Science.gov

Sample records for active stressed lap

  1. Dynamic deformation measurement and analysis of active stressed lap using optical method

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Liu, Yuankun; Xiang, Liqun

    2007-12-01

    The active stressed lap is the heart of polishing process. A novel non-contact optical method of dynamic deformation measurement and analysis of an active stressed lap is put forward. This method, based on structured illumination, is able to record full-field information of the bending and rotating stressed lap dynamically and continuously, while its profile is changed under computer control, and restore the whole process of lap deformation varied with time at different position and rotating angle. It has been verified by experiments that this proposed method will be helpful to the opticians to ensure the stressed lap as expected.

  2. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  3. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  4. Learning Activity Package, Chemistry I, (LAP) Study 29.

    ERIC Educational Resources Information Center

    Jones, Naomi

    Presented is a Learning Activity Package (LAP) study concerned with carbon and its compounds. This LAP in chemistry includes a rationale for studying the chemical element of carbon, a list of student objectives (stated in behavioral terms), of activities (reading, laboratory experiments, model construction, etc.), a two-page worksheet, a…

  5. Learning Activity Package, Physical Science 92, LAPs 1-9.

    ERIC Educational Resources Information Center

    Williams, G. J.

    This set of nine teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in physical science covers the topics of scientific equipment and procedures; measure of time, length, area, and volume; water; oxygen and oxidation; atmospheric pressure; motion; machines; carbon; and light and sound. Each unit contains a rationale…

  6. Learning Activity Package, Algebra 124, LAPs 46-55.

    ERIC Educational Resources Information Center

    Holland, Bill

    A series of 10 teacher-prepared Learning Activity Packages (LAPs) in advanced algebra and trigonometry, these units cover absolute value, inequalities, exponents, radicals, and complex numbers; functions; higher degree equations and the derivative; the trigonometric functions; graphs and applications of the trigonometric functions; sequences and…

  7. Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a…

  8. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet…

  9. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1981-01-01

    The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.

  10. Edge effect modeling and experiments on active lap processing.

    PubMed

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-05

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.

  11. Machine Shop I. Learning Activity Packets (LAPs). Section B--Basic and Related Technology.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains eight learning activity packets (LAPs) for the "basic and related technology" instructional area of a Machine Shop I course. The eight LAPs cover the following topics: basic mathematics, blueprints, rules, micrometer measuring tools, Vernier measuring tools, dial indicators, gaging and inspection tools, and…

  12. LAP (NF-IL-6), a tissue-specific transcriptional activator, is an inhibitor of hepatoma cell proliferation.

    PubMed Central

    Buck, M; Turler, H; Chojkier, M

    1994-01-01

    During postnatal liver development, LAP (NF-IL-6, C/EBP beta) expression and hepatocyte proliferation are mutually exclusive. In addition to transactivating liver-specific genes, LAP, but not C/EBP alpha, arrests the cell cycle before the G1/S boundary in hepatoma cells. LIP, a liver-inhibitory protein, which is translated from LAP mRNA lacking the activation domain of LAP, is not only ineffective in blocking hepatoma cell proliferation but also antagonizes the effect of LAP on the cell cycle. Deletion analysis indicated that this effect of LIP required only the DNA-binding and leucine zipper domains. In addition we found that integrity of the LAP dimerization and activation domains is indispensable for the arrest of cell proliferation induced by LAP. Thus, hepatocyte differentiation and its characteristic quiescent state may be modulated by the LAP/LIP ratio. Images PMID:7906646

  13. Thermoelastic stress analysis of a pultruded composite double lap joint

    NASA Astrophysics Data System (ADS)

    Hemann, John H.; Martin, Richard E.; Mandic, Davor G.

    1999-02-01

    The use of composite materials, in particular glass/epoxy systems for structural applications has seen widespread growth. Recent examples include a bridge in Butler County, Ohio and a covered pedestrian bridge that is scheduled to be installed in Akron, Ohio. Both of these structures employ pultruded composites for the main structural members due to their high strength, light weight and the ease of manufacture into common structural shapes such as wide flanges, I-beams and box sections. The use of these shapes gives the designer the ability to use many of the same types of structural details that are common to steel design. This paper will examine the most common method of joining structural members, bolted connections. The analysis of bolted connections in composite materials has been widely reported in the literature. Analysis methods have ranged from two and three dimensional finite element analysis to more empirical methods of calculating the stress concentration factors based on experimental data. This paper will focus on the use of the thermoelastic stress analysis method to determine the stress concentration around a steel pin loaded in double shear by a pultruded glass fiber composite. Further studies were conducted to determine the time dependent material behavior on the thermoelastic stress analysis signal output. The following is a description of the theory, experimental setup, and a summary of results.

  14. A two-dimensional stress analysis of single lap joints subjected to external bending moments

    SciTech Connect

    Sawa, Toshiyuki; Nakano, Katsuyuki; Toratani, Hiroshi

    1995-11-01

    The stress distribution of single lap adhesive joints subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity. In the analysis, two similar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of the ratio of Young;s modulus of adherends to that of adhesive and the adhesive thickness on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity causes at the edges of the interfaces and the peel stress at the edges of the interface increases with a decrease of Young`s modulus of the adherends. In addition, photoelastic experiments are carried out. A fairly good agreement is seen between the analytical and the experimental results.

  15. Too Many Laps? Try This Activity Recipe -- They'll Be Back for More!

    ERIC Educational Resources Information Center

    McCannell, Daryle

    2000-01-01

    Discusses the importance of creative warmup activities (other than running laps) to motivate students in physical activity class, explaining that the basic ingredients are: a smiling, energetic instructor; appropriate body preparation; a mold for children's boundless energy; and some creative planning. The article describes several creative warmup…

  16. Study on active lap tool influence function in grinding 1.8 m primary mirror.

    PubMed

    Haitao, Liu; Zhige, Zeng; Fan, Wu; Bin, Fan; Yongjian, Wan

    2013-11-01

    We present a theoretical modeling method to predict the ring tool influence function (TIF) based on the computer-controlled active lap process. The gap on the lap-grinding layer is considered, and its influence on the ring TIF is analyzed too. The relationship between the shape of the ring TIF and the lap-workpiece rotation speed ratio is discussed in this paper. The recipe for calculating dwell time for axisymmetric fabrication is discussed. The grinding process of a 1.8 m primary mirror is improved based on these results. The grinding process is accomplished after 30 circles of grinding, and the surface shape error is from PV 82 μm RMS 16.4 μm reduced to PV 13.5 μm RMS 2.5 μm.

  17. Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…

  18. Learning Activity Package, Algebra 103-104, LAPs 23-33.

    ERIC Educational Resources Information Center

    Evans, Diane

    This set of 11 teacher-prepared Learning Activity Packages (LAPs) in intermediate algebra covers number systems; exponents and radicals; polynomials and factoring; rational expressions; coordinate geometry; relations, functions, and inequalities; quadratic equations and inequalities; Quadratic functions; systems of equations and inequalities;…

  19. Learning Activity Package, Chemistry I. LAP Numbers 22, 23, 24, 25, 26, 27, and 28.

    ERIC Educational Resources Information Center

    Jones, Naomi

    As a set of seven Learning Activity Packages (LAPs) for individualized instruction in chemistry, the units cover the unit system, matter, energy, atomic structures, chemical formulas, physical states of matter, solutions and suspensions, ionization, acids, bases, and salts. Each unit contains a rationale for the material; a list of behavioral…

  20. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  1. Learning Activity Package, Physical Science. LAP Numbers 5, 6, and 7.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These three units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover the physical and chemical properties of water, dehydration of crystals, solutions, acidity, strong and weak bases, neutral properties of salts, amorphous forms of carbon, hydrocarbons, and petroleum products. Each unit contains a…

  2. Learning Activity Package, American Civics 92, LAPs 1 Through 3 and 5 Through 9.

    ERIC Educational Resources Information Center

    Calhoun, B. C.

    This self paced program in American Civics is for the ninth grade student who needs help on basic skills and who plans to enroll in vocational or business courses. Instructional materials, written at 9th grade level, consist of eight Learning Activity Packages (LAPs) on the following topics: Citizenship and Our Democracy; The Constitution of the…

  3. Learning Activity Package, American Civics 94, LAPs 1 Through 4 and 6 Through 9.

    ERIC Educational Resources Information Center

    Calhoun, B. C.; And Others

    This self-paced program in American Civics is for ninth grade students who definitely plan further education after high school, who have better than average grades, and who will do more than the minimum required work. Instructional materials written at 9th grade level or above consist of Learning Activity Packages (LAPs) on the following topics:…

  4. Learning Activity Package, Biology, LAPs 12, 13, 15, 17, and 18.

    ERIC Educational Resources Information Center

    Rhoden, Bruce

    Included is a set of five teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in topics in biology. The units cover the topics of individuals and populations, communities and ecosystems, diversity, plant functions, and animal functions. Each unit contains a rationale for the material; a list of behavioral objectives…

  5. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  6. Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  7. Grinding and polishing technology by computer controlled active lap for Φ1250mmF/1.5 aspheric mirror

    NASA Astrophysics Data System (ADS)

    Fan, Bin; Zeng, Zhige; Li, Xiaojin; Chen, Qiang; Gao, Pingqi; Zhou, Jiabin; Wan, Yongjian

    2010-05-01

    For large aspheric optical elements, Computer Controlled Active Lap(CCAL) manufacturing which developed in IOE (Institute of Optics and Electronics, Chinese Academy of Science), have some advantages such as higher manufacturing efficiency, lower middle-frequency and high-frequency errors comparing the fixed lapping technology and CCOS(Computer Controlled Optical Surface) technology. A paraboloid surface of Φ1250mmF/1.5 was grinded by the active lap bonded with ceramic pills, as well as polished will pitch bonded active lap. During polishing processing a null lens was designed to test the paraboloid surface, the final testing data of RMS with ZYGO interferometer reached to 0.027λ(λ=0.6328μm).

  8. Abernathy's Lap

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A lap in this instance is not a midriff but a tool for presision.polishing and grinding. During the Saturn V moonbooster program, Marshall Space Flight Center found a need for a better lap. The need arose from the exquisitely precise tolerances required for parts of the launch vehicle's guidance,and control system. So William J. Abernathy, a former Marshall employee, built a better lap; he invented a method for charging aluminum lap plates with diamond powder, then hard-anodizing them. The resulting lap produces a high polish on materials ranging from the softest aluminum to the hardest ceramics. It operates faster, wears longer and requires less reworking. Abernathy got NASA's permission to obtain a personal patent and he formed the one-man Abernathy Laps Co. in Huntsville, which produces a variety of laps. One of Abernathy's customers is Bell Aerospace Textron, Buffalo, which uses the laps to finish polish delicate instrument parts produced for NASA's Viking and other space programs. Says a Bell official: "Time needed (with the Abernathy lap) is a fraction of that required by conventional methods. The result is extremely accurate flatness and surface finish." Abernathy is providing laps for other manufacturing applications and for preparation of metallurgical specimens. The business is small but steady, and Abernathy plans expansion into other markets.

  9. Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration

    NASA Astrophysics Data System (ADS)

    Naik, Bhukya Srinivasa; Cao, Xinjin; Wanjara, Priti; Friedman, Jacob; Chen, Daolun

    2015-08-01

    AZ31B-H24 Mg alloy sheets with a thickness of 2 mm were friction stir welded in lap configuration using two tool rotational rates of 1000 and 1500 rpm and two welding speeds of 10 and 20 mm/s. The residual stresses in the longitudinal and transverse directions of the weldments were determined using X-ray diffraction. The shear tensile behavior of the lap joints was evaluated at low [233 K (-40 °C)], room [298 K (25 °C)], and elevated [453 K (180 °C)] temperatures. The failure load was highest for the lower heat input condition that was obtained at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s for all the test temperatures, due to the smaller hooking height, larger effective sheet thickness, and lower tensile residual stresses, as compared to the other two welding conditions that were conducted at a higher tool rotational rate or lower welding speed. The lap joints usually fractured on the advancing side of the top sheet near the interface between the thermo-mechanically affected zone and the stir zone. Elevated temperature testing of the weld assembled at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s led to the failure along the sheet interface in shear fracture mode due to the high integrity of the joint that exhibited large plastic deformation and higher total energy absorption.

  10. Learning Activity Package, Social Studies 124, LAPs 29 Through 34.

    ERIC Educational Resources Information Center

    Franklin, Mary Ann

    A set of five teacher-prepared Learning Activity Packages for individualized instruction on western civilization at the twelfth grade level includes the following units: Establishment of Western Civilization; Middle Period of Western Civilization; Islam and the Saracenic Civilization; the Renaissance and Reformation; and Modern Western…

  11. Learning Activity Package, Social Studies 103, LAPs 10 Through 18.

    ERIC Educational Resources Information Center

    Burgdorf, Jane; And Others

    A set of nine teacher-prepared Learning Activity Packages for individualized instruction on world history at the tenth grade level includes the following units: Early Man and the Beginning of Civilization; Our Heritage from Greece and Rome; Life in the Middle Ages; The Renaissance and the Reformation; Revolution; The World at War; Totalitarianism;…

  12. Learning Activity Package, Social Studies 102, LAPs 10 Through 16.

    ERIC Educational Resources Information Center

    Campbell, Tommy

    A set of seven teacher-prepared Learning Activity Packages for individualized instruction in world history at the tenth grade level includes the following units: Early Man and the Beginning of Civilization; Our Heritage from Greece and Rome; Life in the Middle Ages; The Renaissance and the Reformation; The Age of Revolution; The World at War; and…

  13. Lamb wave based active damage identification in adhesively bonded composite lap joints

    NASA Astrophysics Data System (ADS)

    Jolly, Prateek

    Bonding composite structures using adhesives offers several advantages over mechanical fastening such as better flow stress, weight saving, improved fatigue resistance and the ability to join dissimilar structures. The hesitation to adopt adhesively bonded composite joints stems from the lack of knowledge regarding damage initiation and propagation mechanisms within the joint. A means of overcoming this hesitation is to continuously monitor damage in the joint. This study proposes a methodology to conduct structural health monitoring (SHM) of an adhesively bonded composite lap joint using acoustic, guided Lamb waves by detecting, locating and predicting the size of damage. Finite element modeling of a joint in both 2D and 3D is used to test the feasibility of the proposed damage triangulation technique. Experimental validation of the methodology is conducted by detecting the presence, location and size of inflicted damage with the use of tuned guided Lamb waves.

  14. Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage*

    PubMed Central

    Scranton, Melissa A.; Yee, Ashley; Park, Sang-Youl; Walling, Linda L.

    2012-01-01

    Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress. PMID:22493451

  15. Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage.

    PubMed

    Scranton, Melissa A; Yee, Ashley; Park, Sang-Youl; Walling, Linda L

    2012-05-25

    Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress.

  16. Learning Activity Package, Chemistry II. LAP Numbers 39A, 39B, 39C, 40, 41, 41A and 42.

    ERIC Educational Resources Information Center

    Jones, Naomi

    As a set of seven Learning Activity Packages (LAPs) for individualized instruction in chemistry, the units cover problems in stoichiometry, energy levels, chemical bonding, matter and its forms, electrochemical processes, chemical kinetics and equilibrium, metals, and non-metals. Each unit contains a rationale for the material; a list of…

  17. Research on the design of surface acquisition system of active lap based on FPGA and FX2LP

    NASA Astrophysics Data System (ADS)

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2014-08-01

    In order to research the dynamic surface shape changes of active lap during the processing, this paper introduces a dynamic surface shape acquisition system of active lap using FPGA and USB communication. This system consists of high-precision micro-displacement sensor array, acquisition board, PC computer composition, and acquisition circuit board includes six sub-boards based on FPGA, a hub-board based on FPGA and USB communication. A sub-board is responsible for a number of independent channel sensors' data acquisition; hub-board is responsible for creating encoder simulation tools to active lap deformation control system with location information, sending synchronization information to latch the sensor data in all of the sub-boards for a time, while addressing the sub-boards to gather the sensor data in each sub-board one by one and transmitting all the sensor data together with location information via the USB chip FX2LP to the host computer. Experimental results show that the system is capable of fixing the location and speed of active lap, meanwhile the control of surface transforming and dynamic surface data acquisition at a certain location in the processing is implemented.

  18. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein.

    PubMed

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-05-23

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality.

  19. Induction of leucine aminopeptidase (LAP) like activity with wounding and methyl jasmonate in pigeonpea (Cajanas cajan) suggests the role of these enzymes in plant defense in leguminosae.

    PubMed

    Lomate, Purushottam R; Hivrale, Vandana K

    2011-06-01

    Aminopeptidases are ubiquitous in nature and their activities have been identified in several plant species. Leucine aminopeptidases (LAPs) are predominantly studied in solanaceous plants and are induced in response to wounding, herbivory and methyl jasmonate (MeJA). The functions of plant aminopeptidases are still under discussion and it is likely that the different classes play various roles. In the present study we report the local and systemic induction of LAP-like activity upon mechanical wounding and MeJA treatment. Two proteins with LAP-like activity were detected in pigeonpea leaves. They were designated as AP1 and AP2. AP1 activity was significantly induced upon wounding and application of MeJA. The estimated molecular masses of AP1 and AP2 were ∼ 60 and 41 kDa respectively in SDS-PAGE. The pH optimum for LAP-like activity in control leaf extracts was found to be neutral (pH 7.0) however the enzymes showed highest activity at alkaline pH (pH 9.0) in the leaf extracts of treated plants. The temperature optimum for LAP-like activity was around 40-50 °C. The enzymes were strongly inhibited by 1, 10 phenanthroline and bestatin. Heavy metal ions and EDTA inhibited LAP-like activities, whereas Mn(+2) and Mg(+2) activated the enzyme activities. Beside LpNA (33.5 U/mg/min) pigeonpea LAP-like enzymes also cleaved ApNA (15 U/mg/min) but were unable to cleave VpNA. Total proteolytic activity was also observed to be induced in treated plants. LAP-like activity was increased upto 19.5 fold after gel filtration chromatography. Results suggest that these enzymes may have functional defensive role in pigeonpea.

  20. [Sample German LAPS.

    ERIC Educational Resources Information Center

    Rosenthal, Bianca

    Four learning activity packages (LAPS) for use in secondary school German programs contain instructional materials which enable students to improve their basic linguistic skills. The units include: (1) "Grusse," (2) "Ich Heisse...Namen," (3) "Tune into Your Career: Business Correspondence 'Auf Deutch'," and (4) "Understanding German Culture."…

  1. How cats lap

    NASA Astrophysics Data System (ADS)

    Stocker, Roman; Reis, Pedro; Jung, Sunghwan; Aristoff, Jeffrey

    2010-11-01

    We studied the lapping of the domestic cat (Felis catus) by combining high-speed photography with a laboratory model of lapping. We found that Felis catus laps by a subtle mechanism based on water adhesion to the dorsal side of the tongue and the creation of a liquid column, exploiting inertia to defeat gravity and pull liquid into the mouth. The competition between inertia and gravity controls the pinch-off time of the column, determining the optimal lapping frequency, f. Felis catus was found to operate near the optimum and theoretical analysis yielded a scaling, f ˜M-1/6, of lapping frequency with animal mass, M. This prediction was verified by measuring lapping frequency across felids, from ocelots to lions, suggesting that the lapping mechanism is conserved among felines.

  2. [Some enzymatic activities of the amniotic fluid in human beings (LAP, GGTP, SGOT, SGPT, acid and alkaline phosphatases, 5' nucleotidase, amylase, beta-glucuronidase and aldolase)].

    PubMed

    Galerne, D; Baudon, J; Bruhat, M; Dastugue, G

    1973-10-01

    Quantitative analyses of 10 enzymes (LAP, GGTP, SGOT, SGPT. acid and alkaline phosphatases, 5' nucleotidase, amylase. beta-glucuronidase and aldolase) in a series of 50 samples of amniotic fluid gave widely-scattered results. In some cases, it was possible to relate high enzymatic activity to a pathological condition, in other cases, the amniotic fluid examined seemed to come from normal, full-term or almost full-term pregnancies without particular signs.

  3. Employer-Employee Relations. A Guide for Industrial Cooperative Training Programs. Learning Activity Package. LAP 5.

    ERIC Educational Resources Information Center

    Carpenter, Herbert G.; Chernenko, Walter

    This learning activity package, one of six intended for use in Industrial Cooperative Training Programs, is designed to aid students in developing a good employer-employee relationship by gaining the kinds of worker traits sought by employers. (The industrial cooperative training program provides industrial occupational training experience for…

  4. Actively stressed marginal networks.

    PubMed

    Sheinman, M; Broedersz, C P; MacKintosh, F C

    2012-12-07

    We study the effects of motor-generated stresses in disordered three-dimensional fiber networks using a combination of a mean-field theory, scaling analysis, and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of nonaffine strain fluctuations as a susceptibility to motor stress.

  5. Rubicon swaps autophagy for LAP.

    PubMed

    Boyle, Keith B; Randow, Felix

    2015-07-01

    Phagocytic cells engulf their prey into vesicular structures called phagosomes, of which a certain proportion becomes demarcated for enhanced maturation by a process called LC3-associated phagocytosis (LAP). Light has now been shed on the molecular requirements of LAP, establishing a central role for the protein Rubicon in the immune response to Aspergillus fumigatus.

  6. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  7. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  8. Distribution of adipocyte-derived leucine aminopeptidase (A-LAP)/ER-aminopeptidase (ERAP)-1 in human uterine endometrium.

    PubMed

    Shibata, Daijiro; Ando, Hisao; Iwase, Akira; Nagasaka, Tetsuro; Hattori, Akira; Tsujimoto, Masafumi; Mizutani, Shigehiko

    2004-09-01

    Adipocyte-derived leucine aminopeptidase (A-LAP, endoplasmic reticulum aminopeptidase ERAP1) is specialized to produce peptides presented on the class I major histocompatibility complex (MHC) by trimming epitopes to eight or nine residues, in addition to its enzymatic activity to degrade angiotensin II. Previously we identified placental leucine aminopeptidase (P-LAP), another member of the oxytocinase subfamily of aminopeptidases, in human uterine endometrial epithelial cells. Here we analyzed the distribution of A-LAP in human cyclic endometrium. Western blotting analysis showed that A-LAP was present in the endometrial tissue throughout the menstrual cycle. Immunohistochemical (IHC) analysis of A-LAP showed a similar distribution to that of P-LAP. A-LAP was localized predominantly in the endometrial glands and the luminal surface epithelium. However, the intracellular localization change that accompanied apocrine secretion, which was observed in P-LAP, was not shown in A-LAP. Subcellular localization of A-LAP, demonstrated by immunofluorescence, was ER in the cultured glandular epithelial cells. Our results indicate that A-LAP may fit the endometrial localization as an antigen-presenting ER aminopeptidase. Further understanding of the function(s) of A-LAP in the endometrium appear likely to yield insights into the cyclic changes during the normal endometrial cycle.

  9. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Liqin; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Vacuum brazing is a viable process to achieve strong permanent and hermetic joints in space. As in any joining process, brazed Joints have various imperfections and defects. It is important to understand the impact that flaws have on the load carrying capacity and performance of the brazed joints. This study focuses on the behavior of lap shear joints due to their engineering importance in brazed aerospace structures. In Part 1 an average shear strength capabilitY and failure modes of the single lap joints are explored. Specimens comprised of 0.090 inch thick 347 stainless steel sheet brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the measured loads and average shear stresses at failure with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap lengths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. In Part 2, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify if behavior of ductile ]appoints containing flaws is similar to the joints with the reduced braze area. Finally, in Part 3, the results obtained in Part 1 and 2 will be applied to the brazed assembly to evaluate a load carrying capability of the structural lap joint containing defects.

  10. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  11. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  12. Loose abrasive lapping hardness of optical glasses and its interpretation.

    PubMed

    Lambropoulos, J C; Xu, S; Fang, T

    1997-03-01

    We present an interpretation of the lapping hardness of commercially available optical glasses in terms of a micromechanics model of material removal by subsurface lateral cracking. We analyze data on loose abrasive microgrinding, or lapping at fixed nominal pressure, for many commercially available optical glasses in terms of this model. The Schott and Hoya data on lapping hardness are correlated with the results of such a model. Lapping hardness is a function of the mechanical properties of the glass: The volume removal rate increases approximately linearly with Young's modulus, and it decreases with fracture toughness and (approximately) the square of the Knoop hardness. The microroughness induced by lapping depends on the plastic and elastic properties of the glass, depending on abrasive shape. This is in contrast to deterministic microgrinding (fixed infeed rate), where it is determined from the plastic and fracture properties of the glass. We also show that Preston's coefficient has a similar dependence as lapping hardness on glass mechanical properties, as well as a linear dependence on abrasive size for the case of brittle material removal. These observations lead to the definition of an augmented Preston coefficient during brittle material removal. The augmented Preston coefficient does not depend on glass material properties or abrasive size and thus describes the interaction of the glass surface with the coolant-immersed abrasive grain and the backing plate. Numerical simulations of indentation are used to locate the origin of subsurface cracks and the distribution of residual surface and subsurface stresses, known to cause surface (radial) and subsurface (median, lateral) cracks.

  13. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  14. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  15. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  16. How Tongue Size and Roughness Affect Lapping

    NASA Astrophysics Data System (ADS)

    Hubbard, M. J.; Hay, K. M.

    2012-10-01

    The biomechanics of domestic cat lapping (Felis catus) and domestic dog lapping (Canis familiaris) is currently under debate. Lapping mechanics in vertebrates with incomplete cheeks, such as cats and dogs, is a balance of inertia and the force of gravity likely optimized for ingestion and physical necessities. Physiology dictates vertebrate mass, which dictates vertebrate tongue size, which dictates lapping mechanics to achieve optimum liquid ingestion; with either touch lapping, scooping, or a hybrid lapping method. The physics of this optimized system then determines how high a column of liquid can be raised before it collapses due to gravity, and therefore, lapping frequency. Through tongue roughness model variation experiments it was found that pore-scale geometrical roughness does not appear to affect lapping or liquid uptake. Through tongue size model variation experiments it was found that there is a critical tongue radius in the range of 25 mm to 35 mm above which touch lapping is no longer an efficient way to uptake liquid. Vertebrates with incomplete cheeks may use a touch lapping method to ingest water if their tongue radius is less than this critical radius and use an alternative ingestion method if their tongue radius is larger.

  17. Tubular lap joints for wind turbine applications

    SciTech Connect

    Reedy, E.D. Jr.; Guess, T.R.

    1990-01-01

    A combined analytical/experimental study of the strength of thick- walled, adhesively bonded PMMA-to-aluminum and E-glass/epoxy composite-to-aluminum tubular lap joints under axial load has been conducted. Test results include strength and failure mode data. Moreover, strain gages placed along the length of the outer tubular adherend characterize load transfer from one adherend to the other. The strain gage data indicate that load transfer is nonuniform and that the relatively compliant PMMA has the shorter load transfer length. Strains determined by a finite element analysis of the tested joints are in excellent agreement with those measured. Calculated bond stresses are highest in the region of observed failure, and extensive bond yielding is predicted in the E- glass/epoxy composite-to-aluminum joint prior to joint failure. 4 refs., 13 figs., 1 tab.

  18. Insights: A LAP on Moles: Teaching an Important Concept.

    ERIC Educational Resources Information Center

    Ihde, John

    1985-01-01

    Describes a learning activity packet (LAP) designed to help students understand the basic concept of the mole as a chemical unit; know relationships between the mole and atomic weights in the periodic table; and solve basic conversion problems involving moles, atoms, and molecules. (JN)

  19. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer

    PubMed Central

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-01

    AIM To investigate the abundance and potential functions of LAP+CD4+ T cells in colorectal cancer (CRC). METHODS Proportions of LAP+CD4+ T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP-CD4+ and LAP+CD4+ T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. RESULTS The proportion of LAP+CD4+ T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P < 0.001). Among patients, the proportion of LAP+CD4+ T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P < 0.001). We also observed positive correlations between the proportion of LAP+CD4+ T cells and TNM stage (P < 0.001), distant metastasis (P < 0.001) and serum level of carcinoembryonic antigen (P < 0.05). Magnetic-activated cell sorting gave an overall enrichment of LAP+CD4+ T cells (95.02% ± 2.87%), which was similar for LAP-CD4+ T cells (94.75% ± 2.76%). In contrast to LAP-CD4+ T cells, LAP+CD4+ T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 (P < 0.01). LAP+CD4+ T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP-CD4+ T cells. CONCLUSION LAP+CD4+ T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β. PMID:28210081

  20. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  1. Behavioral comparison of sucrose and l-2-amino-4-phosphonobutyrate (L-AP4) tastes in rats: does L-AP4 have a sweet taste?

    PubMed

    Eschle, B K; Eddy, M C; Spang, C H; Delay, E R

    2008-08-13

    Even though it is generally thought that umami stimuli such as monosodium glutamate (MSG) and sweet stimuli such as sucrose are detected by different taste receptors, these stimuli appear to share taste qualities when amiloride (a sodium channel blocker) is present to reduce the sodium taste. Single fiber recording studies of the facial and glossopharyngeal nerves have shown that encoding of L-2-amino-4-phosphonobutyrate (L-AP4), a potent mGluR4 agonist that elicits a taste quite similar to MSG, may occur in the same fibers that also encode sweet stimuli. This suggests that L-AP4 and sweet substances may activate common receptors or afferent signaling mechanisms. We report results of behavioral experiments that test this hypothesis. In the first study, rats conditioned to avoid sucrose or L-AP4 generalized the aversion to the opposite substance, indicating that both substances elicited similar tastes. However, two taste discrimination experiments showed that rats easily discriminated between sucrose and L-AP4 over a wide range of concentrations, even when the cue function of sodium associated with L-AP4 was reduced by amiloride and neutralized by adding equimolar concentrations of NaCl to sucrose. These data suggest that even though L-AP4 and sucrose elicit similar taste qualities, one or both substances also elicit other taste qualities not shared by the opposite substance. They also suggest that the taste-mGluR4 receptor and the signal pathway activated by L-AP4 are not the same as those activated by sucrose. These data, when combined with fiber recording data, suggest that there is convergence of L-AP4 and sucrose signals at some point early in the gustatory pathway.

  2. Analytical and experimental investigation of fatigue in lap joints

    NASA Astrophysics Data System (ADS)

    Swenson, Daniel V.; Chih-Chien, Chia; Derber, Thomas G.

    A finite element model is presented that can simulate crack growth in layered structures such as lap joints. The layers can be joined either by rivets or adhesives. The crack is represented discretely in the mesh, and automatic remeshing is performed as the crack grows. Because of the connections between the layers, load is transferred to the uncracked layer as the crack grows. This reduces the stress intensity and slows the crack growth rate. The model is used to analyze tests performed on a section of a wing spanwise lap joint. The crack was initiated at a rivet and grown under constant amplitude cyclic loads. Both experimentally observed crack growth rates and the analysis show the retardation that occurs as a result of load transfer between layers. A good correlation is obtained between predicted and observed crack growth rates for the fullly developed through-thickness crack.

  3. Quadruple Lap Shear Processing Evaluation

    NASA Technical Reports Server (NTRS)

    Thornton, Tony N.; McCool, A. (Technical Monitor)

    2000-01-01

    The Thiokol, Science and Engineering Huntsville Operations (SEHO) Laboratory has previously experienced significant levels of variation in testing Quadruple Lap Shear (QLS) specimens. The QLS test is used at Thiokol / Utah for the qualification of Reusable Solid Rocket Motor (RSRM) nozzle flex bearing materials. A test was conducted to verify that process changes instituted by SEHO personnel effectively reduced variability, even with normal processing variables introduced. A test matrix was designed to progress in a series of steps; the first establishing a baseline, then introducing additional solvents or other variables. Variables included normal test plan delay times, pre-bond solvent hand-wipes and contaminants. Each condition tested utilized standard QLS hardware bonded with natural rubber, two separate technicians and three replicates. This paper will report the results and conclusions of this investigation.

  4. The Effect of Surface Irregularities on Wing Drag. II - Lap Joints. 2; Lap Joints

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.

  5. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  6. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  7. LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture.

    PubMed

    Martínez-Gil, Marta; Yousef-Coronado, Fátima; Espinosa-Urgel, Manuel

    2010-08-01

    We have investigated the role of LapF, one of the two largest proteins encoded in the genome of Pseudomonas putida KT2440, in bacterial colonization of solid surfaces. LapF is 6310 amino acids long, and is localized on the cell surface. The C-terminal region of the protein is essential for its secretion, which presumably requires the ABC transporter encoded by an operon (lapHIJ) adjacent to the lapF gene. Although the initial attachment stages are not different between the wild type and a lapF mutant, microcolony formation and subsequent development of a mature biofilm is impaired in the mutant. This is consistent with the expression pattern of lapF; activation of its promoter takes place at late stages of growth and is regulated by the alternative sigma factor RpoS. A lapF mutant is also affected in individual and competitive plant root colonization. In these assays, mixed microcolonies formed by cells of both the wild-type and the mutant strains could be observed but microcolonies of the mutant alone were not found. These data and the localization of the protein at discrete spots in areas of contact between cells in biofilms suggest that LapF determines the establishment of cell-cell interactions during sessile growth.

  8. Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures

    PubMed Central

    Andersson, John; Hardwick, Donna; Bebris, Lolita; Illei, Gabor G.

    2009-01-01

    Although adoptive transfer of regulatory T cells (Foxp3+ Tregs) has proven to be efficacious in the prevention and treatment of autoimmune diseases and graft-versus-host disease in rodents, a major obstacle for the use of Treg immunotherapy in humans is the difficulty of obtaining a highly purified preparation after ex vivo expansion. We have identified latency-associated peptide (LAP) and IL-1 receptor type I and II (CD121a/CD121b) as unique cell-surface markers that distinguish activated Tregs from activated FOXP3− and FOXP3+ non-Tregs. We show that it is feasible to sort expanded FOXP3+ Tregs from non-Tregs with the use of techniques for magnetic bead cell separation based on expression of these 3 markers. After separation, the final product contains greater than 90% fully functional FOXP3+ Tregs. This novel protocol should facilitate the purification of Tregs for both cell-based therapies as well as detailed studies of human Treg function in health and disease. PMID:19299332

  9. The Structure and Enzyme Characteristics of a Recombinant Leucine Aminopeptidase rLap1 from Aspergillus sojae and Its Application in Debittering.

    PubMed

    Huang, Wei-Qian; Zhong, Li-Fen; Meng, Zhi-Zhong; You, Zi-Juan; Li, Jia-Zhou; Luo, Xiao-Chun

    2015-09-01

    A leucine aminopeptidase Lap1 was cloned from Aspergillus sojae GIM3.30. The truncated Lap1 without a signal peptide was over-expressed in P. pastoris, and the enzymatic characteristics of recombinant Lap1 (rLap1) were tested. The rLap1 was about 36.7 kDa with an optimal pH 8.0 and optimal temperature 50 °C for substrate Leu-p-nitroanilide and it sustained 50 % activity after 1 h incubation at 50 °C. The activity of rLap1 was significantly inhibited by EDTA, whereas Co(2+), Mn(2+), and Ca(2+) ions, but not Zn(2+) ions, restored its activity. rLap1 showed the highest activity against Arg-pNA and then Leu-, Lys-, Met-, and Phe-pNA. The 3D structure of rLap1 showed it had a conserved functional charge/dipole complex and a hydrogen bond network of Zn2-D179-S228-Q177-D229-S158 around its active center. An acidic Asp residue was found at the bottom of the substrate binding pocket, which explains its preference for basic N-terminal amino acid substrates such as Arg and Lys. rLap1 improved the degree of hydrolysis of casein and soy protein hydrolysates and also decreased their bitterness, indicating its potential utility in food production.

  10. Experimentally induced stress validated by EMG activity.

    PubMed

    Luijcks, Rosan; Hermens, Hermie J; Bodar, Lonneke; Vossen, Catherine J; Van Os, Jim; Lousberg, Richel

    2014-01-01

    Experience of stress may lead to increased electromyography (EMG) activity in specific muscles compared to a non-stressful situation. The main aim of this study was to develop and validate a stress-EMG paradigm in which a single uncontrollable and unpredictable nociceptive stimulus was presented. EMG activity of the trapezius muscles was the response of interest. In addition to linear time effects, non-linear EMG time courses were also examined. Taking into account the hierarchical structure of the dataset, a multilevel random regression model was applied. The stress paradigm, executed in N = 70 subjects, consisted of a 3-minute baseline measurement, a 3-minute pre-stimulus stress period and a 2-minute post-stimulus phase. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. EMG activity during the entire experiment was conform a priori expectations: the pre-stimulus phase showed a significantly higher mean EMG activity level compared to the other two phases, and an immediate EMG response to the stimulus was demonstrated. In addition, the analyses revealed significant non-linear EMG time courses in all three phases. Linear and quadratic EMG time courses were significantly modified by subjective anticipatory stress level, measured just before the start of the stress task. Linking subjective anticipatory stress to EMG stress reactivity revealed that subjects with a high anticipatory stress level responded with more EMG activity during the pre-stimulus stress phase, whereas subjects with a low stress level showed an inverse effect. Results suggest that the stress paradigm presented here is a valid test to quantify individual differences in stress susceptibility. Further studies with this paradigm are required to demonstrate its potential use in mechanistic clinical studies.

  11. Optimization of geometry of elastic bodies in the vicinity of singular points on the example of an adhesive lap joint

    NASA Astrophysics Data System (ADS)

    Matveenko, V. P.; Sevodina, N. V.; Fedorov, A. Yu.

    2013-09-01

    The stress state in adhesive lap joints with various geometric shapes of spew fillet is studied. It is noted that the applied design models of the considered problem include singular points at which infinite stress values are possible if one uses the linear elasticity theory to calculate the stress state. Based on the conclusions of the solution of the geometry optimization problem in the vicinity of the singular points of elastic bodies, variants of the geometry of spew fillet, which provide the most significant decrease in the concentration of stresses in adhesive lap joints, are proposed.

  12. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway

    PubMed Central

    Jandric, Zeljkica; Gregori, Christa; Klopf, Eva; Radolf, Martin; Schüller, Christoph

    2013-01-01

    Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway. PMID:24324463

  13. Fracture analysis of multi-site cracking in fuselage lap joints

    NASA Astrophysics Data System (ADS)

    Beuth, J. L.; Hutchinson, J. W.

    1994-09-01

    A two-dimensional plane stress elastic fracture mechanics analysis of a cracked lap joint fastened by rigid pins is presented and results are applied to the problem of multi-site damage (MSD) in riveted lap joints of aircraft fuselage skins. Two problems are addressed, the problem of equal length MSD cracks and the problem of alternating length MSD cracks. For the problem of equal length cracks, two models of rivet/skin interactions are studied and the role of residual stresses due to the riveting process is explored. Stress intensity factors are obtained as a function of normalized crack length. Also, the load distribution among rivet rows and the compliance change of the joint due to MSD cracking are obtained. For the problem of alternating length cracks, attention is focussed on how load is distributed between columns of rivets and how this load shedding can alter crack tip stress intensity factors. The equal and alternating length crack analyses reveal no clear-cut mechanism to explain the relative uniformity of fatigue cracks emerging from lap joint rivet holes in actual aircraft and in mechanical lap joint tests.

  14. LAPS discretization and solution of plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Missanelli, Maria; Delzanno, Gian Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu

    2011-10-01

    LAPS provides spectral element discretization for solving steady state plasma profiles. Our initial focus is on its implementation for two dimensional open magnetic field equilibria in linear and toroidal geometries. The linear geometry is an axisymmetric magnetic mirror with anisotropic pressure. The toroidal case is a tokamak scrape-off layer plasma. Structured grids are produced by the grid generation package in LAPS. The spectral element discretization uses modal bases over quadrilateral elements. A Newton-Krylov solver implemented with the Portable, Extensible Toolkits for Scientific Computing PETSc is applied to iteratively converge the solution. Care has been taken in the code design to separate the grid generation, spectral element discretization, and (non)linear solver from the user-specified equilibrium equations, so the LAPS infrastructure can be easily used for different applications. Work supported by DOE OFES.

  15. An orientation-selective orthogonal lapped transform.

    PubMed

    Kunz, Dietmar

    2008-08-01

    A novel critically sampled orientation-selective orthogonal lapped transform called the lapped Hartley transform (LHT) is derived. In a first step, overlapping basis functions are generated by modulating basis functions of a 2-D block Hartley transform by a cosine wave. To achieve invertibility and orthogonality, an iterative filter is applied as prefilter in the analysis and as postfilter in the synthesis operation, respectively. Alternatively, filtering can be restricted to analysis or synthesis, ending up with a biorthogonal transform (LHT-PR, LHT-PO). A statistical analysis based on a 4000-image data base shows that the LHT and LHT-PO have better redundancy removal properties than other block or lapped transforms. Finally, image compression and noise removal examples are given, showing the advantages of the LHT especially in images containing oriented textures.

  16. Methodology for Predicting the Onset of Widespread Fatigue Damage in Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Harris, C. E.; Piascik, R. S.; Dawicke, D. S.

    1998-01-01

    NASA has conducted an Airframe Structural Integrity Program to develop the methodology to predict the onset of widespread fatigue damage to lap-splice joints of fuselage structures. Several stress analysis codes have been developed or enhanced to analyze the lap-splice-joint configuration. Fatigue lives in lap-splice-joint specimens and fatigue-crack growth in a structural fatigue test article agreed well with calculations from small-crack theory and fatigue-crack growth analyses with the FASTRAN code. Residual-strength analyses of laboratory specimens and wide stiffened panels were predicted quite well from the critical crack-tip-opening angle (CTOA) fracture criterion and elastic-plastic finite-element analyses (two- or three-dimensional codes and the STAGS shell code).

  17. Experimental study of lap splice bolted connection

    NASA Astrophysics Data System (ADS)

    Zhao, Dehui; Tian, Lishan; Jiang, Wenqiang; An, Liqiang; Zhang, Ziyang

    2017-01-01

    The bolted connection is prone to slip under external load in the lattice transmission tower, which will affect the internal forces and deformation of tower. In order to better simulate the effect of bolt connection slippage on transmission tower, the load deformation relationship should be established. In this paper, the single lap splice bolt connection under tension load is tested and the load displacement curve is obtained. Furthermore, the existing model of single lap splice bolted connection is modified, which will plays an important role in the influence of the bolt slippage of the transmission lines towers more accurately and reasonably.

  18. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  19. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  20. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  1. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  2. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  3. A laboratory study of fracture in the presence of lap splice multiple site damage

    NASA Astrophysics Data System (ADS)

    Mayville, Ronald A.; Warren, Thomas J.

    Flat coupons were tested in the laboratory to determine a fracture criterion for link-up of fuselage lap splice multiple site damage at adjacent rivet holes. Experiments were performed on 0.040 inch (1 mm) thick 2024-T3 clad aluminum sheet. Continuous and riveted lap splice coupons were tested with simulated uniform (equal crack lengths) and nonuniform MSD, and the effects of notch sharpness were also studied. A net section stress criterion was found to provide excellent predictions of fracture for uniform MSD and uniform stress distributions. This same criterion provides conservative predictions for nonuniform MSD in uniform stress fields. An overload/cyclic stress experiment was also conducted to explore the pressurized proof test scenario of ensuring structural integrity.

  4. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  5. Stress and Androgen Activity During Fetal Development

    PubMed Central

    Swan, Shanna H.

    2015-01-01

    Prenatal stress is known to alter hypothalamic-pituitary-adrenal axis activity, and more recent evidence suggests that it may also affect androgen activity. In animal models, prenatal stress disrupts the normal surge of testosterone in the developing male, whereas in females, associations differ by species. In humans, studies show that (1) associations between prenatal stress and child outcomes are often sex-dependent, (2) prenatal stress predicts several disorders with notable sex differences in prevalence, and (3) prenatal exposure to stressful life events may be associated with masculinized reproductive tract development and play behavior in girls. In this minireview, we examine the existing literature on prenatal stress and androgenic activity and present new, preliminary data indicating that prenatal stress may also modify associations between prenatal exposure to diethylhexyl phthalate, (a synthetic, antiandrogenic chemical) and reproductive development in infant boys. Taken together, these data support the hypothesis that prenatal exposure to both chemical and nonchemical stressors may alter sex steroid pathways in the maternal-placental-fetal unit and ultimately alter hormone-dependent developmental endpoints. PMID:26241065

  6. Oral Hygiene. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…

  7. Nucleation kinetics, growth and characterization of dLAP, dLAP:KF and dLAP:NaN 3 crystals

    NASA Astrophysics Data System (ADS)

    Hameed, A. S. Haja; Ravi, G.; Jayavel, R.; Ramasamy, P.

