H

    2010-09-15

    Natural stream ecosystems throughout the world are contaminated by methylmercury, a highly toxic compound that bioaccumulates and biomagnifies in aquatic food webs. Wetlands are widely recognized as hotspots for the production of methylmercury and are often assumed to be the main sources of this neurotoxin in downstream ecosystems. However, many streams lacking wetlands in their drainage basins (e.g., montane and semiarid regions in the western United States) have significant methylmercury contamination, and the sources of methylmercury in these streams remain largely unknown. In this study, we observed substantial production of methylmercury within a highly productive stream channel in northern California (South Fork Eel River) within a drainage basin lacking wetlands. We found that in situ methylmercury production is positively related to phosphorus removal and water temperature within the stream channel, supporting hypothesized biological mediation of in situ mercury transformation. Moreover, our data suggest that epiphytic microbial communities on a dominant filamentous alga (Cladophora glomerata) could play a role in in situ methylmercury production. Because peak in situ methylmercury production coincides with the period of the highest biological productivity during summer baseflow, methylmercury produced internally may be efficiently routed into local stream food webs. Our study provides strong evidence that stream channels, especially those associated with high primary productivity, can be important for regulating the bioavailability and toxicity of this global contaminant. PMID:20715863

  3. Hydrology of the Creeping Swamp Watershed, North Carolina with reference to potential effects of stream channelization

    USGS Publications Warehouse

    Winner, M.D.; Simmons, C.E.

    1977-01-01

    Hydrologic data were collected for four years at six sites in the Creeping Swamp watershed in eastern North Carolina in a preliminary effort to study the effects of stream channelization on the hydrology of a small watershed. A water-budget evaluation for pre-channelized conditions showed that runoff accounts for about 17 percent of the total rainfall, base runoff about 20 percent, ground-water outflow about 2 percent, and evapotranspiration about 61 percent. Channelization would have caused the greatest decline in ground-water levels nearest the stream, with the decline diminishing with increased distance from the stream. Channelization would also have resulted in a decrease in overland runoff and an increase in the amount of water reaching Creeping Swamp through the ground-water system, although the total volume of runoff would not change significantly. The water-quality characteristics of Creeping Swamp indicate that the stream is relatively free of pollution, although it is likely that channelization would increase (1) suspended-sediment loads, (2) stream temperatures, and (3) concentrations of dissolved solids, especially during low flows.

  4. A catchment-scale model of mountain stream channel morphologies in southeast Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky; Takken, Ingrid

    2008-03-01

    The position of mountain streams high in the channel network and their proportional dominance mean that channel modifications and adjustments within these systems will have important implications for downstream processes and linkages. This study develops an analysis framework for examining the catchment-scale distribution of reach morphologies, and the relationship among reach type, catchment lithology and flow competence in southeast Australian mountain streams. The analysis framework is applied to three catchments which have contrasting proportions of the two dominant lithologies of the region, Devonian granites and Ordovician metasediments. The model successfully delineated 68% of reach types, and the resultant spatial maps allowed the effects of stream network position and catchment specific controls on channel morphology to be evaluated. Maximum lengths of the majority of reach morphology types were in second-order streams and the maximum number of morphology types (six) was present in third-order streams, with dramatic reductions in reach type variability as the network expands. The position of catchment lithology within the channel network structure was recognized as more important than the aerial extent of a particular lithology on the distribution and abundance of reach morphologies. The model provides an important tool in the management of channel networks for the protection or restoration of ecological diversity, by identifying river segments and tributaries with high morphological diversity.

  5. Predicting stream channel erosion in the lacustrine core of the upper Nemadji River, Minnesota (USA) using stream geomorphology metrics

    NASA Astrophysics Data System (ADS)

    Magner, Joseph A.; Brooks, Kenneth N.

    2008-06-01

    The USA Clean Water Act requires the development of a total maximum daily load (TMDL) when Minnesota’s water quality standard for turbidity is exceeded; however, regions underlain with fine-grained lacustrine deposits yield large natural background loads of suspended inorganic sediment. A review of hydrogeologic pathways was conducted along with the statistical analysis of geomorphic metrics, collected at 15 sites with varying drainage areas in the upper Nemadji River basin, northeastern Minnesota. Regression analysis indicated a strong linkage between bankfull cross-sectional area and drainage area. Dimensionless geomorphic metric ratios were developed to predict channel evolution potential and associated channel erosion risk. Sites located in drainage areas less than 2 km2 had low erosion risk and showed a correlation between channel slope and relative roughness ( D 84/mean bankfull channel depth, 88%). A principal components analysis explained over 98% of the variance between sites and indicated five important channel shape metrics to predict channel erosion: bankfull width, bankfull depth, maximum depth, cross-sectional area, and valley beltwidth. Mass wasting of cohesive stream channel sediment was influenced by groundwater discharge and produced turbid waters in the upper Nemadji River.

  6. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE, TRANSIENT STORAGE AND NUTRIENT UPTAKE IN STREAMS DRAINING MANAGED AND OLD GROWTH WATERSHEDS

    EPA Science Inventory

    We compared stream channel structure (width, depth, substrate composition) and riparian canopy with transient storage and nutrient uptake in 32 streams draining old-growth and managed watersheds in the Appalachian Mountains (North Carolina), Ouachita Mountains (Arkansas), Cascade...

  7. Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter-streamings

    SciTech Connect

    Chen, P. F.; Fang, C.; Harra, L. K.

    2014-03-20

    The dynamics of a filament channel are observed with imaging and spectroscopic telescopes before and during the filament eruption on 2011 January 29. The extreme ultraviolet (EUV) spectral observations reveal that there are no EUV counterparts of the Hα counter-streamings in the filament channel, implying that the ubiquitous Hα counter-streamings found by previous research are mainly due to longitudinal oscillations of filament threads, which are not in phase between each other. However, there exist larger-scale patchy counter-streamings in EUV along the filament channel from one polarity to the other, implying that there is another component of unidirectional flow (in the range of ±10 km s{sup –1}) inside each filament thread in addition to the implied longitudinal oscillation. Our results suggest that the flow direction of the larger-scale patchy counter-streaming plasma in the EUV is related to the intensity of the plage or active network, with the upflows being located at brighter areas of the plage and downflows at the weaker areas. We propose a new method to determine the chirality of an erupting filament on the basis of the skewness of the conjugate filament drainage sites. This method suggests that the right-skewed drainage corresponds to sinistral chirality, whereas the left-skewed drainage corresponds to dextral chirality.

  8. Sources and interpretation of channel complexity in forested subalpine streams of the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Livers, Bridget; Wohl, Ellen

    2016-05-01

    We evaluate correlations between stream geomorphic complexity and characteristics of the adjacent riparian forest, valley geometry, and land use history in forested subalpine streams of the Colorado Front Range. Measures of geomorphic complexity focus on cross-sectional, planform, and instream wood piece and logjam variables. We categorize adjacent riparian forests as old-growth unmanaged forest (OU), younger unmanaged forest (YU), and younger managed forest (YM), and valley geometry as laterally confined, partly confined, or unconfined. Significant differences in geomorphic stream complexity between OU, YU, and YM result primarily from differences in wood pieces and logjams, and these differences correlate strongly with pool volume and organic matter storage. Significant differences in planform and cross-sectional complexity correlate more strongly with valley geometry, but do not explain as much of the observed variability in complexity between streams as do the wood variables. Unconfined OU streams have the largest wood loads and the greatest complexity, whereas legacy effects of logging, tie-drives, and channel simplification create lower complexity in YM streams, even relative to YU streams flowing through similarly aged forest. We find that management history of riparian forests exerts the strongest control on reduced functional stream channel complexity, regardless of riparian forest stand age.

  9. EZBC video streaming with channel coding and error concealment

    NASA Astrophysics Data System (ADS)

    Bajic, Ivan V.; Woods, John W.

    2003-06-01

    In this text we present a system for streaming video content encoded using the motion-compensated Embedded Zero Block Coder (EZBC). The system incorporates unequal loss protection in the form of multiple description FEC (MD-FEC) coding, which provides adequate protection for the embedded video bitstream when the loss process is not very bursty. The adverse effects of burst losses are reduced using a novel motion-compensated error concealmet method.

  10. Cross-stream migration of compliant particles in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kilimnik, Alex; Nur, Soojung Claire; di Carlo, Dino; Alexeev, Alexander

    2010-11-01

    Using a 3D hybrid lattice Boltzmann and lattice spring computational method, the motion of rigid and soft particles in a pressure-driven microfluidic flow was examined. The particles were modeled as neutrally buoyant fluid-filled elastic shells. The equilibrium positions of these particles were obtained in a low-Reynolds-number flow while accounting for non-linear inertial effects. Microchannels of different width were examined and it was found that the equilibrium position of the rigid particles moves away from the channel walls as the ratio between particle diameter and channel width increases. Furthermore, it was found that capsule deformability enhances the particle migration toward the channel centerline. The simulation results were compared with experimental data obtained with varying size and viscosity oil droplets suspended in water indicating favorable agreement. These findings could aid in the design of devices to sort particles based on their mechanical stiffness.

  11. Activity of the Lyrid meteor stream

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.; Porubcan, V.

    1992-01-01

    The activity of the Lyrid meteor stream is in most years fairly low with a visual rate at maximum (21-22 April) of 5-10 meteors per hour. Short bursts of very high Lyrid activity, with visual hourly rates of 100 or more, have sometimes been reported. These observations generally refer to faint visual meteors. The reported bursts of high activity have occurred in a very narrow interval of solar longitudes (deg 31.24 to 31.38 equinox 1950.0), while the recurrent or 'normal' maximum for bright meteors occurs at solar longitude deg 31.6, or slightly later. A mass separation of the meteors in the shower is thus indicated.

  12. Technical Note: Variability of flow discharge in lateral inflow-dominated stream channels

    NASA Astrophysics Data System (ADS)

    Chang, C.-M.; Yeh, H.-D.

    2015-02-01

    The influence of the temporal changes in lateral inflow rate on the discharge variability in stream channels is explored through the analysis of diffusion wave equation (the linearized St. Venant equations). To account for variability and uncertainty, the lateral inflow rate is regarded as a temporal random function. Based on the spectral representation theory, analytical expressions for the covariance function and evolutionary power spectral density of the random discharge perturbation process are derived to quantify variability in stream flow discharge induced by the temporal changes in lateral inflow rate. Upon evaluating the closed-form expressions, it is found that the variability in stream flow discharge increases with distance from the upstream boundary of the channel and time as well. The temporal correlation scale of inflow rate fluctuations plays a positive role in enhancing the variability of the flow discharge in channels. The treatment of the discharge variance gives us a quantitative estimate of uncertainty from the use of the deterministic model.

  13. Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee

    USGS Publications Warehouse

    Simon, Andrew; Hupp, C.R. Tennessee

    1992-01-01

    Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the

  14. Thermally activated TRPV3 channels.

    PubMed

    Luo, Jialie; Hu, Hongzhen

    2014-01-01

    TRPV3 is a temperature-sensitive transient receptor potential (TRP) ion channel. The TRPV3 protein functions as a Ca(2+)-permeable nonselective cation channel with six transmembrane domains forming a tetrameric complex. TRPV3 is known to be activated by warm temperatures, synthetic small-molecule chemicals, and natural compounds from plants. Its function is regulated by a variety of physiological factors including extracellular divalent cations and acidic pH, intracellular adenosine triphosphate, membrane voltage, and arachidonic acid. TRPV3 shows a broad expression pattern in both neuronal and non-neuronal tissues including epidermal keratinocytes, epithelial cells in the gut, endothelial cells in blood vessels, and neurons in dorsal root ganglia and CNS. TRPV3 null mice exhibit abnormal hair morphogenesis and compromised skin barrier function. Recent advances suggest that TRPV3 may play critical roles in inflammatory skin disorders, itch, and pain sensation. Thus, identification of selective TRPV3 activators and inhibitors could potentially lead to beneficial pharmacological interventions in several diseases. The intent of this review is to summarize our current knowledge of the tissue expression, structure, function, and mechanisms of activation of TRPV3. PMID:25366242

  15. Stream Sediment Sources in Midwest Agricultural Basins with Land Retirement along Channel.

    PubMed

    Williamson, T N; Christensen, V G; Richardson, W B; Frey, J W; Gellis, A C; Kieta, K A; Fitzpatrick, F A

    2014-09-01

    Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement. PMID:25603248

  16. Relationships among rotational and conventional grazing systems, stream channels, and macroinvertebrates

    USGS Publications Warehouse

    Raymond, K.L.; Vondracek, B.

    2011-01-01

    Cattle grazing in riparian areas can reduce water quality, alter stream channel characteristics, and alter fish and macroinvertebrate assemblage structure. The U.S. Department of Agriculture, Natural Resources Conservation Services has recommended Rotational Grazing (RG) as an alternative management method on livestock and dairy operations to protect riparian areas and water quality. We evaluated 13 stream channel characteristics, benthic macroinvertebrate larvae (BML), and chironomid pupal exuviae (CPE) from 18 sites in the Upper Midwest of the United States in relation to RG and conventional grazing (CG). A Biotic Composite Score comprised of several macroinvertebrate metrics was developed for both the BML assemblage and the CPE assemblage. Multi-Response Permutation Procedures (MRPP) indicated a significant difference in stream channel characteristics between RG and CG. Nonmetric Multidimensional Scaling indicated that RG sites were associated with more stable stream banks, higher quality aquatic habitat, lower soil compaction, and larger particles in the streambed. However, neither MRPP nor Mann-Whitney U tests demonstrated a difference in Biotic Composite Scores for BML or CPE along RG and CG sites. The BML and CPE metrics were significantly correlated, indicating that they were likely responding to similar variables among the study sites. Although stream channel characteristics appeared to respond to grazing management, BML and CPE may have responded to land use throughout the watershed, as well as local land use. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  17. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels

    USGS Publications Warehouse

    Constantz, J.; Stewart, A.E.; Niswonger, R.; Sarma, L.

    2002-01-01

    Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature-based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature-based streambed percolation rates with surface water-based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment-temperature profiles is their robust and continuous nature, leading to a long-term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.

  18. A cost-effective laser scanning method for mapping stream channel geometry and roughness

    NASA Astrophysics Data System (ADS)

    Lam, Norris; Nathanson, Marcus; Lundgren, Niclas; Rehnström, Robin; Lyon, Steve

    2015-04-01

    In this pilot project, we combine an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire high resolution topographic area scans for a stream channel. The microprocessor and imaging system was installed in a custom gondola and suspended from a wire cable system. To demonstrate the systems capabilities for capturing stream channel topography, a small stream (< 2m wide) in the Krycklan Catchment Study was temporarily diverted and scanned. Area scans along the stream channel resulted in a point spacing of 4mm and a point cloud density of 5600 points/m2 for the 5m by 2m area. A grain size distribution of the streambed material was extracted from the point cloud using a moving window, local maxima search algorithm. The median, 84th and 90th percentiles (common metrics to describe channel roughness) of this distribution were found to be within the range of measured values while the largest modelled element was approximately 35% smaller than its measured counterpart. The laser scanning system captured grain sizes between 30mm and 255mm (coarse gravel/pebbles and boulders based on the Wentworth (1922) scale). This demonstrates that our system was capable of resolving both large-scale geometry (e.g. bed slope and stream channel width) and small-scale channel roughness elements (e.g. coarse gravel/pebbles and boulders) for the study area. We further show that the point cloud resolution is suitable for estimating ecohydraulic parameters such as Manning's n and hydraulic radius. Although more work is needed to fine-tune our system's design, these preliminary results are encouraging, specifically for those with a limited operational budget.

  19. Development of Relations of Stream Stage to Channel Geometry and Discharge for Stream Segments Simulated with Hydrologic Simulation Program-Fortran (HSPF), Chesapeake Bay Watershed and Adjacent Parts of Virginia, Maryland, and Delaware

    USGS Publications Warehouse

    Moyer, Douglas; Bennett, Mark

    2007-01-01

    The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS

  20. Hydraulic and channel characteristics of selected streams in the Kantishna Hills area, Denali National Park and Preserve, Alaska, 1982-84

    USGS Publications Warehouse

    Van Maanen, J.L.; Solin, G.L.

    1988-01-01

    The Kantishna Hills area of the Denali National Park and Preserve contains extensive placer gold deposits. In order to develop plans for the management of this natural resource, and to assess the effects of placer mining on aquatic systems, documentation of the physical characteristics of the streams in the area is needed. Channel morphology, streamflow and streambed composition data were collected at 14 stream reaches in the Kantishna Hills area in September 1982 and in June, July, August , and September of 1983 and 1984. The reaches selected include locations of historical and current mining activity and locations which are undisturbed. The data indicate only minor differences in the physical properties of the streams in mined and unmined drainage basins. The composition of streambeds below mined areas tended to consist of finer sized particles and exhibited less variation in mean particle size than streambed in unmined basins. This may be due in part to the natural sorting of material in stream channels because mined areas, and thus study reaches below them, tended to be located relatively farther downstream (nearer the stream mouth) than were study reaches in basins where no mining has occurred. Changes in the physical properties of the streams which could be directly attributed to mining activity were noted at only one location, Rainy Creek near Kantishna, where the stream had been diverted from its natural channel by the construction of settling ponds. (Author 's abstract)

  1. Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments

    NASA Astrophysics Data System (ADS)

    Small, Eric E.; Blom, Tevis; Hancock, Gregory S.; Hynek, Brian M.; Wobus, Cameron W.

    2015-08-01

    We quantify variations in rock erodibility, Kr, within channel cross sections using laboratory abrasion mill experiments on bedrock surfaces extracted from streams with sandstone bedrock in Utah and basaltic bedrock in the Hawaiian Islands. Samples were taken from the thalweg and channel margins, the latter at a height that is inundated annually. For each sample, a sequence of abrasion mill experiments was completed to quantify variations in erosion rate with erosion depth. Erosion rate data from these experiments shows two things. First, the erosion rate from channel margin samples is greater than for thalweg samples, with the greatest difference observed for the rock surface that was exposed in the stream channel. Second, erosion rate decreases with depth beneath the original rock surface, by an order of magnitude in most cases. The erosion rate becomes steady at depths of 1-3 mm for channel margin samples and 0.1-0.4 mm for thalweg samples. Because only rock properties and microtopography vary throughout the sequence of mill experiments, these results suggest that Kr of the bedrock surface exposed in stream channels is higher at the margins than near the channel center and that Kr decreases over depths of ~1 mm. The simplest explanation for these patterns is that Kr is enhanced, at the bedrock surface and along the channel margins, due to the effects of weathering on rock strength and surface roughness. We hypothesize that a balance exists between weathering-enhanced erodibility and episodic incision to allow channel margins to lower at rates similar to the thalweg.

  2. SIMULATING SUB-DECADAL CHANNEL MORPHOLOGIC CHANGE IN EPHEMERAL STREAM NETWORKS

    EPA Science Inventory

    A distributed watershed model was modified to simulate cumulative channel morphologic
    change from multiple runoff events in ephemeral stream networks. The model incorporates the general design of the event-based Kinematic Runoff and" Erosion Model (KINEROS), which describes t...

  3. Do post-mining constructed channels replace functional characteristics of headwater streams?

    EPA Science Inventory

    Mountaintop mining and valley fill (MTMVF) is a method of coal mining common in eastern Kentucky and southern West Virginia. Over 1200 miles of stream channel have been buried by MTMVF. Permits for surface coal mining have recognized constructed drainage ditches associated with ...

  4. Biotic drivers of anastomosing channel pattern in headwater streams of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.

    2010-12-01

    Most of the headwater rivers in the Colorado Rocky Mountains, USA occur as single channels in steep, narrow valleys. Where variations in bedrock erodibility create segments of wider, lower gradient valleys, however, anastomosing channels can occur if one of two biotic drivers is present. Where a disturbance such as a forest fire or windstorm allows pioneer woody species to colonize valley bottoms, beavers can establish colonies. Beavers build dams that enhance overbank flooding and raise the local water table, limiting the return of conifers and promoting aspen-willow (Populus-Salix) forests that provide food for the beavers. Beavers facilitate the formation of multiple channels by digging small canal-like features across the floodplain and by damming the main channel and promoting channel avulsion. In old-growth conifer forests, channel-spanning logjams can enhance overbank flows that facilitate the development of multiple (sub)parallel channels that extend for 50-300 m downstream. Enhanced overbank flows and multiple channels increase the retention of instream wood, creating a self-enhancing feedback of more jams. At least two thresholds must be crossed for anastomosing driven by logjams to develop; a valley morphology threshold and a wood load threshold. Anastomosing channels are present where stream gradient < 4% and the ratio of (channel width/valley-bottom width) < 0.2; only single channels flow through old-growth forests in valley segments that are steeper and narrower. The average wood piece diameter in old-growth anastomosing channel segments > 20 cm, whereas average piece diameter in forests that have not been disturbed in a century is 10-20 cm; channels in these younger forests do not exhibit anastomosing planforms. Wood load in old-growth anastomosing channels averages 200 m3/ha; old-growth and younger forest single channels average < 100 m3/ha.

  5. Microbial Enzyme Activity, Nutrient Uptake, and Nutrient Limitation in Forested Streams

    EPA Science Inventory

    We measured NH4 + and PO4 -3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm enzyme activity (BEA), and channel geomorphology in streams draining forested catchments in the Northwestern (Northern California Coast Range and Cascade Mountains) and Southeastern (A...

  6. Modeling channel morphodynamic response to variations in large wood: Implications for stream rehabilitation in degraded watersheds

    NASA Astrophysics Data System (ADS)

    Davidson, Sarah L.; Eaton, Brett C.

    2013-11-01

    Anthropogenic modification of forests has often decoupled streams from riparian ecosystems and altered natural wood recruitment processes. Extensive research has shown that large wood significantly impacts channel dynamics, especially in small and intermediate sized forested streams where wood pieces are similar in length to channel width, and many stream rehabilitation efforts now involve the addition of large wood to streams. The primary objective of this research is to investigate the relation between large wood and reach scale channel morphology and hydraulics using a physical model, in order to better inform stream rehabilitation programs and future modeling efforts. Four experiments, each comprising numerous five hour runs, were conducted using a Froude-scaled stream table with wood loads scaled to 0 m3/m2, 0.011 m3/m2, 0.016 m3/m2, and 0.022 m3/m2. The addition of large wood significantly decreased the reach-averaged velocity in all experiments, and was associated with decreased sediment transport and increased sediment storage in the reach. Increases in bed and water surface slope compensated for the loss of energy available to transport sediment, and enabled the system to reach a new steady state within the equivalent of 6 to 9 years. Adding wood increased pool frequency, as well as the variability in cross-sectional depth, while causing the reach to undergo a transition from a plane-bed to a riffle-pool morphology. Retention of fine sediment increased the availability of fish spawning substrate, while increased water stage improved connectivity between the channel and the floodplain. The changes in habitat complexity were generally related to the wood load added to the reach, but were also dependent on the orientation and arrangement of the pieces. These results demonstrate that wood may exert a primary control on channel morphodynamics and the availability of aquatic habitat in intermediate sized streams, and suggest that the benefits from stream

  7. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  8. Impact of riverine wetlands construction and operation on stream channel stability: Conceptual framework for geomorphic assessment

    NASA Astrophysics Data System (ADS)

    Rhoads, Bruce L.; Miller, Michael V.

    1990-11-01

    Wetland conservation is a critical environmental management issue. An emerging approach to this issue involves the construction of wetland environments. Because our understanding of wetlands function is incomplete and such projects must be monitored closely because they may have unanticipated impacts on ecological, hydrological, and geomorphological systems. Assessment of project-related impacts on stream channel stability is an important component of riverine wetlands construction and operation because enhanced erosion or deposition associated with unstable rivers can lead to loss of property, reductions in channel capacity, and degradation of water quality, aquatic habitat, and riparian aesthetics. The water/sediment budget concept provides a scientific framework for evaluating the impact of riverine wetlands construction and operation on stream channel stability. This concept is based on the principle of conservation of mass, i.e., the total amount of water and sediment moving through a specific reach of river must be conserved. Long-term measurements of channel sediment storage and other water/sediment budget components provide the basis for distinguishing between project-related impacts and those resulting from other causes. Changes in channel sediment storage that occur as a result of changes in internal inputs of water or sediment signal a project-related impact, whereas those associated with changes in upstream or tributary inputs denote a change in environmental conditions elsewhere in the watershed. A geomorphic assessment program based on the water/sediment budget concept has been implemented at the site of the Des Plaines River Wetlands Demonstration Projection near Chicago, Illinois, USA. Channel sediment storage changed little during the initial construction phase, suggesting that thus far the project has not affected stream channel stability.

  9. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    NASA Astrophysics Data System (ADS)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  10. Coupled Radon and Water Temperature Measurements to Characterize the Effects of Altered Stream Channel Planform

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G. C.; O'Daniel, S. J.

    2013-12-01

    In summer 2011, a 2.6 km reach of Meacham Creek, Oregon, USA, was altered from a straight, steep wall-based channel to more a sinuous, low-gradient channel. Key objectives of this restoration project were to increase the rate and magnitude of hyporheic exchange. The overarching goal was to initiate increased buffering and lagging of water temperature in the subsurface to mitigate warm surface water temperature in Meacham Creek, an important spawning and rearing stream for depressed populations of Chinook salmon and summer steelhead. To evaluate progress toward project goals and objectives, stream temperature and groundwater temperature in 22 wells have been measured hourly at the restoration site since March 2011. In addition, the radioactive isotope 222Rn was measured in each well and in the surface water on two occasions. The relative residence time of down welling stream water measured in the wells can be determined by ranked amplitude depression and lagged phase of annual temperature signals in the wells relative to that of the open channel flow. Residence times predicted by annual temperature signal dynamics are corroborated by 222Rn concentrations in each well. The data collected to date provide a foundation for developing a groundwater thermal model to predict the effects of channel reconfiguration on ground-surface water exchange and associated temperature effects at the reach scale.

  11. Detection of regolith buried water stream channels on Mars with the help of synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    The major problem of Mars research is search of water on its surface Biological life is connected to water In this connection the intense interest represents detection of water stream channels which in the past flew on Mars In these areas the petrified rests of the former life on Mars may be found out Now these channels may be under regolith layer However radio waves penetrating ability allows seeing these channels under a regolith The radio wave falls on a regolith surface under some angle The part of the falling wave power is reflected by regolith Other part of it refracts under a regolith surface and reaches bottom of a channel Here there is reflection because of a difference in refraction index of regolith and bedrock of a channel bottom The part of reflected power gets back to the spacecraft Passage through regolith is accompanied by electric losses In result we receive the image of a channel which contrast depends on regolith depth difference in refraction index of regolith and bedrock of a channel bottom as well as wavelength In this work in some assumptions concerning regolith and bedrock electric properties the model of the channel image is received The optimum wavelength for detection of the water stream channels now buried by regolith is determined The analysis of the reflected signal level dependence from an angle under which SAR onboard aerial is directed to a planet surface is carried out It is shown that power of the SAR transmitter and the size of the onboard aerial will be moderate if radar survey to carry out

  12. Channel-Reach Morphology in Formerly Glaciated, Mountain Streams: Controls and Prediction

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Brardinoni, F.

    2006-12-01

    The spatial distribution of channel types in mountain drainage basins of coastal British Columbia is examined. Using field- and GIS-based data we show that the local channel slope and degree of colluvial-alluvial coupling imposed by the glacial valley morphology dictate the spatial organization of channel-reach morphology. In particular, the glacially-induced channel long profile generates characteristic sequences of channel reaches (with repetitions and inversions) that depart from the downstream succession distinctive of unglaciated mountain streams. For example, the presence of one hanging valley in the river long profile produces and separates two full successions of channel types a headmost one characterized by an ephemeral/seasonal hydrologic regime, and a downstream one, where water runoff is perennial. Exploratory scatter plots indicate that slope, shear stress, and relative roughness ensure best separation between reach types. At a confirmatory level, highest prediction of channel types is achieved by discriminant functions containing the same three variates. Success rates, depending on whether or not boulder-cascade reaches are grouped with step-pools, vary between 89% and 76%. Notwithstanding the glacially-inherited slope and the transient geomorphic dynamics of this landscape, similar to the case of unglaciated mountain streams, channel types are chiefly segregated by local slope (albeit characterized by significantly higher ranges), and to a lesser extent by shear stress and relative roughness. This outcome, while adding considerable strength to prior empirical knowledge, indicates that first-order physical conditions at which distinct channel states form are insensitive to very different landscape structures, hence histories.

  13. Fusion neutronics-streaming, shielding, heating, activation

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.; Richter, D.; Seidel, K.; Unholzer, S.

    2001-07-01

    The International Thermonuclear Experimental Reactor (ITER) represents an important step towards a fusion power plant. Controlled fusion will be realized in a d-t-plasma magnetically confined by a Tokamak configuration. The first wall of the plasma chamber, blanket and vacuum vessel of ITER form a compact assembly for converting the kinetic energy of fusion neutrons into heat while simultaneously shielding the superconducting coils efficiently against neutron and accompanying photon radiation. This shielding system can be investigated with neutrons generated by low-energy accelerators. We report on experiments concerning shielding and streaming properties of a mock-up where energy spectra of both neutrons and protons were measured. They are compared with predictions of Monte Carlo calculations (code MCNP-4A) using various data libraries. The agreement justified the use of measured spectra as basis to calculate design parameters such as neutron and photon heating, radiation damage, gas production, and activation. Some of these parameters were also directly measured. The results validate the ITER design.

  14. Riparian Vegetation Influence on Stream Channel Dimensions: Key Driving Mechanisms and Their Timescales

    NASA Astrophysics Data System (ADS)

    McBride, M.; Hession, W.; Rizzo, D. M.; Thompson, D. M.

    2006-05-01

    Combined results from field-based investigations and flume experiments demonstrated key mechanisms driving channel widening following the reforestation of riparian zones in small streams. Riparian reforestation is a common occurrence either due to restoration efforts, intended to improve water quality, temperature regimes, and in-stream physical habitat or due to passive reforestation that is common when agricultural land uses decline. Previous studies have documented the influence of riparian vegetation on channel size, but driving mechanisms and the timescales at which they operate have not been evaluated. Field-based investigations were conducted in the Sleepers River basin in northeastern Vermont to revisit streams that were previously surveyed in the 1960s. We measured channel dimensions, large woody debris (LWD), and steam velocities in reaches with non-forested and forested riparian vegetation, in reaches currently in transition between vegetation types, and reaches with no change in riparian vegetation over the last 40 years. Flume experiments were performed with a 1:5 scale, fixed-bed model of a tributary to Sleepers River. Two types of riparian vegetation scenarios were simulated: 1) forested, with rigid, wooden dowels; and 2) non-forested, with synthetic grass carpeting. Three-dimensional velocities were measured during flume runs to determine turbulent kinetic energy (TKE) during overbank flows. Results showed that stream reaches with recently reforested vegetation have widened since the mid 1960s, but are not as wide as reaches with older riparian forests. LWD was more abundant in reaches with older riparian forests than in reaches with younger forests; however, scour around LWD did not appear to be a significant driving mechanism for channel widening. Velocity and TKE measurements from the prototype stream and the flume model indicate that TKE was significantly elevated in reforested reaches. Given that bed and bank erosion can be amplified in flows

  15. Channel and Catchment Morphology, Spatial Intermittency, and Carbon Chemistry of a Headwater Stream

    NASA Astrophysics Data System (ADS)

    O'Donnell, B.; Wondzell, S. M.; Serchan, S. P.; Haggerty, R.; Ward, A. S.; Schmadel, N. M.

    2015-12-01

    We investigated carbon dynamics in a steep, forested, headwater stream in the Cascade Mountains of western Oregon, USA. Measurements from a continuously recording pCO2 probe located near the mouth of the catchment showed that the stream was always super saturated with CO2 with respect to atmospheric concentrations, ranging from 500 ppm in mid-winter to as much as 3,500 ppm in late summer. Continuous measurements of pCO2 from a hyporheic well suggested that the hyporheic zone was a likely source of the super-saturated stream water because the hyporheic concentrations of CO2 ranged from a mid-winter low of 4,000 ppm to a late summer high of 16,000 ppm. Here, we investigate the causes for the large seasonal changes in pCO2 in the stream water. We conducted longitudinal synoptic surveys of flow and carbon chemistry over the period of baseflow recession during summer 2015. The channel is narrow and steep with occasional bedrock segments. However, debris flow deposits in the lower portions of the studied reach create wider valley floors where hyporheic exchange can capture 100% of the streamflow when discharge is very low. At the beginning of the summer when discharge was relatively high, flow was spatially continuous, but by mid-summer, stream flow became spatially discontinuous. Upwelling hyporheic water in these locations appears to be super saturated with CO2. In early summer, the amount of upwelling hyporheic water was small relative to stream discharge so that hyporheic exchange had only a modest influence on stream pCO2. Later in the summer, when discharge was much smaller relative to hyporheic exchange, we observed much greater spatial variability in CO2, which averaged 2720 ppm downstream of dry segments longer than 5 m but only averaged 980 ppm in wet segments and below shorter dry segments. Over the intervening wet segments, CO2 appears to be evaded from the stream as concentrations decreased rapidly. Also, upslope accumulated area appears to control lateral

  16. Hydrograph peaks caused by ice channel melt in Black Hills streams

    SciTech Connect

    Rahn, P.H. . Dept. of Geology and Geological Engineering)

    1992-01-01

    The Black Hills has an average annual precipitation of approximately 20 inches, most of which occurs in early summer. The winters are typically cold and fairly dry. Most streams within the Precambrian central Black Hills have perennial and ephemeral reaches which are related to the presence of surficial deposits. During the winter, ice accumulates in the channels of some stream reaches, completely filling the channels, particularly in shady locations below springs or seeps. High discharges occur during warm spells in late winter and early spring. These high discharges are not due to snow melt because many watersheds are often void of snow. Ice-channel surveys were conducted on Spring, Battle, French, Slate, and Grace Coolidge Creeks during 1988. High discharges occurred during the warm spells at the end of March. Since no precipitation occurred during this time, and the watersheds were barren of snow, the discharge peaks are believed due to melting of ice stored in the channels. This hypothesis is supported by the fact that the volume of the water stored as ice was approximately the same as the volume of water represented by the discharge anomaly. The ice stored in channels primarily results from ground water discharge over the winter. It is not due to melting snow or surface water runoff per se. Separation of the hydrograph into surface and ground water components should take into account this phenomena.

  17. Detection Of Regolith Buried Water Stream Channels On Mars With The Help Of Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    The major problem of Mars research is search of water on its surface. Biological life is connected to water. In this connection the intense interest represents detection of water stream channels, which in the past flew on Mars. In these areas the petrified rests of the former life on Mars may be found out. Now these channels may be under regolith layer. However radio waves penetrating ability allows seeing these channels under a regolith. The radio wave falls on a regolith surface under some angle. The part of the falling wave power is reflected by regolith. Other part of it refracts under a regolith surface and reaches bottom of a channel. Here there is reflection because of a difference in refraction index of regolith and bedrock of a channel bottom. The part of reflected power gets back to the spacecraft. Passage through regolith is accompanied by electric losses. In result we receive the image of a channel which contrast depends on regolith depth, difference in refraction index of regolith and bedrock of a channel bottom as well as wavelength. In this work the optimum wavelength for detection of the water stream channels, now buried by regolith, is determined. In some assumptions concerning regolith and bedrock electric properties the model of the channel image is received. The analysis of the reflected signal level dependence from an angle under which SAR onboard aerial is directed to a planet surface is carried out. It is shown, that power of the SAR transmitter and the size of the onboard aerial will be moderate if radar survey to carry out under a small angle to a local vertical. The way, which allows suppressing the altimetric clutter arising in nadir, is specified. Here one method of search of water on Mars indications - detection of a regolith buried water stream channels is advanced only. However the radar with similar characteristics may be used as well for global survey a planet surface. Owing to a difference in character of reflection and penetrating

  18. Tracing sources of organic matter in adjacent urban streams having different degrees of channel modification.

    PubMed

    Duan, Shuiwang; Amon, Rainer M W; Brinkmeyer, Robin L

    2014-07-01

    Urbanization and stream-channel modifications affect organic matter concentrations and quality in streams, by altering allochthonous organic matter input and in-stream transformation. This study uses multiple tracers (δ(13)C, δ(15)N, C/N ratio, and chlorophyll-a) to track sources of organic matter in two highly urbanized bayous in Houston (Texas, USA). Wastewater treatment plants (WWTPs) are located in headwaters of both bayous and contribute more than 75% to water flow. Low isotopic relatedness to natural end-members and enriched δ(15)N values suggest the influence of WWTPs on the composition of all organic matter fractions. The two bayous differ in degree of channel improvement resulting in different responses to hydrological conditions. During high flow conditions, the influence of terrestrial organic matter and sediment resuspension was much more pronounced in the Buffalo Bayou than in the concrete-lined White Oak Bayou. Particulate organic matter (POM) in White Oak Bayou had similar values of enriched δ(15)N in all subsegments, whereas in Buffalo Bayou, the degree of δ(15)N enrichment was less in the subsegments of the lower watershed. The difference in riparian zone contributions and interactions with sediments/soils was likely responsible for the compositional differences between the two bayous. Phytoplankton inputs were significantly higher in the bayous, especially in slow-flowing sections, relative to the reference sites, and elevated phytoplankton inputs accounted for the observed stable C isotope differences between FPOM and high molecular weight dissolved organic matter (HMW DOM). Relative to POM, HMW DOM in the bayous was similar to WWTP effluents and showed minor longitudinal variability in both streams suggesting that WWTPs contribute much of the DOM in the systems. Urbanization has a major influence on organic matter sources and quality in these urban water bodies and these changes seem further enhanced by stream channel modifications. PMID

  19. Monitoring stream stage, channel profile, and aqueous conductivity with time domain reflectometry (TDR).

    SciTech Connect

    Brainard, James Robert; Tidwell, Vincent Carroll; Coplen, Amy K.; Ruby, Douglas Scott; Coombs, Jason R.; Wright, Jerome L.; Roberts, Jesse Daniel

    2004-11-01

    Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts, clays). Taken together, these characteristics provide a basis for integrated stream monitoring; specifically, concurrent measurement of stream stage, channel profile and aqueous conductivity. Here, we make novel application of TDR within the context of stream monitoring. Efforts toward this goal followed three critical phases. First, a means of extracting the desired stream parameters from measured TDR traces was required. Analysis was complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Cole-Cole parameters for dielectric dispersion and loss was developed to analyze acquired TDR traces. Second, we explored the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments were performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-}3.4x10{sup -3} m for sensing the location of an air/water or water/sediment interface and {+-}7.4% of actual for the aqueous conductivity. Third, monitoring stations were sited on the Rio Grande and Paria rivers to evaluate performance of the TDR system

  20. The storage of bed material in mountain stream channels as assessed using Optically Stimulated Luminescence dating

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Rhodes, Ed; Croke, Jacky

    2007-01-01

    A detailed understanding of channel forming and maintenance processes in mountain streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are problematic because of the high formative discharges characteristic of such streams. The application of Optically Stimulated Luminescence (OSL) dating is proposed here as a new way of determining actual residency times of fine sediments and consequently validating selected predictions for the entrainment of sediment in these streams. Model predictions of sediment mobility for selected step-pool and plane-bed channels in a mountain catchment in south eastern Australia are initially calculated using equations of hydraulic competence and the one-dimensional HEC-RAS model. Results indicate that floods exceeding bankfull with recurrence intervals up to 13 years are competent to mobilise the maximum overlying surface grain sizes at both sites. OSL minimum age model results from 7 samples of well bleached quartz in the fine matrix particles indicate general agreement with selected competence equations. The apparent long (100-1400 y) burial age of most of the mineral quartz, however, suggests that competent flows are not able to flush all subsurface fine-bed material. The depth of maximum bed load exchange (flushing) was limited to ≤ twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of storage and flushing of matrix material in mountain streams.

