Science.gov

Sample records for active strike-slip fault

  1. Spacing and strength of active continental strike-slip faults

    NASA Astrophysics Data System (ADS)

    Zuza, Andrew V.; Yin, An; Lin, Jessica; Sun, Ming

    2017-01-01

    Parallel and evenly-spaced active strike-slip faults occur widely in nature across diverse tectonic settings. Despite their common existence, the fundamental question of what controls fault spacing remains unanswered. Here we present a mechanical model for the generation of parallel strike-slip faults that relates fault spacing to the following parameters: (1) brittle-crust thickness, (2) fault strength, (3) crustal strength, and (4) crustal stress state. Scaled analogue experiments using dry sand, dry crushed walnut shells, and viscous putty were employed to test the key assumptions of our quantitative model. The physical models demonstrate that fault spacing (S) is linearly proportional to brittle-layer thickness (h), both in experiments with only brittle materials and in two-layer trials involving dry sand overlying viscous putty. The S / h slope in the two-layer sand-putty experiments may be controlled by the (1) rheological/geometric properties of the viscous layer, (2) effects of distributed basal loading caused by the viscous shear of the putty layer, and/or (3) frictional interaction at the sand-putty interface (i.e., coupling between the viscous and brittle layers). We tentatively suggest that this third effect exerts the strongest control on fault spacing in the analogue experiments. By applying our quantitative model to crustal-scale strike-slip faults using fault spacing and the seismogenic-zone thickness obtained from high-resolution earthquake-location data, we estimate absolute fault friction of active strike-slip faults in Asia and along the San Andreas fault system in California. We show that the average friction coefficient of strike-slip faults in the India-Asia collisional orogen is lower than that of faults in the San Andreas fault system. Weaker faults explain why deformation penetrates >3500 km into Asia from the Himalaya and why the interior of Asia is prone to large (M > 7.0) devastating earthquakes along major intra-continental strike-slip

  2. 400My of Deformation Along Tibet Active Strike Slip Faults

    NASA Astrophysics Data System (ADS)

    Arnaud, N. O.

    2003-12-01

    While it is widely accepted that strike slip faults in Tibet accommodate a significant part of the tertiary convergence between India and Asia, the true Cenozoic magnitude of the offset is still largely debated. Direct dating of Cenozoic piercing points is the most powerful tool to assess the total offset, but their use is not always possible. Therefore one gets to use older markers although this leads to significant results ONLY at the supreme condition that pre-Cenozoic movement of those markers be accurately known. The Kunlun and Altyn Tagh faults for example form a prominent example of Tibetan presently active fault, but they also constitute geological frontiers between blocks of different geological histories accreted at various times since early Paleozoic. One may thus question how much of the visible offset is indeed Cenozoic. Although deformation facies agree with recent kinematics, multi-geochronological approach indicates a series of events from 280-230 Ma to 120+/-10 Ma. The former may be linked either with suturing of the Qiantang and Kunlun blocks farther to the south, or collision further to the north or east in the Qilian Shan and Bei Shan ranges, while the latter range appears to be growing in importance with ongoing work but is still largely unexplained. Oblique subductions of collision to the north of the Qilian Shan are adequate candidates. Argon loss suggests that deformation was associated to a 250-300° C thermal pulse that lasted 5 to 20 Ma after the onset of movement (Arnaud et al., 2003). Unroofing on all faults occurred much later, around 25 Ma ago when sudden cooling suggests a component of normal faulting (Mock et al., 1999). Strong inheritage was also found along the Ghoza active fault, in central western Tibet. Of course the fact that some of the deformation is much older than the Cretaceous and shares compatible deformation criteria with the present-day deformation leads to false appreciation of the pure Cenozoic offset, potentially

  3. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  4. Holocene activity and paleoseismicity of the Selaha Fault, southeastern segment of the strike-slip Xianshuihe Fault Zone, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Lin, Aiming

    2017-01-01

    In this study we examine the Holocene activity, including slip rate and paleoseismicity, of the Selaha Fault, a branch of the left-lateral strike-slip Xianshuihe Fault Zone located along the southeastern segment of the Ganzhi-Yushu-Xianshuihe Fault System (GYXFS) of the Tibetan Plateau. Interpretation of high-resolution images and field investigations reveal that the Selaha Fault is characterized by left-lateral strike-slip faulting with an average horizontal slip-rate of 9.0 mm/year during the Holocene. Trench excavations and 14C dating results show that at least three morphogenic earthquakes occurred during the past millennium; the most recent event occurred in the past 450 years and corresponds to the 1786 M 7.75 earthquake. The penultimate seismic event (E2) occurred in the period between 560 and 820 year BP (i.e., 1166-1428 CE) and is probably associated with the 1327 M 7.5 earthquake. The antepenultimate event (E3) is inferred to have occurred in the period between 820 ± 30 and 950 ± 30 year BP. Our results confirm that the Selaha Fault, as a portion of the GYXFS, plays an important role as a tectonic boundary in releasing the strain energy accumulated during the northeastward motion of the Tibetan Plateau in response to the ongoing northward penetration of the Indian Plate into the Eurasian Plate. The strain energy is released in the form of repeated large earthquakes that are recorded by strike-slip displacements of stream channels and alluvial fans.

  5. Slip sense inversion on active strike-slip faults in southwest Japan and its implications for Cenozoic tectonic evolution

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2004-05-01

    Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S-C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.

  6. Threshold of geomorphic detectability estimated from geologic observations of active low slip-rate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Kaneda, Heitaro

    2003-03-01

    Sources of catastrophic earthquakes include not only major active faults, but also those with low slip rates. Geologic observations of two Japanese surface-rupturing earthquakes on low slip-rate strike-slip faults (the 1927 Kita-Tango and the 1943 Tottori earthquakes) suggests a concept of ``threshold of geomorphic detectability'' for strike-slip faults in humid mountainous regions. This threshold must be exceeded in order that progressive coseismic surface offset can be preserved as detectable faulted topography that may be otherwise erased by surface processes. The determined threshold minimum slip rates for both examples are about 0.1 mm/yr, which can be a quantitative explanation for lack of recognition and mapping of many active faults with slip rates of less than 0.1 mm/yr in Japan islands. Although this threshold is probably negligible in arid regions, it can produce another type of unrecognized active fault in humid mountainous regions, in addition to blind thrusts beneath thick sediments.

  7. Threshold of Geomorphic Detectability Estimated from Geologic Observations of Active Slow-Slipping Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Kaneda, H.

    2002-12-01

    Sources of catastrophic earthquakes include not only major active faults, but also slow-slipping ones. However, geomorphic characteristics and long-term seismic behavior of slow-slipping faults have not been well understood, although intensive paleoseismic studies were carried out after the unexpected 1992 Landers and 1999 Hector Mine earthquakes. Two Japanese surface faulting earthquakes on slow-slipping strike-slip faults (the 1927 Mw=7.0 Kita-Tango and 1943 Mw=7.0 Tottori earthquakes) provided good opportunity to examine these problems. Analysis of coseismic surface slip, cumulative geomorphic expressions, and paleoseismicity for these two events not only supports a characteristic-slip behavior for these faults, but also suggests a concept of threshold of geomorphic detectability for intramontane strike-slip faults, which must be exceeded in order that progressive coseismic surface offsets can be preserved against surface processes as detectable systematic deflections of channels and ridge crests. The determined threshold slip rates for these examples are in the range of 0.06-0.13 mm/yr, which can be a quantitative explanation for an extremely small number of mapped active faults with slip rates of less than 0.1 mm/yr in Japan islands. On the contrary, the threshold of geomorphic detectability is probably negligible in arid regions where denudation rate would be extremely low. To date, the issue of geomorphologically undetectable active faults has been that of blind thrust faults buried beneath thick sediments, but another type of blind active faults or fault segments can exist in humid and mountainous regions. In spite of their low slip rates and long recurrence intervals, their potential presence must be considered, especially in regions under the tectonically undeveloped regime, where regional strain is accommodated by many scattered slow-slipping faults.

  8. Suppression of strike-slip fault systems

    NASA Astrophysics Data System (ADS)

    Curren, I. S.

    2012-12-01

    In orogens elongated parallel to a great circle about the Euler pole for the two bounding plates, theory requires simple-shear deformation in the form of distributed deformation or velocity discontinuities across strike-slip faults. This type of deformation, however, does not develop at all plate boundaries requiring toroidal motion. Using the global plate boundary model, PB2002 [Bird, 2003], as the basis for identifying areas where expected simple-shear deformation is absent or underdeveloped, it was also possible to identify two potential causes for this behavior: (1) the presence of extensive fracturing at right angles to the shear plane and (2) regional cover of flood basalts or andesites with columnar joints. To test this hypothesis, a new plane-stress finite-strain model was developed to study the effects of such pre-existing structures on the development of simple shear in a clay cake. A homogenous kaolinite-water mixture was poured into a deforming parallelogram box and partially dried to allow for brittle and plastic deformation at and below the surface of the clay, respectively. This was floated on a dense fluid foundation, effectively removing basal friction, and driven by a motor in a sinistral direction from the sides of the box. Control experiments produced classic Riedel model fault assemblages and discrete, through-going primary deformation zones (PDZs); experiments with pre-existing structures developed the same, though subdued and distributed, fault assemblages but did not develop through-going PDZs. Although formation of strike-slip faults was underdeveloped at the surface in clay with pre-existing structures, offset within the clay cake (measured, with respect to a fixed point, by markers on the clay surface) as a fraction of total offset of the box was consistently larger than that of the control experiments. This suggests that while the extent of surface faulting was lessened in clay with pre-existing structures, slip was still occurring at

  9. Sag-ponding and its Significance in determining Paleo-seismic events along the active strike- slip fault

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhang, P.; Yuan, D.

    2007-12-01

    During the development of one active fault, we really want to know how it behaves and what it will do next. This mostly depends on the record and preservation of the information showing the action of the fault. Sparse young sediments or sediments with coarse grain along most of big strike-slip faults make it hard record and preserve the vestige of the paleo-seismic events. This extremely restricts the development of the Paleo-seismic research. Sag-ponding as well as the deposits in ponds, which are formed by the movement of the fault, can help settling the difficulty. Periodic sag-ponding is a feature to which should be paid more attention along the strike-slip fault, it can develop a pond to capture plenty fine sediments which well record the action of the faults. Sag-ponding can easily be found on the main active strike-slip faults in northern and eastern Tibet. By disclosing the sag-ponding depositions with 3-D excavations, sediment distribution and characters of relevant sag-ponds, and the relation between the sag-ponding and faulting were discussed. 1. Mechanism of the formation of the sag-pond When the valleys and ridges intersecting with the fault are displaced, the fault scarps will block the flow of the streams cut by the fault, or make the gullies develop ancon-like bend. This would form a space for water-storage, and thus a sag-pond comes into being. If the fault behaves like this many times, multi-sag-ponding will occur. 2. Rhythmic sag-ponding deposition features and stratigraphic sequence (1) Vertical characteristics. Observed from the stratigraphic profiles disclosed by the excavation, stratigraphic sequence shows good rhythms. There are several rhythms in each pond, and one rhythm is composed of the lower coarse layers and the upper fine layers. That is, the grains are coarser below and finer upward. (2) Transverse variation. In the direction parallel to the fault, the deposition center of each sag-pond appears regular movement, or migration

  10. Quaternary strike-slip crustal deformation around an active fault based on paleomagnetic analysis: a case study of the Enako fault in central Japan

    NASA Astrophysics Data System (ADS)

    Kimura, Haruo; Itoh, Yasuto; Tsutsumi, Hiroyuki

    2004-10-01

    To evaluate cumulative strike-slip deformation around an active fault, we carried out tectonic geomorphic investigations of the active right-lateral strike-slip Enako fault in central Japan and paleomagnetic investigations of the Kamitakara pyroclastic flow deposit (KPFD; 0.6 Ma welded tuff) distributed around the fault. Tectonic geomorphic study revealed that the strike-slip displacement on the fault is ca. 150 m during the past 600 ka. We carried out measurements of paleomagnetic directions and anisotropy of magnetic susceptibility (AMS) within the pyroclastic flow deposit. Stable primary magnetic directions at each sampling site are well clustered and the AMS fabric is very oblate. We then applied tilt correction of paleomagnetic directions at 15 sites using tilting data obtained by the AMS property and orientations of eutaxitic structures. Within a distance of about 500 m from the fault trace, differential clockwise rotations were detected; the rotation angle is larger for zones closer to the fault. Because of this relation and absence of block boundary faults, a continuous deformation model explains the crustal deformation in the study area. The calculated minimum value of strike-slip displacement associated with this deformation detected within the shear zone is 210 m. The sum of this and offset on the Enako fault is 360 m and the slip rate is estimated at 0.6 mm/year.

  11. Faults paragenesis and paleostress state in the zone of actively propagating continental strike-slip on the example of North Khangai fault (Northern Mongolia)

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Parfeevets, Anna

    2014-05-01

    Sublatitudinal North Khangai fault extends from Ubsunuur basin to the eastern part of the Selenga corridor trough 800 km. It is the northern boundary of the massive Mongolian block and limits of the Baikal rift system structures propagation in the south (Logatchev, 2003). Late Cenozoic and present-day fault activity are expressed in the left-lateral displacements of a different order of river valleys and high seismicity. We have carried out studies of the kinematics of active faults and palaeostresses reconstruction in the zone of the dynamic influence of North Khangai fault, the width of which varies along the strike and can exceeds 100 km. The result shows that the fault zone has a longitudinal and a transverse zoning. Longitudinal zonation presented gradual change from west to east regions of compression and transpression regimes (Khan-Khukhey ridge) to strike-slip regime (Bolnay ridge) and strike-slip and transtensive regimes (west of Selenga corridor). Strike-slip zones are represented by linearly concentrated rupture deformations. In contrast, near the termination of the fault the cluster fault deformation formed. Here, from north to south, there are radical changes in the palaeostress state. In the north-western sector (east of Selenga corridor) strike-slip faults, strike-slip faults with normal components and normal faults are dominated. For this sector the stress tensors of extensive, transtension and strike-slip regimes are typical. South-western sector is separated from the north-eastern one by massive Buren Nuruu ridge within which the active faults are not identified. In the south-western sector between the Orkhon and Tola rivers the cluster of NW thrusts and N-S strike-slip faults with reverse component are discovered. The faults are perfectly expressed by NW and N-S scarps in the relief. The most structures dip to the east and north-east. Holocene fault activity is demonstrated by the hanging river valleys and horizontal displacements with amplitudes

  12. Manifestations of Strike-Slip Faulting on Ganymede

    NASA Technical Reports Server (NTRS)

    DeRemer, Lindsay C.; Pappalardo, Robert T.

    2003-01-01

    Voyager images of Ganymede suggested that strike-slip faulting may have taken place [1, 2], but the role of this process in shaping grooved terrain was uncertain. In Galileo high-resolution images of Ganymede's surface, we recognize three signature features of strike-slip faulting: (1) en echelon structures, (2) strike-slip duplexes, and (3) offset preexisting features. We have undertaken a study to recognize and map these features, and identify any morphological progressions of strike-slip features. This will allow a better understanding of the structural history of Ganymede, and the formation and evolution of grooved terrain.

  13. Water generation and transport below Europa's strike-slip faults

    NASA Astrophysics Data System (ADS)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2016-12-01

    Jupiter's moon Europa has a very young surface with the abundance of unique terrains that indicate recent endogenic activity. Morphological models as well as spectral observations suggest that it might possess shallow lenses of liquid water within its outer ice shell. Here we investigate the generation and possible accumulation of liquid water below the tidally activated strike-slip faults using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. Our results suggest that generation of shallow partially molten regions underneath Europa's active strike-slip faults is possible, but their lifetime is constrained by the formation of Rayleigh-Taylor instabilities due to the negative buoyancy of the melt. Once formed, typically within a few million years, these instabilities efficiently transport the meltwater through the shell. Consequently, the maximum water content in the partially molten regions never exceeds 10% which challenges their possible detection by future exploration mission.

  14. Late Quaternary Activity and Seismogenic Potential of the Gonave Microplate: Plantain Garden Strike-Slip Fault Zone of Eastern Jamaica

    NASA Astrophysics Data System (ADS)

    Mann, P.; Prentice, C.; King, W.; Demets, C.; Wiggins-Grandison, M.; Benford, B.

    2008-12-01

    At the longitude of Jamaica, Caribbean (Carib)-North America (Noam) plate motion of 19 ± 2 mm/a is carried by two parallel, left-lateral strike-slip faults, the Oriente fault zone, immediately south of Cuba, and the Enriquillo-Plantain Garden fault zone (EPGFZ), which lies 100-150 km further south. It has been postulated that the lithosphere between these faults constitutes an independent Gonave microplate that has formed in response to the ongoing collision between the leading edge of Carib in Hispaniola and the Bahama carbonate platform. GPS measurements in Jamaica and Hispanola is supportive of the microplate hypothesis and indicates that roughly half of Carib-Noam plate motion (8-14 mm/a) is carried by the EPGFZ of southern Hispaniola and eastern Jamaica. This study applies geomorphic and paleoseismic methods as a direct test of the activity and amount of microplate motion carried on the Plantain Garden fault segment of eastern Hispaniola and how this motion is distributed across a large restraining bend that has formed the island of Jamaica since the late Miocene. The EPFZ curves gently to the northeast and forming a steep mountain front to the Blue Mountains restraining bend with elevations up to 2200 m. Geomorphic fault-related features along the mountain front fault zone include left-laterally deflected rivers and streams, but no small scale features indicative of Holocene activity. River and stream deflections range from 0.1 to 0.5 km. We identified and trenched the most active trace of the mountain front fault at the Morant River where the fault is characterized by a 1.5-m-wide sub-vertical fault zone juxtaposing sheared alluvium and fault Cretaceous basement rocks This section is overlain by a 6-m-thick fluvial terrace. Trenching in the unfaulted terrace immediately overlying the fault trace revealed radiocarbon and OSL ages ranging from 20 to 21 ka that are consistent with a prominent unfaulted alluvial fan along the projection of this fault 1.5 km to

  15. Earthquake cycle associated with active strike slip faults in central Panamá

    NASA Astrophysics Data System (ADS)

    Rick, Bennett; Spinler, Joshua C.; Compton, Kathleen; Rockwell, Thomas K.; Gath, Eldon

    2013-04-01

    The rigidity of the Panamá Isthmus is currently under debate, with important implications for seismic hazards to the Panamá Canal and Panamá City. Whereas Panamá has traditionally been described as a non-deforming microplate caught between a number of larger tectonic plates, new paleoseismic data collected at a limited number of trench sites in association with the ongoing expansion of the Panamá Canal may challenge the validity of the rigid microplate hypothesis. Crustal velocities from a new, ~100 km aperture, 5-station continuous GPS network constructed across the Rio Gatún, Limón, and Pedro Miguel fault zones confirm that these fault zones are active, forming a system of faults that traverse central Panamá in close proximity to the Panamá Canal and Panamá City. However, the slip rates inferred from these new geodetic data are lower than the geologic rates when using an elastic halfspace model. Differences among previous geodetic investigations, which concluded that Panamá is rigid, and the geological slip rate estimates are explained by earthquake cycle effects associated with long recurrence intervals relative to lower crust and upper mantle Maxwell relaxation times. Late in the earthquake cycle the geodetic strain field is broadly distributed, giving the false appearance of low seismic hazards.