    2003-03-01

    The nucleation parameters, such as interfacial tension, radius of the critical nucleus and critical free energy change have been estimated for deuterated L-arginine phosphate (dLAP), potassium fluoride mixed dLAP and sodium azide mixed dLAP single crystals. Pure and additive mixed dLAP single crystals are grown by slow cooling technique. The effect of microbial contamination and colouration on the growth solutions has been studied. The crystalline powder of the grown crystals has been examined by X-ray diffraction and thermal analyses in order to estimate the lattice parameters and study thermal properties respectively.

  8. Material characterization of structural adhesives in the lap shear mode. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenck, S. C.; Sancaktar, E.

    1983-01-01

    A general method for characterizing structural adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semi-empirical and theoretical approaches are used. The semi-empirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Three different model adhesives are used in the simple lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  9. Large-scale Advanced Propfan (LAP) program

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Ludemann, S. G.

    1985-01-01

    The propfan is an advanced propeller concept which maintains the high efficiencies traditionally associated with conventional propellers at the higher aircraft cruise speeds associated with jet transports. The large-scale advanced propfan (LAP) program extends the research done on 2 ft diameter propfan models to a 9 ft diameter article. The program includes design, fabrication, and testing of both an eight bladed, 9 ft diameter propfan, designated SR-7L, and a 2 ft diameter aeroelastically scaled model, SR-7A. The LAP program is complemented by the propfan test assessment (PTA) program, which takes the large-scale propfan and mates it with a gas generator and gearbox to form a propfan propulsion system and then flight tests this system on the wing of a Gulfstream 2 testbed aircraft.

  10. An examination of faying surface fretting in single lap splices

    NASA Astrophysics Data System (ADS)

    Brown, Adam

    While fretting damage in mechanically fastened joints is widely acknowledged as a common source of crack nucleation, little work is available in the open literature on the role that fretting damage plays in the fatigue life of a riveted joint. To expand on the limited knowledge available, a study was undertaken on fretting fatigue in thin-sheet riveted fuselage lap joints. In joints constructed out of 1 mm thick 2024-T3 aluminum sheet the rivet forming load was found to have a significant effect on the location of fretting damage and crack nucleation. This effect was observed for splices riveted with machine countersunk and with universal rivets. The shift in the location of peak fretting damage and crack nucleation with changing rivet forming loads was investigated through numerical and experimental methods. A predictive model based on the critical plane Smith-Watson-Topper strain life equation was applied to the complex geometry of the single lap splice and was shown to be effective in predicting the fretting fatigue life as well as the location of fretting-induced crack nucleation. Basing this model on an explicit finite element simulation allowed for the inclusion of compressive residual stresses generated during rivet forming. Key to the proper functionality of the predictive model was to have a validated finite element model from which results for the stress and strain field in the loaded component could be obtained. In addition to the predictive model, a series of splice coupon and simplified geometry fretting fatigue tests were performed. The tests showed that, at higher rivet forming loads, crack nucleation is on the faying surface away from the hole edge and that the type of surface condition is important to the fretting fatigue life of the splice. The discovery of this variation with surface treatment at high rivet forming loads is important as more research is showing the benefit of using load-controlled rivet forming and higher rivet forming loads in

  11. Large-Scale Advanced Prop-Fan (LAP) blade design

    NASA Technical Reports Server (NTRS)

    Violette, John A.; Sullivan, William E.; Turnberg, Jay E.

    1984-01-01

    This report covers the design analysis of a very thin, highly swept, propeller blade to be used in the Large-Scale Advanced Prop-Fan (LAP) test program. The report includes: design requirements and goals, a description of the blade configuration which meets requirements, a description of the analytical methods utilized/developed to demonstrate compliance with the requirements, and the results of these analyses. The methods described include: finite element modeling, predicted aerodynamic loads and their application to the blade, steady state and vibratory response analyses, blade resonant frequencies and mode shapes, bird impact analysis, and predictions of stalled and unstalled flutter phenomena. Summarized results include deflections, retention loads, stress/strength comparisons, foreign object damage resistance, resonant frequencies and critical speed margins, resonant vibratory mode shapes, calculated boundaries of stalled and unstalled flutter, and aerodynamic and acoustic performance calculations.

  12. Testing composite-to-metal tubular lap joints

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Slavin, A.M.

    1993-11-01

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  13. [Atherosclerosis, oxidative stress and physical activity. Review].

    PubMed

    Calderón, Juan Camilo; Fernández, Ana Zita; María de Jesús, Alina Isabel

    2008-09-01

    Atherosclerosis and related diseases have emerged as the leading cause of morbidity and mortality in the western world and, therefore, as a problem of public health. Free radicals and reactive oxygen species have been suggested to be part of the pathophysiology of these diseases. It is well known that physical activity plays an important role as a public health measure by reducing the risk of developing atherosclerosis-related cardiovascular events in the general population. It is also known that physical activity increases in some tissues, the reactive oxygen species production. In this review the atherosclerosis-oxidative stress-physical activity relationship is focused on the apparent paradox by which physical activity reduces atherosclerosis and cardiovascular risk in parallel with the activation of an apparently damaging mechanism which is an increased oxidative stress. A hypothesis including the experimental and clinical evidence is presented to explain the aforementioned paradox.

  14. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica

    PubMed Central

    Ambrosis, Nicolás; Boyd, Chelsea D.; O´Toole, George A.; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica PMID:27380521

  15. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  16. Dogs lap using acceleration-driven open pumping.

    PubMed

    Gart, Sean; Socha, John J; Vlachos, Pavlos P; Jung, Sunghwan

    2015-12-29

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog's tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats.

  17. Systematic Construction of Real Lapped Tight Frame Transforms

    PubMed Central

    Sandryhaila, Aliaksei; Chebira, Amina; Milo, Christina; Kovčcević, Jelena; Püschel, Markus

    2010-01-01

    We present a constructive algorithm for the design of real lapped equal-norm tight frame transforms. These transforms can be efficiently implemented through filter banks and have recently been proposed as a redundant counterpart to lapped orthogonal transforms, as well as an infinite-dimensional counterpart to harmonic tight frames. The proposed construction consists of two parts: First, we design a large class of new real lapped orthogonal transforms derived from submatrices of the discrete Fourier transform. Then, we seed these to obtain real lapped tight frame transforms corresponding to tight, equal-norm frames. We identify those frames that are maximally robust to erasures, and show that our construction leads to a large class of new lapped orthogonal transforms as well as new lapped tight frame transforms. PMID:20607116

  18. Stress and Coping Activity: Reframing Negative Thoughts

    ERIC Educational Resources Information Center

    Hughes, Jamie S.; Gourley, Mary K.; Madson, Laura; Le Blanc, Katya

    2011-01-01

    Stress management and coping techniques are not only relevant in many psychology courses but also personally relevant for undergraduate students. In this article, the authors describe an activity designed to provide students with practice evaluating and challenging negative self-talk. Students responded to scenarios individually, were paired with…

  19. Parent Stress and the Active Child

    ERIC Educational Resources Information Center

    Erickson, Karen; Prom, Megan

    2006-01-01

    The purpose of the current study was to look at whether a child's activity level was correlated with the level of stress a mother experiences. Parents can describe their children as having distinct and recognizable patterns of behavior as young as in infancy (Paaren, Hewitt, Lemery, Bihun & Goldsmith, 2000). Even at birth, some children are much…

  20. Analysis of interface cracks in adhesively bonded lap shear joints, part 4

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Yau, J. F.

    1981-01-01

    Conservation laws of elasticity for nonhomogeneous materials were developed and were used to study the crack behavior in adhesively bonded lap shear joints. By using these laws and the fundamental relationships in fracture mechanics of interface cracks, the problem is reduced to a pair of linear algebraic equations, and stress intensity solutions can be determined directly by information extracted from the far field. The numerical results obtained show that: (1) in the lap-shear joint with a given adherend, the opening-mode stress intensity factor, (K sub 1) is always larger than that of the shearing-mode (K sub 2); (2) (K sub 1) is not sensitive to adherent thickness abut (K sub 2) increases rapidly with increasing thickness; and (3) (K sub 1) and (K sub 2) increase simultaneously as the interfacial crack length increases.

  1. Swim pressure: stress generation in active matter.

    PubMed

    Takatori, S C; Yan, W; Brady, J F

    2014-07-11

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries-this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  2. The Surgical Scrub. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This instructor's packet accompanies the learning activity package (LAP) on the surgical scrub. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a student performance checklist, suggested activities, an additional resources list, and student…

  3. Computer Controller Optical Surfacing (CCOS) lap pressure control system

    NASA Astrophysics Data System (ADS)

    Greenleaf

    1985-09-01

    A rotary lapping system and process is disclosed for producing a controlled pressure gradient, including positive and negative lift, when lapping a workpiece coated with an abrasive slurry liquid with a plurality of grinding pads mounted beneath a rotating lap substrate. To obtain positive and negative lift, the grinding pads are tilted with respectively a positive and negative angle of attack, which hydrodynamically reacts with the abrasive slurry liquid to produce the desired lift. The controlled pressure gradient is further varied by decentering the rotation of lap substrate.

  4. Al-to-Cu Friction Stir Lap Welding

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Kou, Sindo

    2012-01-01

    Recently, friction stir welding (FSW) has been used frequently to join dissimilar metals, for instance, Al to Mg, Cu, and steel. The formation of brittle intermetallic compounds often severely limits the strength and ductility of the resultant welds. In the present study, Al-to-Cu lap FSW was studied by welding 6061 Al to commercially pure Cu. Conventional lap FSW was modified by butt welding a small piece of Al to the top of Cu, with a slight pin penetration into the bottom of Al. At travel speeds up to 127 mm/min (5 ipm), the modified welds were about twice the joint strength and five to nine times the ductility of the conventional lap welds. In the conventional lap welds, voids were present along the Al-Cu interface, and fracture occurred along the interface in tensile testing. No such voids were observed in the modified lap welds, and fracture occurred through Cu. Thus, as in the case of Al-to-Mg lap FSW recently studied by the authors, modified lap FSW significantly improved the weld quality in Al-to-Cu lap FSW. At the relatively high travel speed of 203 mm/min (8 ipm), however, modified lap FSW was no longer superior because of channel formation.

  5. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  6. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  7. How dogs lap: open pumping driven by acceleration

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Socha, John; Vlachos, Pavlos; Jung, Sunghwan

    2015-11-01

    Dogs drink by lapping because they have incomplete cheeks and cannot suck fluids into the mouth. When lapping, a dog's tongue pulls a liquid column from a bath, which is then swallowed, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured the kinematics of lapping from nineteen dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments with an accelerating rod help to explain how dogs exploit the fluid dynamics of the generated column. The results suggest that effects of acceleration govern lapping frequency, and that dogs curl the tongue ventrally (backwards) and time their bite on the column to increase fluid intake per lap. Comparing lapping in dogs and cats reveals that though they both lap with the same frequency scaling with respect to body mass and have similar morphology, these carnivores lap in different physical regimes: a high-acceleration regime for dogs and a low-acceleration regime for cats.

  8. Lapping: Polishing and shear mode grinding

    SciTech Connect

    Brown, N.J.

    1990-02-01

    It is the thesis of this paper that shear mode grinding (SMG), (ductile grinding, nanogrinding, fractureless grinding) is just a particular form of polishing. It may be unique in that it can involve a hard wheel of very precise dimensions compared to the soft laps usually used in polishing. Such a wheel would permit the fabrication of a precision surface on a brittle material such as glass at a precisely located and oriented position on a part. The technological and economic consequences of such a process seem important but the technical obstacles to implementing the technique are for the moment formidable. It is in production in Japan. This paper provides a bit of understanding of that process obtained by making an end run around the obstacles to view the process from the vantage point of lapping. The paper will lay out some of the concepts and terminology necessary to understand the papers that have supplied the real labor to get us to this point. It will refer to parts of this work briefly in passing so the reader who needs the details knows where to look, and for what, in the bibliography appended. 32 refs., 5 figs.

  9. Seismic activation of tectonic stresses by mining

    NASA Astrophysics Data System (ADS)

    Marcak, Henryk; Mutke, Grzegorz

    2013-10-01

    Hard coal mining in the area of the Bytom Syncline (Upper Silesia Coal Basin, Poland) has been associated with the occurrence of high-energy seismic events (up to 109 J; local magnitude up to 4.0), which have been recorded by the local mining seismological network and regional seismological network. It has been noticed that the strongest seismic events occur when the mine longwall alignments coincide with the syncline axis. Data recorded by the improved local seismic network in the Bobrek Mine allow the estimation of the depths of the events’ hypocentres during excavation of longwall panel 3 as it approached the syncline axis. The recorded data were also used to estimate the location of the rupture surface and stress distribution in the seismic focus region. It was concluded that tectonic stresses, particularly horizontal stress components, are essential in the distribution of seismic tremors resulting from reverse faulting. The stresses induced by mining activity are only triggering tectonic deformations. The hypocentres of the strongest seismic events during mining of longwall panel 3/503 were located 300-800 m deeper than the level of coal seam 503.

  10. How cats lap: water uptake by Felis catus.

    PubMed

    Reis, Pedro M; Jung, Sunghwan; Aristoff, Jeffrey M; Stocker, Roman

    2010-11-26

    Animals have developed a range of drinking strategies depending on physiological and environmental constraints. Vertebrates with incomplete cheeks use their tongue to drink; the most common example is the lapping of cats and dogs. We show that the domestic cat (Felis catus) laps by a subtle mechanism based on water adhesion to the dorsal side of the tongue. A combined experimental and theoretical analysis reveals that Felis catus exploits fluid inertia to defeat gravity and pull liquid into the mouth. This competition between inertia and gravity sets the lapping frequency and yields a prediction for the dependence of frequency on animal mass. Measurements of lapping frequency across the family Felidae support this prediction, which suggests that the lapping mechanism is conserved among felines.

  11. Volatile compounds in fruits of Peucedanum cervaria (Lap.) L.

    PubMed

    Skalicka-Wozniak, Krystyna; Los, Renata; Glowniak, Kazimierz; Malm, Anna

    2009-07-01

    The volatile compounds from Peucedanum cervaria (Lap.) L. were obtained by hydrodistillation (HD) and headspace solid-phase microextraction techniques (HS-SPME), and then analyzed by GC/MS methods. The composition of samples from a botanical garden was compared with plants collected in the wild. The main compounds of the essential oils of P. cervaria were identified as alpha-pinene, sabinene, and beta-pinene (more than 80% of oil). The content of beta-myrcene, limonene+beta-phellandrene, and germacrene D was higher than 1%. The in vitro antibacterial activity of the essential oil was evaluated by the agar dilution method against ten reference strains of Gram-positive and Gram-negative bacteria.

  12. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  13. Fatigue crack initiation in riveted lap joints and in pressurized fuselages

    NASA Astrophysics Data System (ADS)

    Mueller, Richard P. G.

    1993-06-01

    Riveted joints in pressurized fuselages are exposed to severe fatigue loading. The study was carried out to increase fundamental understanding of the behavior of riveted fuselage joints. Areas of interest include rivet flexibility, load transfer, residual stress distribution, fatigue crack location, secondary bending and inter-sheet friction. These aspects depend on the squeezing force used to drive the rivet. Flat uniaxially loaded riveted lap joint specimens show longer fatigue lives than curved riveted panels loaded by internal pressure in a barrel test setup. Strain gauge measurements on a barrel test setup show more severe loading of the non-countersunk inner sheet compared to the countersunk outer sheet. Finite element calculations gave insight to the improved fatigue crack initiation performance for increased sqeezing force and to the crack initiation location. The early crack initiation at the edges of flat riveted lap joint panels is explained.

  14. Results of uniaxial and biaxial tests on riveted fuselage lap joint specimens

    NASA Technical Reports Server (NTRS)

    Vlieger, H.

    1994-01-01

    As part of an FAA-NLR collaborative program on structural integrity of aging aircraft, NLR carried out uniaxial and biaxial fatigue tests on riveted lap joint specimens being representative for application in a fuselage. All tests were constant amplitude tests with maximum stresses being representative for fuselage pressurization cycles and R-values of 0.1. The parameters selected in the testing program were the stress level (sigma(sub max) = 14 and 16 ksi) and the rivet spacing (0.75 and 1.0 inch). All specimens contained 3 rows of countersunk rivets, the rivet row spacing was 1 inch and the rivet orientation continuous.

  15. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  16. LAP TGF-Beta Subset of CD4(+)CD25(+)CD127(-) Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients.

    PubMed

    Islas-Vazquez, Lorenzo; Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4(+) T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4(+)CD25(+)CD127(-) Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4(+)CD25(+)CD127(-) Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells.

  17. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    PubMed Central

    Islas-Vazquez, Lorenzo; Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells. PMID:26582240

  18. Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients.

    PubMed

    Abd Al Samid, May; Chaudhary, Belal; Khaled, Yazan S; Ammori, Basil J; Elkord, Eyad

    2016-03-22

    Regulatory T cells (Tregs) comprise numerous heterogeneous subsets with distinct phenotypic and functional features. Identifying Treg markers is critical to investigate the role and clinical impact of various Treg subsets in pathological settings, and also for developing more effective immunotherapies. We have recently shown that non-activated FoxP3-Helios+ and activated FoxP3+/-Helios+ CD4+ T cells express GARP/LAP immunosuppressive markers in healthy donors. In this study we report similar observations in the peripheral blood of patients with pancreatic cancer (PC) and liver metastases from colorectal cancer (LICRC). Comparing levels of different Treg subpopulations in cancer patients and controls, we report that in PC patients, and unlike LICRC patients, there was no increase in Treg levels as defined by FoxP3 and Helios. However, defining Tregs based on GARP/LAP expression showed that FoxP3-LAP+ Tregs in non-activated and activated settings, and FoxP3+Helios+GARP+LAP+ activated Tregs were significantly increased in both groups of patients, compared with controls. This work implies that a combination of Treg-specific markers could be used to more accurately determine expanded Treg subsets and to understand their contribution in cancer settings. Additionally, GARP-/+LAP+ CD4+ T cells made IL-10, and not IFN-γ, and levels of IL-10-secreting CD4+ T cells were elevated in LICRC patients, especially with higher tumor staging. Taken together, our results indicate that investigations of Treg levels in different cancers should consider diverse Treg-related markers such as GARP, LAP, Helios, and others and not only FoxP3 as a sole Treg-specific marker.

  19. Behavior Of A Confined Tension Lap Splice In High-Strength Reinforced Concrete Beams

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Ahmed H.; Abousafa, Hala; El-Hadidi, Omaia S.

    2015-09-01

    The results of an experimental program conducted on seventeen simply supported concrete beams to study the effect of transverse reinforcement on the behavior of the lap splice of a steel reinforcement in tension zones in high-strength concrete beams are presented. The parameters included in the experimental program were the concrete compressive strength, the lap splice length, the amount of transverse reinforcement provided within the splice region, and the shape of the transverse reinforcement around the spliced bars. The experimental results showed that the displacement ductility increased and the mode of failure changed from a splitting bond failure to a flexural failure when the amount of the transverse reinforcement in the splice region increased, and the compressive strength increased up to 100 MPa. The presence of the transverse reinforcement around the spliced bars had a pronounced effect on increasing the ultimate load, the ultimate deflection, and the displacement ductility. The prediction of maximum steel stresses for spliced bars using the ACI 318-05 building code was compared with the experimental results. The comparison showed that the effect of the transverse reinforcement around spliced bars has to be considered into the design equations for lap splice length in high-strength concrete beams.

  20. Large-scale Advanced Prop-fan (LAP) static rotor test report

    NASA Technical Reports Server (NTRS)

    Degeorge, Charles L.; Turnberg, Jay E.; Wainauski, Harry S.

    1987-01-01

    Discussed is Static Rotor Testing of the SR-7L Large Scale Advanced Prop-Fan (LAP). The LAP is an advanced 9 foot diameter, 8 bladed propeller designed and built by Hamilton Standard under contract to the NASA Lewis Research Center. The Prop-Fan employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Static Testing was conducted on a 10,000 HP whirl rig at Wright Patterson Air Force Base. The test objectives were to investigate the Prop-Fan static aerodynamic and structural dynamic performance, determine the blade steady state stressers and deflections and to measure steady and unsteady pressures on the SR-7L blade surface. The measured performance of the LAP correlated well with analytical predictions at blade pitch angles below 30 deg. A stall buffet phenomenon was observed at blade pitch angles above 30 deg. This phenomenon manifested itself by elevated blade vibratory stress levels and lower than expected thrust produced and power absorbed by the Prop-Fan for a given speed and blade angle.

  1. A finite element and experimental investigation on the fatigue of riveted lap joints in aircraft applications

    NASA Astrophysics Data System (ADS)

    Atre, Amarendra

    Aircraft fuselage skin panels are joined together by rivets. The initiation and propagation of fatigue cracks in aircraft structures at and around the rivet/skin interface is directly related to residual stress field induced during the riveting process and subsequent service loads. Variations in the manufacturing process, such as applied loading and presence of sealant can influence the induced residual stress field. In previous research, the riveting process has been simulated by a 2D axisymmetric force-controlled analysis. The 2D analysis cannot capture the unsymmetrical residual stress state resulting from process variations. Experimental work has also been limited to observing effects of squeeze force on fatigue crack initiation in the riveted lap joint. In this work, a 3D finite element model of the riveting process that incorporates plasticity and contact between the various surfaces is simulated using ABAQUS finite element code to capture the residual stress state at the rivet/skin interface. The finite element model is implemented to observe the effects of interference, sealant and hole quality on the residual stress state using Implicit and Explicit solvers. Effects of subsequent load transfer are also analyzed with the developed model. A set of controlled lap joint fatigue experiments for the different conditions provides validation to the model.

  2. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  3. 15 CFR 285.5 - Termination of a LAP.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM § 285.5 Termination of a LAP. (a) The Chief of NVLAP...

  4. Mechanical properties of a lap joint under uniform clamping pressure

    NASA Technical Reports Server (NTRS)

    Diller, S. V.; Metherell, A. F.

    1969-01-01

    Equations were derived for the load deflection relations, the energy dissipation per cycle, and the instantaneous rate of dissipation for a lap joint idealized as two overlapping plates clamped together under a uniform clamping pressure.

  5. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    SciTech Connect

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.; Simmons, Kevin L.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribe welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.

  6. 13. Detail closeup view of wooden peg fastenings; note lapped ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail close-up view of wooden peg fastenings; note lapped joint fastened with iron bolts using washers fashioned from oxen shoes. - Mormon Tabernacle, Temple Square, Salt Lake City, Salt Lake County, UT

  7. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    PubMed Central

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  8. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    PubMed

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  9. L-Cysteine and L-AP4 microinjections in the rat caudal ventrolateral medulla decrease arterial blood pressure.

    PubMed

    Takemoto, Yumi

    2014-12-01

    The thiol amino acid L-cysteine increases arterial blood pressure (ABP) when injected into the cerebrospinal fluid space in conscious rats, indicating a pressor response to centrally acting L-cysteine. A prior synaptic membrane binding assay suggests that L-cysteine has a strong affinity for the L-2-amino-4-phosphonobutyric acid (L-AP4) binding site. The central action of L-cysteine may be vial-AP4 sensitive receptors. The present study investigated cardiovascular responses to L-cysteine and L-ap4 microinjected into the autonomic area of the caudal ventrolateral medulla (CVLM) where inhibitory neurons regulate ABP via pre-sympathetic vasomotor neurons. Both the injection of L-cysteine and L-AP4 in the CVLM sites identified with L-glutamate produced the same depressor and bradycardic responses in urethane-anesthetized rats. Neither a prior antagonist microinjection of MK801 for the N-methyl-D-aspartate (NMDA) receptor nor CNQX for the non-NMDA receptor attenuated the responses to L-cysteine, but the combination of the two receptor blocking with an additional prior injection abolished the response. In contrast, either receptor blockade alone abolished the response to L-AP4, indicating distinct mechanisms between responses to L-cysteine and L-AP4 in the CVLM. The results indicate that the CVLM is a central active site for L-cysteine's cardiovascular response. Central L-cysteine's action could be independent of the L-AP4 sensitive receptors. Cardiovascular regulation may involve endogenous L-cysteine in the CVLM. Further multidisciplinary examinations are required to elaborate on L-cysteine's functional roles in the CVLM.

  10. FRACTURE MECHANICS APPROACH TO ESTIMATE FATIGUE LIVES OF WELDED LAP-SHEAR SPECIMENS

    SciTech Connect

    Lam, P.; Michigan, J.

    2014-04-25

    A full range of stress intensity factor solutions for a kinked crack is developed as a function of weld width and the sheet thickness. When used with the associated main crack solutions (global stress intensity factors) in terms of the applied load and specimen geometry, the fatigue lives can be estimated for the laser-welded lap-shear specimens. The estimations are in good agreement with the experimental data. A classical solution for an infinitesimal kink is also employed in the approach. However, the life predictions tend to overestimate the actual fatigue lives. The traditional life estimations with the structural stress along with the experimental stress-fatigue life data (S-N curve) are also provided. In this case, the estimations only agree with the experimental data under higher load conditions.

  11. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  12. Nighttime snacking, stress, and migraine activity.

    PubMed

    Turner, Dana P; Smitherman, Todd A; Penzien, Donald B; Porter, John A H; Martin, Vincent T; Houle, Timothy T

    2014-04-01

    Missing meals and fasting have long been reported as headache triggers. Stress also has received attention for its role in precipitating headaches. This study explored the effects of eating behaviors on new-onset headache. Analyzing only the 1070 of 1648 (64.9%) diary days that followed a non-headache day, the study included 34 migraineurs who contributed a median (25th, 75th percentile) of 28 (22, 40) days of diary entries. Multivariable survival modeling with random effects was conducted, and hazards ratios and 95% confidence intervals were calculated. Nighttime snacking was associated with a 40% reduction in the odds of experiencing a headache compared to having no food (p=0.013). Eating a late dinner was associated with a 21% reduction in the odds of headache when compared to no additional food, but this association was not statistically significant (p=0. 22). These results demonstrate the potential for eating behaviors to be targeted in headache management, as regulated eating habits may have the potential to reduce the occurrence of headache. Although no causal relationship can be established, these results indicate that further research into the mechanisms of the association between eating behaviors and headache activity is warranted.

  13. LAP5 and LAP6 Encode Anther-Specific Proteins with Similarity to Chalcone Synthase Essential for Pollen Exine Development in Arabidopsis1[W][OA

    PubMed Central

    Dobritsa, Anna A.; Lei, Zhentian; Nishikawa, Shuh-ichi; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Preuss, Daphne; Sumner, Lloyd W.

    2010-01-01

    Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production. PMID:20442277

  14. Mechanisms and Management of Stress Fractures in Physically Active Persons

    PubMed Central

    Romani, William A.; Gieck, Joe H.; Perrin, David H.; Saliba, Ethan N.; Kahler, David M.

    2002-01-01

    Objective: To describe the anatomy of bone and the physiology of bone remodeling as a basis for the proper management of stress fractures in physically active people. Data Sources: We searched PubMed for the years 1965 through 2000 using the key words stress fracture, bone remodeling, epidemiology, and rehabilitation. Data Synthesis: Bone undergoes a normal remodeling process in physically active persons. Increased stress leads to an acceleration of this remodeling process, a subsequent weakening of bone, and a higher susceptibility to stress fracture. When a stress fracture is suspected, appropriate management of the injury should begin immediately. Effective management includes a cyclic process of activity and rest that is based on the remodeling process of bone. Conclusions/Recommendations: Bone continuously remodels itself to withstand the stresses involved with physical activity. Stress fractures occur as the result of increased remodeling and a subsequent weakening of the outer surface ofthe bone. Once a stress fracture is suspected, a cyclic management program that incorporates the physiology of bone remodeling should be initiated. The cyclic program should allow the physically active person to remove the source of the stress to the bone, maintain fitness, promote a safe return to activity, and permit the bone to heal properly. PMID:16558676

  15. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  16. Brain activation induced by psychological stress in patients with schizophrenia.

    PubMed

    Castro, M N; Villarreal, M F; Bolotinsky, N; Papávero, E; Goldschmidt, M G; Costanzo, E Y; Drucaroff, L; Wainsztein, A; de Achával, D; Pahissa, J; Bär, K-J; Nemeroff, C B; Guinjoan, S M

    2015-10-01

    Environmental influences are critical for the expression of genes putatively related to the behavioral and cognitive phenotypes of schizophrenia. Among such factors, psychosocial stress has been proposed to play a major role in the expression of symptoms. However, it is unsettled how stress interacts with pathophysiological pathways to produce the disease. We studied 21 patients with schizophrenia and 21 healthy controls aged 18 to 50years with 3T-fMRI, in which a period of 6min of resting state acquisition was followed by a block design, with three blocks of 1-min control-task, 1-min stress-task and 1-min rest after-task. Self-report of stress and PANSS were measured. Limbic structures were activated in schizophrenia patients by simple tasks and remained active during, and shortly after stress. In controls, stress-related brain activation was more time-focused, and restricted to the stressful task itself. Negative symptom severity was inversely related to activation of anterior cingulum and orbitofrontal cortex. Results might represent the neurobiological aspect of hyper-reactivity to normal stressful situations previously described in schizophrenia, thus providing evidence on the involvement of limbic areas in the response to stress in schizophrenia. Patients present a pattern of persistent limbic activation probably contributing to hypervigilance and subsequent psychotic thought distortions.

  17. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  18. Lap time optimisation of a racing go-kart

    NASA Astrophysics Data System (ADS)

    Lot, Roberto; Dal Bianco, Nicola

    2016-02-01

    The minimum lap time optimal control problem has been solved for a go-kart model. The symbolic algebra software Maple has been used to derive equations of motion and an indirect method has been adopted to solve the optimal control problem. Simulation has been successfully performed on a full track lap with a multibody model endowed with seven degrees of freedom. Geometrical and mechanical characteristics of a real kart have been measured by a lab test to feed the mathematical model. Telemetry recorded in an entire lap by a professional driver has been compared to simulation results in order to validate the model. After the reliability of the optimal control model was proved, the simulation has been used to study the peculiar dynamics of go-karts and focus to tyre slippage dynamics, which is highly affected by the lack of differential.

  19. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew

    PubMed Central

    Fang, Hui; Sun, Yun-Jun; Lv, Yan-Hong; Ni, Rong-Jun; Shu, Yu-Mian; Feng, Xiu-Yu; Wang, Yu; Shan, Qing-Hong; Zu, Ya-Nan; Zhou, Jiang-Ning

    2016-01-01

    Stress is increasingly present in everyday life in our fast-paced society and involved in the pathogenesis of many psychiatric diseases. Corticotrophin-releasing-hormone (CRH) plays a pivotal role in regulating the stress responses. The tree shrews are highly vulnerable to stress which makes them the promising animal models for studying stress responses. However, the mechanisms underlying their high stress-susceptibility remained unknown. Here we confirmed that cortisol was the dominate corticosteroid in tree shrew and was significantly increased after acute stress. Our study showed that the function of tree shrew CRH - hypothalamic-pituitary-adrenal (HPA) axis was nearly identical to human that contributed little to their hyper-responsiveness to stress. Using CRH transcriptional regulation analysis we discovered a peculiar active glucocorticoid receptor response element (aGRE) site within the tree shrew CRH promoter, which continued to recruit co-activators including SRC-1 (steroid receptor co-activator-1) to promote CRH transcription under basal or forskolin/dexamethasone treatment conditions. Basal CRH mRNA increased when the aGRE was knocked into the CRH promoter in human HeLa cells using CAS9/CRISPR. The aGRE functioned critically to form the “Stress promoter” that contributed to the higher CRH expression and susceptibility to stress. These findings implicated novel molecular bases of the stress-related diseases in specific populations. PMID:27125313

  20. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity

    PubMed Central

    Debevec, Tadej; Millet, Grégoire P.; Pialoux, Vincent

    2017-01-01

    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed. PMID:28243207

  1. Seam-Tracking for Friction Stir Welded Lap Joints

    NASA Astrophysics Data System (ADS)

    Fleming, Paul A.; Hendricks, Christopher E.; Cook, George E.; Wilkes, D. M.; Strauss, Alvin M.; Lammlein, David H.

    2010-11-01

    This article presents a method for automatic seam-tracking in friction stir welding (FSW) of lap joints. In this method, tracking is accomplished by weaving the FSW tool back-and-forth perpendicular to the direction of travel during welding and monitoring force and torque signals. Research demonstrates the ability of this method to automatically track weld seam positions. Additionally, tensile and S-bend test result comparisons demonstrate that weaving most likely does not reduce weld quality. Finally, benefits of this weave-based method to FSW of lap joints are discussed and methods for incorporating it into existing friction stir welding control algorithms (such as axial load control) are examined.

  2. Activation of new replication foci under conditions of replication stress

    PubMed Central

    Rybak, P; Waligórska, A; Bujnowicz, Ł; Hoang, A; Dobrucki, JW

    2015-01-01

    DNA damage, binding of drugs to DNA or a shortage of nucleotides can decrease the rate or completely halt the progress of replication forks. Although the global rate of replication decreases, mammalian cells can respond to replication stress by activating new replication origins. We demonstrate that a moderate level of stress induced by inhibitors of topoisomerase I, commencing in early, mid or late S-phase, induces activation of new sites of replication located within or in the immediate vicinity of the original replication factories; only in early S some of these new sites are also activated at a distance greater than 300 nm. Under high stress levels very few new replication sites are activated; such sites are located within the original replication regions. There is a large variation in cellular response to stress – while in some cells the number of replication sites increases even threefold, it decreases almost twofold in other cells. Replication stress results in a loss of PCNA from replication factories and a twofold increase in nuclear volume. These observations suggest that activation of new replication origins from the pool of dormant origins within replication cluster under conditions of mild stress is generally restricted to the original replication clusters (factories) active at a time of stress initiation, while activation of distant origins and new replication factories is suppressed. PMID:26212617

  3. 15 CFR 285.4 - Establishment of laboratory accreditation programs (LAPs) within NVLAP.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM § 285.4 Establishment of laboratory accreditation programs (LAPs) within NVLAP. NVLAP establishes LAPs in response to... accreditation programs (LAPs) within NVLAP. 285.4 Section 285.4 Commerce and Foreign Trade Regulations...

  4. Endoplasmic Reticulum Stress Is Chronically Activated in Chronic Pancreatitis*

    PubMed Central

    Sah, Raghuwansh P.; Garg, Sushil K.; Dixit, Ajay K.; Dudeja, Vikas; Dawra, Rajinder K.; Saluja, Ashok K.

    2014-01-01

    The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies. PMID:25077966

  5. Endoplasmic reticulum stress is chronically activated in chronic pancreatitis.

    PubMed

    Sah, Raghuwansh P; Garg, Sushil K; Dixit, Ajay K; Dudeja, Vikas; Dawra, Rajinder K; Saluja, Ashok K

    2014-10-03

    The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T(-/-)), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T(-/-) mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.

  6. Highly Porous and Compositionally Intermediate Ordinary Chondrite LAP 031047

    NASA Astrophysics Data System (ADS)

    Wittmann, A.; Kring, D. A.; Friedrich, J. M.; Troiano, J.; Macke, R. J.; Britt, D. T.; Swindle, T. D.; Weirich, J. R.; Rumble, D.

    2010-03-01

    LAP 031047 is a highly porous ordinary chondrite with a very young Ar-Ar age, and oxygen isotopic, and bulk and silicate mineral composition intermediate between H- and L-chondrites: Shock-lithified debris of a distinct ordinary chondrite asteroid?

  7. Determining the stress field in active volcanoes using focal mechanisms

    NASA Astrophysics Data System (ADS)

    Massa, Bruno; D'Auria, Luca; Cristiano, Elena; De Matteo, Ada

    2016-11-01

    Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs), Campi Flegrei (217 FPSs) and Long Valley Caldera (38,000 FPSs). The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  8. Transition from stress-driven to thermally activated stress relaxation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Wang, Yun-Jiang; Zhao, L. Z.; Dai, L. H.; Crespo, D.; Pelletier, J. M.; Keer, L. M.; Yao, Y.

    2016-09-01

    The short-range ordered but long-range disordered structure of metallic glasses yields strong structural and dynamic heterogeneities. Stress relaxation is a technique to trace the evolution of stress in response to a fixed strain, which reflects the dynamic features phenomenologically described by the Kohlrausch-Williams-Watts (KWW) equation. The KWW equation describes a broad distribution of relaxation times with a small number of empirical parameters, but it does not arise from a particular physically motivated mechanistic picture. Here we report an anomalous two-stage stress relaxation behavior in a Cu46Zr46Al8 metallic glass over a wide temperature range and generalize the findings in other compositions. Thermodynamic analysis identifies two categories of processes: a fast stress-driven event with large activation volume and a slow thermally activated event with small activation volume, which synthetically dominates the stress relaxation dynamics. Discrete analyses rationalize the transition mechanism induced by stress and explain the anomalous variation of the KWW characteristic time with temperature. Atomistic simulations reveal that the stress-driven event involves virtually instantaneous short-range atomic rearrangement, while the thermally activated event is the percolation of the fast event accommodated by the long-range atomic diffusion. The insights may clarify the underlying physical mechanisms behind the phenomenological description and shed light on correlating the hierarchical dynamics and structural heterogeneity of amorphous solids.

  9. Activating secondary metabolism with stress and chemicals.

    PubMed

    Yoon, Vanessa; Nodwell, Justin R

    2014-02-01

    The available literature on the secondary or nonessential metabolites of the streptomycetes bacteria suggests that there may be poorly expressed or "cryptic" compounds that have yet to be identified and that may have significant medical utility. In addition, it is clear that there is a large and complex regulatory network that controls the production of these molecules in the laboratory and in nature. Two approaches that have been taken to manipulating the yields of secondary metabolites are the use of various stress responses and, more recently, the use of precision chemical probes. Here, we review the status of this work and outline the challenges and opportunities afforded by each of them.

  10. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice.

  11. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  12. ER stress induces NLRP3 inflammasome activation and hepatocyte death

    PubMed Central

    Lebeaupin, C; Proics, E; de Bieville, C H D; Rousseau, D; Bonnafous, S; Patouraux, S; Adam, G; Lavallard, V J; Rovere, C; Le Thuc, O; Saint-Paul, M C; Anty, R; Schneck, A S; Iannelli, A; Gugenheim, J; Tran, A; Gual, P; Bailly-Maitre, B

    2015-01-01

    The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. However, the causes and mechanisms of inflammation-mediated liver damage remain poorly understood. Endoplasmic reticulum (ER) stress is an initiator of cell death and inflammatory mechanisms. Although obesity induces ER stress, the interplay between hepatic ER stress, NLRP3 inflammasome activation and hepatocyte death signaling has not yet been explored during the etiology of chronic liver diseases. Steatosis is a common disorder affecting obese patients; moreover, 25% of these patients develop steatohepatitis with an inherent risk for progression to hepatocarcinoma. Increased plasma LPS levels have been detected in the serum of patients with steatohepatitis. We hypothesized that, as a consequence of increased plasma LPS, ER stress could be induced and lead to NLRP3 inflammasome activation and hepatocyte death associated with steatohepatitis progression. In livers from obese mice, administration of LPS or tunicamycin results in IRE1α and PERK activation, leading to the overexpression of CHOP. This, in turn, activates the NLRP3 inflammasome, subsequently initiating hepatocyte pyroptosis (caspase-1, -11, interleukin-1β secretion) and apoptosis (caspase-3, BH3-only proteins). In contrast, the LPS challenge is blocked by the ER stress inhibitor TUDCA, resulting in: CHOP downregulation, reduced caspase-1, caspase-11, caspase-3 activities, lowered interleukin-1β secretion and rescue from cell death. The central role of CHOP in mediating the activation of proinflammatory caspases and cell death was characterized by performing knockdown experiments in primary mouse hepatocytes. Finally, the analysis of human steatohepatitis liver biopsies showed a correlation between the upregulation of inflammasome and ER stress markers, as well as liver injury. We demonstrate here that ER stress leads to hepatic NLRP3 inflammasome pyroptotic death, thus contributing as a novel mechanism of

  13. The Effects of Stress on Physical Activity and Exercise

    PubMed Central

    Stults-Kolehmainen, Matthew A.; Sinha, Rajita

    2013-01-01

    Background Psychological stress and physical activity (PA) are believed to be reciprocally related; however, most research examining the relationship between these constructs is devoted to the study of exercise and/or PA as an instrument to mitigate distress. Objective The aim of this paper was to review the literature investigating the influence of stress on indicators of PA and exercise. Methods A systematic search of Web of Science, Pub-Med, and SPORTDiscus was employed to find all relevant studies focusing on human participants. Search terms included “stress”, “exercise”, and “physical activity”. A rating scale (0–9) modified for this study was utilized to assess the quality of all studies with multiple time points. Results The literature search found 168 studies that examined the influence of stress on PA. Studies varied widely in their theoretical orientation and included perceived stress, distress, life events, job strain, role strain, and work–family conflict but not lifetime cumulative adversity. To more clearly address the question, prospective studies (n = 55) were considered for further review, the majority of which indicated that psychological stress predicts less PA (behavioral inhibition) and/or exercise or more sedentary behavior (76.4 %). Both objective (i.e., life events) and subjective (i.e., distress) measures of stress related to reduced PA. Prospective studies investigating the effects of objective markers of stress nearly all agreed (six of seven studies) that stress has a negative effect on PA. This was true for research examining (a) PA at periods of objectively varying levels of stress (i.e., final examinations vs. a control time point) and (b) chronically stressed populations (e.g., caregivers, parents of children with a cancer diagnosis) that were less likely to be active than controls over time. Studies examining older adults (>50 years), cohorts with both men and women, and larger sample sizes (n > 100) were more likely

  14. Design Concepts. Teacher Edition. Marketing Education LAPs.

    ERIC Educational Resources Information Center

    Hawley, Jana

    This learning activity packet is designed to help prepare students to acquire a competency: how to use design concepts in preparation for a career in the fashion industry. The unit consists of the competency, four objectives, suggested learning activities, transparency masters, and a pretest/posttest with answer keys. Activities include a…

  15. Social Support Can Buffer against Stress and Shape Brain Activity

    PubMed Central

    Hostinar, Camelia E.; Gunnar, Megan R.

    2015-01-01

    Social support from close relationship partners is an important resource for coping with stress, particularly during childhood. We discuss ethical challenges associated with studying stress and its social buffering in the laboratory, as well as emerging evidence regarding two potential neural substrates for the social buffering of stress: hypothalamic oxytocin activity and activation of areas in the prefrontal cortex associated with effective self-regulation. We also address the role of early-life social experiences in shaping brain development, as well as recommendations for practice and policy that would advance the ethical treatment of children and reduce social inequalities in early-life experiences and opportunities–e.g., investing in programs that prevent child maltreatment and facilitating access to high-quality child care for economically disadvantaged families. We also debate the ethical implications of using oxytocin nasal sprays to simulate the stress-reducing properties of social support and advise waiting for more evidence before recommending their use. PMID:26478822

  16. Piano Playing Reduces Stress More than Other Creative Art Activities

    ERIC Educational Resources Information Center

    Toyoshima, Kumiko; Fukui, Hajime; Kuda, Kiyoto

    2011-01-01

    Few studies have been conducted on the physiological effects of creative art activities. In this study, the effects of creative art activities on human stress were investigated, and their effects were compared in 57 healthy college students (27 males and 30 females). Subjects were divided into four groups, each of which participated in 30-minute…

  17. The role of rivet installation on the fatigue performance of riveted lap joints

    NASA Astrophysics Data System (ADS)

    Rans, Calvin D.