  1. BK channel activation: structural and functional insights

    PubMed Central

    Lee, Urvi S.; Cui, Jianmin

    2010-01-01

    The voltage and Ca2+ activated K+ (BK) channels are involved in the regulation of neurotransmitter release and neuronal excitability. Structurally, BK channels are homologous to voltage- and ligand-gated K+ channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain containing metal binding sites. Recently published electron cryomicroscopy (cryo-EM) and X-ray crystallographic structures of the BK channel provided the first look into the assembly of these domains, corroborating the close interactions among these domains during channel gating that have been suggested by functional studies. This review discusses these latest findings and an emerging new understanding about BK channel gating and implications for diseases such as epilepsy, in which mutations in BK channel genes have been associated. PMID:20663573

  2. Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2015-12-01

    Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.

  3. Bankfull Discharge and Channel Characteristics of Streams in New York State

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Baldigo, Barry P.; Miller, Sarah J.; DeKoskie, Douglas; DuBois, Joel

    2009-01-01

    Equations that relate drainage area to bankfull discharge and channel characteristics (such as width, depth, and cross-sectional area) at gaged sites are needed to help define bankfull discharge and channel characteristics at ungaged sites and can be used in stream-restoration and protection projects, stream-channel classification, and channel assessments. These equations are intended to serve as a guide for streams in areas of similar hydrologic, climatic, and physiographic conditions. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report seeks to increase understanding of the factors affecting bankfull discharge and channel characteristics to drainage-area size relations in New York State by providing an in-depth analysis of seven previously published regional bankfull-discharge and channel-characteristics curves. Stream-survey data and discharge records from 281 cross sections at 82 streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and bankfull-channel width, depth, and cross-sectional area. The R2 and standard errors of estimate of each regional equation were compared to the R2 and standard errors of estimate for the statewide (pooled) model to determine if regionalizing data reduced model variability. It was found that regional models typically yield less variable results than those obtained using pooled statewide equations, which indicates statistically significant regional differences in bankfull-discharge and channel-characteristics relations. All but two of the bankfull-discharge curves are within the 95-percent confidence interval bands of the statewide model; all the models have statistically similar slopes, and only one model has a unique intercept. Regional variations in channel-characteristics models of bankfull width, depth, and cross-sectional area were more prevalent than for bankfull discharge, though

  4. Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics

    USGS Publications Warehouse

    Callegary, J.B.; Leenhouts, J.M.; Paretti, N.V.; Jones, C.A.

    2007-01-01

    To classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity (??a). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: ??a averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth ??a. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and ??a with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep ??a measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with ??a and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of ??a compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone. ?? 2007 Elsevier B.V. All rights reserved.

  5. An Alternative to Channel-Centered Views of the Landscape for Understanding Modern Streams in the Mid-Atlantic Piedmont Region, Eastern USA

    NASA Astrophysics Data System (ADS)

    Merritts, D. J.; Walter, R. C.; Rahnis, M. A.; Oberholtzer, W.

    2008-12-01

    older) alluvial fans and fan pediments at tributary confluences. Two-dimensional views along incised stream banks give the appearance of overbank sediment atop stream bed gravel, but the fine- grained bank (1-5 m) is mostly the result of slackwater sedimentation from damming, whereas the underlying gravel polygenetic in origin. The gravel is Pleistocene or older in age, and not the result of active stream channel migration and point-bar formation during the Holocene. The Holocene warm period was dominated by valley-bottom stability and widespread wetland formation, fostered by beaver activity. Modern stream channel forms are largely the result of incision and bank erosion in response to dam breaching and base- level fall, not hydraulic adjustment to prevailing (or changed) supplies of sediment and water. Rather, channel dimensions are controlled by thickness of historic sediment (i.e., dam height and distance upstream of dam) and depth of incision. Changes in slope (i.e., rapid base-level fall), rather than changes in sediment supply and runoff, are powerful determinants of modern channel forms, and there are no pre-settlement forms for comparison. At present, there is an "impedance mismatch" between those with channel-centered views and those who view the deeply weathered mid-Atlantic landscape as the result of hundreds of thousands to millions of years of slow landscape evolution.

  6. Active Stream Length Dynamics in Headwater Catchments Spanning Physiographic Provinces in the Appalachian Highlands

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2015-12-01

    One of the most basic descriptions of streams is the presence of channelized flow. However, this seemingly simple query goes unanswered for the majority of headwater networks, as stream length expands and contracts with the wetness of catchments seasonally, interannually, and in response to storm events. Although streams are known to grow and shrink, a lack of information on longitudinal dynamics across different geographic regions precludes effective management. Understanding the temporal variation in temporary network length over a broad range of settings is critical for policy decisions that impact aquatic ecosystem health. This project characterizes changes in active stream length for forested headwater catchments spanning four physiographic provinces of the Appalachian Highlands: the New England at Hubbard Brook Experimental Forest, New Hampshire; Valley and Ridge at Poverty Creek and the North Fork of Big Stony Creek in Jefferson National Forest, Virginia; Blue Ridge at Coweeta Hydrologic Laboratory, North Carolina; and Appalachian Plateau at Fernow Experimental Forest, West Virginia. Multivariate statistical analysis confirms these provinces exhibit characteristic topographies reflecting differences in climate, geology, and environmental history and, thus, merit separate consideration. The active streams of three watersheds (<45 ha) in each study area were mapped six times to capture a variety of moderate flow conditions that can be expected most of the time (i.e., exceedance probabilities between 25 to 75%). The geomorphic channel and channel heads were additionally mapped to determine how active stream length variability relates to the development of the geomorphic network. We found that drainage density can vary up to four-fold with discharge. Stream contraction primarily proceeds by increasing disconnection and disintegration into pools, while the number of flow origins remains constant except at high and low extremes of discharge. This work demonstrates

  7. Active Layer Thermal Response to Stream Water Temperatures

    NASA Astrophysics Data System (ADS)

    Cozzetto, K.; McKnight, D.

    2004-12-01

    The hyporheic zone is comprised of sediments below and adjacent to a stream through which stream water flows in and out. In polar regions, the shape, dimensions, physical and chemical characteristics of this zone are affected by the seasonal freezing and thawing of the active layer. One factor that may influence the active layer temperature regime is stream water temperature, both its absolute value and cyclic variations in its value. Many of the glacial meltwater streams in Taylor Valley in the McMurdo Dry Valleys of Antarctica, exhibit daily temperature patterns with lows of 0 or 1° C and highs of 10 or, on occasion, 15° C. Because the viscosity of water decreases significantly with increasing temperature, these daily maxima may increase infiltration and the exchange of water and heat between the stream and the hyporheic zone. To investigate the influence of stream water temperature and flow paths on the active layer temperature regime and vice versa, two conservative tracer injection experiments were conducted. Both took place in the same 200-meter reach, which was instrumented with temperature and conductivity probes. Both also took place at the same time of day during which the stream reaches its temperature maximum. However, in one experiment snow from a nearby patch was added to the stream to suppress the temperature maximum by 3° C from 10 to 7° C. The temperature data show that the snow addition slowed the rate of hyporheic zone warming and suppressed temperature increases in the hyporheic zone by 1-3° C when compared with the non-perturbation experiment. The electrical conductivity data indicate that during the snow addition experiment, the stream neither gained nor lost water while during the non-perturbation experiment, the stream lost water. These results suggest that the stream water cooling decreased infiltration and heat transfer into the hyporheic zone.

  8. BK channels: multiple sensors, one activation gate.

    PubMed

    Yang, Huanghe; Zhang, Guohui; Cui, Jianmin

    2015-01-01

    Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca(2+) activated BK channels, a K(+) channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate. PMID:25705194

  9. BK channels: multiple sensors, one activation gate

    PubMed Central

    Yang, Huanghe; Zhang, Guohui; Cui, Jianmin

    2015-01-01

    Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca2+ activated BK channels, a K+ channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate. PMID:25705194

  10. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  11. STREAM CHANNELS OF THE UPPER SAN PEDRO BASIN WITH PERCENT DIFFERENCE BETWEEN RESULTS FROM TWO SWAT SIMULATIONS

    EPA Science Inventory

    Stream channels of the Upper San Pedro with percent difference between results from two SWAT simulations run through AGWA: one using the 1973 NALC landcover for model parameterization, and the other using the 1997 NALC landcover.

  12. RESULTS FROM KINEROS STREAM CHANNEL ELEMENTS MODEL OUTPUT THROUGH AGWA DIFFERENCING 1973 AND 1997 NALC LANDCOVER DATA

    EPA Science Inventory

    Results from differencing KINEROS model output through AGWA for Sierra Vista subwatershed. Percent change between 1973 and 1997 is presented for all KINEROS output values (and some derived from the KINEROS output by AGWA) for the stream channels.

  13. Relative influence of different habitat factors on creek chub population structure within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Creek chubs (Semotilus atromaculatus) are commonly found within channelized agricultural headwater streams within the Midwestern United States. Understanding the relationships of this headwater fish species with different habitat factors will provide information that can assist with developing resto...

  14. Glacially induced organization of channel-reach morphology in mountain streams

    NASA Astrophysics Data System (ADS)

    Brardinoni, Francesco; Hassan, Marwan A.

    2007-09-01

    We examine the spatial distribution of channel-reach morphologies in formerly glaciated mountain drainage basins of coastal British Columbia, Canada. Using field- and geographic information systems-derived data, we show that the local channel slope and the degree of colluvial-alluvial coupling imposed by the glacial valley morphology dictate the spatial organization of channel types. In particular, the complex, glacially induced channel long profile produces characteristic sequences of channel reaches that depart from the downstream succession (colluvial/boulder-cascade/step-pool/rapids/riffle-pool) distinctive of simple unglaciated mountain streams. Typically, the presence of one hanging valley in the river long profile produces and separates two full successions of channel types: a headmost one characterized by an ephemeral/seasonal hydrologic regime and a downstream one, where water runoff is perennial. We document that channel types are well separated in plots of slope versus shear stress, area versus shear stress, and slope versus relative roughness. In agreement with these outcomes, multivariate discriminant analyses coupled with principal component analysis of 98 study reaches yield a highly successful channel-type classification when slope, shear stress, and relative roughness are considered. Success rates, depending on whether or not boulder-cascade reaches are pooled together with step-pools, are 88% and 75%, respectively. Previous work in unglaciated settings has suggested that mountain channels have distinct bed morphology states that vary primarily with slope; our study reveals that even in formerly glaciated valleys, where slope is largely inherited from glacial times, these distinct bed states exist and vary (mostly) with slope, adding considerable strength to this empirical knowledge.

  15. Controls of channel response to cattle-grazing exclosures on five streams in the Blue Mountains of eastern Oregon

    NASA Astrophysics Data System (ADS)

    Mowry, A. D.; McDowell, P. F.

    2002-12-01

    Riparian-corridor fencing has been shown to be effective in allowing streams to recover from grazing pressure, but relative response of different stream types is poorly understood. This study compares processes of geomorphic response of five mountain streams to removal of cattle-grazing pressure. The streams differ in basin size, type of bed material and suspended sediment, vegetation type, channel slope, sinuosity, age of cattle fencing, and previous grazing history. The relative ability of each stream to adjust by depositional processes, such as construction of gravel bars and in-channel sedge benches, vertical accretion, and trapping of sediment by woody debris, was analyzed in terms of the controls. Cross-section resurveys were used to document large changes in channel geometry, and mapping based on field evidence was used to identify dominant processes and capture more localized areas of deposition and erosion. Dynamic segmentation in GIS was used to construct channel maps for visualization of adjustment processes relative to channel planform and geomorphic surfaces. Frequency of mobilization of bed material was estimated using particle entrainment calculations for each stream. The streams that appear to adjust by multiple processes show evidence of adjustment along the greatest percentage of their length. Lower-gradient streams with the largest drainage basins show the most evidence of both bar development and erosion on outsides of bends, while frequency of vertical accretion and development of sedge benches may be less related to stream size. Sedges and rushes appear to be effective in promoting and stabilizing low depositional surfaces (sedge benches) at sites with fine sediment availability. Large wood influences deposition on up to 12% of the length of some sites, but may not be as important as in streams west of the Cascades. Bar development may be most important in controlling response rate, and appears to associated with larger streams, higher

  16. Channel Morphology and Hydraulics as Controls on Spatial Patterns of Invertebrate Drift in a Mountain Stream.

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2015-12-01

    In this research we linked spatial variability of invertebrate drift characteristics (e.g. flux, concentration, mean body size) in a mountain stream to channel morphology and hydraulic properties such as at-a-point and depth-averaged velocity and shear velocity. The study was conducted in East Creek, a small stream in British Columbia in which reach-scale morphology transitions from cobble-dominated plane-bed to gravel-bed pool-riffle. To achieve our goal, we collected vertical profiles of invertebrate drift and time-averaged velocity in various morphological units within the study reaches. The data were analyzed using linear mixed model. Our reach-scale results suggested that, generally, the study reaches had statistically similar drift characteristics despite their contrasting morphologies. At the within-reach scale, different drift characteristics displayed different trends in relation to morphological and hydraulic properties of the channel. Longitudinally, highest drift flux occurred in riffle-pool transitions. We attributed this finding primarily to higher flow velocity because there were no statistically significant differences in drift concentration between morphological units. In the vertical dimension, highest drift flux occurred near the surface owing to a combination of higher drift concentration and higher flow velocity. A different pattern was observed for mean body size of drifting invertebrates. On average, body size was smallest in riffle-pool transitions and largest near the bed. The combination of velocity, drift concentration, and drift body size structure resulted in similar biomass flux estimates in all morphological units. In the vertical dimension, biomass flux appeared to be highest near the water surface. Generally, hydraulic variables seemed to be relatively poor predictors of drift concentration and mean body size of drifting invertebrates. Our findings reveal a complex relationship between channel morphology and hydraulics and various

  17. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  18. Implications of fish-habitat relationships for developing conservation plans for channelized headwater streams in the midwestern United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States were channelized for agricultural drainage. Conservation practices are implemented to reduce nutrient and pesticide loadings within these altered streams. The impact of these practices is uncertain because the influence of water chemistry on st...

  19. Management implications of the relationships between water chemistry and fishes within channelized headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States were channelized for agricultural drainage. Conservation practices are implemented to reduce nutrient and pesticide loadings within these altered streams. The impact of these practices is uncertain because the influence of water chemistry on str...

  20. Implications of Fish-Habitat Relationships for Developing Conservation Plans for Channelized Headwater Streams in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States were channelized for agricultural drainage. Conservation practices are implemented to reduce nutrient and pesticide loadings within these altered streams. The impact of these practices is uncertain because the influence of water chemistry on str...

  1. Main-channel slopes of selected streams in Iowa for estimation of flood-frequency discharges

    USGS Publications Warehouse

    Eash, David A.

    2003-01-01

    This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating floodfrequency discharges. Multivariable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantifications. The multivariable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantifications of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantifications. Median differences between manual measurements and GIS quantifications of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantifications indicate that use of GIS values of MCS for Region 3 substantially

  2. Impact of agricultural activities on anaerobic processes in stream sediments

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Ludwig, S.; Nelson, L. C.; Porterfield, J.; Sather, K. L.; Songpitak, M.; Spawn, S.; Weigel, B.

    2013-12-01

    Streams draining agriculture watersheds are subject to significant anthropogenic impacts, including sedimentation from soil erosion and high nitrate input from heavy fertilizer application. Sedimentation degrades habitat and can reduce hydrologic exchange between surface and subsurface waters. Disconnecting surface and subsurface flow reduces oxygen input to hyporheic water, increasing the extent of anoxic zones in stream sediments and creating hotspots for anaerobic processes like denitrification and methanogenesis that can be important sources of nitrous oxide and methane, both powerful greenhouse gases. Increased nitrate input may influence greenhouse gas fluxes from stream sediments by stimulating rates of denitrification and potentially reducing rates of methanogenesis, either through direct inhibition or by increasing competition for organic substrates from denitrifying bacteria. We hypothesized that accumulation of fine sediments in stream channels would result in high rates of methanogenesis in stream sediments, and that increased nitrate input from agricultural runoff would stimulate denitrification and reduce rates of methane production. Our work focused on streams in northern and central Minnesota, in particular on Rice Creek, a small stream draining an agricultural watershed. We used a variety of approaches to test our hypotheses, including surveys of methane concentrations in surface waters of streams ranging in sediment type and nitrate concentration, bottle incubations of sediment from several sites in Rice Creek, and the use of functional gene probes and RNA analyses to determine if genes for these processes are present and being expressed in stream sediments. We found higher methane concentrations in surface water from streams with large deposits of fine sediments, but significantly less methane in these streams when nitrate concentrations were high. We also found high potential for both methanogenesis and denitrification in sediment incubations

  3. Investigation of Biogeochemical Functional Proxies in Headwater Streams Across a Range of Channel and Catchment Alterations

    NASA Astrophysics Data System (ADS)

    Berkowitz, Jacob F.; Summers, Elizabeth A.; Noble, Chris V.; White, John R.; DeLaune, Ronald D.

    2014-03-01

    Historically, headwater streams received limited protection and were subjected to extensive alteration from logging, farming, mining, and development activities. Despite these alterations, headwater streams provide essential ecological functions. This study examines proxy measures of biogeochemical function across a range of catchment alterations by tracking nutrient cycling (i.e., inputs, processing, and stream loading) with leaf litter fall, leaf litter decomposition, and water quality parameters. Nutrient input and processing remained highest in second growth forests (the least altered areas within the region), while recently altered locations transported higher loads of nutrients, sediments, and conductivity. Biogeochemical functional proxies of C and N input and processing significantly, positively correlated with rapid assessment results (Pearson coefficient = 0.67-0.81; P = 0.002-0.016). Additionally, stream loading equations demonstrate that N and P transport, sediment, and specific conductivity negatively correlated with rapid assessment scores (Pearson coefficient = 0.56-0.81; P = 0.002-0.048). The observed increase in stream loading with lower rapid assessment scores indicates that catchment alterations impact stream chemistry and that rapid assessments provide useful proxy measures of function in headwater ecosystems. Significant differences in nutrient processing, stream loading, water quality, and rapid assessment results were also observed between recently altered (e.g., mined) headwater streams and older forested catchments (Mann-Whitney U = 24; P = 0.01-0.024). Findings demonstrate that biogeochemical function is reduced in altered catchments, and rapid assessment scores respond to a combination of alteration type and recovery time. An analysis examining time and economic requirements of proxy measurements highlights the benefits of rapid assessment methods in evaluating biogeochemical functions.

  4. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks.

    PubMed

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-01-01

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end

  5. Arroyo channel head evolution in a flash-flood-dominated discontinuous ephemeral stream system

    USGS Publications Warehouse

    DeLong, Stephen B.; Johnson, Joel P.L.; Whipple, Kelin X.

    2014-01-01

    We study whether arroyo channel head retreat in dryland discontinuous ephemeral streams is driven by surface runoff, seepage erosion, mass wasting, or some combination of these hydrogeomorphic processes. We monitored precipitation, overland flow, soil moisture, and headcut migration over several seasonal cycles at two adjacent rangeland channel heads in southern Arizona. Erosion occurred by headward retreat of vertical to overhanging faces, driven dominantly by surface runoff. No evidence exists for erosion caused by shallow-groundwater–related processes, even though similar theater-headed morphologies are sometimes attributed to seepage erosion by emerging groundwater. At our field site, vertical variation in soil shear strength influenced the persistence of the characteristic theater-head form. The dominant processes of erosion included removal of grains and soil aggregates during even very shallow (1–3 cm) overland flow events by runoff on vertical to overhanging channel headwalls, plunge-pool erosion during higher-discharge runoff events, immediate postrunoff wet mass wasting, and minor intra-event dry mass wasting on soil tension fractures developing subparallel to the headwall. Multiple stepwise linear regression indicates that the migration rate is most strongly correlated with flow duration and total precipitation and is poorly correlated with peak flow depth or time-integrated flow depth. The studied channel heads migrated upslope with a self-similar morphologic form under a wide range of hydrological conditions, and the most powerful flash floods were not always responsible for the largest changes in landscape form in this environment. 

  6. Self-adjustment of stream bed roughness and flow velocity in a steep mountain channel

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Rickenmann, Dieter; Turowski, Jens M.; Kirchner, James W.

    2015-10-01

    Understanding how channel bed morphology affects flow conditions (and vice versa) is important for a wide range of fluvial processes and practical applications. We investigated interactions between bed roughness and flow velocity in a steep, glacier-fed mountain stream (Riedbach, Ct. Valais, Switzerland) with almost flume-like boundary conditions. Bed gradient increases along the 1 km study reach by roughly 1 order of magnitude (S = 3-41%), with a corresponding increase in streambed roughness, while flow discharge and width remain approximately constant due to the glacial runoff regime. Streambed roughness was characterized by semivariograms and standard deviations of point clouds derived from terrestrial laser scanning. Reach-averaged flow velocity was derived from dye tracer breakthrough curves measured by 10 fluorometers installed along the channel. Commonly used flow resistance approaches (Darcy-Weisbach equation and dimensionless hydraulic geometry) were used to relate the measured bulk velocity to bed characteristics. As a roughness measure, D84 yielded comparable results to more laborious measures derived from point clouds. Flow resistance behavior across this large range of steep slopes agreed with patterns established in previous studies for both lower-gradient and steep reaches, regardless of which roughness measures were used. We linked empirical critical shear stress approaches to the variable power equation for flow resistance to investigate the change of bed roughness with channel slope. The predicted increase in D84 with increasing channel slope was in good agreement with field observations.

  7. Scale-dependent interactions between wood and channel dynamics: Modeling jam formation and sediment storage in gravel-bed streams

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Hassan, M. A.

    2013-12-01

    A stochastic model is used to investigate how the geomorphic function of wood changes with watershed scale, assuming wood recruitment occurs due to the mortality of individual trees, not to mass recruitment events such as landslides or episodic bank erosion. The model replicates the downstream decline in total wood load observed in the field, but predicts that the functional wood load peaks in channels having bankfull widths about 33% of the characteristic riparian tree height. The model also predicts that the greatest potential impact of jams on channel pattern—both in terms of sediment stored behind individual jams and the potential for jams to trigger avulsions—will typically be associated with channel widths between 25% and 67% of the riparian tree height. The simulation results are used to refine the categories that describe wood in alluvial channels, and the equivalent terms that describe the size of streams with forested riparian areas: small channels (or channels with large wood) are associated with widths less than 25% of the tree height; large channels (or channels with small wood) are associated with widths greater than 67% of tree height; and medium channels (or channels with intermediate wood) have widths between 25% and 67% of the tree height. We surmise that large wood acts primarily to store bed material (in small channels); intermediate wood tends to form channel-spanning jams, which can induce channel avulsions and create anabranched channel patterns (in medium channels); and small wood may increase the morphologic diversity, but does not store significant quantities of bed material or form channel-spanning jams capable of inducing stream avulsions (in large channels).

  8. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data

    NASA Astrophysics Data System (ADS)

    Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

    2014-02-01

    Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

  9. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.

    2000-01-01

    An increase in the flux of nitrogen from the Mississippi river during the latter half of the twentieth century has caused eutrophication and chronic seasonal hypoxia in the shallow waters of the Louisiana shelf in the northern Gulf of Mexico. This has led to reductions in species diversity, mortality of benthic communities and stress in fishery resources. There is evidence for a predominantly anthropogenic origin of the increased nitrogen flux, but the location of the most significant sources in the Mississippi basin responsible for the delivery of nitrogen to the Gulf of Mexico have not been clearly identified, because the parameters influencing nitrogen-loss rates in rivers are not well known. Here we present an analysis of data from 374 US monitoring stations, including 123 along the six largest tributaries to the Mississippi, that shows a rapid decline in the average first-order rate of nitrogen loss with channel size-from 0.45 day-1 in small streams to 0.005 day-1 in the Mississippi river. Using stream depth as an explanatory variable, our estimates of nitrogen-loss rates agreed with values from earlier studies. We conclude that the proximity of sources to large streams and rivers is an important determinant of nitrogen delivery to the estuary in the Mississippi basin, and possibly also in other large river basins.

  10. Disentangling the responses of boreal stream assemblages to low stressor levels of diffuse pollution and altered channel morphology.

    PubMed

    Turunen, Jarno; Muotka, Timo; Vuori, Kari-Matti; Karjalainen, Satu Maaria; Rääpysjärvi, Jaana; Sutela, Tapio; Aroviita, Jukka

    2016-02-15

    Non-point diffuse pollution from land use and alteration of hydromorphology are among the most detrimental stressors to stream ecosystems. We explored the independent and interactive effects of morphological channel alteration (channelization for water transport of timber) and diffuse pollution on species richness and community structure of four organism groups in boreal streams: diatoms, macrophytes, macroinvertebrates, and fish. Furthermore, the effect of these stressors on stream condition was evaluated by Ecological Quality Ratios (EQR) from the national Water Framework Directive (WFD) assessment system. We grouped 91 study sites into four groups that were impacted by either diffuse pollution or hydromorphological alteration, by both stressors, or by neither one. Macroinvertebrate richness was reduced by diffuse pollution, whereas other biological groups were unaltered. Hydromorphological modification had no effect on taxon richness of any of the assemblages. Community structure of all groups was significantly affected by diffuse pollution but not by hydromorphology. Similarly, EQRs indicated negative response by diatoms, macroinvertebrates and fish to diffuse pollution, but not to hydromorphological alteration. Agricultural diffuse pollution thus affected species identities and abundances rather than taxonomic richness. Our results suggest that channelization of boreal streams for timber transport has not altered hydromorphological conditions sufficiently to have a strong impact on stream biota, whereas even moderate nutrient enrichment may be ecologically harmful. Controlling diffuse pollution and associated land use stressors should be prioritized over restoration of in-stream habitat structure to improve the ecological condition of boreal streams. PMID:26706766

  11. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory

  12. Nitrogen cycling in stream-groundwater exchange zones of a channeled peatland

    NASA Astrophysics Data System (ADS)

    Westbrook, C. J.; Bedard-Haughn, A.

    2011-12-01

    The flow of stream water through riparian soils is known to influence the nitrogen (N) patterns in streams. Needed is an improved understanding of how filtration capacity, the extent to which water residence time and riparian sediment hydraulic conductivity regulates water characteristics, acts to influence the concentration of N that emerges back to the stream. Tested was the hypothesis that where filtration capacity is high, N availability is low yet production rates are high. Compared were water chemistry and gross N mineralization rates along two previously characterized riparian areas of a channeled Canadian Rocky Mountain peatland; one of which contains a beaver dam. Although average peat hydraulic conductivity was similar between sites, throughflow was 10 times higher at the site with the beaver dam. Water samples from 32 shallow riparian wells show that the biogeochemical conditions of the two sites differ, with the beaver dam site having lower conductivity, DOC, TDN, and NH4+, warmer temperatures, and higher pH. Coincident measures of gross mineralization and nitrification rates were obtained using the stable 15N isotope dilution technique. NH4+ and NO3- turnover rates were all <1 day and rates of gross N production and consumption were high (up to 75 mg/kg/d). There was net NH4+ consumption at both sites. In contrast, the beaver dam site had significantly lower rates of NO3- production and consumption, and showed net NO3- production whereas the no dam site showed net NO3- consumption. The results imply that enhanced filtration capacity near beaver dams leads to flushing of N from riparian soils. Thus, beaver dams should be considered in assessments and models of stream ecosystem function.

  13. Landform assemblages and sedimentary processes along the Norwegian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Ottesen, Dag; Stokes, Chris R.; Bøe, Reidulv; Rise, Leif; Longva, Oddvar; Thorsnes, Terje; Olesen, Odleiv; Bugge, Tom; Lepland, Aave; Hestvik, Ole B.

    2016-06-01

    Several regional and detailed bathymetric datasets together with 2D and 3D seismic data are compiled to investigate the landform assemblages and sedimentary processes along the former path of the Norwegian Channel Ice Stream (NCIS). At the broad scale, the glacial geomorphology and sedimentary architecture reveals three different zones along the ice-stream path, characterized by: (1) glacial erosion in the onset zone and inner shelf area, (2) sediment transport through the main trunk of the ice stream across the mid-shelf, and (3) a zone of deposition towards the outer continental shelf edge. Along the first 400 km of the ice stream bed (outer Oslofjord-Skagerrak-Stavanger) a major overdeepening is associated with suites of crag-and-tail features at the transition from the crystalline bedrock to the sedimentary bedrock, together with evidence of glaciotectonic thrusting in the form of hill-hole pairs. Here we interpret extensive erosion of both sedimentary rocks and Quaternary sediments. This zone is succeeded by an approximately 400 km long zone, through which most of the sediments eroded from the inner shelf were transported, rather than being deposited. We infer that sediment was transported subglacially and is likely to have been advected downstream by soft sediment deformation. The thickness of till of inferred Weichselian age generally varies from 0 and 50 m and this zone is characterized by mega-scale glacial lineations (MSGLs) which we interpret to be formed in a dynamic sedimentary system dominated by high sediment fluxes, but with some localized sediment accretion associated with lineations. Towards the shelf break, the North Sea Fan extends to the deep Norwegian Sea, and reflects massive sedimentation of glacigenic debris onto the continental slope. Numerous glacigenic debris flows accumulated and constructed a unit up to 400 m thick during the Last Glacial Maximum. The presence of these three zones (erosion, transport, deposition) is consistent with

  14. Relationship between channel morphology and foraging habitat for stream salmonids: Effects of body size

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2014-12-01

    Channel morphology and dynamics strongly influence fish populations in running waters by defining habitat template for movement, spawning, incubation, and foraging. In this research we adopted a modeling approach to investigate how body size controls the relationship between salmonid fish and their foraging habitat in streams. Body size is a fundamental ecological parameter which affects resource acquisition, locomotory costs, metabolic rates, and competitive abilities. We focus on two specific questions. First, we examined how distinct types of channel morphology and associated flow fields shape specific growth potential for different body size classes of trout. Second, we modeled these fish-habitat relationships in a size-structured population in the presence of intraspecific competition. In the latter scenario, fish may not be able to occupy energetically optimal foraging habitat and the predicted specific growth potential may differ from the intrinsic habitat quality. To address the research questions, we linked a 2D hydrodynamic model with a bioenergetic foraging model for drift-feeding trout. Net energy intake, simulated for four study reaches with different channel morphology, was converted into maps of specific growth rate potential. We extended this model by including a component that enabled us to estimate territory size for fish of a given body size and account for the effects of competition on spatial distribution of fish. The predictions that emerge from our simulations highlight that fish body size is an important factor that determines the relationship between channel morphology and the quality of foraging habitat. The results also indicate that distinct types of channel morphology may give rise to different energetic conditions for different body size classes of drift-feeding salmonids.

  15. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to

  16. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    NASA Astrophysics Data System (ADS)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  17. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  18. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    USGS Publications Warehouse

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  19. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed

  20. Object recognition in Williams syndrome: Uneven ventral stream activation

    PubMed Central

    O’Hearn, Kirsten; Roth, Jennifer K.; Courtney, Susan M.; Luna, Beatriz; Street, Whitney; Terwillinger, Robert; Landau, Barbara

    2010-01-01

    Williams syndrome (WS) is a genetic disorder associated with severe visuospatial deficits, relatively strong language skills, heightened social interest, and increased attention to faces. On the basis of the visuospatial impairments, this disorder has been characterized primarily as a deficit of the dorsal stream, the occipitoparietal brain regions that subserve visuospatial processing. However, some evidence indicates that this disorder may also affect the development of the ventral stream, the occipitotemporal cortical regions that subserve face and object recognition. The present studies examined ventral stream function in WS, with the hypothesis that faces would produce a relatively more mature pattern of ventral occipitotemporal cortical activation, relative to other objects that are also represented across these visual areas. We compared functional magnetic resonance imaging activation patterns during viewing of human faces, cat faces, houses and shoes in individuals with WS (age 14–27), typically developing 6–9 year olds (matched approximately on mental age), and typically developing 14–26 year olds (matched on chronological age). Typically developing individuals exhibited changes in the pattern of activation over age, consistent with previous reports. The ventral stream topography of the WS individuals differed from both control groups, however, reflecting the same level of activation to face stimuli as chronological age matches, but less activation to house stimuli than either mental age or chronological age matches. We discuss the possible causes of this unusual topography and implications for understanding the behavioral profile of people with WS. PMID:21477194

  1. Disintegration of a marine-based ice stream - evidence from the Norwegian Channel, north-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Morén, Björn M.; Petter Sejrup, Hans; Hjelstuen, Berit O.; Haflidason, Haflidi; Schäuble, Cathrina; Borge, Marianne

    2014-05-01

    The Norwegian Channel Ice Stream repeatedly drained large part of the Fennoscandian Ice Sheet through Mid and Late Pleistocene glacial stages. During parts of Marine Isotope Stages 2 and 3, glacial ice from Fennoscandia and the British Isles coalesced in the central North Sea and the Norwegian Channel Ice Stream reached the shelf edge on multiple occasions. Through the last decades a large amount of acoustic and sediment core data have been collected from the Norwegian Channel, providing a good background for studies focussing on stability- and development-controlling parameters for marine-based ice streams, the retreat rate of the Norwegian Channel Ice Stream, and the behaviour of the Fennoscandian Ice Sheet. Further, this improved understanding can be used to develop more accurate numerical climate models and models which can be used to model ice-sheet behaviour of the past as well as the future. This study presents new acoustic records and data from sediment cores which contribute to a better understanding of the retreat pattern and the retreat rate of the last ice stream that occupied the Norwegian Channel. From bathymetric and TOPAS seismic data, mega-scale glacial lineations, grounding-zone wedges, and end moraines have been mapped, thereby allowing us to reconstruct the pro- and subglacial conditions at the time of the creation of these landforms. It is concluded that the whole Norwegian Channel was deglaciated in just over 1 000 years and that for most of this time the ice margin was located at positions reflected by depositional grounding-zone wedges. Further work will explore the influence of channel shape and feeding of ice from western Norwegian fjords on this retreat pattern through numerical modelling.

  2. Mapping Spatial Distributions of Stream Power and Channel Change along a Gravel-Bed River in Northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, D. M.; Legleiter, C. J.

    2014-12-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing. This study used remotely sensed data and field measurements to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to assess lateral channel mobility and develop a morphologic sediment budget for quantifying net sediment flux for a series of budget cells. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from LiDAR data were used to obtain the discharge and slope values, respectively, needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of channel mobility and sediment transfer. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volume of sediment eroded or deposited during each time increment. Our results indicated a lack of strong correlation between stream power gradients and sediment flux, which we attributed to the geomorphic complexity of the Soda Butte Creek watershed and the inability of our relatively simple statistical approach to link sediment dynamics expressed at a sub-budget cell scale to larger-scale driving forces such as stream power gradients. Future studies should compare the moderate spatial resolution techniques used in this study to very-high resolution data acquired from new fluvial remote sensing technologies to better understand the amount of error associated with stream power

  3. Spreading of a ferrofluid core in three-stream micromixer channels

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomeng; Varma, V. B.; Xia, Huan Ming; Wang, Z. P.; Ramanujan, R. V.

    2015-05-01

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.

  4. Spreading of a ferrofluid core in three-stream micromixer channels

    SciTech Connect

    Wang, Zhaomeng; Varma, V. B.; Ramanujan, R. V.; Xia, Huan Ming; Wang, Z. P.

    2015-05-15

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.

  5. Turbulent flow in pipes and channels as cross-stream ``inverse cascades'' of vorticity

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.