  16. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  17. Structure and deformational character of strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Deng, Qidong; Wu, Daning; Zhang, Peizhen; Chen, Shefa

    1986-01-01

    Strike-slip fault zones observed either in the field or in model experiments generally consist of several subparallel faults which make these zones complicated in geometry and kinematics. The geometry of a strike-slip fault or shear zone is dependent on arrangement (pinnate or en echelon), on step (left step or right step), and on the rank )smaller faults within larger faults) of the subparallel fault. The relations and interactions of these three factors create a variety of dynamic circumstances and tectonic settings within the strike-slip fault zones. These include pull-aparts in the release area between subparallel faults, push-ups in the jogs where the subparallel faults overlap, and pivotal movements, or rotation, of single faults along the whole fault zone. Each kind of tectonic setting is in itself characteristic, each setting consists of many subtypes, which are controlled chiefly by the geometric parameters of the subparallel faults. One of the most important phenomena revealed in the field work is two different kinds of evolution of strike-slip fault zones: one is the evolution of a zone with a tensile component, which is related to the growth of rock bridges, and the other, of one with a compressional component, which develops by the destruction of rock bridges. In this paper we discuss, on the basis of recent research on four strike-slip fault zones in China, the essential characteristics of strike-slip faults and the possible causes of the observed structural phenomena. Attention is focussed on the deformation, development, and distribution of horizontal displacements within strike-slip fault zones.

  18. Exhumation and continental strike-slip fault systems: Introduction

    USGS Publications Warehouse

    Roeske, S.M.; Till, A.B.; Foster, D.A.; Sample, J.C.

    2007-01-01

    Metamorphic rocks adjacent to and within strike-slip faultsystems occur in a wide range of tectonic settings. Detailed studies show that for a number of these locales a significant part of the exhumation occurred during strike-slip fault motion, but the specific processes involved are often cryptic. Although some sites share characteristic features, such as metamorphic rocks exhumed in extensional step-overs within overall transtensional systems, no one common theme emerges from all of the studies. Our understanding of the variables that control continental strike-slip faults' interaction with mid- to lower-crustal structures is still primitive.

  19. How Orogen-scale Exhumed Strike-slip Faults Initiate

    NASA Astrophysics Data System (ADS)

    Cao, S.; Neubauer, F.

    2015-12-01

    Orogen-scale strike-slip faults present one the most important geodynamic processes affecting the lithosphere-asthenosphere system. In specific subtypes, faulting is virtually initiated along hot-to-cool boundaries, e.g. at such of hot granite intrusions or metamorphic core complexes to cool country rocks. Such fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust and are stacked within each other ("telescoping"). Exhumation of rocks is, therefore, a common feature of such strike-slip faults implying major transtensive and/or transpressive processes accompanying pure strike-slip motion. The hot-to-cool thermal structure across the fault zone significantly influences the physical fault rock properties. One major question is how and where a major strike-slip initiates and further development. Here, we propose a model in which major continental exhumed strike-slip faults potentially evolve along rheologically weak zones such as plutons or margins of metamorphic complexes. As an example, we propose a model for the Ailao Shan-Red River (ASRR) fault, SE Asia, which initiated along the edge of a plutonic belt and evolved in response to India-Asia collision with four tectonic phases.

  20. Formation and Suppression of Strike-Slip Fault Systems

    NASA Astrophysics Data System (ADS)

    Curren, Ivy S.; Bird, Peter

    2014-11-01

    Strike-slip faults are a defining feature of plate tectonics, yet many aspects of their development and evolution remain unresolved. For intact materials and/or regions, a standard sequence of shear development is predicted from physical models and field studies, commencing with the formation of Riedel shears and culminating with the development of a throughgoing fault. However, for materials and/or regions that contain crustal heterogeneities (normal and/or thrust faults, joints, etc.) that predate shear deformation, kinematic evolution of strike-slip faulting is poorly constrained. We present a new plane-stress finite-strain physical analog model developed to investigate primary deformation zone evolution in simple shear, pure strike-slip fault systems in which faults or joints are present before shear initiation. Experimental results suggest that preexisting mechanical discontinuities (faults and/or joints) have a marked effect on the geometry of such systems, causing deflection, lateral distribution, and suppression of shears. A lower limit is placed on shear offset necessary to produce a throughgoing fault in systems containing preexisting structures. Fault zone development observed in these experiments provides new insight for kinematic interpretation of structural data from strike-slip fault zones on Earth, Venus, and other terrestrial bodies.

  1. San Andreas-sized Strike-slip Fault on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay.

    In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements.

    [figure removed for brevity, see original site]

    The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart.

    Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above.

    One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension

  2. Strike-slip Faulting On Ganymede, Now And Then

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert T.; Smith-Konter, B. R.; Cameron, M. E.; DeRemer-Keeney, L. C.; Nimmo, F.

    2012-10-01

    Strike-slip tectonism is important to the structural development of Ganymede’s surface, and in the transition from dark to grooved terrain. Three distinct signatures of strike-slip faulting are recognized [1]: (1) en echelon structures, (2) strike-slip duplexes, and (3) laterally offset pre-existing features. As strike-slip faulting progressed, en echelon fractures (in both dark and grooved terrains) merged to define en echelon swaths, which can become distinct tectonic domains. Three morphological categories of strike-slip “duplexes” (spindle-shaped lensoid regions bounded by strike-slip faults) occur, suggesting an evolutionary sequence from discontinuous fractures in dark terrain, to lensoid bounding structures, to lensoid regions with subparallel internal structure in grooved terrain. Ganymede’s 24 measured duplexes have an average length/width ratio of 2.4, on the low end of the terrestrial range [2]. Lateral offsets of pre-existing features betray the existence of some major strike-slip faults: Dardanus Sulcus (13°W, 18°S) is displaced 45 km by a prominent NE-SW trending fault. We model Coulomb shear failure on Ganymede, considering nonsynchronous rotation (NSR), and diurnal stresses both for present (0.0013) and possible past high ( 0.05) eccentricity [3]. We adopt NSR period 0.14 Ma; Love numbers h2 = 1.52 and l2 = 0.38; Young’s modulus 9.3 GPa; Poisson’s ratio 0.33; and fault depth 2 km. NSR shear stress resolved along the Dardanus fault is 0.3 MPa, sufficient to induce failure to 1.4 km for friction coefficient 0.3. For past high eccentricity, diurnal stress would have modulated NSR stress by 100 kPa through Ganymede’s tidal cycle. This could have induced shear heating [4] and tidal walking [5], as modeled for Europa. References: [1] DeRemer and Pappalardo (2003), LPSC, 34, #2033; [2] Aydin and Nur (1982), Tectonics, 1, 91; [3] Showman and Malhotra (1997), Icarus, 127, 93; [4] Nimmo and Gaidos (2002), JGR, 107, 10.1029/2000JE001476; [5

  3. Active strike-slip faulting history inferred from offsets of topographic features and basement rocks: a case study of the Arima Takatsuki Tectonic Line, southwest Japan

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2002-01-01

    Geological, geomorphological and geophysical data have been used to determine the total displacement, slip rates and age of formation of the Arima-Takatsuki Tectonic Line (ATTL) in southwest Japan. The ATTL is an ENE-WSW-trending dextral strike-slip fault zone that extends for about 60 km from northwest of the Rokko Mountains to southwest of the Kyoto Basin. The ATTL marks a distinct topographic boundary between mountainous regions and basin regions. Tectonic landforms typically associated with active strike-slip faults, such as systematically-deflected stream channels, offset ridges and fault scarps, are recognized along the ATTL. The Quaternary drainage system shows progressive displacement along the fault traces: the greater the magnitude of stream channel, the larger the amount of offset. The maximum dextral deflection of stream channels is 600-700 m. The field data and detailed topographic analyses, however, show that pre-Neogene basement rocks on both sides of the ATTL are displaced by about 16-18 km dextrally and pre-Mio-Pliocene elevated peneplains are also offset 16-17 km in dextral along the ATTL. This suggests that the ATTL formed in the period between the development of the pre-Mio-Pliocene peneplains and deflection of the Quaternary stream channels. The geological, geomorphological and geophysical evidence presented in this study indicates that (1) the ATTL formed after the mid-Miocene, (2) the ATTL has moved as a dextral strike-slip fault with minor vertical component since its formation to late Holocene and (3) the ATTL is presently active with dextral slip rates of 1-3 mm/year and a vertical component of >0.3 mm/year. The formation of the ATTL was probably related to the opening of the Japan Sea, which is the dominant tectonic event around Japan since mid-Miocene. The case study of the ATTL provides insight into understanding the tectonic history and relationship between tectonic landforms and structures in active strike-slip faults.

  4. Distribution of strike-slip faults on Europa

    NASA Astrophysics Data System (ADS)

    Hoppa, Gregory; Greenberg, Richard; Tufts, B. Randall; Geissler, Paul; Phillips, Cynthia; Milazzo, Moses

    2000-09-01

    Study of four different regions on Europa imaged by the Galileo spacecraft during its first 15 orbits has revealed 117 strike-slip faults. Europa appears to form preferentially right-lateral faults in the southern hemisphere and left-lateral faults in the northern hemisphere. This observation is consistent with a model where diurnal tides due to orbital eccentricity drive strike-slip motion through a process of ``walking,'' in which faults open and close out of phase with alternating right-and left-lateral shear. Lineaments that record both left-and right-lateral motion (e.g., Agave Linea) may record the accommodation of compression in nearby chaotic zones. Nearly all identified strike-slip faults were associated with double ridges or bands, and few were detected along ridgeless cracks. Thus the depth of cracks without ridges does not appear to have penetrated to the low-viscosity decoupling layer, required for diurnal displacement, but cracks that have developed ridges do extend down to such a level. This result supports a model for ridge formation that requires cracks to penetrate to a decoupling layer, such as a liquid water ocean.

  5. Along strike-slip faults, do fault segments exist and how long are they ? (Invited)

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Rockwell, T. K.; Cubas, N.; Souloumiac, P.

    2013-12-01

    The existence of relay zones and bends along strike-slip faults has long been recognized. The control of such geometrical asperities in initiation and arrest of seismic ruptures has been documented in many cases, suggesting they have a key role in the structure along strike of strike-slip faults. We produced dense slip distribution for two large strike-slip earthquakes, the 2001 Kunlun earthquake and the 1940 Imperial fault earthquake. In the Kunlun case we correlated satellite images acquired before and after the event to obtain a slip distribution of 1 point/km over 300 km. For the Imperial fault earthquake, we used a set of low altitude aerial photos that were flown just after the earthquake. The resolution of the photos is good enough to allow us to measure offsets of hundreds of plow lines along the trace of the rupture. In both cases the amplitude of the slip varies at a scale of several kilometers. In the case of Kunlun, the correlation between slip variations and jogs or side faults branching off the main rupture is straightforward. In the case of the Imperial fault, where long-term morphology is not preserved because of anthropic activities, still the slip distribution corresponds well with the slip patches determined independently by seismologists. These two examples strongly suggest that the segmentation of the fault controls the way seismic ruptures propagate along strike-slip faults. A more systematic exploration of slip maps derived from kinematic inversions of geophysical data shows that beyond variation due to different methodology and data, the lateral size of slip patches derived from such geophysical studies saturates around 20 km, independently of the earthquake magnitude. In parallel, using the available dataset of well documented ground ruptures maps for strike slip earthquakes, we designed an automatic procedure to quantify the minimum number of connected strait lines, approximating fault segment, needed to fit the rupture trace. The

  6. The distribution and characterization of strike-slip faults on Enceladus

    NASA Astrophysics Data System (ADS)

    Martin, Emily S.

    2016-03-01

    Strike-slip faulting is typically characterized by lateral offsets on icy satellites of the outer solar system. However, strike-slip faults on Enceladus lack these typical lateral offsets and instead are marked by the presence of tailcracks or en echelon cracks. These features are used here to develop the first near-global distribution of strike-slip faults on Enceladus. Strike-slip faults on Enceladus fall into three broad categories: tectonic terrain boundaries, reactivated linear features, and primary strike-slip faults. All three types of strike-slip faults are found predominantly, or within close proximity to, the antipodal cratered terrains on the Saturnian and anti-Saturnian hemispheres. Stress modeling suggests that strike-slip faulting on Enceladus is not controlled by nonsynchronous rotation, as on Europa, suggesting a fundamentally different process driving Enceladus's strike-slip faulting. The motion along strike-slip faults at tectonic terrain boundaries suggests large-scale northward migration of the ice shell on the leading hemisphere of Enceladus, occurring perpendicular to the opening direction of the tiger stripes in the south polar terrain.

  7. Actively evolving microplate formation by oblique collision and sideways motion along strike-slip faults: An example from the northeastern Caribbean plate margin

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Taylor, F. W.; Edwards, R. Lawrence; Ku, Teh-Lung

    1995-06-01

    The pattern of folding, faulting, and late Quaternary coral-reef uplift rates in western and central Hispaniola (Haiti and Dominican Republic) suggest that the elongate Gonave microplate, a 190,000-km 2 area of the northeastern Caribbean plate, is in the process of shearing off the Caribbean plate and accreting to the North American plate. Late Cenozoic transpression between the southeastern Bahama Platform and the Caribbean plate in Hispaniola has inhibited the eastward motion of the northeastern corner of the plate. Transpression is manifested in western and central Hispaniola by the formation of regional scale folds that correspond to present-day, anticlinal topographic mountain chains continuous with offshore anticlinal ridges. Areas of most rapid Quaternary uplift determined from onland coral reefs 125 ka and younger, coincide with the axial traces of these folds. Offshore data suggest recent folding and faulting of the seafloor. Onshore reef data do not conclusively require late Quaternary folding, but demonstrate that tectonic uplift rates of the axial areas of the anticlines decrease from the Northwest Peninsula of Haiti (0.37 mm/yr) to to the central part of the coast of western Haiti (0.19 mm/yr) to the south-central part of western Haiti (0 mm/yr). Formation of the 1200-km-long Enriquillo-Plantain Garden-Walton fault zone as a 'bypass' strike-slip fault has isolated the southern edge of the Gonave microplate and is allowing continued, unimpeded eastward motion of a smaller Caribbean plate past the zone of late Neogene convergence and Quaternary uplift of coral reefs in Hispaniola. Offshore seismic reflection data from the Jamaica Passage, the marine strait separating Jamaica and Haiti, show that the Enriquillo-Plantain Garden fault zone forms a narrow but deep, active fault-bounded trough beneath the passage. The active fault is continuous with active faults mapped onshore in western Haiti and eastern Jamaica; the bathymetric deep is present because the

  8. Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold seep habitats

    NASA Astrophysics Data System (ADS)

    Maloney, Jillian M.; Grupe, Benjamin M.; Pasulka, Alexis L.; Dawson, Katherine S.; Case, David H.; Frieder, Christina A.; Levin, Lisa A.; Driscoll, Neal W.

    2015-05-01

    The importance of tectonics and fluid flow in controlling cold seep habitats has long been appreciated at convergent margins but remains poorly understood in strike-slip systems. Here we present geophysical, geochemical, and biological data from an active methane seep offshore from Del Mar, California, in the inner California borderlands (ICB). The location of this seep appears controlled by localized transpression associated with a step in the San Diego Trough fault zone and provides an opportunity to examine the interplay between fluid expulsion and restraining step overs along strike-slip fault systems. These segment boundaries may have important controls on seep locations in the ICB and other margins characterized by strike-slip faulting (e.g., Greece, Sea of Marmara, and Caribbean). The strike-slip fault systems offshore southern California appear to have a limited distribution of seep sites compared to a wider distribution at convergent plate boundaries, which may influence seep habitat diversity and connectivity.

  9. Hairpin river loops and slip-sense inversion on southeast Asian strike-slip faults

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Replumaz, Anne; Hervé Leloup, P.

    1998-08-01

    In the Golden Triangle region of southeast Asia (northern Thailand, Laos and Burma, southern Yunnan), the Mekong, Salween, and neighboring rivers show hairpin geometries where they cross active strike-slip faults. Restoration of young, left-lateral offsets of these rivers leaves residual right-lateral bends of many kilometers. We interpret these hairpins as evidence of late Cenozoic slip-sense inversion on these faults, about 5 to 20 Ma. Near the Red River fault, stress field and slip-sense inversion occurred ca. 5 Ma. This implies that the present course of these large rivers has existed for at least several million years. Pliocene Quaternary slip rates, possibly on the order of 1 mm/yr, are inferred on each of the strike-slip faults of the Golden Triangle.

  10. Geomorphic expression of strike-slip faults: field observations vs. analog experiments: preliminary results

    NASA Astrophysics Data System (ADS)

    Hsieh, S. Y.; Neubauer, F.; Genser, J.

    2012-04-01

    The aim of this project is to study the surface expression of strike-slip faults with main aim to find rules how these structures can be extrapolated to depth. In the first step, several basic properties of the fault architecture are in focus: (1) Is it possible to define the fault architecture by studying surface structures of the damage zone vs. the fault core, particularly the width of the damage zone? (2) Which second order structures define the damage zone of strike-slip faults, and how relate these to such reported in basement fault strike-slip analog experiments? (3) Beside classical fault bend structures, is there a systematic along-strike variation of the damage zone width and to which properties relates the variation of the damage zone width. We study the above mentioned properties on the dextral Altyn fault, which is one of the largest strike-slip on Earth with the advantage to have developed in a fully arid climate. The Altyn fault includes a ca. 250 to 600 m wide fault valley, usually with the trace of actual fault in its center. The fault valley is confined by basement highs, from which alluvial fans develop towards the center of the fault valley. The active fault trace is marked by small scale pressure ridges and offset of alluvial fans. The fault valley confining basement highs are several kilometer long and ca. 0.5 to 1 km wide and confined by rotated dextral anti-Riedel faults and internally structured by a regular fracture pattern. Dextral anti-Riedel faults are often cut by Riedel faults. Consequently, the Altyn fault comprises a several km wide damage zone. The fault core zone is a barrier to fluid flow, and the few springs of the region are located on the margin of the fault valley implying the fractured basement highs as the reservoir. Consequently, the southern Silk Road was using the Altyn fault valley. The preliminary data show that two or more orders of structures exist. Small-scale develop during a single earthquake. These finally

  11. Termination of major strike-slip faults against thrust faults in a syntaxis, as interpreted from landsat images

    SciTech Connect

    Iranpanah, A.