    Solid rivets are widely used as mechanical fasteners in airframe applications due to their relative low cost and good fatigue performance. Although rivet installation is known to influence this fatigue performance, variabilities in hand riveting practices make exploiting rivet installation as a design variable difficult. Developments in riveting technology have led to force-controlled rivet squeezers and fully automated riveting gantries, improving the consistency of rivet installation and providing the opportunity to exploit its influence on fatigue. This dissertation describes a research program undertaken to examine the influence of rivet installation on the fatigue performance of riveted lap joints and identify what aspects can be exploited during design. A combination of finite element analyses and experimental techniques were used to investigate the role of rivet installation on the formation of residual stresses and on secondary bending stresses in a loaded joint, two aspects established as critical to the fatigue performance of riveted lap joints. Crack growth reconstructions of fracture surfaces marked using a special marker fatigue spectrum were also completed in order to quantify the effects of these residual and secondary bending stresses on fatigue performance. Additionally, variations in the effects of rivet installation on traditional monolithic aluminum sheet materials and hybrid aluminum-fibre glass laminates known as GLARE were also investigated. Results from these investigations provided new insights into the role of rivet installation on fatigue. The radial expansion mechanism to which residual stress formation during riveting is typically attributed was observed to be a secondary mechanism relative to the through-thickness compression of the joined sheets. The location and magnitude of peak secondary bending stresses were found to be directly influenced by rivet head geometry. In certain cases, shifts in the location of peak secondary bending

  18. Phagocytic activity in stressed mice: effects of alprazolam.

    PubMed

    Freire-Garabal, M; Núñez, M J; Fernández-Rial, J C; Couceiro, J; García-Vallejo, L; Rey-Méndez, M

    1993-06-01

    Mice exposed to a chronic auditory stressor and daily injected with alprazolam (1 mg/kg/day, s.c.) showed a reduction in stress-induced suppression of the in vitro and in vivo activity of phagocytosis, measured using the zymosan particle uptake method and the carbon clearance test, respectively. Pretreatment with Ro-15-1788 (10 mg/kg, s.c.), a central nervous system benzodiazepine antagonist, resulted in suppression of the effects of alprazolam in stressed mice.

  19. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  20. Chronic Mammalian Toxicological Effects of LAP (Load, Assemble, and Pack).

    DTIC Science & Technology

    1980-09-01

    samples were extracted and cleaned up according to official AOAC methods .- The extracts were analyzed for chlorinated organic *; pesticides using glass...Weight Variation From Control Males . . .... 54 4. Percent Body Weight Variation From Control Females .. ...... 55 . 6 *%1% 6? LIST OF TABLES 1. Pesticides...corn oil with acetone added and removed in the same manner as for the LAP samples. Stability studies using this method showed that diets mixed once every

  1. Textiles. Teacher Edition. Marketing Education LAPs.

    ERIC Educational Resources Information Center

    Hawley, Jana

    This learning activity packet is designed to help students to acquire a competency: how to use knowledge of textile design to gain expertise in preparation for a career in the fashion industry. The unit consists of the competency, four objectives, suggested learning activities, transparency masters, and a pretest/posttest with answer keys.…

  2. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  3. Investigation into Interface Lifting Within FSW Lap Welds

    SciTech Connect

    K. S. Miller; C. R. Tolle; D. E. Clark; C. I. Nichol; T. R. McJunkin; H. B. Smartt

    2008-06-01

    Friction stir welding (FSW) is rapidly penetrating the welding market in many materials and applications, particularly in aluminum alloys for transportation applications. As this expansion outside the research laboratory continues, fitness for service issues will arise, and process control and NDE methods will become important determinants of continued growth. The present paper describes research into FSW weld nugget flaw detection within aluminum alloy lap welds. We present results for two types of FSW tool designs: a smooth pin tool and a threaded pin tool. We show that under certain process parameters (as monitored during welding with a rotating dynamometer that measures x, y, z, and torque forces) and tooling designs, FSW lap welds allow significant nonbonded interface lifting of the lap joint, while forming a metallurgical bond only within the pin region of the weld nugget. These lifted joints are often held very tightly together even though unbonded, and might be expected to pass cursory NDE while representing a substantial compromise in joint mechanical properties. The phenomenon is investigated here via radiographic and ultrasonic NDE techniques, with a copper foil marking insert (as described elsewhere) and by the tensile testing of joints. As one would expect, these results show that tool design and process parameters significantly affect plactic flow and this lifted interface. NDE and mechanical strength ramifications of this defect are discussed.

  4. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  5. Active stress driven convection in a suspension of chemotactic bacteria

    NASA Astrophysics Data System (ADS)

    Kasyap, T. V.; Koch, Donald

    2011-11-01

    We examine the linear stability of a suspension of swimming bacteria producing dipolar hydrodynamic disturbances confined in a channel subjected to a linear chemo-attractant gradient across the channel. At the continuum level swimming bacteria exert an ``active'' stress on the fluid which is a function of the bacterial concentration and orientation fields. In the base-state without any fluid flow, the fluxes from the chemotactic and diffusive motion of the bacteria balance to yield exponential number density and active stress profiles across the channel. We show that such a base-state is unstable to perturbations in the number density parallel to the channel walls if the bacterial concentration exceeds a critical value determined by a Peclet number measuring the strength of chemotaxis relative to diffusion. Active stress gradients resulting from the perturbation in the number density drive convective fluid flow, which transports bacteria into the regions of highest perturbed bacteria concentration reinforcing the original perturbation. We examine the linear stability of a suspension of swimming bacteria producing dipolar hydrodynamic disturbances confined in a channel subjected to a linear chemo-attractant gradient across the channel. At the continuum level swimming bacteria exert an ``active'' stress on the fluid which is a function of the bacterial concentration and orientation fields. In the base-state without any fluid flow, the fluxes from the chemotactic and diffusive motion of the bacteria balance to yield exponential number density and active stress profiles across the channel. We show that such a base-state is unstable to perturbations in the number density parallel to the channel walls if the bacterial concentration exceeds a critical value determined by a Peclet number measuring the strength of chemotaxis relative to diffusion. Active stress gradients resulting from the perturbation in the number density drive convective fluid flow, which transports

  6. Physical activity, stress reduction, and mood: insight into immunological mechanisms.

    PubMed

    Hamer, Mark; Endrighi, Romano; Poole, Lydia

    2012-01-01

    Psychosocial factors, such as chronic mental stress and mood, are recognized as an important predictor of longevity and wellbeing. In particular, depression is independently associated with cardiovascular disease and all-cause mortality, and is often comorbid with chronic diseases that can worsen their associated health outcomes. Regular exercise is thought to be associated with stress reduction and better mood, which may partly mediate associations between depression, stress, and health outcomes. The underlying mechanisms for the positive effects of exercise on wellbeing remain poorly understood. In this overview we examine epidemiological evidence for an association between physical activity and mental health. We then describe the exercise withdrawal paradigm as an experimental protocol to study mechanisms linking exercise, mood, and stress. In particular we will discuss the potential role of the inflammatory response as a central mechanism.

  7. Chemosensory Cues to Conspecific Emotional Stress Activate Amygdala in Humans

    PubMed Central

    Mujica-Parodi, Lilianne R.; Strey, Helmut H.; Frederick, Blaise; Savoy, Robert; Cox, David; Botanov, Yevgeny; Tolkunov, Denis; Rubin, Denis; Weber, Jochen

    2009-01-01

    Alarm substances are airborne chemical signals, released by an individual into the environment, which communicate emotional stress between conspecifics. Here we tested whether humans, like other mammals, are able to detect emotional stress in others by chemosensory cues. Sweat samples collected from individuals undergoing an acute emotional stressor, with exercise as a control, were pooled and presented to a separate group of participants (blind to condition) during four experiments. In an fMRI experiment and its replication, we showed that scanned participants showed amygdala activation in response to samples obtained from donors undergoing an emotional, but not physical, stressor. An odor-discrimination experiment suggested the effect was primarily due to emotional, and not odor, differences between the two stimuli. A fourth experiment investigated behavioral effects, demonstrating that stress samples sharpened emotion-perception of ambiguous facial stimuli. Together, our findings suggest human chemosensory signaling of emotional stress, with neurobiological and behavioral effects. PMID:19641623

  8. Physical activity buffers fatigue only under low chronic stress.

    PubMed

    Strahler, Jana; Doerr, Johanna M; Ditzen, Beate; Linnemann, Alexandra; Skoluda, Nadine; Nater, Urs M

    2016-09-01

    Fatigue is one of the most commonly reported complaints in the general population. As physical activity (PA) has been shown to have beneficial effects, we hypothesized that everyday life PA improves fatigue. Thirty-three healthy students (21 women, 22.8 ± 3.3 years, 21.7 ± 2.3 kg/m(2)) completed two ambulatory assessment periods. During five days at the beginning of the semester (control condition) and five days during final examination preparation (examination condition), participants repeatedly reported on general fatigue (awakening, 10 am, 2 pm, 6 pm and 9 pm) by means of an electronic diary, collected saliva samples for the assessment of cortisol and α-amylase immediately after providing information on fatigue and wore a triaxial accelerometer to continuously record PA. Self-perceived chronic stress was assessed as a moderator. Using hierarchical linear modeling, including PA, condition (control vs. examination), sex and chronic stress as predictors, PA level during the 15 min prior to data entry did not predict momentary fatigue level. Furthermore, there was no effect of condition. However, a significant cross-level interaction of perceived chronic stress with PA was observed. In fact, the (negative) relationship between PA and fatigue was stronger in those participants with less chronic stress. Neither cortisol nor α-amylase was significantly related to physical activity or fatigue. Our study showed an immediate short-term buffering effect of everyday life PA on general fatigue, but only when experiencing lower chronic stress. There seems to be no short-term benefit of PA in the face of higher chronic stress. These findings highlight the importance of considering chronic stress when evaluating the effectiveness of PA interventions in different target populations, in particular among chronically stressed and fatigued subjects.

  9. Learning Activity Packets for Milling Machines. Unit II--Horizontal Milling Machines.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This learning activity packet (LAP) outlines the study activities and performance tasks covered in a related curriculum guide on milling machines. The course of study in this LAP is intended to help students learn to set up and operate a horizontal mill. Tasks addressed in the LAP include mounting style "A" or "B" arbors and adjusting arbor…

  10. Learning Activity Packets for Milling Machines. Unit III--Vertical Milling Machines.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This learning activity packet (LAP) outlines the study activities and performance tasks covered in a related curriculum guide on milling machines. The course of study in this LAP is intended to help students learn to set up and operate a vertical mill. Tasks addressed in the LAP include mounting and removing cutters and cutter holders for vertical…

  11. Small-molecule probe using dual signals to monitor leucine aminopeptidase activity.

    PubMed

    Yoon, Hey Young; Shim, So Hee; Baek, Luck Ju; Hong, Jong-In

    2011-04-15

    Leucine aminopeptidases (LAPs) are widely distributed in organisms from bacteria to humans, and play crucial roles in cell maintenance and cell growth. Thus, assays for LAP are necessary for measuring its activity and inhibitor potency. In this Letter, we report a small-molecule probe which exhibits colorimetric and fluorogenic changes according to LAP activity.

  12. Crystal structure of XoLAP, a leucine aminopeptidase, from Xanthomonas oryzae pv. oryzae.

    PubMed

    Kim, Jin-Kwang; Natarajan, Sampath; Park, Hanseul; Huynh, Kim-Hung; Lee, Sang Hee; Kim, Jeong-Gu; Ahn, Yeh-Jin; Kang, Lin-Woo

    2013-10-01

    Aminopeptidases are metalloproteinases that degrade N-terminal residues from protein and play important roles in cell growth and development by controlling cell homeostasis and protein maturation. We determined the crystal structure of XoLAP, a leucyl aminopeptidase, at 2.6 Å resolution from Xanthomonas oryzae pv. oryzae, causing the destructive rice disease of bacterial blight. It is the first crystal structure of aminopeptidase from phytopathogens as a drug target. XoLAP existed as a hexamer and the monomer structure consisted of an N-terminal cap domain and a C-terminal peptidase domain with two divalent zinc ions. XoLAP structure was compared with BlLAP and EcLAP (EcPepA) structures. Based on the structural comparison, the molecular model of XoLAP in complex with the natural aminopeptidase inhibitor of microginin FR1 was proposed. The model structure will be useful to develop a novel antibacterial drug against Xoo.

  13. Apparatus and method for lapping an edge surface of an object

    NASA Technical Reports Server (NTRS)

    Rossi, Vito N. (Inventor)

    1989-01-01

    An apparatus for lapping an edge surface of an object comprises a block having a side adapted to engage a wide surface of an object, adjustable spacers disposed on the block and adapted to engage a lap plate, and a weighted spring disposed on the block for urging the spacers and the object edge surface towards the lap plate. A method for lapping comprises setting surfaces of adjustable spacers disposed on a block to be substantially the same distance from the block, affixing a wide surface of an object to the block, urging an edge surface of the object and the spacers towards a lap plate, lapping the edge of the object, inspecting the edge for parallelism to a reference line, resetting the spacers and relapping the edge surface.

  14. Photo-induced bending in a light-activated polymer laminated composite.

    PubMed

    Mu, Xiaoming; Sowan, Nancy; Tumbic, Julia A; Bowman, Christopher N; Mather, Patrick T; Qi, H Jerry

    2015-04-07

    Light activated polymers (LAPs) have attracted increasing attention since these materials change their shape and/or behavior in response to light exposure, which serves as an instant, remote and precisely controllable stimulus that enables non-contact control of the material shape and behavior through simple variation in light intensity, wavelength and spatially controlled exposure. These features distinguish LAPs from other active polymers triggered by other stimuli such as heat, electrical field or humidity. Previous examples have resulted in demonstrations in applications such as surface patterning, photo-induced shape memory behavior, and photo-origami. However, in many of these applications, an undesirable limitation has been the requirement to apply and maintain an external load during light irradiation. In this paper, a laminated structure is introduced to provide a pre-programmed stress field, which is then used for photo-induced deformation. This laminated structure is fabricated by bonding a stretched elastomer (NOA65) sheet between two LAP layers. Releasing the elastomer causes contraction and introduces a compressive stress in the LAPs, which are relaxed optically to trigger the desired deformation. A theoretical model is developed to quantitatively examine the laminated composite system, allowing exploration of the design space and optimum design of the laminate.

  15. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  16. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  17. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  18. Metastasis suppressor NM23 limits oxidative stress in mammals by preventing activation of stress-activated protein kinases/JNKs through its nucleoside diphosphate kinase activity.

    PubMed

    Peuchant, Evelyne; Bats, Marie-Lise; Moranvillier, Isabelle; Lepoivre, Michel; Guitton, Jérôme; Wendum, Dominique; Lacombe, Marie-Lise; Moreau-Gaudry, François; Boissan, Mathieu; Dabernat, Sandrine

    2017-04-01

    NME1 (nonmetastatic expressed 1) gene, which encodes nucleoside diphosphate kinase (NDPK) A [also known as nonmetastatic clone 23 (NM23)-H1 in humans and NM23-M1 in mice], is a suppressor of metastasis, but several lines of evidence-mostly from plants-also implicate it in the regulation of the oxidative stress response. Here, our aim was to investigate the physiologic relevance of NDPK A with respect to the oxidative stress response in mammals and to study its molecular basis. NME1-knockout mice died sooner, suffered greater hepatocyte injury, and had lower superoxide dismutase activity than did wild-type (WT) mice in response to paraquat-induced acute oxidative stress. Deletion of NME1 reduced total NDPK activity and exacerbated activation of the stress-related MAPK, JNK, in the liver in response to paraquat. In a mouse transformed hepatocyte cell line and in primary cultures of normal human keratinocytes, MAPK activation in response to H2O2 and UVB, respectively, was dampened by expression of NM23-M1/NM23-H1, dependent on its NDPK catalytic activity. Furthermore, excess or depletion of NM23-M1/NM23-H1 NDPK activity did not affect the intracellular bulk concentration of nucleoside di- and triphosphates. NME1-deficient mouse embryo fibroblasts grew poorly in culture, were more sensitive to stress than WT fibroblasts, and did not immortalize, which suggested that they senesce earlier than do WT fibroblasts. Collectively, these results indicate that the NDPK activity of NM23-M1/NM23-H1 protects cells from acute oxidative stress by inhibiting activation of JNK in mammal models.-Peuchant, E., Bats, M.-L., Moranvillier, I., Lepoivre, M., Guitton, J., Wendum, D., Lacombe, M.-L., Moreau-Gaudry, F., Boissan, M., Dabernat, S. Metastasis suppressor NM23 limits oxidative stress in mammals by preventing activation of stress-activated protein kinases/JNKs through its nucleoside diphosphate kinase activity.

  19. Stress, active coping, and problem behaviors among Chinese adolescents.

    PubMed

    Hsieh, Hsing-Fang; Zimmerman, Marc A; Xue, Yange; Bauermeister, Jose A; Caldwell, Cleopatra H; Wang, Zhenhong; Hou, Yubo

    2014-07-01

    Little is known about the stress and coping mechanisms on problem behaviors among Chinese adolescents, which might be quite different from their counterparts in Western cultures. We examined risk process of stress for internalizing outcomes (i.e., psychological distress, self-acceptance) and externalizing outcomes (i.e., substance use, delinquency, violent behavior) among Chinese adolescents. We also examined John Henryism Active Coping as a protective factor in a test of resilience from the negative effects of stress. A cross-sectional survey using self-reported questionnaires was conducted in 2 urban cities in China: Beijing and Xian. Participants included 1,356 students in Grades 7 to 12 (48% male, 52% female). Structural equation modeling analyses were conducted to test the conceptual model. The modifying (protective) effects of John Henryism were tested in multiple-group analysis. After controlling for demographics, we found that stress was associated with decreased self-acceptance and increased psychological distress among adolescents. Higher degree of psychological distress was then associated with increased delinquent behaviors and substance use. The results also indicated that individuals who scored higher in John Henryism reported more substance use as a result of psychological distress. Overall, our results support previous research with Western samples. Although John Henryism did not serve as a protective factor between stress and its negative outcomes, the findings underscore the relevance of addressing stress and possible coping strategies among Chinese adolescents. Further research that refines the active coping tailored for Chinese adolescents is necessary to more precisely test its protective effects.

  20. Progressive damage in single lap countersunk composite joints

    NASA Astrophysics Data System (ADS)

    Chishti, Maajid; Wang, Chun Hui; Thomson, Rodney S.; Orifici, Adrian

    2010-06-01

    This paper presents an experimental and computational investigation of the influences of countersink and bolt torque on the progressive failure of single-lap composite joint. Using the Abaqus® software, delamination damage and ply fracture are modelled using cohesive element approach and continuum damage mechanics method, respectively. The model is first validated against a filled-hole tension test to calibrate the composite damage model. Comparison with the experimental results indicates that the computational model is capable of accurately predicting the joint strength and the damage progression process.

  1. Micro topography of different material surface by solid abrasive lapped at high speed

    NASA Astrophysics Data System (ADS)

    Tian, Chunlin; Yang, Jiandong; Fan, Jingfeng; Zhou, Huawen

    2007-12-01

    The principle of solid abrasives lapping is that the abrasives are fixed and made into a special lapping tool; the workpiece is lapped in high speed lapping machine tool. It possesses many advantages compared with traditional low speed lapping with particulate abrasives, e.g. high machining efficiency, low machining cost, high and stable machining accuracy. So the highly efficient lapping method has been paid close attention to. This paper made a study on surface micro topography of different material by solid abrasive lapped at high speed. In experiments the lapping technique parameter is fixed, and different workpiece which are made by T10 steel, carbide, ceramic glass and alumina ceramics are lapped. The surface micro topography is measured by SEM, from the measuring result, it can be known that there is some shallow scribe on the surface of T10 steel, and the obvious plastic deformation can be observed. The SEM pictures show that there is some scribe on the surface of ceramics glass after lapped, with more magnification times many micro cracking and some plastic hump can be observed on the scribe. These scribes and humps are first cause of depressing surface quality, and these micro cracking can result in a lot of diffuse reflection on workpiece surface, it decreases the glossiness of mirror surface. On the surface of alumina ceramics there are a lot of defects, the size of such defect is more than the scribe of abrasive, it can be sure that the defect is not produced by lapping, so the material quality is an important effect fact to surface macro topography. On the surface of carbide there are a little of scribe and air cavity, and the scribe is very shallow; the defect of powder metallurgy martial is the primary reason.

  2. Single-cycle and fatigue strengths of adhesively bonded lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1998-12-31

    This study considers a composite-to-steel tubular lap joint in which failure typically occurs when the adhesive debonds from the steel adherend. The same basic joint was subjected to compressive and tensile axial loads (single-cycle) as well as bending loads (fatigue). The purpose of these tests was to determine whether failure is more dependent on the plastic strain or the peel stress that develops in the adhesive. For the same joint, compressive and tensile loads of the same magnitude will produce similar plastic strains but peel stresses of opposite signs in the adhesive. In the axial tests, the tensile strengths were much greater than the compressive strengths - indicating that the peel stress is key to predicting the single-cycle strengths. To determine the key parameter(s) for predicting high-cycle fatigue strengths, a test technique capable of subjecting a specimen to several million cycles per day was developed. In these bending tests, the initial adhesive debonding always occurred on the compressive side. This result is consistent with the single-cycle tests, although not as conclusive due to the limited number of tests. Nevertheless, a fatigue test method has been established and future tests are planned.

  3. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  4. Analysis of the ’Joggle-Lap’ Joint for Automotive Applications.

    DTIC Science & Technology

    2007-11-02

    An analytical model is developed to describe the response of the ’ joggle -lap’ joint to both tensile and bending loads. The model consists of a non...8217 joggle -lap’ joint due to tensile loads was verified through experimental testing and ultimate loads were accurately predicted within experimental error

  5. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  6. Multicrack growth monitoring at riveted lap joints using piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Ihn, Jeong-Beom; Chang, Fu-Kuo

    2002-06-01

    A built-in cost-effective diagnostic system is being developed to monitor fatigue crack growth in aircraft structures. The proposed system consists of a SMART Layer by Acellent Technologies with an embedded network of distributed piezoelectric sensors/actuators, a diagnostic unit, and software. Multi-riveted aluminum lap joints (936 x 462 mm) were tested for a constant amplitude fatigue test under tensile loading to monitor crack growth at rivet holes. A SMART Layer was designed as a strip and surface-mounted to the critical area of lap joints where crack initiation and growth were suspected. The SMART Layer installed between the two rivet rows was used as an actuator strip and the other layer located below the rivets was used as a sensor strip. Using the software, pre-selected diagnostic signals from a designated piezoelectric actuator to its neighboring sensors were generated by the diagnostic unit. A corresponding sensor signals were recorded and compared to a previously recorded baseline reference. The signal processing technique and interpretation algorithm were developed and implemented for extracting features related to crack growth condition at the time of measurement. The results of estimates were compared with non-destructive testing (NDT) data taken from the experiments, which were conducted during the course of the investigation. The probability of damage detection, compared to conventional NDT techniques, was evaluated.

  7. Chaotic and ambient vibration analysis of composite lap joint damage

    NASA Astrophysics Data System (ADS)

    Pecora, Lou; Nichols, Jon; Seaver, Mark; Trickey, Steve; Motley, Sara

    2007-04-01

    We examined strain time series from fiber Bragg gratings sensors located in various positions on a composite material beam attached to a steel plate by a lap joint. The beam was vibrated using both broad-band chaotic signals (Lorenz system), and a narrow band signal conforming to the Pierson-Moskowitz frequency distribution for wave height (ambient excitation). The system was damaged by decreasing the torque on instrumented bolts in the lap joint from very tight all the way through to a joint with a gap and slippage. We analyzed the strain data by reconstructing the attractor of the system in the case of chaotic forcing and a pseudo-attractor in the case of sea-wave forcing. Using the highest torque case as an "undamaged" baseline, we calculated the continuity statistic between the baseline attractor and the attractors of the various damage levels for both forcing cases. We show where one can and cannot say that the functional relationship between the attractors changes and how those changes are related to damage levels.

  8. Large-Scale Advanced Prop-Fan (LAP)

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel efficiency. Analytical studies and research with wind tunnel models have demonstrated that the high inherent efficiency of low speed turboprop propulsion systems may now be extended to the Mach .8 flight regime of today's commercial airliners. This can be accomplished with a propeller, employing a large number of thin highly swept blades. The term Prop-Fan has been coined to describe such a propulsion system. In 1983 the NASA-Lewis Research Center contracted with Hamilton Standard to design, build and test a near full scale Prop-Fan, designated the Large Scale Advanced Prop-Fan (LAP). This report provides a detailed description of the LAP program. The assumptions and analytical procedures used in the design of Prop-Fan system components are discussed in detail. The manufacturing techniques used in the fabrication of the Prop-Fan are presented. Each of the tests run during the course of the program are also discussed and the major conclusions derived from them stated.

  9. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis.

    PubMed

    Kim, Hyosang; Moon, Soo Young; Kim, Joon-Seok; Baek, Chung Hee; Kim, Miyeon; Min, Ji Yeon; Lee, Sang Koo

    2015-02-01

    It has been suggested that endoplasmic reticulum (ER) stress facilitates fibrotic remodeling. Therefore, modulation of ER stress may serve as one of the possible therapeutic approaches to renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed ER stress induced by chemical ER stress inducers [tunicamycin (TM) and thapsigargin (TG)] and also nonchemical inducers in tubular HK-2 cells. We further investigated the in vivo effects of AMPK on ER stress and renal fibrosis. Western blot analysis, immunofluorescence, small interfering (si)RNA experiments, and immunohistochemical staining were performed. Metformin (the best known clinical activator of AMPK) suppressed TM- or TG-induced ER stress, as shown by the inhibition of TM- or TG-induced upregulation of glucose-related protein (GRP)78 and phosphorylated eukaryotic initiation factor-2α through induction of heme oxygenase-1. Metformin inhibited TM- or TG-induced epithelial-mesenchymal transitions as well. Compound C (AMPK inhibitor) blocked the effect of metformin, and 5-aminoimidazole-4-carboxamide-1β riboside (another AMPK activator) exerted the same effects as metformin. Transfection with siRNA targeting AMPK blocked the effect of metformin. Consistent with the results of cell culture experiments, metformin reduced renal cortical GRP78 expression and increased heme oxygenase-1 expression in a mouse model of ER stress-induced acute kidney injury by TM. Activation of AMPK also suppressed ER stress by transforming growth factor-β, ANG II, aldosterone, and high glucose. Furthermore, metformin reduced GRP78 expression and renal fibrosis in a mouse model of unilateral ureteral obstruction. In conclusion, AMPK may serve as a promising therapeutic target through reducing ER stress and renal fibrosis.

  10. Mechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Jen

    The mechanical behaviors of LiFePO4 battery cell and module specimens under in-plane constrained compression were investigated for simulations of battery cells, modules and packs under crush conditions. The experimental stress-strain curves were correlated to the deformation patterns of battery cell and module specimens. Analytical solutions were developed to estimate the buckling stresses and to provide a theoretical basis for future design of representative volume element cell and module specimens. A physical kinematics model for formation of kinks and shear bands in battery cells was developed to explain the deformation mechanism for layered battery cells under in-plane constrained compression. A small-scale module constrained punch indentation test was also conducted to benchmark the computational results. The computational results indicate that macro homogenized material models can be used to simulate battery modules under crush conditions. Fatigue behavior and failure modes of ultrasonic spot welds in lap-shear specimens of magnesium and steel sheets with and without adhesive were investigated. For ultrasonic spot welded lap-shear specimens, the failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the kinked crack failure mode under high-cycle loading conditions. For adhesive-bonded and weld-bonded lap-shear specimens, the test results show the near interface cohesive failure mode and the kinked crack failure mode under low-cycle and high-cycle loading conditions, respectively. Next, the analytical effective stress intensity factor solutions for main cracks in lap-shear specimens of three dissimilar sheets under plane strain conditions were developed and the solutions agreed well with the computational results. The analytical effective stress intensity factor solutions for kinked cracks were compared with the computational results at small kink lengths. The results indicate that the computational results approach to

  11. Shear stress activation of nuclear receptor PXR in endothelial detoxification.

    PubMed

    Wang, Xiaohong; Fang, Xi; Zhou, Jing; Chen, Zhen; Zhao, Beilei; Xiao, Lei; Liu, Ao; Li, Yi-Shuan J; Shyy, John Y-J; Guan, Youfei; Chien, Shu; Wang, Nanping

    2013-08-06

    Endothelial cells (ECs) are constantly exposed to xenobiotics and endobiotics or their metabolites, which perturb EC function, as well as to shear stress, which plays a crucial role in vascular homeostasis. Pregnane X receptor (PXR) is a nuclear receptor and a key regulator of the detoxification of xeno- and endobiotics. Here we show that laminar shear stress (LSS), the atheroprotective flow, activates PXR in ECs, whereas oscillatory shear stress, the atheroprone flow, suppresses PXR. LSS activation of PXR in cultured ECs led to the increased expression of a PXR target gene, multidrug resistance 1 (MDR1). An in vivo study using rats showed that the expression of MDR1 was significantly higher in the endothelium from the descending thoracic aorta, where flow is mostly laminar, than from the inner curvature of aortic arch, where flow is disturbed. Functionally, LSS-activated PXR protects ECs from apoptosis triggered by doxorubicin via the induction of MDR1 and other detoxification genes. PXR also suppressed the expression of proinflammatory adhesion molecules and monocyte adhesion in response to TNF-α and lipopolysaccharide. Overexpression of a constitutively active PXR in rat carotid arteries potently attenuated proinflammatory responses. In addition, cDNA microarray revealed a large number of the PXR-activated endothelial genes whose products are responsible for major steps of detoxification, including phase I and II metabolizing enzymes and transporters. These detoxification genes in ECs are induced by LSS in ECs in a PXR-dependent manner. In conclusion, our results indicate that PXR represents a flow-activated detoxification system to protect ECs against damage by xeno- and endobiotics.

  12. Shear stress activation of nuclear receptor PXR in endothelial detoxification

    PubMed Central

    Wang, Xiaohong; Fang, Xi; Zhou, Jing; Chen, Zhen; Zhao, Beilei; Xiao, Lei; Liu, Ao; Li, Yi-Shuan J.; Shyy, John Y.-J.; Guan, Youfei; Chien, Shu; Wang, Nanping

    2013-01-01

    Endothelial cells (ECs) are constantly exposed to xenobiotics and endobiotics or their metabolites, which perturb EC function, as well as to shear stress, which plays a crucial role in vascular homeostasis. Pregnane X receptor (PXR) is a nuclear receptor and a key regulator of the detoxification of xeno- and endobiotics. Here we show that laminar shear stress (LSS), the atheroprotective flow, activates PXR in ECs, whereas oscillatory shear stress, the atheroprone flow, suppresses PXR. LSS activation of PXR in cultured ECs led to the increased expression of a PXR target gene, multidrug resistance 1 (MDR1). An in vivo study using rats showed that the expression of MDR1 was significantly higher in the endothelium from the descending thoracic aorta, where flow is mostly laminar, than from the inner curvature of aortic arch, where flow is disturbed. Functionally, LSS-activated PXR protects ECs from apoptosis triggered by doxorubicin via the induction of MDR1 and other detoxification genes. PXR also suppressed the expression of proinflammatory adhesion molecules and monocyte adhesion in response to TNF-α and lipopolysaccharide. Overexpression of a constitutively active PXR in rat carotid arteries potently attenuated proinflammatory responses. In addition, cDNA microarray revealed a large number of the PXR-activated endothelial genes whose products are responsible for major steps of detoxification, including phase I and II metabolizing enzymes and transporters. These detoxification genes in ECs are induced by LSS in ECs in a PXR-dependent manner. In conclusion, our results indicate that PXR represents a flow-activated detoxification system to protect ECs against damage by xeno- and endobiotics. PMID:23878263

  13. LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida

    PubMed Central

    Lahesaare, Andrio; Ainelo, Hanna; Teppo, Annika; Kivisaar, Maia; Heipieper, Hermann J.; Teras, Riho

    2016-01-01

    The ability of bacteria to regulate cell surface hydrophobicity is important for the adaptation to different environmental conditions. The hydrophobicity of cell surface can be determined by several factors, including outer membrane and surface proteins. In this study, we report that an adhesin LapF influences cell surface hydrophobicity of Pseudomonas putida. Cells lacking LapF are less hydrophobic than wild-type cells in stationary growth phase. Moreover, the overexpression of the global regulator Fis decreases surface hydrophobicity by repressing the expression of lapF. Flow cytometry analysis revealed that bacteria producing LapF are more viable when confronted with methanol (a hydrophilic compound) but are more susceptible to 1-octanol (a hydrophobic compound). Thus, these results revealed that LapF is the hydrophobicity factor for the cell surface of P. putida. PMID:27812186

  14. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    PubMed Central

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  15. Emotional stability, anxiety, and natural killer activity under examination stress.

    PubMed

    Borella, P; Bargellini, A; Rovesti, S; Pinelli, M; Vivoli, R; Solfrini, V; Vivoli, G

    1999-08-01

    This study was performed to evaluate the relation between a stable personality trait, a mood state and immune response to an examination stress. A self-reported measure of emotional stability (BFQ-ES scale) was obtained in a sample (n = 39) randomly selected from 277 cadets; this personality trait was also investigated by completing a neuroticism scale (Eysenck personality inventory) and a trait-anxiety scale (STAI). Natural killer (NK) cell activity was measured at baseline, long before the examination time and the examination day. The state-anxiety scale evaluated the response to the stressful stimulus. Taking subjects all together, the academic task did not result in significant modification over baseline in NK cell activity. Subjects were then divided into three groups based on emotional stability and state-anxiety scores: high emotional stability/low anxiety, medium, and low emotional stability/high anxiety. Examination stress induced significant increases in NK cell activity in the high emotional stability/low anxiety group, no effect in the medium group, and significant decreases in the low emotional stability/high anxiety group. The repeated-measure ANOVA revealed a significant interaction of group x period (baseline vs. examination) for both lytic units and percent cytolysis. The results did not change after introducing coffee and smoking habits as covariates. Our findings suggest that the state-anxiety acts in concert with a stable personality trait to modulate NK response in healthy subjects exposed to a psychological naturalistic stress. The relation between anxiety and poor immune control has been already described, whereas the ability of emotional stability to associate with an immunoenhancement has not yet reported. The peculiarity of our population, a very homogeneous and healthy group for life style and habits, can have highlighted the role of emotional stability, and may account for the difference with other studies.

  16. Endoplasmic reticulum stress activation during total knee arthroplasty

    PubMed Central

    Hocker, Austin D; Boileau, Ryan M; Lantz, Brick A; Jewett, Brian A; Gilbert, Jeffrey S; Dreyer, Hans C

    2013-01-01

    Total knee arthroplasty (TKA) is the most common remediation for knee pain from osteoarthritis (OA) and is performed 650,000 annually in the U.S. A tourniquet is commonly used during TKA which causes ischemia and reperfusion (I/R) to the lower limb but the effects of I/R on muscle are not fully understood. Previous reports suggest upregulation of cell stress and catabolism and downregulation of markers of cap-dependent translation during and after TKA. I/R has also been shown to cause endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR). We hypothesized that the UPR would be activated in response to ER stress during TKA. We obtained muscle biopsies from the vastus lateralis at baseline, before TKA; at maximal ischemia, prior to tourniquet deflation; and during reperfusion in the operating room. Phosphorylation of 4E-BP1 and AKT decreased during ischemia (−28%, P < 0.05; −20%, P < 0.05, respectively) along with an increase in eIF2α phosphorylation (64%, P < 0.05) suggesting decreased translation initiation. Cleaved ATF6 protein increased in ischemia (39%, P = 0.056) but returned to baseline during reperfusion. CASP3 activation increased during reperfusion compared to baseline (23%, P < 0.05). XBP1 splicing assays revealed an increase in spliced transcript during ischemia (31%, P < 0.05) which diminished during reperfusion. These results suggest that in response to I/R during TKA all three branches of the ER stress response are activated. PMID:24159375

  17. The Teacher's Lap--A Site of Emotional Well-Being for the Younger Children in Day-Care Groups

    ERIC Educational Resources Information Center

    Hännikäinen, Maritta

    2015-01-01

    This study focuses on a particular relationship between teachers and one- to three-year-old children: the child in the teacher's lap. When, in what situations, does this happen? Who are the children in the teacher's lap? Why are they there? How do children express emotional well-being when in the teacher's lap? Relational, sociocultural and…

  18. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  19. Osmotic stress, plasma renin activity, and spermatogenesis in Vipera aspis.

    PubMed

    Uva, B; Ghiani, P; Masini, M A; Mandich, A

    1987-12-01

    Circulating electrolytes (Na+, K+), plasma renin-like activity, testosterone, and testis morphology were investigated in early summer during the spermatogenic progressive phase in Vipera aspis subjected to sodium loading and sodium depletion. After sodium loading, plasma sodium and plasma testosterone levels were significantly elevated compared with those of controls, while plasma renin-like activity was depressed, spermiogenesis was increased, the epithelium lining the epididymis was very thick, and the Leydig cells were hypertrophied. After sodium depletion, plasma sodium and plasma testosterone levels were significantly depressed and plasma renin-like activity was significantly elevated. Spermiogenesis seemed to be slightly regressed: the epithelium lining the epididymis was very thin, and the lumen was devoid of spermatozoa. The Leydig cells were hardly visible. All the data strongly suggest that osmotic stress affects gonadal activity in the snake. V. aspis.

  20. Superoxide dismutase activity in thermally stressed Staphylococcus aureus.

    PubMed Central

    Bucker, E R; Martin, S E

    1981-01-01

    The effects of heat and NaCl on the activity of superoxide dismutase from Staphylococcus aureus were examined. A linear decrease in superoxide dismutase activity occurred when S. aureus MF-31 cells were thermally stressed for 90 min at 52% C in 100 mM potassium phosphate buffer (pH 7.2). After 20 min of heating, only 5% of the superoxide dismutase activity was lost. Heating for 60, 90 and 120 min resulted in decreases of approximately 10, 22, and 68%, respectively. The rates of thermal inactivation of superoxide dismutase from S. aureus strains 196E and 210 were similar and slightly greater than those of strains MF-31, S-6, and 181. The addition of NaCl before or after heating resulted in increased losses of superoxide dismutase activity. PMID:7235693

  1. Mechanical stress-controlled tunable active frequency-selective surface

    NASA Astrophysics Data System (ADS)

    Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao

    2017-01-01

    This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.

  2. SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK).

    PubMed

    Lawler, S; Cuenda, A; Goedert, M; Cohen, P

    1997-09-01

    A cDNA was cloned and expressed that encodes human stress-activated protein kinase kinase-4 (SKK4), a novel MAP kinase kinase family member whose mRNA is widely expressed in human tissues. SKK4 activated SAPK1/JNK in vitro, but not SAPK2a/p38, SAPK2b/p38beta, SAPK3/ERK6 or SAPK4. It appears to be the mammalian homologue of HEP, an activator of SAPK1/JNK in Drosophila. In human epithelial KB cells SKK4 and SKK1/MKK4 (another activator of SAPK1/JNK) were both activated by stressful stimuli, but only SKK4 was activated by proinflammatory cytokines. The identification of SKK4 explains why the major SAPK1/JNK activator detected in many mammalian cell extracts is chromatographically separable from SKK1/MKK4.

  3. Physical activity, life events stress, cortisol, and DHEA: preliminary findings that physical activity may buffer against the negative effects of stress.

    PubMed

    Heaney, Jennifer L J; Carroll, Douglas; Phillips, Anna C

    2014-10-01

    The present study examined the relationship between habitual physical activity, life events stress, the diurnal rhythms of cortisol and DHEA, and the cortisol:dehydroepiandrosterone (DHEA) ratio in older adults. Thirty-six participants aged ≥ 65 reported their habitual physical activity, and indicated if a particular event happened to them in the past year (stress incidence) and how stressful they perceived the event to be (stress severity). Older adults with higher stress severity demonstrated a significantly higher cortisol:DHEA ratio. Individuals with higher stress incidence scores and who did not participate in aerobic exercise had a significantly higher cortisol:DHEA ratio and flatter DHEA diurnal rhythm compared with those who regularly participated in aerobic exercise. In conclusion, life events stress may have a negative impact on the cortisol:DHEA ratio in older adults. Under conditions of high stress exposure, exercise may protect older adults from an increased cortisol:DHEA ratio and flatter DHEA diurnal rhythm.

  4. Fatigue strength of a single lap joint SPR-bonded

    NASA Astrophysics Data System (ADS)

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-01

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints. The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  5. How dogs lap: ingestion and intraoral transport in Canis familiaris.

    PubMed

    Crompton, A W; Musinsky, Catherine

    2011-12-23

    It has recently been suggested that the mechanism for lifting liquid from a bowl into the oral cavity during lapping is fundamentally different in cats and dogs: cats use adhesion of liquid to the tongue tip while dogs 'scoop' with their backwardly curled tongue. High-speed light videos and X-ray videos show that on the contrary, both cats and dogs use the mechanism of adhesion. Liquid is transported through the oral cavity to the oesophagus, against gravity, on the surface of the tongue as it is drawn upwards, then a tight contact between the tongue surface and palatal rugae traps liquid and prevents its falling out as the tongue is protruded. At least three cycles are needed for intraoral transport of liquid in the dog.

  6. Vegetation stress and summer fire activity in Portugal

    NASA Astrophysics Data System (ADS)

    Carlos, DaCamara; Sílvia, Nunes

    2013-04-01

    Fire activity in Mediterranean Europe is closely related to the climatological background where the occurrence of rainy and mild winters, followed by warm and dry summers, may induce high levels of vegetation stress over the different regions making them prone to the occurrence of fire events. The aim of the present study is to investigate whether years of very high or very low levels of fire activity over forests in Portugal are linked to contrasting vegetation cycles associated to high and low degrees of vegetation stress during the summer season. The present study relies on time series of yearly amounts of burned areas provided by Instituto de Conservação da Natureza e das Florestas (ICNF), the national authority for forests as well as on monthly values of NDVI and of brightness temperature as obtained from the Mediterranean Extended Daily One Km AVHRR Data Set (MEDOKADS) product provided by the Free University of Berlin. Both datasets cover the 16-year period from 1990 to 2005. The area of forest is first identified by means of a k-means cluster analysis that is performed on climatological yearly means of NDVI and brightness temperature. Monthly means of NDVI and of brightness temperature are then evaluated over the area of forest and composites are made for severe and mild years of fire activity defined as those with yearly burned areas respectively above the third quartile and below the first quartile. The composite of severe years presents a brightness temperature cycle with values above average during spring and summer together with values of NDVI below average during summer, the behavior of both parameters providing an indication of vegetation stress. In contrast, the composite of mild years of fire activity presents an NDVI cycle with values well below average during spring, an indication of lack of biomass, and a brightness temperature cycle with values below average during spring and summer, an indication that vegetation is not under stress. Results

  7. Mammalian Toxicological Evaluation of TNT Wastewaters. Volume II. Acute and Subacute Mammalian Toxicity of TNT and LAP Mixture

    DTIC Science & Technology

    1979-06-01

    synthesis assay ; UDS assay . 20 ABSTRACT (Continued) ,LAP and LAP(I) produced conjunctivitis, iritis, and/or corneal opacity In rabbit eyes; the...and 0.38 (mildly irritating) for LAP(I). j j: In the maximization ,egt, LAP ane LAP(I) produced mild reactions in 67 and 70%, respectively, of the sites...of guinea pigs challenged with the material; these •alues classify both as strong allergens. "’In in vitro microbial assays using microsomal

  8. Secondary bending effects in progressively damaged single-lap, single-bolt composite joints

    NASA Astrophysics Data System (ADS)

    Zhao, Libin; Xin, An; Liu, Fengrui; Zhang, Jianyu; Hu, Ning

    Static tensile experiments and progressive failure simulations of single-bolt, single- and double-lap joints were carried out to comparatively investigate secondary bending effects, which present significant eccentric-loading phenomena in single-lap joints but are almost non-existent in symmetric double-lap joints. Progressive damage models of single-lap and double-lap joints were established, from which the numerical predictions were found to be in good agreement with the experimental outcomes. Experimental macro-scope failure patterns and seven numerical micro-scope failure modes obtained from the progressive damage analyses were presented for the two types of joints. The effects of secondary bending on the mechanical degradation and failure mechanism of single-lap joints were revealed. Some characterizations of secondary bending in the joints, such as a characterized parameter on the AGARD points, joint deformations and contact states, were quantitatively traced during the total progressive damage process. All these characterizations increased the understanding of the effects of secondary bending on the failure process of a single-bolt, single-lap joint.