    2008-12-01

    A commonplace view of pressure-driven turbulence in pipes and channels is as "cascades" of streamwise momentum toward the viscous layer at the wall. We present in this paper an alternative picture of these flows as "inverse cascades" of spanwise vorticity in the cross-stream direction but away from the viscous sublayer. We show that there is a constant spatial flux of spanwise vorticity due to vorticity conservation and that this flux is necessary to produce pressure drop and energy dissipation. The vorticity transport is shown to be dominated by viscous diffusion at distances closer to the wall than the peak Reynolds stress, well into the classical log layer. The Perry-Chong model based on "representative" hairpin/horseshoe vortices predicts a single sign of the turbulent vorticity flux over the whole log layer, whereas the actual flux must change sign at the location of the Reynolds-stress maximum. Sign reversal may be achieved by assuming a slow power-law decay of the Townsend "eddy-intensity function" for wall-normal distances greater than the hairpin length scale. The vortex-cascade picture presented here has a close analog in the theory of quantum superfluids and superconductors, the "phase slippage" of quantized vortex lines. Most of our results should therefore apply as well to superfluid turbulence in pipes and channels. We also discuss issues about drag reduction from this perspective.

  6. Process-Based Restoration and the Rise of the Stage Zero Channel As a Stream Restoration Goal

    NASA Astrophysics Data System (ADS)

    Pollock, M. M.

    2015-12-01

    The stage zero channel (sensu Cluer and Thorne 2013) is increasingly recognized as having intrinsic high value because of the multiple and synergistic ecosystem goods and services that such channels provide. Stage zero channels have well connected floodplains with elevated water tables, spatially variable hydrologic regimes and structurally complex aquatic and riparian habitat. As such, they provide incredibly valuable habitat for a suite of terrestrial and aquatic taxa, including several Pacific salmon species that are in decline. In this presentation, we provide an overview of the features and types of stage zero channels, where in the landscape they are likely to be found, how they evolve under natural conditions, and restoration techniques for converting less ecologically valuable channel types into stage zero channels. We compare the structure and function of stage zero channels to more traditional channel restoration targets. We conclude that new approaches to stream restoration are needed that take into account society's economic and ecological imperatives to create resilient, structurally complex and dynamic systems, and that the spatial scale of restorative actions should be expanded where possible to better recognize and integrate the interdependent nature of longitudinal, lateral and vertical linkages in stream systems.

  7. The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Chaopeng; Riley, William J.; Smithgall, Kurt R.; Melack, John M.; Fang, Kuai

    2016-02-01

    Large-scale land models assume unidirectional land-to-river hydrological interactions, without considering feedbacks between channels and land. Using a tested, physically based model with explicit multiway interactions between overland, channel, wetland, and groundwater flows, we assessed how the representation and properties of channels influence simulated land surface hydrologic, biogeochemical, and ecosystem dynamics. A zone near the channels where various fluxes and states are significantly influenced by the channels, referred to as the fan of influence (FoI) of channels, has been identified. We elucidated two mechanisms inducing the model-derived FoI: the base flow mechanism, in which incised, gaining streams lower the water table and induce more base flow, and the relatively more efficient conveyance of the channel network compared to overland flow. We systematically varied drainage density and grid resolution to quantify the size of the FoI, which is found to span a large fraction of the watershed (25-50%) for hydrologic variables including depth to water table and recharge, etc. The FoI is more pronounced with low-resolution simulations but remains noticeable in hyperresolution (25 m) subbasin simulations. The FoI and the channel influence on basin-average fluxes are also similar in simulations with alternative parameter sets. We found that high-order, entrenched streams cause larger FoI. In addition, removing the simulated channels has disproportionally large influence on modeled wetland areas and inundation duration, which has implications for coupled biogeochemical or ecological modeling. Our results suggest that explicit channel representation provides important feedbacks to land surface dynamics which should be considered in meso or large-scale simulations. Since grid refinement incurs prohibitive computational cost, subgrid channel parameterization has advantages in efficiency over grid-based representations that do not distinguish between overland

  8. Early break-up of the Norwegian Channel Ice Stream during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Svendsen, John Inge; Briner, Jason P.; Mangerud, Jan; Young, Nicolás E.

    2015-01-01

    We present 18 new cosmogenic 10Be exposure ages that constrain the breakup time of the Norwegian Channel Ice Stream (NCIS) and the initial retreat of the Scandinavian Ice Sheet from the Southwest coast of Norway following the Last Glacial Maximum (LGM). Seven samples from glacially transported erratics on the island Utsira, located in the path of the NCIS about 400 km up-flow from the LGM ice front position, yielded an average 10Be age of 22.0 ± 2.0 ka. The distribution of the ages is skewed with the 4 youngest all within the range 20.2-20.8 ka. We place most confidence on this cluster of ages to constrain the timing of ice sheet retreat as we suspect the 3 oldest ages have some inheritance from a previous ice free period. Three additional ages from the adjacent island Karmøy provided an average age of 20.9 ± 0.7 ka, further supporting the new timing of retreat for the NCIS. The 10Be ages from Utsira and Karmøy suggest that the ice stream broke up about 2000 years earlier than the age assignment based on 14C ages on foraminifera and molluscs from marine sediment cores. We postulate that the Scandinavian Ice Sheet flowed across the Norwegian Channel to Denmark and onto the North Sea plateau during early phases of the LGM. When the NCIS started to operate this ice supply to the North Sea was cut off and the fast flow of the NCIS also led to a lowering of the ice surface along the Norwegian Channel and thereby drawdown of the entire ice sheet. This facilitated rapid calving of the ice front in the North Sea and we reconstruct a large open bay across the entire northern North Sea by ˜20 ka based on our 10Be ages in the east and radiocarbon ages from marine cores in the west. Additional 10Be ages show that the mainland slightly east of the islands Utsira and Karmøy remained ice covered until about 16 ka, indicating almost no net ice-margin retreat for the 4000 years between 20 and 16 ka. After 16 ka the ice margin retreated quickly up-fjord.

  9. Stream channel surface water - groundwater interactions in a fire impacted watershed

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Fisher, A. T.

    2010-12-01

    We are conducting a study of surface water - groundwater interactions within the Scott Creek watershed, a 4th order catchment of 76.6 km2 in central coastal California, to assess the impacts of fire on channel and riparian conditions. Scott Creek and its tributaries are valuable spawning habitat for Coho salmon and Steelhead trout. The Scott Creek watershed is located on the western (windward) side of the Santa Cruz Mountains, where the most intense precipitation falls from November to April, and includes a mixture of protected land and areas used for agriculture, grazing, and selective timber harvesting. 37% of the watershed was burned in a fire in August 2009, and we hypothesize that this could result in enhanced delivery of fine grained hill slope sediments to stream channels for several years post fire, reducing the extent of hyporheic exchange downstream of burned areas. This could reduce the survival rates of Coho and Steelhead redds (egg nests), which are dependent on surface water - groundwater exchange for regulation of water nutrient content and temperature. We are monitoring streambed seepage rates and hydraulic conductivity, and performing repeated tracer discharge experiments at three sites on Scott Creek, two within and one upstream of the area burned in the 2009 fire. Streambed seepage rates are calculated using a time series method applied to heat as a tracer, using naturally occurring diurnal changes in stream temperature, and extended to calculations of streambed hydraulic conductivity based on measured head gradients. Hyporheic exchange parameters are assessed using tracer breakthrough data, as fit by an optimized model of one-dimensional advection, dispersion and transient storage. Variations in hydrologic characteristics (e.g., transient storage area, exchange coefficient) over time at each site are being used to assess the magnitude and timing of channel modifications independent to, and associated with, the burning of catchment hill slopes

  10. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.; Legleiter, Carl J.

    2016-01-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote

  11. Electrical resistivity mapping of the buried stream channel of the Canopic branch in the western Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gamili, M. M.; Shaaban, F. F.; El-Morsi, O. A.

    1994-08-01

    Buried stream channels, which can often be mapped accurately by resistivity, are favoured targets for exploration. Horizontal profiling, electrical soundings, or both, are generally used. In the western Nile Delta, the electrical sounding method was applied using a Schlumberger electrode array with the maximum AB distance being 200 m. The field survey was conducted along profiles extending NE-SW, perpendicular to the expected historical Canopic buried stream channel. About 107 vertical electrical soundings (VES) were measured along eleven profiles. The (VES) field curves were interpreted using the automatic interpretation method of Zohdy and Bisdorf (1989) in which a layered model is obtained directly from a digitized sounding curve. The interpreted results were correlated with borehole data to delineate the main lithological units and to help construct geoelectrical cross-sections based on layer thicknesses and their corresponding ranges in litho-resistivity. The lithological information from borehole data, surface geology and the present layer resistivities indicate three major lithofacies: Holocene clay and silt at the top, Pleistocene sands, and then gravelly sands and gravels (El-Tahrir gravels) at the bottom. From the thickness of the riverine topmost clay-silt facies and the paleotopograph of the Pleistocene sands, the buried stream channels can be delineated. It is evident that two streams existed for the defunct Canopic branch. These defunct streams are discussed and correlated with the historical records.

  12. Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Chu, Hong-Hanh; Endreny, Theodore A.

    2015-11-01

    In-channel structures are often installed in alluvial rivers during restoration to steer currents, but they also modify the streambed morphology and water surface profile, and alter hydraulic gradients driving ecologically important hyporheic exchange. Although river features before and after restoration need to be compared, few studies have collected detailed observations to facilitate this comparison. We created a laboratory mobile-bed alluvial meandering river and collected detailed measurements in the highly sinuous meander before and after installation of in-channel structures, which included one cross vane and six J-hooks situated along 1 bar unit. Measurements of streambed and water surface elevation with submillimeter vertical accuracy and horizontal resolution were obtained using close-range photogrammetry. Compared to the smooth gradually varied water surface profile for control runs without structures, the structures created rapidly varied flow with subcritical to supercritical flow transitions, as well as backwater and forced-morphology pools, which increased volumetric storage by 74% in the entire stream reach. The J-hooks, located along the outer bank of the meander bend and downstream of the cross vane, created stepwise patterns in the streambed and water surface longitudinal profiles. The pooling of water behind the cross vane increased the hydraulic gradient across the meander neck by 1% and increased local groundwater gradients by 4%, with smaller increases across other transects through the intrameander zone. Scour pools developed downstream of the cross vane and around the J-hooks situated near the meander apex. In-channel structures significantly changed meander bend hydraulic gradients, and the detailed streambed and water surface 3-D maps provide valuable data for computational modeling of changes to hyporheic exchange.

  13. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE WITH TRANSIENT STORAGE IN STREAMS DRAINING HARVESTED AND OLD-GROWTH WATERSHEDS

    EPA Science Inventory

    We compared measures of channel structure and riparian canopy with estimates of transient storage in 32 streams draining old-growth and harvested watersheds in the Southern Appalachian Mountains of North Carolina (n=4), the Ouachita Mountains of Arkansas (n=5), the Cascade Mounta...

  14. The Formation of CIRs at Stream-Stream Interfaces and Resultant Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.

    2005-01-01

    Corotating interaction regions (CIRs) are regions of compressed plasma formed at the leading edges of corotating high-speed solar wind streams originating in coronal holes as they interact with the preceding slow solar wind. Although particularly prominent features of the solar wind during the declining and minimum phases of the 11-year solar cycle, they may also be present at times of higher solar activity. We describe how CIRs are formed, and their geomagnetic effects, which principally result from brief southward interplanetary magnetic field excursions associated with Alfven waves. Seasonal and long-term variations in these effects are briefly discussed.

  15. Detecting the impact of bank and channel modification on invertebrate communities in Mediterranean temporary streams (Sardinia, SW Italy).

    PubMed

    Buffagni, Andrea; Tenchini, Roberta; Cazzola, Marcello; Erba, Stefania; Balestrini, Raffaella; Belfiore, Carlo; Pagnotta, Romano

    2016-09-15

    We hypothesized that reach-scale, bank and channel modification would impact benthic communities in temporary rivers of Sardinia, when pollution and water abstraction are not relevant. A range of variables were considered, which include both artificial structures/alterations and natural features observed in a stream reach. Multivariate regression trees (MRT) were used to assess the effects of the explanatory variables on invertebrate assemblages and five groups, characterized by different habitat modification and/or features, were recognized. Four node variables determined the splits in the MRT analysis: channel reinforcement, tree-related bank and channel habitats, channel modification and bank modification. Continuity of trees in the river corridor diverged among MRT groups and significant differences among groups include presence of alders, extent of channel shading and substrate diversity. Also, the percentage of in-stream organic substrates, in particular CPOM/Xylal, showed highly significant differences among groups. For practical applications, thresholds for the extent of channel reinforcement (40%) and modification (10%) and for bank alteration (≈30%) were provided, that can be used to guide the implementation of restoration measures. In moderately altered river reaches, a significant extent of tree-related habitats (≈5%) can noticeably mitigate the effects of morphological alteration on aquatic invertebrates. The outcomes highlight the importance of riparian zone management as an opportune, achievable prospect in the restoration of Mediterranean temporary streams. The impact of bank and channel modification on ecological status (sensu WFD) was investigated and the tested benthic metrics, especially those based on abundance data, showed legible differences among MRT groups. Finally, bank and channel modification appears to be a potential threat for the conservation of a few Sardo-Corsican endemic species. The introduction of management criteria that

  16. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study used remote sensing and GIS tools along with field data to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from light detection and ranging (LiDAR) data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Results indicated a lack of strong correlation between stream power gradients and sediment response, highlighting the geomorphic complexity of Soda Butte Creek and the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in

  17. Epithelial sodium channel modulates platelet collagen activation.

    PubMed

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Benítez-Cardoza, Claudia; Ortega, Arturo

    2014-03-01

    Activated platelets adhere to the exposed subendothelial extracellular matrix and undergo a rapid cytoskeletal rearrangement resulting in shape change and release of their intracellular dense and alpha granule contents to avoid hemorrhage. A central step in this process is the elevation of the intracellular Ca(2+) concentration through its release from intracellular stores and on throughout its influx from the extracellular space. The Epithelial sodium channel (ENaC) is a highly selective Na(+) channel involved in mechanosensation, nociception, fluid volume homeostasis, and control of arterial blood pressure. The present study describes the expression, distribution, and participation of ENaC in platelet migration and granule secretion using pharmacological inhibition with amiloride. Our biochemical and confocal analysis in suspended and adhered platelets suggests that ENaC is associated with Intermediate filaments (IF) and with Dystrophin-associated proteins (DAP) via α-syntrophin and β-dystroglycan. Migration assays, quantification of soluble P-selectin, and serotonin release suggest that ENaC is dispensable for migration and alpha and dense granule secretion, whereas Na(+) influx through this channel is fundamental for platelet collagen activation. PMID:24679405

  18. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish

  19. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream.

    PubMed

    Barber, Larry B; Brown, Gregory K; Nettesheim, Todd G; Murphy, Elizabeth W; Bartell, Stephen E; Schoenfuss, Heiko L

    2011-10-15

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which >80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (>100μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (<5μg/L). The biogenic steroidal hormones 17β-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (<0.005μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited

  20. Analysis of Stream Channel Geometry Temporal and Spatial Evolution after Historic Dam Removal - two French case studies

    NASA Astrophysics Data System (ADS)

    Slawson, Deborah; Manière, Louis; Marchandeau, Florent

    2014-05-01

    IRSTEA, in partnership with the French Office national de l'eau et des milieux aquatiques (ONEMA), has begun a study of channel geomorphology in small streams where dams have been removed or breached between two and 200 years ago, without any subsequent restoration of the channel in the legacy sediments. A preliminary analysis of two sites in the Morvan, Burgundy, will be presented; a dam breached at the beginning of the 20th century and another in the last decade. Using ergodic reasoning, historical and recent upstream and downstream channel geometry is being used to predict the future temporal and spatial scales of channel physical habitat restoration. With the implementation of the European Water Framework Directive (WFD), dam removal has become a more frequently used method for restoring stream ecological continuity. In France, these obstacles are ubiquitous in medium and small streams and considerably reduce lateral and longitudinal connectivity. Improvement in the hydromorphologically controlled, physical habitat, particularly flow and sediment transport regimes, is often essential to improvement in stream biology. However, dam removal may cause long-term disturbances in flow and sediment transport regimes. In the absence of channel restoration measures in addition to dam removal, these disturbances may result in long-term negative impacts on fish, macroinvertebrate, and riparian plant physical habitat. These negative impacts may include channel incision and lowering of the water table, disconnection from floodplains, increased stream power and bed scouring, and increased sediment load from headcutting and bank erosion. Over time, these negative impacts may resolve themselves. However, the time frame necessary for reestablishing adequate physical habitat is not well-known. Some studies have indicated that many decades or longer may be required, depending on a variety of factors. Under the WFD, the REstoring rivers FOR effective catchment Management (REFORM

  1. Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

    USGS Publications Warehouse

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 3D survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone.

  2. Channel Incision and Water-Table Decline Along a Recently Formed Proglacial Stream, Mendenhall Valley, Southeastern Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2009-01-01

    Retreat of the Mendenhall Glacier, in southeastern Alaska, resulted in the formation of Mendenhall Lake, which has reduced the supply of coarse sediment to the proglacial Mendenhall River. Channel geometry surveys conducted in 1969 and 1998 over a 5.3 km reach of the Mendenhall River revealed reductions in mean bed elevations ranging from 0.4 to 1.5 meters based on cross sections replicated at 7 locations. Channel incision in the Mendenhall River is believed to be the result of a combination of factors resulting from localized and region-wide glacial retreat. In addition to a reduction of river stage due to channel incision, a decline in water-table elevations of about 0.6 m during a 17-year period from 1984 to 2001 was identified in an observation well located 250 m from the incising stream channel. Water-table elevations 600 m from the incising channel in the adjacent alluvial outwash aquifer respond in phase to changes in river stage, indicating water-levels in the adjacent aquifer are declining in response to river-channel incision. This study suggests channel incision can rapidly lower water-table elevations for large distances in the adjacent aquifer, potentially modifying the hydrology to a degree capable of influencing adjacent surface-water features, such as off-channel wetlands and flood-plain side channels.

  3. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases. PMID:27038376

  4. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana

    USGS Publications Warehouse

    Kroes, Daniel E.; Kraemer, Thomas F.

    2013-01-01

    The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.

  5. Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams

    EPA Science Inventory

    Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...

  6. Removal of Dental Biofilms with an Ultrasonically Activated Water Stream.

    PubMed

    Howlin, R P; Fabbri, S; Offin, D G; Symonds, N; Kiang, K S; Knee, R J; Yoganantham, D C; Webb, J S; Birkin, P R; Leighton, T G; Stoodley, P

    2015-09-01

    Acidogenic bacteria within dental plaque biofilms are the causative agents of caries. Consequently, maintenance of a healthy oral environment with efficient biofilm removal strategies is important to limit caries, as well as halt progression to gingivitis and periodontitis. Recently, a novel cleaning device has been described using an ultrasonically activated stream (UAS) to generate a cavitation cloud of bubbles in a freely flowing water stream that has demonstrated the capacity to be effective at biofilm removal. In this study, UAS was evaluated for its ability to remove biofilms of the cariogenic pathogen Streptococcus mutans UA159, as well as Actinomyces naeslundii ATCC 12104 and Streptococcus oralis ATCC 9811, grown on machine-etched glass slides to generate a reproducible complex surface and artificial teeth from a typodont training model. Biofilm removal was assessed both visually and microscopically using high-speed videography, confocal scanning laser microscopy (CSLM), and scanning electron microscopy (SEM). Analysis by CSLM demonstrated a statistically significant 99.9% removal of S. mutans biofilms exposed to the UAS for 10 s, relative to both untreated control biofilms and biofilms exposed to the water stream alone without ultrasonic activation (P < 0.05). The water stream alone showed no statistically significant difference in removal compared with the untreated control (P = 0.24). High-speed videography demonstrated a rapid rate (151 mm(2) in 1 s) of biofilm removal. The UAS was also highly effective at S. mutans, A. naeslundii, and S. oralis biofilm removal from machine-etched glass and S. mutans from typodont surfaces with complex topography. Consequently, UAS technology represents a potentially effective method for biofilm removal and improved oral hygiene. PMID:26056055

  7. Ephemeral-Stream Channel and Basin-Floor Infiltration and Recharge in the Sierra Vista Subwatershed of the Upper San Pedro Basin, Southeastern Arizona

    USGS Publications Warehouse

    Coes, A.L.; Pool, D.R.

    2007-01-01

    The timing and location of streamflow in the San Pedro River are partially dependent on the aerial distribution of recharge in the Sierra Vista subwatershed. Previous investigators have assumed that recharge in the subwatershed occurs only along the mountain fronts by way of stream-channel infiltration near the contact between low-permeability rocks of the mountains and the basin fill. Recent studies in other alluvial basins of the Southwestern United States, however, have shown that significant recharge can occur through the sediments of ephemeral stream channels at locations several kilometers distant from the mountains. The purpose of this study was to characterize the spatial distribution of infiltration and subsequent recharge through the ephemeral channels in the Sierra Vista subwatershed. Infiltration fluxes in ephemeral channels and through the basin floor of the subwatershed were estimated by using several methods. Data collected during the drilling and coring of 16 boreholes included physical, thermal, and hydraulic properties of sediments; chloride concentrations of sediments; and pore-water stable-isotope values and tritium activity. Surface and subsurface sediment temperatures were continuously measured at each borehole. Twelve boreholes were drilled in five ephemeral stream channels to estimate infiltration within ephemeral channels. Active infiltration was verified to at least 20 meters at 11 of the 12 borehole sites on the basis of low sediment-chloride concentrations, high soil-water contents, and pore-water tritium activity similar to present-day precipitation. Consolidated sediments at the twelfth site prevented core recovery and estimation of infiltration. Analytical and numerical methods were applied to determine the surface infiltration flux required to produce the observed sediment-temperature fluctuations at six sites. Infiltration fluxes were determined for summer ephemeral flow events only because no winter flows were recorded at the sites

  8. The effect of macropores on bi-directional hydrologic exchange between a stream channel and riparian groundwater

    NASA Astrophysics Data System (ADS)

    Menichino, Garrett T.; Hester, Erich T.

    2015-10-01

    Macropores and soil pipes in stream banks are common geomorphic features. Macropores and soil pipes that are open to the channel (i.e. "bank face-connected" macropores) are inundated when channel stage is elevated (e.g., from precipitation, snowmelt, dam release). However, previous studies have not investigated macropore impact on bi-directional water exchange between the channel and bank/riparian groundwater under variable hydrologic conditions. We monitored two transects of riparian groundwater wells perpendicular to the bank of a 2nd order stream for a year: one with bank face-connected macropores (M transect) and one without bank face-connected macropores (NM transect). Fluctuations in water level and temperature during storms in those wells closest to the channel were on average 139% and 29% higher, respectively, in the presence of macropores. Rising head tests in the same wells indicated that hydraulic conductivity was 61-140 times higher in the presence of macropores. Bank storage, indicated by gradient reversals between channel and riparian zone, occurred on two temporal scales. Bank storage during storms was more frequent in the M transect (occurred all year) than in the NM transect (occurred just in winter and spring). Smaller magnitude gradient reversals at the M transect are consistent with faster head equilibration and greater exchange volume. Bank storage also occurred on an annual basis, with channel water entering storage during summer and fall and returning to the channel during winter and spring. Taken together, these results suggest that macropores act as preferential flow paths that enhance the connectivity between channels and riparian groundwater that influences bank storage. Where bank macropores are present, conceptual models of hyporheic and groundwater flow should account for their effects.

  9. Quantifying the transient response of bedrock channels to Active Normal Faulting: New Field Observations

    NASA Astrophysics Data System (ADS)

    Whittaker, A. C.; Cowie, P. A.; Tucker, G. E.; Attal, M.; Roberts, G.

    2005-12-01

    Understanding the morphological response of the fluvial system to transient tectonic forcing is one of the major challenges facing quantitative geomorphology. In theory, insight gained from studying channel adjustment to changing tectonic rates should provide clear diagnostic tests of the many competing `erosion laws' which aim to quantify stream incision. However, fluvial algorithms in current landscape models tend to be parameterised in terms of hydraulic scaling relationships, which only describe channel width and depth as power-law functions of river discharge or upstream drainage area. Unfortunately, these scaling relationships, which have been derived from channels in tectonically quiescent areas, are not appropriate for bedrock rivers in active settings. This problem is serious for understanding non-equilibrium systems because hydraulic adjustments are an important aspect of the morphodynamic response to tectonic and climatic forcing. Recent theoretical attempts to resolve this issue still rely fundamentally on assumptions of steady-state channel form. To devise an alternative approach we need to collect geometrical data for channels incising in areas where the boundary conditions are well-constrained independently. We address this challenge by providing new and detailed field measurements of valley and bankfull channel width, depth, slope and grain-size data for an out-of-equilibrium channel with a drainage area of 65km2 crossing an active extensional fault near Fiamignano, Italy, where there are excellent constraints on current rates of fault movement, and good evidence for an increase in throw-rate approximately 700 Kyr ago. We show that in this situation channel width becomes strongly decoupled from drainage area immediately upstream of the fault and that channel aspect ratio and median grain-size are correlated with channel slope. The ratio of total stream power to coarse-fraction grain size peaks in precisely the areas where channel width

  10. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms.

    PubMed

    Tang, Qiong-Yao; Zhang, Fei-Fei; Xu, Jie; Wang, Ran; Chen, Jian; Logothetis, Diomedes E; Zhang, Zhe

    2016-01-01

    Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects. PMID:26725113

  11. Beaver Activity, Holocene Climate and Riparian Landscape Change Across Stream Scales in the Greater Yellowstone Ecosystem

    NASA Astrophysics Data System (ADS)

    Levine, R.; Meyer, G. A.

    2013-12-01

    Beaver (Castor canadensis) have been part of the fluvial and riparian landscape across much of North America since the Pleistocene, increasing channel habitat complexity and expanding riparian landscapes. The fur trade, however, decimated beaver populations by the 1840s, and other human activities have limited beaver in many areas, including parts of the Greater Yellowstone Ecosystem (GYE). Understanding fluctuations in beaver occupation through the Holocene will aid in understanding the natural range of variability in beaver activity as well as climatic and anthropogenic impacts to fluvial systems. We are developing a detailed chronology of beaver-assisted sedimentation and overall fluvial activity for Odell and Red Rock Creeks (basin areas 83 and 99 km2) in Centennial Valley (CV), Montana, to augment related studies on the long-term effects of beaver on smaller GYE fluvial systems (basin areas 0.1-50 km2). In developing the CV chronology, we use the presence of concentrations of beaver-chewed sticks as a proxy for beaver occupancy. Beaver-stick deposits are found in paleochannel and fluvial terrace exposures. The relative ages of exposures were determined by elevation data from airborne LiDAR and ground surveys. Numerical ages were obtained from 36 14C ages (~30 more are pending) of beaver-stick wood collected during investigation of the stratigraphy. Most beaver-stick deposits are associated with ~ 1 meter of fine-grained sediment, interpreted as overbank deposits, commonly overlying gravelly sand or pebble gravel channel deposits which is consistent with enhanced overbank sedimentation associated with active beaver dams in CV streams. The CV deposits differ from those on smaller GYE streams where beaver-stick deposits are associated with abandoned dams (berms), infilled ponds and laminated sediments. The lack of pond-related deposition associated with CV beaver-stick deposits is consistent with frequent dam breaching (≤ 5 years) in the modern channel of Odell

  12. Dendritic NMDA receptors activate axonal calcium channels

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2008-01-01

    Summary NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca2+ and monovalent cations, they could alter release directly by increasing presynaptic Ca2+ or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca2+ channels (VSCCs). Using two-photon microscopy to measure Ca2+ excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca2+ transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca2+ entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca2+-dependent forms of presynaptic plasticity and release. PMID:18957221

  13. Influences of high-flow events on a stream channel altered by construction of a highway bridge: a case study

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, Stuart A.; Anderson, James T.

    2009-01-01

    Impacts of highway construction on streams in the central Appalachians are a growing concern as new roads are created to promote tourism and economic development in the area. Alterations to the streambed of a first-order stream, Sauerkraut Run, Hardy County, WV, during construction of a highway overpass included placement and removal of a temporary culvert, straightening and regrading of a section of stream channel, and armourment of a bank with a reinforced gravel berm. We surveyed longitudinal profiles and cross sections in a reference reach and the altered reach of Sauerkraut Run from 2003 through 2007 to measure physical changes in the streambed. During the four-year period, three high-flow events changed the streambed downstream of construction including channel widening and aggradation and then degradation of the streambed. Upstream of construction, at a reinforced gravel berm, bank erosion was documented. The reference section remained relatively unchanged. Knowledge gained by documenting channel changes in response to natural and anthropogenic variables can be useful for managers and engineers involved in highway construction projects.

  14. Ion channels activated by light in Limulus ventral photoreceptors

    PubMed Central

    1986-01-01

    The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors. PMID:2419481

  15. The Influence of Shredder Feeding on Fungal Activity in a Nutrient-Enriched Stream and an Unaltered Stream

    NASA Astrophysics Data System (ADS)

    Chung, N.; Suberkopp, K.

    2005-05-01

    The effect of shredder feeding on aquatic hyphomycete communities associated with submerged leaves was studied in two southern Appalachian headwater streams in North Carolina. Coarse and fine mesh litter bags containing red maple (Acer rubrum) leaves were placed in the nutrient-enriched stream and in the reference stream and were retrieved monthly. Both shredder feeding and nutrient enrichment enhanced breakdown rates. The breakdown rates of leaves in coarse mesh bags in the reference stream (k = 0.0275) and fine mesh bags in the nutrient enriched stream (k = 0.0272) were not significantly different, suggesting that the shredding effect on litter breakdown was offset by higher fungal activity as a result of nutrient enrichment. Fungal sporulation rates and biomass (based on ergosterol concentrations) were higher in the nutrient enriched than in the reference stream, but neither fungal biomass nor sporulation rate was affected by shredder feeding. Species richness was higher in the nutrient-enriched than in the reference stream. The enrichment with nutrients altered fungal community composition more than shredder feeding.

  16. Influence of Herbaceous Riparian Buffers on Channelized Headwater Streams in Central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous riparian buffers are a widely used conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The importance of forested riparian buffers for headwater streams has been documented, but the ecological impacts of herbaceous ri...

  17. Annual and seasonal differences in pesticide mixtures within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a limited amount of information on pesticide mixtures within agricultural headwater streams is available. A greater understanding of the characteristics of pesticide mixtures and their spatial and temporal trends within agricultural headwater streams is needed to evaluate the risks of pesticid...

  18. Using stream sediment lithology to explore the roles of abrasion and channel network structure in shaping downstream sediment yields

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Smith, M. E.; Pitlick, J.

    2012-12-01

    Both the flux and characteristics of stream sediment evolve downstream in response to variations in sediment supply, abrasion rate, and channel network structure. We use a simple erosion-abrasion mass balance to model the downstream evolution of sediment flux in two adjacent watersheds draining differing mixtures of soft and resistant rock types in the northern Rocky Mountains. Measurements of bed sediment grain size and lithology are used in conjunction with measured bed load and suspended load sediment fluxes to constrain the model. The results show that the downstream evolution in bed load flux and composition can be strongly influenced by subtle differences in underlying geology, which shapes both the abrasion characteristics and travel path lengths of individual rock types. In the Big Wood basin, abrasion rapidly reduces the size of soft sedimentary and volcanic rocks exposed in headwater areas, concentrating resistant granitic rocks in the stream bed and depressing bed load in favor of suspended load. Alternatively, in the North Fork Big Lost basin, volcanic and sedimentary lithologies are exposed throughout the catchment, and the bed material becomes dominated by erodible but resistant quartzitic sandstones. The result is a much higher bed load flux best modeled with modest abrasion rates. In both cases, the best-fit model can reproduce within 5% the composition of the stream bed substrate using realistic erosion and abrasion parameters. The results also demonstrate a strong linkage between modern hillslopes and channel systems even in these formerly glaciated landscapes, as the sediment signature of the primary streams reflects the systematic tapping of distinct source areas. While this work shows promise, measurement of the spatial patterns in the size and composition of bed and suspended load fluxes at locations throughout a channel network would better elucidate that relative importance of supply, sorting, and abrasion processes.

  19. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel

  20. Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah

    USGS Publications Warehouse

    Gaeuman, D.; Schmidt, J.C.; Wilcock, P.R.

    2005-01-01

    Channel responses to flow depletions in the lower Duchesne River over the past 100 years have been highly complex and variable in space and time. In general, sand-bed reaches adjusted to all perturbations with bed-level changes, whereas the gravel-bed reaches adjusted primarily through width changes. Gravel-bed reaches aggraded only when gravel was supplied to the channel through local bank erosion and degraded only during extreme flood events. A 50% reduction in stream flow and an increase in fine sediment supply to the study area occurred in the first third of the 20th century. The gravel-bed reach responded primarily with channel narrowing, whereas bed aggradation and four large-scale avulsions occurred in the sand-bed reaches. These avulsions almost completely replaced a section of sinuous channel about 14 km long with a straighter section about 7 km long. The most upstream avulsion, located near a break in valley slope and the transition from a gravel bed upstream and a sand bed downstream, transformed a sinuous sand-bed reach into a braided gravel-bed reach and eventually into a meandering gravel-bed reach over a 30-year period. Later, an increase in flood magnitudes and durations caused widening and secondary bed aggradation in the gravel-bed reaches, whereas the sand-bed reaches incised and narrowed. Water diversions since the 1950s have progressively eliminated moderate flood events, whereas larger floods have been less affected. The loss of frequent flooding has increased the duration and severity of drought periods during which riparian vegetation can establish along the channel margins. As a result, the channel has gradually narrowed throughout the study area since the late 1960s, despite the occasional occurrence of large floods. No tributaries enter the Duchesne River within the study area, so all reaches have experienced identical changes in stream flow and upstream sediment supply. ?? 2004 Elsevier B.V. All rights reserved.

  1. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  2. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale.

    PubMed

    O'Connor, Ben L; Hamada, Yuki; Bowen, Esther E; Grippo, Mark A; Hartmann, Heidi M; Patton, Terri L; Van Lonkhuyzen, Robert A; Carr, Adrianne E

    2014-11-01

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The

  3. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    SciTech Connect

    LaSage, Danita m; Fryar, Alan E; Mukherjee, Abhijit; Sturchio, Neil C; Heraty, Linnea J

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  4. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    NASA Astrophysics Data System (ADS)

    LaSage, Danita M.; Fryar, Alan E.; Mukherjee, Abhijit; Sturchio, Neil C.; Heraty, Linnea J.

    2008-10-01

    SummaryRecent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 ( 99Tc) along Little Bayou Creek, a first-order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and 99Tc to the creek, and TCE concentrations tended to vary with 99Tc in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O 2, NO3-, and SO42-, values of δ 37Cl DOCl in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that anaerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  5. Metal contamination of active stream sediments in upper Weardale, northern Pennine Orefield, UK.

    PubMed

    Lord, R A; Morgan, P A

    2003-03-01

    In the Upper Weardale area the headwaters of the River Wear bisect the Northern Pennine Orefield, where Pb-Zn-F-Ba vein-type mineralisation has been exploited since the Roman Conquest. The area contains evidence of open pit, underground and hydraulic mining of base metal ores, associated mineral processing and smelting, exploitation of ironstones during the industrial revolution, recent extraction of fluorite and active quarrying. The aim of this study was to determine the extent of modern sediment contamination arising from these past activities. Samples of active stream sediments were collected from all major drainage channels at 1 km intervals. The sediments were analysed for Pb, Zn, Ba, Mn, Fe, Co, Ni, Cu, Cr, As, Sb, Ag and compared to data from earlier regional geochemical surveys of low order drainage samples using ArcView software. The significance of contamination levels was assessed using the Ontario aquatic sediment quality guidelines. Our results indicate widespread contamination of some major drainages by Pb, Mn, Zn and As at concentration levels anticipated to significantly affect use of the sediments by benthic organisms. Furthermore, Pb contamination shows persistence in stream sediments downstream towards agricultural areas of the floodplain and drinking water abstraction points, above which interaction with colliery mine water discharges may occur. PMID:12901084

  6. Investigating neuronal activity by SPYCODE multi-channel data analyzer.

    PubMed

    Bologna, Luca Leonardo; Pasquale, Valentina; Garofalo, Matteo; Gandolfo, Mauro; Baljon, Pieter Laurens; Maccione, Alessandro; Martinoia, Sergio; Chiappalone, Michela

    2010-08-01

    Multi-channel acquisition from neuronal networks, either in vivo or in vitro, is becoming a standard in modern neuroscience in order to infer how cell assemblies communicate. In spite of the large diffusion of micro-electrode-array-based systems, researchers usually find it difficult to manage the huge quantity of data routinely recorded during the experimental sessions. In fact, many of the available open-source toolboxes still lack two fundamental requirements for treating multi-channel recordings: (i) a rich repertoire of algorithms for extracting information both at a single channel and at the whole network level; (ii) the capability of autonomously repeating the same set of computational operations to 'multiple' recording streams (also from different experiments) and without a manual intervention. The software package we are proposing, named SPYCODE, was mainly developed to respond to the above constraints and generally to offer the scientific community a 'smart' tool for multi-channel data processing. PMID:20554151

  7. Structure of Thermally Activated TRP Channels

    PubMed Central

    Cohen, Matthew R.; Moiseenkova-Bell, Vera Y.

    2015-01-01

    Temperature sensation is important for adaptation and survival of organisms. While temperature has the potential to affect all biological macromolecules, organisms have evolved specific thermosensitive molecular detectors that are able to transduce temperature changes into physiologically relevant signals. Among these thermosensors are ion channels from the transient receptor potential (TRP) family. Prime candidates include TRPV1–4, TRPA1, and TRPM8 (the so-called “thermoTRP” channels), which are expressed in sensory neurons and gated at specific temperatures. Electrophysiological and thermodynamic approaches have been employed to determine the nature by which thermoTRPs detect temperature and couple temperature changes to channel gating. To further understand how thermoTRPs sense temperature, high-resolution structures of full-length thermoTRPs channels will be required. Here, we will discuss current progress in unraveling the structures of thermoTRP channels. PMID:25366237

  8. Watershed scale influence of pesticide reduction practices on pesticides and fishes within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implementation of pesticide reduction practices to reduce pesticide usage within agricultural watersheds has the potential to reduce pesticide concentrations within agricultural streams. The watershed scale influence of pesticide reduction practices on pesticides and the biota within agricultural he...