    1988-01-01

    The north to northeast-striking Minab fault (Zendan fault) in western Makran, Iran, is interpreted as an intracontinental transform structure that separates, along its length, the Zagros foldbelt from the Makran active trench-arc system. The 200-km long fault has a right-lateral strike-slip component and is terminated at its northern end by the north-northwest and northwest-striking Zagros main thrust. The Minab transform zone delimits the western margin of the Makran convergence zone where an oceanic part of the Afro-Arabian lithosphere is being subducted beneath the Lut and Afghan microplates. A northern extension of the Minab transform zone terminates at an internal convergence boundary within the Bandar Abbas-Minab syntaxis. The Minab transform fault consists of a zone of generally north-northwest-trending thombic conjugate strike-slip faults. The pattern of faulting for the Minab strike-slip fault zone, when traced over the entire area on the Landsat image, shows that areas with rhombic sets of conjugate strike-slip faults are separated by a few areas showing only extensional zones. This is compatible with the traditionally idealized reverse-S pattern for the strike-slip faults reported from the United States Basin and Range province. The mechanical explanation for the rhombic pattern of the fault system is consistent with the same pattern and motion as currently exists in the Makran accretionary belt. The origin of the Bandar Abbas-Minab syntaxis is believed to be related to convergence between the Afro-Arabian plate and the Lut and Afghan microplates. The convergence zone is a well-developed trench-arc gap. The western edge of this trench-arc system has been dragged to the north along the Minab dextral fault zone. This zone, which started developing in the Late Cretaceous-Paleocene, is directly responsible for the development of the Bandar Abbas-Minab syntaxis.

  12. Investigating Stress Seources and Fault Parameters Along Major Strike-Slip Lineae on Europa

    NASA Astrophysics Data System (ADS)

    Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.

    2014-12-01

    The surface of Europa is crosscut by a dense network of structures, many of these representing a complex history of strike-slip tectonic activity, presumably arising from a combination of global and local stress sources. Several dominant (~1000 km) structures span geographically diverse locations of Europa, offering a unique opportunity to study strike-slip activity at the hemispheric scale. These structures also exhibit kilometer-scale geometric bends that can promote or discourage shear failure. To better understand the role of tidal stress sources and implications for strike-slip faulting on Europa, we investigate the relationship between shear and normal stresses at four major fault zones: Agenor Linea, Rhadamanthys Linea, Conamara Chaos (Agave and Asterius Lineae), and Astypalaea Linea. Assuming tidal diurnal and non-synchronous rotation (NSR) stresses as the primary mechanisms for strike-slip tectonism, here we investigate the mechanics of Coulomb shear failure on Europa. We consider a range of friction coefficients (µf = 0.2 - 0.6) and fault depths (0 - 6 km) to evaluate how the predicted failure varies as a function of depth and its dependency on ice friction, geographic location, and fault geometry. Our results indicate that the conditions for failure at depth are not met for any of the lineae if subject to diurnal stresses only. Alternatively, models that include both diurnal and NSR stresses readily generate stress magnitudes that could permit shear failure. Shear failure is easily activated and extends to depths ranging from 3 - 6 km on all four linea systems when a low coefficient of friction (µf = 0.2) is assumed, but is generally limited to depths < 3 km when a high coefficient of friction (µf = 0.6) is applied. Based on these results, we infer that the conditions for shear failure are potentially met along at least these four studied lineae, and possibly others, on Europa when NSR is adopted as a driving stress mechanism and the coefficient of

  13. Strike-slip faulting at Thebes Gap, Missouri and Illinois: Implications for New Madrid tectonism

    NASA Astrophysics Data System (ADS)

    Harrison, Richard W.; Schultz, Art

    1994-04-01

    Numerous NNE and NE striking strike-slip faults and associated normal faults, folds, and transtensional grabens occur in the Thebes Gap area of Missouri and Illinois. These structures developed along the northwestern margin of the buried Reelfoot rift of Precambrian-Cambrian age at the northern edge of the Mississippi embayment. They have had a long-lived and complex structural history. This is an area of recent moderate seismicity, approximately 45 km north of the New Madrid seismic zone. Stratigraphic evidence suggests that these faults were active during the Middle Ordovician. They were subsequently reactivated between the Early Devonian and Late Cretaceous, probably in response to both the Acadian and Ouachita orogenies. Deformation during this period was characterized by strongly faulted and folded Ordovician through Devonian rocks. In places, these deformed rocks are overlain with angular unconformity by undeformed Cretaceous strata. Fault motion is interpreted as dominantly strike slip. A still younger period of reactivation involved Late Cretaceous and Cenozoic formations as young as the Miocene or Pliocene Mounds Gravel. These formations have experienced both minor high-angle normal faulting and subsequent major, right-lateral strike-slip faulting. En echelon north-south folds, ENE striking normal faults, regional fracture patterns, and drag folds indicate the right-lateral motion for this major episode of faulting which predates deposition of Quaternary loess. Several nondefinitive lines of evidence suggest Quaternary faulting. Similar fault orientations and kinematics, as well as recent seismicity and proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.

  14. Strike-slip faulting at Thebes Gap, Missouri and Illinois; implications for New Madrid tectonism

    USGS Publications Warehouse

    Harrison, Richard W.; Schultz, Art

    1994-01-01

    Numerous NNE and NE striking strike-slip faults and associated normal faults, folds, and transtensional grabens occur in the Thebes Gap area of Missouri and Illinois. These structures developed along the northwestern margin of the buried Reelfoot rift of Precambrian-Cambrian age at the northern edge of the Mississippi embayment. They have had a long-lived and complex structural history. This is an area of recent moderate seismicity, approximately 45 km north of the New Madrid seismic zone. Stratigraphic evidence suggests that these faults were active during the Middle Ordovician. They were subsequently reactivated between the Early Devonian and Late Cretaceous, probably in response to both the Acadian and Ouachita orogenies. Deformation during this period was characterized by strongly faulted and folded Ordovician through Devonian rocks. In places, these deformed rocks are overlain with angular unconformity by undeformed Cretaceous strata. Fault motion is interpreted as dominantly strike slip. A still younger period of reactivation involved Late Cretaceous and Cenozoic formations as young as the Miocene or Pliocene Mounds Gravel. These formations have experienced both minor high-angle normal faulting and subsequent major, right-lateral strike-slip faulting. En echelon north-south folds, ENE striking normal faults, regional fracture patterns, and drag folds indicate the right-lateral motion for this major episode of faulting which predates deposition of Quaternary loess. Several nondefinitive lines of evidence suggest Quaternary faulting. Similar fault orientations and kinematics, as well as recent seismicity and proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.

  15. Fault orientations in extensional and conjugate strike-slip environments and their implications

    USGS Publications Warehouse

    Thatcher, W.; Hill, D.P.

    1991-01-01

    Seismically active conjugate strike-slip faults in California and Japan typically have mutually orthogonal right- and left-lateral fault planes. Normal-fault dips at earthquake nucleation depths are concentrated between 40?? and 50??. The observed orientations and their strong clustering are surprising, because conventional faulting theory suggests fault initiation with conjugate 60?? and 120?? intersecting planes and 60?? normal-fault dip or fault reactivation with a broad range of permitted orientations. The observations place new constraints on the mechanics of fault initiation, rotation, and evolutionary development. We speculate that the data could be explained by fault rotation into the observed orientations and deactivation for greater rotation or by formation of localized shear zones beneath the brittle-ductile transition in Earth's crust. Initiation as weak frictional faults seems unlikely. -Authors

  16. Coseismic growth of sedimentary basins along the Yammouneh strike-slip fault (Lebanon)

    NASA Astrophysics Data System (ADS)

    Nemer, Tony; Gomez, Francisco; Al Haddad, Sharbel; Tabet, Charles

    2008-12-01

    The left-lateral Yammouneh fault (YF) is the main active branch of the Dead Sea Transform Fault (DSTF) within the Lebanese restraining bend. Despite the overall transpressional setting, a series of sedimentary basins have developed along the trace of the YF. Consequently, palaeoseismic studies within these basins provide an opportunity to study the processes of coseismic growth of the basins, as well as elucidate earthquake behaviour of the fault, in general. Geodetic measurements of contemporary fault slip within the Lebanese restraining bend indicate that the YF accommodates most of the expected left-lateral strike-slip motion, despite the apparent lack of present-day seismicity. We studied the YF, using combined investigations of remote imagery, geomorphology and palaeoseismology. The active fault trace along a 51 km strip was delineated as relatively young surface ruptures and fault scarps that affect Holocene deposits with intermittent offset geomorphic markers. Seven closed basins that occur along-strike of the YF, were found to be related to faulting, with at least three of them displaying evident pull-apart settings. We concentrated our work on the rhombohedral Yammouneh basin, an actively evolving example of pull-apart basins, which is presently obliquely cut by the active fault, with an apparently young age of 1.4 +/- 0.3 Myr. 3-D correlation and analysis of palaeoseismic investigations exposed a composite shear zone with a total subsidence that exceeds 1.6 m over the past 4000-4400 yr. Stratigraphic and geochronological constraints suggest the occurrences of at least five large faulting events during that period. By correlating the stratigraphy and ages of this trench with a previously published study located nearby, a combined palaeoseismic history for the past five events is constructed. This suggests a mean recurrence period of 1020-1175 yr for large earthquakes along this section of the YF. Our results suggest a subsidence rate due to faulting of

  17. Shallow Hydrothermal Flow in a Strike-Slip Fault System, Mt Isa, Australia: A Proterozoic Analog for Modern Geothermal Systems Along Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Sibson, R. H.; Ghisetti, F.; Begbie, M.

    2014-12-01

    Strong E-W shortening during the Isan Orogeny (1590-1500 Ma) led to crustal thickening and compressional inversion of former intracontinental rift basins. The resulting metamorphic/plutonic basement complex is disrupted by conjugate, mutually cross-cutting sets of brittle, late-orogenic strike-slip faults. Dextral strike-slip faults (separations < 25 km) strike NE-NNE, while conjugate sinistral faults strike SE-SSE, defining a wrench regime (σv = σ2) with horizontal maximum compression, σ1, trending c. 100°. The strike-slip faults are recessive except in dilational sites where upwelling hydrothermal fluids have silicified the cataclastic shear zones (CSZ) which protrude as blade-like ridges extending for kilometres across the semi-arid terrain. The mineralized fault segments include sinuous releasing bends where the fault trace is deflected <10° as well as more abrupt dilational stepovers with distributed extension fracturing linking en echelon fault segments. Other components of structural permeability include: (1) innumerable fault-parallel quartz-veins (cm to m thickness) within the CSZ; (2) irregular stringer veins; and (3) a regional set of predominantly extensional, subvertical planar quartz veins oriented 080-120° at moderate angles to the main faults. Broad contemporaneity is indicated by mutual cross-cutting relationships between all structural components. Measured strike separations along shear fractures are consistent with seismic slip increments which refreshed fracture permeability and promoted hydrothermal flow. Textures suggest the faults were exhumed from epithermal boiling environments (<1-2 km depth). Restoration of fault cohesive strength by hydrothermal cementation was critical in allowing continued vein formation by hydraulic extension fracturing. The distribution of hydrothermal quartz within the fault system provides a guide to structural localization of upflow zones in geothermal fields developed along strike-slip faults.

  18. Macrostructural and microstructural architecture of the Karakoram fault: Relationship between magmatism and strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Phillips, Richard J.; Searle, Michael P.

    2007-06-01

    A key factor in interpreting the significance of large-scale strike-slip faults in models of continental deformation is an understanding of the temporal relationship between faulting and magmatism. Knowledge of when a strike-slip fault initiated is essential in order to determine its long-term slip rate and its significance in accommodating strain. We review key structural criteria that identify whether magmatism is prekinematic or synkinematic with faulting and apply these criteria to a major Tibet-bounding strike-slip fault. Along the Karakoram fault, in western Tibet, opinion is divided between (1) those advocating that magmatism and shearing were coeval, in which case the youngest U-Pb crystallization age provides a minimum age of shear, and (2) those advocating that magmatism preceded strike-slip shearing, in which case the youngest U-Pb crystallization age provides a maximum age of shear. Fault zone rocks within the central segment of the fault are variably deformed, displaying high- to low-temperature solid-state fabrics. Mylonites indicate subsolidus noncoaxial deformation at temperatures that have not exceeded greenschist-lower amphibolite facies. There is no evidence for submagmatic deformation, and there are no textural or structural indicators that suggest synkinematic magmatism. Consequently, magmatism preceded shearing suggesting that the U-Pb age of proximal leucogranites sets a maximum age for shear. Coupled with a limited offset (<150 km), these data confirm a low long-term slip rate for the Karakoram fault (3-10 mm/yr). Consequently, the fault is unlikely to have played a significant role in accommodating strain during the Indo-Asian collision, and thus its role in suggested extrusion models of deformation is limited.

  19. The impact of strike-slip, transtensional and transpressional fault zones on volcanoes. Part 1: Scaled experiments

    NASA Astrophysics Data System (ADS)

    Mathieu, Lucie; van Wyk de Vries, Benjamin

    2011-05-01

    The activity of a regional strike-slip fault can affect or channel magma migration, can deform a volcano and can destabilise the edifice flanks. The aim of this study is to determine the location, strike, dip and slip of structures that develop in a stable or gravitationally spreading volcanic cone located in the vicinity of a fault with a strike-slip component. This problem is addressed with brittle and brittle-ductile analogue models. The one hundred and twenty three models were deformed by pure strike-slip, transtensional or transpressional fault displacements. The deformation was organized around an uplift in transpressional and strike-slip experiments and around a subsiding area in transtensional experiments. Most displacements are accommodated by a curved fault called Sigmoid-I structure, which is a steep transpressional to transtensional fault. This fault projects the regional fault into the cone and delimits a summit graben that is parallel to the main horizontal stress. The systematic measurements of faults strike and slip in the experiments indicate that extension along the faults in the cone increases with the extensional component of the regional fault and the thickness of the substratum ductile layer. The distribution of the fastest horizontal movements of the analogue cone flanks, which vary depending on the regional fault characteristics and on the composition of the substratum, correspond to the distribution of instabilities in nature. Natural examples of volcanoes sited in strike-slip contexts are described and interpreted in the light of the analogue results in the second article

  20. The width of fault zones in a brittle-viscous lithosphere: Strike-slip faults

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1991-01-01

    A fault zone in an ideal brittle material overlying a very weak substrate could, in principle, consist of a single slip surface. Real fault zones have a finite width consisting of a number of nearly parallel slip surfaces on which deformation is distributed. The hypothesis that the finite width of fault zones reflects stresses due to quasistatic flow in the ductile substrate of a brittle surface layer is explored. Because of the simplicity of theory and observations, strike-slip faults are examined first, but the analysis can be extended to normal and thrust faulting.

  1. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan Fault, Iran

    NASA Astrophysics Data System (ADS)

    Walker, Faye; Allen, Mark B.

    2012-03-01

    This study concerns the ways in which rivers can record part, but not necessarily all, of strike-slip fault offset. The focus is the active right-lateral Kuh Banan Fault in eastern Iran, within the Arabia-Eurasia collision. Plate convergence has caused thrust and strike-slip faulting across SW Asia. The active slip rate of the Kuh Banan Fault is ~ 1-2 mm/yr. Total displacement is ~ 5-7 km, as determined from offset geological markers and the length of a pull-apart basin. A component of thrusting has generated ~ 1 km of relief, which preserves the offset of rivers displaced laterally by the strike-slip motion. Ridge half-widths (W), and river outlet spacings along the fault (S) are related by the drainage spacing parameter R, where R = W/S. Published data for older, larger mountain ranges have extremely characteristic drainage spacing (R = 2.1). Drainage spacing along the Kuh Banan Fault has a mean value of 1.8 and is much more variable (R = 1.1-3.1), due to local structural complexities which have influenced river courses. Most river offsets along the Kuh Banan Fault are small (< 100 m); the maximum observed offset (~ 3.5 km) is smaller than the total fault displacement of at least ~ 5 km. The most likely explanation for this discrepancy is stream capture, whereby reaches of rivers downstream of the fault are juxtaposed by fault slip against rivers upstream of the fault. In this way, offset of individual rivers is repeatedly reset to zero. Stream capture is influenced by outlet spacing such that the largest rivers can accumulate large offsets, while smaller, closely spaced rivers are captured more often, inhibiting large offsets. The mean offset of the main rivers along the Kuh Banan Fault is one-third their mean drainage spacing, indicating that the spacing of smaller rivers controls the size of the maximum offset.

  2. Strike-slip fault reactivation as a control on epithermal vein-style gold mineralization

    NASA Astrophysics Data System (ADS)

    Henley, R. W.; Adams, D. P. M.

    1992-05-01

    Epithermal precious metal mineralization develops within contemporaneously active tectonic and volcanic terranes in which co-active faults focus fluids from deep high-temperature reservoirs and magmas into shallower environments. Recognition of such structural controls through analysis of the architecture of prospective volcanic belts and basins is therefore important in the exploration for epithermal gold deposits. Field and high-resolution aeromagnetic data suggest that gold mineralization at Bimurra and Wirralie in the late Paleozoic Drummond Basin (northeast Queensland, Australia) is primarily controlled by reactivation of a northeast-striking strike-slip fault array that may have developed as a transfer fault in the early history of the basin. Gold mineralization is hosted by volcaniclastic and sedimentary rocks whose distribution was also controlled by this reactivated structure.

  3. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, U.S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to

  4. Co-seismic strike-slip fault displacement determined from push-up structures: the Selsund Fault case, South Iceland

    NASA Astrophysics Data System (ADS)

    Angelier, Jacques; Bergerat, Françoise; Bellou, Magalie; Homberg, Catherine

    2004-04-01

    We analysed push-up structures along the Selsund Fault, a N-S right-lateral strike-slip fault activated during the 1912 earthquake in the South Iceland Seismic Zone. Volume changes and syn-tectonic collapse affected push-ups during the earthquake, followed by post-seismic gravitational sagging. To determine the push-up shortening, and hence the strike-slip fault motion, we define a virtual push-up structure, without volume change and collapse, and we compare it with the present-day configuration. Whereas length comparisons are subject to errors, volumetric analysis allows determination of shortening through evaluation of the thickness of the deformed layer affected by the push-ups. We determine a co-seismic peak displacement of 2.4 m along the rupture trace. This value is consistent with the magnitude 7 of the earthquake, based on empirical relationships. Neglecting volume changes and collapse effects gives underestimated displacement. The new method for analysing push-up structures thus allows better determination of magnitudes of ancient earthquakes along strike-slip faults.

  5. Strike-slip accommodated core complexes in the Najd fault system, Arabian-Nubian shield

    NASA Astrophysics Data System (ADS)

    Meyer, S. E.; Passchier, C. W.; Abu-Alam, T. S.; Stuewe, K.

    2013-12-01

    Metamorphic core complexes are usually developed as extensional features during crustal thinning in a continental collision zone, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such dome structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15-km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140-km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and curves by more than 90 degrees eastwards from a NS trending strike slip zone to an EW trending 40 degree south dipping detachment that bounds the gneiss dome to the south. The eastern SE trending sinistral strike slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike slip shear zone during 40 km of strike slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed late during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The

  6. Strike-slip faulting, rotation, and along-strike extension in the Kopeh Dagh mountains, NE Iran

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J.; Jackson, J.; Walker, R.; Gheitanchi, M. R.; Bolourchi, M. J.