  9. The effect of diamond powder characteristics on lapping of sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Rosczyk, Benjamin; Burkam, Eric; Titov, Artem; Onyenemezu, Clement; Benea, Ion C.

    2015-10-01

    In Automotive applications, sintered Silicon Carbide has been used in applications such as seal pump faces. The surface of sintered SiC, when lapped or polished for sealing to another surface, must be free of blemishes and mechanical defects. Lapping and polishing processes therefore must be well defined and controlled assuring minimal variation and production scrap. In this study, we related the characteristics of different diamond powders (particle size distribution, particle shape and surface) to their performance in lapping of sintered silicon carbide material, expressed as removal rate and surface finish.

  10. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  11. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  12. Salivary cortisol, heart rate, electrodermal activity and subjective stress responses to the Mannheim Multicomponent Stress Test (MMST).

    PubMed

    Reinhardt, Tatyana; Schmahl, Christian; Wüst, Stefan; Bohus, Martin

    2012-06-30

    The availability of effective laboratory paradigms for inducing psychological stress is an important requirement for experimental stress research. Reliable protocols are scarce, usually laborious and manpower-intensive. In order to develop an economical, easily applicable standardized stress protocol, we have recently tailored the Mannheim Multicomponent Stress Test (MMST). This test has been shown to induce relatively high stress responses without focusing on social-evaluative components. In this study we evaluated changes in electrodermal activity and salivary cortisol in response to the MMST. The MMST simultaneously combines cognitive (mental arithmetic), emotional (affective pictures), acoustic (white noise) and motivational stressors (loss of money). This study comprised two independent experiments. For experiment 1, 80 female subjects were recruited; 30 subjects (15 females) participated in experiment 2. Significant changes in electrodermal activity and salivary cortisol levels in response to MMST exposure were found. Subjective stress and heart rate responses were significantly increased in both experiments. These results indicate that the MMST is an economical stress paradigm which is also applicable in larger cohorts or multicenter studies for investigating stress reactions. As social-evaluative threat is not the main stress component of the MMST, this procedure represents a useful and complementary alternative to other established stress protocols.

  13. Physical activity, heart rate variability-based stress and recovery, and subjective stress during a 9-month study period.

    PubMed

    Föhr, T; Tolvanen, A; Myllymäki, T; Järvelä-Reijonen, E; Peuhkuri, K; Rantala, S; Kolehmainen, M; Korpela, R; Lappalainen, R; Ermes, M; Puttonen, S; Rusko, H; Kujala, U M

    2016-03-31

    The aim of this study was to investigate the association between physical activity (PA) and objective heart rate variability (HRV)-based stress and recovery with subjective stress in a longitudinal setting. Working-age participants (n = 221; 185 women, 36 men) were overweight (body mass index, 25.3-40.1 kg/m(2) ) and psychologically distressed (≥3/12 points on the General Health Questionnaire). Objective stress and recovery were based on HRV recordings over 1-3 work days. Subjective stress was assessed with the Perceived Stress Scale and PA level with a questionnaire. Data were collected at three time points: baseline, 10 weeks post intervention, and at the 36-week follow-up. We adopted a latent growth model to investigate the initial level and change in PA, objective stress and recovery, and subjective stress at the three measurement time points. The results showed that initial levels of PA (P < 0.001) and objective stress (P = 0.001) and recovery (P < 0.01) were associated with the change in subjective stress. The results persisted after adjustment for intervention group. The present results suggest that high PA and objectively assessed low stress and good recovery have positive effects on changes in subjective stress in the long-term.

  14. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca(2+) entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca(2+) influx. Extracellular Mg(2+) at 2 mM did not significantly affect the shear induced Ca(2+) influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  15. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  16. Decreased Prolidase Activity in Patients with Posttraumatic Stress Disorder

    PubMed Central

    Bulut, Mahmut; Atli, Abdullah; Kaplan, İbrahim; Kaya, Mehmet Cemal; Bez, Yasin; Özdemir, Pınar Güzel; Sır, Aytekin

    2016-01-01

    Objective Many neurochemical systems have been implicated in the development of Posttraumatic Stress Disorder (PTSD). The prolidase enzyme is a cytosolic exopeptidase that detaches proline or hydroxyproline from the carboxyl terminal position of dipeptides. Prolidase has important biological effects, and to date, its role in the etiology of PTSD has not been studied. In the present study, we aimed to evaluate prolidase activity in patients with PTSD. Methods The study group consisted of patients who were diagnosed with PTSD after the earthquake that occurred in the province of Van in Turkey in 2011 (n=25); the first control group consisted of patients who experienced the earthquake but did not show PTSD symptoms (n=26) and the second control group consisted of patients who have never been exposed to a traumatic event (n=25). Prolidase activities in the patients and the control groups were determined by the ELISA method using commercial kits. Results Prolidase activity in the patient group was significantly lower when compared to the control groups. Prolidase activity was also significantly lower in the traumatized healthy subjects compared to the other healthy group (p<0.01). Conclusion The findings of the present study suggest that the decrease in prolidase activity may have neuroprotective effects in patients with PTSD. PMID:27482243

  17. The mechanics and tribology of fretting fatigue with application to riveted lap joints

    NASA Astrophysics Data System (ADS)

    Szolwinski, Matthew Paul

    Fretting is the synergistic combination of wear, corrosion, and fatigue damage mechanisms driven by the partial slip of contacting surfaces. The surface microslip and near-surface contact stresses associated with fretting can lead to severe reduction in service lifetimes of contacting components as diversified as bearings, turbine blades and mechanically-fastened joints, both structural and biological. This tribologically induced degradation has come under close scrutiny by those responsible for maintaining aging fleets of both commercial and military aircraft. Thus a critical need exists for predicting fretting crack nucleation in riveted aluminum. aircraft joints. Fulfilling this need requires characterizing both the near-surface mechanics and intimately-related tribology of fretting. To this end, a well characterized experimental setup has been developed to generate carefully controlled and monitored fretting contacts to investigate the nature of the near-surface conditions. Included in this investigation were in-situ observations of the fretting contact stress field via a non-invasive thermal imaging technique and a characterization of the evolution of friction under partial slip conditions. With specific qualitative and quantitative understanding of these near-surface conditions, a series of fretting fatigue experiments have been conducted to validate a mechanics-based model for predicting fretting fatigue crack nucleation. Finally, efforts have been directed toward extending this understanding of fretting crack nucleation to riveted aircraft structure through modeling of the riveting process and a related experimental program designed to link riveting process parameters and fretting damage in single-lap joint structures. This work focuses specifically on determination of the residual stresses induced during rivet installation and the morphological characterization of fretting fatigue damage in the riveted test specimens manufactured under controlled

  18. A characterization of the LAP Aquarius Phantom for external LAP laser alignment and magnetic resonance geometric distortion verification for stereotactic radiation surgery patient simulation

    NASA Astrophysics Data System (ADS)

    Vergara, Daniel

    The Thesis explores additional applications of LAP's Aquarius external laser alignment verification Phantom by examining geometric accuracy of magnetic resonance images commonly used for planning intracranial stereotactic radiation surgery (ICSRS) cases. The scans were performed with MRI protocols used for ICSRS, and head and neck diagnosis, and their images fused to computerized tomographic (CT) images. The geometric distortions (GDs) were measured against the CT in all axial, sagittal, and coronal directions at different levels. Using the Aquarius Phantom, one is able to detect GD in ICSRS planning MRI acquisitions, and align the external LAP patient alignment lasers, by following the LAP QA protocol. GDs up to about 2 mm are observed at the distal regions of the longitudinal axis in the SRS treatment planning MR images. Based on the results, one may recommend the use of the Aquarius Phantom to determine if margins should be included for SRS treatment planning.

  19. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  20. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  1. Producing Learning Activities Packages. Instructor's Manual.

    ERIC Educational Resources Information Center

    Jobe, Holly; Cannon, Glenn

    This teachers' manual outlines the design, development, and evaluation processes for Learning Activities Packages (LAPS), including mediated learning activities. A lesson plan for the first day's instruction is provided, as well as a 20-item pre-post test. Each LAP has five components: concept, rationale, objectives, preassessment, activities, and…

  2. Alteration of Sulphides in the Rumuruti Chondrite La Paz Icefield (LAP) 031275

    NASA Astrophysics Data System (ADS)

    Steer, E. D.; Treiman, A. H.

    2014-09-01

    Pyrrhotite in LAP 03175 (R5) has altered to a fine-grained mineral mixture. New data (optical, chemical, and Raman) suggest the mixture includes violarite and tochilinite, but not (as suggested earlier) graphite, hematite, and/or jarosite.

  3. Lower electrodermal activity to acute stress in caregivers of people with autism spectrum disorder: an adaptive habituation to stress.

    PubMed

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-02-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between parents of people with (n = 30) and without (n = 34) ASD (caregivers and non-caregivers, respectively). Caregivers showed lower EDA in response to acute stress than non-caregivers. They also presented higher trait anxiety, anger, depression, and somatic symptoms than non-caregivers. Higher EDA was related to a worse mood and more severe somatic symptoms only in caregivers. These results could reflect an adaptive habituation to stress and establish that high EDA in response to acute stress depends on caregivers' health.

  4. 78 FR 1250 - Agency Information Collection Activities: Proposed New Collection; Comments Requested; Stress...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Agency Information Collection Activities: Proposed New Collection; Comments Requested; Stress Resiliency Study... Form/Collection: Stress Resiliency Study Questionnaires for Milwaukee Police Department. (3)...

  5. 78 FR 16536 - Agency Information Collection Activities; Proposed New Collection; Comments Requested: Stress...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Agency Information Collection Activities; Proposed New Collection; Comments Requested: Stress Resiliency Study... new collection; comments requested. (2) Title of the Form/Collection: Stress Resiliency...

  6. Catalase activity as a biomarker for mild-stress-induced robustness in Bacillus weihenstephanensis.

    PubMed

    den Besten, Heidy M W; Effraimidou, Styliani; Abee, Tjakko

    2013-01-01

    Microorganisms are able to survive and grow in changing environments by activating stress adaptation mechanisms which may enhance bacterial robustness. Stress-induced enhanced robustness complicates the predictability of microbial inactivation. Using psychrotolerant Bacillus weihenstephanensis strain KBAB4 as a model, we investigated the impact of the culturing temperature on mild-oxidative-stress-induced (cross-)protection toward multiple stresses, including severe oxidative, heat, and acid stresses. Culturing at a refrigeration temperature (7°C) compared to the optimal growth temperature (30°C) affected both the robustness level of B. weihenstephanensis and the oxidative stress adaptive response. Scavengers of reactive oxygen species have a crucial role in adaptation to oxidative stresses, and this points to a possible predictive role in mild-oxidative-stress-induced robustness. Therefore, the catalase activity was determined upon mild oxidative stress treatment and was demonstrated to be significantly correlated with the robustness level of mild-stress-treated cells toward severe oxidative and heat stresses but not toward severe acid stress for cells grown at both refrigeration and optimal temperatures. The quantified correlations supported the predictive quality of catalase activity as a biomarker and also underlined that the predictive quality is stress specific. Biomarkers that are able to predict stress-induced enhanced robustness can be used to better understand stress adaptation mechanisms and might allow the design of effective combinations of hurdles to control microbial behavior.

  7. Crystal structure, spectroscopic and thermal properties of [Zn(Lap)2(DMF)(H2O)] and isomorphous [M(Lap)2]n (M: Cd, Mn) complexes

    NASA Astrophysics Data System (ADS)

    Farfán, R. A.; Espíndola, J. A.; Gomez, M. I.; de Jiménez, M. C. L.; Piro, O. E.; Castellano, E. E.; Martínez, M. A.

    2015-05-01

    The solid state structure of the lapacholate (Lap-) complexes with Zn(II), Cd(II) and Mn(II) were determined by X-ray diffraction methods. [Zn(Lap)2(DMF)(H2O)] crystallizes in the triclinic space group P 1 bar with a = 10.5051(4), b = 12.8020(4), c = 13.0394(4) Å, α = 60.418(2), β = 83.904(2), γ = 86.206(2)°, and Z = 2 molecules per unit cell. The isomorphous complexes [M(Lap)2]n (M: Cd, Mn) crystallize in the tetragonal space group P43212 with a = b = 13.5770(6) Å, c = 14.5730(6) Å (Cd), and a = b = 13.3539(4), c = 14.7148(4) Å (Mn), and Z = 4. In [Zn(Lap)2(DMF)(H2O)] the Zn(II) ion is in a distorted octahedral environment coordinated to two different and nearly perpendicular Lap- molecules acting as bidentate ligands through their adjacent carbonyl and phenol oxygen atoms. The remaining two cis-coordination sites are occupied by water and DMF molecules. [M(Lap)2]n (M: Cd, Mn) isomorphous complexes are also octahedral and present a supra-molecular arrangement in the lattice. There is only one independent Lap- molecule that coordinates the metal through all three ligand binding sites, giving rise to a 3-D structure of [M(Lap)2]n complexes that extends throughout the crystal lattice. The lapachol binding to metal is also revealed by the IR spectra. In fact, the carbonyl Cdbnd O stretching frequency is appreciable red-shifted in the complexes as compared to uncoordinated lapachol ligand. As expected, the IR and UV-Vis spectra of the isomorphous pair of complexes closely resemble to each other. Up to above 300 °C there are significant differences in the TGA of the Zn complex when compared with the isomorphous pair: while the former shows the loss of the secondary ligands (water and DMF), the latter exhibits a plateau signaling the lesser labile character of the lapacholate ligand.

  8. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  9. Smart warping harnesses for active mirrors and stress polishing

    NASA Astrophysics Data System (ADS)

    Lemared, Sabri; Hugot, Emmanuel; Challita, Zalpha; Schnetler, Hermine; Kroes, Gabby; Marcos, Michel; Costille, Anne; Dohlen, Kjetil; Beuzit, Jean-Luc; Cuby, Jean-Gabriel

    2016-07-01

    We present two ways to generate or compensate for first order optical aberrations using smart warping harnesses. In these cases, we used the same methodology leading to replace a previous actuation system currently on-sky and to get a freeform mirror intended to a demonstrator. Starting from specifications, a warping harness is designed, followed by a meshing model in the finite elements software. For the two projects, two different ways of astigmatism generation are presented. The first one, on the VLT-SPHERE instrument, with a single actuator, is able to generate a nearly pure astigmatism via a rotating motorization. Two actuators are sufficient to produce the same aberration for the active freeform mirror, main part of the OPTICON-FAME project, in order to use stress-polishing method.

  10. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels.

    PubMed

    Hermann, Anton; Sitdikova, Guzel F; Weiger, Thomas M

    2015-08-17

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  11. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells

    SciTech Connect

    Li, Junxia; Shan, Fabo; Xiong, Gang; Wang, Ju-Ming; Wang, Wen-Lin; Xu, Xueqing; Bai, Yun

    2014-03-28

    Highlights: • MiR-146b promotes esophageal cancer cell proliferation. • MiR-146b inhibits esophageal cancer cell apoptosis. • C/EBPβ directly binds to miR-146b promoter conserved region. • MiR-146b is up-regulated by C/EBPβ LAP2 transcriptional activation. - Abstract: Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma.

  12. Three-dimensional finite element analyses of the local mechanical behavior of riveted lap joints

    NASA Astrophysics Data System (ADS)

    Iyer, Kaushik Arjunan

    Three-dimensional elastic-plastic finite element models of single and double rivet-row lap joints have been developed to evaluate local distortions and the mechanics of airframe-type 7075-T6 aluminum alloy riveted assemblies. Loading induced distortion features such as the excess assembly compliance, rivet tilt, local in- and out-of-plane slips and stress concentration factors are evaluated as functions of rivet countersinking, rivet material and friction coefficient. Computed features are examined to identify alterations in the proportions of in-plane and out-of-plane load transmission across rivet-panel interfaces and isolate global and lower-order effects present in the complex response of these multi-body assemblies. Analytical procedures are validated by comparing calculated and measured values of excess assembly compliance and local panel bending. Direct out-of-plane load transmission between the rivet heads and panels affects global deformation features such as remote panel bending and local features such as the panel stress concentration factor. The increase in stress concentration due to panel bending is self-limiting owing to decreasing in-plane load bearing with increasing rivet tilt, which is a composite reflection of the basic rivet deformation modes of shear and rotation. Calculations have also been performed to define approximate steady-state fretting fatigue conditions that lead to crack initiation at a panel hole surface in single and double rivet-row assemblies for countersunk and non-countersunk rivets. These account for and isolate effects of interference and clamping forces on fatigue performance by comparing computed circumferential variations of bulk residual stresses, cyclic stress range and mean stress. With interference, a non-countersunk assembly is shown to be as prone to crack initiation as a countersunk assembly. Frictional work due to fretting is evaluated and the physical location of fretting fatigue crack initiation is predicted by

  13. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Astrophysics Data System (ADS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  14. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Technical Reports Server (NTRS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-01-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  15. Fatigue growth of multiple-cracks near a row of fastener-holes in a fuselage lap-joint

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Atluri, S. N.

    1993-12-01

    The fatigue growth of multiple cracks, of arbitrary lengths, emanating from a row of fastener holes in a bonded, riveted, lap joint in a pressurized aircraft fuselage is studied. The effects of residual stresses due to a rivet misfit, and of plastic deformation near the hole, are included. A Schwartz-Neumann alternating method which uses the analytical solution for a row of multiple colinear cracks in an infinite sheet (the crack-faces being subject to arbitrary tractions), is developed to analyze this MSD problem on a personal computer. It is found that for a range of crack lengths, a phenomena wherein the shorter cracks may grow faster than longer cracks may exist.

  16. Improving Health by Reducing Stress: An Experiential Activity

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Moore, Michele J.; Barr, Elissa M.

    2011-01-01

    Stress is a leading health issue among college students. Managing stress involves enhancing resources necessary to cope with life's demands. Relaxation techniques are especially critical coping strategies when stress is chronic and coping resources are overused and fatigued. Methods: This article describes a research-based relaxation technique…

  17. Fatigue strength of a single lap joint SPR-bonded

    SciTech Connect

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-04

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  18. Molten pool characterization of laser lap welded copper and aluminum

    NASA Astrophysics Data System (ADS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  19. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and

  20. Oxidative stress, activity behaviour and body mass in captive parrots

    PubMed Central

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally ‘active’ individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID

  1. Lead stress effects on physiobiochemical activities of higher plants.

    PubMed

    Sengar, Rakesh Singh; Gautam, Madhu; Sengar, Rajesh Singh; Garg, Sanjay Kumar; Sengar, Kalpana; Chaudhary, Reshu

    2008-01-01

    Lead is a metallic pollutant emanating from various environmental sources including industrial wastes, combustion of fossil fuels, and use of agrochemicals. Lead may exist in the atmosphere as dusts, fumes, mists, and vapors, and in soil as a mineral. Soils along roadsides are rich in lead because vehicles burn leaded gasoline, which contributes to environmental lead pollution. Other important sources of lead pollution are geological weathering, industrial processing of ores and minerals, leaching of lead from solid wastes, and animal and human excreta. Lead is nondegradable, readily enters the food chain, and can subsequently endanger human and animal health. Lead is one of the most important environment pollutants and deserves the increasing attention it has received in recent decades. The present effort was undertaken to review lead stress effects on the physiobiochemical activity of higher plants. Lead has gained considerable attention as a potent heavy metal pollutant because of growing anthropogenic pressure on the environment. Lead-contaminated soils show a sharp decline in crop productivity. Lead is absorbed by plants mainly through the root system and in minor amounts through the leaves. Within the plants, lead accumulates primarily in roots, but some is translocated to aerial plant parts. Soil pH, soil particle size, cation-exchange capacity, as well as root surface area, root exudation, and mycorrhizal transpiration rate affect the availability and uptake of lead by plants. Only a limited amount of lead is translocated from roots to other organs because there are natural plant barriers in the root endodermis. At lethal concentrations, this barrier is broken and lead may enter vascular tissues. Lead in plants may form deposits of various sizes, present mainly in intercellular spaces, cell walls, and vacuoles. Small deposits of this metal are also seen in the endoplasmic reticulum, dictyosome, and dictyosome-derived vesicles. After entering the cells, lead

  2. Helping Children Cope with Fears and Stress. Part I: Discussion and Activities. Part II: Facilitator's Guide.

    ERIC Educational Resources Information Center

    Robinson, Edward H.; And Others

    How fears, phobias, anxiety and stress develop in elementary school students and how these students can be assisted in coping with fears and stress are discussed in this book. Part 1, "Discussion and Activities," contains six sections. Section 1 presents an overview of fears, and stress in children. Section 2 presents 12 fear-specific activities…

  3. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  4. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  5. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation.

    PubMed

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-05-23

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD.

  6. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    PubMed

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record

  7. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    PubMed

    Orellana, Juan A; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J; Stehberg, Jimmy; Sáez, Juan C

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  8. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    PubMed Central

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  9. Tibial stress fractures in an active duty population: long-term outcomes.

    PubMed

    Kilcoyne, Kelly G; Dickens, Jonathan F; Rue, John-Paul

    2013-01-01

    Tibial stress fractures are a common overuse injury among military recruits. The purpose of this study was to determine what, if any, long-term effects that tibial stress fractures have on military personnel with respect to physical activity level, completion of military training, recurrence of symptoms, and active duty service. Twenty-six military recruits included in a previous tibial stress fracture study were contacted 10 years after initial injury and asked a series of questions related to any long-term consequences of their tibial stress fracture. Of the 13 patients available for contact, no patients reported any necessary limited duty while on active duty, and no patient reported being separated or discharged from the military as a result of stress fracture. Tibial stress fractures in military recruits are most often an isolated injury and do not affect ability to complete military training or reflect a long-term need for decreased physical activity.

  10. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance.

    PubMed

    Laubacher, Mary E; Ades, Sarah E

    2008-03-01

    Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the beta-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to beta-lactam antibiotics.

  11. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  12. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  13. [Stress prevention programs--strategies, techniques, effectiveness. Part II. Organizational activities to prevent stress at work].

    PubMed

    Małgorzata, W; Merecz, Dorota; Drabek, Marcin

    2010-01-01

    This is the second part of the publication on approaches to occupational stress prevention and a state of the art in different European countries. In this part, stress prevention within an organization is described and discussed. Although there is no one way of tackling stress at work, some recommendations can be formulated to increase the effectiveness of such interventions. The effective stress reducing programs should be aimed both at changes in the organization itself and empowerment of employees' coping with stress resources. It is also important to take the advantage of wide spectrum of methods and techniques (e.g., work redesign, participation, team work, cognitive behavioral methods, relaxation, etc.) remembering that one size does not fit all. The intervention should be carefully planned and adopted to the various branches, an individual organization or department and should be preceded by the identification of stress risks and risk groups. To have the stress prevention program successfully introduced one should also consider factors which may influence (positively or negatively) the process of program implementation.

  14. [Unpredictable chronic mild stress effects on antidepressants activities in forced swim test].

    PubMed

    Kudryashov, N V; Kalinina, T S; Voronina, T A

    2015-02-01

    The experiments has been designed to study unpredictable chronic mild stress effect on anti-depressive activities of amitriptyline (10 mg/kg) and fluoxetine (20 mg/kg) in forced swim test in male outbred mice. It is shown that acute treatment with fluoxetine does not produce any antidepressant effects in mice following stress of 14 days while the sub-chronic injections of fluoxetine result in more deep depressive-like behavior. In 28 daily stressed mice, antidepressant effect of fluoxetine is observed independently of the injection rates. Amitriptyline demonstrates the antidepressant activity regardless of the duration of stress or administration scheduling, but at the same time the severity of anti-immobilization effect of amitriptyline in stressed mice is weaker in compare to non-stressed trails. Thus, the injection rates and duration of unpredictable mild chronic stress are the parameters that determine the efficiency of antidepressants in the mouse forced swimming test.

  15. Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis.

    PubMed

    Weygandt, Martin; Meyer-Arndt, Lil; Behrens, Janina Ruth; Wakonig, Katharina; Bellmann-Strobl, Judith; Ritter, Kerstin; Scheel, Michael; Brandt, Alexander U; Labadie, Christian; Hetzer, Stefan; Gold, Stefan M; Paul, Friedemann; Haynes, John-Dylan

    2016-11-22

    Prospective clinical studies support a link between psychological stress and multiple sclerosis (MS) disease severity, and peripheral stress systems are frequently dysregulated in MS patients. However, the exact link between neurobiological stress systems and MS symptoms is unknown. To evaluate the link between neural stress responses and disease parameters, we used an arterial-spin-labeling functional MRI stress paradigm in 36 MS patients and 21 healthy controls. Specifically, we measured brain activity during a mental arithmetic paradigm with performance-adaptive task frequency and performance feedback and related this activity to disease parameters. Across all participants, stress increased heart rate, perceived stress, and neural activity in the visual, cerebellar and insular cortex areas compared with a resting condition. None of these responses was related to cognitive load (task frequency). Consistently, although performance and cognitive load were lower in patients than in controls, stress responses did not differ between groups. Insula activity elevated during stress compared with rest was negatively linked to impairment of pyramidal and cerebral functions in patients. Cerebellar activation was related negatively to gray matter (GM) atrophy (i.e., positively to GM volume) in patients. Interestingly, this link was also observed in overlapping areas in controls. Cognitive load did not contribute to these associations. The results show that our task induced psychological stress independent of cognitive load. Moreover, stress-induced brain activity reflects clinical disability in MS. Finally, the link between stress-induced activity and GM volume in patients and controls in overlapping areas suggests that this link cannot be caused by the disease alone.

  16. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  17. Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress.

    PubMed

    Chhillar, Ritu; Dhingra, Dinesh

    2013-08-01

    This study was designed to evaluate antidepressant-like activity of gallic acid in Swiss young male albino mice subjected to unpredictable chronic mild stress and to explore the possible underlying mechanisms for this activity. Gallic acid (5, 10, 20 mg/kg, i.p.) and fluoxetine (10 mg/kg, i.p.) per se were administered daily to unstressed mice and other groups of mice subjected to unpredictable mild stress, 30 min after the injection for 21 successive days. The antidepressant-like activity was evaluated using forced swim test (FST) and sucrose preference test. Stress significantly increased immobility period of mice in FST. Gallic acid (10 and 20 mg/kg, i.p.) and fluoxetine significantly decreased immobility period of unstressed and stressed mice in FST and prevented the stress-induced decrease in sucrose preference, indicating significant antidepressant-like activity. There was no significant effect on locomotor activity of the mice by the drugs. Gallic acid (10 and 20 mg/kg, i.p.) significantly decreased Monoamine oxidase-A (MAO-A) activity, malondialdehyde levels, and catalase activity in unstressed mice; and significantly prevented the stress-induced decrease in reduced glutathione and catalase activity; and also significantly prevented stress-induced increase in MAO-A activity, malondialdehyde levels, plasma nitrite, and corticosterone levels. Thus, gallic acid showed antidepressant-like activity in unstressed and stressed mice probably due to its antioxidant activity and through inhibition of MAO-A activity and decrease in plasma nitrite levels. In addition, gallic acid also showed antidepressant-like activity in stressed mice probably through decrease in plasma corticosterone levels.

  18. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, T. R.; Weber, R. C.; Collins, G. C.; Johnson, C. L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and thrust faults consistent with lobate scarp orientations. Stresses due to orbital recession do not change with orbital position, thus it is with the addition of diurnal stresses that peak stresses are reached. At apogee, diurnal and recession stresses are most compressive near the tidal axis, while at perigee they are most compressive 90 degrees away from the tidal axis. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we show the results of relocating the shallow moonquake using an algorithm designed for sparse networks to better constrain their epicentral locations in order to compare them with stress models. The model for the current stress state of the Moon is refined by investigating the

  19. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    PubMed Central

    Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook

    2016-01-01

    Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg) were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds. PMID:26732454

  20. Children's coping after psychological stress. Choices among food, physical activity, and television.

    PubMed

    Balantekin, Katherine N; Roemmich, James N

    2012-10-01

    Children's stress-coping behaviors and their determinants have not been widely studied. Some children eat more after stress and dietary restraint moderates stress eating in youth, but eating has been studied in isolation of other coping behaviors. Children may not choose to eat when stressed if other behavioral alternatives are available. The purpose was to determine individual difference factors that moderate the duration of stress coping choices and to determine if stress-induced eating in youth persists when other stress coping behaviors are available. Thirty children (8-12 years) completed a speech stressor on one day and read magazines on another day. They completed a free-choice period with access to food, TV, and physical activity on both days. Dietary restraint moderated changes in time spent eating and energy consumed from the control to stress day. Children high in restraint increased their energy intake on the stress day. Changes in the time spent watching TV were moderated by usual TV time, as children higher in usual TV increased their TV time after stress. Thus, dietary restrained children eat more when stressed when other common stress coping behaviors are freely available. These results extend the external validity of laboratory studies of stress-induced eating.

  1. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Gregg, Leslie L.; Marino, Anne E.; Hayes, Jennifer C.; Jacobs, Stephen D.

    2004-01-01

    Aluminum oxynitride (ALON) is a polycrystalline material that has proven difficult to polish due to its grain structure. Bound abrasives are an effective means for polishing ALON, and work is being done with them to obtain good surfaces, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices were created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load were studied. Metrology procedures were developed to monitor different aspects of the grain structure and numerically evaluate grain boundary decoration. Strategies were developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  2. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Marino, Anne E.; Hayes, Jennifer; Gregg, Leslie L.; Jacobs, Stephen D.

    2003-05-01

    Aluminum oxynitride (ALON) is a material with desirable qualities for a variety of applications that has proven difficult to polish because of its grain structure. Bound abrasives may prove to be an effective means of polishing it, and work is being done with them to obtain good surfaces on ALON, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices have been created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load are being studied. Metrology procedures are being developed to monitor different aspects of the grain structure and numerically evaluate its decoration. Strategies have been developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  3. Large-scale Advanced Prop-fan (LAP) technology assessment report

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.

  4. Measurements of fuselage skin strains and displacements near a longitudinal lap joint in a pressurized aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.; Britt, Vicki O.

    1991-01-01

    Strains and displacements in a small area near a longitudinal lap joint in the fuselage skin of a B737 aircraft were measured during a pressurization cycle to a differential pressure of 6.2 psi while the aircraft was on the ground. It was found that hoop strains were higher than longitudinal strains at each location; membrane strains in the unreinforced skin were higher than in the joint; membrane strains in the hoop direction, as well as radial displacements, tended to be highest at the mid-bay location between skin reinforcements; significant bending in the hoop direction occurred in the joint and in the skin near the joint, and the bending was unsymmetrically distributed about the stringer at the middle of the joint; and radial displacements were unsymmetrically distributed across the lap joint. The interpretation of the strain gage data for locations on the bonded and riveted lap joint assumed that the joint did not contain disbonded areas.

  5. Investigation of Stress Intensity Factor for Overloaded Holes and Cold-Expanded Holes

    DTIC Science & Technology

    2012-07-01

    analysis of repairs to fuselage skin lap-joints, wing planks and bulkhead frames. More recently he has been involved with structural and mechanical...overload stress max  peak residual hoop stress at hole boundary R radial stress at cold-worked hole T tangential stress at cold-worked hole vm

  6. Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes.

    PubMed

    Zeng, Ye; Liu, Jingxia

    2016-11-01

    Blood flow patterns in proatherogenic and antiatherogenic regions are rather different. We hypothesize that the laminar flow with steady shear stress increased nitric oxide (NO) bioavailability while disturbed flow with low shear stress reduced it, which is mediating by glypican-1. Thus, we detected the expression of glypican-1 under different shear stress magnitudes, and tested whether the magnitude of shear stress determines the level of endothelial NO synthase (eNOS) via glypican-1 by using phosphatidylinositol phospholipase C (PI-PLC). Results revealed that the expression of glypican-1 depends on the magnitude and duration of shear stress loading. Activation of eNOS in HUVECs is downregulated by 4dyn/cm(2) of shear stress, but is upregulated by 15dyn/cm(2). Removal of glypican-1 significantly suppressed the 15dyn/cm(2) shear stress-induced eNOS activity, and further reduced the 4dyn/cm(2)-inhibited eNOS activity. Therefore, eNOS activation depends on shear stress magnitudes and is mediated by glypican-1. The role of glypican-1 in mediating the eNOS activation under shear stress might involve in protecting the endothelial function against disturbed flow and enhancing the sensitive of the endothelial cell to laminar flow, supporting a potential role of glypican-1 against atherosclerosis.

  7. Plastid Osmotic Stress Activates Cellular Stress Responses in Arabidopsis1[C][W][OPEN

    PubMed Central

    Wilson, Margaret E.; Basu, Meera R.; Bhaskara, Govinal Badiger; Verslues, Paul E.; Haswell, Elizabeth S.

    2014-01-01

    Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like2 (MSL2) and MSL3 contain leaf epidermal plastids under hypoosmotic stress, even during normal growth and development. Here, we use the msl2 msl3 mutant as a model to investigate the cellular response to constitutive plastid osmotic stress. Under unstressed conditions, msl2 msl3 seedlings exhibited several hallmarks of drought or environmental osmotic stress, including solute accumulation, elevated levels of the compatible osmolyte proline (Pro), and accumulation of the stress hormone abscisic acid (ABA). Furthermore, msl2 msl3 mutants expressed Pro and ABA metabolism genes in a pattern normally seen under drought or osmotic stress. Pro accumulation in the msl2 msl3 mutant was suppressed by conditions that reduce plastid osmotic stress or inhibition of ABA biosynthesis. Finally, treatment of unstressed msl2 msl3 plants with exogenous ABA elicited a much greater Pro accumulation response than in the wild type, similar to that observed in plants under drought or osmotic stress. These results suggest that osmotic imbalance across the plastid envelope can elicit a response similar to that elicited by osmotic imbalance across the plasma membrane and provide evidence for the integration of the osmotic state of an organelle into that of the cell in which it resides. PMID:24676856

  8. CrossLaps and beta-glucuronidase in peri-implant and gingival crevicular fluid.

    PubMed

    Schubert, U; Kleber, B M; Strietzel, F P; Dörfling, P

    2001-01-01

    Collagen degradation products of the carboxyterminal region possibly reflect bone and attachment loss. In the present study, the Serum CrossLaps One-Step enzyme-linked immunosorbent assay was used to determine a specific part of the carboxyterminal region of type I collagen, the CrossLaps. Samples of peri-implant and gingival crevicular fluid of 111 implants and 53 teeth from 47 partially or completely edentulous patients were examined in reference to levels of CrossLaps and beta-glucuronidase (beta G), an established marker of periodontal disease. Clinical probing pocket depth (PPD), bleeding on probing (BOP), plaque accumulation, mobility, radiographic bone loss, and the occurrence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia were assessed. The mean values were: for PPD at implants 3.76 +/- 1.41 mm, at teeth 3.44 +/- 0.88 mm; for beta G at implants 0.364 +/- 0.392 pU/min, at teeth 0.314 +/- 0.209 pU/min; for CrossLaps at implants 0.069 +/- 0.059 pmol/min, at teeth 0.082 +/- 0.053 pmol/min. Bleeding on probing was significantly higher on implants than on teeth (McNemar test, P = .004). No significant difference of beta G levels was found between teeth and implants (Wilcoxon test). A negative correlation was found between beta G levels and CrossLaps levels at teeth (Pearson-rank correlation, P = .002). On implants, no significant correlation of these 2 parameters was seen, but significant correlations were found between sulcus fluid flow rate and PPD (P = .012), beta G levels and bone loss (P < 0.0005), and CrossLaps levels and PPD (P = .011). CrossLaps can be detected in both gingival and peri-implant crevicular fluid. While rising levels of beta G may indicate acute peri-implantitis, CrossLaps may not, but could play a role as a marker of ongoing attachment loss.

  9. The Growth of Multi-Site Fatigue Damage in Fuselage Lap Joints

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1999-01-01

    Destructive examinations were performed to document the progression of multi-site damage (MSD) in three lap joint panels that were removed from a full scale fuselage test article that was tested to 60,000 full pressurization cycles. Similar fatigue crack growth characteristics were observed for small cracks (50 microns to 10 mm) emanating from counter bore rivets, straight shank rivets, and 100 deg counter sink rivets. Good correlation of the fatigue crack growth data base obtained in this study and FASTRAN Code predictions show that the growth of MSD in the fuselage lap joint structure can be predicted by fracture mechanics based methods.

  10. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women.

  11. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  12. ER Stress-induced Inflammasome Activation Contributes to Hepatic Inflammation and Steatosis

    PubMed Central

    Zhang, Jinyu; Zhang, Kezhong; Li, Zihai; Guo, Beichu

    2016-01-01

    Endoplasmic reticulum (ER) stress functions as a protein folding and quality control mechanism to maintain cell homeostasis. Emerging evidence indicates that ER stress is also involved in metabolic and inflammatory diseases. However, the link between ER stress and inflammation remains not well characterized. In this study, we have demonstrated that ER stress-induced inflammasome activation plays a critical role in the pathogenesis of hepatic steatosis. By utilizing genetic and pharmacological agent-induced hepatic steatosis animal models, we found that hepatic steatosis was associated with inflammasome activation and ER stress. Our results show that caspase-1 ablation alleviated liver inflammation and injury. Liver tissues from caspase-1 KO mice had significantly reduced production of IL-1β under ER stress conditions. We also found that ER stress promoted inflammasome activation and IL-1β processing in both hepatocytes and Kupffer cells/macrophages. Moreover, lack of caspase-1 ameliorated cell death or pyropoptosis of hepatocytes induced by ER stress. Taken together, our findings suggest that ER stress-induced inflammasome activation and IL-1β production generate a positive feedback loop to amplify inflammatory response, eventually leading to liver steatosis and injury. PMID:27942420

  13. Parenting Stress After Deployment in Navy Active Duty Fathers.

    PubMed

    Yablonsky, Abigail M; Yan, Guofen; Bullock, Linda

    2016-08-01

    Military fathers are being deployed, and leaving their families, for greater lengths of time and more frequently than ever before. The purpose of this study was to examine the impact of recent deployment on parenting stress in U.S. Navy fathers with young children. Of the 111 participants who completed the one-time study questionnaire at a large military outpatient clinic on the Eastern seaboard, 67.6% had returned from a ship-based deployment. Regression analyses were performed, using the Parenting Stress Index as the outcome variable, deployment elements (such as time away from home in the past 5 years) as predictors, and adjusting for other factors such as post-traumatic stress disorder (PTSD) and depression. Higher perceived threat and greater warfare exposure were both associated with increased parenting stress (p < 0.05) in the unadjusted model. These associations were greatly attenuated and no longer significant after adjustment for depression. In addition, rates of positive screens for PTSD and depression (17.1%) in this sample were higher than in other recent studies. In summary, these data indicate that various deployment factors are associated with increased parenting stress in Navy fathers back from deployment within the past year; these relationships are largely explained by depressive symptoms. Clinical implications are discussed.

  14. Stress

    MedlinePlus

    ... flu shot, are less effective for them. Some people cope with stress more effectively than others. It's important to know your limits when it comes to stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  15. Crystal Structure and Functional Analysis of the Extradiol Dioxygenase LapB from a Long-chain Alkylphenol Degradation Pathway in Pseudomonas*

    PubMed Central

    Cho, Jang-Hee; Jung, Du-Kyo; Lee, Kyoung; Rhee, Sangkee

    2009-01-01

    LapB is a non-heme Fe(II)-dependent 2,3-dioxygenase that catalyzes the second step of a long-chain alkylphenol (lap) degradation pathway in Pseudomonas sp. KL28 and belongs to the superfamily of type I extradiol dioxygenases. In this study, the crystal structures of substrate-free LapB and its complexes with a substrate or product were determined, along with a functional analysis of the active site residues. Structural features of the homotetramer are similar to those of other type I extradiol dioxygenases. In particular, the active site is located in the C-domain of each monomer, with a 2-His-1-carboxylate motif as the first coordination shell to iron ion. A comparison of three different structures in the catalytic cycle indicated catalysis-related local conformational changes in the active site. Specifically, the active site loop containing His-248 exhibits positional changes upon binding of the substrate and establishes a hydrogen-bonding network with Tyr-257, which is near the hydroxyl group of the substrate. Kinetic analysis of the mutant enzymes H248A, H248N, and Y257F showed that these three mutant enzymes are inactive, suggesting that this hydrogen-bonding network plays a crucial role in catalysis by deprotonating the incoming substrate and leaving it in a monoanionic state. Additional functional analysis of His-201, by using H201A and H201N mutants, near the dioxygen-binding site also supports its role as base and acid catalyst in the late stage of catalysis. We also noticed a disordered-to-ordered structural transition in the C-terminal region, resulting in the opening or closing of the active site. These results provide detailed insights into the structural and functional features of an extradiol dioxygenase that can accommodate a wide range of alkylcatechols. PMID:19828456

  16. Microrheology, Stress Fluctuations, and Active Behavior of Living Cells

    NASA Astrophysics Data System (ADS)

    Lau, A. W.; Hoffman, B. D.; Davies, A.; Crocker, J. C.; Lubensky, T. C.

    2003-11-01

    We report the first measurements of the intrinsic strain fluctuations of living cells using a recently developed tracer correlation technique along with a theoretical framework for interpreting such data in heterogeneous media with nonthermal driving. The fluctuations' spatial and temporal correlations indicate that the cytoskeleton can be treated as a course-grained continuum with power-law rheology, driven by a spatially random stress tensor field. Combined with recent cell rheology results, our data imply that intracellular stress fluctuations have a nearly 1/ω2 power spectrum, as expected for a continuum with a slowly evolving internal prestress.

  17. Spectral characteristics of skin sympathetic nerve activity in heat-stressed humans.

    PubMed

    Cui, Jian; Sathishkumar, Mithra; Wilson, Thad E; Shibasaki, Manabu; Davis, Scott L; Crandall, Craig G

    2006-04-01

    Skin sympathetic nerve activity (SSNA) exhibits low- and high-frequency spectral components in normothermic subjects. However, spectral characteristics of SSNA in heat-stressed subjects are unknown. Because the main components of the integrated SSNA during heat stress (sudomotor/vasodilator activities) are different from those during normothermia and cooling (vasoconstrictor activity), we hypothesize that spectral characteristics of SSNA in heat-stressed subjects will be different from those in subjects subjected to normothermia or cooling. In 17 healthy subjects, SSNA, electrocardiogram, arterial blood pressure (via Finapres), respiratory activity, and skin blood flow were recorded during normothermia and heat stress. In 7 of the 17 subjects, these variables were also recorded during cooling. Spectral characteristics of integrated SSNA, R-R interval, beat-by-beat mean blood pressure, skin blood flow variability, and respiratory excursions were assessed. Heat stress and cooling significantly increased total SSNA. SSNA spectral power in the low-frequency (0.03-0.15 Hz), high-frequency (0.15-0.45 Hz), and very-high-frequency (0.45-2.5 Hz) regions was significantly elevated by heat stress and cooling. Interestingly, heat stress caused a greater relative increase of SSNA spectral power within the 0.45- to 2.5-Hz region than in the other spectral ranges; cooling did not show this effect. Differences in the SSNA spectral distribution between normothermia/cooling and heat stress may reflect different characteristics of central modulation of vasoconstrictor and sudomotor/vasodilator activities.

  18. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli.

    PubMed

    Oei, Nicole Y L; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PET studies indicate that the stress hormone cortisol may be crucial in the interaction between stress and dopaminergic actions. In the present study we therefore investigated whether cortisol mediated the effect of stress on DA-related responses to -subliminal-presentation of reward cues using the Trier Social Stress Test (TSST), which is known to reliably enhance cortisol levels. Young healthy males (n = 37) were randomly assigned to the TSST or control condition. After stress induction, brain activation was assessed using fMRI during a backward-masking paradigm in which potentially rewarding (sexual), emotionally negative and neutral stimuli were presented subliminally, masked by pictures of inanimate objects. A region of interest analysis showed that stress decreased activation in the NAcc in response to masked sexual cues (voxel-corrected, p<05). Furthermore, with mediation analysis it was found that high cortisol levels were related to stronger NAcc activation, showing that cortisol acted as a suppressor variable in the negative relation between stress and NAcc activation. The present findings indicate that cortisol is crucially involved in the relation between stress and the responsiveness of the reward system. Although generally stress decreases activation in the NAcc in response to rewarding stimuli, high stress-induced cortisol levels suppress this relation, and are associated with stronger NAcc activation. Individuals with a high cortisol response to stress might on one hand be protected against reductions in reward sensitivity, which has been linked to anhedonia and depression, but

  19. In Situ Ratiometric Quantitative Tracing of Intracellular Leucine Aminopeptidase Activity via an Activatable Near-Infrared Fluorescent Probe.