  9. DISTURBANCE, STREAM INCISION, AND CHANNEL EVOLUTION: THE ROLES OF EXCESS TRANSPORT CAPACITY AND BOUNDARY MATERIALS IN CONTROLLING CHANNEL RESPONSE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel incision is part of denudation, drainage-network development, and landscape evolution. Large, anthropogenic disturbances, similar to large or catastrophic “natural” events, greatly compress time scales for incision and related processes by creating enormous imbalances between upstream sedime...

  10. Cumulative Activation of Voltage-Dependent KVS-1 Potassium Channels

    PubMed Central

    Rojas, Patricio; Garst-Orozco, Jonathan; Baban, Beravan; de Santiago-Castillo, Jose Antonio; Covarrubias, Manuel; Salkoff, Lawrence

    2008-01-01

    In this study, we reveal the existence of a novel use-dependent phenomenon in potassium channels, which we refer to as cumulative activation (CA). CA consists of an increase in current amplitude in response to repetitive depolarizing step pulses to the same potential. CA persists for up to 20 s and is similar to a phenomenon called “voltage-dependent facilitation” observed in some calcium channels. The KVS-1 K+ channel, which exhibits CA, is a rapidly activating and inactivating voltage-dependent potassium channel expressed in chemosensory and other neurons of Caenorhabditis elegans. It is unusual in being most closely related to the Shab (Kv2) family of potassium channels, which typically behave like delayed rectifier K+ channels in other species. The magnitude of CA depends on the frequency, voltage, and duration of the depolarizing step pulse. CA also radically changes the activation and inactivation kinetics of the channel, suggesting that the channel may undergo a physical modification in a use-dependent manner; thus, a model that closely simulates the behavior of the channel postulates the existence of two populations of channels, unmodified and modified. Use-dependent changes in the behavior of potassium channels, such as CA observed in KVS-1, could be involved in functional mechanisms of cellular plasticity such as synaptic depression that represent the cellular basis of learning and memory. PMID:18199775

  11. Measurement of Channel Morphology in a Headwater Stream using Low-Altitude Photography and a 3D Model Software

    NASA Astrophysics Data System (ADS)

    Nidaira, K.; Hiraoka, M.; Gomi, T.; Uchiyama, Y.

    2015-12-01

    We developed a method for measuring detail channel morphology using a low elevation photographic scanning. This study was conducted in a 36-m step-pool channel segment in a headwater stream of Ooborazawa watershed located in 20 km south of Tokyo. The channels were covered by Boenninghausenia japonica and Oplismenus undulatifolius var. undulatifolius. Therefore, topographic measurement in high altitude (up to 5 m) using a drone is not applicable. D50 and D90 of channel substrates were 4 cm and 21 cm, respectively. A plastic case that equipped with two digital cameras (RICOH CX5) is mounted at the top of 2.2 m of a glass fiber pole. Photos were taken every 5 seconds from 1.8 m above ground surface. Eleven ground control points (GCP) were installed and measured coordinates. We developed digital 3D topographic model using PhotoScan Pro edition version 1.0.0 and the developed 1 cm contour map using ArcGIS version 10.2. Furthermore, we measured the number, height, and length of steps for examining the accuracy of data. Resolution of obtained topographic model was from 9 to 11 mm per pixel. 1 cm of particle was identified using photo was 1 cm. Estimated step height was agreed to the measured step height in the field. We detected maximum channel scour from October to December, 2014 with (146.5 mm/day for maximum daily rain) occurred at pools with 13cm changes , while 5 to 10 cm of changes in sediment deposition occurred from Mya to June, 2015 with 78.5 mm/day of maximum daily rain. Disposition of sediment was concentration within the sequences of step structures. Our method allows us for understanding detail sediment movement and resultant localized channel changes in steep channels.

  12. Using Multiple Watershed-scale Dye Tracing Tests to Study Water and Solute Transport in Naturally Obstructed Stream Channels

    NASA Astrophysics Data System (ADS)

    Jin, L.; Meeks, J. L.; Hubbard, K. A.; Kurian, L. M.; Siegel, D. I.; Lautz, L. K.; Otz, M. H.

    2007-12-01

    Temporary storage of surface water at channel sides and pools significantly affects water and solute transport downstream in watersheds. Beavers, natural "stream channel engineers", build dams which obstruct stream flow and temporarily store water in small to large ponds within stream channels. These ponds substantially delay water movement and increase the water residence time in the system. To study how water and solutes move through these obstructed stream channels, we did multiple dye tracing tests at Cherry Creek, a main tributary to Red Canyon Creek (Wind River Range, Wyoming). First we surveyed beaver dam distributions in detail within the study reaches. We then introduced dyes four times from July 2nd to 6th, 2007 using a scale-up approach. The observation site was fixed at the mouth of Cherry Creek, and 1.5 grams of Rhodamine WT (RWT) dye was injected sequentially at upstream sites with increasing test reach length. The reach lengths scaled up from 500m to 2.5 km. A field fluorometer recorded RWT concentrations every 15 seconds. The results show non-linear decreases of the peak concentration of the dye tracing cloud as the reach scaled up. Also, the times to 1.) the arrivals of the leading edges (Tl), 2.) the peak concentrations (Tp) and 3.) the tailing edges (Tt) and 4) the durations of the tracer cloud (Td) behaved non-linearly as function of length scale. For example, plots of arrivals of leading edges and tailing edges with scale distance appear to define curves of the form; Tl=27.665e1.07× Distance (r2=0.99) and Tt=162.62e0.8551× Distance (r2=0.99), respectively. The greatest non-linearity occurred for the time of tailing and the least for the time of leading edge. These observations are consistent with what would be expected with greater density of dams and/or storage volumes as the reach length increased upgradient. To come to a first approximation, we are currently modeling the breakthrough curves with the solute transport code OTIS to address

  13. The influence of stream channels on distributions of Larrea tridentata and Ambrosia dumosa in the Mojave Desert, CA, USA: Patterns, mechanisms and effects of stream redistribution

    USGS Publications Warehouse

    Schwinning, S.; Sandquist, D.R.; Miller, D.M.; Bedford, D.R.; Phillips, S.L.; Belnap, J.

    2011-01-01

    Drainage channels are among the most conspicuous surficial features of deserts, but little quantitative analysis of their influence on plant distributions is available. We analysed the effects of desert stream channels ('washes') on Larrea tridentata and Ambrosia dumosa density and cover on an alluvial piedmont in the Mojave Desert, based on a spatial analysis of transect data encompassing a total length of 2775 m surveyed in 5 cm increments. Significant deviations from average transect properties were identified by bootstrapping. Predictably, shrub cover and density were much reduced inside washes, and elevated above average levels adjacent to washes. Average Larrea and Ambrosia cover and density peaked 1??2-1??6 m and 0??5-1??0 m from wash edges, respectively. We compared wash effects in runon-depleted (-R) sections, where washes had been cut off from runon and were presumably inactive, with those in runon-supplemented (+R) sections downslope from railroad culverts to help identify mechanisms responsible for the facilitative effect of washes on adjacent shrubs. Shrub cover and density near washes peaked in both + R and - R sections, suggesting that improved water infiltration and storage alone can cause a facilitative effect on adjacent shrubs. However, washes of < 2 m width in + R sections had larger than average effects on peak cover, suggesting that plants also benefit from occasional resource supplementation. The data suggest that channel networks significantly contribute to structuring plant communities in the Mojave Desert and their disruption has notable effects on geomorphic and ecological processes far beyond the original disturbance sites. ?? 2010 John Wiley & Sons, Ltd.

  14. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado

    NASA Astrophysics Data System (ADS)

    Ryan, Sandra E.; Bishop, Erica L.; Daniels, J. Michael

    2014-07-01

    Large fallen wood can have a significant impact on channel form and process in forested mountain streams. In this study, four small channels on the Fraser Experimental Forest near Fraser, Colorado, USA, were surveyed for channel geometries and large wood loading, including the size, source, and characteristics of individual pieces. The study is part of a larger effort to understand the impact of mountain pine beetle infestation on a suite of watershed properties. Here, we present baseline data collected at the onset of widespread tree mortality. Channels range from 1.5 to 2 m in width, with slopes ranging from 3 to > 10%. Median (D50) streambed particle sizes range from gravel to very coarse gravel. Channels are characterized as cascade, step-pool, and plane bed over varying scales. Large wood loads ranged from about 0.4 to 1.0 piece per meter length of channel, which is comparable to values reported for other Colorado sites. Much of the wood showed indications of being in place for long periods of time (decayed/rotten, broken into ramps, and partially buried in beds and banks). Nearly all surveyed reaches contained steps formed from small boulders and/or logs. Significant portions of the elevation drop in some of the reaches were made up by log steps, though the percentages varied (0 to 60%). Individual log steps trap a portion of the coarse sediment moved as bedload, forming wedge-shaped accumulations upstream of the logs. The particle size distributions for measured bedload and step accumulations largely overlapped, but more so for the coarse ends of the distributions, suggesting a trapping inefficiency for the finer component of bedload. Estimates of the total volume of sediment stored behind log steps were approximately an order of magnitude greater than the mean sediment volume exported on an annual basis, as determined from measured accumulations in weir ponds. The particle size distribution of sediment in the ponds - ranging from sand to medium gravel - is

  15. Regionalized Equations for Bankfull-Discharge and Channel Characteristics of Streams in New York State - Hydrologic Region 3 East of the Hudson River

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Baldigo, Barry P.

    2007-01-01

    Equations that relate drainage area to bankfull discharge and channel characteristics (such as width, depth, and cross-sectional area) at gaged sites are needed to define bankfull discharge and channel characteristics at ungaged sites and can be used for stream-restoration and protection projects, stream-channel classification, and channel assessments. These equations are intended to serve as a guide for streams in areas of similar hydrologic, climatic, and physiographic conditions. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report presents predictive equations for bankfull characteristics (discharge and channel characteristics) for streams east of the Hudson River, referred to as Hydrologic Region 3. Stream-survey data and discharge records from 12 streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and bankfull channel width, depth, and cross-sectional area. The four predictive equations are: bankfull discharge (cubic feet per second) = 83.8 (drainage area (square miles))0.679, (1) bankfull-channel width (feet) = 24.0 (drainage area (square miles))0.292, (2) bankfull-channel depth (feet) = 1.66 (drainage area (square miles))0.210, (3) bankfull-channel cross-sectional area (square feet) = 39.8 (drainage area (square miles))0.503. (4) The coefficients of determination (R2) for these four equations are 0.93, 0.85, 0.77, and 0.92, respectively. The high coefficients of determination for bankfull discharge and cross-sectional area indicate that much of the range in the variables is explained by the size of the drainage area; the smaller correlation coefficients for bankfull channel width and depth indicate that other factors also affect these relations. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.16 to 3.35 years; the mean recurrence interval was 2.08 years. The 12 surveyed

  16. Channel processes following land use changes in a degrading steep headwater stream in North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Kasai, Mio

    2006-11-01

    In headwater streams in steep land settings, narrow and steep valley floors provide closely coupled relationships between geomorphic components including hillslopes, tributary fans, and channel reaches. These relationships together with small catchment sizes result in episodic changes to the amount of stored sediment in channels. Major sediment inputs follow high magnitude events. Subsequent exponential losses via removal of material can be represented by a relaxation curve. The influence of hillslope and tributary processes on relaxation curves, and that of altered coupling relations between components, were investigated along a 1.3 km reach of a degrading channel in the 4.8 km 2 Weraamaia Catchment, New Zealand. Extensive deforestation in the late 19th and early 20th centuries, followed by invasion of scrubs and reforestation, induced changes to major erosion types from gully complexes to shallow landslides. Changes in the size and pattern of sediment slugs from 1938 to 2002 were analysed from air photographs tied to detailed field measurement. The rate and calibre of sediment flux changed progressively following substantive hillslope input in a storm in 1938. Subsequently, the channel narrowed and incised, decoupling tributary fans from the main stem, thereby scaling down the size of sediment slugs. As a consequence, the dominant influence on the behaviour of sediment slugs and associated relaxation processes, changed from tributary fans to the type and distribution of bedrock outcrops along the reach.

  17. River profile controls on channel morphology, debris flow disturbance, and the spatial extent of salmonids in steep mountain streams

    NASA Astrophysics Data System (ADS)

    May, Christine L.; Lisle, Thomas E.

    2012-12-01

    In the geologically and topographically diverse mountain ranges of the Pacific Northwest, a broad-scale means of prioritizing salmonid habitat conservation areas based on geomorphic process domains is examined. We propose that steepness and concavity indices derived from the relation between drainage area and channel slope provide a means of identifying basins that express different reach-scale morphologies, fish habitat capacity, and risk of episodic disturbance. Strongly concave river profiles that develop in mountainous terrain indicate that almost all of the relief in the drainage network occurs in headwater streams. In these basins a large proportion of the channel network has low-gradient morphologies, which provide favorable habitat for many salmonid species. The severity of pulse disturbances is also reduced because low-gradient main stem channels inhibit debris flow conveyance, and in these networks the distribution of fish can expand into tributaries, allowing for a spatial spreading of risk. In contrast, rivers with poorly concave or steeper profiles have a greater abundance of high gradient reaches that limit the distribution of fish to a small portion of the channel network and facilitate debris flow-passage. The combined influence of a limited spatial distribution of fish and an increased risk of debris flows may cause populations in these basins to be less resilient to pulse disturbances. A case example from the Klamath Mountains, an area with broad variation in the steepness and concavity of river profiles, was used to develop this approach and aid conservation planning for imperiled populations of anadromous salmonids.

  18. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications

    NASA Astrophysics Data System (ADS)

    Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten

    2015-08-01

    Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.

  19. Riparian deforestation, stream narrowing, and loss of stream ecosystem services.

    PubMed

    Sweeney, Bernard W; Bott, Thomas L; Jackson, John K; Kaplan, Louis A; Newbold, J Denis; Standley, Laurel J; Hession, W Cully; Horwitz, Richard J

    2004-09-28

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries. PMID:15381768

  20. Riparian deforestation, stream narrowing, and loss of stream ecosystem services

    PubMed Central

    Sweeney, Bernard W.; Bott, Thomas L.; Jackson, John K.; Kaplan, Louis A.; Newbold, J. Denis; Standley, Laurel J.; Hession, W. Cully; Horwitz, Richard J.

    2004-01-01

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries. PMID:15381768

  1. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  2. Influence of instream habitat and water quality on aggressive behavior in crayfish of channelized headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agricultural drainage ditches that border farm fields of the Midwestern United States are degraded headwater streams that possess communities of crayfish. We hypothesized that crayfish communities at sites with low instream habitat diversity and poor water quality would show greater evidence of...

  3. REGIONAL ASSESSMENT OF LAND USE IMPACTS ON STREAM CHANNEL HABITAT IN THE MIDDLE COLUMBIA RIVER BASIN

    EPA Science Inventory

    Many human land uses and land cover modifications (e.g., logging, grazing, roads) tend to increase erosion, leading to an increase in fine sediment supplied to streams and potentially degrading aquatic habitat for benthic organisms. This study evaluated potential human impacts o...

  4. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians

    USGS Publications Warehouse

    Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E.

    2007-01-01

    Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre-post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre-post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a "space for time" substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6??C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. ?? 2007 Springer Science+Business Media, LLC.

  5. Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Nislow, K. H.; Kynard, B. E.; Hackman, A. M.

    2016-01-01

    Dam removal is becoming an increasingly important component of river restoration, with > 1100 dams having been removed nationwide over the past three decades. Despite this recent progression of removals, the lack of pre- to post-removal monitoring and assessment limits our understanding of the magnitude, rate, and sequence of geomorphic and/or ecological recovery to dam removal. Taking advantage of the November 2012 removal of an old (~ 190 year-old) 6-m high, run-of-river industrial dam on Amethyst Brook (26 km2) in central Massachusetts, we identify the immediate eco-geomorphic responses to removal. To capture the geomorphic responses to dam removal, we collected baseline data at multiple scales, both upstream (~ 300 m) and downstream (> 750 m) of the dam, including monumented cross sections, detailed channel-bed longitudinal profiles, embeddedness surveys, and channel-bed grain size measurements, which were repeated during the summer of 2013. These geomorphic assessments were combined with detailed quantitative electrofishing surveys of stream fish richness and abundance above and below the dam site and throughout the watershed and visual surveys of native anadromous sea lamprey (Petromyzon marinus) nest sites. Post-removal assessments were complicated by two events: (1) upstream knickpoint migration exhumed an older (ca. late eighteenth century) intact wooden crib dam ~ 120 m upstream of the former stone dam, and (2) the occurrence of a 10-20 year RI flood 6 months after removal that caused further upstream incision and downstream aggradation. Now that the downstream reach has been reconnected to upstream sediment supply, the predominant geomorphic response was bed aggradation and associated fining (30-60% reduction). At dam proximal locations, aggradation ranged from 0.3 to > 1 m where a large woody debris jam enhanced aggradation. Although less pronounced, distal locations still showed aggradation with a mean depth of deposition of ~ 0.20 m over the 750-m

  6. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  7. Retention and transport of nutrients in a third-order stream: channel processes

    USGS Publications Warehouse

    Triska, F.J.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.; Bencala, K.E.

    1989-01-01

    Chloride was injected as a conservative tracer with nitrate to examine nitrate retention (storage plus biotic uptake) and transport in a 327-m reach of a third-order stream draining a forested basin in northwestern California. Prior to injections, diel patterns of nutrient concentrations were measured under background conditions. Nitrate concentration of stream water increased downstream, indicating that the reach was a source of dissolved inorganic nitrogen to downstream communities under background, low-flow conditions, despite uptake by photoautotrophs. At the onset of continuous solute injection over a 10-d period, timing the passage of the solute front indicated that storage dominated nitrate retention. Instantaneous concentration differences at the base of the reach at hour 24 indicated that biotic uptake accounted for 13% of the nitrate amendment while hydrologic storage constituted 29%. -from Authors

  8. SLO2 Channels Are Inhibited by All Divalent Cations That Activate SLO1 K+ Channels.

    PubMed

    Budelli, Gonzalo; Sun, Qi; Ferreira, Juan; Butler, Alice; Santi, Celia M; Salkoff, Lawrence

    2016-04-01

    Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 μmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions. PMID:26823461

  9. Sensitivity of Off-Channel Salmon Rearing Habitats to Changing Base Flows in Low-Gradient Reaches of Central Idaho Mountain Streams

    NASA Astrophysics Data System (ADS)

    McKean, J. A.; Thurow, R.; Tonina, D.; Isaak, D.; Bohn, C.

    2010-12-01

    Critical rearing habitats for juvenile salmon and trout are frequently in off-channel areas of shallow, low-velocity water. Typically, these are remnants of abandoned channel positions that are still hydraulically connected to the contemporary main channel. However, the size and spatial arrangement of this habitat is strongly dependent on water stage in the main channel. In two salmon-bearing streams in the Middle Fork Salmon River, Idaho, we used a high-resolution channel DEM and a 1D fluid dynamics model to define the location, depth, total area, frequency, and timing and duration of flooding of off-channel habitat. We then predicted changes in water surface elevation in the main channel over a range of low flow discharges and remapped the functional off-channel areas at each flow stage. Measurements at nearby gages indicate that average late summer and autumn low flows in these streams have declined by about 7% per decade over the prior 60 years. Modern off-channel habitat along the 20km of study streams is not uniformly arranged, even at high flows, and the distribution becomes still more restricted in space and time as flows decline. Progeny of summer- and early fall-spawning Chinook salmon rear for up to 2 years in these streams before migrating to the ocean, with much of that time spent in the off-channel habitat. Progeny of spring-spawning steelhead use the same areas for up to 3 years. While much prior research has focused on the effects of climate change on the availability and condition of spawning sites and on water temperatures, this study documents likely changes in the amount and condition of rearing habitat. Further investigation is needed to understand the ecological consequences and whether the declining anadromous fish populations may be at some risk from diminishing rearing habitat during declining base flows caused by external forces, such as a changing climate, dams, or water extractions.

  10. Tonic PKA Activity Regulates SK Channel Nanoclustering and Somatodendritic Distribution.

    PubMed

    Abiraman, Krithika; Sah, Megha; Walikonis, Randall S; Lykotrafitis, George; Tzingounis, Anastasios V

    2016-06-01

    Small-conductance calcium-activated potassium (SK) channels mediate a potassium conductance in the brain and are involved in synaptic plasticity, learning, and memory. SK channels show a distinct subcellular localization that is crucial for their neuronal functions. However, the mechanisms that control this spatial distribution are unknown. We imaged SK channels labeled with fluorophore-tagged apamin and monitored SK channel nanoclustering at the single molecule level by combining atomic force microscopy and toxin (i.e., apamin) pharmacology. Using these two complementary approaches, we found that native SK channel distribution in pyramidal neurons, across the somatodendritic domain, depends on ongoing cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) levels, strongly limiting SK channel expression at the pyramidal neuron soma. Furthermore, tonic cAMP-PKA levels also controlled whether SK channels were expressed in nanodomains as single entities or as a group of multiple channels. Our study reveals a new level of regulation of SK channels by cAMP-PKA and suggests that ion channel topography and nanoclustering might be under the control of second messenger cascades. PMID:27107637

  11. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  12. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Avanzino, R.J.

    1993-01-01

    The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus

  13. Exploring geomorphic controls on fish bioenergetics in mountain streams: linkages between channel morphology and rearing habitat for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2013-12-01

    Landscape heterogeneity constitutes an important control on spatial distribution of habitat for living organisms, at a range of spatial scales. For example, spatial variation in geomorphic processes can spatially structure populations as well as entire communities, and affect various ecosystem processes. We have coupled a 2D hydrodynamic model with a bioenergetic model to study the effects of various channel morphologies and bed textures on rearing habitat for coastal cutthroat trout (Oncorhynchus clarki clarki) in four reaches of a mountain stream. The bioenergetic model uses energy conservation principle to calculate energy budget for fish at any point of the study domain, given a set of relevant local conditions. Specifically, the energy intake is a function of food availability (invertebrate drift) while the energy expenditure occurs through, for example, basal metabolism and swimming to hold position against the flow. Channel morphology and bed texture, through their influence on channel hydraulics, can exert strong control on the spatial pattern of both food flux and swimming cost for drift-feeding fish. Therefore, the coupled hydrodynamic and bioenergetic models, parameterized using an extensive field data set, enabled us to explore mechanistic linkages between geomorphic properties of the study reaches, food resource availability, and the energetic profitability of rearing habitat for different age-classes at both between- and within-reach spatial scales.

  14. Assessment of channel changes in a Mediterranean ephemeral stream since the early twentieth century. The Rambla de Cervera, eastern Spain

    NASA Astrophysics Data System (ADS)

    Segura-Beltrán, Francisca; Sanchis-Ibor, Carles

    2013-11-01

    An analysis of morphological changes during the last six decades is presented for a 16.5-km reach of the Rambla de Cervera, a Mediterranean ephemeral stream located in eastern Spain. Channel changes were analysed through a range of techniques, specifically the analysis of aerial photographs with geographical information systems (GIS) and comparison of topographic surveys. The gravel channel underwent a general decline over the study period, losing width (68.5%) and surface area (45.7%) caused by the development of established islands frequently attached to the floodplain. These morphological changes exhibit an interesting temporal variability, with a maximum decrease of the gravel channel in the period 1946-1956 and another narrowing stage between 1977 and 1991. Two periods (1956-1977 and 1991-2006) also had mixed performance. In addition, incision processes occurred along the entire study reach at an average depth of 3.5 m. Natural and human-induced factors producing contradictory effects are considered responsible for changes in the Rambla de Cervera.

  15. Voltage is a partial activator of rat thermosensitive TRP channels

    PubMed Central

    Matta, José A; Ahern, Gerard P

    2007-01-01

    TRPV1 and TRPM8 are sensory nerve ion channels activated by heating and cooling, respectively. A variety of physical and chemical stimuli activate these receptors in a synergistic manner but the underlying mechanisms are unclear. Both channels are voltage sensitive, and temperature and ligands modulate this voltage dependence. Thus, a voltage-sensing mechanism has become an attractive model to explain the generalized gating of these and other thermo-sensitive TRP channels. We show here using whole-cell and single channel measurements that voltage produces only a partial activation of TRPV1 and TRPM8. At room temperature (20–25°C) membrane depolarization evokes responses that saturate at ∼50–60% of the maximum open probability. Furthermore, high concentrations of capsaicin (10 μm), resiniferatoxin (5 μm) and menthol (6 mm) reveal voltage-independent gating. Similarly, other modes of TRPV1 regulation including heat, protein kinase C-dependent phosphorylation, and protons enhance both the efficacy and sensitivity of voltage activation. In contrast, the TRPV1 antagonist capsazepine produces the opposite effects. These data can be explained by an allosteric model in which voltage, temperature, agonists and inverse agonists are independently coupled, either positively or negatively, to channel gating. Thus, voltage acts separately but in concert with other stimuli to regulate channel activation, and, therefore, a voltage-sensitive mechanism is unlikely to represent a final, gating mechanism for these channels. PMID:17932142

  16. Stream network expansion: a riparian water quality factor

    NASA Astrophysics Data System (ADS)

    Wigington, P. J., Jr.; Moser, T. J.; Lindeman, D. R.

    2005-05-01

    Little is known about how active stream network expansion during rainstorms influences the ability of riparian buffers to improve water quality. We used aerial photographs to quantify stream network expansion during the wet winter season in five agricultural catchments in western Oregon, USA. Winter stream drainage densities were nearly two orders of magnitude greater than summer stream densities, and agricultural land use was much more abundant along transient portions (e.g. swales, road ditches) of stream networks. Water moving from agricultural fields into expanded stream networks during large hydrologic events has the opportunity to bypass downstream riparian buffers along perennial streams and contribute nonpoint-source pollutants directly into perennial stream channels.

  17. NATURAL CHANNEL STREAM RESTORATION USING FLUVIAL GEOMORPHOLOGY, LITTLE CREEK, CHATTOOGA RIVER WATERSHED, CHATTAHOOCHEE NATIONAL FOREST, GEORGIA

    EPA Science Inventory

    This project involved removing a portion of an earthen dam that had collapsed. The problem solved by the project was to stabilize the eroding banks left from the remnants of the dam as well as stabilizing eroding banks adjacent to the forest service road. The channel constructe...

  18. Chloride dependence of hyperpolarization-activated chloride channel gates.

    PubMed

    Pusch, M; Jordt, S E; Stein, V; Jentsch, T J

    1999-03-01

    1. ClC proteins are a class of voltage-dependent Cl- channels with several members mutated in human diseases. The prototype ClC-0 Torpedo channel is a dimeric protein; each subunit forms a pore that can gate independently from the other one. A common slower gating mechanism acts on both pores simultaneously; slow gating activates ClC-0 at hyperpolarized voltages. The ClC-2 Cl- channel is also activated by hyperpolarization, as are some ClC-1 mutants (e.g. D136G) and wild-type (WT) ClC-1 at certain pH values. 2. We studied the dependence on internal Cl- ([Cl-]i) of the hyperpolarization-activated gates of several ClC channels (WT ClC-0, ClC-0 mutant P522G, ClC-1 mutant D136G and an N-terminal deletion mutant of ClC-2), by patch clamping channels expressed in Xenopus oocytes. 3. With all these channels, reducing [Cl-]i shifted activation to more negative voltages and reduced the maximal activation at most negative voltages. 4. We also investigated the external halide dependence of WT ClC-2 using two-electrode voltage-clamp recording. Reducing external Cl- ([Cl-]o) activated ClC-2 currents. Replacing [Cl-]o by the less permeant Br- reduced channel activity and accelerated deactivation. 5. Gating of the ClC-2 mutant K566Q in normal [Cl-]o resembled that of WT ClC-2 in low [Cl-]o, i.e. channels had a considerable open probability (Po) at resting membrane potential. Substituting external Cl- by Br- or I- led to a decrease in Po. 6. The [Cl-]i dependence of the hyperpolarization-activated gates of various ClC channels suggests a similar gating mechanism, and raises the possibility that the gating charge for the hyperpolarization-activated gate is provided by Cl-. 7. The external halide dependence of hyperpolarization-activated gating of ClC-2 suggests that it is mediated or modulated by anions as in other ClC channels. In contrast to the depolarization-activated fast gates of ClC-0 and ClC-1, the absence of Cl- favours channel opening. Lysine 556 may be important for the

  19. A Comparison of In-Channel Dead Zone and Hyporheic Zone Transient Storage Parameter Estimates Between a 1st and 5th Order Stream

    NASA Astrophysics Data System (ADS)

    Briggs, M.; Gooseff, M.; Morkeski, K.; Wollheim, W.; Hopkinson, C.; Peterson, B.; Vorosmarty, C.

    2007-12-01

    A major enhancement to our understanding of how watersheds function would be the ability to discriminate between in-channel dead zone ( DZ) and hyporheic zone ( HZ) transient storage, and an evaluation of how these properties scale across stream orders. The nature of DZ storage is to display faster exchange rates with the main channel and less overall sediment contact time than HZ storage. These differences have great significance to many in-stream processes such as nutrient cycling. The combination of high slope, coarse bed material and fluvial structure endemic to many 1st order streams can provide greater forcing of hyporheic flow paths than occurs within the lower gradient 5th order streams. Conversely many 5th order reaches exhibit large side pool and back eddy DZ areas not common along 1st order streams. This study builds on existing methods to delineate the DZ and HZ from the integrated signal of a conservative solute's breakthrough curve ( BTC). Data for this comparison were collected over the summer of 2007 within the Ipswich River watershed, a basin which drains into Plum Island Sound on the north shore of Massachusetts, USA. The conservative solute NaCl was injected into both a 1st order medium gradient stream and a 5th order low gradient stream. The BTCs collected in thalwegs from the NaCl injections were simulated using a version of the solute transport model OTIS containing two zones of transient storage. Hydrometric measurements of stream velocity were used to estimate average main channel cross sectional area ( A) and DZ cross sectional area ( ASDZ) for each reach to constrain parameter estimates and avoid model equifinality between the storage zones. Initial values for the exchange rate between main channel flow and DZ storage ( αDZ) were estimated from DZ BTCs. Our results indicate that although the overall storage zone is much larger in proportion to the main channel for the 1st order reach than for the 5th order reach, the percentage of median

  20. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    PubMed Central

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  1. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Recent studies of ice streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the ice on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that ice was present in outflow channels on Mars and gave them their distinctive morphology. This ice may have slid like Antarctic ice streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the ice. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of ice-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross Ice Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of ice streams during the last glacial advance. Additional similarities of Antarctic ice streams with martian outflow channels are apparent. Antarctic ice streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. Ice stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the

  2. Erosion, sediment discharge, and channel morphology in the upper Chattahoochee River basin, Georgia, with a discussion of the contribution of suspended sediment to stream quality

    USGS Publications Warehouse

    Faye, Robert E.; Carey, W.P.; Stamer, J.K.; Kleckner, R.L.

    1980-01-01

    The 3,550 square miles of the Upper Chattahoochee River basin is an area of diverse physiographic and land-use characteristics. The headwater areas are mountainous with steep, relatively narrow channels. Land in the headwater areas is heavily forested, but small towns and farms are common in the valleys of large streams. Downstream, the basin is characterized by low hills and wider stream channels. Land in this part of the basin is also predominantly forested; however, large agricultural and urban areas are common. Urban land use is particularly intensive within the Atlanta Metropolitan Area.

  3. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel

    PubMed Central

    Nagel, Georg; Szellas, Tanjef; Riordan, John R.; Friedrich, Thomas; Hartung, Klaus

    2001-01-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR. PMID:11266369

  4. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel.

    PubMed

    Nagel, G; Szellas, T; Riordan, J R; Friedrich, T; Hartung, K

    2001-03-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of (22)Na(+) through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage- and patch-clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of (22)Na(+) uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR. PMID:11266369

  5. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity.

    PubMed

    Berger, Allan L; Randak, Christoph O; Ostedgaard, Lynda S; Karp, Philip H; Vermeer, Daniel W; Welsh, Michael J

    2005-02-18

    Compounds that enhance either the function or biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel may be of value in developing new treatments for cystic fibrosis (CF). Previous studies suggested that the herbal extract curcumin might affect the processing of a common CF mutant, CFTR-DeltaF508. Here, we tested the hypothesis that curcumin influences channel function. Curcumin increased CFTR channel activity in excised, inside-out membrane patches by reducing channel closed time and prolonging the time channels remained open. Stimulation was dose-dependent, reversible, and greater than that observed with genistein, another compound that stimulates CFTR. Curcumin-dependent stimulation required phosphorylated channels and the presence of ATP. We found that curcumin increased the activity of both wild-type and DeltaF508 channels. Adding curcumin also increased Cl(-) transport in differentiated non-CF airway epithelia but not in CF epithelia. These results suggest that curcumin may directly stimulate CFTR Cl(-) channels. PMID:15582996

  6. Mapping Episodic Stream Activity for the Ridgecrest Solar Power Project, Kern County, California

    NASA Astrophysics Data System (ADS)

    Thibodeaux-Yost, S. N.; Brady, R. H., III; Vyverberg, K.; Weinman, B.

    2013-12-01

    Large-scale renewable energy projects are being developed in the California desert region on large tracts of predominantly undeveloped land (total area of developed land for individual project sites vary from 327 acres to 8,230 acres). The absence of a standard method of identifying and accounting for episodic streams in arid and semi-arid (dryland) regions is an area of conflict between project developers and the government agencies responsible for protecting natural resources and permitting renewable energy projects. There is a need for an accurate dryland stream delineation protocol that is consistent, efficient, accessible, and accurately reflects the extent and distribution of streams on a site. Dryland stream delineation protocol based on a scientific, geomorphic and ecological understanding of dryland stream processes will help ensure dryland streams are accurately identified for the purposes of environmental impact assessments and project permitting. Such a method is currently being developed by the California Energy Commission (CEC) and the Department of Fish and Wildlife (CDFW). This thesis work critically evaluates the stream delineation and stream impact assessment previously completed by the developer for the proposed renewable energy project in El Paso Fan, El Paso Mountains, Ridgecrest, Kern County, California. This evaluation is then compared and contrasted with the results achieved in the field using the MESA (Mapping Episodic Stream Activity) stream delineation methods and protocols and mobile GIS mapping technology.

  7. An anion channel in Arabidopsis hypocotyls activated by blue light.

    PubMed Central

    Cho, M H; Spalding, E P

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition. PMID:8755616

  8. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  9. Response of fish populations to natural channel design restoration in streams of the Catskill Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Warren, D.R.; Ernst, A.G.; Mulvihill, C.I.

    2008-01-01

    Many streams and rivers throughout North America have been extensively straightened, widened, and hardened since the middle 1800s, but related effects on aquatic ecosystems have seldom been monitored, described, or published. Beginning in the early 1990s, reach-level restoration efforts began to base projects on natural channel design (NCD) techniques and Rosgen's (1994b, 1996) river classification system in an effort to duplicate or mimic stable reference reach geomorphology. Four reaches in three streams of the Catskill Mountains, New York, were restored from 2000 to 2002 using NCD techniques to decrease bed and bank erosion rates, decrease sediment loads, and improve water quality. The effects of restoration on the health of fish assemblages were assessed through a before-after, control-impact (BACI) study design to quantify the net changes in population and community indices at treatment reaches relative to index changes at unaltered reference reaches from 1999 to 2004. After restoration, community richness and biomass at treatment reaches increased by more than one-third. Changes in fish communities were caused mainly by shifts in dominant species populations; fish community biomass and total fish abundance were generally dominated by daces or daces and sculpins before restoration and by one or more salmonid species after restoration. Density and biomass of eastern blacknose dace Rhinichthys atratulus, longnose dace R. cataractae, and slimy sculpin Cottus cognatus did not change appreciably, whereas net salmonid density and biomass increased substantially after restoration. These changes were driven primarily by large increases in populations of brown trout Salmo trutta. The findings demonstrate that the structure, function, and ultimately the health of resident fish populations and communities can be improved, at least over the short term, through NCD restoration in perturbed streams of the Catskill Mountains. ?? Copyright by the American Fisheries Society

  10. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed Central

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. Images PMID:7522329

  11. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-09-13

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. PMID:7522329

  12. Mean annual runoff and peak flow estimates based on channel geometry of streams in northeastern and western Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.

    1983-01-01

    Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)

  13. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    PubMed

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  14. Object Recognition in Williams Syndrome: Uneven Ventral Stream Activation

    ERIC Educational Resources Information Center

    O'Hearn, Kirsten; Roth, Jennifer K.; Courtney, Susan M.; Luna, Beatriz; Street, Whitney; Terwillinger, Robert; Landau, Barbara

    2011-01-01

    Williams syndrome (WS) is a genetic disorder associated with severe visuospatial deficits, relatively strong language skills, heightened social interest, and increased attention to faces. On the basis of the visuospatial deficits, this disorder has been characterized primarily as a deficit of the dorsal stream, the occipitoparietal brain regions…

  15. Active Urbanization and Channel Adjustment in Apple Creek, Appleton, WI

    NASA Astrophysics Data System (ADS)

    Clark, J. J.

    2002-12-01

    Headwaters of the Apple Creek watershed have been and continue to be rapidly developed as part of the City of Appleton's long-term growth plan. Concurrent with early development, and prior to development over the past 4 years, two regional stormwater management facilities were constructed. Cross-sectional surveys and core transects were used to determine channel response to urbanization mitigated by stormwater management. The reach immediately downstream of the first pond complex has a narrow, but well established, wooded riparian zone and has not changed in size or shape over the past two years. An engineered reach approximately one mile downstream, however has exhibited widespread bed aggradation. Cross-sectional area decreased an average of 51% over the past four years. Despite the use of sediment and erosion control BMPs, sediment concentrations exceeding 1000 mg/L during base flow are not uncommon downstream of construction sites adjacent to the stream. The artificially widened channel, a reduction in stream gradient, and the backwater effect from downstream ponds caused much of this sediment to remain within the engineered reach. It is estimated that approximately 21,000 Mg of sediment is stored in this mile-long reach. As this sediment migrates downstream, the forebay of the second set of stormwater ponds will begin to fill, reducing storage capacity and thereby limiting its effectiveness in mitigating peak discharges and sequestering nutrients.