    2005-12-01

    The Kopeh Dagh is a linear mountain range separating the shortening in Iran from the stable, flat Turkmenistan shield. In its central part is an array of active right-lateral strike-slip faults that obliquely cut the range and produce offsets of several kilometers in the geomorphology and geological structure. They are responsible for major destructive earthquakes in the 19th and 20th centuries and represent an important seismic hazard for this now-populous region of NE Iran. These strike-slip faults all end in thrusts, revealed by the uplift and incision of late Quaternary river terraces, and do not continue beyond the Atrek river valley, which forms the southern margin of the Kopeh Dagh. The cumulative offset on these strike-slip faults, and their associated rotation about vertical axes, can account for ~ 60~km of N-S shortening. This value is similar to the Late Quaternary N-S right-lateral shear between central Iran and Afghanistan, which must be accommodated in NE Iran. The strike-slip faults also require ~ 30~km of along-strike extension of the Kopeh Dagh, which is taken up by the westward component of motion between the South Caspian Basin and both Eurasia and central Iran. It is probable that these motions occurred over the last ~ 10~Ma.

  7. Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran

    NASA Astrophysics Data System (ADS)

    Hollingsworth, James; Jackson, James; Walker, Richard; Reza Gheitanchi, Mohammad; Javad Bolourchi, Mohammad

    2006-09-01

    The Kopeh Dagh is a linear mountain range separating the shortening in Iran from the stable, flat Turkmenistan platform. In its central part is an array of active right-lateral strike-slip faults that obliquely cut the range and produce offsets of several kilometres in the geomorphology and geological structure. They are responsible for major destructive earthquakes in the 19th and 20th centuries and represent an important seismic hazard for this now-populous region of NE Iran. These strike-slip faults all end in thrusts, revealed by the uplift and incision of Late Quaternary river terraces, and do not continue beyond the Atrak river valley, which forms the southern margin of the Kopeh Dagh. The cumulative offset on these strike-slip faults, and their associated rotation about vertical axes, can account for ~60 km of N-S shortening. This value is similar to estimates of the Late Quaternary N-S right-lateral shear between central Iran and Afghanistan, which must be accommodated in NE Iran. The strike-slip faults also require ~30 km of along-strike extension of the Kopeh Dagh, which is taken up by the westward component of motion between the South Caspian Basin and both Eurasia and Central Iran. It is probable that these motions occurred over the last ~10 Ma.

  8. Structures associated with strike-slip faults that bound landslide elements

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, A.M.

    1989-01-01

    Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment

  9. The San Andreas Fault and a Strike-slip Fault on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay.

    The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left).

    A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements.

    Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled

  10. Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models

    NASA Astrophysics Data System (ADS)

    Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang

    2014-05-01

    Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike-slip

  11. High tsunami frequency as a result of combined strike-slip faulting and coastal landslides

    USGS Publications Warehouse

    Hornbach, Matthew J.; Braudy, Nicole; Briggs, Richard W.; Cormier, Marie-Helene; Davis, Marcy B.; Diebold, John B.; Dieudonne, Nicole; Douilly, Roby; Frohlich, Cliff; Gulick, Sean P.S.; Johnson, Harold E.; Mann, Paul; McHugh, Cecilia; Ryan-Mishkin, Katherine; Prentice, Carol S.; Seeber, Leonardo; Sorlien, Christopher C.; Steckler, Michael S.; Symithe, Steeve Julien; Taylor, Frederick W.; Templeton, John

    2010-01-01

    Earthquakes on strike-slip faults can produce devastating natural hazards. However, because they consist predominantly of lateral motion, these faults are rarely associated with significant uplift or tsunami generation. And although submarine slides can generate tsunami, only a few per cent of all tsunami are believed to be triggered in this way. The 12 January Mw 7.0 Haiti earthquake exhibited primarily strike-slip motion but nevertheless generated a tsunami. Here we present data from a comprehensive field survey that covered the onshore and offshore area around the epicentre to document that modest uplift together with slope failure caused tsunamigenesis. Submarine landslides caused the most severe tsunami locally. Our analysis suggests that slide-generated tsunami occur an order-of-magnitude more frequently along the Gonave microplate than global estimates predict. Uplift was generated because of the earthquake's location, where the Caribbean and Gonave microplates collide obliquely. The earthquake also caused liquefaction at several river deltas that prograde rapidly and are prone to failure. We conclude that coastal strike-slip fault systems such as the Enriquillo-Plantain Garden fault produce relief conducive to rapid sedimentation, erosion and slope failure, so that even modest predominantly strike-slip earthquakes can cause potentially catastrophic slide-generated tsunami - a risk that is underestimated at present.

  12. High tsunami frequency as a result of combined strike-slip faulting and coastal landslides

    USGS Publications Warehouse

    Hornbach, M.J.; Braudy, N.; Briggs, R.W.; Cormier, M.-H.; Davis, M.B.; Diebold, J.B.; Dieudonne, N.; Douilly, R.; Frohlich, C.; Gulick, S.P.S.; Johnson, H. E.; Mann, P.; McHugh, C.; Ryan-Mishkin, K.; Prentice, C.S.; Seeber, L.; Sorlien, C.C.; Steckler, M.S.; Symithe, S.J.; Taylor, F.W.; Templeton, J.

    2010-01-01

    Earthquakes on strike-slip faults can produce devastating natural hazards. However, because they consist predominantly of lateral motion, these faults are rarely associated with significant uplift or tsunami generation. And although submarine slides can generate tsunami, only a few per cent of all tsunami are believed to be triggered in this way. The 12 January Mw 7.0 Haiti earthquake exhibited primarily strike-slip motion but nevertheless generated a tsunami. Here we present data from a comprehensive field survey that covered the onshore and offshore area around the epicentre to document that modest uplift together with slope failure caused tsunamigenesis. Submarine landslides caused the most severe tsunami locally. Our analysis suggests that slide-generated tsunami occur an order-of-magnitude more frequently along the Gonave microplate than global estimates predict. Uplift was generated because of the earthquake?s location, where the Caribbean and Gonave microplates collide obliquely. The earthquake also caused liquefaction at several river deltas that prograde rapidly and are prone to failure. We conclude that coastal strike-slip fault systems such as the Enriquillog-Plantain Garden fault produce relief conducive to rapid sedimentation, erosion and slope failure, so that even modest predominantly strike-slip earthquakes can cause potentially catastrophic slide-generated tsunamig-a risk that is underestimated at present. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  13. A conjugate strike-slip fault system within the extensional tectonics of Western Turkey

    NASA Astrophysics Data System (ADS)

    Aktar, Mustafa; Karabulut, Hayrullah; Özalaybey, Serdar; Childs, Dean

    2007-12-01

    Three main shocks M-1, M-2 and M-3 (17 October 2005 at 05:45 UTC, Mw 5.4; 17 October at 09:46 UTC, Mw 5.8 and 20 October at 21:40 UTC, Mw 5.9) and their associated aftershocks within the Gulf of Siǧacik, 50 km southwest of Izmir, Turkey were studied in detail. A temporary seismic network deployed during the activity allowed the hypocentre of M-3 and subsequent aftershocks to be determined with high accuracy. A relative relocation technique was used to improve the epicentres of M-1 and M-2. All three main shocks have strike-slip mechanisms which agree with the linear trends of the aftershock locations. Two distinct zones were illuminated by the aftershock locations. The zones contain clear echelon patterns with slightly different orientations from the trend of the aftershock distribution. M-2 and M-3 ruptured along of the eastern rupture zone which aligns N45°E. However the strike direction of M-1 is not clearly identified. The alignment of the two rupture zones intersect at their southern terminus at an angle of 90°. The fault zones form conjugate pair system and static triggering is considered as a probable mechanism for the sequential west to east occurrence of M-1, M-2 and M-3. This earthquake sequence provides seismological evidence for conjugate strike-slip faulting co-existing within a region dominated by north-south extension and well-developed east-west trending normal faults.

  14. Offset of Latest Pleistocene Shoreface Reveals Slip Rate on the Hosgri Strike-Slip Fault, Offshore Central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Hartwell, S. R.; Dartnell, P.

    2014-12-01

    The Hosgri fault is the southern part of the regional Hosgri-San Gregorio dextral strike-slip fault system, which extends primarily in the offshore region for about 400 km in central California. Between Morro Bay and San Simeon, high-resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by a ~265-m-wide slope interpreted as the shoreface of a relict sand spit that formed during a period of relatively slower sea-level rise (Younger Dryas stadial) in the latest Pleistocene. This sand spit crossed an embayment and connected a western fault-bounded bedrock peninsula and an eastern bedrock highland, a paleogeography similar to modern geomorphology along coastal segments of the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6 ± 0.9 mm/yr. Because the Hosgri fault locally includes an active western strand, and regionally converges with several other faults, this slip rate should be considered a minimum for the Hosgri fault in central California and should not be applied for the entire Hosgri-San Gregorio fault system. This slip rate indicates that the Hosgri system takes up the largest share of the strike-slip fault budget and is the most active strike-slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high-resolution bathymetry in earthquake-hazard characterization of active offshore faults.

  15. The role of oblique strike-slip faulting in the tectonics of the Puget Lowlands and throughout the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.

    2015-12-01

    Upper-plate seismicity in the Puget Lowland, away from and oblique to known fault structures, challenges our understanding of active tectonics and seismic hazards of the region. The challenge arises in part from the thick glacial sediments and extensive water bodies that obscure active faults. Multichannel seismic reflection data in waterways, combined with aeromagnetic and gravity data, can effectively map fault structures throughout the Puget Lowland. Seismic reflection data indicate a NE-SW zone of recent high-angle faulting and shallow sediment deformation crossing the Seattle Uplift and the Seattle Basin, distinct from previously interpreted E-W fault systems including the main Seattle Fault. These NE-SW faults correlate with a zone of active seismicity, cut or deform sediments at the seafloor, and trend across the central Puget Lowland at an oblique angle to major regional structures. Aeromagnetic data show that the trend continues southeastward across the Seattle Uplift and connects deformation of shallow sediment in the Puget Sound with deformation of shallow sediment in Hood Canal. Two additional zones of faulting have NW-SE trend and cut through the Seattle Basin and Kingston Arch. Though strike-slip motion is a new interpretation for deformation along the southern edge of the Seattle Basin, it is not anomalous in the Puget Lowland; it is observed to the north along the southern Whidbey Island Fault (Sherrod et al., 2008) and Darrington-Devils Mountain Fault (Personius et al., 2014) and to the south along the Mount St. Helens seismic zone. Strike-slip motion accompanying regional compression and thrust-faulting occurs elsewhere in the Pacific Northwest including in south-central Washington (Blakely et al., 2014). Oblique strike-slip faults may contribute more significantly to deformation and seismicity within the Puget Lowland than previously recognized. Future work will evaluate the impact of deformation along these structures in tectonic models and

  16. Strike-slip faulting in the Inner California Borderlands, offshore Southern California.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.

    2015-12-01

    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the

  17. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  18. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2016-05-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to ~450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  19. 20 years of GPS interseismic measurements across strike slip faults (comparison with geologic estimates, implications on faults mechanics, lithosphere rheology and seismic hazard)

    NASA Astrophysics Data System (ADS)

    Vernant, P.

    2011-12-01

    Measurements of interseismic strain across active faults are an important key to better assess faults dynamics and seismic hazard. Based on geodetic observations across the San Andreas fault Savage and Burford in 1973 have proposed a dislocation in an elastic half space model to fit the observations. Since then, the advent of the Global Positioning System (GPS) and InSAR have allowed to monitor several other faults and one can wonder if this rheologically unrealistic model is still a good one to extrapolate the fault slip rate using the interseimic GPS velocity solution. We have now enough data to start to look at common features for strike slip faults. I will present new velocity solutions across strike slip faults that I will use with results from other studies to discuss what can we learn from geodetic measurement of interseismic strain across strike slip fault. Data from 10 strike slip faults will be used to estimate locking depth and strike slip rate. When available geologic slip rate will be compared to geodetic slip rate. Consistent estimates between geodesy and geology and between several faults suggest a constant behavior through the interseismic time period. This implies that GPS is important for the seismic hazard assessment, but is probably not the key data in the seismic hazard assessment models. Common characteristics between slow and fast slip rate faults, almost pre-seismic and early interseismic period measurements bring new information to discuss the validity of existing interseismic models and to further develop new interseismic models. Indeed, the elastic and viscoelastic two layers model of the crust or the lithosphere although more accurate than the elastic dislocation does not withstand this comparative study.

  20. Cenozoic geodynamics of the Ross Sea region, Antarctica: Crustal extension, intraplate strike-slip faulting, and tectonic inheritance

    NASA Astrophysics Data System (ADS)

    Salvini, Francesco; Brancolini, Giuliano; Busetti, Martina; Storti, Fabrizio; Mazzarini, Francesco; Coren, Franco

    1997-11-01

    An integrated study of onshore and offshore geology of the Ross Sea region (namely, Victoria Land, north of Ross Island, and the Ross Sea, Antarctica) has revealed a complex, post-Eocene tectonic framework. Regional NW-SE right-lateral, strike-slip faults are the outstanding feature of this framework and overprint an older Mesozoic extensional event, responsible for formation of N-S basins in the Ross Sea. The Cenozoic framework includes kinematic deformation and reactivation along the NW-SE faults, including formation of pull-apart basins, both positive and negative flower structures, and push-up ridges. N-S extensional faults are well developed between NW-SE faults and indicate E-W extension during the Cenozoic, produced by the NW-SE right-lateral strike-slip motion together with regional crustal extension. NNW-SSE compression, induced by the right-lateral, strike-slip kinematics, is indicated by locally inverted NE-SW faults and basins. The evolution, geometry, and location of the Rennick Graben and the Lanterman Range fit well into this model. Variations in the deformational style across the region can be linked to corresponding variations in the bulk crustal rheology, from brittle behavior in the west, to ductile deformation (at subseismic-scale resolution) near the Eastern Basin. A semibrittle region that favors N-S clustering of Cenozoic magmatic activity lies in between. In this region, Cenozoic volcanoes develop at the intersections of the NW-SE and the major N-S faults. The NW-SE faults cut almost continually from the Ross Sea to East Antarctica through lithospheric sectors with different rheology and thickness. At least two of the NW-SE faults correspond to older Paleozoic terrane boundaries in northern Victoria Land. The NW-SE faults link in the Southern Ocean with major transform faults related to the plate motions of Australia, New Zealand, and Antarctica.

  1. A three-dimensional viscoelastic model of a strike slip fault

    NASA Technical Reports Server (NTRS)

    Rundle, J. B.; Jackson, D. D.

    1975-01-01

    An analytic approximation to the Green's function for the displacements due to a strike slip point source in an elastic layer over a viscoelastic half-space is developed. This approximate Green's function is useful because it can be analytically integrated over the fault surface. Comparison with a numerical integration of the exact solution integral indicates that the approximation is quite good. The approximate Green's function is integrated analytically to obtain the displacements due to a finite rectangular strike slip fault in an elastic layer over a viscoelastic half-space. Ground displacements and angle changes from a model survey net are computed to illustrate the viscoelastic relaxation which follows a fracture in the elastic region.

  2. Tectonic rotation about the termination of a major strike-slip fault, Marlborough fault system, New Zealand

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew P.

    1995-02-01

    The Marlborough fault system comprises a series of major right-lateral strike-slip faults that link the Apline fault to the Hikurangi subduction ozone in the Pacific/Australia plate boundary zone in New Zealand. All of the major active faults of the Marlborough fault system have continuous traces except for the Clarence fault which terminates abruptly near the Ward syncline. Paleomagnetic data from upper Miocene and lower Pliocene sedimentary rocks between the Marlborough faults indicate a consistent post-early Pliocene regional clockwise rotation of about 20 deg. An additional rotation of about 10 deg is evident at many localities near the termination of the Clarence fault. It is proposed that the additional rotation, relative to the rest of the region, is caused by a velocity gradient that likely exists between the active Awatere fault and the termination of the Clarence fault. The existence of such a velocity gradient is consistent with inferences from geodetic strain data which suggest that one-third of the displacement in the Marlborough fault system occurs between the Awatere and Clarence faults. The kinematics of rotation can be modelled by treating the area as a rigid block that pivots about the termination of the Clarence fault. The block rotation model satisfies field contraints on the styles of deformation observed at the boundaries of the block and is consistent with available paleomagnetic and geodetic data.

  3. Strike-slip faulting in a foreland fold-thrust belt, western Salt Range, central Pakistan

    SciTech Connect

    McDougall, J.W.

    1985-01-01

    The N15W-trending Kalabagh fault zone (KFZ) is part of the Himalayan frontal fault (HFF) and is nearly orthogonal to active ENE-trending folds and thrust faults associated with Himalayan convergence. The KFZ extends 20 km north of Kalabagh village on the Indus River (NW Salt Range) before bending to the west along several north-dipping reverse faults. Quaternary low-angle thrust displacement appears to be concentrated at the HFF, especially the Salt Range frontal thrust. Siwalik conglomerate and sandstone cut by the KFZ north of the HFF may be as young as Quaternary, however, late Quaternary faulting has not been documented north of the HFF near Kalabagh village. Evidence of right-lateral strike-slip offset along the KFZ is seen in the field along the NNW-trending western edge of the Salt Range and from there north to Shakardarra village. Focal mechanism solutions of earthquakes show right-slip faulting in basement extending from the southernmost surface trace of the KFZ over 150 km farther south in the Punjab plain. Residual gravity anomalies and the strike of an abrupt change in Bouguer gravity values follow the KFZ along the western Salt Range and farther south. The sedimentary sequence exposed east of the KFZ is thought to be decoupled from basement along a detachment surface underlying much of the Potwar Plateau. West of the KFZ, a similar sedimentary sequence may be more strongly coupled to basement. Detachment surfaces involving major displacement probably ramp upsection, creating relatively complex fold and fault geometry on the west side of the KFZ.

  4. The influence of fault geometry on small strike-slip fault mechanics

    NASA Astrophysics Data System (ADS)

    Ritz, Elizabeth; Pollard, David D.; Ferris, Michael

    2015-04-01

    Meter-scale subvertical strike-slip fault traces in the central Californian Sierra Nevada exhibit geometric complexities that significantly contribute to their mechanical behavior. Sections of faults that opened at depth channelized fluid flow, as evidenced by hydrothermal mineral infillings and alteration haloes. Thin sections show a variation in the style of ductile deformation of infill along the fault, with greater intensities of deformation along restraining bends. Orthorectified photomosaics of outcrops provide model geometries and parameter constraints used in a two-dimensional displacement discontinuity model incorporating a complementarity algorithm. Model results show that fault shape influences the distribution of opening, and consequently the spatial distribution of fluid conduits. Geometric irregularities are present at many scales, and sections of opening occur along both releasing and restraining bends. Model sensitivity tests focus on boundary conditions along the fault: frictional properties on closed sections and fluid pressure within sections of opening. The influence of the remote stress state varies along a non-planar fault, complicating the relationships between remote stresses, frictional properties, slip, and opening. Discontinuous sections of opening along model faults are similar in spatial distribution and aperture to the epidote infill assemblages observed in the field.