    PubMed

    Gu, Kaizhi; Liu, Yajing; Guo, Zhiqian; Lian, Cheng; Yan, Chenxu; Shi, Ping; Tian, He; Zhu, Wei-Hong

    2016-10-03

    Leucine aminopeptidase (LAP), one of the important proteolytic enzymes, is intertwined with the progress of many pathological disorders as a well-defined biomarker. To explore fluorescent aminopeptidase probe for quantitative detection of LAP distribution and dynamic changes, herein we report a LAP-targeting near-infrared (NIR) fluorescent probe (DCM-Leu) for ratiometric quantitative trapping of LAP activity in different kinds of living cells. DCM-Leu is composed of a NIR-emitting fluorophore (DCM) as a reporter and l-leucine as a triggered moiety, which are linked together by an amide bond specific for LAP cleavage. High contrast on the ratiometric NIR fluorescence signal can be achieved in response to LAP activity, thus enabling quantification of endogenous LAP with "build-in calibration" as well as minimal background interference. Its ratiometric NIR signal can be blocked in a dose-dependent manner by bestatin, an LAP inhibitor, indicating that the alteration of endogenous LAP activity results in these obviously fluorescent signal responses. It is worth noting that DCM-Leu features striking characteristics such as a large Stokes shift (∼205 nm), superior selectivity, and strong photostability responding to LAP. Impressively, not only did we successfully exemplify DCM-Leu in situ ratiometric trapping and quantification of endogenous LAP activity in various types of living cells, but also, with the aid of three-dimensional confocal imaging, the intracellular LAP distribution is clearly observed from different perspectives for the first time, owing to the high signal-to-noise of ratiometric NIR fluorescent response. Collectively, these results demonstrate preclinical potential value of DCM-Leu serving as a useful NIR fluorescent probe for early detection of LAP-associated disease and screening inhibitor.

  20. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress.

    PubMed

    Méndez-Cuesta, Luis A; Márquez-Valadez, Berenice; Pérez-De La Cruz, Verónica; Escobar-Briones, Carolina; Galván-Arzate, Sonia; Alvarez-Ruiz, Yarummy; Maldonado, Perla D; Santana, Ricardo A; Santamaría, Abel; Carrillo-Mora, Paul

    2011-11-01

    In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress.

  1. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases.

    PubMed

    Calcagni, Emanuele; Elenkov, Ilia

    2006-06-01

    Associations between stress and health outcomes have now been carefully documented, but the mechanisms by which stress specifically influences disease susceptibility and outcome remain poorly understood. Recent evidence indicates that glucocorticoids (GCs) and catecholamines (CAs), the major stress hormones, inhibit systemically IL-12, TNF-alpha, and INF-gamma, but upregulate IL-10, IL-4, and TGF-beta production. Thus, during an immune and inflammatory response, the activation of the stress system, through induction of a Th2 shift may protect the organism from systemic "overshooting" with T helper lymphocyte 1 (Th1)/proinflammatory cytokines. In certain local responses and under certain conditions, however, stress hormones may actually facilitate inflammation, through induction of IL-1, IL-6, IL-8, IL-18, TNF-alpha, and CRP production, and through activation of the corticotropin-releasing hormone (CRH)/substance P(SP)-histamine axis. Autoimmunity, chronic infections, major depression, and atherosclerosis are characterized by a dysregulation of the pro/anti-inflammatory and Th1/Th2 cytokine balance. Thus, hyperactive or hypoactive stress system, and a dysfunctional neuroendocrine-immune interface associated with abnormalities of the "systemic anti-inflammatory feedback" and/or "hyperactivity" of the local proinflammatory factors may contribute to the pathogenesis of these diseases. Conditions that are associated with significant changes in stress system activity, such as acute or chronic stress, cessation of chronic stress, pregnancy and the postpartum period, or rheumatoid arthritis (RA) through modulation of the systemic or local pro/anti-inflammatory and Th1/Th2 cytokine balance, may suppress or potentiate disease activity and/or progression. Thus, stress hormones-induced inhibition or upregulation of innate and Th cytokine production may represent an important mechanism by which stress affects disease susceptibility, activity, and outcome of various immune

  2. Increased oxidative stress in pemphigus vulgaris is related to disease activity and HLA-association.

    PubMed

    Shah, Amit Aakash; Dey-Rao, Rama; Seiffert-Sinha, Kristina; Sinha, Animesh A

    2016-06-01

    Pemphigus vulgaris (PV) is a rare blistering skin disorder characterized by the disadhesion of keratinocytes due to autoantibody attack against epidermal targets including desmoglein (Dsg) 3, Dsg 1 and possibly other adhesion and non-adhesion molecules. The mechanisms leading to immune-mediated pathology in PV are multifactorial and not fully understood. Recently, oxidative stress (antioxidant/oxidant disequilibrium) has been proposed as a contributory mechanism of autoimmune skin diseases, including PV. In this study, we directly assessed oxidative stress via measurement of total antioxidant capacity (TAC) using ELISA in 47 PV patients, 25 healthy controls and 18 bullous pemphigoid (BP) patients. We also performed microarray gene expression analysis on a separate set of 21 PV patients and 10 healthy controls to evaluate transcriptional dysregulation in oxidative stress-related pathways. Our data indicate that there is a significant reduction in TAC levels in PV patients compared with healthy controls, as well as BP patients. Furthermore, PV patients with active disease have significantly lower TAC levels than PV patients in remission. We also find that HLA allele status has a significant influence on oxidative stress. These findings are corroborated by microarray analysis showing differentially expressed genes involved in oxidative stress between the aforementioned groups. Collectively, our findings provide support for a role of oxidative stress in PV. Whether increased oxidative stress leads to disease manifestation and/or activity, or if disease activity leads to increased oxidative stress remains unknown. Future longitudinal studies may help to further elucidate the relationship between PV and oxidative stress.

  3. Mechanisms of Discoordination of Contractile Activity in the Gastroduodenal Zone during Psychogenic Stress in Rabbits.

    PubMed

    Ovsyannikov, V I; Berezina, T P; Shemerovskii, K A

    2015-08-01

    Inhibition of the contractile activity of the stomach induced by psychogenic stress persisted after blockade of muscarinic and nicotinic cholinergic receptors and α2 and β1/β2-adrenergic receptors. Stress-induced increase in contractile activity in the proximal part of the duodenum persisted during blockade of muscarinic and nicotinic cholinergic receptors, β1/β2-adrenergic receptors. At the same time, blockade of the above cholinergic and adrenergic receptors eliminated the stress-induced increase in contractive activity in the distal part of the duodenum.

  4. Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis.

    PubMed

    Lumley, Emily C; Osborn, Acadia R; Scott, Jessica E; Scholl, Amanda G; Mercado, Vicki; McMahan, Young T; Coffman, Zachary G; Brewster, Jay L

    2017-01-01

    The endoplasmic reticulum (ER) has the ability to signal organelle dysfunction via a complex signaling network known as the unfolded protein response (UPR). In this work, hamster fibroblast cells exhibiting moderate levels of ER stress were compared to those exhibiting severe ER stress. Inhibition of N-linked glycosylation was accomplished via a temperature-sensitive mutation in the Dad1 subunit of the oligosaccharyltransferase (OST) complex or by direct inhibition with tunicamycin (Tm). Temperature shift (TS) treatment generated weak activation of ER stress signaling when compared to doses of Tm that are typically used in ER stress studies (500-1000 nM). A dose-response analysis of key ER stress signaling mediators, inositol-requiring enzyme 1 (IRE1) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), revealed 20-40 nM of Tm to generate activation intensity similar to TS treatment. In parental BHK21 cells, moderate (20-40 nM) and high doses (200-1000 nM) of Tm were compared to identify physiological and signaling-based differences in stress response. Inhibition of ER Ca(2+) release via ITPR activity with 2-aminoethoxydiphenyl borate (2-APB) or Xestospongin C (XeC) was sufficient to protect against apoptosis induced by moderate but not higher doses of Tm. Analysis of kinase activation over a range of Tm exposures revealed the p38 stress-activated protein kinase (SAPK) to display increasing activation with Tm dosage. Interestingly, Tm induced the extracellular regulated kinases (Erk1/2) only at moderate doses of Tm. Inhibition of ER transmembrane stress sensors (IRE1, PERK) or cytosolic signaling mediators (p38, Jnk1, Erk1/2) was used to evaluate pathways involved in apoptosis activation during ER stress. Inhibition of either PERK or p38 was sufficient to reduce cell death and apoptosis induced by moderate, but not high, doses of Tm. During ER stress, cells exhibited a rapid decline in anti-apoptotic Mcl-1 and survivin proteins. Inhibition of

  5. Multi-layered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

    PubMed

    Manzanares-Estreder, Sara; Espí-Bardisa, Joan; Alarcón, Benito; Pascual-Ahuir, Amparo; Proft, Markus

    2017-03-21

    Peroxisomes are dynamic organelles and the sole location for fatty acid β-oxidation in yeast cells. Here we report that peroxisomal function is crucial for the adaptation to salt stress, especially upon sugar limitation. Upon stress, multiple layers of control regulate the activity and the number of peroxisomes. Activated Hog1 MAP kinase triggers the induction of genes encoding enzymes for fatty acid activation, peroxisomal import and β-oxidation through the Adr1 transcriptional activator, which transiently associates with genes encoding fatty acid metabolic enzymes in a stress- and Hog1-dependent manner. Moreover, Na(+) and Li(+) stress increases the number of peroxisomes per cell in a Hog1-independent manner, which depends instead of the retrograde pathway and the dynamin related GTPases Dnm1 and Vps1. The strong activation of the Faa1 fatty acyl-CoA synthetase, which specifically localizes to lipid particles and peroxisomes, indicates that adaptation to salt stress requires the enhanced mobilization of fatty acids from internal lipid stores. Furthermore, the activation of mitochondrial respiration during stress depends on peroxisomes, mitochondrial acetyl-carnitine uptake is essential for salt resistance, and the number of peroxisomes attached to the mitochondrial network increases during salt adaptation, which altogether indicates that stress-induced peroxisomal β-oxidation triggers enhanced respiration upon salt shock. This article is protected by copyright. All rights reserved.

  6. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage and turf grasses are utilized in diverse environments which exposes them to a variety of abiotic stresses, however very little is known concerning the perception or molecular responses to these various stresses. In the model grass species Lolium temulentum (Lt), a 46 kDa mitogen-activated pro...

  7. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  8. Induced resistance in tomato by SAR activators during predisposing salinity stress.

    PubMed

    Pye, Matthew F; Hakuno, Fumiaki; Macdonald, James D; Bostock, Richard M

    2013-01-01

    Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA) is a crucial signal for systemic acquired resistance (SAR), and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester, BTH) and Tiadinil [N-(3-chloro-4-methylphenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL]. BTH and TDL were examined for their impact on abscisic acid (ABA)-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst) and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in wild-type and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by Phytophthora capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  9. Induced resistance in tomato by SAR activators during predisposing salinity stress

    PubMed Central

    Pye, Matthew F.; Hakuno, Fumiaki; MacDonald, James D.; Bostock, Richard M.

    2013-01-01

    Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA) is a crucial signal for systemic acquired resistance (SAR), and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester, BTH) and Tiadinil [N-(3-chloro-4-methylphenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL]. BTH and TDL were examined for their impact on abscisic acid (ABA)-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst) and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in wild-type and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by Phytophthora capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA. PMID:23653630

  10. Stress shifts brain activation towards ventral 'affective' areas during emotional distraction.

    PubMed

    Oei, Nicole Y L; Veer, Ilya M; Wolf, Oliver T; Spinhoven, Philip; Rombouts, Serge A R B; Elzinga, Bernet M

    2012-04-01

    Acute stress has been shown to impair working memory (WM), and to decrease prefrontal activation during WM in healthy humans. Stress also enhances amygdala responses towards emotional stimuli. Stress might thus be specifically detrimental to WM when one is distracted by emotional stimuli. Usually, emotional stimuli presented as distracters in a WM task slow down performance, while evoking more activation in ventral 'affective' brain areas, and a relative deactivation in dorsal 'executive' areas. We hypothesized that after acute social stress, this reciprocal dorsal-ventral pattern would be shifted towards greater increase of ventral 'affective' activation during emotional distraction, while impairing WM performance. To investigate this, 34 healthy men, randomly assigned to a social stress or control condition, performed a Sternberg WM task with emotional and neutral distracters inside an MRI scanner. Results showed that WM performance after stress tended to be slower during emotional distraction. Brain activations during emotional distraction was enhanced in ventral affective areas, while dorsal executive areas tended to show less deactivation after stress. These results suggest that acute stress shifts priority towards processing of emotionally significant stimuli, at the cost of WM performance.

  11. Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway

    PubMed Central

    Buck, Vicky; Quinn, Janet; Pino, Teresa Soto; Martin, Humberto; Saldanha, Jose; Makino, Kozo; Morgan, Brian A.; Millar, Jonathan B.A.

    2001-01-01

    The Schizosaccharomyces pombe stress-activated Sty1p/Spc1p mitogen-activated protein (MAP) kinase regulates gene expression through the Atf1p and Pap1p transcription factors, homologs of human ATF2 and c-Jun, respectively. Mcs4p, a response regulator protein, acts upstream of Sty1p by binding the Wak1p/Wis4p MAP kinase kinase kinase. We show that phosphorylation of Mcs4p on a conserved aspartic acid residue is required for activation of Sty1p only in response to peroxide stress. Mcs4p acts in a conserved phospho-relay system initiated by two PAS/PAC domain-containing histidine kinases, Mak2p and Mak3p. In the absence of Mak2p or Mak3p, Sty1p fails to phosphorylate the Atf1p transcription factor or induce Atf1p-dependent gene expression. As a consequence, cells lacking Mak2p and Mak3p are sensitive to peroxide attack in the absence of Prr1p, a distinct response regulator protein that functions in association with Pap1p. The Mak1p histidine kinase, which also contains PAS/PAC repeats, does not regulate Sty1p or Atf1p but is partially required for Pap1p- and Prr1p-dependent transcription. We conclude that the transcriptional response to free radical attack is initiated by at least two distinct phospho-relay pathways in fission yeast. PMID:11179424

  12. Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap

    SciTech Connect

    Kempson, Ivan M.; Henry, Dermot A.

    2010-08-26

    Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

  13. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  14. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap.

    PubMed

    Mortazavi, S A R; Taeb, S; Mortazavi, S M J; Zarei, S; Haghani, M; Habibzadeh, P; Shojaei-Fard, M B

    2016-12-01

    As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI). Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men's scrotums, the electromagnetic fields generated by laptop's internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop) may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours.

  15. The Early Learning Accomplishment Profile (Early LAP) Examiner's Manual and Reliability and Validity Technical Report.

    ERIC Educational Resources Information Center

    Hardin, Belinda J.; Peisner-Feinberg, Ellen S.

    The Early Learning Accomplishment Profile (Early LAP) provides a systematic method for observing children's functioning in the birth to 36-month age range in order to assist teachers, clinicians, and parents in assessing individual skills development in six developmental domains: gross motor, fine motor, cognition, language, self-help, and social…

  16. The impact of layer thickness on the performance of additively manufactured lapping tools

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2015-10-01

    Lower cost additive manufacturing (AM) machines which have emerged in recent years are capable of producing tools, jigs, and fixtures that are useful in optical fabrication. In particular, AM tooling has been shown to be useful in lapping glass workpieces. Various AM machines are distinguished by the processes, materials, build times, and build resolution they provide. This research investigates the impact of varied build resolution (specifically layer resolution) on the lapping performance of tools built using the stereolithographic assembly (SLA) process in 50 μm and 100 μm layer thicknesses with a methacrylate photopolymer resin on a high resolution desktop printer. As with previous work, the lapping tools were shown to remove workpiece material during the lapping process, but the tools themselves also experienced significant wear on the order of 2-3 times the mass loss of the glass workpieces. The tool wear rates for the 100 μm and 50 μm layer tools were comparable, but the 50 μm layer tool was 74% more effective at removing material from the glass workpiece, which is attributed to some abrasive particles being trapped in the coarser surface of the 100 um layer tooling and not being available to interact with the glass workpiece. Considering the tool wear, these additively manufactured tools are most appropriate for prototype tooling where the low cost (<$45) and quick turnaround make them attractive when compared to a machined tool.

  17. iLAP: a workflow-driven software for experimental protocol development, data acquisition and analysis

    PubMed Central

    2009-01-01

    Background In recent years, the genome biology community has expended considerable effort to confront the challenges of managing heterogeneous data in a structured and organized way and developed laboratory information management systems (LIMS) for both raw and processed data. On the other hand, electronic notebooks were developed to record and manage scientific data, and facilitate data-sharing. Software which enables both, management of large datasets and digital recording of laboratory procedures would serve a real need in laboratories using medium and high-throughput techniques. Results We have developed iLAP (Laboratory data management, Analysis, and Protocol development), a workflow-driven information management system specifically designed to create and manage experimental protocols, and to analyze and share laboratory data. The system combines experimental protocol development, wizard-based data acquisition, and high-throughput data analysis into a single, integrated system. We demonstrate the power and the flexibility of the platform using a microscopy case study based on a combinatorial multiple fluorescence in situ hybridization (m-FISH) protocol and 3D-image reconstruction. iLAP is freely available under the open source license AGPL from http://genome.tugraz.at/iLAP/. Conclusion iLAP is a flexible and versatile information management system, which has the potential to close the gap between electronic notebooks and LIMS and can therefore be of great value for a broad scientific community. PMID:19941647

  18. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria.

    PubMed

    Chojnowski, Alexandre; Ong, Peh Fern; Wong, Esther S M; Lim, John S Y; Mutalif, Rafidah A; Navasankari, Raju; Dutta, Bamaprasad; Yang, Henry; Liow, Yi Y; Sze, Siu K; Boudier, Thomas; Wright, Graham D; Colman, Alan; Burke, Brian; Stewart, Colin L; Dreesen, Oliver

    2015-08-27

    Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization.

  19. The Effectiveness of Lap-Dissolving Projections for Visualizing in Three Dimensions.

    ERIC Educational Resources Information Center

    Wood, James K.

    1983-01-01

    A study investigated the effectiveness of stereochemistry lap-dissolve projection as an aid to students in developing three-dimensional imaging and whether certain visual orientation tasks could be correlated with aptitude. Students found the slides helpful, and a modest correlation of achievement and visual skills was found. (MSE)

  20. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap

    PubMed Central

    Mortazavi, S.A.R.; Taeb, S.; Mortazavi, S.M.J.; Zarei, S.; Haghani, M.; Habibzadeh, P.; Shojaei-fard, M.B.

    2016-01-01

    As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI). Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men’s scrotums, the electromagnetic fields generated by laptop’s internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop) may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours. PMID:28144597

  1. Improving Critical Thinking Skills Using Learning Model Logan Avenue Problem Solving (LAPS)-Heuristic

    ERIC Educational Resources Information Center

    Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad

    2016-01-01

    This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…

  2. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria

    PubMed Central

    Chojnowski, Alexandre; Ong, Peh Fern; Wong, Esther SM; Lim, John SY; Mutalif, Rafidah A; Navasankari, Raju; Dutta, Bamaprasad; Yang, Henry; Liow, Yi Y; Sze, Siu K; Boudier, Thomas; Wright, Graham D; Colman, Alan; Burke, Brian; Stewart, Colin L; Dreesen, Oliver

    2015-01-01

    Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization. DOI: http://dx.doi.org/10.7554/eLife.07759.001 PMID:26312502

  3. Contact Problem on the Interaction of Two Lap Plates, Absolutely Rigid in Tension and Flexible in Bending, with a Thin Circular Sector

    NASA Astrophysics Data System (ADS)

    Sargsyan, A. M.

    2017-03-01

    Using the Fourier method, a solution is constructed for the boundary-value problem of elasticity theory for a circular sector whose radial sides are reinforced by two lap plates absolutely rigid in tension and flexible in bending. On the arc part of its contour, external conditions are given. The stress singularity in the vicinity of top of the circular sector and the behavior of coefficients of the singularity are investigated. It is established that stresses in this vicinity have a singularity of the type r -1+ ɛ ( ɛ > 0; ɛ → 0 at α → π or α → 2 π), whose coefficients, in the general case of loading of the arc part of the sector, differ from zero, which is inadmissible from the viewpoint of the mechanics of brittle fracture. However, an appropriate selection of external conditions on the arc part of sector allows one to equate these coefficients to zero.

  4. Monitoring eruption activity from temporal stress changes at Mt. Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Kato, A.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T.

    2015-12-01

    On 27 September 2014, Mt. Ontake in Japan produced a phreatic (steam type) eruption with a Volcanic Explosivity Index value of 2 after being dormant for seven years. The local stress field around volcanoes is the superposition of the regional stress field and stress perturbations related to volcanic activity. Temporal stress changes over periods of weeks to months are generally attributed to volcanic processes. Here we show that monitoring temporal changes in the local stress field beneath Mt. Ontake, using focal mechanism solutions of volcano-tectonic (VT) earthquakes, is an effective tool for assessing the state of volcanic activity. We estimated focal mechanism solutions of 157 VT earthquakes beneath Mt. Ontake from August 2014 to March 2015, assuming that the source was double-couple. Pre-eruption seismicity was dominated by normal faulting with east-west tension, whereas most post-eruption events were reverse faulting with east-west compression. The misfit angle between observed slip vectors and those derived theoretically from the regional (i.e., background) stress pattern is used to evaluate the deviation of the local stress field, or the stress perturbation related to volcanic activity. The moving average of misfit angles tended to exceed 90° before the eruption, and showed a marked decrease immediately after the eruption. This indicates that during the precursory period the local stress field beneath Mt. Ontake was rotated by stress perturbations caused by the inflation of magmatic/hydrothermal fluids. Post-eruption events of reverse faulting acted to shrink the volcanic edifice after expulsion of volcanic ejecta, controlled by the regional stress field. The misfit angle is a good indicator of the state of volcanic activity. The monitoring method by using this indicator is applicable to other volcanoes and may contribute to the mitigation of volcanic hazards.

  5. Effects of Stress on Commensal Microbes and Immune System Activity.

    PubMed

    Gur, Tamar L; Bailey, Michael T

    2016-01-01

    The body harbors a vast array of microbes that are collectively known as the microbiota. Increasing attention is being paid to the role of the gut microbiota in the health of the host. Gut microbial communities are relatively resistant to change, though alterations in homeostasis can also significantly change gut microbial community structure. An important factor that has been demonstrated to alter the composition of the gut microbiota is exposure to psychological stressors. And, evidence indicates that the commensal microbiota are involved in stressor-induced immunomodulation. This chapter will discuss the impact of psychosocial stress on immunity, and present evidence that stressor-induced alterations in the composition of gut microbial communities contributes to stressor-induced immunomodulation and neurobiological sequelae. Finally, the role of the microbiota in the perinatal time period will be explored, and an integrative hypothesis of the role of the microbiome in health and stress response will be proposed.

  6. LAPS Lidar Measurements at the ARM Alaska Northslope Site (Support to FIRE Project)

    NASA Technical Reports Server (NTRS)

    Philbrick, C. Russell; Lysak, Daniel B., Jr.; Petach, Tomas M.; Esposito, Steven T.; Mulik, Karoline R.

    1998-01-01

    This report consists of data summaries of the results obtained during the May 1998 measurement period at Barrow Alaska. This report does not contain any data interpretation or analysis of the results which will follow this activity. This report is forwarded with a data set on magnetic media which contains the reduced data from the LAPS lidar in 15 minute intervals. The data was obtained during the period 15-30 May 1998. The measurement period overlapped with several aircraft flights conducted by NASA as part of the FIRE project. The report contains a summary list of the data obtained plus figures that have been prepared to help visualize the measurement periods. The order of the presentation is as follows: Section 1. A copy of the Statement of Work for the planned activity of the second measurement period at the ARM Northslope site is provided. Section 2. A list of the data collection periods shows the number of one minute data records stored during each hour of operation and the corresponding size (Mbytes) of the one hour data folders. The folder and file names are composed from the year, month, day, hour and minute. The date/time information is given in UTC for easier comparison with other data sets. Section 3. A set of 4 comparisons between the LAPS lidar results and the sondes released by the ARM scientists from a location nearby the lidar. The lidar results show the +/- 1 sigma statistical error on each of the independent 75 m altitude bins of the data. This set of 4 comparisons was used to set and validate the calibration value which was then used for the complete data set. Section 4. A set of false color figures with up to 10 hours of specific humidity measurements are shown in each graph. Two days of measurements are shown on each page. These plots are crude representations of the data and permit a survey which indicates when the clouds were very low or where interesting events may occur in the results. These plots are prepared using the real time sequence

  7. Prefrontal Cortex Activity Is Associated with Biobehavioral Components of the Stress Response

    PubMed Central

    Wheelock, Muriah D.; Harnett, Nathaniel G.; Wood, Kimberly H.; Orem, Tyler R.; Granger, Douglas A.; Mrug, Sylvie; Knight, David C.

    2016-01-01

    Contemporary theory suggests that prefrontal cortex (PFC) function is associated with individual variability in the psychobiology of the stress response. Advancing our understanding of this complex biobehavioral pathway has potential to provide insight into processes that determine individual differences in stress susceptibility. The present study used functional magnetic resonance imaging to examine brain activity during a variation of the Montreal Imaging Stress Task (MIST) in 53 young adults. Salivary cortisol was assessed as an index of the stress response, trait anxiety was assessed as an index of an individual’s disposition toward negative affectivity, and self-reported stress was assessed as an index of an individual’s subjective psychological experience. Heart rate and skin conductance responses were also assessed as additional measures of physiological reactivity. Dorsomedial PFC, dorsolateral PFC, and inferior parietal lobule demonstrated differential activity during the MIST. Further, differences in salivary cortisol reactivity to the MIST were associated with ventromedial PFC and posterior cingulate activity, while trait anxiety and self-reported stress were associated with dorsomedial and ventromedial PFC activity, respectively. These findings underscore that PFC activity regulates behavioral and psychobiological components of the stress response. PMID:27909404

  8. Susceptibility of natural killer cell activity of old rats to stress.

    PubMed Central

    Ghoneum, M; Gill, G; Assanah, P; Stevens, W

    1987-01-01

    We determined an in vivo response of NK cells in young and old rats towards the suppressive effect of stress. Stress was developed by isolating rats in separate cages, but control littermates were kept together. Animals were subjected to stress for 7 days, and alterations of NK cell activities were examined in the spleen, peripheral blood (PB) and bone marrow (BM). The results showed that old rats subjected to stress had a remarkable decrease in splenic and PB-NK activity compared to old control rats, concomitant with a highly increased level of NK cell activity in BM. Suppression of the lytic activity in the spleen of stressed old rats was correlated with a decrease in the percentage of conjugate formation between splenic NK cells and target tumour cells. In contrast, stressed young rats demonstrated relatively unchanged activity of NK cells examined in different tissues compared to age-matched controls. We concluded that old animals are more sensitive to the suppressive effect of stress compared to young ones, and the mechanism of this suppression is probably due to the migration of large granular lymphocytes (LGL) from spleen and PB to other sites such as BM. PMID:3570358

  9. Cyclooxygenase activity contributes to the monoaminergic damage caused by serial exposure to stress and methamphetamine.

    PubMed

    Northrop, Nicole A; Yamamoto, Bryan K

    2013-09-01

    Methamphetamine (Meth) is a widely abused psychostimulant that causes long-term dopamine (DA) and serotonin (5-HT) depletions. Stress and Meth abuse are comorbid events in society and stress exacerbates Meth-induced monoaminergic terminal damage. Stress is also known to produce neuroinflammation. This study examined the role of the neuroinflammatory mediator, cyclooxygenase (COX), in the depletions of monoamines caused by serial exposure to chronic unpredictable stress (CUS) and Meth. CUS produced an increase in COX-2 protein expression and enhanced Meth-induced monoaminergic depletions in the striatum and hippocampus. The enhanced DA and 5-HT depletions in the striatum, but not the hippocampus, were prevented by pretreatment with COX inhibitor, ketoprofen, during stress or during Meth; however, ketoprofen did not attenuate the monoaminergic damage caused by Meth alone. The COX-dependent enhancement by stress of Meth-induced monoaminergic depletions was independent of hyperthermia, as ketoprofen did not attenuate Meth-induced hyperthermia. In addition, the EP1 receptor antagonist, SC-51089, did not attenuate DA or 5-HT depletions caused by stress and Meth. These findings illustrate that COX activity, but not activation of the EP1 receptor, is responsible for the potentiation of Meth-induced damage to striatal monoamine terminals by stress and suggests the use of anti-inflammatory drugs for mitigating the neurotoxic effects associated with the combination of stress and Meth.

  10. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  11. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    PubMed

    Bello, Nicholas T; Yeh, Chung-Yang; Verpeut, Jessica L; Walters, Amy L

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable

  12. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  13. Application of lap laser welding technology on stainless steel railway vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  14. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  15. Myhre and LAPS syndromes: clinical and molecular review of 32 patients

    PubMed Central

    Michot, Caroline; Le Goff, Carine; Mahaut, Clémentine; Afenjar, Alexandra; Brooks, Alice S; Campeau, Philippe M; Destree, Anne; Di Rocco, Maja; Donnai, Dian; Hennekam, Raoul; Heron, Delphine; Jacquemont, Sébastien; Kannu, Peter; Lin, Angela E; Manouvrier-Hanu, Sylvie; Mansour, Sahar; Marlin, Sandrine; McGowan, Ruth; Murphy, Helen; Raas-Rothschild, Annick; Rio, Marlène; Simon, Marleen; Stolte-Dijkstra, Irene; Stone, James R; Sznajer, Yves; Tolmie, John; Touraine, Renaud; van den Ende, Jenneke; Van der Aa, Nathalie; van Essen, Ton; Verloes, Alain; Munnich, Arnold; Cormier-Daire, Valérie

    2014-01-01

    Myhre syndrome is characterized by short stature, brachydactyly, facial features, pseudomuscular hypertrophy, joint limitation and hearing loss. We identified SMAD4 mutations as the cause of Myhre syndrome. SMAD4 mutations have also been identified in laryngotracheal stenosis, arthropathy, prognathism and short stature syndrome (LAPS). This study aimed to review the features of Myhre and LAPS patients to define the clinical spectrum of SMAD4 mutations. We included 17 females and 15 males ranging in age from 8 to 48 years. Thirty were diagnosed with Myhre syndrome and two with LAPS. SMAD4 coding sequence was analyzed by Sanger sequencing. Clinical and radiological features were collected from a questionnaire completed by the referring physicians. All patients displayed a typical facial gestalt, thickened skin, joint limitation and muscular pseudohypertrophy. Growth retardation was common (68.7%) and was variable in severity (from −5.5 to −2 SD), as was mild-to-moderate intellectual deficiency (87.5%) with additional behavioral problems in 56.2% of the patients. Significant health concerns like obesity, arterial hypertension, bronchopulmonary insufficiency, laryngotracheal stenosis, pericarditis and early death occurred in four. Twenty-nine patients had a de novo heterozygous SMAD4 mutation, including both patients with LAPS. In 27 cases mutation affected Ile500 and in two cases Arg496. The three patients without SMAD4 mutations had typical findings of Myhre syndrome. Myhre–LAPS syndrome is a clinically homogenous condition with life threatening complications in the course of the disease. Our identification of SMAD4 mutations in 29/32 cases confirms that SMAD4 is the major gene responsible for Myhre syndrome. PMID:24424121

  16. The role of physical activity and heart rate variability for the control of work related stress.

    PubMed

    Tonello, Laís; Rodrigues, Fábio B; Souza, Jeniffer W S; Campbell, Carmen S G; Leicht, Anthony S; Boullosa, Daniel A

    2014-01-01

    Physical activity (PA) and exercise are often used as tools to reduce stress and therefore the risk for developing cardiovascular diseases (CVD). Meanwhile, heart rate variability (HRV) has been utilized to assess both stress and PA or exercise influences. The objective of the present review was to examine the current literature in regards to workplace stress, PA/exercise and HRV to encourage further studies. We considered original articles from known databases (PubMed, ISI Web of Knowledge) over the last 10 years that examined these important factors. A total of seven studies were identified with workplace stress strongly associated with reduced HRV in workers. Longitudinal workplace PA interventions may provide a means to improve worker stress levels and potentially cardiovascular risk with mechanisms still to be clarified. Future studies are recommended to identify the impact of PA, exercise, and fitness on stress levels and HRV in workers and their subsequent influence on cardiovascular health.

  17. Increased Salivary Nitric Oxide and G6PD Activity in Refugees with Anxiety and Stress.

    PubMed

    Gammoh, Omar S; Al-Smadi, Ahmed; Al-Awaida, Wajdy; Badr, Mujtaba M; Qinna, Nidal A

    2016-10-01

    Anxiety and stress are related to physiological changes in humans. Accumulating evidence suggests a cross-talk between psychiatric disorders and oxidative stress. The objective of this study was to compare oxidative stress and defensive antioxidant biomarkers in a group of refugees with acute anxiety and stress with a group of local Jordanians. The Hamilton Anxiety Rating Scale (HAM-A) and the Perceived Stress Scale (PSS) Arabic version were used to assess anxiety and stress respectively. Salivary nitric oxide concentration, glucose-6-phosphate dehydrogenase (G6PD) activity and total salivary protein were compared. As expected, refugees showed higher anxiety and stress scores compared with Jordanians. Also, we report a significant increase in salivary nitric oxide and G6PD activity in the refugee group while total protein concentration did not vary between the two groups. This is the first study that demonstrates an increase in nitric oxide and G6PD activity in the saliva of refugees, thus highlighting their potential role as possible biomarkers in anxiety and stress disorders. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Understanding Insurance. A Guide for Industrial Cooperative Training Programs. Learning Activity Package No. 15.

    ERIC Educational Resources Information Center

    Duenk, Lester G.; Tuel, Charles

    This learning activity package (LAP) on the insurance industry and the methods used to give protection to the insured is designed for student self-study. Following a list of learning objectives, the LAP contains a pretest (answer key provided at the back). Six learning activities follow. The learning activities cover the following material: terms…

  19. Exercise-induced Alteration in Brain Activity during Motor Performance under Cognitive Stress

    DTIC Science & Technology

    2014-07-02

    stress . It is possible that the correlated activity between EEG and EMG is used for “fine-tuning” brain activity during the performance of fine motor...brain and muscle during simple fine motor performance under stress after high-intensity physical exertion. Healthy young adults were assigned to...leg resistance exercise. Oscillations in EEG and corticomuscular coherence in beta band both tended to decrease 1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  20. Expression of leucine aminopeptidase 3 (LAP3) correlates with prognosis and malignant development of human hepatocellular carcinoma (HCC).

    PubMed

    Tian, Si-Yuan; Chen, Shou-Hua; Shao, Bing-Feng; Cai, Hong-Yu; Zhou, Yuan; Zhou, Yi-Long; Xu, Ai-Bing

    2014-01-01

    Leucine aminopeptidases (LAPs) were associated with tumor cell proliferation, invasion and/or angiogenesis. LAP3 is one important member of this family. However, its clinical significance and biological function in hepatocellular carcinoma (HCC) remains unknown. In the present study, we demonstrated that LAP3 expression was significantly up-regulated in HCC tissues as well as cells and was closely correlated with lower differentiation, positive lymph node metastasis and high Ki-67 expression, indicating a poor prognosis. Then cell viability assays, flow cytometry assays, wound-healing assays and matrigel invasion assays were performed to demonstrate that LAP3 promoted HCC cells proliferation by regulating G1/S checkpoint in cell cycle and advanced HCC cells migration. Furthermore, we discovered that knockdown LAP3 will enhance the sensitivity of HCC cells to cisplatin, thus promoting the cell death of HCC cells. Collectively, our results indicated that up-regulated expression of LAP3 might contribute to the proliferation and metastasis of HCC. Our data gains greater insight into the cancer-promoting role of LAP3 and its functions in HCC cells, possibly providing potential therapeutic strategies for clinical trials.

  1. Salivary alpha amylase activity in human beings of different age groups subjected to psychological stress.

    PubMed

    Sahu, Gopal K; Upadhyay, Seema; Panna, Shradha M

    2014-10-01

    Salivary alpha-amylase (sAA) has been proposed as a sensitive non-invasive biomarker for stress-induced changes in the body that reflect the activity of the sympathetic nervous system. Though several experiments have been conducted to determine the validity of this salivary component as a reliable stress marker in human subjects, the effect of stress induced changes on sAA level in different age groups is least studied. This article reports the activity of sAA in human subjects of different age groups subjected to psychological stress induced through stressful video clip. Differences in sAA level based on sex of different age groups under stress have also been studied. A total of 112 subjects consisting of both the male and female subjects, divided into two groups on basis of age were viewed a video clip of corneal transplant surgery as stressor. Activity of sAA from saliva samples of the stressed subjects were measured and compared with the activity of the samples collected from the subjects before viewing the clip. The age ranges of subjects were 18-25 and 40-60 years. The sAA level increased significantly in both the groups after viewing the stressful video. The increase was more pronounced in the younger subjects. The level of sAA was comparatively more in males than females in the respective groups. No significant change in sAA activity was observed after viewing the soothed video clip. Significant increase of sAA level in response to psychological stress suggests that it might act as a reliable sympathetic activity biochemical marker in different stages of human beings.

  2. Protein aggregation activates erratic stress response in dietary restricted yeast cells

    PubMed Central

    Bhadra, Ankan Kumar; Das, Eshita; Roy, Ipsita

    2016-01-01

    Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington’s disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account. PMID:27633120

  3. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  4. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  5. 3D Stress Modelling of a Neotectonically Active Area in Northwestern Norway

    NASA Astrophysics Data System (ADS)

    Gradmann, Sofie; Keiding, Marie; Olesen, Odleiv; Maystrenko, Yuriy

    2016-04-01

    The Nordland area in NW Norway is one of the tectonically most active areas in Fennoscandia. It exhibits patterns of extension, which are in contradiction to the first-order regional stress pattern which reflects compression from ridge-push. The regional stress field stems from the interaction of ridge push and GIA (glacial isostatic adjustment); the local stress field mainly results from gravitational stresses as well as the flexural effects of sediment erosion and re-deposition. Whereas the first three effects are fairly well constrained, the latter is only poorly known and is the focus of this study. A number of data sets are collected within the project: Seismicity is monitored by a 2-year local seismic network and the stress regime at depth is derived from fault plane solutions. Surface deformation is recorded by a dense GPS network and DInSAR satellites. In-situ stresses are measured in a couple of relevant boreholes. We develop 3D finite element numerical models of crustal scale, using existing geometric constraints from previous geophysical studies. Internal body forces (e.g. variations in topography) already yield significant deviatoric stresses, which are often omitted in stress models. We apply the far-field stress fields (GIA, ridge-push, sediment redistribution) as effective force boundary conditions to the sides or base of the model. This way, we can account for all stress sources at once, but can also vary them separately in order to examine their relative contributions to the observed stress and strain rate fields. We develop a best-fit model using the different seismological and geodetic data sets collected and compiled within the project. Effects of lateral density changes and pre-existing weakness zones on stress localization are studied in connection to observed clusters of enhanced seismic activity.

  6. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots

    PubMed Central

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N.; Misas-Villamil, Johana C.; Xin, Bo T.; Kaiser, Markus; Overkleeft, Herman S.; Tari, Irma; van der Hoorn, Renier A. L.

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress. PMID:28217134

  7. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots.

    PubMed

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N; Misas-Villamil, Johana C; Xin, Bo T; Kaiser, Markus; Overkleeft, Herman S; Tari, Irma; van der Hoorn, Renier A L

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.

  8. Are Kids Too Busy? Early Adolescents' Perceptions of Discretionary Activities, Overscheduling, and Stress

    ERIC Educational Resources Information Center

    Brown, Stephen L.; Nobiling, Brandye D.; Teufel, James; Birch, David A.

    2011-01-01

    Background: The activity patterns of children, especially after-school patterns, are receiving more professional attention. However, evidence regarding the value of various activities in children's lives is contradictory. The purpose of this study was to assess perceptions of discretionary activities, overscheduling, and levels of stress from…

  9. The effect of stress on magnetic Barkhausen activity in ferromagnetic steels

    SciTech Connect

    Jiles, D.C. )

    1989-09-01

    This paper presents results of measurements of the effect of uniaxial tensile stresses of up to 85 MPa on Barkhausen activity and magnetic properties of AISI 4130 and AISI 4140 steels. The results showed that the location of maximum Barkhausen activity was very close to the coercive point. Barkhausen peak height and the total number of pulses were affected by the stress, although there was considerable scatter in some of the results so that it was not clear how the peak height of the AISI 4130 varied with stress.

  10. Physical activity intervention effects on perceived stress in working mothers: the role of self-efficacy.

    PubMed

    Mailey, Emily L; McAuley, Edward

    2014-01-01

    Working mothers often report elevated stress, and efforts to improve their coping resources are needed to buffer the detrimental effects of stress on health. This study examined the impact of changes in physical activity, self-efficacy, and self-regulation across the course of a brief intervention on subsequent levels of stress in working mothers. Participants (N = 141) were randomly assigned to an intervention or control condition (2:1 ratio). The intervention was conducted in Illinois between March 2011 and January 2012 and consisted of two group-mediated workshop sessions with content based on social cognitive theory. Participants completed measures of physical activity, self-efficacy, self-regulation, and perceived stress at baseline, immediately postintervention, and 6-month follow-up. Stress levels declined across the 6-month period in both groups. Changes in stress were negatively associated with changes in self-efficacy and self-regulation among intervention participants only. Regression analyses revealed the intervention elicited short-term increases in physical activity, self-efficacy, and self-regulation, but only changes in self-efficacy predicted perceived stress at 6-month follow-up. These results suggest that enhancing self-efficacy is likely to improve working mothers' perceived capabilities to cope with stressors in their lives. Future interventions should continue to focus on increasing self-efficacy to promote improvements in physical activity and psychological well-being in this population.

  11. Cysteamine modulates oxidative stress and blocks myofibroblast activity in CKD.

    PubMed

    Okamura, Daryl M; Bahrami, Nadia M; Ren, Shuyu; Pasichnyk, Katie; Williams, Juliana M; Gangoiti, Jon A; Lopez-Guisa, Jesus M; Yamaguchi, Ikuyo; Barshop, Bruce A; Duffield, Jeremy S; Eddy, Allison A

    2014-01-01

    Therapy to slow the relentless expansion of interstitial extracellular matrix that leads to renal functional decline in patients with CKD is currently lacking. Because chronic kidney injury increases tissue oxidative stress, we evaluated the antifibrotic efficacy of cysteamine bitartrate, an antioxidant therapy for patients with nephropathic cystinosis, in a mouse model of unilateral ureteral obstruction. Fresh cysteamine (600 mg/kg) was added to drinking water daily beginning on the day of surgery, and outcomes were assessed on days 7, 14, and 21 after surgery. Plasma cysteamine levels showed diurnal variation, with peak levels similar to those observed in patients with cystinosis. In cysteamine-treated mice, fibrosis severity decreased significantly at 14 and 21 days after unilateral ureteral obstruction, and renal oxidized protein levels decreased at each time point, suggesting reduced oxidative stress. Consistent with these results, treatment of cultured macrophages with cysteamine reduced cellular generation of reactive oxygen species. Furthermore, treatment with cysteamine reduced α-smooth muscle actin-positive interstitial myofibroblast proliferation and mRNA levels of extracellular matrix proteins in mice and attenuated myofibroblast differentiation and proliferation in vitro, but did not augment TGF-β signaling. In a study of renal ischemia reperfusion, cysteamine therapy initiated 10 days after injury and continued for 14 days decreased renal fibrosis by 40%. Taken together, these data suggest previously unrecognized antifibrotic actions of cysteamine via TGF-β-independent mechanisms that include oxidative stress reduction and attenuation of the myofibroblast response to kidney injury and support further investigation into the potential benefit of cysteamine therapy in the treatment of CKD.