  16. A Reach-Scale Characterization of a Second-Order, Tropical, Montane Stream: Using Terrestrial Laser Scanning to Relate Channel Morphology to the Distribution of Stream Power and Shear Stress

    NASA Astrophysics Data System (ADS)

    Lisenby, P.; Wasklewicz, T. A.; Slattery, M.

    2012-12-01

    The relationship between stream channel morphology and hydrology can be described at varying scales within a drainage network. Progression in quantifying this relationship has come from the advancement of field instruments and methodology. Despite refinements of remote sensing tools and techniques, field methods are still dictated by the accessibility of the study area, especially in mountain catchments. Steep, mountain streams are often subject to intense precipitation, have coarser bed materials, and can react dynamically to a range of effective discharge conditions, producing significant channel changes that can be linked to specific flow conditions. Though these characteristics make mountain streams especially interesting, they also pose significant challenges to field research. In this study, we show that a detailed, small-scale understanding of the channel morphology/hydrology relationship can be gained using reimagined terrestrial laser scanning (TLS) techniques despite challenging topographic and climatic field conditions in a small, steep, 2nd order, tropical mountain stream in north-central Costa Rica. A true orthographic surface is derived by suspending a Leica HDS 7000 terrestrial laser scanner upside-down from a rigid frame placed in the stream bed. The technique produces a high-resolution point cloud that accommodates dense tropical canopy, steep stream gradient (≈10%), and large boulder-bed material (D84 = 60-70cm). Two sets of TLS data represent separate stream reaches. Two 1cm planimetric resolution digital elevation models were interpolated using ArcGIS 10 software after data filtering and cleaning using Leica Cyclone software V. 7.4. Analysis of these surfaces using ArcMap 10 in conjunction with the River Bathymetry Toolkit (RBT) permits the measurement of a cross-section for every meter of channel length. The streamwise distribution of stream power and average boundary shear stress at a reach-scale given user-defined bankfull conditions are

  17. Multi-channel fiber photometry for population neuronal activity recording

    PubMed Central

    Guo, Qingchun; Zhou, Jingfeng; Feng, Qiru; Lin, Rui; Gong, Hui; Luo, Qingming; Zeng, Shaoqun; Luo, Minmin; Fu, Ling

    2015-01-01

    Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals. PMID:26504642

  18. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  19. Headwater Stream Temperature Response to Forest Harvesting in Coastal British Columbia, Canada: Influences of Riparian Buffer Width, Channel Morphology and Weather

    NASA Astrophysics Data System (ADS)

    Moore, R.; Gomi, T.; Dhakal, A.

    2003-12-01

    Forest harvesting can influence stream temperature regimes, and the potentially deleterious impacts of higher temperatures on salmonids and other species have generated significant debate. One common approach to protecting streams is to leave a riparian buffer to provide shade. However, little information has been collected on the effectiveness of different buffer widths. We report the results of a 6-year field experiment to evaluate the effects of different riparian buffer widths on stream and riparian ecosystems, including stream temperature response, in headwater streams in coastal British Columbia. The experiment included 13 streams, with at least three being assigned to each of four treatments, including no harvesting (80 yr-old second growth conifer riparian forest), clear-cut harvesting with 10 m and 30 m riparian buffers, and clear-cut harvesting with no buffer. Regression analysis was used to calibrate the pre-harvest data for each treatment stream with one of the control streams, to provide a basis for estimating post-harvest treatment effects. Autoregressive and heteroskedastic errors were included in the regression model, because stream temperature exhibited serial correlation and the error variance increased with stream temperature. Temperature response was substantial in the clearcut treatments with no buffers, with maximum temperatures increasing by up to 8 degrees C. The magnitude of temperature response amongst the no-buffer treatments varied with channel morphology, particularly in relation to bank shading and stream depth. The treatment effect for daily maximum water temperature increased with decreasing flow and increasing maximum air temperature on the current day, and also exhibited significant autocorrelation, indicating that the sequence of daily weather conditions can influence the magnitude of temperature response.

  20. Key stream/sediment exchanges of water and heat near stream mouths

    NASA Astrophysics Data System (ADS)

    Constantz, J. E.; Naranjo, R. C.; Niswonger, R. G.; Neilson, B. T.; Allander, K.; Zamora, C.; Smith, D. W.; Stonestrom, D. A.

    2014-12-01

    The section of stream discharging to a lake or other surface-water body is referred to as the stream mouth, a stream reach with rapidly changing hydrologic conditions, leading to unique aquatic and benthic ecology, as well as a visibly active fishery habitat. Of environmental significance, bridges, control structures, channelization and foot traffic are common near stream mouths, warranting comparisons of natural and channelized stream mouths. The present work completes the first investigation focusing specifically on the hydrology of surface-water/sediment exchanges at stream-mouth reaches discharging to lakes and compares these exchanges to those measured along the nearby shoreline in both a qualitative and quantitative manner. Heat and water exchanges for two common types of stream mouths (a natural stream with a summer barrier bar and a channelized stream mouth) are compared with comparable exchanges along the nearby shoreline on the north shore of Lake Tahoe located in the Central Sierra Nevada Mountain Range (CA/NV, US). The study site was selected partially due the abundance of streams discharging into the lake of both a natural and channelized nature (~30 small streams with a large number of both types of stream mouths). Heat and water exchanges were both qualitatively and quantitatively distinct for the three types of hydrologic settings, with (1) cool, low velocity, longitudinal (hyporheic) flowpaths observed below the channelized stream mouth, discharging beneath the warmer, more buoyant lakeshore water, (2) the nearby shoreline receiving relatively warm, higher velocity discharge and (3) for the natural stream mouth, there was strong diurnal temperature pattern in groundwater discharging through the seasonal barrier beach to the lake. Impacts of strong 2013 wave action on exchanges were also distinct for the three settings, with (1) channelization allowing waves to extend well upstream, (2) a lesser invasive impact in the shoreline swash zone exchanges

  1. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    USGS Publications Warehouse

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be

  2. Hydrostatic and osmotic pressure activated channel in plant vacuole

    PubMed Central

    Alexandre, Joel; Lassalles, Jean-Paul

    1991-01-01

    The vacuolar membrane of red beet vacuoles contains a channel which was not gated by voltage or Ca2+ ions. Its unit conductance was 20 pS in 200 mM symmetrical KCl solutions. It was stretch activated: the conductance remained constant but the probability of opening was increased by suction or pressure applied to a membrane patch. A 1.5-kNm-2 suction applied to isolated patches or a 0.08-kNm-2 pressure applied to a 45-μm diameter vacuole induced an e-fold change in the mean current. A 75% inhibition of the channel current was obtained with 10 μM Gd3+ on the cytoplasmic side. The channel was more permeable for K+ than for Cl- (PK/PCl ∼ 3). A possible clustering for this channel was suggested by the recordings of the patch current. The channel properties were not significantly affected by a change in sorbitol osmolality in the solutions under isoosmotic conditions, between 0.6 and 1 mol/kg sorbitol. However, the channel was very sensitive to an osmotic gradient. A 0.2-mol/kg sorbitol gradient induced a two-fold increase in unit conductance and a thirty-fold increase in the mean patch current of the channel. A current was measured, when the osmotic gradient was the only driving force applied to the vacuolar membrane. The hydrostatic and osmotic pressure (HOP) activated channel described in this paper could be gated in vivo condition by a change in osmolality, without the need of a change in the turgor pressure in the cell. The HOP channel represents a possible example of an osmoreceptor for plant cells. PMID:19431814

  3. Cyclic nucleotide-activated channels in carp olfactory receptor cells.

    PubMed

    Kolesnikov, S S; Kosolapov, A V

    1993-07-25

    When applied from the cytoplasmic side, cyclic 3',5'-adenosine and guanosine monophosphates reversibly increased the ion permeability of inside-out patches of carp olfactory neuron plasma membrane. The cAMP (cGMP)-induced permeability via cAMP (cGMP) concentration was fitted by Hill's equation with the exponents of 1.07 +/- 0.15 (1.12 +/- 0.05) and EC50 = 1.3 +/- 0.6 microM (0.9 +/- 0.3 microM). Substitution of NaCl in the bathing solution by chlorides of other alkali metals resulted in a slight shift of reversal potential of the cyclic nucleotide-dependent (CN) current, which indicates a weak selectivity of the channels. Permeability coefficients calculated by Goldman-Hodgkin-Katz's equation corresponded to the following relation: PNa/PK/PLi/PRb/PCs = 1:0.98:0.94:0.70:0.61. Ca2+ and Mg2+ in physiological concentrations blocked the channels activated by cyclic nucleotides (CN-channels). In the absence of divalent cations the conductance of single CN-channels was equal to 51 +/- 9 pS in 100 mM NaCl solution. Channel density did not exceed 1 micron-2. The maximal open state probability of the channel (Po) tended towards 1.0 at a high concentration of cAMP or cGMP. Dichlorobenzamil decreased Po without changing the single CN-channel' conductance. CN-channels exhibited burst activity. Mean open and closed times as well as the burst duration depended on agonist concentration. A kinetic model with four states (an inactivated, a closed and two open ones) is suggested to explain the regularities of CN-channel gating and dose-response relations. PMID:8334139

  4. Novel Activation of Voltage-gated K+ Channels by Sevoflurane*

    PubMed Central

    Barber, Annika F.; Liang, Qiansheng; Covarrubias, Manuel

    2012-01-01

    Voltage-gated ion channels are modulated by halogenated inhaled general anesthetics, but the underlying molecular mechanisms are not understood. Alkanols and halogenated inhaled anesthetics such as halothane and isoflurane inhibit the archetypical voltage-gated Kv3 channel homolog K-Shaw2 by stabilizing the resting/closed states. By contrast, sevoflurane, a more heavily fluorinated ether commonly used in general anesthesia, specifically activates K-Shaw2 currents at relevant concentrations (0.05–1 mm) in a rapid and reversible manner. The concentration dependence of this modulation is consistent with the presence of high and low affinity interactions (KD = 0.06 and 4 mm, respectively). Sevoflurane (<1 mm) induces a negative shift in the conductance-voltage relation and increases the maximum conductance. Furthermore, suggesting possible roles in general anesthesia, mammalian Kv1.2 and Kv1.5 channels display similar changes. Quantitative description of the observations by an economical allosteric model indicates that sevoflurane binding favors activation gating and eliminates an unstable inactivated state outside the activation pathway. This study casts light on the mechanism of the novel sevoflurane-dependent activation of Kv channels, which helps explain how closely related inhaled anesthetics achieve specific actions and suggests strategies to develop novel Kv channel activators. PMID:23038249

  5. Scour and fill in a stream channel, East Fork River, western Wyoming

    USGS Publications Warehouse

    Andrews, Edmund D.

    1978-01-01

    Frequent soundings of 11 cross sections located on the East Fork River, western Wyoming, during a spring flood revealed two sequences of channel scour and fill. All sections either scoured or filled at the flood crests relative to their low-flow condition. The sections which scoured at high flow (called scouring sections) generally tended to fill at low flow. Conversely, the sections which filled at high flow (called filling sections) generally tended to scour at low flow. The critical discharge at which the character of a section changed from scouring to filling or vice versa was approximately the bankfull discharge. Therefore, at any discharge except bankfull, some sections were accumulating bed material (fill), while others were being depleted of bed material (scour). (Woodard-USGS)

  6. Stretch-activated cation channel from larval bullfrog skin.

    PubMed

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B

    2010-05-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed a variable pattern of opening and closing with continuing suction. Current-voltage plots demonstrated linear or inward rectification and single channel conductances of 44-56 pS with NaCl or KCl Ringer's solution as the pipette solution, and a reversal potential (-V(p)) of 20-40 mV. The conductance was markedly reduced with N-methyl-D-glucamide (NMDG)-Cl Ringer's solution in the pipette. Neither amiloride nor ATP, which are known to stimulate an apical cation channel in Ussing chamber preparations of larval frog skin, produced channel activation nor did these compounds affect the response to suction. Stretch activation was not affected by varying the pipette concentrations of Ca(2+) between 0 mmol l(-1) and 4 mmol l(-1) or by varying pH between 6.8 and 8.0. However, conductance was reduced with 4 mmol l(-1) Ca(2+). Western blot analysis of membrane homogenates from larval bullfrog and larval toad skin identified proteins that were immunoreactive with mammalian TRPC1 and TRPC5 (TRPC, canonical transient receptor potential channel) antibodies while homogenates of skin from newly metamorphosed bullfrogs were positive for TRPC1 and TRPC3/6/7 antibodies. The electrophysiological response of larval bullfrog skin resembles that of a stretch-activated cation channel characterized in Xenopus oocytes and proposed to be TRPC1. These results indicate this channel persists in all life stages of anurans and that TRP isoforms may be important for sensory functions of their skin. PMID:20435829

  7. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?

    PubMed Central

    Félétou, Michel

    2009-01-01

    The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. PMID:19187341

  8. Channel adjustment of an unstable coarse-grained stream: Opposing trends of boundary and critical shear stress, and the applicability of extremal hypotheses

    USGS Publications Warehouse

    Simon, A.; Thorne, C.R.

    1996-01-01

    Channel adjustments in the North Fork Toutle River and the Toutle River main stem were initiated by deposition of a 2.5km3 debris avalanche and associated lahars that accompanied the catastrophic eruption of Mount St. Helens, Washington on 18 May 1980. Channel widening was the dominant process. In combination, adjustments caused average boundary shear stress to decrease non-linearly with time and critical shear stress to increase non-linearly with time. At the discharge that is equalled or exceeded 1 per cent of the time, these trends converged by 1991-1992 so that excess shear stress approached minimum values. Extremal hypotheses, such as minimization of unit stream power and minimization of the rate of energy dissipation (minimum stream power), are shown to be applicable to dynamic adjustments of the Toutle River system. Maximization of the Darcy-Weisbach friction factor did not occur, but increases in relative bed roughness, caused by the concomitant reduction in hydraulic depths and bed-material coarsening, were documented. Predictions of stable channel geometries using the minimum stream power approach were unsuccessful when compared to the 1991-1992 geometries and bed-material characteristics measured in the field. It is concluded that the predictions are not applicable because the study reaches are not truly stable and cannot become so until a new floodplain has been formed by renewed channel incision, retreat of stream-side hummocks, and establishment of riparian vegetation to limit the destabilizing effects of large floods. Further, prediction of energy slope (and consequently stream power) by the sediment transport equations is inaccurate because of the inability of the equations to account for significant contributions of finer grained (sand and gravel) bank materials (relative to the coarsened channel bed) from bank retreat and from upstream terrace erosion.

  9. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    PubMed

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation. PMID:25896054

  10. Activation of peripheral KCNQ channels relieves gout pain

    PubMed Central

    Zheng, Yueming; Xu, Haiyan; Zhan, Li; Zhou, Xindi; Chen, Xueqin; Gao, Zhaobing

    2015-01-01

    Abstract Intense inflammatory pain caused by urate crystals in joints and other tissues is a major symptom of gout. Among therapy drugs that lower urate, benzbromarone (BBR), an inhibitor of urate transporters, is widely used because it is well tolerated and highly effective. We demonstrate that BBR is also an activator of voltage-gated KCNQ potassium channels. In cultured recombinant cells, BBR exhibited significant potentiation effects on KCNQ channels comparable to previously reported classical activators. In native dorsal root ganglion neurons, BBR effectively overcame the suppression of KCNQ currents, and the resultant neuronal hyperexcitability caused by inflammatory mediators, such as bradykinin (BK). Benzbromarone consistently attenuates BK-, formalin-, or monosodium urate–induced inflammatory pain in rat and mouse models. Notably, the analgesic effects of BBR are largely mediated through peripheral and not through central KCNQ channels, an observation supported both by pharmacokinetic studies and in vivo experiments. Moreover, multiple residues in the superficial part of the voltage sensing domain of KCNQ channels were identified critical for the potentiation activity of BBR by a molecular determinant investigation. Our data indicate that activation of peripheral KCNQ channels mediates the pain relief effects of BBR, potentially providing a new strategy for the development of more effective therapies for gout. PMID:25735002

  11. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones.

    PubMed

    Bansal, V; Fisher, T E

    2016-06-01

    The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour. PMID:27091544

  12. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  13. Detecting channel riparian vegetation response to best-management-practices implementation in ephemeral streams with the use of spot high-resolution visible imagery

    USGS Publications Warehouse

    Kamp, Kendall Vande; Rigge, Matthew B.; Troelstrup, Nels H., Jr.; Smart, Alexander J.; Wylie, Bruce

    2013-01-01

    Heavily grazed riparian areas are commonly subject to channel incision, a lower water table, and reduced vegetation, resulting in sediment delivery above normal regimes. Riparian and in-channel vegetation functions as a roughness element and dissipates flow energy, maintaining stable channel geometry. Ash Creek, a tributary of the Bad River in western South Dakota contains a high proportion of incised channels, remnants of historically high grazing pressure. Best management practices (BMP), including off-stream watering sources and cross fencing, were implemented throughout the Bad River watershed during an Environmental Protection Agency (EPA) 319 effort to address high sediment loads. We monitored prairie cordgrass (Spartina pectinata Link) establishment within stream channels for 16 yr following BMP implementation. Photos were used to group stream reaches (n = 103) subjectively into three classes; absent (estimated  40% cover; n = 16) based on the relative amount of prairie cordgrass during 2010 assessments of ephemeral channels. Reaches containing drainage areas of 0.54 to 692 ha were delineated with the use of 2010 National Agriculture Imagery Program (NAIP) imagery. Normalized difference vegetation index (NDVI) values were extracted from 5 to 39 sample points proportional to reach length using a series of Satellite Pour l'Observation de la Terre (SPOT) satellite imagery. Normalized NDVI (nNDVI) of 2 152 sample points were determined from pre- and post-BMP images. Mean nNDVI values for each reach ranged from 0.33 to 1.77. ANOVA revealed significant increase in nNDVI in locations classified as present prairie cordgrass cover following BMP implementation. Establishment of prairie cordgrass following BMP implementation was successfully detected remotely. Riparian vegetation such as prairie cordgrass adds channel roughness that reduces the flow energy responsible for channel degradation.

  14. Is in-stream macrophyte growth predictable and what are its impacts on channel-averaged flow characteristics?

    NASA Astrophysics Data System (ADS)

    Jordan, David N.; Thomas, Robert E.; Keevil, Gareth M.; Parsons, Daniel R.; Hardy, Richard J.

    2016-04-01

    Understanding how the growth of aquatic vegetation impacts stage-discharge coupling is vital for river management planning. This study presents an annual record of monthly spatial distribution surveys of the in-stream macrophyte Ranunculus penicillatus coupled with channel form and flow velocity measurements, within a 50 m-long reach of a gravel-bed river. Whereas stage has varied by up to 0.4 m, there has been little change in channel form over the monitoring period (ongoing since 23/07/2014). Macrophyte growth continued from the start of the monitoring period until October 2014 when mean patch area was 6.74 m2, and then decreased throughout a decay phase until January 2015 when mean patch area was 1.12 m2. There was a 75.2% loss of macrophyte surface area between October 2014 and January 2015. The largest patches that remained in January 2015 continued to decay until February. Conversely, new macrophyte patches also began to recolonize the channel during this time. To our knowledge, this is the first evidence of a transition period during which aquatic vegetation is in both decay and recolonization phases simultaneously. In total 69% of patches present in January exhibited regrowth without further decay to form a base for recolonization. Therefore, the spatial distribution of macrophyte patches could be determined to be somewhat persistent. Despite this, due to several different growth factors, there are recognisable differences in both macrophyte patch shape and distribution when comparing data from July 2014 and July 2015, emphasising the unpredictability of macrophyte growth. The decay period of the Ranunculus p. coincided with seasonal high discharges in this catchment. Discharge remained high from January until March 2015, but then began to decrease, reflecting annual peaks in historical records for the study area. Large discharge variations were not matched by a large stage range. Displacement of water by vegetation growth maintained the stage height when

  15. Neuronal modulation of calcium channel activity in cultured rat astrocytes

    SciTech Connect

    Corvalan, V.; Cole, R.; De Vellis, J.; Hagiwara, Susumu )

    1990-06-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca{sup 2+} and blocked by either Cd{sup 2+} or Co{sup 2+} that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron dependent and was not observed when astrocytes were cocultured with purified oligodendrocytes.

  16. Performance of an open limestone channel for treating a stream affected by acid rock drainage (León, Spain).

    PubMed

    Santofimia, Esther; López-Pamo, Enrique

    2016-07-01

    The generation of acid rock drainage (ARD) was observed after the oxidation dissolution of pyrite-rich black shales, which were excavated during the construction of a highway in León (Spain). ARDs are characterized by the presence of high concentrations of sulfate and metals (Al, Fe, Mn, Zn, Cu, Co, Ni, Th, and U) that affect the La Silva stream. Dissolved element concentrations showed values between one and four orders of magnitude higher than those of natural waters of this area. A passive treatment system was constructed; the aim of which was to improve the quality of the water of the stream. This work provides a hydrochemical characterization of the La Silva stream after its transit through the different elements that constitute the passive treatment system (open limestone channel (OLC), small ponds, and a wetland), during its first year of operation. The passive treatment system has two sections separated by a tunnel 230 m long. The first section, which stretches between the highway and the tunnel entrance, is an OLC 350 m long with a slope of 16 %. The second section, which stretches from the tunnel exit to the end wetland, has a length of 700 m and a slope of 6 %; it is in this section where six small ponds are located. In the first section of this passive treatment system, the OLC was effectively increasing the pH from 3 to 4-4.5 and eliminating all of the dissolved Fe and the partially dissolved Al. These elements, after hydrolysis at a pH 3-3.5 and 4-4.5, respectively, had precipitated as schwertmannite and hydrobasaluminite, while other dissolved metals were removed totally or partially for adsorption by the precipitates and/or by coprecipitation. The second section receives different inputs of water such as ARDs and natural waters. After exiting the treatment system, the stream is buffered by Al at a pH of 4-4.3, showing high Al concentrations (19-101 mg/L) but with a complete removal of dissolved Fe. Unfortunately, the outflow shows similar or

  17. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  18. Biogeochemistry and Hydrology in Streams Impacted by Legacy Sediments and Urbanization: Implications for Stream Restoration

    EPA Science Inventory

    The groundwater–surface water interface, consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water interac...

  19. Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture

    PubMed Central

    Ganguly, Sujoy; Williams, Lucy S.; Palacios, Isabel M.; Goldstein, Raymond E.

    2012-01-01

    Cells can localize molecules asymmetrically through the combined action of cytoplasmic streaming, which circulates their fluid contents, and specific anchoring mechanisms. Streaming also contributes to the distribution of nutrients and organelles such as chloroplasts in plants, the asymmetric position of the meiotic spindle in mammalian embryos, and the developmental potential of the zygote, yet little is known quantitatively about the relationship between streaming and the motor activity which drives it. Here we use Particle Image Velocimetry to quantify the statistical properties of Kinesin-dependent streaming during mid-oogenesis in Drosophila. We find that streaming can be used to detect subtle changes in Kinesin activity and that the flows reflect the architecture of the microtubule cytoskeleton. Furthermore, based on characterization of the rheology of the cytoplasm in vivo, we establish estimates of the number of Kinesins required to drive the observed streaming. Using this in vivo data as the basis of a model for transport, we suggest that the disordered character of transport at mid-oogenesis, as revealed by streaming, is an important component of the localization dynamics of the body plan determinant oskar mRNA. PMID:22949706

  20. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  1. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  2. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  3. Phosphatidylinositol-3-kinase regulates mast cell ion channel activity.

    PubMed

    Lam, Rebecca S; Shumilina, Ekaterina; Matzner, Nicole; Zemtsova, Irina M; Sobiesiak, Malgorzata; Lang, Camelia; Felder, Edward; Dietl, Paul; Huber, Stephan M; Lang, Florian

    2008-01-01

    Stimulation of the mast cell IgE-receptor (FcepsilonRI) by antigen leads to stimulation of Ca(2+) entry with subsequent mast cell degranulation and release of inflammatory mediators. Ca(2+) further activates Ca(2+)-activated K(+) channels, which in turn provide the electrical driving force for Ca(2+) entry. Since phosphatidylinositol (PI)-3-kinase has previously been shown to be required for mast cell activation and degranulation, we explored, whether mast cell Ca(2+) and Ca(2+)-activated K(+) channels may be sensitive to PI3-kinase activity. Whole-cell patch clamp experiments and Fura-2 fluorescence measurements for determination of cytosolic Ca(2+) concentration were performed in mouse bone marrow-derived mast cells either treated or untreated with the PI3-kinase inhibitors LY-294002 (10 muM) and wortmannin (100 nM). Antigen-stimulated Ca(2+) entry but not Ca(2+) release from the intracellular stores was dramatically reduced upon PI3-kinase inhibition. Ca(2+) entry was further inhibited by TRPV blocker ruthenium red (10 muM). Ca(2+) entry following readdition after Ca(+)-store depletion with thapsigargin was again decreased by LY-294002, pointing to inhibition of store-operated channels (SOCs). Moreover, inhibition of PI3-kinase abrogated IgE-stimulated, but not ionomycin-induced stimulation of Ca(2+)-activated K(+) channels. These observations disclose PI3-kinase-dependent regulation of Ca(2+) entry and Ca(2+)-activated K(+)-channels, which in turn participate in triggering mast cell degranulation. PMID:18769043

  4. Scour and fill in a stream channel, East Fork River, western Wyoming

    USGS Publications Warehouse

    Andrews, Edmund D.

    1979-01-01

    Frequent soundings of 11 cross sections located on the East Fork River, western Wyoming, during a spring flood revealed two sequences of channel scour and fill. All sections either scoured or filled at the flood crests relative to their low flow condition. The sections which scoured at high flow (called scouring sections) generally tended to fill at low flow. Conversely, the sections which filled at high flow (called filling sections) generally tended to scour at low flow. The critical discharge at which the character of a section changed from scouring to filling or vice-versa was approximately the bankfull discharge. Therefore, at any discharge except bankfull, some sections were accumulating bed material (fill), while others were being depleted of bed material (scour). The mean at-a-station hydraulic geometry of the East Fork River agrees with the theoretical minimum-variance hydraulic geometry. Thus, on the average, the East Fork River accommodates a change in discharge by mutually minimizing the adjustment of velocity, width, and depth. The hydraulic geometry of every cross section, however, deviated from the mean of the reach, and the associated sequence of scour and fill was a consequence of the deviation. The scouring sections had larger velocity and smaller width and roughness hydraulic exponents than the mean of the reach. Consequently, the sediment-transport rate varied more rapidly with discharge in the scouring sections than the mean of the reach. Hence, these sections had relatively large sediment-transport rates and scoured when discharge exceeded bankfull, and relatively small sediment-transport rates and filled when discharge was less than bankfull. Conversely, the filling sections had smaller velocity and larger width and roughness hydraulic exponents than the mean of the reach. Consequently, the sediment-transport rate varied with discharge in the filling sections less rapidly than the mean of the reach. These sections had relatively small

  5. TRPV3 channels mediate strontium-induced mouse egg activation

    PubMed Central

    Carvacho, Ingrid; Lee, Hoi Chang; Fissore, Rafael A.; Clapham, David E.

    2014-01-01

    SUMMARY In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a Transient Receptor Potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3−/− eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, as TrpV3−/− eggs failed to permeate Sr2+ or undergo strontium-induced activation. We propose that TRPV3 is the major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation. PMID:24316078

  6. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  7. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  8. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  9. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  10. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  11. Spatial contributions of diffuse inputs and within-channel processes to the form of stream water phosphorus over storm events

    NASA Astrophysics Data System (ADS)

    Stutter, M. I.; Langan, S. J.; Cooper, R. J.

    2008-02-01

    SummaryConcentrations of suspended particulate matter (SPM), NO 3-N and P fractions: PO 4-P, dissolved organic P (DOP), particulate P (PP) and bioavailable exchangeable P were examined over 5 storm events in two nested agricultural catchments in NE Scotland: a (51 km 2) catchment and its headwater (4 km 2). NO 3-N showed anticlockwise hysteresis for all storms in both catchments. In contrast, the headwater showed strong clockwise hysteresis of SPM, dissolved and particulate P concentrations, but which weakened through summer to spring. Less pronounced hysteresis of P forms in the larger catchment was attributed to a combination of factors: a less energetic system, nutrient leaching from the floodplain, a point source of a small sewage treatment works and the occurrence of coarser soil and sediment parent materials with less P adsorption and transport capacity. The headwater exhibited a strong 'first flush' effect of sediment and dissolved P, particularly following dry conditions, received a significant transfer of readily-solubilized organic P from the surrounding soils in late summer and after manure applications in winter, and was the likely cause of large sediment associated P signals observed in the 51 km 2 catchment. Our results suggest that steeper gradient headwaters should be targeted for riparian improvements to mitigate soil erosion from headwater fields. The efficiency of riparian erosion controls is also dependant on the size of the store of fine sediment material within the stream channel and this may be large.

  12. Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km.

    PubMed

    Yoshida, Masato; Hirooka, Toshihiko; Kasai, Keisuke; Nakazawa, Masataka

    2016-01-11

    We demonstrate the first 40 Gbit/s single-channel polarization-multiplexed, 5 Gsymbol/s, 16 QAM quantum noise stream cipher (QNSC) transmission over 480 km by incorporating ASE quantum noise from EDFAs as well as the quantum shot noise of the coherent state with multiple photons for the random masking of data. By using a multi-bit encoded scheme and digital coherent transmission techniques, secure optical communication with a record data capacity and transmission distance has been successfully realized. In this system, the signal level received by Eve is hidden by both the amplitude and the phase noise. The highest number of masked signals, 7.5 x 10(4), was achieved by using a QAM scheme with FEC, which makes it possible to reduce the output power from the transmitter while maintaining an error free condition for Bob. We have newly measured the noise distribution around I and Q encrypted data and shown experimentally with a data size of as large as 2(25) that the noise has a Gaussian distribution with no correlations. This distribution is suitable for the random masking of data. PMID:26832295

  13. Physiological mechanisms for the modulation of pannexin 1 channel activity

    PubMed Central

    Sandilos, Joanna K; Bayliss, Douglas A

    2012-01-01

    It is widely recognized that ATP, along with other nucleotides, subserves important intercellular signalling processes. Among various nucleotide release mechanisms, the relatively recently identified pannexin 1 (Panx1) channel is gaining prominence by virtue of its ability to support nucleotide permeation and release in a variety of different tissues. Here, we review recent advances in our understanding of the factors that control Panx1 channel activity. By using electrophysiological and biochemical approaches, diverse mechanisms that dynamically regulate Panx1 channel function have been identified in various settings; these include, among others, activation by caspase-mediated channel cleavage in apoptotic immune cells, by G protein-coupled receptors in vascular smooth muscle, by low oxygen tension in erythrocytes and neurons, by high extracellular K+ in various cell types and by stretch/strain in airway epithelia. Delineating the distinct mechanisms of Panx1 modulation that prevail in different physiological contexts provides the possibility that these channels, and ATP release, could ultimately be targeted in a context-dependent manner. PMID:23070703

  14. Stream Interactions in STEREO and THEMIS Data and Resulting Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; St Cyr, O. C.; Sibeck, D. G.; Zhang, H.; Jian, L.; Russell, C. T.; Luhmann, J. G.

    2009-12-01

    During this unusual solar minimum the decrease in solar activity has resulted in less geomagnetic activity. The observed activity, which ultimately arises from changes in the solar wind, has been from stream interaction regions (SIRs), shocks, and a few interplanetary coronal mass ejections (ICMEs). Stream interactions and shocks are identified in STEREO PLASTIC and ACE data and CMEs are identified in STEREO SECCHI. These events are studied in THEMIS data when the spacecraft are in dayside configuration. The propagation of these structures to the magnetopause, the resulting magnetospheric response, and any storm and substorm activity is discussed.

  15. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  16. Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams

    USGS Publications Warehouse

    Gulis, V.; Rosemond, A.D.; Suberkropp, K.; Weyers, H.S.; Benstead, J.P.

    2004-01-01

    1. We determined the effects of nutrient enrichment on wood decomposition rates and microbial activity during a 3-year study in two headwater streams at Coweeta Hydrologic Laboratory, NC, U.S.A. After a 1-year pretreatment period, one of the streams was continuously enriched with inorganic nutrients (nitrogen and phosphorus) for 2 years while the other stream served as a reference. We determined the effects of enrichment on both wood veneers and sticks, which have similar carbon quality but differ in physical characteristics (e.g. surface area to volume ratios, presence of bark) that potentially affect microbial colonisation and activity. 2. Oak wood veneers (0.5 mm thick) were placed in streams monthly and allowed to decompose for approximately 90 days. Nutrient addition stimulated ash-free dry mass loss and increased mean nitrogen content, fungal biomass and microbial respiration on veneers in the treatment stream compared with the reference. The magnitude of the response to enrichment was great, with mass loss 6.1 times, and per cent N, fungal biomass and microbial respiration approximately four times greater in the treatment versus reference stream. 3. Decomposition rate and nitrogen content of maple sticks (ca. 1-2 cm diameter) also increased; however, the effect was less pronounced than for veneers. Wood response overall was greater than that determined for leaves in a comparable study, supporting the hypothesis that response to enrichment may be greater for lower quality organic matter (high C:N) than for higher quality (low C:N) substrates. 4. Our results show that moderate nutrient enrichment can profoundly affect decomposition rate and microbial activity on wood in streams. Thus, the timing and availability of wood that provides retention, structure, attachment sites and food in stream ecosystems may be affected by nutrient concentrations raised by human activities.

  17. MWSA's physical habitat approach - combining knowledge of habitat requirements with mechanisms of geomorphic and anthropogenic influence on stream channel form

    EPA Science Inventory

    Effective environmental policy decisions benefit from stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilit...

  18. Molecular Mechanisms of Large-Conductance Ca2+-Activated Potassium Channel Activation by Ginseng Gintonin

    PubMed Central

    Choi, S. H.; Lee, B. H.; Hwang, S. H.; Kim, H. J.; Lee, S. M.; Kim, H. C.; Rhim, H. W.; Nah, S. Y.

    2013-01-01

    Gintonin is a unique lysophosphatidic acid (LPA) receptor ligand found in Panax ginseng. Gintonin induces transient [Ca2+]i through G protein-coupled LPA receptors. Large-conductance Ca2+-activated K+ (BKCa) channels are expressed in blood vessels and neurons and play important roles in blood vessel relaxation and attenuation of neuronal excitability. BKCa channels are activated by transient [Ca2+]i and are regulated by various Ca2+-dependent kinases. We investigated the molecular mechanisms of BKCa channel activation by gintonin. BKCa channels are heterologously expressed in Xenopus oocytes. Gintonin treatment induced BKCa channel activation in oocytes expressing the BKCa channel α subunit in a concentration-dependent manner (EC50 = 0.71 ± 0.08 µg/mL). Gintonin-mediated BKCa channel activation was blocked by a PKC inhibitor, calphostin, and by the calmodulin inhibitor, calmidazolium. Site-directed mutations in BKCa channels targeting CaM kinase II or PKC phosphorylation sites but not PKA phosphorylation sites attenuated gintonin action. Mutations in the Ca2+ bowl and the regulator of K+ conductance (RCK) site also blocked gintonin action. These results indicate that gintonin-mediated BKCa channel activations are achieved through LPA1 receptor-phospholipase C-IP3-Ca2+-PKC-calmodulin-CaM kinase II pathways and calcium binding to the Ca2+ bowl and RCK domain. Gintonin could be a novel contributor against blood vessel constriction and over-excitation of neurons. PMID:23662129

  19. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  20. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, Larry B.; Brown, Gregory K.; Nettesheim, Todd G.; Murphy, Elizabeth W.; Bartell, Stephen E.; Schoenfuss, Heiko L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impactedstreams, aquatic organisms such as fish are continuously exposed to biologically-activechemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-activechemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (cis-androsterone were detected at even lower concentrations (< 0.005 μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-activechemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue

  1. Lipid bilayer array for simultaneous recording of ion channel activities

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  2. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation. PMID:26162812

  3. Activation of peripheral KCNQ channels attenuates inflammatory pain

    PubMed Central

    2014-01-01

    Background Refractory chronic pain dramatically reduces the quality of life of patients. Existing drugs cannot fully achieve effective chronic pain control because of their lower efficacy and/or accompanying side effects. Voltage-gated potassium channels (KCNQ) openers have demonstrated their analgesic effect in preclinical and clinical studies, and are thus considered to be a potential therapeutic target as analgesics. However, these drugs exhibit a narrow therapeutic window due to their imposed central nerve system (CNS) side effects. To clarify the analgesic effect by peripheral KCNQ channel activation, we investigated whether the analgesic effect of the KCNQ channel opener, retigabine, is inhibited by intracerebroventricular (i.c.v.) administration of the KCNQ channel blocker, 10, 10-bis (4-Pyridinylmethyl)-9(10H) -anthracenone dihydrochloride (XE-991) in rats. Results Oral administration (p.o.) of retigabine showed an anticonvulsant effect on maximal electronic seizures and an analgesic effect on complete Freund’s adjuvant-induced thermal hyperalgesia. However, impaired motor coordination and reduced exploratory behavior were also observed at the analgesic doses of retigabine. Administration (i.c.v.) of XE-991 reversed the retigabine-induced anticonvulsant effect, impaired motor coordination and reduced exploratory behavior but not the analgesic effect. Moreover, intraplantar administration of retigabine or an additional KCNQ channel opener, N-(6-Chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243), inhibited formalin-induced nociceptive behavior. Conclusions Our findings suggest that the peripheral sensory neuron is the main target for KCNQ channel openers to induce analgesia. Therefore, peripheral KCNQ channel openers that do not penetrate the CNS may be suitable analgesic drugs as they would prevent CNS side effects. PMID:24555569

  4. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  5. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    PubMed

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1. PMID:24489780

  6. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  7. Mode couplings in a two-stream free-electron laser with a helical wiggler and an ion-channel guiding

    SciTech Connect

    Mohsenpour, Taghi Alirezaee, Hajar

    2014-08-15

    In this study, the method of perturbation has been applied to obtain the dispersion relation (DR) of a two-stream free-electron laser (FEL) with a helical wiggler and an ion-channel with all relativistic effects on waves. This DR has been solved numerically to find the unstable modes and their growth rate. Numerical solutions of DR show that the growth rate is considerably enhanced in comparison with single-stream free-electron laser. In group II orbits, with relatively large wiggler induced velocities, new couplings are found. The effect of the velocity difference of the two electron beams on the instabilities has also been investigated in this study. Moreover, the effect of the ion-channel density on the maximum growth rate of FEL resonance has been analyzed.