  5. Phanerozoic strike-slip faulting in the continental interior platform of the United States: Examples from the Laramide Orogen, midcontinent, and Ancestral Rocky Mountains

    USGS Publications Warehouse

    Marshak, S.; Nelson, W.J.; McBride, J.H.

    2003-01-01

    The continental interior platform of the United States is that part of the North American craton where a thin veneer of Phanerozoic strata covers Precambrian crystalline basement. N- to NE-trending and W- to NW-trending fault zones, formed initially by Proterozoic/Cambrian rifting, break the crust of the platform into rectilinear blocks. These zones were reactivated during the Phanerozoic, most notably in the late Palaeozoic Ancestral Rockies event and the Mesozoic-Cenozoic Laramide orogeny - some remain active today. Dip-slip reactivation can be readily recognized in cross section by offset stratigraphic horizons and monoclinal fault-propagation folds. Strike-slip displacement is hard to document because of poor exposure. Through offset palaeochannels, horizontal slip lineations, and strain at fault bends locally demonstrate strike-slip offset, most reports of strike-slip movements for interior-platform faults are based on occurrence of map-view belts of en echelon faults and anticlines. Each belt overlies a basement-penetrating master fault, which typically splays upwards into a flower structure. In general, both strike-slip and dip-slip components of displacement occur in the same fault zone, so some belts of en echelon structures occur on the flanks of monoclinal folds. Thus, strike-slip displacement represents the lateral components of oblique fault reactivation: dip-slip and strike-slip components are the same order of magnitude (tens of metres to tens of kilometres). Effectively, faults with strike-slip components of displacement act as transfers accommodating jostling of rectilinear crustal blocks. In this context, the sense of slip on an individual strike-slip fault depends on block geometry, not necessarily on the trajectory of regional ??1. Strike-slip faulting in the North American interior differs markedly from that of southern and central Eurasia, possibly because of a contrast in lithosphere strength. Weak Eurasia strained significantly during the

  6. Crustal Strike-Slip Faulting along Small Circle Paths in the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Wells, R. E.; Lamb, A. P.; Weaver, C. S.

    2015-12-01

    Late Cenozoic and Quaternary faults, seismicity lineaments, and focal mechanisms provide evidence that clockwise rotation of Washington and Oregon is accommodated by north-directed thrusting and strike-slip deformation in the Washington segment of the Cascadia forearc. Curvilinear NW- to NNW-trending high-angle strike-slip faults and seismicity lineaments define small circles around an Euler pole (117.7°W, 47.9°N) of rotation relative to North America that approximates GPS-derived poles for the rotation of eastern Washington and the Snake River Plain. Although the lengths of strike-slip faults that follow small circle paths suggest maximum earthquake magnitudes of M6.6 to M7.2, their slip rates calculated from the Euler pole are low (0.3 to 0.5 mm/yr). Many normal faults in the Lewis and Clark Zone in Montana, the Centennial fault system north of the Snake River Plain, west of the Wasatch Front, in the northern Basin and Range, and locally east of the Oregon Cascade arc are radial to this pole of rotation, suggesting that these normal faults help accommodate this crustal rotation. Regions undergoing contraction in western Washington and northwestern Oregon are separated from those to the east undergoing extension by lines radial to the Euler pole. In our regional kinematic model, dextral faults along small circles connect SW-directed crustal extension in the Intermountain Seismic Belt and E-directed extension in the Cascade arc south of Mount Hood to N-directed contraction in the Olympic Peninsula, Puget Lowland, and the Yakima Fold and Thrust Belt. The lack of Quaternary faulting and seismicity in the Oregon segment of the forearc is consistent with its clockwise rotation as a rigid block. Potential drivers of the crustal rotation include westward slab rollback and the Yellowstone geoid high, and the overall velocity field may integrate the response of rotating blocks and distributed deformation between them.

  7. Analogue modelling of the effect of topographic steps in the development of strike-slip faults

    NASA Astrophysics Data System (ADS)

    Tomás, Ricardo; Duarte, João C.; Rosas, Filipe M.; Schellart, Wouter; Strak, Vincent

    2016-04-01

    Strike-slip faults often cut across regions of overthickened crust, such as oceanic plateaus or islands. These morphological steps likely cause a local variation in the stress field that controls the geometry of these systems. Such variation in the stress field will likely play a role in strain localization and associated seismicity. This is of particular importance since wrench systems can produce very high magnitude earthquakes. However, such systems have been generally overlooked and are still poorly understood. In this work we will present a set of analogue models that were designed with the objective of understanding how a step in the morphology affects the development of a strike-slip fault system. The models consist of a sand-cake with two areas with different thicknesses connected by a gentle ramp perpendicular to a dextral strike-slip basal fault. The sand-cake lies above two basal plates to which the dextral relative motion was imposed using a stepping-motor. Our results show that a Riedel fault system develops across the two flat areas. However, a very asymmetric fault pattern develops across the morphological step. A deltoid constrictional bulge develops in the thinner part of the model, which progressively acquires a sigmoidal shape with increasing offset. In the thicker part of the domain, the deformation is mostly accommodated by Riedel faults and the one closer to the step acquires a relatively lower angle. Associated to this Riedel fault a collapse area develops and amplifies with increasing offset. For high topographic steps, the propagation of the main fault across the step area only occurs in the final stages of the experiments, contrary to what happens when the step is small or inexistent. These results strongly suggest a major impact of the variation of topography on the development of strike-slip fault systems. The step in the morphology causes variations in the potential energy that changes the local stress field (mainly the vertical

  8. A San Andreas-sized Strike-slip Fault on Europa

    NASA Astrophysics Data System (ADS)

    Tufts, R.; Greenberg, R.; Geissler, P.

    1996-09-01

    Astypalaea Linea, a lineament in the extreme southern hemisphere of Europa, has been found to be a global-scale strike-slip fault, based on a palinspastic reconstruction of landscape on reprojected Voyager 2 images. The fault accommodates 35 km of right-lateral offset and extends at least 810 km - a length comparable to the San Andreas Fault in California. It exhibits familiar strike-slip features including braids and pull-aparts. Straight segments of the fault are concentric about an Euler pole provisionally located at (-48deg , 247.25deg W). Spanning over 29deg from (-60deg ,191deg W) to (-78.5deg , 268.5deg W) Astypalaea Linea is the longest strike-slip fault yet identified on Europa. The fault is consistent with differential stress magnitudes and stress directions predicted for high Europan latitudes due to possible non- synchronous rotation (tidal bulge in its present location) (Greenberg and Weidenschilling, 1984; Helfenstein and Parmentier, 1985). Extension on neighboring gray band Thynia Linea matches the same stress field (Pappalardo and Sullivan, 1996); thus, Astypalaea Linea and Thynia Linea may be part of a south polar deformation zone which acts as a "structural set" (Lucchitta and Soderblom, 1982). Analogous structures may exist at the Europan north pole, although factors such as a possible global structural dichotomy (Lucchitta and Soderblom, 1981) may affect their occurrence. Lateral crustal motion, as implied by the fault, is consistent with a subsurface viscous horizon structurally decoupling the outer layer of the icy Jovian satellite from its interior (e.g. Schenk and McKinnon, 1989).

  9. Numerical model of formation of a 3-D strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand

    2016-01-01

    The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.

  10. Structural evolution of the La Trocha fault zone: Oblique collision and strike-slip basins in the Cuban Orogen

    NASA Astrophysics Data System (ADS)

    Cruz-Orosa, Israel; Sã Bat, Francesc; Ramos, Emilio; Rivero, LluíS.; VáZquez-Taset, Yaniel M.

    2012-10-01

    The La Trocha fault zone acted as a major left-lateral transfer zone and is bounded by the La Trocha (LTF), Zaza-Tuinicú (ZTF), Cristales (CTF) and Taguasco (TGF) faults. These faults were consistent with the clockwise rotation of convergence and shortening in central Cuba. From the Paleocene to the Early Eocene (65-48 Ma), a SSW-NNE shortening produced transtension in the LTF and transpression in the ZTF. Subsequently, during the Middle Eocene (48-37 Ma), shortening shifted to a SW-NE direction, resulting in the normal component of the LTF and transpression in the ZTF and CTF. Since the Late Eocene (37 Ma), central Cuba has been welded to the North American Plate. The post-welding deformation gave rise to transtension of the LTF and TGF. This deformation is consistent with a WSW-ENE shortening and reflects activity in the transform boundary of the Cayman Trough. Both the normal and thrust displacements of these previous faults are corroborated by structural data whereas left-lateral displacement is deduced from the concordance between oblique collision and structural features. Plate-kinematics and the structural evolution of the La Trocha fault zone indicate that the related Central Basin is a strike-slip polygenetic basin and that the formation of this system (i.e., fault zone - strike-slip basin) was a consequence of the Paleogene oblique collision between the Caribbean Volcanic Arc and the Bahamas Borderland (North American plate).

  11. Deformation of Rock Mass Caused by Strike-Slip Faulting: Insights from Analogue Experiments

    NASA Astrophysics Data System (ADS)

    Ueta, K.

    2006-12-01

    Strike-slip fault zones are induced experimentally in artificial rock subjected to strike-slip displacement along basement fault. The purpose is to investigate in three dimensions, the geometries and sequence of development of structural elements comprising the fault zones by use of an X-ray CT scanner. 860 mm long, 310 mm wide, 25 mm high artificial rocks were made by mixing sand, plaster and water. The basement fault was displaced up to 100 mm at a displacement rate of 0.1mm/sec. The deformation of the artificial rocks with increasing basement displacement was observed as follows.1) En echelon fractures corresponding to the Riedel shears are observed at the surface of the artificial rock. In three dimensions, each fracture has helicoidal shape. The strike of Riedel shear to the basement fault rises by increasing sand content of the artificial rock, in reasonable agreement with the direction predicted by the Coulomb criterion in terms of the angle of internal friction. The width of fault zone that consists of the Riedel shears increases with increasing sand content of the artificial rock. 2) Fractures corresponding to the P-shears forms and serve to connect the Riedel shears. 3) New shears (outer shear) initiate from the points of interconnection of Riedel and P-shears, and propagate aside from the fault zone that consists of Riedel and P- shears. The region among the Riedel shear, P-shear and outer shear is an up-squeezed block, which undergo rotation with increasing displacement. The width of fault zone that consists of the Riedel shear, P-shear and outer shear increases with increasing plaster content of the artificial rock. Such increase in the width of fault zone may result from increasing the cohesive strength of the artificial rock. Likewise, the width of fault zone in rock mass is considered to depend on the mechanical properties of rocks, the geometries and maturity of the fault systems in natural cases of strike-slip faulting.

  12. Analysis of the growth of strike-slip faults using effective medium theory

    SciTech Connect

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  13. Analysis of the growth of strike-slip faults using effective medium theory

    NASA Astrophysics Data System (ADS)

    Aydin, Atilla; Berryman, James G.

    2010-11-01

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  14. Multiple strike slip faults sets: A case study from the Dead Sea transform

    NASA Technical Reports Server (NTRS)

    Ron, Hagai; Nur, Amos; Eyal, Y.

    1990-01-01

    In many strike slip tectonic settings, large rotations of crust blocks about vertical axes have been inferred from paleomagnetic data. These blocks are bounded by sets of parallel faults which presumably accommodate the relative motion between the blocks as regional deformation progress. A mechanical model by Nur et al., (1986) suggests that rotations greater than phi sub c equals 25 to 45 degrees must be accommodated by more than one set of faults, with angle phi sub c between their direction; consequently the sum of the angles between sets must be roughly equal to the total tectonic material rotation. To test this model, the authors investigated the fault geometry and field relation of fault sets in the Mt. Hermon area in northern Israel, where paleomagnetic declination implies data 69 degrees plus or minus 13 degrees counter-clockwise block rotation. The statistical and field relation analysis of over 315 faults shows that the faulting is predominantly right lateral strike slip consisting of three distinct sets. The oldest set strikes 253 degrees, the second oldest set strikes 293 degrees and the youngest strikes 339 degrees. This last direction is consistent also with the current north-south direction of the maximum principle stress axis. The angle phi sub c between the first and second sets is 39 degrees and between the second and third sets 46 degrees, in good agreement with the phi sub c angle predicted from mechanical considerations. The sum of the two angles is 85 degrees, in good agreement with the 69 degrees plus or minus 13 degrees CCW paleomagnetically derived rotation. The results suggest specifically that the sequential development of multiple intersecting fault sets is responsible for the faulting in the Mt. Hermon area; and generally that the model of block rotation with multiple faults provides very good simple rules for analyzing very complex fault patterns.

  15. Kinematic Evolution and Mechanisms of Strike-Slip Faults in the Solar System: Insights from Experimental Analogues

    NASA Astrophysics Data System (ADS)

    Curren, Ivy S.

    Identifying the ways in which faults initiate and propagate in disparate tectonic environments is fundamental for understanding regional and global deformation on rocky and icy bodies throughout the solar system. Furthermore, the kinematics and mechanisms of faulting provide a framework for understanding the range of dynamic processes that operate (or have previously operated) on planetary surfaces. To provide insight into these processes, my research focuses on strike-slip fault formation on Earth, Venus, and tidally deformed satellites (e.g., Europa, Enceladus, Phobos). Strike-slip faults are widespread across tectonic environments and their geometry, morphology, and kinematics are easily identifiable through remote sensing techniques, making this class of structures ideal for reconstructing the histories of planetary crusts. In this work, I integrate geologic observations and interpretations with experimental analogues to investigate the tectonic development of strike-slip faults in response to (1) pre-existing heterogeneous crust structure and/or composition, and (2) cyclic "tidal" stresses. The geometry and morphology of strike-slip faults can be used to test competing models of structural deformation and geodynamic properties of solar system bodies. The current understanding for strike-slip fault initiation, geometry, and morphology, derived from field and experimental studies in homogenous material by unidirectional simple shear, suggests a sequence of deformation variable only by the shape of an underlying fault. Strike-slip fault zones are defined as having a primary throughgoing fault that accommodates the majority of regional strain and flanking offset folds and fractures that form at characteristic angles away from the applied stress direction. However, along-strike variations in morphology and lateral offsets, pervasive off-fault deformation, and the absence of throughgoing faults do not adhere to anticipated outcomes of traditional strike-slip fault

  16. Modern glacial outwash sand along the Denali Fault: Thermochronological constraints on strike-slip fault and glacier interaction

    NASA Astrophysics Data System (ADS)

    Benowitz, J.; Layer, P. W.; O'Sullivan, P. B.; Vanlaningham, S.; Herreid, S. J.

    2010-12-01

    The interplay between tectonic and climatic processes on exhumation patterns is a fundamental question in current tectonic research. There has been a special focus on the affect of glacial processes on exhumation patterns in tectonically active orogens. Conclusions about exhumation extent related to late Cenozoic climatic forcing are often complicated by the possibility of movement along unknown ice-covered faults in glaciated mountain belts. In this study we investigate the interaction between glacial processes and the ice-covered Denali fault through detrital geochronology of modern glacier outwash sediments. The narrow high-relief Alaska Range provides a unique opportunity to examine the interaction of Pliocene-Quaternary glaciation with a known large-scale intercontinental strike-slip fault on long term exhumation patterns. Key attributes of the research area are a comprehensive bedrock thermochronology record of long-term rapid/deep exhumation (~24 Ma to present/~14 km), the orogen’s tectonic relationship with the ice covered Denali Fault, a preponderance of highly erosive surge-type glaciers along the Fault trace and a ~350 km transect of easily accessible sampling sites. By comparing U-Pb zircon emplacement ages (~70 Ma to ~38 Ma) and 40Ar/39Ar mica exhumation ages (~33 Ma to ~18 Ma) from bedrock samples with sub-glacial 40Ar/39Ar mica single grain fusion age distributions from glacial outwash sand we can differentiate between predicted cooling age patterns. We can distinguish between three different scenarios from the full data set: a) Outwash data slightly younger than bedrock data set-This would imply same trend as bedrock samples, where as biotite and muscovite samples get younger as you approach the Denali Fault in agreement with dip-slip on the Denali Fault is a significant contributor to topographic development in the region. b) Outwash data same or older then bedrock data set-This would imply structures splaying off the Denali Fault are

  17. Strike-slip fault network of the Huangshi structure, SW Qaidam Basin: Insights from surface fractures and seismic data

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang; Zhang, Qiquan; Yu, Xiangjiang; Du, Wei; Liu, Runchao; Bian, Qing; Wang, Zhendong; Zhang, Tuo; Guo, Zhaojie

    2017-01-01

    The Huangshi structure, as one of the NWW-trending S-shaped structures in the southwestern Qaidam Basin, holds important implications for unraveling the regional structural pattern. There are four dominant sets of surface strike-slip fractures at the core of the Huangshi structure. The fractures with orientations of N28°E, N47°E and N65°E correlate well with conjugate Riedel shears (R‧), tension fractures (T) and Riedel shears (R) in the Riedel shear model, respectively. Two conjugate strike-slip fracture sets occur at the surface of the Hongpan structure (secondary to the Huangshi structure) and the southwestern part of the Huangshi structure. In seismic sections, the Huangshi structure is present as a positive flower or Y-shaped structure governed by steeply dipping faults, whereas Hongpan and Xiaoshaping structures, located symmetrically to the Huangshi structure, are thrust-controlled anticlines. The Riedel shear pattern of surface strike-slip fractures, the positive flower or Y-shaped structure in seismic sections and the NW-trending secondary compressional anticlines consistently demonstrate that the Huangshi structure is dominated by left-lateral strike-slip faults which comprise a strike-slip fault network. Considering the similar S-shaped configuration and NWW trend of structures across the southwestern Qaidam Basin, it can be further speculated that these structures are also predominantly of left-lateral strike-slip types.

  18. Tectonic Tremor Triggered along Major Strike-Slip Faults around the World

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Shelly, D. R.; Hill, D. P.; Gonzalez-Huizar, H.; Chao, K.; Zimmerman, J. P.; Douilly, R.; Deschamps, A.; Haase, J. S.; Calais, E.

    2013-12-01

    Over the last decade, deep tectonic tremor has been observed at several major plate-bounding faults around the Pacific Rim. Observations in these regions show that ambient tremor occurs spontaneously in association with geodetically detectable slow-slip events and that triggered tremor occurs in response to small stress perturbations arising from solid earth tides as well as passing seismic waves of a distant earthquake. Tremor generally occurs in the lower crust, beneath the seismogenic zone where earthquakes occur. In order to investigate the potential link between tremor and earthquake nucleation, further study of when, where, and how tremor occurs is needed. Here, we present a review of remotely triggered tectonic tremor in four strike-slip regions: (1) the Queen Charlotte Fault near Haida Gwaii, Canada, (2) the Eastern Denali Fault in Yukon, Canada, (3) the Enriquillo-Plantain Garden Fault in the southern Haiti peninsula, and (4) the Parkfield-Cholame segment of the San Andreas Fault near Parkfield, California. In Haida Gwaii, Yukon and Parkfield, we first compute the estimated dynamic stress for all magnitude ≥ 5.5 earthquakes based on the magnitude listed in the Advanced National Seismograph System (ANSS) earthquake catalog and epicentral distance to the region where tremor is observed. We then retrieve seismic data from local networks for earthquakes that are estimated to generate ≥ 1 kPa dynamic stress, without regard to epicentral distance. We characterize tremor triggered by these distant earthquakes as broadband signals with long duration that are coincident with surface waves from a distant event or occur in a large cluster immediately following the teleseismic wavetrain. In Haiti, a temporary seismic network was deployed shortly after the 2010/01/12 Mw7.0 Haiti earthquake. Thus, we are only able to report on triggering by the 2010/02/27 Mw8.8 Maule, Chile earthquake that occurred shortly thereafter. In Parkfield, we use a low-frequency earthquake

  19. Post-Late Jurassic, pre-late Eocene strike-slip faulting in west-central Utah

    SciTech Connect

    Robinson, J.P.