  12. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity

    PubMed Central

    Tan, Ke; Fujimoto, Mitsuaki; Takii, Ryosuke; Takaki, Eiichi; Hayashida, Naoki; Nakai, Akira

    2015-01-01

    Heat-shock response is an adaptive response to proteotoxic stresses including heat shock, and is regulated by heat-shock factor 1 (HSF1) in mammals. Proteotoxic stresses challenge all subcellular compartments including the mitochondria. Therefore, there must be close connections between mitochondrial signals and the activity of HSF1. Here, we show that heat shock triggers nuclear translocation of mitochondrial SSBP1, which is involved in replication of mitochondrial DNA, in a manner dependent on the mitochondrial permeability transition pore ANT–VDAC1 complex and direct interaction with HSF1. HSF1 recruits SSBP1 to the promoters of genes encoding cytoplasmic/nuclear and mitochondrial chaperones. HSF1–SSBP1 complex then enhances their induction by facilitating the recruitment of a chromatin-remodelling factor BRG1, and supports cell survival and the maintenance of mitochondrial membrane potential against proteotoxic stresses. These results suggest that the nuclear translocation of mitochondrial SSBP1 is required for the regulation of cytoplasmic/nuclear and mitochondrial proteostasis against proteotoxic stresses. PMID:25762445

  13. Petrography of Lunar Meteorite LAP 02205, a New Low-Ti Basalt Possibly Launch Paired with NWA 032

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Zeigler, R. A.; Korotev, R. L.

    2004-01-01

    Lunar meteorite LAP 02205 is a 1.23 kg basalt collected during the 2002 field season in the La- Paz ice field, Antarctica [1]. We present a petrographic description including mineral modes and compositions, and the major-element composition of the bulk meteorite. LAP 02205 is an Fe-rich, moderately low-Ti mare basalt that is similar in composition, mineralogy, and mineral chemistry to the NWA 032 basaltic lunar meteorite. LAP 02205 is yet another of the moderately low- Ti basaltic meteorites that are underrepresented among Apollo and Luna samples but that appear from remote sensing to be the most common basalt type on the Moon.

  14. Strengths of composite-to-metal double-lap bolted joints

    NASA Astrophysics Data System (ADS)

    Sun, Hsien-Tang

    1998-12-01

    A three-dimensional analysis was proposed to study the through-the-thickness clamping effect on the bearing failure of double-lap bolted laminated composite joints. Experiments were first performed to characterize the material response due to bearing failure in composite bolted joints with and without lateral clamp-up supports. Composite plates made of T800H/3900-2 graphite/epoxy were selected in the tests, and various washer sizes and clamping forces were used in the study. The clamping force in the bolt was found to vary with the applied load, and may increase significantly due to a sudden through-the-thickness expansion of the laminate under the washers where bearing failure occurred. Experiments showed that the joint strength and response can be significantly affected by the bolt clamp-up, and the bolt bearing failure is a 3-D phenomenon. In order to facilitate the use of the proposed model with the ABAQUS code, an interface module 3DBOLT was developed. In order to reinforce the incompressibility condition in calculations for bearing-damaged material predicted by the model, the condition was imposed through a penalty method in the frame work of finite element analyses. The module provides a user-friendly input deck, generates automatically a joint mesh, and produces outputs and graphics for displaying the stresses, strains, and deformations of the joints and for simulating the failure progression in joints during loading. Extensive comparisons were made between the test data and model predictions. Overall, the model predicts both the failure load and response of bolted composite joints very well for various clamping forces and washer sizes. The model also predicted very well for joints failed in net-tension and shear-out modes. The predicted bolt clamp-up load as a function of the applied load agreed also very well with the data, which validates that the proposed incompressibility assumption for bearing-damaged material. Based on the model, a parametric study

  15. Secretory activity of mast cell during stress: effect of prolyl-glycyl-proline and Semax.

    PubMed

    Umarova, B A; Kopylova, G N; Smirnova, E A; Guseva, A A; Zhuikova, S E

    2003-10-01

    Stress increased secretory activity of mast cells in the mesentery and subcutaneous fat of rats. Intraperitoneal injection of Semax and prolyl-glycyl-proline in doses of 0.05 and 1 mg/kg, respectively, 1 h before stress abolished this effect. The test preparations did not modulate secretory activity of mast cells in unstressed animals. Semax and prolyl-glycyl-proline in vitro prevented activation of mast cells with synacten and acetylcholine. The stabilizing effect of peptides on mast cells probably determines their antiulcer activity.

  16. Differential activation of hippocampus and amygdala following spatial learning under stress.

    PubMed

    Akirav, I; Sandi, C; Richter-Levin, G

    2001-08-01

    We examined the activation of memory-related processes in the hippocampus and the amygdala following spatial learning under stress, in the rat. Animals were trained in a water maze in a massed spatial task under two stress conditions (cold and warm water). In the dorsal CA1, training was accompanied by increased phosphorylation of ERK2 only in animals that have acquired the task (irrespective of whether they were trained in cold or warm water). In the amygdala, significant activation of ERK2 was found only in animals that learned the task well under high levels of stress. Hence, the results suggest that the amygdala and the hippocampus are differentially activated following spatial learning, depending on the level of stress involved.

  17. Business Education: Learning Activities Packet for Office Education.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    These seventeen individualized learning activities packets (LAPs) are intended to relate essential competencies needed for entry or advancement in office occupations to the secondary level office education program and to assist students in achieving occupational proficiency in business careers. Each LAP contains some or all of the following…

  18. Guanfacine effects on stress, drug craving and prefrontal activation in cocaine dependent individuals: preliminary findings

    PubMed Central

    Fox, Helen C.; Seo, Dongju; Tuit, Keri; Hansen, Julie; Kimmerling, Anne; Morgan, Peter T.; Sinha, Rajita

    2013-01-01

    Cocaine dependence is associated with increased stress and drug cue-induced craving and physiological arousal but decreased prefrontal activity to emotional and cognitive challenge. As these changes are associated with relapse risk, we investigated the effects of α2 receptor agonist guanfacine on these processes. Twenty-nine early abstinent treatment-seeking cocaine dependent individuals were randomly assigned to either daily placebo or guanfacine (up to 3 mg) for four weeks. In a laboratory experiment, all patients were exposed to three 10-min guided imagery conditions (stress/stress, drug cue/drug cue, stress/drug cue), one per day, consecutively in a random, counterbalanced order. Subjective craving, anxiety and arousal as well as cardiovascular output were assessed repeatedly. Brain response to stress, drug cue and relaxing imagery was also assessed during a functional magnetic resonance (fMRI) imaging session. In the current study, guanfacine was found to be safe and well-tolerated. Lower basal heart rate and blood pressure was observed in the guanfacine versus placebo group. Guanfacine lowered stress and cue-induced nicotine craving and cue-induced cocaine craving, anxiety and arousal. The guanfacine group also showed increased medial and lateral prefrontal activity following stress and drug cue exposure compared with placebo. Data suggest further exploration of guanfacine is warranted in terms of its potential for reducing stress-induced and cue-induced drug craving and arousal. PMID:22234929

  19. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  20. HIV-2 genomic RNA accumulates in stress granules in the absence of active translation.

    PubMed

    Soto-Rifo, Ricardo; Valiente-Echeverria, Fernando; Rubilar, Paulina S; Garcia-de-Gracia, Francisco; Ricci, Emiliano P; Limousin, Taran; Décimo, Didier; Mouland, Andrew J; Ohlmann, Théophile

    2014-11-10

    During the post-transcriptional events of the HIV-2 replication cycle, the full-length unspliced genomic RNA (gRNA) is first used as an mRNA to synthesize Gag and Gag-Pol proteins and then packaged into progeny virions. However, the mechanisms responsible for the coordinate usage of the gRNA during these two mutually exclusive events are poorly understood. Here, we present evidence showing that HIV-2 expression induces stress granule assembly in cultured cells. This contrasts with HIV-1, which interferes with stress granules assembly even upon induced cellular stress. Moreover, we observed that the RNA-binding protein and stress granules assembly factor TIAR associates with the gRNA to form a TIAR-HIV-2 ribonucleoprotein (TH2RNP) complex localizing diffuse in the cytoplasm or aggregated in stress granules. Although the assembly of TH2RNP in stress granules did not require the binding of the Gag protein to the gRNA, we observed that increased levels of Gag promoted both translational arrest and stress granule assembly. Moreover, HIV-2 Gag also localizes to stress granules in the absence of a 'packageable' gRNA. Our results indicate that the HIV-2 gRNA is compartmentalized in stress granules in the absence of active translation prior to being selected for packaging by the Gag polyprotein.

  1. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    PubMed

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  2. Enhanced oxidative stress resistance through activation of a zinc deficiency transcription factor in Brachypodium distachyon.

    PubMed

    Glover-Cutter, Kira M; Alderman, Stephen; Dombrowski, James E; Martin, Ruth C

    2014-11-01

    Identification of viable strategies to increase stress resistance of crops will become increasingly important for the goal of global food security as our population increases and our climate changes. Considering that resistance to oxidative stress is oftentimes an indicator of health and longevity in animal systems, characterizing conserved pathways known to increase oxidative stress resistance could prove fruitful for crop improvement strategies. This report argues for the usefulness and practicality of the model organism Brachypodium distachyon for identifying and validating stress resistance factors. Specifically, we focus on a zinc deficiency B. distachyon basic leucine zipper transcription factor, BdbZIP10, and its role in oxidative stress in the model organism B. distachyon. When overexpressed, BdbZIP10 protects plants and callus tissue from oxidative stress insults, most likely through distinct and direct activation of protective oxidative stress genes. Increased oxidative stress resistance and cell viability through the overexpression of BdbZIP10 highlight the utility of investigating conserved stress responses between plant and animal systems.

  3. Cold stress affects H(+)-ATPase and phospholipase D activity in Arabidopsis.

    PubMed

    Muzi, Carlo; Camoni, Lorenzo; Visconti, Sabina; Aducci, Patrizia

    2016-11-01

    Low temperature is an environmental stress that greatly influences plant performance and distribution. Plants exposed to cold stress exhibit modifications of plasma membrane physical properties that can affect their functionality. Here it is reported the effect of low temperature exposure of Arabidopsis plants on the activity of phospholipase D and H(+)-ATPase, the master enzyme located at the plasma membrane. The H(+)-ATPase activity was differently affected, depending on the length of cold stress imposed. In particular, an exposure to 4 °C for 6 h determined the strong inhibition of the H(+)-ATPase activity, that correlates with a reduced association with the regulatory 14-3-3 proteins. A longer exposure first caused the full recovery of the enzymatic activity followed by a significant activation, in accordance with both the increased association with 14-3-3 proteins and induction of H(+)-ATPase gene transcription. Different time lengths of cold stress treatment were also shown to strongly stimulate the phospholipase D activity and affect the phosphatidic acid levels of the plasma membranes. Our results suggest a functional correlation between the activity of phospholipase D and H(+)-ATPase mediated by phosphatidic acid release during the cold stress response.

  4. Job stressors and job stress among teachers engaged in nursing activity.

    PubMed

    Muto, Shigeki; Muto, Takashi; Seo, Akihiko; Yoshida, Tsutomu; Taoda, Kazushi; Watanabe, Misuzu

    2007-01-01

    Teachers and staff members engaged in nursing activity experience more stress than other workers. However, it is unknown whether teachers engaged in nursing activity in schools for handicapped children experience even greater stress. This study evaluated job stressors and job stress among such teachers using a cross-sectional study design. The subjects were all 1,461 teachers from all 19 prefectural schools for handicapped children in Shizuoka Prefecture, Japan. We used a brief job stress questionnaire for the survey and 831 teachers completed the questionnaire. Job stressors among teachers engaged in nursing activity were compared with those among teachers not engaged in nursing activity. Job stress among such teachers was estimated by the score for total health risk, and was compared with the score in the Japanese general population. Male and female teachers engaged in nursing activity had a significantly higher level of job stressors for physical work load and job control compared with those not engaged in nursing activity. The scores for total health risk among male and female teachers engaged in nursing activity were 102 points and 98 points, respectively. These scores were not markedly above 100 points which is the mean score in the Japanese general population.

  5. LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress.

    PubMed

    de la Haba, Carlos; Morros, Antoni; Martínez, Paz; Palacio, José R

    2016-12-01

    Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.

  6. Activation of large-conductance Ca(2+)-activated K(+) channels inhibits glutamate-induced oxidative stress through attenuating ER stress and mitochondrial dysfunction.

    PubMed

    Yan, Xiao-Hua; Guo, Xiang-Yang; Jiao, Fu-Yong; Liu, Xuan; Liu, Yong

    2015-11-01

    Large-conductance Ca(2+)-activated K(+) channels (BK channels) are widely expressed throughout the vertebrate nervous system, and are involved in the regulation of neurotransmitter release and neuronal excitability. Here, the neuroprotective effects of NS11021, a selective and chemically unrelated BK channel activator, and potential molecular mechanism involved have been studied in rat cortical neurons exposed to glutamate in vitro. Pretreatment with NS11021 significantly inhibited the loss of neuronal viability, LDH release and neuronal apoptosis in a dose-dependent manner. All these protective effects were fully antagonized by the BK-channel inhibitor paxilline. NS11021-induced neuroprotection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, lipid peroxidation and preserved activity of antioxidant enzymes. Moreover, NS11021 significantly attenuated the glutamate-induced endoplasmic reticulum (ER) calcium release and activation of ER stress markers, including glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12. Pretreatment with NS11021 also mitigated the mitochondrial membrane potential (MMP) collapse, cytochrome c release, and preserved mitochondrial Ca(2+) buffering capacity and ATP synthesis after glutamate exposure. Taken together, these results suggest that activation of BK channels via NS11021 protects cortical neurons against glutamate-induced excitatory damage, which may be dependent on the inhibition of ER stress and preservation of mitochondrial dysfunction.

  7. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    PubMed Central

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry

  8. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress.

    PubMed

    Csiszár, Jolán; Gallé, Agnes; Horváth, Edit; Dancsó, Piroska; Gombos, Magdolna; Váry, Zsolt; Erdei, László; Györgyey, János; Tari, Irma

    2012-03-01

    One-week-old seedlings of Triticum aestivum L. cv. Plainsman V, a drought tolerant; and Cappelle Desprez, a drought sensitive wheat cultivar were subjected gradually to osmotic stress using polyethylene glycol (PEG 6000) reaching 400 mOsm on the 11th day. Compared to controls cv. Plainsman V maintained the root growth and relative water content of root tissues, while these parameters were decreased in the drought sensitive cv. Cappelle Desprez under PEG-mediated osmotic stress. Simultaneously, H(2)O(2) content in 1-cm-long apical segment of roots comprising the proliferation and elongation zone, showed a transient increase in cv. Plainsman V and a permanent raise in cv. Cappelle Desprez. Measurements of the transcript levels of selected class III peroxidase (TaPrx) coding sequences revealed significant differences between the two cultivars on the 9th day, two days after applying 100 mOsm PEG. The abundance of TaPrx04 transcript was enhanced transitionally in the root apex of cv. Plainsman V but decreased in cv. Cappelle Desprez under osmotic stress while the expression of TaPrx01, TaPrx03, TaPrx19, TaPrx68, TaPrx107 and TaPrx109-C decreased to different extents in both cultivars. After a transient decrease, activities of soluble peroxidase fractions of crude protein extracts rose in both cultivars on day 11, but the activities of cell wall-bound fractions increased only in cv. Cappelle Desprez under osmotic stress. Parallel with high H(2)O(2) content of the tissues, certain isoenzymes of covalently bound fraction in cv. Cappelle Desprez showed increased activity suggesting that they may limit the extension of root cell walls in this cultivar.

  9. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    PubMed

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  10. SEAP activity serves for demonstrating ER stress induction by glucolipotoxicity as well as testing ER stress inhibitory potential of therapeutic agents.

    PubMed

    Lenin, Raji; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-06-01

    Endoplasmic reticulum (ER) stress is emerging as a unifying paradigm and one of the underlying mechanisms in the genesis of diabetes and its complications. While this has prompted the development of ER stress inhibitors, there is a limitation in monitoring of ER stress in vitro and in vivo by reliable methodologies. We validated the secreted alkaline phosphatase (SEAP) activity as a surrogate marker of ER stress in mouse β-TC6 cells exposed to glucolipotoxicity or tunicamycin and studied insulin secretion along with alterations in ER stress markers. SEAP activity assay was measured using the Great EscAPe SEAP kit, insulin levels were determined by Mercodia reagents and mRNA expression of ER stress markers was quantified by real-time PCR. SEAP activity in β-cells was significantly decreased (indicating increased ER stress) on exposure either to glucolipotoxicity or tunicamycin. This was accompanied by an increased mRNA expression of ER stress markers (GRP-78, PERK, IRE1α, ATF6, XBP-1, and CHOP) and decreased insulin secretion. Treating the cells with phenylbutyric acid normalized SEAP activity, decreased mRNA expression of ER stress markers and improved insulin secretion. Interestingly, cells exposed to different classes of anti-diabetes agents or compounds such as resveratrol resisted ER stress. Methylglyoxal also induces ER stress and this was counteracted by aminoguanidine. Out study demonstrates SEAP activity as a novel ER stress monitoring assay to investigate the therapeutic value of agents with ER stress inhibitory potential. Future studies should focus on the exercise of adopting this reporter assay for high-throughput screening mode of drug discovery.

  11. Activation pattern of the limbic system following spatial learning under stress.

    PubMed

    Kogan, Inna; Richter-Levin, Gal

    2008-02-01

    Anatomical evidence suggests an interplay between the dorsal CA1 of the hippocampus (CA1), the basolateral amygdala (BLA) and the entorhinal cortex (EC), but their specific interactions in the context of emotional memory remain obscure. Here, we sought to elucidate the activation pattern in these areas following spatial learning under different stress conditions in the Morris water maze, using cAMP response element-binding protein (CREB) activation as a marker. Stress levels were manipulated by maintaining the water maze at one of two different temperatures: lower stress (warm water) or higher stress (cold water). Three groups of animals were tested under each condition: a Learning group, trained in the water maze with a hidden escape platform; a No-Platform group, subjected to the maze without an escape platform; and a Naïve group. To evaluate the quality of the spatial memory formed, we also tested long-term memory retention of the initial location of the platform following an interference procedure (reversal training). In the CA1 and EC, we found different CREB activation patterns for the lower- and higher-stress groups. By contrast, in the BLA a similar pattern of activation was detected under both stress levels. The data reveal a difference in the sensitivity of the memory to interference, with reversal training interference affecting the memory of the initial platform location only under the higher-stress condition. The results suggest that stress-dependent alterations in limbic system activation patterns underlie differences in the quality of the memory formed.

  12. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    NASA Technical Reports Server (NTRS)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  13. 20th Century Fashions. Teacher Edition. Marketing Education LAPs.

    ERIC Educational Resources Information Center

    Hawley, Jana

    This learning activity packet is designed to help students to acquire a competency: how to use an understanding of fashion history in preparation for a career in the fashion industry. The unit consists of the competency, three objectives, suggested learning activity, transparency masters, and a pretest/posttest with answer keys. The activity is a…

  14. Careers in Fashion. Teacher Edition. Marketing Education LAPs.

    ERIC Educational Resources Information Center

    Hawley, Jana

    This learning activity packet is designed to help students to acquire a competency, namely: how to use knowledge of careers in the fashion industry to gain information about their career choices. The unit consists of the competency, three objectives, suggested learning activities, transparency masters, handout materials for activities, and a…

  15. Active coping with stress suppresses glucose metabolism in the rat hypothalamus.

    PubMed

    Ono, Yumie; Lin, Hsiao-Chun; Tzen, Kai-Yuan; Chen, Hui-Hsing; Yang, Pai-Feng; Lai, Wen-Sung; Chen, Jyh-Horng; Onozuka, Minoru; Yen, Chen-Tung

    2012-03-01

    We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.

  16. Stress-Strain Relationship of Ca(OH)2-Activated Hwangtoh Concrete

    PubMed Central

    Mun, Ju-Hyun; Hwang, Hey-Zoo

    2014-01-01

    This study examined the stress-strain behavior of 10 calcium hydroxide (Ca(OH)2)-activated Hwangtoh concrete mixes. The volumetric ratio of the coarse aggregate (Vagg) and the water-to-binder (W/B) ratio were selected as the main test variables. Two W/B ratios (25% and 40%) were used and the value of Vagg varied between 0% and 40.0%, and 0% and 46.5% for W/B ratios of 25% and 40%, respectively. The test results demonstrated that the slope of the ascending branch of the stress-strain curve of Ca(OH)2-activated Hwangtoh concrete was smaller, and it displayed a steeper drop in stress in the descending branch, compared with those of ordinary Portland cement (OPC) concrete with the same compressive strength. This trend was more pronounced with the increase in the W/B ratio and decrease in Vagg. Based on the experimental observations, a simple and rational stress-strain model was established mathematically. Furthermore, the modulus of elasticity and strain at peak stress of the Ca(OH)2-activated Hwangtoh concrete were formulated as a function of its compressive strength and Vagg. The proposed stress-strain model predicted the actual behavior accurately, whereas the previous models formulated using OPC concrete data were limited in their applicability to Ca(OH)2-activated Hwangtoh concrete. PMID:25147869

  17. AGE-DEPENDENT EFFECTS OF STRESS ON ETHANOL-INDUCED MOTOR ACTIVITY IN RATS

    PubMed Central

    Acevedo, María Belén; Pautassi, Ricardo Marcos; Spear, Norman E.; Spear, Linda P.

    2013-01-01

    Rationale It is important to study age-related differences that may put adolescents at risk for alcohol-related problems. Adolescents seem less sensitive to the aversive effects of ethanol than adults. Less is known of appetitive effects of ethanol and stress-modulation of these effects. Objectives To describe effects of acute social or restraint stress on ethanol-precipitated locomotor activity (LMA), in adolescent and adult rats. Effects of activation of the kappa system on ethanol-induced LMA were also evaluated. Methods Adolescent or adult rats were restrained for 90 min, exposed to social deprivation stress for 90 or 180 min or administered the kappa agonist U62,066E before being given ethanol and assessed for LMA. Results Adolescents were significantly more sensitive to the stimulating, and less sensitive to the sedative, effects of ethanol than adults. Basal locomotion was significantly increased by social deprivation stress in adult, but not in adolescent, rats. U62,066E significantly reduced basal and ethanol-induced locomotion in the adolescents. Corticosterone and progesterone levels were significantly higher in adolescents than in adults. Conclusions Adolescents exhibit greater sensitivity to ethanol-induced LMA and reduced sensitivity to ethanol-induced motor sedation than adult rats. Ethanol’s effects on motor activity were not affected by acute stress. Unlike adults, adolescents were insensitive to acute restraint and social deprivation stress, but exhibited motor depression after activation of the endogenous kappa opioid receptor system. PMID:23775530

  18. Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Assessing Beaked Whale Reproduction and Stress Response...both groups of animals to investigate whether there is a relationship between sonar activity, stress measures, and reproductive rates, to assess... Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC) 5a. CONTRACT NUMBER 5b. GRANT

  19. Inbreeding Alters Activities of the Stress-Related Enzymes Chitinases and β-1,3-Glucanases

    PubMed Central

    Leimu, Roosa; Kloss, Lena; Fischer, Markus

    2012-01-01

    Pathogenesis-related proteins, chitinases (CHT) and β-1,3-glucanases (GLU), are stress proteins up-regulated as response to extrinsic environmental stress in plants. It is unknown whether these PR proteins are also influenced by inbreeding, which has been suggested to constitute intrinsic genetic stress, and which is also known to affect the ability of plants to cope with environmental stress. We investigated activities of CHT and GLU in response to inbreeding in plants from 13 Ragged Robin (Lychnis flos-cuculi) populations. We also studied whether activities of these enzymes were associated with levels of herbivore damage and pathogen infection in the populations from which the plants originated. We found an increase in pathogenesis-related protein activity in inbred plants from five out of the 13 investigated populations, which suggests that these proteins may play a role in how plants respond to intrinsic genetic stress brought about by inbreeding in some populations depending on the allele frequencies of loci affecting the expression of CHT and the past levels of inbreeding. More importantly, we found that CHT activities were higher in plants from populations with higher levels of herbivore or pathogen damage, but inbreeding reduced CHT activity in these populations disrupting the increased activities of this resistance-related enzyme in populations where high resistance is beneficial. These results provide novel information on the effects of plant inbreeding on plant–enemy interactions on a biochemical level. PMID:22879940

  20. The burden of conscientiousness? Examining brain activation and cortisol response during social evaluative stress.

    PubMed

    Dahm, Anne-Sophie; Schmierer, Phöbe; Veer, Ilya M; Streit, Fabian; Görgen, Anna; Kruschwitz, Johann; Wüst, Stefan; Kirsch, Peter; Walter, Henrik; Erk, Susanne

    2017-04-01

    Although conscientiousness has for a long time been considered generally adaptive, there are findings challenging this view, suggesting that conscientiousness might be less advantageous during uncontrollable stress. We here examined the impact of conscientiousness on brain activation during and the cortisol response following an uncontrollable social evaluative stress task in order to test this hypothesis. Brain activation and cortisol levels were measured during an fMRI stress task, where subjects (n=86) performed cognitive tasks containing preprogrammed failure under time pressure, while being monitored by a panel of experts inducing social-evaluative threat. The degree of conscientiousness was measured using the NEO-FFI. We observed a positive correlation between conscientiousness and salivary cortisol levels in response to the stressful task in male subjects only. In male subjects conscientiousness correlated positively with activation in right amygdala and left insula, and, moreover, mediated the influence of amygdala and insula activation on cortisol output. This pattern of brain activation can be interpreted as a disadvantageous response to uncontrollable stress to which highly conscientious individuals might be predisposed. This is the first study showing the effect of conscientiousness on physiology and brain activation to an uncontrollable psychosocial stressor. Our results provide neurobiological evidence for the hypothesis that conscientiousness should not just be seen as beneficial, but rather as a trait associated with either costs or benefits depending on the extent to which one is in control of the situation.

  1. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    PubMed

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-02-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus.

  2. Stress-induced adaptation of neutrophilic granulocyte activity in K and R3 carp lines.

    PubMed

    Pijanowski, L; Verburg-van Kemenade, B M L; Irnazarow, I; Chadzinska, M

    2015-12-01

    Both in mammals and fish, stress induces remarkable changes in the immune response. We focused on stress-induced changes in the activity of neutrophilic granulocytes in the R3 and K lines of common carp, which showed differential stress responses. Our study clearly demonstrates that a prolonged restraint stress differentially affects the activity of K and R3 carp neutrophils. In the K line, stress decreased the respiratory burst, while in the R3 line it reduced the release of extracellular DNA. Surprisingly, the stress-induced changes in ROS production and NET formation did not correlate with changes in gene expression of the inflammatory mediators and GR receptors. In neutrophilic granulocytes from K carp, gene expression of the stress-sensitive cortisol GR1 receptor was significantly higher than in neutrophils from R3 fish, which will make these cells more sensitive to high levels of cortisol. Moreover, upon stress, neutrophilic granulocytes of K carp up-regulated gene expression of the anti-inflammatory cytokine IL-10 while this was not observed in neutrophilic granulocytes of R3 carp. Therefore, we can hypothesize that, in contrast to R3 neutrophils, the more cortisol sensitive neutrophils from K carp respond to stress with up-regulation of IL-10 and consequently reduction of ROS production. Most probably the ROS-independent NET formation in K carp is not regulated by this anti-inflammatory cytokine. These data may indicate a predominantly ROS-independent formation of NETs by carp neutrophilic granulocytes. Moreover, they underline the important role of IL-10 in stress-induced immunoregulation.

  3. Overcrowding stress decreases macrophage activity and increases Salmonella Enteritidis invasion in broiler chickens.

    PubMed

    Gomes, A V S; Quinteiro-Filho, W M; Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Baskeville, E; Akamine, A T; Astolfi-Ferreira, C S; Ferreira, A J P; Palermo-Neto, J

    2014-01-01

    Overcrowding stress is a reality in the poultry industry. Chickens exposed to long-term stressful situations present a reduction of welfare and immunosuppression. We designed this experiment to analyse the effects from overcrowding stress of 16 birds/m(2) on performance parameters, serum corticosterone levels, the relative weight of the bursa of Fabricius, plasma IgA and IgG levels, intestinal integrity, macrophage activity and experimental Salmonella Enteritidis invasion. The results of this study indicate that overcrowding stress decreased performance parameters, induced enteritis and decreased macrophage activity and the relative bursa weight in broiler chickens. When the chickens were similarly stressed and infected with Salmonella Enteritidis, there was an increase in feed conversion and a decrease in plasma IgG levels in the stressed and Salmonella-infected birds. We observed moderate enteritis throughout the duodenum of chickens stressed and infected with Salmonella. The overcrowding stress decreased the macrophage phagocytosis intensity and increased Salmonella Enteritidis counts in the livers of birds challenged with the pathogenic bacterium. Overcrowding stress via the hypothalamic-pituitary-adrenal axis that is associated with an increase in corticosterone and enteritis might influence the quality of the intestinal immune barrier and the integrity of the small intestine. This effect allowed pathogenic bacteria to migrate through the intestinal mucosa, resulting in inflammatory infiltration and decreased nutrient absorption. The data strengthen the hypothesis that control of the welfare of chickens and avoidance of stress from overcrowding in poultry production are relevant factors for the maintenance of intestinal integrity, performance and decreased susceptibility to Salmonella infection.

  4. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    SciTech Connect

    Aisha, M.D.; Nor-Ashikin, M.N.K.; Sharaniza, A.B.R.; Nawawi, H.; Froemming, G.R.A.

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  5. Individualized Instruction in Science, Earth-Space Project, Self-Directed Activities.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    As a supplement to Learning Activity Packages (LAP) of the earth-space project, this manual presents self-directed activities especially designed for individualized instruction. Besides an introduction to LAP characteristics, sets of instructions are given in connection with the metric system, the earth's dimensions, indirect evidence for atomic…

  6. Learning Activity Packets for Milling Machines. Unit I--Introduction to Milling Machines.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This learning activity packet (LAP) outlines the study activities and performance tasks covered in a related curriculum guide on milling machines. The course of study in this LAP is intended to help students learn to identify parts and attachments of vertical and horizontal milling machines, identify work-holding devices, state safety rules, and…

  7. Individualized Instruction in Science, Time-Space-Matter, Self-Directed Activities.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    As a supplement to Learning Activity Packages (LAP) on the time-space-matter subject, details are presented for self-directed activities. Major descriptions are given on the background of LAP characteristics, metric system, profile graph construction, spectroscope operation, radiant energy measurement, sunspot effects, density determination,…

  8. Learning Activity Packets for Auto Mechanics II. Section A--Engine Rebuilding.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Eight learning activity packets (LAPs) are provided for the instructional area of engine rebuilding in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these eight units: (1) engine condition evaluation; (2) engine removal; (3) engine…

  9. Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock

    NASA Technical Reports Server (NTRS)

    Flores, H. E.; Galston, A. W.

    1982-01-01

    The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.

  10. Embryo as an active granular fluid: stress-coordinated cellular constriction chains

    NASA Astrophysics Data System (ADS)

    Holcomb, Michael; Gao, Guo-Jie; Thomas, Jeffrey; Blawzdziewicz, Jerzy

    2016-11-01

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity.

  11. Psychosocial stress and cardiovascular disease risk: the role of physical activity.

    PubMed

    Hamer, Mark

    2012-01-01

    Chronic stress and depression are associated with increased risk of cardiovascular disease and poorer prognosis, and physical (in)activity may be a key underlying biobehavioral mechanism. Physical activity has antidepressant effects, and physically fitter, more active individuals seem to be more biologically resilient to psychosocial stressors. This article will present data from a series of population cohort studies and laboratory-based psychophysiological studies to explore the role of physical activity as a protective factor against the effects of psychosocial stress on cardiovascular disease. These mechanisms may improve the treatment and prevention of stress-related illnesses and, thus, has important implications for public health and clinical care of high-risk patients.

  12. Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking

    PubMed Central

    Schank, J.R.; Nelson, B.S.; Damadzic, R.; Tapocik, J.D.; Yao, M.; King, C.E.; Rowe, K.E.; Cheng, K.; Rice, K.C.; Heilig, M.

    2015-01-01

    Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons co-expressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. PMID:26188146

  13. Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation

    PubMed Central

    Budzyński, Marek A.; Puustinen, Mikael C.; Joutsen, Jenny

    2015-01-01

    In mammals the stress-inducible expression of genes encoding heat shock proteins is under the control of the heat shock transcription factor 1 (HSF1). Activation of HSF1 is a multistep process, involving trimerization, acquisition of DNA-binding and transcriptional activities, which coincide with several posttranslational modifications. Stress-inducible phosphorylation of HSF1, or hyperphosphorylation, which occurs mainly within the regulatory domain (RD), has been proposed as a requirement for HSF-driven transcription and is widely used for assessing HSF1 activation. Nonetheless, the contribution of hyperphosphorylation to the activity of HSF1 remains unknown. In this study, we generated a phosphorylation-deficient HSF1 mutant (HSF1Δ∼PRD), where the 15 known phosphorylation sites within the RD were disrupted. Our results show that the phosphorylation status of the RD does not affect the subcellular localization and DNA-binding activity of HSF1. Surprisingly, under stress conditions, HSF1Δ∼PRD is a potent transactivator of both endogenous targets and a reporter gene, and HSF1Δ∼PRD has a reduced activation threshold. Our results provide the first direct evidence for uncoupling stress-inducible phosphorylation of HSF1 from its activation, and we propose that the phosphorylation signature alone is not an appropriate marker for HSF1 activity. PMID:25963659

  14. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    NASA Astrophysics Data System (ADS)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  15. Liver-enriched inhibitory protein (LIP) actively inhibits preadipocyte differentiation through histone deacetylase 1 (HDAC1).

    PubMed

    Abdou, Houssein-Salem; Atlas, Ella; Haché, Robert J G

    2011-06-17

    The CCAAT/enhancer-binding protein β (C/EBPβ) is expressed as three isoforms (LAP*, liver-enriched activating protein (LAP), and liver-enriched inhibitory protein (LIP)) that differentially regulate gene expression. The interplay between LAP*, LAP, and LIP in regulating cellular processes is largely unknown, and LIP has been largely regarded to repress transcription through a passive heterodimerization-dependent mechanism. Recently, we have shown that p300/GCN5 and mSin3A/HDAC1 differentially regulate the ability of C/EBPβ to stimulate preadipocyte differentiation through activation of C/ebpα transcription. Here, we have mapped requirements for binding of mSin3A/HDAC1 to LAP/LAP* and LIP to a 4-amino acid motif in the central region of LAP/LAP* (residues 153-156) and the N terminus of LIP. Reducing mSin3A/HDAC1 binding to LAP/LAP* and LIP through deletion of this motif reduced the recruitment of HDAC1 to the C/ebpα promoter and increased preadipocyte differentiation stimulated by insulin and 1-methyl-3-isobutylxanthine. Additional studies showed that the interaction of HDAC1 with LIP provides for active repression of C/ebpα transcription and is largely responsible for the ability of LIP and HDAC1 to repress preadipocyte differentiation. Thus, although mSin3A/HDAC1 interacted readily with LAP/LAP* in addition to LIP and that expression of LAP/LAP* was sufficient to recruit HDAC1 to the C/ebpα promoter, mutations in C/ebpβ that abrogated HDAC1 association to LAP/LAP* in the absence of LIP provided no additional stimulation of differentiation or transcription beyond the deletion of LIP alone. The implication of these results for the interaction between p300/GCN5 and mSin3A/HDAC1 in regulating C/EBPα transcription and preadipocyte differentiation are discussed.

  16. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  17. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    PubMed

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

  18. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.

  19. Activity of the Hypothalamic-Pituitary-Adrenal System in Prenatally Stressed Male Rats on the Experimental Model of Post-Traumatic Stress Disorder.

    PubMed

    Pivina, S G; Rakitskaya, V V; Akulova, V K; Ordyan, N E

    2016-03-01

    Using the experimental model of post-traumatic stress disorder (stress-restress paradigm), we studied the dynamics of activity of the hypothalamic-pituitary-adrenal system (HPAS) in adult male rats, whose mothers were daily subjected to restraint stress on days 15-19 of pregnancy. Prenatally stressed males that were subjected to combined stress and subsequent restress exhibited not only increased sensitivity of HPAS to negative feedback signals (manifested under restress conditions), but also enhanced stress system reactivity. These changes persisted to the 30th day after restress. Under basal conditions, the number of cells in the hypothalamic paraventricular nucleus of these animals expressing corticotropin-releasing hormone and vasopressin was shown to decrease progressively on days 1-30. By contrast, combined stress and restress in control animals were followed by an increase in the count of CRH-immunopositive cells in the magnocellular and parvocellular parts of the paraventricular nucleus and number of vasopressin-immunopositive cells in the magnocellular part of the nucleus (to the 10th day after restress). Our results indicate a peculiar level of functional activity of HPAS in prenatally stressed males in the stress-restress paradigm: decreased activity under basal conditions and enhanced reactivity during stress.

  20. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    PubMed

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  1. Stress-induced activity in the locus coeruleus is not sensitive to stressor controllability

    PubMed Central

    McDevitt, Ross A; Szot, Patricia; Baratta, Michael V; Bland, Sondra T; White, Sylvia S; Maier, Steven F; Neumaier, John F

    2009-01-01

    An important factor in determining the adverse consequences of a stress experience is the degree to which an individual can exert control over the stressor. Stressor controllability is known to influence brain norepinephrine levels, but its impact on activity in noradrenergic cell bodies is unknown. In the present study we investigated whether noradrenergic neurons within the locus coeruleus (LC), the major source of forebrain norepinephrine, are sensitive to stressor controllability. We exposed adult male Sprague-Dawley rats to escapable or yoked inescapable tailshock and assessed LC activity by measuring changes in the immediate early gene c-fos and the enzyme tyrosine hydroxylase (TH). We used in situ hybridization to measure levels of c-fos mRNA, TH mRNA, and TH primary transcript in the LC. In all three cases stress exposure increased expression relative to an unstressed homecage control group, but expression did not differ between controllable and uncontrollable stress. To further examine whether stressor controllability influences the number of stress-responsive LC neurons we performed double-label immunohistochemistry for TH and Fos protein. Again we detected an overall effect of stress, which did not differ between controllable and uncontrollable stress. We conclude that exposure to stress robustly increases expression of TH and c-fos in the LC, but this effect is not influenced by stressor controllability. To the extent that the expression of these genes reflects degree of neuronal activation, our results suggest that stress-induced activity of noradrenergic cell bodies in the LC is not sensitive to stressor controllability. PMID:19524553

  2. Investigation of defect rate of lap laser welding of stainless steel railway vehicles car body

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao

    2015-02-01

    In order to resolve the disadvantages such as poor appearance quality, poor tightness, low efficiency of resistance spot welding of stainless steel rail vehicles, partial penetration lap laser welding process was investigated widely. But due to the limitation of processing technology, there will be local incomplete fusion in the lap laser welding seam. Defect rate is the ratio of the local incomplete fusion length to the weld seam length. The tensile shear strength under different defect rate and its effect on the car body static strength are not clear. It is necessary to find the biggest defect rate by numerical analysis of effects of different defect rates on the laser welding stainless steel rail vehicle body structure strength ,and tests of laser welding shear tensile strength.

  3. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  4. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  5. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  6. Performance evaluation of pitch lap in correcting mid-spatial-frequency errors under different smoothing parameters

    NASA Astrophysics Data System (ADS)

    Xu, Lichao; Wan, Yongjian; Liu, Haitao; Wang, Jia

    2016-10-01

    Smoothing is a convenient and efficient way to restrain middle spatial frequency (MSF) errors. Based on the experience, lap diameter, rotation speed, lap pressure and the hardness of pitch layer are important to correcting MSF errors. Therefore, nine groups of experiments are designed with the orthogonal method to confirm the significance of the above parameters. Based on the Zhang's model, PV (Peak and Valley) and RMS (Root Mean Square) versus processing cycles are analyzed before and after smoothing. At the same time, the smoothing limit and smoothing rate for different parameters to correct MSF errors are analyzed. Combined with the deviation analysis, we distinguish between dominant and subordinate parameters, and find out the optimal combination and law of various parameters, so as to guide the further research and fabrication.

  7. Modeling the Influence of Stitching on Delamination Growth in Stitched Warp-Knit Composite Lap Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  8. Stress-Activated Cap’n’collar Transcription Factors in Aging and Human Disease

    PubMed Central

    Sykiotis, Gerasimos P.; Bohmann, Dirk

    2010-01-01

    Cap’n’collar (Cnc) transcription factors are conserved in metazoans and have important developmental and homeostatic functions. The vertebrate Nrf1, Nrf2, and Nrf3, the Caenorhabditis elegans SKN-1, and the Drosophila CncC comprise a subgroup of Cnc factors that mediate adaptive responses to cellular stress. The most studied stress-activated Cnc factor is Nrf2, which orchestrates the transcriptional response of cells to oxidative stressors and electrophilic xenobiotics. In rodent models, signaling by Nrf2 defends against oxidative stress and aging-associated disorders, such as neurodegeneration, respiratory diseases, and cancer. In humans, polymorphisms that decrease Nrf2 abundance have been associated with various pathologies of the skin, respiratory system, and digestive tract. In addition to preventing disease in rodents and humans, Cnc factors have lifespan-extending and anti-aging functions in invertebrates. However, despite the pro-longevity and antioxidant roles of stress-activated Cnc factors, their activity paradoxically declines in aging model organisms and in humans suffering from progressing respiratory disease or neurodegeneration. We review the roles and regulation of stress-activated Cnc factors across species, present all reported instances in which their activity is paradoxically decreased in aging and disease, and discuss the possibility that the pharmacological restoration of Nrf2 signaling may be useful in the prevention and treatment of age-related diseases. PMID:20215646

  9. Recovery from activity-stress ulcer by ad lib feeding in rats.

    PubMed

    Hirao, M; Tanaka, M; Emoto, H; Ishii, H; Yokoo, H; Yoshida, M; Tsuda, A

    1997-12-31

    In order to investigate the recovery from activity-stress ulcers by ad lib-feeding and/or cessation of running, male Wistar rats were exposed to the activity-stress paradigm, and the rats that revealed hypothermia (their rectal temperature fell below 36 degrees C) were sacrificed either immediately or after several 24 h periods of healing. Rats that were sacrificed immediately after the appearance of hypothermia and those that were exposed to restricted feeding plus cessation of running revealed severe activity-stress ulcers, whereas few ulcers were observed in rats given ad lib-feeding and those that were given ad lib-feeding plus cessation of running. Although no significant differences in relative weights of spleen and thymus were obtained among the different recovery conditions, the relative weights of the adrenal glands were highest in the restricted feeding plus cessation of running group, whereas, the other animals exposed to the activity-stress paradigm showed no differences. These results indicate that activity-stress ulcers recover under conditions of ad lib-feeding within 24 h, but they are not influenced by cessation of running. These data also suggest that organ weights are not affected by any manipulations employed in the present study.

  10. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils.

    PubMed

    Binet, François; Chiasson, Sonia; Girard, Denis

    2010-01-01

    Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenic trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2alpha are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.

  11. Lung cancer: what are the links with oxidative stress, physical activity and nutrition.

    PubMed

    Filaire, Edith; Dupuis, Carmen; Galvaing, Géraud; Aubreton, Sylvie; Laurent, Hélène; Richard, Ruddy; Filaire, Marc

    2013-12-01

    Oxidative stress appears to play an essential role as a secondary messenger in the normal regulation of a variety of physiological processes, such as apoptosis, survival, and proliferative signaling pathways. Oxidative stress also plays important roles in the pathogenesis of many diseases, including aging, degenerative disease, and cancer. Among cancers, lung cancer is the leading cause of cancer in the Western world. Lung cancer is the commonest fatal cancer whose risk is dependent on the number of cigarettes smoked per day as well as the number of years smoking, some components of cigarette smoke inducing oxidative stress by transmitting or generating oxidative stress. It can be subdivided into two broad categories, small cell lung cancer and non-small-cell lung cancer, the latter is the most common type. Distinct measures of primary and secondary prevention have been investigated to reduce the risk of morbidity and mortality caused by lung cancer. Among them, it seems that physical activity and nutrition have some beneficial effects. However, physical activity can have different influences on carcinogenesis, depending on energy supply, strength and frequency of exercise loads as well as the degree of exercise-mediated oxidative stress. Micronutrient supplementation seems to have a positive impact in lung surgery, particularly as an antioxidant, even if the role of micronutrients in lung cancer remains controversial. The purpose of this review is to examine lung cancer in relation to oxidative stress, physical activity, and nutrition.