  8. Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland

    USGS Publications Warehouse

    Cinotto, Peter J.

    2003-01-01

    Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for

  9. Chemical activation of the mechanotransduction channel Piezo1

    PubMed Central

    Syeda, Ruhma; Xu, Jie; Dubin, Adrienne E; Coste, Bertrand; Mathur, Jayanti; Huynh, Truc; Matzen, Jason; Lao, Jianmin; Tully, David C; Engels, Ingo H; Petrassi, H Michael; Schumacher, Andrew M; Montal, Mauricio; Bandell, Michael; Patapoutian, Ardem

    2015-01-01

    Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ∼3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function. DOI: http://dx.doi.org/10.7554/eLife.07369.001 PMID:26001275

  10. 30 CFR 784.28 - Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... itself, and those activities would occur on the surface of land subject to the buffer requirement of... buffer that you propose to implement instead of maintaining a 100-foot undisturbed buffer between surface activities and the perennial or intermittent stream; and (3) Explain how the lesser buffer, together with...

  11. 30 CFR 784.28 - Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... itself, and those activities would occur on the surface of land subject to the buffer requirement of... buffer that you propose to implement instead of maintaining a 100-foot undisturbed buffer between surface activities and the perennial or intermittent stream; and (3) Explain how the lesser buffer, together with...

  12. 30 CFR 784.28 - Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... itself, and those activities would occur on the surface of land subject to the buffer requirement of... buffer that you propose to implement instead of maintaining a 100-foot undisturbed buffer between surface activities and the perennial or intermittent stream; and (3) Explain how the lesser buffer, together with...

  13. 30 CFR 784.28 - Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... itself, and those activities would occur on the surface of land subject to the buffer requirement of... buffer that you propose to implement instead of maintaining a 100-foot undisturbed buffer between surface activities and the perennial or intermittent stream; and (3) Explain how the lesser buffer, together with...

  14. 30 CFR 784.28 - Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... itself, and those activities would occur on the surface of land subject to the buffer requirement of... buffer that you propose to implement instead of maintaining a 100-foot undisturbed buffer between surface activities and the perennial or intermittent stream; and (3) Explain how the lesser buffer, together with...

  15. Structural aspects of calcium-release activated calcium channel function

    PubMed Central

    Stathopulos, Peter B; Ikura, Mitsuhiko

    2013-01-01

    Store-operated calcium (Ca2+) entry is the process by which molecules located on the endo/sarcoplasmic reticulum (ER/SR) respond to decreased luminal Ca2+ levels by signaling Ca2+ release activated Ca2+ channels (CRAC) channels to open on the plasma membrane (PM). This activation of PM CRAC channels provides a sustained cytosolic Ca2+ elevation associated with myriad physiological processes. The identities of the molecules which mediate SOCE include stromal interaction molecules (STIMs), functioning as the ER/SR luminal Ca2+ sensors, and Orai proteins, forming the PM CRAC channels. This review examines the current available high-resolution structural information on these CRAC molecular components with particular focus on the solution structures of the luminal STIM Ca2+ sensing domains, the crystal structures of cytosolic STIM fragments, a closed Orai hexameric crystal structure and a structure of an Orai1 N-terminal fragment in complex with calmodulin. The accessible structural data are discussed in terms of potential mechanisms of action and cohesiveness with functional observations. PMID:24213636

  16. Atomic basis for therapeutic activation of neuronal potassium channels

    NASA Astrophysics Data System (ADS)

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-09-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.

  17. Atomic basis for therapeutic activation of neuronal potassium channels

    PubMed Central

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2–5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators. PMID:26333338

  18. Structure and activity of the acid-sensing ion channels

    PubMed Central

    Sherwood, Thomas W.; Frey, Erin N.

    2012-01-01

    The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of complex behaviors including fear, anxiety, pain, depression, learning, and memory. ASICs have also been implicated in neuronal degeneration accompanying ischemia and multiple sclerosis. As a whole, ASICs represent novel therapeutic targets for several clinically important disorders. An understanding of the correlation between ASIC structure and function will help to elucidate their mechanism of action and identify potential therapeutics that specifically target these ion channels. Despite the seemingly simple nature of proton binding, multiple studies have shown that proton-dependent gating of ASICs is quite complex, leading to activation and desensitization through distinct structural components. This review will focus on the structural aspects of ASIC gating in response to both protons and the newly discovered activators GMQ and MitTx. ASIC modulatory compounds and their action on proton-dependent gating will also be discussed. This review is dedicated to the memory of Dale Benos, who made a substantial contribution to our understanding of ASIC activity. PMID:22843794

  19. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet. PMID:26887494

  20. Ecosystem Function in Appalachian Headwater Streams during an Active Invasion by the Hemlock Woolly Adelgid

    PubMed Central

    Northington, Robert M.; Webster, Jackson R.; Benfield, Ernest F.; Cheever, Beth M.; Niederlehner, Barbara R.

    2013-01-01

    Forested ecosystems in the southeastern United States are currently undergoing an invasion by the hemlock woolly adelgid (HWA). Previous studies in this area have shown changes to forest structure, decreases in canopy cover, increases in organic matter, and changes to nutrient cycling on the forest floor and soil. Here, we were interested in how the effects of canopy loss and nutrient leakage from terrestrial areas would translate into functional changes in streams draining affected watersheds. We addressed these questions in HWA-infested watersheds at the Coweeta Hydrologic Laboratory in North Carolina. Specifically, we measured stream metabolism (gross primary production and ecosystem respiration) and nitrogen uptake from 2008 to 2011 in five streams across the Coweeta basin. Over the course of our study, we found no change to in-stream nutrient concentrations. While canopy cover decreased annually in these watersheds, this change in light penetration did not translate to higher rates of in-stream primary production during the summer months of our study. We found a trend towards greater heterotrophy within our watersheds, where in-stream respiration accounted for a much larger component of net ecosystem production than GPP. Additionally, increases in rhododendron cover may counteract changes in light and nutrient availability that occurred with hemlock loss. The variability in our metabolic and uptake parameters suggests an actively-infested ecosystem in transition between steady states. PMID:23613803

  1. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    PubMed

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. PMID:26766394

  2. Active Learning in Context-Driven Stream Mining With an Application to Image Mining.

    PubMed

    Tekin, Cem; van der Schaar, Mihaela

    2015-11-01

    We propose an image stream mining method in which images arrive with contexts (metadata) and need to be processed in real time by the image mining system (IMS), which needs to make predictions and derive actionable intelligence from these streams. After extracting the features of the image by preprocessing, IMS determines online the classifier to use on the extracted features to make a prediction using the context of the image. A key challenge associated with stream mining is that the prediction accuracy of the classifiers is unknown, since the image source is unknown; thus, these accuracies need to be learned online. Another key challenge of stream mining is that learning can only be done by observing the true label, but this is costly to obtain. To address these challenges, we model the image stream mining problem as an active, online contextual experts problem, where the context of the image is used to guide the classifier selection decision. We develop an active learning algorithm and show that it achieves regret sublinear in the number of images that have been observed so far. To further illustrate and assess the performance of our proposed methods, we apply them to diagnose breast cancer from the images of cellular samples obtained from the fine needle aspirate of breast mass. Our findings show that very high diagnosis accuracy can be achieved by actively obtaining only a small fraction of true labels through surgical biopsies. Other applications include video surveillance and video traffic monitoring. PMID:26087490

  3. Extreme high-latitude activity from high-speed stream embedded Alfvén waves

    NASA Astrophysics Data System (ADS)

    Tanskanen, Eija; Mursula, Kalevi; Hynönen, Reko; Snekvik, Kristian; Slavin, James; Goldstein, Melvyn

    2016-04-01

    Geomagnetic activity is known to be driven by interplanetary coronal mass ejections (ICME), interaction regions and high-speed streams (HSS). Storm activity in low-latitudes is mainly driven by ICMEs while substorm activity in high-latitudes is strongly modulated by high-speed streams. In this work we explore what makes high-speed streams more powerful in modulating high-latitudes than ICMEs. We identified Alfvén waves from 1995 to 2011. Alfvén waves are found throughout the solar cycle, but they are fastest, most frequent and most geo-effective in the declining phase of the solar cycle 23, when the number of high-speed streams at the Eart&hacute;s vicinity increases rapidly. HSS embedded Alfvén waves were found to carry twice as much Alfvénicity than ICME embedded Alfvén waves. Furthermore, we found a rapid transition from predominance of slow Alfvén waves in 2002 to fast Alfvén waves in 2003, which coincide with the 40% increase in substorm number and 30% increase in substorm strength. We conclude that Alfvénic fluctuations embedded to high-speed streams make them more powerful in modulating high-latitudes than ICMEs, and thus cause largest threat to high-latitude infrastructure during declining solar cycle phases.

  4. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  5. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.

  6. Differential effects of viewpoint on object-driven activation in dorsal and ventral streams.

    PubMed

    James, Thomas W; Humphrey, G Keith; Gati, Joseph S; Menon, Ravi S; Goodale, Melvyn A

    2002-08-15

    Using fMRI, we showed that an area in the ventral temporo-occipital cortex (area vTO), which is part of the human homolog of the ventral stream of visual processing, exhibited priming for both identical and depth-rotated images of objects. This pattern of activation in area vTO corresponded to performance in a behavioral matching task. An area in the caudal part of the intraparietal sulcus (area cIPS) also showed priming, but only with identical images of objects. This dorsal-stream area treated rotated images as new objects. The difference in the pattern of priming-related activation in the two areas may reflect the respective roles of the ventral and dorsal streams in object recognition and object-directed action. PMID:12194877

  7. Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.; Storrar, Robert D.; Rea, Brice R.

    2016-04-01

    A 200-km-long and 10-km-wide linear assemblage of till-filled geometrical ridges on the bed of the Maskwa palaeo-ice stream of the late Wisconsinan southwest Laurentide Ice Sheet are interpreted as crevasse-squeeze ridges (CSR) developed during internal flow unit reorganization, immediately prior to ice stream shutdown. Ridge orientations are predominantly orientated WNW-ESE, with a subordinate WSW-ENE alignment, both indicative of ice fracture development transverse to former ice stream flow, as indicated by NNE-SSW aligned MSGL. Subglacial till injection into basal and/or full depth, mode I and II crevasses occurred at the approximate centreline of the ice stream, in response to extension and fracturing. Landform preservation indicates that this took place during the final stages of ice streaming, immediately prior to ice stream shutdown. This linear zone of ice fracturing therefore likely represents the narrowing of the fast-flowing trunk, similar to the plug flow identified in some surging valley glaciers. Lateral drag between the final active flow unit and the slower moving ice on either side is likely recorded by the up-ice bending of the CSR limbs. The resulting CSR corridor, here related to an individual ice stream flow unit, constitutes a previously unreported style of crevasse infilling and contrasts with two existing CSR patterns: (1) wide arcuate zones of CSRs related to widespread fracturing within glacier surge lobes; and (2) narrow concentric arcs of CSRs and recessional push moraines related to submarginal till deformation at active temperate glacier lobes.

  8. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  9. In-stream attenuation of neuro-active pharmaceuticals and their metabolites.

    PubMed

    Writer, Jeffrey H; Antweiler, Ronald C; Ferrer, Imma; Ryan, Joseph N; Thurman, E Michael

    2013-09-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments. PMID:23952127

  10. Ca(2+)-activated K+ channels in rat thymic lymphocytes: activation by concanavalin A.

    PubMed

    Mahaut-Smith, M P; Mason, M J

    1991-08-01

    1. The role of ion channels in the mitogenic response of rat thymic lymphocytes to concanavalin A (ConA) was studied using single-channel patch-clamp recordings and measurements of membrane potential with the fluorescent probe bis-oxonol. 2. ConA (20 micrograms ml-1) evoked a rapid membrane hyperpolarization; Indo-1 measurements indicated a concurrent increase in [Ca2+]i. The hyperpolarization was blocked by cytoplasmic loading with the Ca2+ buffer BAPTA (bis(O-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid), or charybdotoxin, a component of scorpion venom known to block K+ channels in lymphocytes. 3. Cell-attached patch-clamp recordings showed that both ConA and the Ca2+ ionophore ionomycin activated channels with high selectivity for K+. Two conductance levels were observed -6-7 pS and 17-18 pS-measured as inward chord conductance at 60 mV from reversal potential (Erev) with 140 mM-KCl in the pipette. The current-voltage relationship for the larger channel displayed inward rectification and channel open probability was weakly dependent upon membrane potential. 4. These experiments provide the first direct evidence for mitogen-activated Ca(2+)-gated K+ channels (IK(Ca)) in lymphocytes. This conductance is relatively inactive in unstimulated rat thymocytes but following the intracellular Ca2+ rises induced by ConA, IK(Ca) channels are activated and produce a significant hyperpolarization of the cell potential. PMID:1716678

  11. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  12. Influence of Herbaceous Riparian Buffers on Fish and Amphibian Communities Within Channelized Headwater Streams in Central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous riparian buffers are a widely used conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The importance of forested riparian zones for headwater streams has been documented, but the ecological impacts of herbaceous ripa...

  13. Influence of Herbaceous Filter Strips on Physical Habitat, Water Chemistry, and Fish Communities Within Channelized Headwater Streams in Central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous filter strips are a widely used conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The importance of forested riparian zones for headwater streams has been documented, but the ecological impacts of herbaceous filter ...

  14. Anion Permeation in Ca2+-Activated Cl− Channels

    PubMed Central

    Qu, Zhiqiang; Hartzell, H. Criss

    2000-01-01

    Ca2+-activated Cl channels (ClCaCs) are an important class of anion channels that are opened by increases in cytosolic [Ca2+]. Here, we examine the mechanisms of anion permeation through ClCaCs from Xenopus oocytes in excised inside-out and outside-out patches. ClCaCs exhibited moderate selectivity for Cl over Na: PNa/PCl = 0.1. The apparent affinity of ClCaCs for Cl was low: Kd = 73 mM. The channel had an estimated pore diameter >0.6 nm. The relative permeabilities measured under bi-ionic conditions by changes in Erev were as follows: C(CN)3 > SCN > N(CN)2 > ClO4 > I > N3 > Br > Cl > formate > HCO3 > acetate = F > gluconate. The conductance sequence was as follows: N3 > Br > Cl > N(CN)2 > I > SCN > COOH > ClO4 > acetate > HCO3 = C(CN)3 > gluconate. Permeant anions block in a voltage-dependent manner with the following affinities: C(CN)3 > SCN = ClO4 > N(CN)2 > I > N3 > Br > HCO3 > Cl > gluconate > formate > acetate. Although these data suggest that anionic selectivity is determined by ionic hydration energy, other factors contribute, because the energy barrier for permeation is exponentially related to anion hydration energy. ClCaCs exhibit weak anomalous mole fraction behavior, implying that the channel may be a multi-ion pore, but that ions interact weakly in the pore. The affinity of the channel for Ca2+ depended on the permeant anion at low [Ca2+] (100–500 nM). Apparently, occupancy of the pore by a permeant anion increased the affinity of the channel for Ca2+. The current was strongly dependent on pH. Increasing pH on the cytoplasmic side decreased the inward current, whereas increasing pH on the external side decreased the outward current. In both cases, the apparent pKa was voltage-dependent with apparent pKa at 0 mV = ∼9.2. The channel may be blocked by OH− ions, or protons may titrate a site in the pore necessary for ion permeation. These data demonstrate that the permeation properties of ClCaCs are different from those of CFTR or ClC-1, and provide

  15. Fish as indicators of disturbance in streams used for snorkeling activities in a tourist region.

    PubMed

    Teresa, Fabricio Barreto; Romero, Renato de Mei; Casatti, Lilian; Sabino, José

    2011-05-01

    A set of metrics that reflect various aspects of population and fish community structure in streams used for snorkeling was evaluated in the tourist region of Bodoquena Plateau, Brazil, with the purpose of biomonitoring the impacts of such activities. Observations were made while snorkeling in two sites (active = with tourism; inactive = without tourism) and along the gradient of daily tourist activity (before, during and after the passage of tourists) in two streams. Five metrics discriminated active from inactive sites: (i) the abundance of Crenicichla lepidota and (ii) the incidence of reproductive activity in Crenicichla lepidota which were greater in inactive sites, regardless the gradient of daily tourist activity; (iii) the feeding pattern of Prochilodus lineatus, which differed among sites and along the gradient of daily tourist activity; (iv) the abundance of Moenkhausia bonita, which was higher in the active sites and significantly increased along the gradient of daily tourist activity in one stream but decrease along the gradient in other stream; (v) the abundance of Hyphessobrycon eques, which was greater in inactive sites, regardless the gradient of daily tourist activity. With the exception of metric "iv", the metrics were mediated by the reduction in habitat structural complexity due to snorkeling disturbance. The definition of these metrics is relevant because the degradation of ecosystem structural elements is one of the main impacts of recreational activities on aquatic environments. The easy recognition of target species and high water transparency throughout the year ensures the feasibility of these metrics in monitoring programs and may be applied by technicians after quick guides and training. PMID:21359866

  16. Fish as Indicators of Disturbance in Streams Used for Snorkeling Activities in a Tourist Region

    NASA Astrophysics Data System (ADS)

    Teresa, Fabricio Barreto; Romero, Renato De Mei; Casatti, Lilian; Sabino, José

    2011-05-01

    A set of metrics that reflect various aspects of population and fish community structure in streams used for snorkeling was evaluated in the tourist region of Bodoquena Plateau, Brazil, with the purpose of biomonitoring the impacts of such activities. Observations were made while snorkeling in two sites (active = with tourism; inactive = without tourism) and along the gradient of daily tourist activity (before, during and after the passage of tourists) in two streams. Five metrics discriminated active from inactive sites: (i) the abundance of Crenicichla lepidota and (ii) the incidence of reproductive activity in Crenicichla lepidota which were greater in inactive sites, regardless the gradient of daily tourist activity; (iii) the feeding pattern of Prochilodus lineatus, which differed among sites and along the gradient of daily tourist activity; (iv) the abundance of Moenkhausia bonita, which was higher in the active sites and significantly increased along the gradient of daily tourist activity in one stream but decrease along the gradient in other stream; (v) the abundance of Hyphessobrycon eques, which was greater in inactive sites, regardless the gradient of daily tourist activity. With the exception of metric "iv", the metrics were mediated by the reduction in habitat structural complexity due to snorkeling disturbance. The definition of these metrics is relevant because the degradation of ecosystem structural elements is one of the main impacts of recreational activities on aquatic environments. The easy recognition of target species and high water transparency throughout the year ensures the feasibility of these metrics in monitoring programs and may be applied by technicians after quick guides and training.

  17. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    EPA Science Inventory

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  18. Strategies for Developing Third Stream Activity in New University Business Schools

    ERIC Educational Resources Information Center

    Prince, Christopher

    2007-01-01

    Purpose--Developing third stream activity is becoming increasingly important for business schools as they come under increasing financial pressure. The purpose of this paper is to highlight the strategies adopted by new university business schools and highlight the resources, capabilities and constraints under which they are operating. …

  19. Location of Release Sites and Calcium-Activated Chloride Channels Relative to Calcium Channels at the Photoreceptor Ribbon Synapse

    PubMed Central

    Mercer, A. J.; Rabl, K.; Riccardi, G. E.; Brecha, N. C.; Stella, S. L.

    2011-01-01

    Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca2+ channels, which are in turn regulated by Cl− moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca2+ channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca2+ buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca2+ channels. Comparing Cl(Ca) currents with predicted Ca2+ diffusion profiles suggested that Cl(Ca) and Ca2+ channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca2+ channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration ([Ca2+]i) elevation through flash photolysis of DM-nitrophen exhibited EC50 values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane [Ca2+]i in photoreceptor terminals. Consistent with control of exocytosis by [Ca2+] nanodomains near Ca2+ channels, average submembrane [Ca2+]i remained below the vesicle release threshold (∼400 nM) over much of the physiological voltage range for cones. Positioning Ca2+ channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca2+ influx at one site to influence relatively distant Ca2+ channels. PMID:21084687

  20. Cold water cleaning of brain proteins, biofilm and bone - harnessing an ultrasonically activated stream.

    PubMed

    Birkin, P R; Offin, D G; Vian, C J B; Howlin, R P; Dawson, J I; Secker, T J; Hervé, R C; Stoodley, P; Oreffo, R O C; Keevil, C W; Leighton, T G

    2015-08-28

    In the absence of sufficient cleaning of medical instruments, contamination and infection can result in serious consequences for the health sector and remains a significant unmet challenge. In this paper we describe a novel cleaning system reliant on cavitation action created in a free flowing fluid stream where ultrasonic transmission to a surface, through the stream, is achieved using careful design and control of the device architecture, sound field and the materials employed. Cleaning was achieved with purified water at room temperature, moderate fluid flow rates and without the need for chemical additives or the high power consumption associated with conventional strategies. This study illustrates the potential in harnessing an ultrasonically activated stream to remove biological contamination including brain tissue from surgical stainless steel substrates, S. epidermidis biofilms from glass, and fat/soft tissue matter from bone structures with considerable basic and clinical applications. PMID:26200694

  1. Molecular candidates for cardiac stretch-activated ion channels

    PubMed Central

    Reed, Alistair; Kohl, Peter; Peyronnet, Rémi

    2014-01-01

    The heart is a mechanically-active organ that dynamically senses its own mechanical environment. This environment is constantly changing, on a beat-by-beat basis, with additional modulation by respiratory activity and changes in posture or physical activity, and further overlaid with more slowly occurring physiological (e.g. pregnancy, endurance training) or pathological challenges (e.g. pressure or volume overload). Far from being a simple pump, the heart detects changes in mechanical demand and adjusts its performance accordingly, both via heart rate and stroke volume alteration. Many of the underlying regulatory processes are encoded intracardially, and are thus maintained even in heart transplant recipients. Over the last three decades, molecular substrates of cardiac mechanosensitivity have gained increasing recognition in the scientific and clinical communities. Nonetheless, the processes underlying this phenomenon are still poorly understood. Stretch-activated ion channels (SAC) have been identified as one contributor to mechanosensitive autoregulation of the heartbeat. They also appear to play important roles in the development of cardiac pathologies – most notably stretch-induced arrhythmias. As recently discovered, some established cardiac drugs act, in part at least, via mechanotransduction pathways suggesting SAC as potential therapeutic targets. Clearly, identification of the molecular substrate of cardiac SAC is of clinical importance and a number of candidate proteins have been identified. At the same time, experimental studies have revealed variable–and at times contrasting–results regarding their function. Further complication arises from the fact that many ion channels that are not classically defined as SAC, including voltage and ligand-gated ion channels, can respond to mechanical stimulation. Here, we summarise what is known about the molecular substrate of the main candidates for cardiac SAC, before identifying potential further

  2. Tissue kallikrein activation of the epithelial Na channel

    PubMed Central

    Patel, Ankit B.; Chao, Julie

    2012-01-01

    Epithelial Na Channels (ENaC) are responsible for the apical entry of Na+ in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K+ or low-Na+ diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (INa) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity. PMID:22622459

  3. Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker

    PubMed Central

    Ta, Chau M; Adomaviciene, Aiste; Rorsman, Nils J G; Garnett, Hannah

    2016-01-01

    Background and Purpose Calcium‐activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene‐9‐carboxylic acid (A9C), an inhibitor of various chloride channel types, exhibits complex effects on native CaCCs and cloned TMEM16A channels providing both activation and inhibition. The mechanisms underlying these effects are not fully defined. Experimental Approach Patch‐clamp electrophysiology in conjunction with concentration jump experiments was employed to define the mode of interaction of A9C with TMEM16A channels. Key Results In the presence of high intracellular Ca2+, A9C inhibited TMEM16A currents in a voltage‐dependent manner by entering the channel from the outside. A9C activation, revealed in the presence of submaximal intracellular Ca2+ concentrations, was also voltage‐dependent. The electric distance of A9C inhibiting and activating binding site was ~0.6 in each case. Inhibition occurred according to an open‐channel block mechanism. Activation was due to a dramatic leftward shift in the steady‐state activation curve and slowed deactivation kinetics. Extracellular A9C competed with extracellular Cl−, suggesting that A9C binds deep in the channel's pore to exert both inhibiting and activating effects. Conclusions and Implications A9C is an open TMEM16A channel blocker and gating modifier. These effects require A9C to bind to a region within the pore that is accessible from the extracellular side of the membrane. These data will aid the future drug design of compounds that selectively activate or inhibit TMEM16A channels. PMID:26562072

  4. Heterotrophic activity and biodegradation of labile and refractory compounds by groundwater and stream microbial populations.

    PubMed Central

    Ladd, T I; Ventullo, R M; Wallis, P M; Costerton, J W

    1982-01-01

    The bacteriology and heterotrophic activity of a stream and of nearby groundwater in Marmot Basin, Alberta, Canada, were studied. Acridine orange direct counts indicated that bacterial populations in the groundwater were greater than in the stream. Bacteria that were isolated from the groundwater were similar to species associated with soils. Utilization of labile dissolved organic material as measured by the heterotrophic potential technique with glutamic acid, phenylalanine, and glycolic acid as substrates was generally greater in the groundwater. In addition, specific activity indices for the populations suggested greater metabolic activity per bacterium in the groundwater. 14C-labeled lignocellulose, preferentially labeled in the lignin fraction by feeding Picea engelmannii [14C]phenylalanine, was mineralized by microorganisms in both the groundwater and the stream, but no more than 4% of the added radioactivity was lost as 14CO2 within 960 h. Up to 20% of [3'-14C]cinnamic acid was mineralized by microorganisms in both environments within 500 h. Both microbial populations appear to influence the levels of labile and recalcitrant dissolved organic material in mountain streams. PMID:7125651

  5. Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A.

    PubMed

    Meera, P; Anwer, K; Monga, M; Oberti, C; Stefani, E; Toro, L; Sanborn, B M

    1995-08-01

    Relaxin, a hormone that is elevated during pregnancy, can suppress myometrial contractile activity. Ca(2+)-activated K+ channels (KCa) play a role in the modulation of uterine contractions and myometrial Ca2+ homeostasis and have been implicated in the control of smooth muscle excitability. We now show that relaxin stimulates KCa channels in cell-attached patches in a cell line derived from term pregnant human myometrium. This effect was prevented by the protein kinase A (PKA) antagonist, the Rp diastereomer of adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS). After patch excision, the channel was activated by PKA and inhibited by alkaline phosphatase. These data suggest that relaxin may promote myometrial quiescence in part by stimulation of KCa channels via a PKA-mediated mechanism. PMID:7653512

  6. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  7. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels.

    PubMed

    Proks, Peter; Puljung, Michael C; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M

    2016-08-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues-mainly intracellular adenine nucleotide concentrations-to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377720

  8. Phosphoinositide interacting regulator of TRP (Pirt) enhances TRPM8 channel activity in vitro via increasing channel conductance

    PubMed Central

    Tang, Min; Wu, Guang-yi; Dong, Xin-zhong; Tang, Zong-xiang

    2016-01-01

    Aim: Pirt is a two-transmembrane domain protein that regulates the function of a variety of ion channels. Our previous study indicated that Pirt acts as a positive endogenous regulator of the TRPM8 channel. The aim of this study was to investigate the mechanism underlying the regulation of TRPM8 channel by Pirt. Methods: HEK293 cells were transfected with TRPM8+Pirt or TRPM8 alone. Menthol (1 mmol/L) was applied through perfusion to induce TRPM8-mediated voltage-dependent currents, which were recorded using a whole-cell recording technique. PIP2 (10 μmol/L) was added into the electrode pipettes (PI was taken as a control). Additionally, cell-attached single-channel recordings were conducted in CHO cells transfected with TRPM8+Pirt or TRPM8 alone, and menthol (1 mmol/L) was added into the pipette solution. Results: Either co-transfection with Pirt or intracellular application of PIP2 (but not PI) significantly enhanced menthol-induced TRPM8 currents. Furthermore, Pirt and PIP2 synergistically modulated menthol-induced TRPM8 currents. Single-channel recordings revealed that co-transfection with Pirt significantly increased the single channel conductance. Conclusion: Pirt and PIP2 synergistically enhance TRPM8 channel activity, and Pirt regulates TRPM8 channel activity by increasing the single channel conductance. PMID:26657057

  9. Comparing the Influence of Different Habitat Factors on Fish Communities in Channelized Headwater Streams in Indiana and Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices, such as herbaceous riparian buffers, pesticide management, and conservation tillage, are implemented to reduce nutrient, pesticide, and sediment loadings within agricultural streams. The impact of these practices is uncertain because previous studies have focused on evaluatin...

  10. Meta-Analysis of Lost Ecosystem Attributes in Urban Streams and the Effectiveness of Out-of-Channel Management Practices

    EPA Science Inventory

    Watershed development is a leading cause of stream impairment, and it increasingly threatens the availability, quality, and sustainability of freshwater resources as human populations continue to grow and migrate. Most efforts have focused on trying to improve ecological conditio...

  11. Relationships of macroinvertebrate communities with nutrients, pesticides, and physicochemical parameters in channelized headwater streams in Indiana and Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States have been modified or constructed to transport agricultural runoff downstream. Effective implementation of agricultural conservation practices to reduce nutrient and pesticide loadings requires information about the influence of water chemistry ...

  12. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    PubMed Central

    Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y.

    2015-01-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  13. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    PubMed

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  14. Stream interactions and CMEs in STEREO and THEMIS data and resulting geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Mays, Leila; St. Cyr, Chris; Sibeck, David

    During this solar minimum the decrease in solar activity has resulted in less geomagnetic activity. The observed activity, which ultimately arises from changes in the solar wind, has been from stream interaction regions (SIRs), shocks, and some interplanetary coronal mass ejections (ICMEs). A statistical study of stream interactions and CME events from January 2007 to December 2009 which result in storm and substorm activity is conducted. Stream interactions and shocks are identified in STEREO PLASTIC, ACE, and WIND data and CMEs are identified in the STEREO SECCHI coronagraphs. CME evolution in the lower corona and properties such as acceleration, speed and width are determined along with in-situ plasma data for ICMEs. The propagation of these structures to the magnetopause is studied using THEMIS data when the spacecraft are in dayside configuration. Aspects include the timing to the magnetopause boundary, magnetopause motion, magnetosheath properties, and the strength and duration of geomagnetic activity. The interplanetary propagation of CME events that were predicted to be Earth-directed but did not produce geomagnetic activity are also considered.

  15. Photochemical activation of TRPA1 channels in neurons and animals

    PubMed Central

    Kokel, David; Cheung, Chung Yan J.; Mills, Robert; Coutinho-Budd, Jaeda; Huang, Liyi; Setola, Vincent; Sprague, Jared; Jin, Shan; Jin, Youngnam N.; Huang, Xi-Ping; Bruni, Giancarlo; Woolf, Clifford; Roth, Bryan L.; Hamblin, Michael R; Zylka, Mark J.; Milan, David J.; Peterson, Randall T.

    2013-01-01

    Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans. PMID:23396078

  16. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease.

    PubMed

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca(2+), possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  17. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease

    PubMed Central

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus.

  18. NSAIDs attenuate hyperalgesia induced by TRP channel activation.

    PubMed

    Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz; Tsagareli, Merab G

    2016-03-01

    Transient receptor potential (TRP) cation channels have been extensively investigated as targets for analgesic drug discovery. Because some non-steroidal anti-inflammatory drugs (NSAIDs) are structural analogs of prostaglandins (mediators of inflammation) and NSAIDs attenuate heat nociception and mechanical allodynia in models of inflammatory and neuropathic pain, we examined three widely used NSAIDs (diclofenac, ketorolac, and xefocam) on the activation of TRPA1 and TRPV1 channels using thermal paw withdrawal (Hargreaves) test and mechanical paw withdrawal (von Frey) test in male rats. Thermal withdrawal latencies and mechanical thresholds for both hind paws were obtained with 5, 15, 30, 45, 60, and 120 min intraplantar post-injection of TRPA1 agonizts, allyl isothiocyanate (AITC) (a natural compound of mustard oil) and cinnamaldehyde (CA), and TRPV1 agonist capsaicin or vehicle. Twenty minutes prior to the start of the experiment with TRP agonizts, diclofenac, ketorolac or xefocam were pre-injected in the same hindpaw and animals were examined by these two tests. After pretreatment of all three NSAIDs in the ipsilateral (injected) hindpaw that produced strong antinociceptive effects, AITC, CA, and capsaicin caused significant decreases in latency of the thermal withdrawal reflex compared with vehicle or the contralateral hindpaw. The same findings were observed for the paw withdrawal threshold. In approximately 30 min the effects of CA, AITC, and capsaicin returned to baseline. The data are different from our previous evidence, where TRPA1 agonizts AITC and CA and TRPV1 agonist capsaicin produced hyperalgesia for nearly 2 h and resulted in facilitation of these withdrawal reflexes (Tsagareli et al., 2010, 2013). Thus, our data showing that NSAIDs suppress thermal and mechanical hyperalgesia following TRP activation could presumably due to inactivation or desensitization of TRPA1 and TRPV1 channels by NSAIDs. PMID:26909384

  19. NSAIDs attenuate hyperalgesia induced by TRP channel activation

    PubMed Central

    Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz; Tsagareli, Merab G.

    2016-01-01

    Transient receptor potential (TRP) cation channels have been extensively investigated as targets for analgesic drug discovery. Because some non-steroidal anti-inflammatory drugs (NSAIDs) are structural analogs of prostaglandins (mediators of inflammation) and NSAIDs attenuate heat nociception and mechanical allodynia in models of inflammatory and neuropathic pain, we examined three widely used NSAIDs (diclofenac, ketorolac, and xefocam) on the activation of TRPA1 and TRPV1 channels using thermal paw withdrawal (Hargreaves) test and mechanical paw withdrawal (von Frey) test in male rats. Thermal withdrawal latencies and mechanical thresholds for both hind paws were obtained with 5, 15, 30, 45, 60, and 120 min intraplantar post-injection of TRPA1 agonizts, allyl isothiocyanate (AITC) (a natural compound of mustard oil) and cinnamaldehyde (CA), and TRPV1 agonist capsaicin or vehicle. Twenty minutes prior to the start of the experiment with TRP agonizts, diclofenac, ketorolac or xefocam were pre-injected in the same hindpaw and animals were examined by these two tests. After pretreatment of all three NSAIDs in the ipsilateral (injected) hindpaw that produced strong antinociceptive effects, AITC, CA, and capsaicin caused significant decreases in latency of the thermal withdrawal reflex compared with vehicle or the contralateral hindpaw. The same findings were observed for the paw withdrawal threshold. In approximately 30 min the effects of CA, AITC, and capsaicin returned to baseline. The data are different from our previous evidence, where TRPA1 agonizts AITC and CA and TRPV1 agonist capsaicin produced hyperalgesia for nearly 2 h and resulted in facilitation of these withdrawal reflexes (Tsagareli et al., 2010, 2013). Thus, our data showing that NSAIDs suppress thermal and mechanical hyperalgesia following TRP activation could presumably due to inactivation or desensitization of TRPA1 and TRPV1 channels by NSAIDs. PMID:26909384

  20. Membrane stretch and cytoplasmic Ca2+ independently modulate stretch-activated BK channel activity.

    PubMed

    Zhao, Hu-Cheng; Agula, Hasi; Zhang, Wei; Wang, Fa; Sokabe, Masahiro; Li, Lu-Ming

    2010-11-16

    Large conductance Ca(2+)-activated K(+) (BK) channels are responsible for changes in chemical and physical signals such as Ca(2+), Mg(2+) and membrane potentials. Previously, we reported that a BK channel cloned from chick heart (SAKCaC) is activated by membrane stretch. Molecular cloning and subsequent functional characterization of SAKCaC have shown that both the membrane stretch and intracellular Ca(2+) signal allosterically regulate the channel activity via the linker of the gating ring complex. Here we investigate how these two gating principles interact with each other. We found that stretch force activated SAKCaC in the absence of cytoplasmic Ca(2+). Lack of Ca(2+) bowl (a calcium binding motif) in SAKCaC diminished the Ca(2+)-dependent activation, but the mechanosensitivity of channel was intact. We also found that the abrogation of STREX (a proposed mechanosensing apparatus) in SAKCaC abolished the mechanosensitivity without altering the Ca(2+) sensitivity of channels. These observations indicate that membrane stretch and intracellular Ca(2+) could independently modulate SAKCaC activity. PMID:20673577

  1. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  2. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara. PMID:19234734

  3. Near-Channel Sources and Sinks along a Mountainous Stream: Establishing the Controls and Time Scales of the Lateral Transfer of Sediment and Carbon

    NASA Astrophysics Data System (ADS)

    Gartner, J. D.; Renshaw, C. E.