    1993-04-01

    Two events of strike-slip faulting interpreted to be of Late Mesozoic-Early Tertiary age are recorded in the northern Deep Creek Mountains. These fault systems display principal detachment zones that strike N50W and N84E. Both fault systems are manifested as fault mosaics, locally anastomosing with local duplex formation. They are interpreted to represent first-order structures that operated independently of other strain regimes. A quartz monzonite stock dated 38 Ma displays strong control of the intrusion by the NW-striking faults. That, in addition to cross-cutting relationships between the NW-striking faults and a granodiorite dated 152 Ma place age constraints on the strike-slip faulting. The ENE-striking faults are younger than the NW-striking faults and are interpreted to be older than the quartz monzonite, although this relationship is ambiguous. Strike-separation on the major NW-striking faults is on the order of 3 km. Offsets of similar magnitude or greater are interpreted for the ENE-striking faults, although this remains unquantified. Despite the small area of influence, relatively minor displacements, and broad time frame of occurrence, these faults have some regional significance. If Cretaceous-aged, the strike-slip faults are markedly different than the extensional structures that formed in the internal zone' of the Cordilleran thrust belt. If Tertiary-aged, the strike-slip faults represent an age of structure with few documented examples in the eastern Basin and Range.

  20. Mnin restraining stepover - evidence of significant Cretaceous-Cenozoic dextral strike-slip faulting along the Teisseyre-Tornquist Zone?

    NASA Astrophysics Data System (ADS)

    Konon, Andrzej; Ostrowski, Szymon; Rybak-Ostrowska, Barbara; Ludwiniak, Mirosław; Śmigielski, Michał; Wyglądała, Michał; Uroda, Joanna; Kowalczyk, Sebastian; Mieszkowski, Radosław; Kłopotowska, Agnieszka

    2016-09-01

    A newly recognized Mnin restraining stepover is identified in the Permo-Mesozoic cover of the western part of the Late Palaeozoic Holy Cross Mountains Fold Belt (Poland), within a fault pattern consisting of dextral strike-slip faults. The formation of a large contractional structure at the Late Cretaceous - Cenozoic transition displays the significant role of strike-slip faulting along the western border of the Teisseyre-Tornquist Zone, in the foreland of the Polish part of the Carpathian Orogen. Theoretical relationships between the maximum fault offsets/ mean step length, as well as between the maximum fault offsets/mean step width allowed the estimation of the values of possible offsets along the Snochowice and Mieczyn faults forming the Mnin stepover. The estimated values suggest displacements of as much as several tens of kilometres. The observed offset along the Tokarnia Fault and theoretical calculations suggest that the strike-slip faults west of the Late Palaeozoic Holy Cross Mountains Fold Belt belong to a large strike-slip fault system. We postulate that the observed significant refraction of the faults forming the anastomosing fault pattern is related also to the interaction of the NW-SE-striking faults formed along the western border of the Teisseyre- Tornquist Zone and the reactivated WNW-ESE-striking faults belonging to the fault systems of the northern margin of the Tethys Ocean.

  1. A multilayer model of time dependent deformation following an earthquake on a strike-slip fault

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1981-01-01

    A multilayer model of the Earth to calculate finite element of time dependent deformation and stress following an earthquake on a strike slip fault is discussed. The model involves shear properties of an elastic upper lithosphere, a standard viscoelastic linear solid lower lithosphere, a Maxwell viscoelastic asthenosphere and an elastic mesosphere. Systematic variations of fault and layer depths and comparisons with simpler elastic lithosphere over viscoelastic asthenosphere calculations are analyzed. Both the creep of the lower lithosphere and astenosphere contribute to the postseismic deformation. The magnitude of the deformation is enhanced by a short distance between the bottom of the fault (slip zone) and the top of the creep region but is less sensitive to the thickness of the creeping layer. Postseismic restressing is increased as the lower lithosphere becomes more viscoelastic, but the tendency for the width of the restressed zone to growth with time is retarded.

  2. Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary

    USGS Publications Warehouse

    ten Brink, U.; Lin, J.

    2004-01-01

    Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result

  3. Statistical Correlation between Red Wood Ant Sites and Neotectonic Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Berberich, G.; Klimetzek, D.; Wöhler, C.; Grumpe, A.

    2012-04-01

    Recent research in the West Eifel (West Germany) has demonstrated the correlation of soil gas anomalies and spatial distribution of red wood ant (RWA) mounds along strike-slip faults. RWA can be used as biological indicators for the identification of neotectonic fault systems (Berberich 2010, Schreiber & Berberich 2011). For myrmecologists, the causes and stringency of such a linkage are paramount, since linear patterns have been mostly associated with edge effects of forest stands and/or roads (Klimetzek 1970, Klimetzek & Kaiser 1995, Wellenstein 1990). Therefore, geostatistical techniques were applied in the West Eifel and the Bodanrück (South West Germany) to distribution data of approx. 3,000 resp. 2,300 mounds of RWA (Formica spp., Hymenoptera: Formicidae) in correlation with known neotectonic fault systems Both study areas are located in areas with a complex tectonic history. Commenced during the Neogene and persisted during the Quaternary, the uplift of both, the Rhenoherzynikum and the Black Forest, affects the dynamics of the study areas and reactivates pre-existing Palaeozoic crustal discontinuities. The West Eifel (Rhenoherzynikum) was tectonically sheared in Mesozoic and Cenozoic times. The current NW-SE-trending main stress direction opens pathways for geogenic gases. At the same time, Variscan faults as part of a conjugated shear system, are reactivated. At the Bodanrück, the compressional stress field (NNW-SSE) leads to a WSW-ENE extensional regime, in which faults cut through the entire crust (Ziegler & Dèzes 2007, Nagra 1992). The prominent large-scale neotectonic structure is the NW-SE to WNW-ESE trending "Freiburg-Bonndorf-Hegau-Bodensee-Graben" that consists of several sub-trenches (Müller et al. 2002). Field surveys indicate a possible existence of a NNE-SSW trending strike-slip fault extending east of Stein am Rhein (Büchi & Müller 2003) possibly reactivated in the Quaternary (Birkhäuser et al. 2001). Available focal mechanism solutions

  4. Strike-slip faulting in a foreland fold-thrust belt: The Kalabaugh fault and western Salt range, Pakistan

    NASA Astrophysics Data System (ADS)

    McDougall, James W.; Khan, Shahid Hasan

    1990-10-01

    The 120-km-long Kalabagh fault zone is formed by transpressive right-lateral strike-slip along the western Salt Range-Potwar Plateau allochthon in northern Pakistan. Lateral ramping from a decollement thrust along an Eocambrian evaporite layer produced NNW- to NW-trending folds and NE- to N-dipping thrust faults in a topographically emergent zone up to 10 km wide. Piercing points along the main Kalabagh fault indicate 12-14 km of middle to late Quaternary right-lateral offset. The older right-lateral Surghar fault displaced axes of frontal folds of the eastern Surghar Range by 4-5 km. Total displacement is reduced northward in the Kalabagh fault zone where north-dipping thrust faults splay to the west. Cumulative right-slip offset in the Kalabagh fault zone is comparable to displacement along the Salt Range frontal thrust, at a minimum average displacement rate of 7-10 mm/year near the Indus River since 2 Ma. In the basement, which dips 2-3° north along the Kalabagh fault, a NNW-trending discontinuous ridge beneath the lateral ramp is interpreted from residual gravity anomalies. The eastern flank of this basement ridge probably ramped allochthonous strata upward from a depth of over 5 km in the Kalabagh fault zone. Kalabagh faulting displaced and uplifted Holocene terrace deposits and shifted the course of the Indus River eastward. A high slip rate and associated seismicity indicate that the Kalabagh fault zone should be considered active and capable of earthquakes.

  5. Strike-Slip Faulting Processes on Ganymede: Global Morphological Mapping and Structural Interpretation of Grooved and Transitional Terrains

    NASA Astrophysics Data System (ADS)

    Burkhard, L. M.; Cameron, M. E.; Smith-Konter, B. R.; Seifert, F.; Pappalardo, R. T.; Collins, G. C.

    2015-12-01

    Ganymede's fractured surface reveals many large-scale, morphologically distinct regions of inferred distributed shear and strike-slip faulting that may be important to the structural development of its surface and in the transition from dark to light (grooved) materials. To better understand the role of strike-slip tectonism in shaping Ganymede's complex icy surface, we perform a detailed mapping of key examples of strike-slip morphologies (i.e., en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) from Galileo and Voyager images. We focus on complex structures associated with grooved terrain (e.g. Nun Sulcus, Dardanus Sulcus, Tiamat Sulcus, and Arbela Sulcus) and terrains transitional from dark to light terrain (e.g. the boundary between Nippur Sulcus and Marius Regio, including Byblus Sulcus and Philus Sulcus). Detailed structural interpretations suggest strong evidence of strike-slip faulting in some regions (i.e., Nun and Dardanus Sulcus); however, further investigation of additional strike-slip structures is required of less convincing regions (i.e., Byblus Sulcus). Where applicable, these results are synthesized into a global database representing an inferred sense of shear for many of Ganymede's fractures. Moreover, when combined with existing observations of extensional features, these results help to narrow down the range of possible principal stress directions that could have acted at the regional or global scale to produce grooved terrain on Ganymede.

  6. What causes an icy fault to slip? Investigating the depth and frictional conditions for tidally driven Coulomb failure along major strike-slip faults of Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Cameron, Marissa E.; Smith-Konter, Bridget R.; Pappalardo, Robert T.

    2014-11-01

    The surfaces of Europa and Ganymede display strike-slip fractures, presumably arising from a combination of global and local stress sources. To better understand the role of tidal stress sources and implications for strike-slip faulting on these icy bodies, we investigate the relationship between shear and normal stresses at several major fault zones: Agenor Linea, Rhadamanthys Linea, Agave/Asterius Lineae, and Astypalaea Linea (on Europa), and Dardanus Sulcus (on Ganymede). Assuming tidal diurnal and non-synchronous rotation (NSR) stresses as plausible mechanisms for strike-slip tectonism, here we investigate the mechanics of Coulomb shear failure. We consider a range of friction coefficients (µf = 0.2 - 0.6) and fault depths (0 - 6 km) to evaluate how failure predictions vary between the satellites and as a function of depth, ice friction, geographic location, and fault geometry. Assuming present-day orbital eccentricities, our results indicate that the conditions for failure at depth are not met for any of the fault systems if subject to diurnal stresses only. Alternatively, models that include both diurnal and NSR stresses readily generate stress magnitudes that could permit shear failure. On Europa, shear failure is easily activated and failure extends to depths ranging from 3 - 6 km when a low coefficient of friction (µf = 0.2) is assumed. On Ganymede, failure is limited to even shallower depths (< 2 km). A high coefficient of friction (µf = 0.6) limits failure depths to < 3 km on Europa faults and discourages strike-slip faulting completely on Ganymede. Based on these results, we infer that the conditions for shear failure are potentially met along at least these five studied systems, and possibly others in the outer solar system, if NSR is adopted as a driving stress mechanism and the coefficient of friction is low.

  7. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    USGS Publications Warehouse

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  8. Moderately-dipping California Strike-slip Faults With Bends in map View and Cross-section

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; Sorlien, C. C.; Nicholson, C.; Legg, M.; Behl, R. J.; Seeber, L.

    2015-12-01

    New faults in a strike-slip stress field are expected to be sub-vertical. However, continental strike-slip faults commonly reactivate arrays of pre-existing non-vertical faults with non-optimal strike. The systems of strike-slip faults that dissect the Inner California Continental Borderland , Santa Monica Bay, and south-Central California are imaged with multiple grids of closely spaced 2D multichannel seismic reflection profiles. From these and stratigraphic information, we constructed multiple digital 3D fault and fold interpretations. Quaternary strike-slip faults that dip moderately in their upper few km include the southern Hosgri fault, part of the Carlsbad fault, and the Santa Monica-Dume fault. These faults reactivate structures that developed in pre-19 Ma subduction and subsequent Miocene extension and transtension. Seismic reflection imaging reveal that they dip 40° to 55°. 3D seismic data image the Hosgri fault to locally dip less than 30° below 1 km depth. Where Pliocene-Quaternary sediment accumulated in basins, these faults tend to propagate upwards as sub-vertical faults, as expected. Thus, cross sectional fault geometry can be used together with other information to infer strike-slip motion. Imaged gently-dipping faults underlie and/or interact with the Santa Monica-Dume and Carlsbad faults. Seismicity and tectonic models suggest that the southern Hosgri fault and faults to its west do not affect the subducted oceanic lower crust. Thus, strike-slip motion there may occur on the former subduction megathrust. These moderately-dipping faults also describe bends and stepovers in map view, resulting in significant vertical deformation. Northwest of San Diego, the Carlsbad fault bends sharply as part of a 15 km right-stepover to the Descanso and Coronado Bank fault system. N-striking fault strands, a releasing orientation for the Pliocene to present strain orientation, connect between the Newport-Inglewood and Carlsbad faults and also between the Rose

  9. Elastoplastic dynamic analysis of strike-slip faults with bends using finite element method

    NASA Astrophysics Data System (ADS)

    Duan, B.; Day, S. M.

    2006-12-01

    Nonelastic off-fault response may play a role in rupture dynamics on geometrically complex faults, particularly in the vicinity of bends or other points of stress concentration. In this study, we have performed nonelastic dynamic analysis of strike-slip faults with bends by using a finite element method. The Coulomb yield criterion has been implemented in the code to model off-fault nonelastic response. We find that a smooth scheme (such as viscoplasticity) is required to regularize the numerical calculation of plastic yielding near a fault bend. The method is extensible to other material rheologies (e.g., damage mechanics models, tensile failure, etc), and amenable to parallel implementation. Compared with those from a calculation with elastic off-fault response, results from a calculation with nonelastic off-fault response show that (1) bends are locations of large plastic deformation; (2) stress near a bend is less heterogeneous; (3) less radiation is generated from a bend; (4) lower strong ground motion is produced.

  10. Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran

    NASA Astrophysics Data System (ADS)

    Nadimi, Alireza; Konon, Andrzej

    2012-07-01

    The Sanandaj-Sirjan Zone (SSZ) is one of the main basement tectonic blocks located close to the northeastern margin of the Zagros Orogenic Belt. New observations in the central part of the zone indicate that the fault pattern is dominated by NW-trending longitudinal faults. The components of movement on the fault planes are interpreted as dextral oblique thrusting and dextral strike-slip. The identified structures along the faults were associated with the strike-slip faults (e.g., Hasan-Robat and Najafabad dextral restraining stepovers) and rotated tectonic blocks (arranged in a 'domino' configuration) near to the Foladshahr and Kolah-Ghazi mountains. Along the longitudinal faults, the dextral offsets of the rock units, streams, alluvial deposits and rivers were measured. The dextral offset values range from 2.4 to 2.7 km, while the estimated offsets based on the geomorphological features are between 50 and 61 m for streams, up to approximately ˜50 m for alluvial deposits and up to 2.2 km for rivers. The dextral strike-slip component on the fault planes occurs along the northern and southern margins of the SSZ, as well as directly within the zone, west and east of the study area. The evidence for strike-slip faulting in the internal part of the zone suggests that the central part of the SSZ probably was horizontally sheared in a manner consistent with a simple shear 'card-deck model'.

  11. Formation of Ridge-Type Strike-Slip Faults on Europa

    NASA Astrophysics Data System (ADS)

    Bader, C.; Kattenhorn, S. A.

    2007-12-01

    Europa, Jupiter's fourth largest moon, has been imaged by both NASA's Voyager and Galileo spacecraft. The most common lineaments found on Europa's pervasively fractured surface are ridges, many of which also appear to be strike-slip faults in that they offset other crosscutting lineaments. Recent formation models have proposed that ridges may be created through shearing, although earlier models characterized them as tension fractures. We developed a technique to determine the dominant deformation characteristics along ridges having apparent lateral offsets. We show evidence for both lateral shearing and convergence along ridges, indicating that apparent lateral offsets are not purely the result of strike-slip motions. Using ISIS software, Galileo images were reprojected using both orthogonal and transverse mercator projections, to conserve line lengths and preserve angular relationships, respectively. These projections are needed to accurately differentiate shearing-related offsets from convergence-related offsets. However, there are caveats to our developed technique for determining these relative offsets and thus the formation mechanisms behind ridge development. Apparent offsets must be large enough to overcome image resolution constraints. It is also important that several offset lineaments crosscut the ridge with a wide range of orientations relative to the ridge in order to most accurately determine the relative motions across the ridge. Relative orientations are defined by angle alpha, measured clockwise from the ridge to the crosscut feature. At both small and large alpha angles (0 to 30 degrees and 160 to 180 degrees), apparent offsets due to convergence across the ridge may become relatively large compared to where alpha angles are closer to 90 degrees (for which pure ridge-orthogonal motion gives an apparent offset of zero). Causes of apparent offsets are quantified using plots of normalized separations of offset features versus alpha, which produce

  12. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California.

    NASA Astrophysics Data System (ADS)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas

    2013-04-01

    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  13. Intra-arc strike-slip fault exposed at batholithic levels in the southern Sierra Nevada, California

    SciTech Connect

    Busby-Spera, C.J. ); Saleeby, J.B. )

    1990-03-01

    The Kern Canyon fault is a major north-trending fault that is continuous for a distance of 140 km in the southern Sierra Nevada, California. Previous geologic mapping and geochronological work along the northern third of the fault indicate that dextral offset occurred sometime after 80 Ma and before 3.5 Ma; this offset was interpreted to be the result of Cenozoic basin-and-range extension. Our new results from the central third of the fault (Kernville-Lake Isabella region) indicate an earlier right-lateral movement history, contemporaneous with emplacement of the largest plutons in the Sierra Nevada. The older structure is termed the proto-Kern Canyon fault zone. The Cenozoic fault trace is a narrow zone of brittle deformation, whereas the Cretaceous fault zone is a broad zone of ductile deformation. U-Pb zircon geochronology on plutonic and metavolcanic rocks involved int he ductile deformation, as well as a pluton that postdates ductile deformation, demonstrate that the proto-Kern Canyon fault zone was active at 85 Ma, and may have begun to move as early as 105 Ma. Longitudinal strike-slip faults are common in modern magmatic arcs where convergence is oblique. The proto-Kern Canyon fault zone may have originated in response to a moderate northward component in subduction of the Farallon plate or perhaps a strong northward component for the Kula plate.