  12. Apelin-13 exerts antidepressant-like and recognition memory improving activities in stressed rats.

    PubMed

    Li, E; Deng, Haifeng; Wang, Bo; Fu, Wan; You, Yong; Tian, Shaowen

    2016-03-01

    Apelin is the endogenous ligand for the G-protein-coupled receptor (APJ). The localization of APJ in limbic structures suggests a potential role for apelin in emotional processes. However, the role of apelin in the regulation of stress-induced responses such as depression and memory impairment is largely unknown. In the present study, we evaluated the role of apelin-13 in the regulation of stress-induced depression and memory impairment in rats. We report that repeated intracerebroventricular injections of apelin-13 reversed behavioral despair (immobility) in the forced swim (FS) test, a model widely used for the selection of new antidepressant agents. Apelin-13 also reversed behavioral deficits (escape failure) in the learned helplessness test. The magnitude of the antiimmobility and anti-escape failure effects of apelin-13 was comparable to that of imipramine, a classic antidepressant used as a positive control. Rats exposed to FS stress showed memory performance impairment in the novel object recognition test, and this impairment was improved by apelin-13 treatment. Apelin-13 did not affect recognition memory performance in non-stressed rats. Furthermore, the pretreatment of LY294002 (PI3K inhibitors) or PD98059 (ERK1/2 inhibitor) blocked apelin-13-mediated activities in FS-stressed rats. These findings suggest that apelin-13 exerts antidepressant-like and recognition memory improving activities through activating PI3K and ERK1/2 signaling pathways in stressed rats.

  13. Working memory-related frontal theta activity is decreased under acute stress.

    PubMed

    Gärtner, Matti; Rohde-Liebenau, Lea; Grimm, Simone; Bajbouj, Malek

    2014-05-01

    Acute stress impairs prefrontal cortex (PFC) function and has detrimental effects on working memory (WM) performance. Converging evidence from electrophysiological studies suggests a close link between WM processes and frontal theta (FT) activity (4-8 Hz). However, the effect of stress on WM-related FT activity has not been investigated yet. To shed light on this topic we acquired EEG data from 31 healthy male subjects who underwent a stressful and a neutral control condition. In both conditions, they performed an n-back WM task at two different difficulty levels. Our results showed that WM-related FT activity was decreased under stress. Behaviorally, we found performance impairments under stress in the difficult task condition that were related to FT decreases. Increased cortisol levels indicated a successful moderate stress induction. These findings indicate that FT is a potential neurobiological marker for intact PFC functioning during WM and further supports the recently made assumption that FT acts in the PFC to optimize performance.

  14. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  15. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    SciTech Connect

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled data acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.

  16. Light-Addressable Potentiometric (LAP) Sensor Assay of Newcastle Disease Virus

    DTIC Science & Technology

    1991-04-01

    potentiometric (LAP) sensor, was employed to detect the presence of immobilized urease -conjugated antibodies. Lower limits of detection (LOD) of the assay were...is high, approximately 95% under the conditions of these assays (8), the number of the urease -containing antibody-antigen sandwiches immobilized will...produced un- der DND contract by the University of Alberta (Edmonton, AB). Antibody from clone 25R5 was covalently linked to urease ; antibody from clone

  17. Evaluation of the fuselage lap joint fatigue and terminating action repair

    NASA Astrophysics Data System (ADS)

    Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.

    1994-09-01

    Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the

  18. Evaluation of the fuselage lap joint fatigue and terminating action repair

    NASA Technical Reports Server (NTRS)

    Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.

    1994-01-01

    Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the

  19. Seismic fragility analysis of lap-spliced reinforced concrete columns retrofitted by SMA wire jackets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Park, Sun-Hee; Chung, Young-Soo; Kim, Hee Sun

    2013-08-01

    The aim of this study is to provide seismic fragility curves of reinforced concrete columns retrofitted by shape memory alloy wire jackets and thus assess the seismic performance of the columns against earthquakes, comparing them with reinforced concrete columns with lap-spliced and continuous reinforcement. For that purpose, this study first developed analytical models of the experimental results of the three types of columns, (1) lap-spliced reinforcement, (2) continuous reinforcement and (3) lap-spliced reinforcement and retrofitted by SMA wire jackets, using the OpenSEES program, which is oriented to nonlinear dynamic analysis. Then, a suite of ten recorded ground motions was used to conduct dynamic analyses of the analytical models with scaling of the peak ground acceleration from 0.1g to 1.0g in steps of 0.1g. From the static experimental tests, the column retrofitted with SMA wire jackets had a larger displacement ductility by a factor of 2.3 times that of the lap-spliced column, which was 6% larger compared with the ductility of the continuous reinforcement column. From the fragility analyses, the SMA wire jacketed column had median values of 0.162g and 0.567g for yield and collapse, respectively. For the yield damage state, the SMA wire jacketed column had a median value similar to the continuous reinforcement column. However, for the complete damage state, the SMA wire jacketed column showed a 1.33 times larger median value than the continuously reinforcement column.

  20. Active Hexose Correlated Compound Activates Immune Function to Decrease Chlamydia trachomatis Shedding in a Murine Stress Model

    PubMed Central

    Belay, Tesfaye; Fu, Chih-lung; Woart, Anthony

    2016-01-01

    A cold-induced stress mouse model for investigating chlamydia genital infection and immune response analysis was established in our laboratory. Previous results showed that cold-induced stress results in suppression of the immune response and increased intensity of chlamydia genital infection in the mouse model. The purpose of the present study was to evaluate the potential therapeutic value of active hexose correlated compound (AHCC) against chlamydia genital infection in mice. AHCC is an extract of mushroom commonly used as a dietary supplement is known to boost the immune system. Mice were infected intravaginally with Chlamydia trachomatis after a 24-day cold-stress application. Oral administration of AHCC to stressed or non-stressed mice was carried out seven days before infection and during the course of infection along with cervicovaginal swabbing. Cytokine production by peritoneal and splenic T cells isolated from AHCC-fed stressed mice and non-stressed mice was measured ELISA. Splenic T cells from both animal groups were co-cultured with mouse monocyte J774.2 cell line or cultured by addition of supernatants of AHCC-treated J774.2 cell line for 24 hours. Infection studies showed that AHCC-feeding compared to phosphate buffered saline (PBS)-feeding to stressed mice resulted in reduced Chlamydia trachomatis shedding from the genital tract. Levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were significantly increased in stressed mice receiving AHCC compared to stressed mice receiving PBS. Production of interferon gamma (IFN-γ) and interleukin 2 (IL-2) in the AHCC group was significantly high compared to production in PBS-fed group. Splenic T cells from stressed and non-stressed cultured with supernatants of AHCC-treated J774.2 cell line resulted in significantly increased TNF-α or IFN-γ production. Results obtained in this study show that AHCC improves the function of immune cells as indicated by the restoration of levels of cytokines

  1. Effect of Welding Speed on Joint Features and Lap Shear Properties of Stationary Shoulder FSLWed Alclad 2024 Al Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwu; Li, Zhengwei; Lv, Zan; Zhang, Liguo

    2017-02-01

    Using alclad 2024-T4 aluminum alloy as the research object, stationary shoulder technology was used in friction stir lap welding process to investigate its performance in this study. Joint features and mechanical properties of the lap joints were mainly investigated. Results show that lap joint with smooth surface, without shoulder marks and inner defects can be obtained using the stationary shoulder technology. With increasing the welding speed from 40 to 130 mm/min, effective sheet thickness (EST) at the advancing side (AS) shows rather stable values (from 1.17 to 1.31 mm), EST at the retreating side (RS) increases from 0.57 to 1.13 mm, and stir zone width decreases from 4.95 to 4.44 mm. Lap shear failure load of the SSFSLW joints firstly increases and then decreases with increasing the welding speed. Using 100 mm/min, the maximum failure loads of 15.85 and 9.01 kN were obtained when the RS and AS of the joint bear the main load during the lap shear test. Shear fracture mode and tensile fracture mode can be obtained during the lap shear test. All joints present ductile fracture mode.

  2. Effect of Welding Speed on Joint Features and Lap Shear Properties of Stationary Shoulder FSLWed Alclad 2024 Al Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwu; Li, Zhengwei; Lv, Zan; Zhang, Liguo

    2017-03-01

    Using alclad 2024-T4 aluminum alloy as the research object, stationary shoulder technology was used in friction stir lap welding process to investigate its performance in this study. Joint features and mechanical properties of the lap joints were mainly investigated. Results show that lap joint with smooth surface, without shoulder marks and inner defects can be obtained using the stationary shoulder technology. With increasing the welding speed from 40 to 130 mm/min, effective sheet thickness (EST) at the advancing side (AS) shows rather stable values (from 1.17 to 1.31 mm), EST at the retreating side (RS) increases from 0.57 to 1.13 mm, and stir zone width decreases from 4.95 to 4.44 mm. Lap shear failure load of the SSFSLW joints firstly increases and then decreases with increasing the welding speed. Using 100 mm/min, the maximum failure loads of 15.85 and 9.01 kN were obtained when the RS and AS of the joint bear the main load during the lap shear test. Shear fracture mode and tensile fracture mode can be obtained during the lap shear test. All joints present ductile fracture mode.

  3. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  4. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2015-11-01

    The purpose of this study was to investigate the influence of non-physiological high shear stress on activation and shedding of platelet GP IIb/IIIa receptors. The healthy donor blood was exposed to three levels of high shear stresses (25, 75, 125 Pa) from the physiological to non-physiological status with three short exposure time (0.05, 0.5, 1.5 s), created by a specific blood shearing system. The activation and shedding of the platelet GPIIb/IIIa were analyzed using flow cytometry and enzyme-linked immunosorbent assay. In addition, platelet P-selectin expression of sheared blood, which is a marker for activated platelets, was also analyzed. The results from the present study showed that the number of activated platelets, as indicated by the surface GPIIb/IIIa activation and P-selectin expression, increased with increasing the shear stress level and exposure time. However, the mean fluorescence of GPIIb/IIIa on the platelet surface, decreased with increasing the shear stress level and exposure time. The reduction of GPIIb/IIIa on the platelet surface was further proved by the reduction of further activated platelet GPIIb/IIIa surface expression induced by ADP and the increase in GPIIb/IIIa concentration in microparticle-free plasma with increasing the applied shear stress and exposure time. It is clear that non-physiological shear stress induce a paradoxical phenomenon, in which both activation and shedding of the GPIIb/IIIa on the platelet surface occur simultaneously. This study may offer a new perspective to explain the reason of both increased thrombosis and bleeding events in patients implanted with high shear blood-contacting medical devices.

  5. Enhancing pulsed eddy current for inspection of P-3 Orion lap-joint structures

    NASA Astrophysics Data System (ADS)

    Butt, D. M.; Underhill, P. R.; Krause, T. W.

    2016-02-01

    During flight, aircraft are subjected to cyclic loading. In the Lockheed P-3 Orion airframe, this cyclic loading can lead to development of fatigue cracks at steel fastener locations in the top and second layers of aluminum wing skin lap-joints. An inspection method that is capable of detecting these cracks, without fastener removal, is desirable as this can minimize aircraft downtime, while subsequently reducing the risk of collateral damage. The ability to detect second layer cracks has been demonstrated using a Pulsed Eddy Current (PEC) probe design that utilizes the ferrous fastener as a flux conduit. This allows for deeper penetration of flux into the lap-joint second layer and consequently, sensitivity to the presence of cracks. Differential pick-up coil pairs are used to sense the eddy current response due to the presence of a crack. The differential signal obtained from pick-up coils on opposing sides of the fastener is analyzed using a Modified Principal Components Analysis (MPCA). This is followed by a cluster analysis of the resulting MPCA scores to separate fastener locations with cracks from those without. Probe design features, data acquisition system parameters and signal post-processing can each have a strong impact on crack detection. Physical probe configurations and signal analysis processes, used to enhance the PEC system for detection of cracks in P-3 Orion lap-joint structures, are investigated and an enhanced probe design is identified.

  6. Probabilistic seismic performance assessment of lap-spliced RC columns retrofitted by steel wrapping jackets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Youn, Heejung; Cho, Baik-Soon

    2016-06-01

    In this study, the seismic fragility curves of two reinforced concrete (RC) columns that were lap-spliced at the bottom and retrofitted with steel wrapping jackets were generated. Their seismic performance was probabilistically assessed in comparison to that of lap-spliced or continuous reinforcement RC columns. This study used two types of steel wrapping jackets, a full jacket and a split jacket. Analytical models of the four types of columns were developed based on the experimental results of the columns using OpenSEES, which is effective in conducting nonlinear time history analyses. A suite of ten artificial ground motions, modified from recorded ground motions, was used to perform nonlinear time history analyses of the analytical models with scaling of the peak ground acceleration from 0.1 g to 1.0 g in increments of 0.1 g. The steel wrapping jackets did not increase the medians for yield (slight damage state) of the lap-spiced column and did not exceed the corresponding median of the continuous reinforcement column. However, the two steel jackets increased the medians for failure by 1.872 and 2.017 times, respectively, and exceeded the corresponding median of the continuous reinforcement column by 11.8% and 20.5%, respectively.

  7. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals

    PubMed Central

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M.; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress. PMID:25493938

  8. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals.

    PubMed

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  9. Significance of Neuronal Cytochrome P450 Activity in Opioid-Mediated Stress-Induced Analgesia

    PubMed Central

    Hough, Lindsay B.; Nalwalk, Julia W.; Yang, Weizhu; Ding, Xinxin

    2014-01-01

    Stressful environmental changes can suppress nociceptive transmission, a phenomenon known as “stress-induced analgesia”. Depending on the stressor and the subject, opioid or non-opioid mechanisms are activated. Brain μ opioid receptors mediate analgesia evoked either by exogenous agents (e.g. morphine), or by the release of endogenous opioids following stressful procedures. Recent work with morphine and neuronal cytochrome P450 (P450)-deficient mice proposed a signal transduction role for P450 enzymes in μ analgesia. Since μ opioid receptors also mediate some forms of stress-induced analgesia, the present studies assessed the significance of brain P450 activity in opioid-mediated stress-induced analgesia. Two widely-used models of opioid stress-induced analgesia (restraint and warm water swim) were studied in both sexes of wild-type control and P450-deficient (Null) mice. In control mice, both stressors evoked moderate analgesic responses which were blocked by pretreatment with the opioid antagonist naltrexone, confirming the opioid nature of these responses. Consistent with literature, sex differences (control female > control male) were seen in swim-induced, but not restraint-induced, analgesia. Null mice showed differential responses to the two stress paradigms. As compared with control subjects, Null mice showed highly attenuated restraint-induced analgesia, showing a critical role for neuronal P450s in this response. However, warm water swim-induced analgesia was unchanged in Null vs. control mice. Additional control experiments confirmed the absence of morphine analgesia in Null mice. These results are the first to show that some forms of opioid-mediated stress-induced analgesia require brain neuronal P450 activity. PMID:25020125

  10. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum.

    PubMed

    Li, Biao; Wei, Jinmin; Wei, Xiaolan; Tang, Kun; Liang, Yilong; Shu, Kunxian; Wang, Bochu

    2008-06-01

    The effect of sound wave stress on important medicinal plant, Dendrobium candidum Wall. ex Lindl, was investigated, including the responses on malondialdehyde (MDA) content, the activities change of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX). Results were found that the activities of SOD, CAT, POD and APX enhanced totally in different organs of D. candidum, as leaves, stems and roots, in response to the stress. Furthermore there happened similar shift of antioxidant enzymes activities, which increased in the initial stimulation and decreased afterwards. Data showed SOD, CAT, POD and APX activities ascended to max at day 9, 6, 9 and 12 in leaves, at day 9, 6, 12 and 9 in stems, and at day 12, 6, 9 and 9 in roots, respectively. As a lipid peroxidation parameter, MDA content in different organs increased in the beginning, dropped afterward, and increased again in the late. Anyway the total trend was the rise of MDA level compared to the control. It was interesting that the MDA content appeared the lowest levels almost when the antioxidant enzymes activities were up to the highest. Our results demonstrated the different organs of D. candidum might produce accumulation of active oxygen species (AOS) under initial treatment of sound wave stress. Later AOS might start to reduce due to the enhancement of antioxidant enzymes activities treated by the stress. The data revealed that the antioxidant metabolism was to be important in determining the ability of plants to survive in sound stress, and the up regulation of these enzymes activities would help to reduce the build up of AOS, which could protect plant cells from oxidative damage. Moreover, different cell compartments might activate different defensive system to reduce excessive amount of AOS. Finally the mechanism of this action was also discussed simply.

  11. [Nursing images and representations concerning stress and influence on work activity].

    PubMed

    Hanzelmann, Renata da Silva; Passos, Joanir Pereira

    2010-09-01

    The objectives of this study were: to identify the representations related to working stress factors attributed by nursing professionals and to discuss the influence of those factors on their work activities. The investigation was developed through a descriptive study with a qualitative approach, using the premises of social representations. The performed studies were used as the framework for the analyses. Data collection was performed using individual semi-structured interviews. The content analysis technique was used to understand the images as representations of nursing workers, the meaning of the stressing factors and their influence on occupational activity. The studied population regularly faces the lack of appropriate working conditions, the scarcity of human and material resources and untrained personnel; Nursing workers feel dissatisfied and present mental and physical fatigue, which are situations that may cause stress when performing occupational activities.

  12. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    PubMed

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing.

  13. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  14. Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress

    PubMed Central

    Amir-Zilberstein, Liat; Blechman, Janna; Sztainberg, Yehezkel; Norton, William H.J.; Reuveny, Adriana; Borodovsky, Nataliya; Tahor, Maayan; Bonkowsky, Joshua L.; Bally-Cuif, Laure; Chen, Alon; Levkowitz, Gil

    2015-01-01

    SUMMARY Regulation of corticotropin-releasing hormone (CRH) activity is critical for the animal’s adaptation to stressful challenges, and its dysregulation is associated with psychiatric disorders in humans. However, the molecular mechanism underlying this transcriptional response to stress is not well understood. Using various stress paradigms in mouse and zebrafish, we show that the hypothalamic transcription factor Orthopedia modulates the expression of CRH as well as the splicing factor Ataxin 2-Binding Protein-1 (A2BP1/Rbfox-1). We further show that the G protein coupled receptor PAC1, which is a known A2BP1/Rbfox-1 splicing target and an important mediator of CRH activity, is alternatively spliced in response to a stressful challenge. The generation of PAC1-hop messenger RNA isoform by alternative splicing is required for termination of CRH transcription, normal activation of the hypothalamic-pituitary-adrenal axis and adaptive anxiety-like behavior. Our study identifies an evolutionarily conserved biochemical pathway that modulates the neuronal adaptation to stress through transcriptional activation and alternative splicing. PMID:22284183

  15. Extracurricular activities associated with stress and burnout in preclinical medical students.

    PubMed

    Fares, Jawad; Saadeddin, Zein; Al Tabosh, Hayat; Aridi, Hussam; El Mouhayyar, Christopher; Koleilat, Mohamad Karim; Chaaya, Monique; El Asmar, Khalil

    2016-09-01

    This study aims to assess the prevalence of stress and burnout among preclinical medical students in a private university in Beirut, Lebanon, and evaluate the association between extracurricular involvement and stress and burnout relief in preclinical medical students. A cross-sectional survey was conducted on a random sample of 165 preclinical medical students. Distress level was measured using the 12-item General Health Questionnaire (GHQ-12) while that of burnout was measured through the Maslach Burnout Inventory-Student Survey (MBI-SS). The MBI-SS assesses three interrelated dimensions: emotional exhaustion, cynicism, and academic efficacy. Extracurricular activities were divided into four categories: physical exercise, music, reading, and social activities. All selected participants responded. A substantial proportion of preclinical medical students suffered from stress (62%) and burnout (75%). Bivariate and multivariate regression analyses revealed that being a female or a 1st year medical student correlated with higher stress and burnout. Music-related activities were correlated with lower burnout. Social activities or living with parents were associated with lower academic efficacy. The high stress and burnout levels call for action. Addressing the studying conditions and attending to the psychological wellbeing of preclinical medical students are recommendations made in the study.

  16. Enhanced Cholinergic Activity Improves Cerebral Blood Flow during Orthostatic Stress

    PubMed Central

    Serrador, Jorge M.; Freeman, Roy

    2017-01-01

    Cerebral blood flow (CBF) and consequently orthostatic tolerance when upright depends on dilation of the cerebral vasculature in the face of reduced perfusion pressure associated with the hydrostatic gradient. However, it is still unclear if cholinergic activation plays a role in this dilation. To determine if enhancing central cholinergic activity with the centrally acting acetylcholinesterase inhibitor, physostigmine would increase CBF when upright compared to the peripherally acting acetylcholinesterase inhibitor, neostigmine, or saline. We performed a randomized double-blind dose-ranging study that took place over 3 days in a hospital-based research lab. Eight healthy controls (six women and two men, mean age, 26 years; range 21–33) were given infusions of physostigmine, neostigmine, or saline on three different days. Five-minute tilts were repeated at baseline (no infusion), Dose 1 (0.2 μg/kg/min physostigmine; 0.1 μg/kg/min neostigmine) and Dose 2 (0.6 μg/kg/min physostigmine or 0.3 μg/kg/min neostigmine), and placebo (0.9% NaCl). Cerebral blood velocity, beat-to-beat blood pressure, and end-tidal CO2 were continuously measured during tilts. Physostigmine (0.6 μg/kg/min) resulted in higher cerebral blood velocity during tilt (90.5 ± 1.5%) than the equivalent neostigmine (85.5 ± 2.6%) or saline (84.8 ± 1.7%) trials (P < 0.05). This increase occurred despite a greater postural hypocapnia, suggesting physostigmine had a direct vasodilatory effect on the cerebral vasculature. Cerebral hypoperfusion induced by repeated tilts was eliminated by infusion of physostigmine not neostigmine. In conclusion, this study provides the first evidence that enhancement of central, not peripheral, cholinergic activity attenuates the physiological decrease in CBF seen during upright tilt. These data support the need for further research to determine if enhancing central cholinergic activity may improve symptoms in patients with symptomatic

  17. The Adaptogens Rhodiola and Schizandra Modify the Response to Immobilization Stress in Rabbits by Suppressing the Increase of Phosphorylated Stress-activated Protein Kinase, Nitric Oxide and Cortisol

    PubMed Central

    Panossian, Alexander; Hambardzumyan, Marina; Hovhanissyan, Areg; Wikman, Georg

    2007-01-01

    Adaptogens possess anti-fatigue and anti-stress activities that can increase mental and physical working performance against a background of fatigue or stress. The aim of the present study was to ascertain which mediators of stress response are significantly involved in the mechanisms of action of adaptogens, and to determine their relevance as biochemical markers for evaluating anti-stress effects in rabbits subjected to restraint stress. Blood levels of stress-activated protein kinase (SAPK/JNK), the phosphorylated kinase p-SAPK/p-JNK, nitric oxide (NO), cortisol, testosterone, prostaglandin E2, leukotriene B4 and thromboxane B2 were determined in groups of animals prior to daily oral administration of placebo, rhodioloside or extracts of Eleutherococcus senticosus, Schizandra chinensis, Rhodiola rosea, Bryonia alba and Panax ginseng over a 7 day period. Ten minutes after the final treatment, animals were immobilized for 2 hours and blood levels of the markers re-determined. In the placebo group, only p-SAPK/p-JNK, NO and cortisol were increased significantly (by 200–300% cf basal levels) following restraint stress, whilst in animals that had received multiple doses of adaptogens/stress-protectors, the levels of NO and cortisol remained practically unchanged after acute stress. Rhodioloside and extracts of S. chinensis and R. rosea were the most active inhibitors of stress-induced p-SAPK/p-JNK. E. senticosus, B. alba and P. ginseng exerted little effect on p-SAPK/p-JNK levels. It is suggested that the inhibitory effects of R. rosea and S. chinensis on p-SAPK/p-JNK activation may be associated with their antidepressant activity as well as their positive effects on mental performance under stress. PMID:21901061

  18. The stressed female brain: neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress.

    PubMed

    Maeng, Lisa Y; Shors, Tracey J

    2013-01-01

    Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD), indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA) is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC) during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL) and infralimbic (IL) subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. About 24 h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similarly to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful life

  19. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices.

    PubMed

    Molteni, Raffaella; Rossetti, Andrea C; Savino, Elisa; Racagni, Giorgio; Calabrese, Francesca

    2016-01-01

    Although activity-dependent transcription represents a crucial mechanism for long-lasting experience-dependent changes in the hippocampus, limited data exist on its contribution to pathological conditions. We aim to investigate the influence of chronic stress on the activity-dependent transcription of brain-derived neurotrophic factor (BDNF). The ex vivo methodology of acute stimulation of hippocampal slices obtained from rats exposed to chronic mild stress (CMS) was used to evaluate whether the adverse experience may alter activity-dependent BDNF gene expression. CMS reduces BDNF expression and that acute depolarization significantly upregulates total BDNF mRNA levels only in control animals, showing that CMS exposure may alter BDNF transcription under basal conditions and during neuronal activation. Moreover, while the basal effect of CMS on total BDNF reflects parallel modulations of all the transcripts examined, isoform-specific changes were found after depolarization. This different effect was also observed in the activation of intracellular signaling pathways related to the neurotrophin. In conclusion, our study discloses a functional alteration of BDNF transcription as a consequence of stress. Being the activity-regulated transcription a critical process in synaptic and neuronal plasticity, the different regulation of individual BDNF promoters may contribute to long-lasting changes, which are fundamental for the vulnerability of the hippocampus to stress-related diseases.

  20. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  1. Biotic and Abiotic Stresses Activate Different Ca2+ Permeable Channels in Arabidopsis

    PubMed Central

    Cao, Xiao-Qiang; Jiang, Zhong-Hao; Yi, Yan-Yan; Yang, Yi; Ke, Li-Ping; Pei, Zhen-Ming; Zhu, Shan

    2017-01-01

    To survive, plants must respond rapidly and effectively to various stress factors, including biotic and abiotic stresses. Salinity stress triggers the increase of cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane, as well as bacterial flg22 and plant endogenous peptide Pep1. However, the interaction between abiotic stress-induced [Ca2+]i increases and biotic stress-induced [Ca2+]i increases is still not clear. Employing an aequorin-based Ca2+ imaging assay, in this work, we investigated the [Ca2+]i changes in response to flg22, Pep1, and NaCl treatments in Arabidopsis thaliana. We observed an additive effect on the [Ca2+]i increase which induced by flg22, Pep1, and NaCl. Our results indicate that biotic and abiotic stresses may activate different Ca2+ permeable channels. Further, calcium signal induced by biotic and abiotic stresses was independent in terms of spatial and temporal patterning. PMID:28197161

  2. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro.

    PubMed

    Aisha, M D; Nor-Ashikin, M N K; Sharaniza, A B R; Nawawi, H; Froemming, G R A

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases.

  3. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    PubMed Central

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  4. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial.

    PubMed

    van der Zwan, Judith Esi; de Vente, Wieke; Huizink, Anja C; Bögels, Susan M; de Bruin, Esther I

    2015-12-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing stress and its related symptoms. We randomly allocated 126 participants to PA, MM, or HRV-BF upon enrollment, of whom 76 agreed to participate. The interventions consisted of psycho-education and an introduction to the specific intervention techniques and 5 weeks of daily exercises at home. The PA exercises consisted of a vigorous-intensity activity of free choice. The MM exercises consisted of guided mindfulness meditation. The HRV-BF exercises consisted of slow breathing with a heart rate variability biofeedback device. Participants received daily reminders for their exercises and were contacted weekly to monitor their progress. They completed questionnaires prior to, directly after, and 6 weeks after the intervention. Results indicated an overall beneficial effect consisting of reduced stress, anxiety and depressive symptoms, and improved psychological well-being and sleep quality. No significant between-intervention effect was found, suggesting that PA, MM, and HRV-BF are equally effective in reducing stress and its related symptoms. These self-help interventions provide easily accessible help for people with stress complaints.

  5. Effects of manual lymph drainage for abdomen on the brain activity of subjects with psychological stress

    PubMed Central

    Shim, Jung-Myo; Yeun, Young-Ran; Kim, Hye-Young; Kim, Sung-Joong

    2017-01-01

    [Purpose] The present study investigated the effects of manual lymph drainage for abdomen on electroencephalography in subjects with psychological stress. [Subjects and Methods] Twenty-eight subjects were randomly allocated to undergo a 20-min session of either manual lymph drainage or abdominal massage on a bed. [Results] Analysis of electroencephalograms from the manual lymph drainage group showed a significant increase in relaxation, manifested as an increase in average absolute, relative alpha activity and a decrease in relative gamma activity. [Conclusion] Our results suggest that the application of manual lymph drainage from the abdomen provides acute neural effects that increase relaxation in subjects with psychological stress. PMID:28356638

  6. Rank, job stress, psychological distress and physical activity among military personnel

    PubMed Central

    2013-01-01

    Background Physical fitness is one of the most important qualities in armed forces personnel. However, little is known about the association between the military environment and the occupational and leisure-time dimensions of the physical activity practiced there. This study assessed the association of rank, job stress and psychological distress with physical activity levels (overall and by dimensions). Methods This a cross-sectional study among 506 military service personnel of the Brazilian Army examined the association of rank, job stress and psychological distress with physical activity through multiple linear regression using a generalized linear model. Results The adjusted models showed that the rank of lieutenant was associated with most occupational physical activity (β = 0.324; CI 95% 0.167; 0.481); “high effort and low reward” was associated with more occupational physical activity (β = 0.224; CI 95% 0.098; 0.351) and with less physical activity in sports/physical exercise in leisure (β = −0.198; CI 95% −0.384; −0.011); and psychological distress was associated with less physical activity in sports/exercise in leisure (β = −0.184; CI 95% −0.321; −0.046). Conclusions The results of this study show that job stress and rank were associated with higher levels of occupational physical activity. Moreover job stress and psychological distress were associated with lower levels of physical activity in sports/exercises. In the military context, given the importance of physical activity and the psychosocial environment, both of which are related to health, these findings may offer input to institutional policies directed to identifying psychological distress early and improving work relationships, and to creating an environment more favorable to increasing the practice of leisure-time physical activity. PMID:23914802

  7. Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress.

    PubMed

    Fitzgerald, Paul J; Giustino, Thomas F; Seemann, Jocelyn R; Maren, Stephen

    2015-07-14

    Stress-induced impairments in extinction learning are believed to sustain posttraumatic stress disorder (PTSD). Noradrenergic signaling may contribute to extinction impairments by modulating medial prefrontal cortex (mPFC) circuits involved in fear regulation. Here we demonstrate that aversive fear conditioning rapidly and persistently alters spontaneous single-unit activity in the prelimbic and infralimbic subdivisions of the mPFC in behaving rats. These conditioning-induced changes in mPFC firing were mitigated by systemic administration of propranolol (10 mg/kg, i.p.), a β-noradrenergic receptor antagonist. Moreover, propranolol administration dampened the stress-induced impairment in extinction observed when extinction training is delivered shortly after fear conditioning. These findings suggest that β-adrenoceptors mediate stress-induced changes in mPFC spike firing that contribute to extinction impairments. Propranolol may be a helpful adjunct to behavioral therapy for PTSD, particularly in patients who have recently experienced trauma.

  8. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers

    PubMed Central

    Huang, Bin; Kim, Heung Soo

    2014-01-01

    An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed and governing equations are derived by taking the principle of complementary virtual work. The solutions are obtained by solving a generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions, but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the piezoelectric actuators. PMID:25025088

  9. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration.

    PubMed

    Hermans, Erno J; van Marle, Hein J F; Ossewaarde, Lindsey; Henckens, Marloes J A G; Qin, Shaozheng; van Kesteren, Marlieke T R; Schoots, Vincent C; Cousijn, Helena; Rijpkema, Mark; Oostenveld, Robert; Fernández, Guillén

    2011-11-25

    Acute stress shifts the brain into a state that fosters rapid defense mechanisms. Stress-related neuromodulators are thought to trigger this change by altering properties of large-scale neural populations throughout the brain. We investigated this brain-state shift in humans. During exposure to a fear-related acute stressor, responsiveness and interconnectivity within a network including cortical (frontoinsular, dorsal anterior cingulate, inferotemporal, and temporoparietal) and subcortical (amygdala, thalamus, hypothalamus, and midbrain) regions increased as a function of stress response magnitudes. β-adrenergic receptor blockade, but not cortisol synthesis inhibition, diminished this increase. Thus, our findings reveal that noradrenergic activation during acute stress results in prolonged coupling within a distributed network that integrates information exchange between regions involved in autonomic-neuroendocrine control and vigilant attentional reorienting.

  10. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals.

    PubMed

    Fraile-Bermúdez, A B; Kortajarena, M; Zarrazquin, I; Maquibar, A; Yanguas, J J; Sánchez-Fernández, C E; Gil, J; Irazusta, A; Ruiz-Litago, F

    2015-10-01

    The aim of the present study was to examine the relationship between objective data of physical activity and markers of oxidative stress in older men and women. Participants were old adults, aged≥60years (61 women and 34 men) who were all capable of performing basic daily activities by themselves and lived on their own. To describe physical activity we used objective data measured by accelerometers which record active and sedentary periods during everyday life for five days. Determination of oxidative stress was conducted from three perspectives: determination plasma total antioxidant status (TAS), plasma antioxidant enzyme activities, i.e., glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), and membrane lipid peroxidation (TBARS). In the group of women, those who met physical activity recommendations (WR) had lower level of TAS. In addition, the moderate to vigorous physical activity (MVPA) was negatively correlated with TAS. Simultaneously, MVPA was correlated with increase in the GPx antioxidant enzyme activity, and the counts per minute were positively correlated with CAT activity. In the group of men, the cpm and the MVPA were negatively correlated with lipid peroxidation while lifestyle physical activity was positively correlated with CAT activity. These findings suggest that MVPA in the elderly although it is related to a decrease in the TAS in women, induces adaptive increase in antioxidant enzyme activity and decreases lipid peroxidation in both women and men. These results suggest that at this time of life, it is not only the amount of physical activity performed that is important but also its intensity.

  11. Active secretion and protective effect of salivary nitrate against stress in human volunteers and rats

    PubMed Central

    Jin, Luyuan; Qin, Lizheng; Xia, Dengsheng; Liu, Xibao; Fan, Zhipeng; Zhang, Chunmei; Gu, Liankun; He, Junqi; Ambudkar, Indu S.; Deng, Dajun; Wang, Songlin

    2014-01-01

    Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1 h later (p < 0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1 h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastricmucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p < 0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was

  12. Active secretion and protective effect of salivary nitrate against stress in human volunteers and rats.

    PubMed

    Jin, Luyuan; Qin, Lizheng; Xia, Dengsheng; Liu, Xibao; Fan, Zhipeng; Zhang, Chunmei; Gu, Liankun; He, Junqi; Ambudkar, Indu S; Deng, Dajun; Wang, Songlin

    2013-04-01

    Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68 m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1h later (p<0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastric mucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p<0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was

  13. Hippocampal activation of microglia may underlie the shared neurobiology of comorbid posttraumatic stress disorder and chronic pain

    PubMed Central

    Sun, Rao; Zhang, Zuoxia; Lei, Yishan; Liu, Yue; Lu, Cui’e; Rong, Hui; Sun, Yu’e; Zhang, Wei; Gu, Xiaoping

    2016-01-01

    The high comorbidity rates of posttraumatic stress disorder and chronic pain have been widely reported, but the underlying mechanisms remain unclear. Emerging evidence suggested that an excess of inflammatory immune activities in the hippocampus involved in the progression of both posttraumatic stress disorder and chronic pain. Considering that microglia are substrates underlying the initiation and propagation of the neuroimmune response, we hypothesized that stress-induced activation of hippocampal microglia may contribute to the pathogenesis of posttraumatic stress disorder-pain comorbidity. We showed that rats exposed to single prolonged stress, an established posttraumatic stress disorder model, exhibited persistent mechanical allodynia and anxiety-like behavior, which were accompanied by increased activation of microglia and secretion of pro-inflammatory cytokines in the hippocampus. Correlation analyses showed that hippocampal activation of microglia was significantly correlated with mechanical allodynia and anxiety-like behavior. Our data also showed that both intraperitoneal and intra-hippocampal injection of minocycline suppressed single prolonged stress-induced microglia activation and inflammatory cytokines accumulation in the hippocampus, and attenuated both single prolonged stress-induced mechanical allodynia and anxiety-like behavior. Taken together, the present study suggests that stress-induced microglia activation in the hippocampus may serve as a critical mechanistic link in the comorbid relationship between posttraumatic stress disorder and chronic pain. The novel concept introduces the possibility of cotreating chronic pain and posttraumatic stress disorder. PMID:27852966

  14. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Głombik, Katarzyna; Budziszewska, Bogusława; Kubera, Marta; Lasoń, Władysław; Popiołek-Barczyk, Katarzyna; Mika, Joanna; Wędzony, Krzysztof; Basta-Kaim, Agnieszka

    2015-01-01

    Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression) as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test), the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive) in 3-month-old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4) and beneficial (insulin-like growth factor-1 (IGF-1), brain derived neurotrophic factor (BDNF)) phenotypes in cultures of microglia obtained from the cortices of 1–2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like) disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats. Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood. PMID

  15. Reactive Oxygene Species and Thioredoxin Activity in Plants at Development of Hypergravity and Oxidative Stresses

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    Early increasing of reactive oxygen species (ROS) content, including H2O2, occurs in plant cells under various impacts and than these ROS can function as signaling molecules in starting of cell stress responses. At the same time thioredoxins (TR) are significant ROS and H2O2 sensors and transmitters to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study was aimed to investigate early increasing of ROS and H2O2 contents and TR activity in the pea roots and in tissue culture under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12-14 days old tissue culture of Arabidopsis thaliana were studied. The pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 10 and 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and TR activity were determined. All experiments were repeated by 3-5 times. Early and reliable increasing of ChL intensity and H2O2 contents in the pea roots and in the tissue culture took place under hypergravity and oxidative stresses to 30, 60 and 90 min. At the same time TR activity increased on 11 and 19 percents only to 60 and 90 min. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers lead to increasing of TR activity with creating of ROS-TR stress signaling pathway.

  16. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants.

  17. Embryo as an active granular fluid: stress-coordinated cellular constriction chains

    NASA Astrophysics Data System (ADS)

    Gao, Guo-Jie Jason; Holcomb, Michael C.; Thomas, Jeffrey H.; Blawzdziewicz, Jerzy

    2016-10-01

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. However, systematic methods of studying how mechanical stress and feedback help to harmonize cellular activities within a tissue have yet to be developed. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity. Our particle-based AGF model will be useful in analyzing mechanical feedback effects in a wide variety of morphogenesis and organogenesis phenomena.

  18. Antiparasitic activities of novel ruthenium/lapachol complexes.

    PubMed

    Barbosa, Marília I F; Corrêa, Rodrigo S; de Oliveira, Katia Mara; Rodrigues, Claudia; Ellena, Javier; Nascimento, Otaciro R; Rocha, Vinícius P C; Nonato, Fabiana R; Macedo, Taís S; Barbosa-Filho, José Maria; Soares, Milena B P; Batista, Alzir A

    2014-07-01

    The present study describes the synthesis, characterization, antileishmanial and antiplasmodial activities of novel diimine/(2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 4,4'-methylbipyridine (Me-bipy) and 4,4'-methoxybipyridine (MeO-bipy)/phosphine/ruthenium(II) complexes containing lapachol (Lap, 2-hydroxy-3-(3-33 methyl-2-buthenyl)-1,4-naphthoquinone) as bidentate ligand. The [Ru(Lap)(PPh3)2(bipy)]PF6 (1), [Ru(Lap)(PPh3)2(Me-bipy)]PF6 (2), [Ru(Lap)(PPh3)2(MeO-bipy)]PF6(3) and[Ru(Lap)(PPh3)2(phen)]PF6 (4) complexes, PPh3=triphenylphospine, were synthesized from the reactions of cis-[RuCl2(PPh3)2(X-bipy)] or cis-[RuCl2(PPh3)2(phen)], with lapachol. The [RuCl2(Lap)(dppb)] (5) [dppb=1,4-bis(diphenylphosphine)butane] was synthesized from the mer-[RuCl3(dppb)(H2O)] complex. The complexes were characterized by elemental analysis, molar conductivity, infrared and UV-vis spectroscopy, (31)P{(1)H} and (1)H NMR, and cyclic voltammetry. The Ru(III) complex, [RuCl2(Lap)(dppb)], was also characterized by the EPR technique. The structure of the complexes [Ru(Lap)(PPh3)2(bipy)]PF6 and [RuCl2(Lap)(dppb)] was elucidated by X-ray diffraction. The evaluation of the antiparasitic activities of the complexes against Leishmania amazonensis and Plasmodium falciparum demonstrated that lapachol-ruthenium complexes are more potent than the free lapachol. The [RuCl2(Lap)(dppb)] complex is the most potent and selective antiparasitic compound among the five new ruthenium complexes studied in this work, exhibiting an activity comparable to the reference drugs.

  19. Moderate endurance exercise in patients with sickle cell anaemia: effects on oxidative stress and endothelial activation.

    PubMed

    Faes, Camille; Balayssac-Siransy, Edwige; Connes, Philippe; Hivert, Ludovic; Danho, Clotaire; Bogui, Pascal; Martin, Cyril; Pialoux, Vincent

    2014-01-01

    Very few studies have investigated the effects of exercise on the biological parameters involved in vaso-occlusive events in sickle cell anaemia (SCA). The aim of this study was to test how a mild-moderate endurance exercise modulates oxidative stress, nitric oxide bioavailability and endothelial activation in SCA patients and healthy individuals. Eleven patients with SCA and 15 healthy subjects completed a 20-min duration submaximal cycling exercise at ≈45 Watts. Plasma markers of oxidative stress, antioxidant activity, endothelial activation and nitric oxide bioavailability were investigated before and after the exercise. Nitric oxide levels, anti-oxidant capacity, soluble (s)E-selectin and sP-selectin did not change in response to this exercise. Except for the malondialdehyde levels, which increased in the two groups, the other markers of oxidative stress remained unchanged in both groups in response to exercise. Soluble vascular cell adhesion molecule 1 levels were increased at the end of exercise in both groups. sL-selectin decreased and soluble intercellular adhesion molecule 1 increased with exercise in SCA patients only. The present data suggest that patients with SCA may undertake mild-moderate physical activities without any acute clinical complications, but care should be taken because oxidative stress and endothelial activation significantly increased in some patients.

  20. Interrelation Between Oxidative Stress and Complement Activation in Models of Age-Related Macular Degeneration.

    PubMed

    Pujol-Lereis, Luciana M; Schäfer, Nicole; Kuhn, Laura B; Rohrer, Bärbel; Pauly, Diana

    2016-01-01

    Millions of individuals older than 50-years suffer from age-related macular degeneration (AMD). Associated with this multifactorial disease are polymorphisms of complement factor genes and a main environmental risk factor-oxidative stress. Until now the linkage between these risk factors for AMD has not been fully understood. Recent studies, integrating results on oxidative stress, complement activation, epidemiology and ocular pathology suggested the following sequence in AMD-etiology: initially, chronic oxidative stress results in modification of proteins and lipids in the posterior of the eye; these tissue alterations trigger chronic inflammation, involving the complement system; and finally, invasive immune cells facilitate pathology in the retina. Here, we summarize the results for animal studies which aim to elucidate this molecular interplay of oxidative events and tissue-specific complement activation in the eye.