    2015-12-01

    River channels exchange sediment, carbon, and other matter with hillslopes and floodplains. An ongoing challenge is to quantify the time and length scales of these lateral interactions, and to establish physical controls on direction of transfer. Here we investigate whether downstream changes in stream power (Ω) can predict near-channel sources or sinks of matter on decadal time scales in a case study of Mink Brook, a 50 km2 watershed in New Hampshire, USA. Building on the Exner equation, we hypothesize that reaches with downstream increases in stream power (Ω↑) exhibit near-channel deposition and accumulation of organic matter, and reaches of downstream decreases in stream power (Ω↓) exhibit near-channel erosion and stripping of organic matter. We measured 210Pbex inventory (an indicator of erosion versus deposition), organic matter inventory, grain size, and depth of alluvium/colluvium in 29 soil pits at 6 cross sections along the brook. Sites had equivalent total Ω for a given storm event. However, 3 cross sections exhibited Ω↑, and 3 exhibited Ω↓. All cross sections showed a general trend of stripping of organic matter and fine sediment particles in the channel, paired with loading of matter at the ~2-year flood elevation. From the ~2- to ~25-year flood elevation, a marked difference appeared between sites. The Ω↑ cross sections exhibited several locations of erosion and stripping of organic matter, as evidenced by low 210Pbex inventories (70 to 1,000 bq m-2), low organic matter inventories (17 to 219 kg m-2), and thin alluvial cover (average 23 cm). The low 210Pbex inventories, below the characteristic 6,000 bq m-2 of stable soil profiles in this region, suggest no areas had consistent deposition over the last century. In contrast, the Ω↓ cross sections exhibited deposition of fine particles and organic matter from the ~2- to ~25-year flood elevation, as evidenced by elevated 210Pbex inventories (up to 9,100 bq m-2), elevated organic matter

  4. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells.

    PubMed Central

    Duncan, R L; Kizer, N; Barry, E L; Friedman, P A; Hruska, K A

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS. PMID:8700850

  5. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  6. Continuous auroral activity related to high speed streams with interplaneraty ALFV&N wave trains

    NASA Technical Reports Server (NTRS)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Gonzalez, Walter D.; Kamide, Yosuke; Zhou, Xiaoyan

    2004-01-01

    We discuss a type of intense magnetospheric/auroral activity that is not always substorms: High-Intensity, Long-Duration, Continuous AE Activity (HILDCAA) events, which occur during high speed solar wind streams. The high speed streams contain large-amplitude, nonlinear Alfvtn waves. Analyses of POLAR UV images, demonstrate that the AE increases/AL decreases in HILDCAAs are not always substorm expansion phases (although some substorms may occur). The associated auroral W energy deposition is throughout a continuous (360') auroral oval. During some image intervals, the dayside aurora is the most remarkable feature. Our hypothesis is that solar wind energy transfer from the solar wind to the magnetosphere/ionosphere is primarily directly driven due to the finite wavelength Alfv6n waves and the rapid dBz/dt variability.

  7. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  8. Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed

    NASA Astrophysics Data System (ADS)

    O'Connor, Ben L.; Hondzo, Miki; Dobraca, Dina; Lapara, Timothy M.; Finlay, Jacques C.; Brezonik, Patrick L.

    2006-12-01

    The spatial variability of subreach denitrification rates in streams was evaluated with respect to controlling environmental conditions, molecular examination of denitrifying bacteria, and dimensional analysis. Denitrification activities ranged from 0 and 800 ng-N gsed-1 d-1 with large variations observed within short distances (<50 m) along stream reaches. A log-normal probability distribution described the range in denitrification activities and was used to define low (16% of the probability distribution), medium (68%), and high (16%) denitrification potential groups. Denitrifying bacteria were quantified using a competitive polymerase chain reaction (cPCR) technique that amplified the nirK gene that encodes for nitrite reductase. Results showed a range of nirK quantities from 103 to 107 gene-copy-number gsed-1. A nonparametric statistical test showed no significant difference in nirK quantities among stream reaches, but revealed that samples with a high denitrification potential had significantly higher nirK quantities. Denitrification activity was positively correlated with nirK quantities with scatter in the data that can be attributed to varying environmental conditions along stream reaches. Dimensional analysis was used to evaluate denitrification activities according to environmental variables that describe fluid-flow properties, nitrate and organic material quantities, and dissolved oxygen flux. Buckingham's pi theorem was used to generate dimensionless groupings and field data were used to determine scaling parameters. The resulting expressions between dimensionless NO3- flux and dimensionless groupings of environmental variables showed consistent scaling, which indicates that the subreach variability in denitrification rates can be predicted by the controlling physical, chemical, and microbiological conditions.

  9. Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed

    USGS Publications Warehouse

    O'Connor, B.L.; Hondzo, Miki; Dobraca, D.; LaPara, T.M.; Finlay, J.A.; Brezonik, P.L.

    2006-01-01

    The spatial variability of subreach denitrification rates in streams was evaluated with respect to controlling environmental conditions, molecular examination of denitrifying bacteria, and dimensional analysis. Denitrification activities ranged from 0 and 800 ng-N gsed-1 d-1 with large variations observed within short distances (<50 m) along stream reaches. A log-normal probability distribution described the range in denitrification activities and was used to define low (16% of the probability distributibn), medium (68%), and high (16%) denitrification potential groups. Denitrifying bacteria were quantified using a competitive polymerase chain reaction (cPCR) technique that amplified the nirK gene that encodes for nitrite reductase. Results showed a range of nirK quantities from 103 to 107 gene-copy-number gsed.-1 A nonparametric statistical test showed no significant difference in nirK quantifies among stream reaches, but revealed that samples with a high denitrification potential had significantly higher nirK quantities. Denitrification activity was positively correlated with nirK quantities with scatter in the data that can be attributed to varying environmental conditions along stream reaches. Dimensional analysis was used to evaluate denitrification activities according to environmental variables that describe fluid-flow properties, nitrate and organic material quantities, and dissolved oxygen flux. Buckingham's pi theorem was used to generate dimensionless groupings and field data were used to determine scaling parameters. The resulting expressions between dimensionless NO3- flux and dimensionless groupings of environmental variables showed consistent scaling, which indicates that the subreach variability in denitrification rates can be predicted by the controlling physical, chemical, and microbiological conditions. Copyright 2006 by the American Geophysical Union.

  10. Active Lakes of the Recovery Ice Stream, East Antarctica: A Bedrock-Controlled Subglacial Hydrological System

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.; Scambos, T. A.; Bell, R. E.; Carter, S. P.

    2014-12-01

    A connected system of active sub-glacial lakes was revealed beneath the Recovery Ice Stream, East Antarctica by ICESat laser altimetry acquired from 2003 to 2008. Here we combine repeat-track analysis of ICESat (2003-2009), Operation IceBridge laser altimetry and radio-echo sounding (RES; 2011 and 2012), and MODIS image differencing (2009-2011) to learn more about the surface and bedrock topographic setting of the lakes and the constraints on water flow through the system. IceBridge data reveal a ~1500 m deep, ~1000 km long bedrock trough under the main trunk of Recovery Ice Stream. We extend the lake activity time series to 2012 for the three lower lakes using IceBridge data: one lake underwent a large deflation between 2009 and 2011; another lake, which had been continuously filling between 2003 and 2010, started to drain after 2011. Hydrologic connections among the lakes appear to be direct and responsive. We reproduce the lake activity using a simple subglacial water model. The hydrologic system beneath Recovery Ice Stream is controlled by unusually pronounced bedrock topography (and not ice surface topography, as is the case for most Antarctic systems studied to date). We discuss potential causes of non-steady hydrologic behavior in major Antarctic catchments.

  11. An activated fluid stream--New techniques for cold water cleaning.

    PubMed

    Birkin, Peter R; Offin, Douglas G; Leighton, Timothy G

    2016-03-01

    Electrochemical, acoustic and imaging techniques are used to characterise surface cleaning with particular emphasis on the understanding of the key phenomena relevant to surface cleaning. A range of novel techniques designed to enhance and monitor the effective cleaning of a solid/liquid interface is presented. Among the techniques presented, mass transfer of material to a sensor embedded in a surface is demonstrated to be useful in the further exploration of ultrasonic cleaning of high aspect ratio micropores. In addition the effect of micropore size on the cleaning efficacy is demonstrated. The design and performance of a new cleaning system reliant on the activation of bubbles within a free flowing stream is presented. This device utilised acoustic activation of bubbles within the stream and at a variety of substrates. Finally, a controlled bubble swarm is generated in the stream using electrolysis, and its effect on both acoustic output and cleaning performance are compared to the case when no bubbles are added. This will demonstrate the active role that the electrochemically generated bubble swarm can have in extending the spatial zone over which cleaning is achieved. PMID:26522990

  12. Effects of microgravity on liposome-reconstituted cardiac gap junction channeling activity

    NASA Technical Reports Server (NTRS)

    Claassen, D. E.; Spooner, B. S.

    1989-01-01

    Effects of microgravity on cardiac gap junction channeling activity were investigated aboard NASA zero-gravity aircraft. Liposome-reconstituted gap junctions were assayed for channel function during free-fall, and the data were compared with channeling at 1 g. Control experiments tested for 0 g effects on the structural stability of liposomes, and on the enzyme-substrate signalling system of the assay. The results demonstrate that short periods of microgravity do not perturb reconstituted cardiac gap junction channeling activity.

  13. The Effect of Catchment Urbanization on Nutrient Uptake and Biofilm Enzyme Activity in Lake Superior (USA) Tributary Streams

    EPA Science Inventory

    We used landscape, habitat, and chemistry variables, along with nutrient spiraling metrics and biofilm extracellular enzyme activity (EEA), to assess the response of streams to the level of urbanization within their catchments. For this study nine streams of similar catchment are...

  14. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    NASA Astrophysics Data System (ADS)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  15. Influence of adding small instream wood on fishes and hydrology within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large instream wood is well known for its importance in headwater streams because it promotes the development of pool habitat for fishes and provides them with cover from predators during the summer. However, little is known about the influence of small instream wood (diameter < 10 cm, length < 1 m...

  16. CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network

    SciTech Connect

    Yeh, G.T.

    1983-09-01

    This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

  17. Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities

    SciTech Connect

    Carlson, Thomas J.; Ploskey, Gene R.; Johnson, R. L.; Mueller, Robert P.; Weiland, Mark A.; Johnson, P. N.

    2001-10-19

    This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas.

  18. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-03-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  19. Salmon carcasses increase stream productivity more than inorganic fertilizer pellets: A test on multiple trophic levels in streamside experimental channels

    USGS Publications Warehouse

    Wipfli, Mark S.; Hudson, John P.; Caouette, John P.; Mitchell, N.L.; Lessard, Joanna L.; Heintz, Ron A.; Chaloner, D.T.

    2010-01-01

    Inorganic nutrient amendments to streams are viewed as possible restoration strategies for re-establishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-alevels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment × time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring

  20. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel

    NASA Astrophysics Data System (ADS)

    Posson, David J.; Rusinova, Radda; Andersen, Olaf S.; Nimigean, Crina M.

    2015-09-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K+ channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca2+-activated K+ channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K+. Thus, Ca2+-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  1. Amplitude analysis of active source seismic data from the grounding zone of Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Horgan, Huw; Anandakrishnan, Sridhar; Alley, Richard; Christianson, Knut

    2015-04-01

    Amplitude analysis of active source seismic data is often used to estimate acoustic properties and thereby infer the lithology of the substrate beneath glaciers and ice streams. The substrate beneath the ice streams of West Antarctica is of particular interest as here subglacial sediment deformation results in the rapid flow of the overriding ice. At the grounding zone, where the grounded ice sheet transitions to the floating ice shelf, this substrate is thought to stiffen due to tidal compaction resulting in a zone of higher basal shear stress which is manifest in the buckling of the internal layering in the overriding ice. Here we investigate these processes by estimating subglacial properties using active source seismic data acquired across the grounding zone of Whillans Ice Stream. Perhaps uniquely, we are able to test our methodology due to the survey crossing from an ice overlying sediment interface into a known ice overlying water interface. Our analysis indicates that lithological variations within the grounding zone are below the resolution of our methodology with the exception of a body of water trapped by a hydropotential reversal upstream of the grounding zone.

  2. Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum.

    PubMed Central

    Sitsapesan, R; Williams, A J

    1990-01-01

    1. Calcium-release channels of sheep cardiac junctional sarcoplasmic reticulum were incorporated into planar phospholipid bilayers. Single-channel current fluctuations were recorded under voltage clamp conditions. 2. Channels incorporate into the bilayer with a fixed orientation and channel open probability is regulated by the calcium concentration at the cytosolic face of the membrane. 3. Addition of caffeine (0.5-2.0 mM) to the cytosolic side of the membrane increased the open probability of the calcium-activated calcium-release channel by increasing the frequency of opening without significant alteration to the durations of open events. This effect was observed at both 0.1 and 10 microM-activating cytosolic calcium. 4. Caffeine (0.5-2.0 mM) did not activate the channel at a subactivating cytosolic calcium concentration (80 pM). 5. At subactivating calcium concentrations, channels could be activated by higher concentrations of caffeine (greater than 5.0 mM) revealing a second, calcium-independent, mechanism for channel activation. Channel openings induced by these high concentrations of caffeine at subactivating calcium concentrations displayed different kinetics from those observed with calcium as the sole activating ligand or with combinations of calcium and low concentrations of caffeine. 6. Activation of channel opening by caffeine in the presence of calcium did not affect single-channel conductance. Channel openings produced by caffeine at subactivating cytosolic calcium concentrations had identical conductance and relative permeability to those seen on calcium activation. 7. Channels activated by caffeine at both activating and subactivating calcium concentrations were characteristically modified by ryanodine, Ruthenium Red, ATP and magnesium, implying that the same channel is involved under both conditions. PMID:2167363

  3. Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2009-06-01

    Detailed knowledge of the dynamics of large-scale turbulence structures is needed to understand the geomorphodynamic processes around in-stream obstacles present in rivers. Detached Eddy Simulation is used to study the flow past a high-aspect-ratio rectangular cylinder (plate) mounted on a flat-bed relatively shallow channel at a channel Reynolds number of 2.4 × 105. Similar to other flows past surface-mounted bluff bodies, the large amplification of the turbulence inside the horseshoe vortex system is because the core of the main necklace vortex is subject to large-scale bimodal oscillations. The presence of a sharp edge at the flanks of the obstruction fixes the position of the flow separation at all depths and induces the formation and shedding of very strong wake rollers over the whole channel depth. Compared with the case of a circular cylinder where the intensity of the rollers decays significantly in the near-bed region because the incoming flow velocity is not sufficient to force the wake to transition from subcritical to supercritical regime, in the case of a high-aspect-ratio rectangular cylinder the passage of the rollers was found to induce high bed-shear stresses at large distances (6-8 D) behind the obstruction. Also, the nondimensional values of the pressure root-mean-square fluctuations at the bed were found to be about 1 order of magnitude higher than the ones predicted for circular cylinders. Overall, this shows that the shape of the in-stream obstruction can greatly modify the dynamics of the large-scale coherent structures, the nature of their interactions, and ultimately, their capability to entrain and transport sediment particles and the speed at which the scour process evolves during its initial stages.

  4. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency

    PubMed Central

    Chen, Zaixing; Zhao, Runzhen; Zhao, Meimi; Liang, Xinrong; Bhattarai, Deepa; Dhiman, Rohan; Shetty, Sreerama; Idell, Steven

    2014-01-01

    Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation, etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na+ flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane-permeabilized cells. A decrease in the Na+-K+-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid reabsorption by MTEs. ERK1/2, but not Akt, phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs. those of wild-type controls. Expression of caspase 8, however, did not differ between wild-type and uPA−/− mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na+-K+-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function. PMID:25172911

  5. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  7. Dual actions of procainamide on batrachotoxin-activated sodium channels: open channel block and prevention of inactivation.

    PubMed Central

    Zamponi, G W; Sui, X; Codding, P W; French, R J

    1993-01-01

    We have investigated the action of procainamide on batrachotoxin (BTX)-activated sodium channels from bovine heart and rat skeletal muscle. When applied to the intracellular side, procainamide induced rapid, open-channel block. We estimated rate constants using amplitude distribution analysis (Yellen, G. 1984. J. Gen. Physiol. 84:157). Membrane depolarization increased the blocking rate and slowed unblock. The rate constants were similar in both magnitude and voltage dependence for cardiac and skeletal muscle channels. Qualitatively, this block resembled the fast open-channel block by lidocaine (Zamponi, G. W., D. D. Doyle, and R. J. French. 1993. Biophys. J. 65:80), but procainamide was about sevenfold less potent. Molecular modeling suggests that the difference in potency between procainamide and lidocaine might arise from the relative orientation of their aromatic rings, or from differences in the structure of the aryl-amine link. For the cardiac channels, procainamide reduced the frequency of transitions to a long-lived closed state which shows features characteristic of inactivation (Zamponi, G. W., D. D. Doyle, and R. J. French. 1993. Biophys J. 65:91). Mean durations of kinetically identified closed states were not affected. The degree of fast block and of inhibition of the slow closures were correlated. Internally applied QX-314, a lidocaine derivative and also a fast blocker, produced a similar effect. Thus, drug binding to the fast blocking site appears to inhibit inactivation in BTX-activated cardiac channels. Images FIGURE 6 PMID:8312472

  8. Leaf Associated Microbial Activities in a Stream Affected by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Schlief, Jeanette

    2004-11-01

    Microbial activity was assessed on birch leaves and plastic strips during 140 days of exposure at three sites in an acidic stream of the Lusatian post-mining landscape, Germany. The sites differed in their degrees of ochre deposition and acidification. The aim of the study was (1) to follow the microbial activities during leaf colonization, (2) to compare the effect of different environmental conditions on leaf associated microbial activities, and (3) to test the microbial availability of leaf litter in acidic mining waters. The activity peaked after 49 days and subsequently decreased gradually at all sites. A formation of iron plaques on leaf surfaces influenced associated microbial activity. It seemed that these plaques inhibit the microbial availability of leaf litter and serve as a microbial habitat by itself. (

  9. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells.

    PubMed Central

    Kim, D; Sladek, C D; Aguado-Velasco, C; Mathiasen, J R

    1995-01-01

    1. The presence and properties of K+ channels activated by arachidonic acid were studied in neuronal cells cultured from the mesencephalic and hypothalamic areas of rat brain. 2. Arachidonic acid produced a concentration-dependent (5-50 microM) and reversible activation of whole-cell currents. 3. In excised membrane patches, arachidonic acid applied to the cytoplasmic or extracellular side of the membrane caused opening of three types of channels whose current-voltage relationships were slightly outwardly rectifying, inwardly rectifying and linear, and whose single channel slope conductances at +60 mV were 143, 45 and 52 pS, respectively. 4. All three currents were K+ selective and blocked by 2 mM Ba2+ but not by other K+ channel blockers such as tetraethylammonium chloride, 4-aminopyridine and quinidine. The outwardly and inwardly rectifying currents were slightly voltage dependent with higher channel activity at more depolarized potentials. 5. Arachidonic acid activated the K+ channels in cells treated with cyclo-oxygenase and lipoxygenase inhibitors (indomethacin and nordihydroguaiaretic acid), indicating that arachidonic acid itself can directly activate the channels. Alcohol and methyl ester derivatives of arachidonic acid failed to activate the K+ channels, indicating that the charged carboxyl group is important for activation. 6. Certain unsaturated fatty acids (linoleic, linolenic and docosahexaenoic acids), but not saturated fatty acids (myristic, palmitic, stearic acids), also reversibly activated all three types of K+ channel. 7. All three K+ channels were activated by pressure applied to the membrane (i.e. channels were stretch sensitive) with a half-maximal pressure of approximately 18 mmHg. The K+ channels were not blocked by 100 microM GdCl3. 8. A decrease in intracellular pH (over the range 5.6-7.2) caused a reversible, pH-dependent increase in channel activity whether the channel was initially activated by arachidonic acid or stretch. 9. Glutamate

  10. Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    2013-02-28

    This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

  11. Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland

    USGS Publications Warehouse

    Chaplin, Jeffrey J.

    2005-01-01

    Natural-stream designs are commonly based on the dimensions of the bankfull channel, which is capable of conveying discharges that transport sediment without excessive erosion or deposition. Regional curves relate bankfull-channel geometry and discharge to drainage area in watersheds with similar runoff characteristics and commonly are utilized by practitioners of natural-stream design to confirm or refute selection of the field-identified bankfull channel. Data collected from 66 streamflow-gaging stations and associated stream reaches between December 1999 and December 2003 were used in one-variable ordinary least-squares regression analyses to develop regional curves relating drainage area to cross-sectional area, discharge, width, and mean depth of the bankfull channel. Watersheds draining to these stations are predominantly within the Piedmont, Ridge and Valley, and Appalachian Plateaus Physiographic Provinces of Pennsylvania and northern Maryland. Statistical analyses of physiography, percentage of watershed area underlain by carbonate bedrock, and percentage of watershed area that is glaciated indicate that carbonate bedrock, not physiography or glaciation, has a controlling influence on the slope of regional curves. Regional curves developed from stations in watersheds underlain by 30 percent or less carbonate bedrock generally had steeper slopes than the corresponding relations developed from watersheds underlain by greater than 30 percent carbonate bedrock. In contrast, there is little evidence to suggest that regional curves developed from stations in the Piedmont or Ridge and Valley Physiographic Province are different from the corresponding relations developed from stations in the Appalachian Plateaus Physiographic Province. On the basis of these findings, regional curves are presented to represent two settings that are independent of physiography: (1) noncarbonate settings characterized by watersheds with carbonate bedrock underlying 30 percent or less

  12. Activation and deactivation of vibronic channels in intact phycocyanin rods

    NASA Astrophysics Data System (ADS)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  13. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site.

    PubMed

    Concas, A; Ardau, C; Cristini, A; Zuddas, P; Cao, G

    2006-04-01

    In this paper the results of a recent characterization of Rio Piscinas (SW of Sardinia, Italy) hydrological basin are reported. In such area (about 50 km2), previous mining activities caused a serious heavy metal contamination of surface waters, groundwater, soils and biota. Acid mine drainage phenomena were observed in the area. The main sources of contamination are the tailings stored in mine tunnels and abandoned along fluvial banks. A methodological approach was adopted in order to identify relations between tailings and water contamination. Representative samples of tailings and stream sediments samples were collected. XRD analyses were performed for mineralogical characterization, while acid digestion was carried out for determining metal contents. Batch sequential leaching tests were performed in order to assess metal mobility. Also groundwater and stream water were sampled in specific locations and suitably characterized. All information collected allowed the understanding of the effect of tailings on water contamination, thus contributing to the qualitative prediction of pollution evolution on the basis of metal mobility. Finally, a potential remediation strategy of stream water is proposed. PMID:16216301

  14. Removal of VOCs from humidified gas streams using activated carbon cloth

    USGS Publications Warehouse

    Cal, M.P.; Rood, M.J.; Larson, S.M.

    1996-01-01

    This research investigates the effects of relative humidity (RH) on the adsorption of soluble (acetone) and insoluble (benzene) volatile organic compounds (VOCs) with activated carbon cloths (ACC). A gravimetric balance was used in conjunction with a gas chromatograph/mass spectrophotometer to determine the individual amounts of water and VOC adsorbed on an ACC sample. RH values from 0 to 90% and organic concentrations from 350 to 1000 ppmv were examined. The presence of water vapor in the gas-stream along with acetone (350 and 500 ppmv) had little effect on the adsorption capacity of acetone even at 90% RH. Water vapor in the gas stream had little effect on the adsorption capacity of benzene (500 ppmv) until about 65% RH, when a rapid decrease resulted in the adsorption capacity of benzene with increasing RH. This RH was also about where capillary condensation of water vapor occurs within ACC pores. Water vapor condenses within the ACC pores, making them unavailable for benzene adsorption. Increasing benzene concentration can have a significant effect on the amount of water vapor adsorbed. At 86% RH and 500 ppmv, 284 mg/g water was adsorbed, while at 86% RH and 1000 ppmv, only 165 mg/g water was adsorbed. Water vapor was more inhibitory for benzene adsorption as benzene concentration in the gas stream decreased. Copyright ?? 1996 Elsevier Science Ltd.

  15. Flow resistance dynamics in step-pool stream channels: 1. Large woody debris and controls on total resistance

    USGS Publications Warehouse

    Wilcox, A.C.; Wohl, E.E.

    2006-01-01

    Flow resistance dynamics in step-pool channels were investigated through physical modeling using a laboratory flume. Variables contributing to flow resistance in step-pool channels were manipulated in order to measure the effects of various large woody debris (LWD) configurations, steps, grains, discharge, and slope on total flow resistance. This entailed nearly 400 flume runs, organized into a series of factorial experiments. Factorial analyses of variance indicated significant two-way and three-way interaction effects between steps, grains, and LWD, illustrating the complexity of flow resistance in these channels. Interactions between steps and LWD resulted in substantially greater flow resistance for steps with LWD than for steps lacking LWD. LWD position contributed to these interactions, whereby LWD pieces located near the lip of steps, analogous to step-forming debris in natural channels, increased the effective height of steps and created substantially higher flow resistance than pieces located farther upstream on step treads. Step geometry and LWD density and orientation also had highly significant effects on flow resistance. Flow resistance dynamics and the resistance effect of bed roughness configurations were strongly discharge-dependent; discharge had both highly significant main effects on resistance and highly significant interactions with all other variables. Copyright 2006 by the American Geophysical Union.

  16. Resting state activity and the "stream of consciousness" in schizophrenia--neurophenomenal hypotheses.

    PubMed

    Northoff, Georg

    2015-01-01

    Schizophrenia is a multifaceted disorder with various symptoms including auditory hallucinations, egodisturbances, passivity phenomena, and delusions. Recent neurobiological approaches have focused on, especially, the abnormal contents of consciousness, the "substantive parts" as James said, to associate them with the neural mechanisms related to sensory, motor, and cognitive functions, and the brain's underlying stimulus-induced or task-evoked activity. This leaves open, however, the neural mechanisms that provide the temporal linkage or glue between the various contents, the transitive parts that makes possible the "stream of consciousness." Interestingly, schizophrenic patients seem to suffer from abnormalities specifically in the "transitive parts" when they experience contents as temporally disconnected or fragmented which in phenomenological psychiatry has been described as "temporal fragmentation." The aim of this article is to develop so-called neurophenomenal hypothesis about the direct relationship between phenomenal features of the "stream of consciousness," the "transitive parts," and the specific neuronal mechanisms in schizophrenia as based on healthy subjects. Rather than emphasizing stimulus-induced and task-evoked activity and sensory and lateral prefrontal cortical regions as in neurocognitive approaches with their focus on the "substantive parts," the focus shifts here to the brain's intrinsic activity, its resting state activity, which may account for the temporal linkage or glue between the contents of consciousness, the transitive parts. PMID:25150784

  17. Active versus passive listening to auditory streaming stimuli: a near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Remijn, Gerard B.; Kojima, Haruyuki

    2010-05-01

    We use near-infrared spectroscopy (NIRS) to assess listeners' cortical responses to a 10-s series of pure tones separated in frequency. Listeners are instructed to either judge the rhythm of these ``streaming'' stimuli (active-response listening) or to listen to the stimuli passively. Experiment 1 shows that active-response listening causes increases in oxygenated hemoglobin (oxy-Hb) in response to all stimuli, generally over the (pre)motor cortices. The oxy-Hb increases are significantly larger over the right hemisphere than over the left for the final 5 s of the stimulus. Hemodynamic levels do not vary with changes in the frequency separation between the tones and corresponding changes in perceived rhythm (``gallop,'' ``streaming,'' or ``ambiguous''). Experiment 2 shows that hemodynamic levels are strongly influenced by listening mode. For the majority of time windows, active-response listening causes significantly larger oxy-Hb increases than passive listening, significantly over the left hemisphere during the stimulus and over both hemispheres after the stimulus. This difference cannot be attributed to physical motor activity and preparation related to button pressing after stimulus end, because this is required in both listening modes.

  18. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels.

    PubMed

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-09-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl(-) channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  19. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  20. Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling.

    PubMed

    Gao, Hui; Wang, Fang; Wang, Wei; Makarewich, Catherine A; Zhang, Hongyu; Kubo, Hajime; Berretta, Remus M; Barr, Larry A; Molkentin, Jeffery D; Houser, Steven R

    2012-11-01

    Common cardiovascular diseases such as hypertension and myocardial infarction require that myocytes develop greater than normal force to maintain cardiac pump function. This requires increases in [Ca(2+)]. These diseases induce cardiac hypertrophy and increases in [Ca(2+)] are known to be an essential proximal signal for activation of hypertrophic genes. However, the source of "hypertrophic" [Ca(2+)] is not known and is the topic of this study. The role of Ca(2+) influx through L-type Ca(2+) channels (LTCC), T-type Ca(2+) channels (TTCC) and transient receptor potential (TRP) channels on the activation of calcineurin (Cn)-nuclear factor of activated T cells (NFAT) signaling and myocyte hypertrophy was studied. Neonatal rat ventricular myocytes (NRVMs) and adult feline ventricular myocytes (AFVMs) were infected with an adenovirus containing NFAT-GFP, to determine factors that could induce NFAT nuclear translocation. Four millimolar Ca(2+) or pacing induced NFAT nuclear translocation. This effect was blocked by Cn inhibitors. In NRVMs Nifedipine (Nif, LTCC antagonist) blocked high Ca(2+)-induced NFAT nuclear translocation while SKF-96365 (TRP channel antagonist) and Nickel (Ni, TTCC antagonist) were less effective. The relative potency of these antagonists against Ca(2+) induced NFAT nuclear translocation (Nif>SKF-96365>Ni) was similar to their effects on Ca(2+) transients and the LTCC current. Infection of NRVM with viruses containing TRP channels also activated NFAT-GFP nuclear translocation and caused myocyte hypertrophy. TRP effects were reduced by SKF-96365, but were more effectively antagonized by Nif. These experiments suggest that Ca(2+) influx through LTCCs is the primary source of Ca(2+) to activate Cn-NFAT signaling in NRVMs and AFVMs. While TRP channels cause hypertrophy, they appear to do so through a mechanism involving Ca(2+) entry via LTCCs. PMID:22921230

  1. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    SciTech Connect

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    1994-01-01

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main stream cigarette smoke, obtained by destructive neutron activation analysis.

  2. Quantifying N2 and N2O production in agricultural streams using open channel methods: a tool for finding missing watershed nitrogen

    NASA Astrophysics Data System (ADS)

    Gardner, J. R.; Jordan, T. E.; Knee, K.; Fisher, T. R.

    2013-12-01

    Anthropogenic nitrogen (N) inputs are altering biogeochemical cycles, impairing aquatic ecosystems, and contributing to climate change. Agricultural watersheds, such as those in our study area on the eastern shore of Maryland, play a significant role as one of the greatest sources of N to coastal waters and N2O to the atmosphere. Denitrification can permanently remove N from the landscape through conversion to N2 and N2O gases, and gaseous N loss from streams and rivers is thought to be an important loss term in watershed N budgets. However, denitrification and fluxes of biogenic gases in streams are poorly understood, especially at ecologically relevant scales. In this study, we applied open channel methods to quantify in-situ N2 and N2O production at the reach scale. We accounted for both in-stream N2 production and watershed-derived N2 delivered to the stream via groundwater influx, and used two naturally present gases, 222Rn and Ar, as tracers for gas transfer velocity (k). We conducted eleven studies, each lasting six hours and repeated approximately quarterly in three different stream branches within a small watershed. Ultimately, these data will be part of a watershed nitrogen budget to assess the role of streams in the fate of Net Anthropogenic Nitrogen Inputs (NANI). Gas transfer velocity using 222Rn was 9-98% greater than k derived from Ar. However, k 222Rn agreed better with previous estimates; thus, the presented rates were estimated using k 222Rn. Biogenic N2 production rates ranged from 0.5 to 63.0 mmol N2-N m-2hr-1 with an average of 12.8. Biogenic N2O production ranged from 1.8 to 484.4 μmol N2O-N m-2hr-1 with an average of 98.0. N2O emissions to the atmosphere varied from 1.2 to 464.9 μmol N2O-N m-2 hr-1. Rates generally increased with temperature and spatial variation was fairly consistent across seasons. N2O will not contribute significantly to the watershed N budget (<2% of NANI); however, N2O was always supersaturated (344-3110%) and

  3. A structural view of ligand-dependent activation in thermoTRP channels

    PubMed Central

    Steinberg, Ximena; Lespay-Rebolledo, Carolyne; Brauchi, Sebastian

    2014-01-01

    Transient Receptor Potential (TRP) proteins are a large family of ion channels, grouped into seven sub-families. Although great advances have been made regarding the activation and modulation of TRP channel activity, detailed molecular mechanisms governing TRP channel gating are still needed. Sensitive to electric, chemical, mechanical, and thermal cues, TRP channels are tightly associated with the detection and integration of sensory input, emerging as a model to study the polymodal activation of ion channel proteins. Among TRP channels, the temperature-activated kind constitute a subgroup by itself, formed by Vanilloid receptors 1–4, Melastatin receptors 2, 4, 5, and 8, TRPC5, and TRPA1. Some of the so-called “thermoTRP” channels participate in the detection of noxious stimuli making them an interesting pharmacological target for the treatment of pain. However, the poor specificity of the compounds available in the market represents an important obstacle to overcome. Understanding the molecular mechanics underlying ligand-dependent modulation of TRP channels may help with the rational design of novel synthetic analgesics. The present review focuses on the structural basis of ligand-dependent activation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection of ligand-binding sites within TRPV1, PIP2-dependent modulation of TRP channels, and the structure of natural and synthetic ligands. PMID:24847275

  4. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    NASA Astrophysics Data System (ADS)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  5. The activity of the TRP-like channel depends on its expression system

    PubMed Central

    Lev, Shaya; Katz, Ben; Minke, Baruch

    2012-01-01

    The Drosophila light activated TRP and TRPL channels have been a model for TRPC channel gating. Several gating mechanisms have been proposed following experiments conducted on photoreceptor and tissue cultured cells. However, conclusive evidence for any mechanism is still lacking. Here, we show that the Drosophila TRPL channel expressed in tissue cultured cells is constitutively active in S2 cells but is silent in HEK cells. Modulations of TRPL channel activity in different expression system by pharmacology or specific enzymes, which change the lipid content of the plasma membrane, resulted in conflicting effects. These findings demonstrate the difficulty in elucidating TRPC gating, as channel behavior is expression system dependent. However, clues on the gating mechanism may arise from understanding how different expression systems affect TRPC channel activation. PMID:22627924

  6. Effects of streamflows on stream-channel morphology in the eastern Niobrara National Scenic River, Nebraska, 1988–2010

    USGS Publications Warehouse

    Schaepe, Nathaniel J.; Alexander, Jason S.; Folz-Donahue, Kiernan

    2016-01-01

    Changes in channel metrics generally corresponded to changes in streamflow conditions, but other than changes in incipient flood-plain area, these changes were small and were not measured in all three segments simultaneously. Increases in total channel width (except in segment 1) and incipient flood-plain area between 1993 and 1999 corresponded to increases in streamflow. Channel narrowing (except in segment 1) between 1999 and 2003 corresponded to lower summer streamflows and extended durations of very low summer streamflow. Although the pattern of low summer streamflow and extended durations of very low summer streamflow continued during the 2004–6 period and at the beginning of the 2007–10 period, no further narrowing was measured. Consistent tributary summer inflows help to explain the resistance of segments 2 and 3 to further narrowing. Because segment 1 is already much narrower than segments 2 and 3, its average current velocity is likely to be swifter and, therefore, competent to offset further effects of the processes that led to its narrowness.

  7. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.

    PubMed

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-12-26

    G protein-gated inwardly rectifying K(+) (Girk/K(IR)3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABA(B) receptor and Girk1/Girk2 heteromer as a model system. Girk1 did not increase the protein levels or alter the trafficking of Girk2-containing channels to the cell surface in transfected cells or hippocampal neurons, indicating that its potentiating influence involves enhancement of channel activity. Structural elements in both the distal carboxyl-terminal domain and channel core were identified as key determinants of robust channel activity. In the distal carboxyl-terminal domain, residue Q404 was identified as a key determinant of receptor-induced channel activity. In the Girk1 core, three unique residues in the pore (P) loop (F137, A142, Y150) were identified as a collective potentiating influence on both receptor-dependent and receptor-independent channel activity, exerting their influence, at least in part, by enhancing mean open time and single-channel conductance. Interestingly, the potentiating influence of the Girk1 P-loop is tempered by residue F162 in the second membrane-spanning domain. Thus, discontinuous and sometime opposing elements in Girk1 underlie the Girk1-dependent potentiation of receptor-dependent and receptor-independent heteromeric channel activity. PMID:23236146

  8. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams.