  14. Strike-slip faulting, wrinkle ridges, and time variable stress states in the Coprates Region of Mars

    NASA Technical Reports Server (NTRS)

    Schultz, Richard A.

    1990-01-01

    The existence of strike-slip faults was recently documented in two locations on Mars. Two clear examples are reviewed located southeast of Valles Marineris and preliminary evidence is presented for more widespread strike-slip deformation elsewhere in Coprates. The first two examples show that strike-slip faulting occurred in a broad zone east of the Coprates Rise spanning approximately 400 km east-west by perhaps 1000 km north-south. The last example suggests that the growth of major wrinkle ridges throughout Coprates may have been influenced by horizontally directed shear stresses and that more than one generation of ridges was produced. Thus, 'compressional' deformation of ridged plains south of Valles Marineris was spatially heterogeneous and a temporal change in stress may have been involved.

  15. Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael

    2011-01-01

    Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value

  16. Modern Glacial Outwash Sand Thermochronology Along the Denali Fault: Constraints on Strike-slip Fault and Glacier Erosion Dynamics

    NASA Astrophysics Data System (ADS)

    Benowitz, J.; Layer, P. W.

    2011-12-01

    It is now generally accepted that increased climate instability and extent of glaciation associated with late Cenozoic global cooling has led to increased erosion rates in most of the world's orogenic belts. However, the connection between surface processes and mountain building continues to be contentious because while some argue that tectonically driven rock uplift in continental collision zones is the most significant influence on erosion rates others suggest that the deep exhumation found in mountain ranges can mostly be explained by focused erosion driven by climatic processes. The relationship between the introduction of glaciers and erosion rates is also complicated by glacier process behavior in itself. It has been demonstrated that glacial advance-retreat cycles and high basal sliding rates are critical factors affecting if the introduction of glaciers will increase or decrease long-term exhumation rates. Natural experiments using detailed glacial outwash sand thermochronology, by providing an integrated time-space record of material flux, have been shown to be useful on constraining a regions sub-glacial erosion and exhumation history. The Denali Fault system, a continental-scale strike-slip fault and the associated Alaska Range with a known orogenesis development history, a documented increase in exhumation rates correlated to the start of the Northern-Hemisphere glaciation and a known surge-type glacier/fault relationship make the region a prime location to investigate the interaction of active faulting and glacial processes on erosion patterns. We can distinguish between three different scenarios from the full detrital and bedrock age data set: a) Outwash data slightly younger than bedrock data set-This would imply the same trend as bedrock samples, where as bed rock thermochronometric ages get younger as you approach the Denali Fault in agreement with dip-slip on a subglacial Denali Fault master strand as a significant contributor to topographic

  17. Procedure of evaluating parameters of inland earthquakes caused by long strike-slip faults for ground motion prediction

    NASA Astrophysics Data System (ADS)

    Ju, Dianshu; Dan, Kazuo; Fujiwara, Hiroyuki; Morikawa, Nobuyuki

    2016-04-01

    We proposed a procedure of evaluating fault parameters of asperity models for predicting strong ground motions from inland earthquakes caused by long strike-slip faults. In order to obtain averaged dynamic stress drops, we adopted the formula obtained by dynamic fault rupturing simulations for surface faults of the length from 15 to 100 km, because the formula of the averaged static stress drops for circular cracks, commonly adopted in existing procedures, cannot be applied to surface faults or long faults. The averaged dynamic stress drops were estimated to be 3.4 MPa over the entire fault and 12.2 MPa on the asperities, from the data of 10 earthquakes in Japan and 13 earthquakes in other countries. The procedure has a significant feature that the average slip on the seismic faults longer than about 80 km is constant, about 300 cm. In order to validate our proposed procedure, we made a model for a 141 km long strike-slip fault by our proposed procedure for strike-slip faults, predicted ground motions, and showed that the resultant motions agreed well with the records of the 1999 Kocaeli, Turkey, earthquake (Mw 7.6) and with the peak ground accelerations and peak ground velocities by the GMPE of Si and Midorikawa (1999).

  18. Using an Earthquake Simulator to Model Tremor Along a Strike Slip Fault

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Richards-Dinger, K. B.; Kroll, K.; Harrington, R. M.; Dieterich, J. H.

    2013-12-01

    We employ the earthquake simulator, RSQSim, to investigate the conditions under which tremor occurs in the transition zone of the San Andreas fault. RSQSim is a computationally efficient method that uses rate- and state- dependent friction to simulate a wide range of event sizes for long time histories of slip [Dieterich and Richards-Dinger, 2010; Richards-Dinger and Dieterich, 2012]. RSQSim has been previously used to investigate slow slip events in Cascadia [Colella et al., 2011; 2012]. Earthquakes, tremor, slow slip, and creep occurrence are primarily controlled by the rate and state constants a and b and slip speed. We will report the preliminary results of using RSQSim to vary fault frictional properties in order to better understand rupture dynamics in the transition zone using observed characteristics of tremor along the San Andreas fault. Recent studies of tremor along the San Andreas fault provide information on tremor characteristics including precise locations, peak amplitudes, duration of tremor episodes, and tremor migration. We use these observations to constrain numerical simulations that examine the slip conditions in the transition zone of the San Andreas Fault. Here, we use the earthquake simulator, RSQSim, to conduct multi-event simulations of tremor for a strike slip fault modeled on Cholame section of the San Andreas fault. Tremor was first observed on the San Andreas fault near Cholame, California near the southern edge of the 2004 Parkfield rupture [Nadeau and Dolenc, 2005]. Since then, tremor has been observed across a 150 km section of the San Andreas with depths between 16-28 km and peak amplitudes that vary by a factor of 7 [Shelly and Hardebeck, 2010]. Tremor episodes, comprised of multiple low frequency earthquakes (LFEs), tend to be relatively short, lasting tens of seconds to as long as 1-2 hours [Horstmann et al., in review, 2013]; tremor occurs regularly with some tremor observed almost daily [Shelly and Hardebeck, 2010; Horstmann

  19. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  20. The Ural-Herirud transcontinental postcollisional strike-slip fault and its role in the formation of the Earth's crust

    NASA Astrophysics Data System (ADS)

    Leonov, Yu. G.; Volozh, Yu. A.; Antipov, M. P.; Kheraskova, T. N.

    2015-11-01

    The paper considers the morphology, deep structure, and geodynamic features of the Ural-Herirud postorogenic strike-slip fault (UH fault), along which the Moho (the "M") shifts along the entire axial zone of the Ural Orogen, then further to the south across the Scythian-Turan Plate to the Herirud sublatitudinal fault in Afghanistan. The postcollisional character of dextral displacements along the Ural-Herirud fault and its Triassic-Jurassic age are proven. We have estimated the scale of displacements and made an attempt to make a paleoreconstruction, illustrating the relationship between the Variscides of the Urals and the Tien Shan before tectonic displacements. The analysis of new data includes the latest generation of 1: 200000 geological maps and the regional seismic profiling data obtained in the most elevated part of the Urals (from the seismic profile of the Middle Urals in the north to the Uralseis seismic profile in the south), as well as within the sedimentary cover of the Turan Plate, from Mugodzhary to the southern boundaries of the former water area of the Aral Sea. General typomorphic signs of transcontinental strike-slip fault systems are considered and the structural model of the Ural-Herirud postcollisional strike-slip fault is presented.

  1. Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, Harley M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul S.; Holland, Austin F.; Baldwin, Randy W.; Gassner, A.

    2015-01-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3,639 central Oklahoma earthquakes from late 2009 through 2014. RMT source parameters were determined for 195 of the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth and style-of-faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first order observations required to assess the potential hazards of individual faults in Oklahoma.

  2. Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H. M.; Herrmann, R. B.; Bergman, E. A.; Earle, P.; Holland, A.; Baldwin, R.; Gassner, A.

    2015-04-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3639 central Oklahoma earthquakes from late 2009 through 2014. Regional moment tensor (RMT) source parameters were determined for 195 of the largest and best recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth, and style of faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near-vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first-order observations required to assess the potential hazards of individual faults in Oklahoma.

  3. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    NASA Technical Reports Server (NTRS)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  4. The role of large strike-slip faults in a convergent continental setting - first results from the Dzhungarian Fault in Eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Campbell, Grace; Elliott, Austin; Walker, Richard; Abdrakhmatov, Kanatbek

    2016-04-01

    The Tien Shan and the Dzhungarian Ala-tau mountain ranges in Eastern Kazakhstan and China take up a significant portion of the total convergence between India and Eurasia, despite the fact that they are more than 1000 km away from the actual plate boundary. Shortening is accommodated by large thrust faults that strike more or less perpendicular to the convergence vector, and by a set of conjugate strike-slip faults. Some of these strike-slip faults are major features of several hundred kilometres length and have produced great historical earthquakes. In most cases, little is known about their slip-rates and earthquake history, and thus, about their role in the regional tectonic setting. This study deals with the NW-SE trending Dzhungarian Fault, a more than 350 km-long, right-lateral strike slip feature. It borders the Dzhungarian Ala-tau range and forms one edge of the so-called Dzhungarian Gate. The fault curves from a ~305° strike at its NW tip in Kazakhstan to a ~328° strike in China. No historical ruptures are known from the Kazakh part of the fault. A possible rupture in 1944 in the Chinese part remains discussed. We used remote sensing, Structure-from-Motion (SfM), differential GPS, field mapping, and Quaternary dating of offset geological markers in order to map the fault-related morphology and to measure the slip rate of the fault at several locations along strike. We also aimed to find out the age of the last surface rupturing earthquake and to determine earthquake recurrence intervals and magnitudes. We were further interested in the relation between horizontal and vertical motion along the fault and possible fault segmentation. Here we present first results from our 2015 survey. High-resolution digital elevation models of offset river terraces allowed us to determine the slip vector of the most recent earthquake. Preliminary dating results from abandoned fluvial terraces allow us to speculate on a late Holocene surface rupturing event. Morphological

  5. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle

    NASA Astrophysics Data System (ADS)

    Caniven, Y.; Dominguez, S.; Soliva, R.; Cattin, R.; Peyret, M.; Marchandon, M.; Romano, C.; Strak, V.

    2015-02-01

    Nowadays, technological advances in satellite imagery measurements as well as the development of dense geodetic and seismologic networks allow for a detailed analysis of surface deformation associated with active fault seismic cycle. However, the study of earthquake dynamics faces several limiting factors related to the difficulty to access the deep source of earthquake and to integrate the characteristic time scales of deformation processes that extend from seconds to thousands of years. To overcome part of these limitations and better constrain the role and couplings between kinematic and mechanical parameters, we have developed a new experimental approach allowing for the simulation of strike-slip fault earthquakes and analyze in detail hundreds of successive seismic cycle. Model rheology is made of multilayered visco-elasto-plastic analog materials to account for the mechanical behavior of the upper and lower crust and to allow simulating brittle/ductile coupling, postseismic deformation phase and far-field stress transfers. The kinematic evolution of the model surface is monitored using an optical system, based on subpixel spectral correlation of high-resolution digital images. First, results show that the model succeed in reproducing the deformation mechanisms and surface kinematics associated to the main phases of the seismic cycle indicating that model scaling is satisfactory. These results are comforted by using numerical algorithms to study the strain and stress distribution at the surface and at depth, along the fault plane. Our analog modeling approach appears, then, as an efficient complementary approach to investigate earthquake dynamics.

  6. Lineament Domain of Regional Strike-Slip Corridor: Insight from the Neogene Transtensional De Geer Transform Fault in NW Spitsbergen

    NASA Astrophysics Data System (ADS)

    Cianfarra, P.; Salvini, F.

    2015-05-01

    Lineaments on regional scale images represent controversial features in tectonic studies. Published models explain the presence of the lineament domains in most geodynamic environments as resulting from the enhanced erosion along strikes normal to the upper crustal regional extension. Despite their success in many tectonic frameworks, these models fail to explain the existing lineament domains in the regional strike-slip corridors that separate regional blocks, including the transform faults. The present paper investigates the lineament distribution in such environments, and specifically presents the results from a study along the shear corridor of the De Geer Transform Fault in the North Atlantic, responsible for the separation and drifting away between Northern Greenland and the Svalbard Archipelago since Oligocene times. The study spans from satellite image analysis and outcrop scale investigations to a more regional analysis on a digital bathymetric model of the North Atlantic-Arctic Ocean. Lineaments were automatically detected in the spectral band 8 (0.52-0.9 μm) of a Landsat 7 image (15 m/pixel resolution). A total of 320 image lineaments were extracted from both the regional and the local scale investigations and statistically analyzed. Results from the multi-scalar lineament analyses revealed the existence of a main N-S lineament domain regionally persistent from the De Geer corridor to the western margin of northern Spitsbergen where it relates to the youngest, post-Oligocene, tectonics observed onshore. This is confirmed by field observations showing that the N-S faults represent the youngest brittle deformation system and systematically cut the deformations associated with the building of the Tertiary West Spitsbergen fold and thrust belt. The N-S lineament domain is the result of the activity of a larger, regional scale tectonic feature, NW-SE oriented and responsible for the localized extension within its deformation corridor, the De Geer Transform

  7. Contractional Strain Related to Interference of Intersecting Sets of Strike-slip Faults in the Southern Death Valley Region, California

    NASA Astrophysics Data System (ADS)

    Menges, C. M.; Pavlis, T. L.; McMackin, M. R.; Serpa, L.

    2006-12-01

    Structural and geomorphic data reveal complex neotectonic deformation(Pliocene-Quaternary, post 3-4 Ma)derived in part from interactions among intersecting sets of strike-slip faults in the southern Death Valley area on the eastern margin of the Eastern California Shear Zone. A distinct 40-km-wide domain of strike-slip faulting and associated contractional strain is bounded on the north by the southern end of the Panamint and Death Valley extensional terrane and on the south by the eastern Garlock fault (EGF). The dominant regional structures are (a) two NW-trending dextral-slip faults—the southern Death Valley fault (SDVF) and southern Panamint Valley fault (SPVF), and (b) three E- to NE-oriented sinistral-slip faults. This latter set includes the EGF, an associated splay of the Owl Lake fault (OLF) and a diffuse fault zone associated with discontinuous surface rupture in upper and central Wingate Wash valley (WWF). The strike-slip faults intersect with one another in a complex interference pattern that produces on-fault zones of transpressive deformation. These faults, moreover, are embedded within widespread areas of off-fault contractional strain in the intervening crustal blocks. Specifically, secondary on-fault transpressive deformation occurs along the majority of the EGF and SDVF and sections of the OLF and SPVF. This transpression is manifested as commonly asymmetric flower structures that produce domal to elongate zones of uplifted topography along the fault trace. Surface deformation within the flower structure appears partitioned between (a)translation along strike-slip faults in the dissected core of the uplifts and (b) contraction and uplift accommodated on near-surface blind thrusts below fault-propagation folds on the flanks of the structure. Where two or more large strike-slip faults intersect one another, one or more of the structures typically merges with or is truncated against one primary though-going structure. The geometry and slip-sense of

  8. The role of strike-slip faulting in the evolution of the Afar Depression from remote sensing data fusion, field investigation and radar interferometry

    NASA Astrophysics Data System (ADS)

    Thurmond, Allison Kennedy

    Remote sensing data integration, field studies and radar interferometry has proven to be an effective combination in evaluating the evolution of the Afar Depression, specifically, the interplay of normal and strike-slip faulting within the East Central Block. The Afar triple junction is a ˜200,000 km2 region of diffuse but complex deformation where the Red Sea, the Gulf of Aden, and the Ethiopian Main Rift meet. The Gulf of Aden and Red Sea rifts are currently propagating into the Afar Depression creating a ˜120 km long and ˜100 km wide overlap zone, known as the East Central Block. Field studies and fault plane solutions of seismic activity within the East Central Block have shown evidence of strike-slip movement along dominantly NW-trending faults. However, integrated radar and optical remote sensing data shows dextral, map-scale kink structures within the Tendaho Graben. Field studies provided additional evidence for dextral displacement along NE- to NNE-trending faults in the Tendaho Graben. Dextral strike-slip movement along NE- to NNE-trending faults are explained as tear zones within regions of localized lithospheric weakness as faulted blocks adjust to clockwise rotation of micro-blocks within the East Central Block. Differential Interferometric Synthetic Aperture Radar (DInSAR) characterizes the strain deformation within the East Central Block. Unwrapped interferograms and displacement maps show relative deformation patterns within and across micro-blocks that support a component of clockwise rotation about a vertical axis. Steep phase shifts along NW-trending faults with and without topographic expression indicate a change in the strain accommodation from preexisting fault scarps to newly formed fault planes. Steep phase shifts delineate NE-trending faults which exist within individual micro-blocks supporting tear zones as a means of accommodating the strain of clockwise rotating fault blocks. This work suggests that dextral strike-slip movement along

  9. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now

  10. Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dike intrusion, central Iceland

    NASA Astrophysics Data System (ADS)

    Ágústsdóttir, Thorbjörg; Woods, Jennifer; Greenfield, Tim; Green, Robert G.; White, Robert S.; Winder, Tom; Brandsdóttir, Bryndís.; Steinthórsson, Sveinbjörn; Soosalu, Heidi

    2016-02-01

    Over a 13 day period magma propagated laterally from the subglacial Bárðarbunga volcano in the northern rift zone, Iceland. It created > 30,000 earthquakes at 5-7 km depth along a 48 km path before erupting on 29 August 2014. The seismicity, which tracked the dike propagation, advanced in short bursts at 0.3-4.7 km/h separated by pauses of up to 81 h. During each surge forward, seismicity behind the dike tip dropped. Moment tensor solutions from the leading edge show exclusively left-lateral strike-slip faulting subparallel to the advancing dike tip, releasing accumulated strain deficit in the brittle layer of the rift zone. Behind the leading edge, both left- and right-lateral strike-slip earthquakes are observed. The lack of non-double-couple earthquakes implies that the dike opening was aseismic.

  11. Surface rupture of the 2002 Denali fault, Alaska, earthquake and comparison with other strike-slip ruptures

    USGS Publications Warehouse

    Haeussler, P.J.; Schwartz, D.P.; Dawson, T.E.; Stenner, Heidi D.; Lienkaemper, J.J.; Cinti, F.; Montone, Paola; Sherrod, B.; Craw, P.

    2004-01-01

    On 3 November 2002, an M7.9 earthquake produced 340 km of surface rupture on the Denali and two related faults in Alaska. The rupture proceeded from west to east and began with a 40-km-long break on a previously unknown thrust fault. Estimates of surface slip on this thrust are 3-6 m. Next came the principal surface break along ???218 km of the Denali fault. Right-lateral offsets averaged around 5 m and increased eastward to a maximum of nearly 9 m. The fault also ruptured beneath the trans-Alaska oil pipeline, which withstood almost 6 m of lateral offset. Finally, slip turned southeastward onto the Totschunda fault. Right-lateral offsets are up to 3 m, and the surface rupture is about 76 km long. This three-part rupture ranks among the longest strike-slip events of the past two centuries. The earthquake is typical when compared to other large earthquakes on major intracontinental strike-slip faults. ?? 2004, Earthquake Engineering Research Institute.