  1. Muscle sympathetic nerve activity in blood pressure control against gravitational stress.

    PubMed

    Mano, T

    2001-10-01

    Muscle sympathetic nerve activity (MSNA) can be directly recorded from human peripheral nerves in situ using microneurography. MSNA plays an essential role to control systemic blood pressure against gravitational stress. MSNA was enhanced by changing posture against terrestrial gravity from lying to sitting, and from sitting to standing. This activity was enhanced by head-up tilt depending on the gravitational input from the head to the leg (+Gz) in the human body. Orthostatic hypotension occurred when MSNA response to gravitational stress was impaired both in high and low responders of this sympathetic outflow. Syncope was preceded and/or associated by a withdrawal of MSNA. MSNA was suppressed by short-term exposure to microgravity but was enhanced after long-term exposure to microgravity. Orthostatic intolerance after exposure to prolonged microgravity was associated with a reduction of increased MSNA response to gravitational stress. Aging influenced gravity-related responses of MSNA.

  2. Dial 9-1-1 for p53: Mechanisms of p53 Activation by Cellular Stress

    PubMed Central

    Ljungman, Mats

    2000-01-01

    Abstract The tumor suppressor protein, p53, is part of the cell's emergency team that is called upon following cellular insult. How do cells sense DNA damage and other cellular stresses and what signal transduction pathways are used to alert p53? How is the resulting nuclear accumulation of p53 accomplished and what determines the outcome of p53 induction? Many posttranslational modifications of p53, such as phosphorylation, dephosphorylation, acetylation and ribosylation, have been shown to occur following cellular stress. Some of these modifications may activate the p53 protein, interfere with MDM2 binding and/or dictate cellular localization of p53. This review will focus on recent findings about how the p53 response may be activated following cellular stress. PMID:10935507

  3. Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas.

    PubMed

    Meijer, Harold J G; van Himbergen, John A J; Musgrave, Alan; Munnik, Teun

    2017-03-01

    Osmotic stress rapidly activates several phospholipid signalling pathways in the unicellular alga Chlamydomonas. In this report, we have studied the effects of salt-acclimation on growth and phospholipid signalling. Growing cells on media containing 100 mM NaCl increased their salt-tolerance but did not affect the overall phospholipid content, except that levels of phosphatidylinositol phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] were reduced by one-third. When these NaCl-acclimated cells were treated with increasing concentrations of salt, the same lipid signalling pathways as in non-acclimated cells were activated. This was witnessed as increases in phosphatidic acid (PA), lyso-phosphatidic acid (L-PA), diacylglycerol pyrophosphate (DGPP), PI(4,5)P2 and its isomer PI(3,5)P2. However, all dose-dependent responses were shifted to higher osmotic-stress levels, and the responses were lower than in non-acclimated cells. When NaCl-acclimated cells were treated with other osmotica, such as KCl and sucrose, the same effects were found, illustrating that they were due to hyperosmotic rather than hyperionic acclimation. The results indicate that acclimation to moderate salt stress modifies stress perception and the activation of several downstream pathways.

  4. Loss of Ribosomal Protein L11 Blocks Stress Activation of the Bacillus subtilis Transcription Factor ςB

    PubMed Central

    Zhang, Shuyu; Scott, Janelle M.; Haldenwang, W. G.

    2001-01-01

    ςB, the general stress response sigma factor of Bacillus subtilis, is activated when the cell's energy levels decline or the bacterium is exposed to environmental stress (e.g., heat shock, ethanol). Physical stress activates ςB through a collection of regulatory kinases and phosphatases (the Rsb proteins) which catalyze the release of ςB from an anti-ςB factor inhibitor. The means by which diverse stresses communicate with the Rsb proteins is unknown; however, a role for the ribosome in this process was suggested when several of the upstream members of the ςB stress activation cascade (RsbR, -S, and -T) were found to cofractionate with ribosomes in crude B. subtilis extracts. We now present evidence for the involvement of a ribosome-mediated process in the stress activation of ςB. B. subtilis strains resistant to the antibiotic thiostrepton, due to the loss of ribosomal protein L11 (RplK), were found to be blocked in the stress activation of ςB. Neither the energy-responsive activation of ςB nor stress-dependent chaperone gene induction (a ςB-independent stress response) was inhibited by the loss of L11. The Rsb proteins required for stress activation of ςB are shown to be active in the RplK− strain but fail to be triggered by stress. The data demonstrate that the B. subtilis ribosomes provide an essential input for the stress activation of ςB and suggest that the ribosomes may themselves be the sensors for stress in this system. PMID:11244072

  5. Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress.

    PubMed

    Vighi, I L; Benitez, L C; do Amaral, M N; Auler, P A; Moraes, G P; Rodrigues, G S; da Maia, L C; Pinto, L S; Braga, E J B

    2016-11-03

    Different rice (Oryza sativa L.) genotypes were subjected to high salinity and low temperature (150 mM NaCl and 13°C, respectively) for 0, 6, 24, 48, or 72 h. We evaluated the simultaneous expression of the genes OsCATA, OsCATB, and OsCATC, correlated gene expression with enzyme activity, and verified the regulation of these genes through identification of cis-elements in the promoter region. The hydrogen peroxide content increased in a tolerant genotype and decreased in a sensitive genotype under both stress conditions. Lipid peroxidation increased in the tolerant genotype when exposed to cold, and in the sensitive genotype when exposed to high salinity. Catalase activity significantly increased in both genotypes when subjected to 13°C. In the tolerant genotype, OsCATA and OsCATB were the most responsive to high salinity and cold, while in the sensitive genotype, OsCATA and OsCATC responded positively to saline stress, as did OsCATA and OsCATB to low temperature. Cis-element analysis identified different regulatory sequences in the catalase promoter region of each genotype. The sensitive genotype maintained a better balance between hydrogen oxyacid levels, catalase activity, and lipid peroxidation under low temperature than the resistant genotype. OsCATA and OsCATB were the most responsive in the salt-tolerant genotype to cold, OsCATA and OsCATC were the most responsive to saline stress, and OsCATA and OsCATB were the most responsive to chilling stress in the sensitive genotype. There were positive correlations between catalase activity and OsCATB expression in the tolerant genotype under saline stress and in the sensitive genotype under cold stress.

  6. Flow-activated chloride channels in vascular endothelium. Shear stress sensitivity, desensitization dynamics, and physiological implications.

    PubMed

    Gautam, Mamta; Shen, Yue; Thirkill, Twanda L; Douglas, Gordon C; Barakat, Abdul I

    2006-12-01

    Although activation of outward rectifying Cl(-) channels is one of the fastest responses of endothelial cells (ECs) to shear stress, little is known about these channels. In this study, we used whole-cell patch clamp recordings to characterize the flow-activated Cl(-) current in bovine aortic ECs (BAECs). Application of shear stress induced rapid development of a Cl(-) current that was effectively blocked by the Cl(-) channel antagonist 5-nitro-2-(3-phenopropylamino)benzoic acid (100 microM). The current initiated at a shear stress as low as 0.3 dyne/cm(2), attained its peak within minutes of flow onset, and saturated above 3.5 dynes/cm(2) approximately 2.5-3.5-fold increase over pre-flow levels). The Cl(-) current desensitized slowly in response to sustained flow, and step increases in shear stress elicited increased current only if the shear stress levels were below the 3.5 dynes/cm(2) saturation level. Oscillatory flow with a physiological oscillation frequency of 1 Hz, as occurs in disturbed flow zones prone to atherosclerosis, failed to elicit the Cl(-) current, whereas lower oscillation frequencies led to partial recovery of the current. Nonreversing pulsatile flow, generally considered protective of atherosclerosis, was as effective in eliciting the current as steady flow. Measurements using fluids of different viscosities indicated that the Cl(-) current is responsive to shear stress rather than shear rate. Blocking the flow-activated Cl(-) current abolished flow-induced Akt phosphorylation in BAECs, whereas blocking flow-sensitive K(+) currents had no effect, suggesting that flow-activated Cl(-) channels play an important role in regulating EC flow signaling.

  7. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue

    PubMed Central

    Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin; Garg, Sanjay; Yung, Raymond

    2016-01-01

    Adipose tissue dysfunction in aging is associated with inflammation, metabolic syndrome and other diseases. We propose that impaired protein homeostasis due to compromised lysosomal degradation (micro-autophagy) might promote aberrant ER stress response and inflammation in aging adipose tissue. Using C57BL/6 mouse model, we demonstrate that adipose tissue-derived stromal vascular fraction (SVF) cells from old (18-20 months) mice have reduced expression of autophagy markers as compared to the younger (4-6 months) cohort. Elevated expressions of ER-stress marker CHOP and autophagy substrate SQSTM1/p62 are observed in old SVFs compared to young, when treated with either vehicle or with thapsigargin (Tg), an ER stress inducer. Treatment with bafilomycin A1 (Baf), a vacuolar-type H (+)-ATPase, or Tg elevated expressions of CHOP, and SQSTM1/p62 and LC-3-II, in 3T3-L1-preadipocytes. We also demonstrate impaired autophagy activity in old SVFs by analyzing increased accumulation of autophagy substrates LC3-II and p62. Compromised autophagy activity in old SVFs is correlated with enhanced release of pro-inflammatory cytokines IL-6 and MCP-1. Finally, SVFs from calorie restricted old mice (CR-O) have shown enhanced autophagy activity compared to ad libitum fed old mice (AL-O). Our results support the notion that diminished autophagy activity with aging contributes to increased adipose tissue ER stress and inflammation. PMID:27777379

  8. Enhancing Maritime Education and Training: Measuring a Ship Navigator's Stress Based on Salivary Amylase Activity

    ERIC Educational Resources Information Center

    Murai, Koji; Wakida, Shin-Ichi; Miyado, Takashi; Fukushi, Keiichi; Hayashi, Yuji; Stone, Laurie C.

    2009-01-01

    Purpose: The purpose of this paper is to propose that the measurement of salivary amylase activity is an effective index to evaluate the stress of a ship navigator for safe navigation training and education. Design/methodology/approach: Evaluation comes from the simulator and actual on-board experiments. The subjects are real captains who have…

  9. Behavioral Activation in the Treatment of Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder

    ERIC Educational Resources Information Center

    Mulick, Patrick S.; Naugle, Amy E.

    2009-01-01

    This study investigated the efficacy of 10-weeks of Behavioral Activation (BA) in the treatment of comorbid Post-traumatic Stress Disorder (PTSD) and Major Depressive Disorder (MDD) in four adults using a nonconcurrent multiple baseline across participants design. All participants met full "DSM-IV" criteria for both MDD and PTSD at the…

  10. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    EPA Science Inventory

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  11. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    NASA Technical Reports Server (NTRS)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  12. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction.

    PubMed

    Liu, Mingchao; Li, Juan; Dai, Peng; Zhao, Fang; Zheng, Gang; Jing, Jinfei; Wang, Jiye; Luo, Wenjing; Chen, Jingyuan

    2015-01-01

    Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120 mg/kg per day), beginning 3 d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances.

  13. Microscopic origins of anistropic active stress in motor-driven nematic liquid crystals

    PubMed Central

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E.; Glaser, Matthew A.; Betterton, M. D.

    2016-01-01

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously be considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile. PMID:26742483

  14. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity

    PubMed Central

    Chen, Dongshi; Ming, Lihua; Zou, Fangdong; Peng, Ye; Houten, Bennett Van; Yu, Jian; Zhang, Lin

    2014-01-01

    p53 plays a key role in regulating DNA damage response by suppressing cell cycle progression or inducing apoptosis depending on extent of DNA damage. However, it is not clear why mild genotoxic stress favors growth arrest, whereas excessive lesions signal cells to die. Here we showed that TAp73, a p53 homologue thought to have a similar function as p53, restrains the transcriptional activity of p53 and prevents excessive activation of its downstream targets upon low levels of DNA damage, which results in cell cycle arrest. Extensive DNA damage triggers TAp73 depletion through ubiquitin/proteasome-mediated degradation of E2F1, leading to enhanced transcriptional activation by p53 and subsequent induction of apoptosis. These findings provide novel insights into the regulation of p53 function and suggest that TAp73 keeps p53 activity in check in regulating cell fate decisions upon genotoxic stress. PMID:25237903

  15. Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in Enterobacter aerogenes co-producing RmtB and class A beta-lactamase LAP-1.

    PubMed

    Park, Yeon-Joon; Yu, Jin Kyung; Kim, Sang-Il; Lee, Kyungwon; Arakawa, Yoshichika

    2009-01-01

    A new plasmid-mediated fluoroquinolone efflux pump gene, qepA, is known to be associated with the rmtB gene, which confers high-level resistance to aminoglycosides. We investigated the qepA gene in 573 AmpC-producing Enterobacteriaceae including one Citrobacter freundii known to harbor rmtB. Of them, two clonally unrelated E. aerogenes harbored qepA. Both isolates co-harbored rmtB, qnrS1, qepA, and bla(LAP-1) on an IncFI type plasmid. The qepA was flanked by two copies of IS26 containing ISCR3C, tnpA, tnpR, bla(TEM), and rmtB. The qnrS1 and bla(LAP-1) were located upstream of qepA. All the resistance determinants (qepA, qnrS1, rmtB, and bla(LAP-1)) were co-transferred to E. coli J53 by filter mating from both isolates. Although the prevalence of qepA is currently low, considering the presence of ISCR3C and the possibility of co-selection and co-transferability of plasmids, more active surveillance for these multi-drug resistant bacteria and prudent use of antimicrobials are needed.

  16. HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression.

    PubMed

    Holsen, L M; Lancaster, K; Klibanski, A; Whitfield-Gabrieli, S; Cherkerzian, S; Buka, S; Goldstein, J M

    2013-10-10

    Decades of clinical and basic research indicate significant links between altered hypothalamic-pituitary-adrenal (HPA)-axis hormone dynamics and major depressive disorder (MDD). Recent neuroimaging studies of MDD highlight abnormalities in stress response circuitry regions which play a role in the regulation of the HPA-axes. However, there is a dearth of research examining these systems in parallel, especially as related to potential trait characteristics. The current study addresses this gap by investigating neural responses to a mild visual stress challenge with real-time assessment of adrenal hormones in women with MDD in remission and controls. Fifteen women with recurrent MDD in remission (rMDD) and 15 healthy control women were scanned on a 3T Siemens MR scanner while viewing neutral and negative (stress-evoking) stimuli. Blood samples were obtained before, during, and after scanning for the measurement of HPA-axis hormone levels. Compared to controls, rMDD women demonstrated higher anxiety ratings, increased cortisol levels, and hyperactivation in the amygdala and hippocampus, p<0.05, family-wise error (FWE)-corrected in response to the stress challenge. Among rMDD women, amygdala activation was negatively related to cortisol changes and positively associated with the duration of remission. Findings presented here provide evidence for differential effects of altered HPA-axis hormone dynamics on hyperactivity in stress response circuitry regions elicited by a well-validated stress paradigm in women with recurrent MDD in remission.

  17. Influence of Oxidative Stress on Biocontrol Activity of Cryptococcus laurentii against Blue Mold on Peach Fruit

    PubMed Central

    Zhang, Zhanquan; Chen, Jian; Li, Boqiang; He, Chang; Chen, Yong; Tian, Shiping

    2017-01-01

    The limitations of chemical fungicides for the control of postharvest diseases have recently become more apparent. The utilization of antagonistic microorganisms is a promising alternative to that of fungicides to control postharvest decay. In previous studies, the antagonistic yeast Cryptococcus laurentii has shown excellent effects of biocontrol and great potential for practical application. Adverse conditions, such as oxidative stress, limit the practical application of antagonistic yeast. In this study, we investigated the oxidative stress tolerance of C. laurentii and the associated mechanisms. The results indicated that exogenous oxidative stress has a significant effect on the viability and biocontrol efficiency of C. laurentii. H2O2-induced oxidative stress led to the accumulation of reactive oxygen species. The results of flow cytometric analysis suggested that apoptosis is responsible for the reduced survival rate of C. laurentii under oxidative stress. Using tests of antioxidant activity, we found that C. laurentii could employ enzymatic systems to resist exogenous oxidative stress. The addition of exogenous glutathione, a non-enzymatic antioxidant, to the media can significantly enhance oxidative tolerance and biocontrol efficiency of C. laurentii. PMID:28210254

  18. Influence of Oxidative Stress on Biocontrol Activity of Cryptococcus laurentii against Blue Mold on Peach Fruit.

    PubMed

    Zhang, Zhanquan; Chen, Jian; Li, Boqiang; He, Chang; Chen, Yong; Tian, Shiping

    2017-01-01

    The limitations of chemical fungicides for the control of postharvest diseases have recently become more apparent. The utilization of antagonistic microorganisms is a promising alternative to that of fungicides to control postharvest decay. In previous studies, the antagonistic yeast Cryptococcus laurentii has shown excellent effects of biocontrol and great potential for practical application. Adverse conditions, such as oxidative stress, limit the practical application of antagonistic yeast. In this study, we investigated the oxidative stress tolerance of C. laurentii and the associated mechanisms. The results indicated that exogenous oxidative stress has a significant effect on the viability and biocontrol efficiency of C. laurentii. H2O2-induced oxidative stress led to the accumulation of reactive oxygen species. The results of flow cytometric analysis suggested that apoptosis is responsible for the reduced survival rate of C. laurentii under oxidative stress. Using tests of antioxidant activity, we found that C. laurentii could employ enzymatic systems to resist exogenous oxidative stress. The addition of exogenous glutathione, a non-enzymatic antioxidant, to the media can significantly enhance oxidative tolerance and biocontrol efficiency of C. laurentii.

  19. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity.

    PubMed

    Mingin, Gerald C; Heppner, Thomas J; Tykocki, Nathan R; Erickson, Cuixia Shi; Vizzard, Margaret A; Nelson, Mark T

    2015-09-15

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms.

  20. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity

    PubMed Central

    Heppner, Thomas J.; Tykocki, Nathan R.; Erickson, Cuixia Shi; Vizzard, Margaret A.; Nelson, Mark T.

    2015-01-01

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms. PMID:26224686

  1. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection

    PubMed Central

    Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe

    2012-01-01

    This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461

  2. Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Khan, Alia L.; Dierssen, Heidi; Schwarz, Joshua P.; Schmitt, Carl; Chlus, Adam; Hermanson, Mark; Painter, Thomas H.; McKnight, Diane M.

    2017-02-01

    Light-absorbing particles (LAPs) in snow such as dust and black carbon influence the radiative forcing at the Earth's surface, which has major implications for global climate models. LAPs also significantly influence the melting of glaciers, sea ice, and seasonal snow. Here we present an in situ study of surface snow near an active coal mine in the Norwegian Arctic. We couple measurements of spectral hemispherical directional reflectance factor (HDRF) with measurements of LAPs characterized in two ways, as refractory black carbon using a Single Particle Soot Photometer and the total light absorption of LAPs measured with the Light Absorption Heating Method. The Snow Ice and Aerosol Radiation model was constrained by LAP measurements. Results were compared to observed spectral albedo measurements. Modeled and observed albedos were similar at the cleaner and more remote sites. However, the modeled spectral albedos do not fully account for the low spectral albedo measured next to the mine. LAP measurements also showed a large variation in particle sizes (tenths to tens of microns) related to transport distance of the particles from the mine. Here we find that LAPs from coal dust reduce the spectral HDRF by up to 84% next to the mine and 55% 0.5 km downwind of the mine. The coupling of extreme LAP observations (1 ng g-1 to 4863 ng g-1) with HDRF measurements from 350 to 2500 nm has facilitated the development of spectral band pairs, which could be used in the future to remotely assess LAPs in Arctic snow.

  3. Salt stress reduces kernel number of corn by inhibiting plasma membrane H(+)-ATPase activity.

    PubMed

    Jung, Stephan; Hütsch, Birgit W; Schubert, Sven

    2017-04-01

    Salt stress affects yield formation of corn (Zea mays L.) at various physiological levels resulting in an overall grain yield decrease. In this study we investigated how salt stress affects kernel development of two corn cultivars (cvs. Pioneer 3906 and Fabregas) at and shortly after pollination. In an earlier study, we found an accumulation of hexoses in the kernel tissue. Therefore, it was hypothesized that hexose uptake into developing endosperm and embryo might be inhibited. Hexoses are transported into the developing endosperm by carriers localized in the plasma membrane (PM). The transport is driven by the pH gradient which is built up by the PM H(+)-ATPase. It was investigated whether the PM H(+)-ATPase activity in developing corn kernels was inhibited by salt stress, which would cause a lower pH gradient resulting in impaired hexose import and finally in kernel abortion. Corn grown under control and salt stress conditions was harvested 0 and 2 days after pollination (DAP). Under salt stress sucrose and hexose concentrations in kernel tissue were higher 0 and 2 DAP. Kernel PM H(+)-ATPase activity was not affected at 0 DAP, but it was reduced at 2 DAP. This is in agreement with the finding, that kernel growth and thus kernel setting was not affected in the salt stress treatment at pollination, but it was reduced 2 days later. It is concluded that inhibition of PM H(+)-ATPase under salt stress impaired the energization of hexose transporters into the cells, resulting in lower kernel growth and finally in kernel abortion.

  4. Heat stress and antioxidant enzyme activity in bubaline ( Bubalus bubalis) oocytes during in vitro maturation

    NASA Astrophysics Data System (ADS)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-09-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly ( P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly ( P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  5. Analysis of bonded joints. [shear stress and stress-strain diagrams

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1975-01-01

    A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

  6. [Oxygen consumption rate and effects of hypoxia stress on enzyme activities of Sepiella maindron].

    PubMed

    Wang, Chun-lin; Wu, Dan-hua; Dong, Tian-ye; Jiang, Xia-min

    2008-11-01

    The oxygen consumption rate and suffocation point of Sepiella maindroni were determined through the measurement of dissolved oxygen in control and experimental respiration chambers by Winkler's method, and the changes of S. maindroni enzyme activities under different levels of hypoxia stress were studied. The results indicated that the oxygen consumption rate of S. maindroni exhibited an obvious diurnal fluctuation of 'up-down-up-down', and positively correlated with water temperature (16 degrees C-28 degrees C) and illumination (3-500 micromol x m(-2) x s(-1)) while negatively correlated with water pH (6.25-9.25). With increasing water salinity from 18.1 to 29.8, the oxygen consumption rate had a variation of 'up-down-up', being the lowest at salinity 24. 8. Female S. maindroni had a higher oxygen consumption rate than male S. maindroni. The suffocation point of S. maindroni decreased with its increasing body mass, and that of (38.70 +/- 0.52) g in mass was (0.9427 +/- 0.0318) mg x L(-1). With the increase of hypoxia stress, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased after an initial increase, lipase activity decreased, protease activity had a variation of 'decrease-increase-decrease', and lactate dehydrogenase (LDH) activity had a trend of increasing first and decreasing then. The enzyme activities were higher under hypoxia stress than under normal conditions.

  7. Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men.

    PubMed

    Lambert, Elisabeth; Lambert, Gavin; Ika-Sari, Carolina; Dawood, Tye; Lee, Katie; Chopra, Reena; Straznicky, Nora; Eikelis, Nina; Drew, Sara; Tilbrook, Alan; Dixon, John; Esler, Murray; Schlaich, Markus P

    2011-07-01

    Ghrelin is a growth hormone-releasing peptide secreted by the stomach with potent effects on appetite. Experimental and clinical studies indicate that ghrelin also influences cardiovascular regulation and metabolic function and mediates behavioral responses to stress. We investigated the effects of ghrelin on blood pressure (BP), sympathetic nervous system activity, and mental stress responses in lean (n=13) and overweight or obese (n=13) individuals. Subjects received an intravenous infusion of human ghrelin (5 pmol/kg per minute for 1 hour) and saline in a randomized fashion. Ghrelin decreased systolic (-6 and -11 mm Hg) and diastolic BP (-8 mm Hg for both), increased muscle sympathetic nervous system activity (18±2 to 28±3 bursts per min, P<0.05 and from 21±2 to 32±3 bursts per min, P<0.001) in lean and overweight or obese subjects, respectively, without a significant change in heart rate, calf blood flow, or vascular resistance. Ghrelin induced a rise in plasma glucose concentration in lean individuals (P<0.05) and increased cortisol levels in both groups (P<0.05). Stress induced a significant change in mean BP (+22 and +27 mm Hg), heart rate (+36 and +29 bpm), and muscle sympathetic nervous system activity (+6.1±1.6 and +6.8±2.7 bursts per min) during saline infusion in lean and overweight or obese subjects, respectively. During ghrelin infusion, the changes in BP and muscle sympathetic nerve activity in response to stress were significantly reduced in both groups (P<0.05). In conclusion, ghrelin exerts unique effects in that it reduces BP and increases muscle sympathetic nervous system activity and blunts cardiovascular responses to mental stress. These responses may represent a combination of peripheral (baroreflex-mediated) and central effects of ghrelin.

  8. Sex Differences in Stress Response Circuitry Activation Dependent on Female Hormonal Cycle

    PubMed Central

    Goldstein, Jill M.; Jerram, Matthew; Abbs, Brandon; Whitfield-Gabrieli, Susan; Makris, Nikos

    2010-01-01

    Understanding sex differences in stress regulation has important implications for understanding basic physiological differences in the male and female brain and their impact on vulnerability to sex differences in chronic medical disorders associated with stress response circuitry. In this fMRI study, we demonstrated that significant sex differences in brain activity in stress response circuitry were dependent on women's menstrual cycle phase. Twelve healthy Caucasian premenopausal women were compared to a group of healthy men from the same population, based on age, ethnicity, education, and right-handedness. Subjects were scanned using negative valence/high arousal versus neutral visual stimuli that we demonstrated activated stress response circuitry (amygdala, hypothalamus, hippocampus, brainstem, orbitofrontal and medial prefrontal cortices (OFC and mPFC), and anterior cingulate gyrus (ACG). Women were scanned twice based on normal variation in menstrual cycle hormones (i.e., early follicular (EF) compared with late follicular-midcycle menstrual phases (LF/MC)). Using SPM8b, there were few significant differences in BOLD signal changes in men compared to EF women, except ventromedial (VMN) and lateral (LHA) hypothalamus, left amygdala, and ACG. In contrast, men exhibited significantly greater BOLD signal changes compared to LF/MC women on bilateral ACG and OFC, mPFC, LHA, VMN, hippocampus, and periaqueductal gray, with largest effect sizes in mPFC and OFC. Findings suggest that sex differences in stress response circuitry are hormonally regulated via the impact of subcortical brain activity on the cortical control of arousal, and demonstrate that females have been endowed with a natural hormonal capacity to regulate the stress response that differs from males. PMID:20071507

  9. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    PubMed

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  10. Endoplasmic Reticulum Stress-Sensing Mechanism Is Activated in Entamoeba histolytica upon Treatment with Nitric Oxide

    PubMed Central

    Santi-Rocca, Julien; Smith, Sherri; Weber, Christian; Pineda, Erika; Hon, Chung-Chau; Saavedra, Emma; Olivos-García, Alfonso; Rousseau, Sandrine; Dillies, Marie-Agnès; Coppée, Jean-Yves; Guillén, Nancy

    2012-01-01

    The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR). The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO) triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO) and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i) dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii) induction of DNA repair and redox gene expression and iii) up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis. PMID:22384074

  11. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells

    PubMed Central

    Dong, Lixue; Krewson, Elizabeth A.; Yang, Li V.

    2017-01-01

    Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the “Warburg effect”), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4-induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment

  12. Effect of acute stress on NTPDase and 5'-nucleotidase activities in brain synaptosomes in different stages of development.

    PubMed

    Horvat, Anica; Stanojević, Ivana; Drakulić, Dunja; Velicković, Natasa; Petrović, Snjezana; Milosević, Maja

    2010-04-01

    The aim of the present study was to examine the effect of acute restraint stress on rat brain synaptosomal plasma membrane (SPM) ecto-nucleotidase activities at specific stages of postnatal development (15-, 30-, 60- and 90-day-old rats) by measuring the rates of ATP, ADP and AMP hydrolysis 1, 24 and 72 h post-stress. At 1 h after stress NTPDase and ecto-5'-nucleotidase activities were decreased in rats aged up to 60 days old. In adult rats elevated enzyme activities were detected, which indicated the existence of different short-term stress responses during development. A similar pattern of ATP and ADP hydrolysis changes as well as the ATP/ADP ratio in all developmental stages indicated that NTPDase3 was acutely affected after stress. The long-term effect of acute stress on NTPDase activity differed during postnatal development. In juvenile animals (15 days old) NTPDase activity was not altered. However, in later developmental stages (30 and 60 days old rats) NTPDase activity decreased and persisted for 72 h post-stress. In adult rats only ATP hydrolysis was decreased after 24 h, indicating that ecto-ATPase was affected by stress. Ecto-5'-nucleotidase hydrolysing activity was decreased within 24 h in adult rats, while in 15- and 30-day old rats it decreased 72 h post-stress. At equivalent times in pubertal rats (60 days old) a slight activation of ecto-5'-nucleotidase was detected. Our results highlight the developmental-dependence of brain ecto-nucleotidase susceptibility to acute stress and the likely existence of different mechanisms involved in time-dependent ecto-nucleotidase activity modulation following stress exposure. Clearly there are differences in the response of the purinergic system to acute restraint stress between young and adult rats.

  13. Activation of Toll-like Receptor 4 (TLR4) Attenuates Adaptive Thermogenesis via Endoplasmic Reticulum Stress*

    PubMed Central

    Okla, Meshail; Wang, Wei; Kang, Inhae; Pashaj, Anjeza; Carr, Timothy; Chung, Soonkyu

    2015-01-01

    Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation. PMID:26370079

  14. KCP Activities Supporting the W76LEP Stress Cushions and LK3626 RTV Replacement Material Development

    SciTech Connect

    J. W. Schneider

    2009-10-01

    The S-5370 RTV blown foam previously produced by Dow Corning is no longer commercially available. The S-5370 material has been used on all of Los Alamos National Laboratory (LANL) programs to manufacture Stress Cushions up through the W88. The Kansas City Plant (KCP) did not have a sufficient supply of S-5370 material to cover the schedule requirements for the Program. This report provides information on the numerous activities conducted at KCP involving the development of the Program Stress Cushion and replacement RTV material.

  15. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis.

    PubMed

    Ali, Mohammad Babar; Hahn, Eun-Joo; Paek, Kee-Yoeup

    2005-03-01

    Higher plants growing in natural environments experience various abiotic stresses. The aim of this study was to determine whether exposure to temperature-stress would lead to oxidative stress and whether this effect varied with different exposure periods. The thermal dependencies of the activities of protective enzymes, photosynthetic efficiency (Fv/Fm), protein, non-protein thiol (NP-SH), cysteine content, lipoxygenase (LOX) activity (EC 1.13.11.12) and malondialdehyde (MDA) content at 25-40 degrees C were determined for 4, 24 and 48 h in leaf and root segments of Phalaenopsis. The increase in MDA level and LOX activity may be due to temperature-associated oxidative damage to leaf and root segments. Temperature-stress induced not only activities of active oxygen species (AOS) scavenging enzymes but also protein, NP-SH and cysteine content in both leaf and root segments at 30 degrees C for 4 and 24 h (except for 48 h in some cases) compared to 25 degrees C-and greenhouse-grown leaf and root segments indicating that antioxidants enzymes played an important role in protecting plant from temperature-stress. However, activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1), glutathione peroxidase (GPX, EC 1.11.1.9) and glutathione-S-transferase (GST, EC 2.5.1.18) in leaf and root, glutathione reductase (GR, EC 1.6.4.2) in leaf and guaiacol peroxidase (G-POD, 1.11.1.7) in root segments were induced significantly at 40 degrees C compared to 25 degrees C and greenhouse-grown plants suggesting that these enzymes play protective roles at high temperature. In contrast, activities of superoxide dismutase (SOD, EC 1.15.1.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) in leaf and root, catalase (CAT, EC 1.11.1.6) in root, GR in root, and protein, cysteine, NP-SH content in both root and leaf and Fv/Fm ratio were diminished significantly at 40 degrees C compared to 25 degrees C-and greenhouse-grown plants. These indicate that these enzymes were apparently not

  16. Ultra Fine Particles from Diesel Engines Induce Vascular Oxidative Stress via JNK Activation

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2011-01-01

    Exposure of particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultra fine particles (UFP) from diesel vehicle engines have been shown to be pro-atherogenic in apoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induced vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intra-cellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2·-) production in human aortic endothelial cells (HAEC). Flow cytometry (FACS) showed that UFP increased MitoSOX Red intensity specific for mitochondrial superoxide. Protein carbonyl content is increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated hemeoxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pre-treatment with antioxidant, N-acetyl cysteine (NAC), significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP stimulated O2·- production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation play an important role in UFP-induced oxidative stress and stress response gene expression. PMID:19154785

  17. In vitro shear stress-induced platelet activation: sensitivity of human and bovine blood.

    PubMed

    Lu, Qijin; Hofferbert, Bryan V; Koo, Grace; Malinauskas, Richard A

    2013-10-01

    As platelet activation plays a critical role in physiological hemostasis and pathological thrombosis, it is important in the overall hemocompatibility evaluation of new medical devices and biomaterials to assess their effects on platelet function. However, there are currently no widely accepted in vitro test methods to perform this assessment. In an effort to develop effective platelet tests for potential use in medical device evaluation, this study compared the sensitivity of platelet responses to shear stress stimulation of human and bovine blood using multiple platelet activation markers. Fresh whole blood samples anticoagulated with heparin or anticoagulant citrate dextrose, solution A (ACDA) were exposed to shear stresses up to 40 Pa for 2 min using a cone-and-plate rheometer model. Platelet activation was characterized by platelet counts, platelet surface P-selectin expression, and serotonin release into blood plasma. The results indicated that exposure to shear stresses above 20 Pa caused significant changes in all three of the platelet markers for human blood and that the changes were usually greater with ACDA anticoagulation than with heparin. In contrast, for bovine blood, the markers did not change with shear stress stimulation except for plasma serotonin in heparin anticoagulated blood. The differences observed between human and bovine platelet responses suggest that the value of using bovine blood for in vitro platelet testing to evaluate devices may be limited.

  18. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    PubMed

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  19. Role of peroxisome proliferator-activated receptor-α in fasting-mediated oxidative stress

    PubMed Central

    Abdelmegeed, Mohamed A.; Moon, Kwan-Hoon; Hardwick, James P.; Gonzalez, Frank J.; Song, Byoung-Joon

    2009-01-01

    The peroxisome proliferator-activated receptor-α (PPARα) regulates lipid homeostasis, particularly in the liver. This study was aimed at elucidating the relationship between hepatosteatosis and oxidative stress during fasting. Fasted Ppara-null mice exhibited marked hepatosteatosis, which was associated with elevated levels of lipid peroxidation, nitric oxide synthase activity, and hydrogen peroxide accumulation. Total glutathione (GSH), mitochondrial GSH, and the activities of major anti-oxidant enzymes were also lower in the fasted Ppara-null mice. Consequently, the number and extent of nitrated proteins were markedly increased in the fasted Ppara-null mice, although high levels of protein nitration were still detected in the fed Ppara-null mice while many oxidatively-modified proteins were only found in the fasted Ppara-null mice. However, the role of inflammation in increased oxidative stress in the fasted Ppara-null mice was minimal based on the similar levels of tumor necrosis factor-α change in all groups. These results with increased oxidative stress observed in the fasted Ppara-null mice compared with other groups demonstrate a role for PPARα in fasting-mediated oxidative stress and that inhibition of PPARα functions may increase the susceptibility to oxidative damage in the presence of another toxic agent. PMID:19539749

  20. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).

    PubMed

    El-Mashad, Ali Abdel Aziz; Mohamed, Heba Ibrahim

    2012-07-01

    Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05 ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150 mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05 ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.

  1. Psychophysiological reactions during active and passive stress coping following smoking cessation.

    PubMed

    Hasenfratz, M; Bättig, K

    1991-01-01

    This study investigated the effects of 9 days' smoking abstinence on psychophysiological stress reactions. The subjects were 40 female smokers; 20 of them intended to give up smoking in the course of the study, whereas the remaining 20 had no such intention. A first session was carried out before, a second and a third during days 3 and 9 of abstinence. The nonabstainers were tested at corresponding intervals. Each session consisted of a 30-min stress-coping phase with relaxation phases before and after. While performing a rapid information processing task (RIP) the subjects had to sustain electrical shocks which were, according to instructions, but not in fact, either avoidable (active coping) or not (passive coping). Generally, the active coping instruction produced greater responses to the RIP task than did the passive coping instruction for heart rate, systolic and diastolic blood pressure but not for finger pulse amplitude, thus resembling a beta-adrenergic stimulation. RIP processing rate was not affected, but the response rate (total of hits and commission errors) was greater during active than during passive coping. However, none of these stress reactions differed between abstainers and nonabstainers. On the other hand, both heart rate and the craving to smoke decreased significantly in the abstainer group across the 9 days. Thus, it is concluded that a deprivation of 1 h, 3 or 9 days has no differential effect on physiological stress reactions.

  2. Beverages. Learning Activity Pack and Instructor's Guide 5.3. Commercial Foods and Culinary Arts Competency-Based Series. Section 5: Basic Food Preparation.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Studies in Vocational Education.

    This document consists of a learning activity packet (LAP) for the student and an instructor's guide for the teacher. The LAP is intended to acquaint occupational home economics students with preparing and serving beverages and caring for the equipment used to make them. Illustrated information sheets and learning activities are provided in these…

  3. Yeast Breads. Learning Activity Pack and Instructor's Guide 5.15a. Commercial Foods and Culinary Arts Competency-Based Series. Section 5: Basic Food Preparation.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Studies in Vocational Education.

    This document consists of a learning activity packet (LAP) for the student and an instructor's guide for the teacher. The LAP is intended to acquaint occupational home economics students with yeast breads and their ingredients. Illustrated information sheets and learning activities are provided in these areas: yeast breads and their ingredients,…

  4. Customized Regulation of Diverse Stress Response Genes by the Multiple Antibiotic Resistance Activator MarA

    PubMed Central

    2017-01-01

    Stress response networks frequently have a single upstream regulator that controls many downstream genes. However, the downstream targets are often diverse, therefore it remains unclear how their expression is specialized when under the command of a common regulator. To address this, we focused on a stress response network where the multiple antibiotic resistance activator MarA from Escherichia coli regulates diverse targets ranging from small RNAs to efflux pumps. Using single-cell experiments and computational modeling, we showed that each downstream gene studied has distinct activation, noise, and information transmission properties. Critically, our results demonstrate that understanding biological context is essential; we found examples where strong activation only occurs outside physiologically relevant ranges of MarA and others where noise is high at wild type MarA levels and decreases as MarA reaches its physiological limit. These results demonstrate how a single regulatory protein can maintain specificity while orchestrating the response of many downstream genes. PMID:28060821

  5. Customized Regulation of Diverse Stress Response Genes by the Multiple Antibiotic Resistance Activator MarA.

    PubMed

    Rossi, Nicholas A; Dunlop, Mary J

    2017-01-01

    Stress response networks frequently have a single upstream regulator that controls many downstream genes. However, the downstream targets are often diverse, therefore it remains unclear how their expression is specialized when under the command of a common regulator. To address this, we focused on a stress response network where the multiple antibiotic resistance activator MarA from Escherichia coli regulates diverse targets ranging from small RNAs to efflux pumps. Using single-cell experiments and computational modeling, we showed that each downstream gene studied has distinct activation, noise, and information transmission properties. Critically, our results demonstrate that understanding biological context is essential; we found examples where strong activation only occurs outside physiologically relevant ranges of MarA and others where noise is high at wild type MarA levels and decreases as MarA reaches its physiological limit. These results demonstrate how a single regulatory protein can maintain specificity while orchestrating the response of many downstream genes.

  6. Objective evaluation of stress with the blind by the monitoring of autonomic nervous system activity.

    PubMed

    Massot, Bertrand; Baltenneck, Nicolas; Gehin, Claudine; Dittmar, Andre; McAdams, Eric

    2010-01-01

    Accessibility for the blind in an urban space must be studied under real conditions in their daily environment. A new approach for evaluating the impact of environmental conditions on blind pedestrians is the objective measure of stress by the monitoring of the autonomic nervous system (ANS) activity. Original techniques of data analysis and spatial representation are proposed for the detection of the ANS activity through the assessment of the electrodermal activity. Skin resistance was recorded with an EmoSense system on 10 blind subjects who followed a charted course independently. The course was 1065 meters long and consisted of various environmental conditions in an urban space. The spatial frequency of the non-specific skin resistance responses was used to provide a more relevant representation of geographic hotspots. Results of statistical analysis based on this new parameter are discussed to conclude on phenomena causing mental stress with the blind moving in an urban space.

  7. Differential activation of the ER stress factor XBP1 by oligomeric assemblies.

    PubMed

    Castillo-Carranza, Diana L; Zhang, Yan; Guerrero-Muñoz, Marcos J; Kayed, Rakez; Rincon-Limas, Diego E; Fernandez-Funez, Pedro

    2012-08-01

    Several neurodegenerative disorders are characterized by protein misfolding, a phenomenon that results in perturbation of cellular homeostasis. We recently identified the protective activity of the ER stress response factor XBP1 (X-box binding protein 1) against Amyloid-ß1-42 (Aß42) neurotoxicity in cellular and Drosophila models of Alzheimer's disease. Additionally, subtoxic concentrations of Aß42 soluble aggregates (oligomers) induced accumulation of spliced (active) XBP1 transcripts, supporting the involvement of the ER stress response in Aß42 neurotoxicity. Here, we tested the ability of three additional disease-related amyloidogenic proteins to induce ER stress by analyzing XBP1 activation at the RNA level. Treatment of human SY5Y neuroblastoma cells with homogeneous preparations of α-Synuclein (α-Syn), Prion protein (PrP106-126), and British dementia amyloid peptide (ABri1-34) confirmed the high toxicity of oligomers compared to monomers and fibers. Additionally, α-Syn oligomers, but not monomers or fibers, demonstrated potent induction of XBP1 splicing. On the other hand, PrP106-126 and ABri1-34 did not activate XBP1. These results illustrate the biological complexity of these structurally related assemblies and argue that oligomer toxicity depends on the activation of amyloid-specific cellular responses.

  8. Emergence of endoplasmic reticulum stress and activated microglia in Purkinje cell degeneration mice.

    PubMed

    Kyuhou, Shin-ichi; Kato, Nobuo; Gemba, Hisae

    2006-03-27

    In the current studies, we characterized the molecular and cellular mechanism of cell death in Purkinje cell degeneration (pcd) mice using real-time quantitative PCR, immunohistochemistry, and Western blotting. It appears that endoplasmic reticulum (ER) stress is involved in this degeneration of Purkinje cells because ER stress-related substrates, such as CHOP and caspase 12, were strongly activated in Purkinje cells of pcd mice during the third postnatal (P) week. A significant increase in the expression of the ER-specific chaperone BiP suggested that unfolded protein responses were induced. We also found that Purkinje cells underwent apoptosis via the activation of caspase 3 and subsequent fragmentation of DNA. In addition to the activation of apoptosis in Purkinje cells, many activated microglial cells are found to be present in the molecular layer of the cerebellar cortex. In the later phase of degeneration, there was conspicuous expression of inducible nitric oxide synthase (iNOS), and some Purkinje cells were strongly labeled with an antibody to nitrotyrosine, suggesting that Purkinje cells in pcd mice are damaged by nitric oxide released from microglial cells. Administration of minocycline, which may inhibit iNOS expression, delayed the death of Purkinje cells in pcd mice and mildly improved their motor abilities. These findings suggest that ER stress participates in the degeneration of Purkinje cells and that activation of microglia accelerates Purkinje cell death in pcd mice.

  9. Effect of stress and peripheral immune activation on astrocyte activation in transgenic bioluminescent Gfap-luc mice.

    PubMed

    Biesmans, Steven; Acton, Paul D; Cotto, Carlos; Langlois, Xavier; Ver Donck, Luc; Bouwknecht, Jan A; Aelvoet, Sarah-Ann; Hellings, Niels; Meert, Theo F; Nuydens, Rony

    2015-07-01

    Neuroinflammation and the accompanying activation of glial cells is an important feature of many neurodegenerative conditions. It is known that factors such as peripheral infections and stress can influence immune processes in the brain. However, the effect of these stressors on astrocyte activation in vivo remains elusive. In this study, transgenic Gfap-luc mice expressing the luciferase gene under the transcriptional control of the glial fibrillary acidic protein promoter were used to quantify the kinetics of in vivo astrocyte activation following immune challenges relevant to clinical inflam