    PubMed

    Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J

    2016-11-01

    Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. PMID:27515735

  9. Evaluating auditory stream segregation of SAM tone sequences by subjective and objective psychoacoustical tasks, and brain activity

    PubMed Central

    Dolležal, Lena-Vanessa; Brechmann, André; Klump, Georg M.; Deike, Susann

    2014-01-01

    Auditory stream segregation refers to a segregated percept of signal streams with different acoustic features. Different approaches have been pursued in studies of stream segregation. In psychoacoustics, stream segregation has mostly been investigated with a subjective task asking the subjects to report their percept. Few studies have applied an objective task in which stream segregation is evaluated indirectly by determining thresholds for a percept that depends on whether auditory streams are segregated or not. Furthermore, both perceptual measures and physiological measures of brain activity have been employed but only little is known about their relation. How the results from different tasks and measures are related is evaluated in the present study using examples relying on the ABA- stimulation paradigm that apply the same stimuli. We presented A and B signals that were sinusoidally amplitude modulated (SAM) tones providing purely temporal, spectral or both types of cues to evaluate perceptual stream segregation and its physiological correlate. Which types of cues are most prominent was determined by the choice of carrier and modulation frequencies (fmod) of the signals. In the subjective task subjects reported their percept and in the objective task we measured their sensitivity for detecting time-shifts of B signals in an ABA- sequence. As a further measure of processes underlying stream segregation we employed functional magnetic resonance imaging (fMRI). SAM tone parameters were chosen to evoke an integrated (1-stream), a segregated (2-stream), or an ambiguous percept by adjusting the fmod difference between A and B tones (Δfmod). The results of both psychoacoustical tasks are significantly correlated. BOLD responses in fMRI depend on Δfmod between A and B SAM tones. The effect of Δfmod, however, differs between auditory cortex and frontal regions suggesting differences in representation related to the degree of perceptual ambiguity of the sequences

  10. Classical-quantum arbitrarily varying wiretap channel: Ahlswede dichotomy, positivity, resources, super-activation

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian; Nötzel, Janis

    2016-08-01

    We establish the Ahlswede dichotomy for arbitrarily varying classical-quantum wiretap channels, i.e., either the deterministic secrecy capacity of the channel is zero, or it equals its randomness-assisted secrecy capacity. We analyze the secrecy capacity of these channels when the sender and the receiver use various resources. It turns out that randomness, common randomness, and correlation as resources are very helpful for achieving a positive secrecy capacity. We prove the phenomenon "super-activation" for arbitrarily varying classical-quantum wiretap channels, i.e., two channels, both with zero deterministic secrecy capacity, if used together allow perfect secure transmission.

  11. A Ca2+-activated channel from Xenopus laevis oocyte membranes reconstituted into planar bilayers.

    PubMed Central

    Young, G P; Young, J D; Deshpande, A K; Goldstein, M; Koide, S S; Cohn, Z A

    1984-01-01

    Plasma membrane fractions from Xenopus laevis oocytes were incorporated into planar lipid bilayers. We show the existence of numerous Ca2+-activated nonspecific channels that are more permeable to anions. These channels are activated by Ca2+ at micromolar concentration but not by Mg2+, Zn2+, or Mn2+, even at millimolar concentrations. Decreasing Ca2+ concentration to less than 1 microM decreases the time of channel opening until channels close completely in the absence of Ca2+ and in the presence of EGTA. I- and Br- are more permeable through this channel than Cl-. The time during which the channels remain open is also voltage-dependent, with the channels switching off at higher voltages in both polarities. Single-channel activity shows a conductance of 380 pS in 1 M NaCl and 1 mM CaCl2, with an average open lifetime of 1.5 s at 40 mV. Similar channels are found in different stages of oocyte maturation. These observations support the hypothesis that an increase in oocyte-free Ca2+ activates directly these channels, and the resultant Cl- efflux forms the ionic basis for the fertilization potential in X. laevis. PMID:6089180

  12. Parsing the phonological loop: activation timing in the dorsal speech stream determines accuracy in speech reproduction.

    PubMed

    Herman, Alexander B; Houde, John F; Vinogradov, Sophia; Nagarajan, Srikantan S

    2013-03-27

    Despite significant research and important clinical correlates, direct neural evidence for a phonological loop linking speech perception, short-term memory and production remains elusive. To investigate these processes, we acquired whole-head magnetoencephalographic (MEG) recordings from human subjects performing a variable-length syllable sequence reproduction task. The MEG sensor data were source localized using a time-frequency optimized spatially adaptive filter, and we examined the time courses of cortical oscillatory power and the correlations of oscillatory power with behavior between onset of the audio stimulus and the overt speech response. We found dissociations between time courses of behaviorally relevant activations in a network of regions falling primarily within the dorsal speech stream. In particular, verbal working memory load modulated high gamma power in both Sylvian-parietal-temporal and Broca's areas. The time courses of the correlations between high gamma power and subject performance clearly alternated between these two regions throughout the task. Our results provide the first evidence of a reverberating input-output buffer system in the dorsal stream underlying speech sensorimotor integration, consistent with recent phonological loop, competitive queuing, and speech-motor control models. These findings also shed new light on potential sources of speech dysfunction in aphasia and neuropsychiatric disorders, identifying anatomically and behaviorally dissociable activation time windows critical for successful speech reproduction. PMID:23536060

  13. Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels

    PubMed Central

    Gil, Ziv; Silberberg, Shai D.; Magleby, Karl L.

    1999-01-01

    The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolonged depolarization of a membrane patch in borosilicate pipettes results in delayed slow displacement of the membrane into the pipette and that this displacement is associated with the activation of mechanosensitive (MS) channels in the same patch. The membrane displacement, ≈1 μm with each prolonged depolarization, occurs after variable delays ranging from tens of milliseconds to many seconds and is correlated in time with activation of MS channels. Increasing the voltage step shortens both the delay to membrane displacement and the delay to activation. Preventing depolarization-induced membrane displacement by applying positive pressure to the shank of the pipette or by coating the tips of the borosilicate pipettes with soft glass prevents the depolarization-induced activation of MS channels. The correlation between depolarization-induced membrane displacement and activation of MS channels indicates that the membrane displacement is associated with sufficient membrane tension to activate MS channels. Because membrane tension can modulate the activity of various ligand and voltage-activated ion channels as well as some transporters, an apparent voltage dependence of a channel or transporter in a membrane patch in a borosilicate pipette may result from voltage-induced tension rather than from direct modulation by voltage. PMID:10588750

  14. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    NASA Astrophysics Data System (ADS)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  15. The Clinically Tested Gardos Channel Inhibitor Senicapoc Exhibits Antimalarial Activity

    PubMed Central

    Tubman, Venée N.; Mejia, Pedro; Shmukler, Boris E.; Bei, Amy K.; Alper, Seth L.; Mitchell, James R.

    2015-01-01

    Senicapoc, a Gardos channel inhibitor, prevented erythrocyte dehydration in clinical trials of patients with sickle cell disease. We tested the hypothesis that senicapoc-induced blockade of the Gardos channel inhibits Plasmodium growth. Senicapoc inhibited in vitro growth of human and primate plasmodia during the clinical blood stage. Senicapoc treatment suppressed P. yoelii parasitemia in vivo in C57BL/6 mice. The reassuring safety and biochemical profile of senicapoc encourage its use in antimalarial development. PMID:26459896

  16. Impaired leaf litter processing in acidified streams : learning from microbial enzyme activities.

    PubMed

    Clivot, Hugues; Danger, Michael; Pagnout, Christophe; Wagner, Philippe; Rousselle, Philippe; Poupin, Pascal; Guérold, François

    2013-01-01

    Anthropogenic acidification in headwater streams is known to affect microbial assemblages involved in leaf litter breakdown. Far less is known about its potential effects on microbial enzyme activities. To assess the effects of acidification on microbial activities associated with decaying leaves, a 70-day litter bag experiment was conducted in headwater streams at six sites across an acidification gradient. The results revealed that microbial leaf decomposition was strongly and negatively correlated with total Al concentrations (r = -0.99, p < 0.001) and positively correlated with Ca(2+) concentrations (r = 0.94, p = 0.005) and pH (r = 0.93, p = 0.008). Denaturing gradient gel electrophoresis analyses showed that microbial assemblages differed between non-impacted and impacted sites, whereas fungal biomass associated with decaying leaves was unaffected. The nutrient content of leaf detritus and ecoenzymatic activities of carbon (C), nitrogen (N) and phosphorus (P) acquisition revealed that N acquisition was unaltered, while P acquisition was significantly reduced across the acidification gradient. The P content of leaf litter was negatively correlated with total Al concentrations (r = -0.94, p < 0.01) and positively correlated with decomposition rates (r = 0.95, p < 0.01). This potential P limitation of microbial decomposers in impacted sites was confirmed by the particularly high turnover activity for phosphatase and imbalanced ratios between the ecoenzymatic activities of C and P acquisition. The toxic form of Al has well-known direct effects on aquatic biota under acidic conditions, but in this study, Al was found to also potentially affect microbially mediated leaf processing by interfering with the P cycle. These effects may in turn have repercussions on higher trophic levels and whole ecosystem functioning. PMID:22903164

  17. Transcainide causes two modes of open-channel block with different voltage sensitivities in batrachotoxin-activated sodium channels.

    PubMed Central

    Zamponi, G W; French, R J

    1994-01-01

    Transcainide, a complex derivative of lidocaine, blocks the open state of BTX-activated sodium channels from bovine heart and rat skeletal muscle in two distinct ways. When applied to either side of the membrane, transcainide caused discrete blocking events a few hundred milliseconds in duration (slow block), and a concomitant reduction in apparent single-channel amplitude, presumably because of rapid block beyond the temporal resolution of our recordings (fast block). We quantitatively analyzed block from the cytoplasmic side. Both modes of block occurred via binding of the drug to the open channel, approximately followed 1:1 stoichiometry, and were similar for both channel subtypes. For slow block, the blocking rate increased, and the unblocking rate decreased with depolarization, yielding an overall enhancement of block at positive potentials, and suggesting a blocking site at an apparent electrical distance about 45% of the way from the cytoplasmic end of the channel (z delta approximately 0.45). In contrast, the fast blocking mode was only slightly enhanced by depolarization (z delta approximately 0.15). Phenomenologically, the bulky and complex transcainide molecule combines the almost voltage-insensitive blocking action of phenylhydrazine (Zamponi and French, 1994a (companion paper)) with a slow open-channel blocking action that shows a voltage dependence typical of simpler amines. Only the slower blocking mode was sensitive to the removal of external sodium ions, suggesting that the two types of block occur at distinct sites. Dose-response relations were also consistent with independent binding of transcainide to two separate sites on the channel. PMID:7811913

  18. Oscillating activity of a calcium-activated K+ channel in normal and cancerous mammary cells in culture.

    PubMed

    Enomoto, K; Furuya, K; Maeno, T; Edwards, C; Oka, T

    1991-01-01

    Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2(+)-gated K+ current. The characteristics of the Ca2(+)-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 microM of the intracellular Ca2+, but it was independent of the membrane potential. Charybdotoxin reduced the activity of the Ca2(+)-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2(+)-activated K+ channels. PMID:1710671

  19. Stream bed organic carbon and biotic integrity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allochthonous organic matter provides a basis for some stream ecosystems. Channel incision, which is a common result of anthropogenic impacts on watersheds and stream channels, may deplete stream bed C stores due to erosion, less frequent hydrologic exchanges between stream and floodplain, and remov...

  20. Effects of Land-Cover Change, Floods, and Stream Position on Geomorphic Processes - Implications for Restoration Activities

    USGS Publications Warehouse

    Fitzpatrick, F.A.

    2001-01-01

    A geomorphic study for North Fish Creek, a northern Wisconsin tributary to Lake Superior was analyzed to determine the hydrologic and geomorphic changes caused by clear-cut logging and agricultural activity. Discharge magnitude estimated with HEC-2 for full-channel capacities indicate that modern full-channel discharges are about twice as large as pre-1946 full-channel discharges. Flood-plain deposition rates were high along the transitional main stem after European settlement. Restoration and protection activities would be most effective if focused on watershed practices to reduce runoff and on channel restoration that reduce buff and bank erosion in the upper and transitional main stems.

  1. Glacially-megalineated limestone terrain of Anticosti Island, Gulf of St. Lawrence, Canada; onset zone of the Laurentian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Putkinen, Niko

    2014-03-01

    postulated Laurentian Channel Ice Stream (LCIS) within the Gulf of St. Lawrence sector of the Laurentide Ice Sheet.

  2. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    NASA Astrophysics Data System (ADS)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  3. [Osmoregulatory reactions of frog erythrocytes under conditions of activation and blockade of Ca2+-channels].

    PubMed

    Skorkina, M Iu

    2012-01-01

    The kinetics of cell osmoregulatory reactions under conditions of activation and blockade of Ca2+-channels was studied on a model of frog polyfunctional nuclear erythrocyte. Both activation and blockade of Ca2+-channels has been established to promote swelling of nuclei and an increase of the nuclear-cytoplasmic ratios under conditions of hypotonic exposure. The osmoregulatory cell reactions after activation of Ca2+-channels are expressed as a decrease of the cell volume. The blockator of Ca2+-channels verapamil produces an alternated increase and decrease of the erythrocyte volume with time intervals of 30 and 60 s. The clearly expressed functional activity of the nuclear membrane in response to the hypotonic action under conditions of activation and blockade of Ca2+-channels indicates participation of Ca2+ ions in mechanisms of the nuclear-cytoplasmic transfer. PMID:22645976

  4. Relationship Between Watershed Land Use and Denitrification Enzyme Activity in Headwater Streams

    EPA Science Inventory

    Headwater streams are the dominant land-water interface across much of the landscape. Denitrification is an important ecological service provided by headwater streams. Anthropogenic inputs of N to terrestrial ecosystems largely result from agricultural practices. Animal agricultu...

  5. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells.

    PubMed

    Tilley, Drew C; Eum, Kenneth S; Fletcher-Taylor, Sebastian; Austin, Daniel C; Dupré, Christophe; Patrón, Lilian A; Garcia, Rita L; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E; Sack, Jon T

    2014-11-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  6. Low-dose photon irradiation alters cell differentiation via activation of hIK channels.

    PubMed

    Roth, Bastian; Gibhardt, Christine S; Becker, Patrick; Gebhardt, Manuela; Knoop, Jan; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-08-01

    To understand the impact of ionizing irradiation from diagnostics and radiotherapy on cells, we examined K(+) channel activity before and immediately after exposing cells to X-rays. Already, low dose in the cGy range caused in adenocarcinoma A549 cells within minutes a hyperpolarization following activation of the human intermediate-conductance Ca(2+)-activated K(+) channel (hIK). The response was specific for cells, which functionally expressed hIK channels and in which hIK activity was low before irradiation. HEK293 cells, which do not respond to X-ray irradiation, accordingly develop a sensitivity to this stress after heterologous expression of hIK channels. The data suggest that hIK activation involves a Ca(2+)-mediated signaling cascade because channel activation is suppressed by a strong cytosolic Ca(2+) buffer. The finding that an elevation of H2O2 causes an increase in the concentration of cytosolic Ca(2+) suggests that radicals, which emerge early in response to irradiation, trigger this Ca(2+) signaling cascade. Inhibition of hIK channels by specific blockers clotrimazole and TRAM-34 slowed cell proliferation and migration in "wound" scratch assays; ionizing irradiation, in turn, stimulated the latter process presumably via its activation of the hIK channels. These data stress an indirect radiosensitivity of hIK channels with an impact on cell differentiation. PMID:25277267

  7. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity.

    PubMed Central

    Gincel, Dan; Shoshan-Barmatz, Varda

    2002-01-01

    The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission. PMID:12496091

  8. Allosteric interactions and the modular nature of the voltage- and Ca2+-activated (BK) channel

    PubMed Central

    Latorre, Ramon; Morera, Francisco J; Zaelzer, Cristian

    2010-01-01

    The high conductance voltage- and Ca2+-activated K+ channel is one of the most broadly expressed channels in mammals. This channel is named BK for ‘big K’ because of its single-channel conductance that can be as large as 250 pS in 100 mm symmetrical K+. BK channels increase their activity by membrane depolarization or an increase in cytosolic Ca2+. One of the key features that defines the behaviour of BK channels is that neither Ca2+ nor voltage is strictly necessary for channel activation. This and several other observations led to the idea that both Ca2+ and voltage increase the open probability by an allosteric mechanism. In this type of mechanism, the processes of voltage sensor displacement, Ca2+ binding and pore opening are independent equilibria that interact allosterically with each other. These allosteric interactions in BK channels reside in the structural characteristics of the BK channel in the sense that voltage and Ca2+ sensors and the pore need to be contained in different structures or ‘modules’. Through electrophysiological, mutagenesis, biochemical and fluorescence studies these modules have been identified and, more important, some of the interactions between them have been unveiled. In this review, we have covered the main advances achieved during the last few years in the elucidation of the structure of the BK channel and how this is related with its function as an allosteric protein. PMID:20603335

  9. Calcium-activated chloride channels in cultured embryonic Xenopus spinal neurons.

    PubMed

    Hussy, N

    1992-12-01

    1. Single-channel currents were recorded from Xenopus spinal neurons developing in vitro using the patch-clamp technique, to identify the channels underlying the large and small macroscopic Ca(2+)-activated Cl- currents (ICl(Ca)) present in these cells. 2. Channels of large (maxi-channels; 310 pS) and smaller conductance (mini-channels; 50-60 pS) are activated by elevation of cytoplasmic Ca2+ concentration. Channel activity is not altered by subsequent removal of Ca2+ from the bath, arguing against a direct ligand-type Ca2+ dependence. The much higher incidence of channel activation in cell-attached patches from cells permeabilized with the Ca2+ ionophore A23187 than in excised patches also suggests the involvement of some unidentified intracellular factor. 3. The reversal potential of maxi-Cl- channels is not altered by changes in Na+ concentration, but is shifted in the negative direction by the substitution of Cl- by methanesulfonate on the intracellular side of the patch, indicating their anionic selectivity. 4. Maxi-Cl- channels exhibited the presence of multiple probable subconductance states and showed marked voltage-dependent inactivation above and below +/- 20 mV. 5. Examination of maxi-Cl- channels at early times in culture (6-9 h) and 24 h later did not reveal any developmental change in the characteristics described above. However, the mean open duration of the channel was found to increase twofold during this period of time. 6. The simultaneous presence of maxi- and mini-Cl- channels prevented detailed characterization of the latter. The anionic selectivity of mini-Cl- channels is suggested by their reversal potential that lies close to the Cl- equilibrium potential.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1283407

  10. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations

    PubMed Central

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir

    2012-01-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate. PMID:22412190

  11. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy

    PubMed Central

    Diness, Jonas G.; Bentzen, Bo H.; Sørensen, Ulrik S.

    2015-01-01

    Abstract: Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle. PMID:25830485

  12. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    PubMed

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  13. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.

    PubMed

    Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li

    2015-06-16

    Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from

  14. Urban Stream Ecology

    EPA Science Inventory

    Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...

  15. γ-Band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice

    PubMed Central

    Llinás, Rodolfo R.; Choi, Soonwook; Urbano, Francisco J.; Shin, Hee-Sup

    2007-01-01

    Thalamocortical in vivo and in vitro function was studied in mice lacking P/Q-type calcium channels (CaV2.1), in which N-type calcium channels (CaV2.2) supported central synaptic transmission. Unexpectedly, in vitro patch recordings from thalamic neurons demonstrated no γ-band subthreshold oscillation, and voltage-sensitive dye imaging demonstrated an absence of cortical γ-band-dependent columnar activation involving cortical inhibitory interneuron activity. In vivo electroencephalogram recordings showed persistent absence status and a dramatic reduction of γ-band activity. Pharmacological block of T-type calcium channels (CaV3), although not noticeably affecting normal control animals, left the knockout mice in a coma-like state. Hence, although N-type calcium channels can rescue P/Q-dependent synaptic transmission, P/Q calcium channels are essential in the generation of γ-band activity and resultant cognitive function. PMID:17968008

  16. The effect of in-stream activities on the Njoro River, Kenya. Part II: Microbial water quality

    NASA Astrophysics Data System (ADS)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    The influence of periodic in-stream activities of people and livestock on the microbial water quality of the Njoro River in Kenya was monitored at two disturbed pools (Turkana Flats and Njoro Bridge) at the middle reaches. A total of 96 sets of samples were obtained from the two pools in six weeks during dry weather (January-April) in 2006. On each sampling day, two trips were made before and during in-stream activities and on each trip, two sets of samples were collected upstream and downstream of activities. This schedule was repeated four times each for Wednesday, Saturday and Sunday. Samples were processed for heterotrophic plate count bacteria (HPC), total coliform (TC), presumptive Escherichia coli and presumptive Enterococci. Additional samples were analysed for total suspended solids (TSS), turbidity, BOD 5 and ammonium-N. The microbial water quality deteriorated significant ( p < 0.05) downstream during activities at both pools. A similar trend was observed with the chemical indicators (TSS, turbidity, BOD 5 and ammonium-N). The two groups of indicators demonstrated high capacity for site segregation based on pollution levels. Pollution levels for specific days were not significantly different ( p > 0.05). This was incompatible with the variability of in-stream activities with specific days. The pooled data was explained largely by three significant principal components - recent pollution (PC1), metabolic activity (PC2) and residual pollution (PC3). It was concluded that the empirical site parity/disparity in the levels of microbial and non-microbial indicators reflected the diurnal periodicity of in-stream activities and the concomitant pollution they caused. However, microbial source tracking studies are required to distinguish faecal sources. In the meantime, measures should be undertaken to regulate in-stream activities along the stream and minimize the movement of livestock in the catchment.

  17. HOW MUCH OF STREAM HABITAT IS PREDETERMINED BY NATURAL GEOMORPHIC CONTROLS?

    EPA Science Inventory

    Detailed pre- and post-disturbance research has demonstrated the ability of human activities to alter stream channel characteristics, including the amounts of deep pool habitat and fine substrate. However, it is often difficult to demonstrate consistent associations between the...

  18. Aminolevulinic acid dehydratase activity in American dippers (Cinclus mexicanus) from a metal-impacted stream.

    PubMed

    Strom, Sean M; Ramsdell, Howard S; Archuleta, Andrew S

    2002-01-01

    Blood samples collected from adult and nestling American dippers (Cinclus mexicanus) along the Arkansas River (CO, USA), a stream impacted by discharges from historical mining operations, and a reference stream were analyzed for lead concentration and delta-aminolevulinic acid dehydratase (ALAD) activity. Median ALAD activities of adult and nestling dippers from the Arkansas River were found to be significantly different from median ALAD activities of reference adults and nestlings (p = 0.002 and p = 0.028). Median ALAD activity for adult dippers from the Arkansas River was more than 50% lower relative to reference adults and activity approached a level close to 50% lower in nestlings from the same site. Median blood lead concentrations from adult (range 15.4-386.0 ppb) and nestling (range 12.1-323.0 ppb) dippers from the Arkansas River were found to be significantly different from median blood lead concentrations of reference adult (range 4.2-29.6 ppb) and nestling (range 4.2-8.2 ppb) dippers (p < 0.001 and p = 0.011). The median hematocrit level in adult dippers did not vary between sites (p = 0.73), whereas the median hematocrit level of nestling dippers from the reference site was significantly lower compared to Arkansas River nestlings (p = 0.042). Blood lead concentration in both adult and nestling dippers was found to be significantly correlated with invertebrate lead concentration (r = 0.81, p < 0.001 and r = 0.62, p = 0.01, respectively). Highly significant negative correlations were observed between blood lead concentration and ALAD activity in both adult and nestling dippers (r = -0.86, p < 0.001 and r = -0.84, p < 0.001, respectively). This study suggests that dippers (both adults and nestlings) from the Arkansas River have significantly lower ALAD activity and significantly higher blood lead concentrations compared to reference values. The measurement of ALAD activity may be a sensitive and accurate biomarker for environmental lead exposure in dippers

  19. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    PubMed

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p < 0.05). CNTF-ACM produced a significant increase in BKα1 and BKβ3 expression (p < 0.05) but had no significant effect upon SK2 or SK3 expression (p > 0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons. PMID:27097551

  20. Macroinvertebrate response to stream restoration by large wood addition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel incision processes resulting primarily from channel straightening/dredging and watershed deforestation have been among the most profound degradations in our streams. Physical changes to streams affected by channel incision processes have included significant increases in streambed degradatio...

  1. Lifetime and conductance of acetylcholine-activated channels in normal and denervated toad sartorius muscle.

    PubMed Central

    Gage, P W; Hamill, O P

    1980-01-01

    1. The average lifetime and conductance of acetylcholine-activated channels were measured in normal and denervated, voltage-clamped toad sartorius muscle fibres at 10 degrees C. 2. The null potential was -4 +/- 1 mV for subsynaptic channels in normal fibres and -6 +/- 3 mV for extrasynaptic channels in denervated fibres. 3. There was a linear relationship between variance of conductance fluctuations and mean conductance for acetylcholine-induced currents up to 50 nA, in denervated fibres clamped at -50 mV. The ratio gave a channel conductance of 14 pS. 4. At the same membrane potential, the average lifetime of extrasynaptic channels in denervated fibres was approximately double, whereas channel conductance was approximately half, that of subsynaptic channels in normal fibres: there was little difference in net charge transfer through the two types of channel under similar conditions. 5. Single channel conductance increased, whereas average channel lifetime decreased, as the membrane potential became more positive (depolarized). The effect of potential on channel lifetime and conductance was more pronounced in denervated than in normal fibres. PMID:6767026

  2. Regulation of Human Kv1.4 Channel Activity by the Antidepressant Metergoline.

    PubMed

    Yeom, Hye Duck; Lee, Jun-Ho

    2016-01-01

    Metergoline is an ergot-derived psychoactive drug that is a ligand for various serotonin and dopamine receptors. Little is known about the effect of metergoline on different types of receptors and ion channels. Potassium channels are the most diverse group of ion channels. Kv1.4, a shaker family K channel alpha subunit, is one of a family of voltage gated K channels that mediates transient and rapid inactivating A-type currents and N-type inactivation. We demonstrated previously that metergoline inhibited the activity of neuronal voltage-dependent Na(+) channels in Xenopus laevis oocytes (Acta Pharmacol. Sin., 35, 2014, Lee et al.). In this study, we sought to elucidate the regulatory effects underlying metergoline-induced human Kv1.4 channel inhibition. We used the two electrode voltage-clamp (TEVC) technique to investigate the effect of metergoline on human Kv1.4 channel currents in Xenopus laevis oocytes expressing human Kv1.4 alpha subunits. Interestingly, metergoline treatment also induced inhibition of peak currents in human Kv1.4 channels in a concentration-dependent manner. The IC50 of peak currents of hKv1.4 currents was 3.6±0.6 µM. These results indicate that metergoline might regulate the human Kv1.4 channel activity that is expressed in X. laevis oocytes. Further, this regulation of potassium currents by metergoline might be one of the pharmacological actions of metergoline-mediated psychoactivity. PMID:27251511

  3. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels.

    PubMed

    Knaus, H G; McManus, O B; Lee, S H; Schmalhofer, W A; Garcia-Calvo, M; Helms, L M; Sanchez, M; Giangiacomo, K; Reuben, J P; Smith, A B

    1994-05-17

    Tremorgenic indole alkaloids produce neurological disorders (e.g., staggers syndromes) in ruminants. The mode of action of these fungal mycotoxins is not understood but may be related to their known effects on neurotransmitter release. To determine whether these effects could be due to inhibition of K+ channels, the interaction of various indole diterpenes with high-conductance Ca(2+)-activated K+ (maxi-K) channels was examined. Paspalitrem A, paspalitrem C, aflatrem, penitrem A, and paspalinine inhibit binding of [125I]charybdotoxin (ChTX) to maxi-K channels in bovine aortic smooth muscle sarcolemmal membranes. In contrast, three structurally related compounds, paxilline, verruculogen, and paspalicine, enhanced toxin binding. As predicted from the binding studies, covalent incorporation of [125I]ChTX into the 31-kDa subunit of the maxi-K channel was blocked by compounds that inhibit [125I]ChTX binding and enhanced by compounds that stimulate [125I]ChTX binding. Modulation of [125I]ChTX binding was due to allosteric mechanisms. Despite their different effects on binding of [125I]ChTX to maxi-K channels, all compounds potently inhibited maxi-K channels in electrophysiological experiments. Other types of voltage-dependent or Ca(2+)-activated K+ channels examined were not affected. Chemical modifications of paxilline indicate a defined structure-activity relationship for channel inhibition. Paspalicine, a deshydroxy analog of paspalinine lacking tremorgenic activity, also potently blocked maxi-K channels. Taken together, these data suggest that indole diterpenes are the most potent nonpeptidyl inhibitors of maxi-K channels identified to date. Some of their pharmacological properties could be explained by inhibition of maxi-K channels, although tremorgenicity may be unrelated to channel block. PMID:7514038

  4. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  5. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  6. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  7. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  8. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  9. Comparison of Stream Restoration and Vegetation Restoration on Stream Temperature in the Middle Fork John Day River, Oregon

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Wondzell, S. M.; Haggerty, R.

    2013-12-01

    Stream temperature is an important component of aquatic ecosystems. During the past century, various anthropogenic activities (such as timber harvest, mining, and agriculture) reduced riparian vegetation and channel complexity along many streams around the world. As a result, stream temperature increased and suitable habitat for cool- and cold-water organisms declined. Stream temperatures are expected to increase even more under future climate. The effects of warmer climate and anthropogenic activities are proposed to be mitigated by restoration projects aimed to reduce stream temperatures. Common restoration practices are replanting natural vegetation along stream banks and restoring channel complexity. The Middle Fork John Day River, in northeastern Oregon, USA is an example of such a process. We modeled stream temperature along a 37-km section of the Middle Fork John Day River for current and projected conditions of climate, restored riparian vegetation along 6.6-km, and restored channel meanders along 1.5 km. Preliminary simulations suggest that if current riparian vegetation remains unchanged, an average summertime air warming of 4°C increased the 7-day average daily maximum (7DADM) by about 1.3°C. However, restored riparian vegetation reduced the 7DADM by about 0.7°C relative to the current temperature. Restored channel meanders reduced the 7DADM by less than 0.05°C relative to the current temperature. These preliminary simulations assume no hyporheic exchange and riparian vegetation that is 10 m tall and has 30% canopy density.

  10. The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells.

    PubMed

    Zhang, Haifeng; Deng, Zhiqin; Yang, Lili; Luo, Hai; Liu, Shanwen; Li, Yuan; Wei, Yan; Peng, Shuang; Zhu, Linyan; Wang, Liwei; Chen, Lixin

    2016-03-01

    Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels. PMID:26794461

  11. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.

    PubMed

    Devor, D C; Frizzell, R A

    1993-11-01

    Single-channel recording techniques were used to identify and characterize the K+ channel activated by Ca(2+)-mediated secretory agonists in T84 cells. Carbachol (CCh; 100 microM) and taurodeoxycholate (TDC; 0.75 mM) stimulated oscillatory outward K+ currents. With K gluconate in bath and pipette, cell-attached single-channel K+ currents stimulated by CCh and ionomycin (2 microM) were inwardly rectified and reversed at 0 mV. The single-channel chord conductance was 32 pS at -90 mV and 14 pS at +90 mV. Similar properties were observed in excised inside-out patches in symmetric K+, permitting further characterization of channel properties. Partial substitution of bath or pipette K+ with Na+ gave a K(+)-to-Na+ selectivity ratio of 5.5:1. Channel activity increased with increasing bath Ca2+ concentration in the physiological range of 50-800 nM. Maximal channel activity occurred at intracellular pH 7.2 and decreased at more acidic or alkaline pH values. Extracellular charybdotoxin (CTX; 50 nM) blocked inward but not outward currents. Extracellular tetraethylammonium (TEA; 10 mM) reduced single-channel amplitude at all voltages. No apparent block of the channel was observed with extracellular Ba2+ (1 mM), apamin (1 microM), 4-aminopyridine (4-AP; 4 mM), quinine (500 microM), or glyburide (10 microM). Cytosolic quinine and 4-AP blocked both inward and outward currents, whereas Ba2+ blocked only outward currents. Apamin, CTX, TEA, and glyburide did not affect channel activity. The agonist activation and pharmacological profile of this inwardly rectified K+ channel indicate that it is responsible for the increase in basolateral K+ conductance stimulated by Ca(2+)-mediated agonists in T84 cells. PMID:7694492

  12. Control of Inward Rectifier K Channel Activity by Lipid Tethering of Cytoplasmic Domains

    PubMed Central

    Enkvetchakul, Decha; Jeliazkova, Iana; Bhattacharyya, Jaya; Nichols, Colin G.

    2007-01-01

    Interactions between nontransmembrane domains and the lipid membrane are proposed to modulate activity of many ion channels. In Kir channels, the so-called “slide-helix” is proposed to interact with the lipid headgroups and control channel gating. We examined this possibility directly in a cell-free system consisting of KirBac1.1 reconstituted into pure lipid vesicles. Cysteine substitution of positively charged slide-helix residues (R49C and K57C) leads to loss of channel activity that is rescued by in situ restoration of charge following modification by MTSET+ or MTSEA+, but not MTSES− or neutral MMTS. Strikingly, activity is also rescued by modification with long-chain alkyl-MTS reagents. Such reagents are expected to partition into, and hence tether the side chain to, the membrane. Systematic scanning reveals additional slide-helix residues that are activated or inhibited following alkyl-MTS modification. A pattern emerges whereby lipid tethering of the N terminus, or C terminus, of the slide-helix, respectively inhibits, or activates, channel activity. This study establishes a critical role of the slide-helix in Kir channel gating, and directly demonstrates that physical interaction of soluble domains with the membrane can control ion channel activity. PMID:17698595

  13. Experimental tests of priority effects and light availability on relative performance of Myriophyllum spicatum and Elodea nuttallii propagules in artificial stream channels.

    PubMed

    Zefferman, Emily P

    2015-01-01

    Submersed macrophytes have important ecological functions in many streams, but fostering growth of beneficial native species while suppressing weedy invasives may be challenging. Two approaches commonly used in management of terrestrial plant communities may be useful in this context: (1) altering resource availability and (2) establishing desirable species before weeds can invade (priority effects). However, these approaches are rarely used in aquatic systems, despite widespread need for sustainable solutions to aquatic weed problems. In artificial stream channels in California, USA, I conducted experiments with asexual propagules of non-native invasive Myriophyllum spicatum (Eurasian watermilfoil) and native Elodea nuttallii (western waterweed) to address the questions: (1) How does light availability affect relative performance of the two species?; (2) Does planting the native earlier than the invasive decrease survival or growth rate of the invasive?; and (3) Do light level and priority effects interact? The relative performance between E. nuttallii and M. spicatum had an interesting and unexpected pattern: M. spicatum had higher growth rates than E. nuttallii in the zero and medium shade levels, but had similar performance in the low and high shade levels. This pattern is most likely the result of E. nutallii's sensitivity to both very low and very high light, and M. spicatum's sensitivity to very low light only. Native priority did not significantly affect growth rate or survival of M. spicatum, possibly because of unexpectedly poor growth of the E. nuttallii planted early. This study suggests that altering light levels could be effective in reducing growth of an invasive macrophyte, and for changing the competitive balance between a native and a non-native species in the establishment phase. Further investigations into the use of priority effects and resource alteration for submersed macrophyte management are warranted, given their mixed results in other

  14. Effects of hatchery fish density on emigration, growth, survival, and predation risk of natural steelhead parr in an experimental stream channel

    USGS Publications Warehouse

    Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.

    2011-01-01

    Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.

  15. Biofiltration of benzene contaminated air streams using compost-activated carbon filter media

    SciTech Connect

    Zhu, L.; Kocher, W.M.; Abumaizar, R.J.

    1998-12-31

    Three laboratory-scale biofilter columns were operated for 81 days to investigate the removal of benzene from a waste gas stream. The columns contain a mixture of yard waste and sludge compost as biomedia. Different amounts of granular activated carbon (GAC) are mixed with the compost in two of the three columns to evaluate the extent to which biofilter performance can be enhanced. The effects of different operating conditions on the performance of the removal of benzene from air were evaluated. More than 90% removal efficiency was observed for an influent benzene concentration of about 75 ppm and an air flow rate of 0.3 L/min. in all 3 columns under steady-state conditions. Under most cases of shock loading conditions, such as a sudden increase in the air flow rate, or the benzene concentration in the influent, the biofilters containing GAC provided higher removal efficiencies and more stable operation than the biofilter containing compost only.

  16. Natural Bile Acids and Synthetic Analogues Modulate Large Conductance Ca2+-activated K+ (BKCa) Channel Activity in Smooth Muscle Cells

    PubMed Central

    Dopico, Alejandro M.; Walsh, John V.; Singer, Joshua J.

    2002-01-01

    Bile acids have been reported to produce relaxation of smooth muscle both in vitro and in vivo. The cellular mechanisms underlying bile acid–induced relaxation are largely unknown. Here we demonstrate, using patch-clamp techniques, that natural bile acids and synthetic analogues reversibly increase BKCa channel activity in rabbit mesenteric artery smooth muscle cells. In excised inside-out patches bile acid–induced increases in channel activity are characterized by a parallel leftward shift in the activity-voltage relationship. This increase in BKCa channel activity is not due to Ca2+-dependent mechanism(s) or changes in freely diffusible messengers, but to a direct action of the bile acid on the channel protein itself or some closely associated component in the cell membrane. For naturally occurring bile acids, the magnitude of bile acid–induced increase in BKCa channel activity is inversely related to the number of hydroxyl groups in the bile acid molecule. By using synthetic analogues, we demonstrate that such increase in activity is not affected by several chemical modifications in the lateral chain of the molecule, but is markedly favored by polar groups in the side of the steroid rings opposite to the side where the methyl groups are located, which stresses the importance of the planar polarity of the molecule. Bile acid–induced increases in BKCa channel activity are also observed in smooth muscle cells freshly dissociated from rabbit main pulmonary artery and gallbladder, raising the possibility that a direct activation of BKCa channels by these planar steroids is a widespread phenomenon in many smooth muscle cell types. Bile acid concentrations that increase BKCa channel activity in mesenteric artery smooth muscle cells are found in the systemic circulation under a variety of human pathophysiological conditions, and their ability to enhance BKCa channel activity may explain their relaxing effect on smooth muscle. PMID:11865021

  17. A synthetic prostone activates apical chloride channels in A6 epithelial cells

    PubMed Central

    Bao, Hui Fang; Liu, Lian; Self, Julie; Duke, Billie Jeanne; Ueno, Ryuji; Eaton, Douglas C.

    2008-01-01

    The bicyclic fatty acid lubiprostone (formerly known as SPI-0211) activates two types of anion channels in A6 cells. Both channel types are rarely, if ever, observed in untreated cells. The first channel type was activated at low concentrations of lubiprostone (<100 nM) in >80% of cell-attached patches and had a unit conductance of ∼3–4 pS. The second channel type required higher concentrations (>100 nM) of lubiprost