  12. STRIKE SLIP ON REACTIVATED TRIASSIC(? ) BASIN BOUNDARY FAULT ZONES AS SOURCES OF EARTHQUAKES NEAR CHARLESTON, S. C.

    USGS Publications Warehouse

    Behrendt, John C.; Yuan, Annette

    1986-01-01

    Interpretation of several thousand kilometers of multifold seismic reflection data supports the old theory that earthquakes in the Charleston, S. C. area are associated with reactivated Triassic(? ) basin boundary extensional fault zones. The Gants-Cooke fault zone associated with the Jedburg basin in the 1886 meizoseismal area, an unnamed fault along the margin of the Branchville basin in the Bowman earthquake area and the offshore Helena Banks fault zone (no observed seismicity) along the margin of the Kiawah basin show evidence of reactivation of Triassic(? ) normal faults zones in a compressional, probably strike slip sense. The previously reported reverse separation of these faults observed on the seismic profiles in the late Cretaceous-Cenozoic Coastal Plain sediments is possibly produced by oblique slip with the horizontal component possibly 10 to 100 times the vertical. Earthquake recurrence intervals of several thousand years reported in the Charleston area appear consistent with ranges of magnitude of strike slip displacement inferred from the seismic reflection data, and are constrained by aeromagnetic data.

  13. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold

  14. Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; McBeck, J.; Cooke, M. L.

    2013-12-01

    Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in

  15. Dextral Strike-Slip Faulting Along the Early Permian Margin of Pangaea (Eastern Australia) and Implications for Oroclinal Bending

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Uysal, I. T.; Babaahmadi, A.

    2014-12-01

    The breakup of the Pangaean supercontinent was one of the most significant events that affected Phanerozoic global tectonics. Heralding this process, and following the Carboniferous maximum stage of continental assembly, was a period in which the southern part of Pangaea (Gondwana) was subjected to a counterclockwise rotation relative to Laurasia. According to tectonic reconstructions, dextral wrench faulting and oroclinal bending in Varsican Europe and eastern Gondwana accompanied this rotation, but direct evidence for dextral strike-slip faulting in the eastern Gondwanan margin has hitherto not been reported. Here we show evidence from a well-preserved fault zone in eastern Australia (Red Rock fault zone), which occurs along the eastern limb of the Z-shaped Texas/Coffs Harbour orocline. Structural observations show evidence for dextral strike-slip faulting, with a reverse kinematic component, along a sub-vertical fault plane oriented NNE-SSW. Direct geochronological data (Rb-Sr and Ar-Ar) from fault gouge samples associated with this fault zone indicate that brittle faulting occurred in the early-mid Permian (288-264 Ma). In addition, oxygen and hydrogen stable isotope geochemistry indicates that the origin of fluids that circulated in the fault zone was associated with a deep crustal source. These results are consistent with independent constraints on the timing of oroclinal bending, supporting the idea that dextral wrench faulting has directly contributed to the formation of the oroclines. We propose a kinematic model for the formation of the oroclines, attributing the early stage of oroclinal bending to subduction rollback and slab segmentation (at ~300-288 Ma) followed by a period of dextral wrench faulting at 288-264 Ma. In the context of Pangaea, our model suggests that the origin of oroclines along the rim of Gondwana was likely associated with bending in response to migrating plate boundaries, and a subsequent tightening of pre-existing curvatures by

  16. Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault

    USGS Publications Warehouse

    Andrews, D.J.; Ma, Shuo

    2010-01-01

    Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.

  17. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Lin, J. C.

    2015-12-01

    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip

  18. Microstructural, textural and thermal evolution of an exhumed strike-slip fault and insights into localization and rheological transition

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann

    2016-04-01

    The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological

  19. Fracture energies at the rupture nucleation points of large strike-slip earthquakes on the Xianshuihe fault, southwestern China

    NASA Astrophysics Data System (ADS)

    Xie, Yuqing; Kato, Naoyuki

    2017-02-01

    Earthquake cycles along a pure strike-slip fault were numerically simulated using a rate- and state-dependent friction law to obtain the fracture energies at the rupture nucleation points. In the model, deep aseismic slip is imposed on the fault, which generates recurrent earthquakes in the shallower velocity-weakening friction region. The fracture energy at the rupture nucleation point for each simulated earthquake was calculated using the relation between shear stress and slip, which indicates slip-weakening behavior. The simulation results show that the relation between the fracture energy at the nucleation point and other source parameters is consistent with a theoretical approach based on fracture mechanics, in that an earthquake occurs when the energy release rate at the tip of the aseismic slip zone first exceeds the fracture energy. Because the energy release rate is proportional to the square of the amount of deep aseismic slip during the interseismic period, which can be estimated from the recurrence interval of earthquakes and the deep aseismic slip rate, the fracture energies for strike-slip earthquakes can be calculated. Using this result, we estimated the fracture energies at the nucleation points of large earthquakes on selected segments of the Xianshuihe fault, southwestern China. We find that the estimated fracture energies at the rupture nucleation points are generally smaller than the values of average fracture energy for developed ruptures as estimated in previous studies, suggesting that the fracture energy tends to increase with the rupture propagation distance.

  20. Analysis of the growth of strike-slip faults using effective medium theory together with field data (Invited)

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Berryman, J. G.

    2009-12-01

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum slip. The field observations from the Valley of Fire State Park, southeastern Nevada, indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault’s core and between neighboring fault segments by fault-related fractures. In this presentation, using field data together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young’s, shear, and quasi pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area.

  1. Recent, slow normal and strike-slip faulting in the Pasto Ventura region of the southern Puna Plateau, NW Argentina

    USGS Publications Warehouse

    Zhou, Renjie; Schoenbohm, Lindsay M.; Cosca, Michael

    2013-01-01

    Recent normal and strike-slip faulting on the Puna Plateau of NW Argentina has been linked to lithospheric foundering, gravitational spreading, plate boundary forces and a decrease in crustal shortening from north to south. However, the timing, kinematics and rate of extension remain poorly constrained. We focus on the Pasto Ventura region (NW Argentina) located on the southern Puna Plateau and recent deformation (<1 Ma). Field mapping and kinematic analysis across offset volcanic cinder cones show that the overall extension direction is subhorizontal, is oriented NE-SW to NNE-SSW, and occurs at a slow, time-integrated rate of 0.02 to 0.08 mm/yr since at least 0.8–0.5 Ma. A regional compilation from this study and existing data shows that recent extension across the Puna Plateau is subhorizontal but varies in azimuthal orientation dramatically. Data from the Pasto Ventura region are consistent with a number of models to explain normal and strike-slip faulting on the Puna Plateau, all of which likely influence the region. Some role for lower lithospheric foundering through dripping appears to be seen based on the regional extension directions and ages of mafic volcanism in the southern Puna Plateau.

  2. Slip rates and ages of past earthquakes along the western Bogd and Valley-of-Lake strike slip faults (Gobi-Altay, Mongolia)

    NASA Astrophysics Data System (ADS)

    Kurtz, R.; Ritz, J. F.; Klinger, Y.; Ferry, M. A.; Davaasambuu, B.; CHOI, J. H.; Magali, R.; Bollinger, L.; Braucher, R.; Ulzibat, M.; Odonbaatar, C.; Demberel, S.

    2015-12-01

    The Gobi-Altay massif in southwestern Mongolia recorded one of the largest intracontinental earthquakes during the XXth century (04.12.57, Mw~8). This left-lateral strike-slip earthquake ruptured a 260 km-long section along the eastern part of the Bogd fault. About 100km of additional ruptures (essentially reverse) were also documented along subsidiary faults. Previous morphological and paleoseismological investigations along the eastern Bogd Fault determined a long-term slip rate of ~1 mm/yr and a mean recurrence interval of 3000-4000 years for events similar to the 1957 earthquake. The active tectonics of the western part of the Gobi-Altay massif proves to be more complex than the eastern section. Deformation is occurring along two strike-slip fault systems, the Western Bogd fault and the Valley-of-Lakes fault. This raises the question of the distribution of the deformation in space and time. In order to determine slip rates and dates of past events along the Western Bogd and Valley of Lakes faults, we carried out tectonic geomorphology and paleoseismological investigations. Preliminary results from a first expedition in 2014 allow estimating a slip rate of 0.3 mm/yr along the Valley-of-Lakes fault during the past 150 ka. Further analyses from a second expedition in summer 2015, should allow testing whether this rate remained stable through time, notably over the Holocene period. They will also enable determining the slip rate and the age of the most recent surface-rupturing event along the Western Bogd fault.

  3. Late Pleistocene to Present - normal and strike slip - faulting in the western Gulf of Corinth; data from high resolution seismic reflection SISCOR surveys

    NASA Astrophysics Data System (ADS)

    Beckers, Arnaud; Bodeux, Sarah; Beck, Christian; Hubert-Ferrari, Aurélia; Tripsanas, Efthymios; Sakellariou, Dimitris; De Batist, Marc; De Rycker, Koen; Bascou, Pascale; Versteeg, Willem

    2013-04-01

    The Gulf of Corinth is one of the fastest-spreading intracontinental rift on Earth, a 120km long E-W structure propagating westward toward the Aegean subduction zone. Present day kinematics (GPS data) indicates an opening direction oriented NNE-SSW and an opening rate increasing westward from 11 mm y-1 in the central part to 16 mm y-1 in the westernmost part. The high extension rate in the western part of the rift would imply a high seismic hazard if faults are not creeping. Our work concerns this western extremity of the Gulf of Corinth, for which we propose an accurate map of submarine faults. The map is based on two high-resolution seismic reflection surveys (single channel sparker) performed aboard HCMR's R/V ALKYON, within the frame of SISCOR ANR Project. About 600 km of seismic lines were acquired, with a 200 mstwt maximum penetration, down to what we infer to represent the MIS 5 discontinuity. The highlighted faults network can be described as follows. In the eastern part, where the water depth reaches 450m, the sedimentary infill is faulted by the known North Eratini, South Eratini and West Channel faults. At the longitude of the Trizonia Island, the seafloor in mainly horizontal and the only fault is the south dipping Trizonia fault. Between the Trizonia Island and the Mornos Delta, the shallower northern part of the gulf shows a diffuse pattern of deformation with faults striking mainly E-W and ESE-WNW. It shows south and north dipping normal faults, strike-slip faults, as well as an inherited basement relief. To the south of this complex fault network, numerous mass transport deposits coming from the Mornos Delta and from steep slopes at the western end of the Trizonia fault make the identification of active faults difficult. In the southern part of the rift, no fault has been observed between the Psatopyrgos fault bounding the southern side of the Gulf and the Mornos Delta. To the West, between the Mornos Delta and the Rion Straits, three main south

  4. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Rizza, M.; Ritz, J.-F.; Braucher, R.; Vassallo, R.; Prentice, C.; Mahan, S.; McGill, S.; Chauvet, A.; Marco, S.; Todbileg, M.; Demberel, S.; Bourles, D.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans-particularly well preserved in the arid environment of the Gobi region-allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is ~1 mm yr-1 along the WIB and EIB segments and ~0.5 mm yr-1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78-7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of ~2500-5200 yr for past

  5. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    USGS Publications Warehouse

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500

  6. Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: Insights from the northern termination of the Liquiñe-Ofqui fault System, Chile

    NASA Astrophysics Data System (ADS)

    Pérez-Flores, Pamela; Cembrano, José; Sánchez-Alfaro, Pablo; Veloso, Eugenio; Arancibia, Gloria; Roquer, Tomás

    2016-06-01

    This study addresses the interplay between strain/stress fields and paleo-fluid migration in the Southern Andean Volcanic Zone (SVZ). The SVZ coexists with the margin-parallel Liquiñe-Ofqui Fault System (LOFS) and with NW-striking Andean Transverse Faults (ATF). To tackle the role of different fault-fracture systems on deformation distribution and magma/fluid transport, we map the nature, geometry and kinematics of faults, veins and dikes at various scales. Fault-slip data analysis yields stress and strain fields from the full study area data base (regional scale) and fault zones representative of each fault system (local scale). Regional scale strain analysis shows kinematically heterogeneous faulting. Local strain analyses indicate homogeneous deformation with NE-trending shortening and NW-trending extension at NNE-striking Liquiñe-Ofqui master fault zones. Strain axes are clockwise rotated at second order fault zones, with ENE-trending shortening and NNW-trending stretching. The ATF record polyphasic deformation. Conversely, stress field analysis at regional scale indicates a strike-slip dominated transpressional regime with N64°E-trending σ1 and N30°W-trending σ3. Deformation is further partitioned within the arc through NNE-striking dextral-reverse faults, NE-striking dextral-normal faults and NW-striking sinistral-reverse faults with normal slip activation. The regional tectonic regime controls the geometry of NE-striking dikes and volcanic centers. NE-striking faults record local stress axes that are clockwise rotated with respect to the regional stress field. NNE- and NE-striking faults are favorably oriented for reactivation under the regional stress field and show poorly-developed damage zones. Conversely, NW-striking fault systems, misoriented under the regional stress field, show multiple fault cores, wider damage zones and dense vein networks. Deformation driven by oblique subduction is partially partitioned into strike-slip and shortening

  7. Multi-scale damage signatures across major strike-slip faults

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta

    This thesis presents a compilation of results from studies of active fault zone geometry, structural properties, and macro- and micro-scale damage fabrics. Multi-scale observations using a wide range of techniques were made along the transform plate boundary of the Pacific and the North-American plates. A new method for quantifying fault trace heterogeneity using Geographic Information System was outlined and used on the database of active faults in California. Several parameters were defined for quantifying fault trace heterogeneity and the range or dispersion in the data. The cumulative slip and slip rate proved effective measures of fault zone maturity. High resolution topographic models acquired by remote-sensing techniques were utilized to demonstrate how damage to the host rock is related to drainage development about a fault, and how the drainage density can be used as a proxy to study damage zone geometry. A strong correlation between drainage density and proximity to the fault was interpreted as an effect of degree of rock damage. Results of damage mapping using drainage density indicate that the northeast side of the SJF is generally more damaged. The observed asymmetry could be geological evidence for a preferred rupture propagation direction, because a preferred propagation direction is predicted to produce asymmetric damage structure that would be recorded in the volume of rock surrounding a fault. The fault damage zone, as inferred from drainage properties, is more pronounced near areas of complexities in the surface trace. Heterogeneities seen in the fault trace can create stress concentrations and are correlated with observations of higher damage levels. An extensive exploration of the properties of a damage zone phenomenon---pulverized granitic rocks, was performed with an objective of characterizing their chemistry and the changes they undergo due to their proximity to the San Andreas Fault. X-ray Diffraction and X-ray Fluorescence were used to

  8. Late Cenozoic strike-slip faulting in the NE Mojave Block: Deformation at the southwest boundary of the Walker Lane belt

    SciTech Connect

    Schermer, E.R. . Geology Dept.)

    1993-04-01

    New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformed together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).

  9. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    NASA Astrophysics Data System (ADS)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip

  10. Estimating Fault Slip Rates and Deformation at Complex Strike-Slip Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Thatcher, Wayne; Murray-Moraleda, Jessica

    2010-05-01

    Modeling GPS velocity fields in seismically active regions worldwide indicates deformation can be efficiently and usefully described as relative motions among elastic, fault-bounded crustal blocks. These models are providing hundreds of new decadal fault slip rate estimates that can be compared with the (much smaller) independent Holocene (<10 ka) to late Quaternary (<125 ka) rates obtained by geological methods. Updated comparisons show general agreement but a subset of apparently significant outliers. Some of these outliers have been discussed previously and attributed either to a temporal change in slip rate or systematic error in one of the estimates. Here we focus particularly on recent GPS and geologic results from southern California and discuss criteria for assessing the differing rates. In southern California (and elsewhere), subjective choices of block geometry are unavoidable and introduce significant uncertainties in model formulation and in the resultant GPS fault slip rate estimates. To facilitate comparison between GPS and geologic results in southern California we use the SCEC Community Fault Model (CFM) and geologic slip rates tabulated in the 2008 Uniform California Earthquake Rupture Forecast (UCERF2) report as starting points for identifying the most important faults and specifying the block geometry. We then apply this geometry in an inversion of the SCEC Crustal Motion Model (CMM4) GPS velocity field to estimate block motions and intra-block fault slip rates and compare our results with previous work. Here we use 4 criteria to evaluate GPS/geologic slip rate differences. First: Is there even-handed evaluation of random and systematic errors? ‘Random error' is sometimes subjectively estimated and its statistical properties are unknown or idealized. Differences between ~equally likely block models introduces a systematic error into GPS rate estimates that is difficult to assess and seldom discussed. Difficulties in constraining the true

  11. Segmentation and step-overs along strike-slip fault systems in the inner California borderlands: Implications for fault architecture and basin formation

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Driscoll, N. W.; Kent, G.; Brothers, D. S.

    2013-12-01

    Reprocessed, industry multichannel seismic reflection data and high resolution Chirp data were examined to characterize the geometry and recency of faulting in the inner California borderlands (ICB). Two end-member models have been proposed to explain the deformation observed in the ICB. One model invokes reactivation of detachment faults by the Oceanside Blind Thrust (OBT) to explain the deformation and margin architecture (e.g., San Mateo/Carlsbad Trend). In contrast, the other model explains the deformation by step-overs along the strike-slip fault systems. Several observations in both the southern and central portions of the ICB are more consistent with the step-over model than the regional blind thrust model. For example, regions in the ICB exhibit both tensional and compressional structures across the margin, which are more readily explained by the strike-slip model. Localized compression and extension occurs as predicted at fault bends and step-overs. Furthermore, strike slip fault systems that bound extensional regions (i.e., San Diego Bay) exhibit localized normal deformation as they approach the releasing step-overs. In addition, onlapping turbidites reveal that the deformation becomes younger toward the east, an observation not consistent with a westward verging blind thrust fault system. Finally, rotational deformation previously attributed to a splay off the OBT instead appears to be a southward transported gravitational slide deposit. In summary, the nested high-resolution Chirp and MCS data have provided new constraints on ICB tectonic deformation and margin architecture, which are best explained by step-overs on strike slip fault systems.

  12. Contrasting strike-slip motions on thrust and normal faults: Implications for space-geodetic monitoring of surface deformation

    NASA Astrophysics Data System (ADS)

    Hampel, Andrea; Li, Tao; Maniatis, Georgios

    2013-04-01

    Recent GPS records of surface deformation caused by earthquakes on intra-continental dip-slip faults revealed in unprecedented detail a significant strike-slip component near the fault tips, which is markedly different for thrust and normal faults. In the hanging wall of the thrust fault ruptured during the 2003 Chengkung (Taiwan) earthquake, a divergent displacement pattern was recorded (Hsu et al., 2009). In contrast, a convergent slip pattern was observed in the hanging wall of the normal fault that produced the 2009 L'Aquila (Italy) earthquake (Cheloni et al., 2010; Serpelloni et al., 2012). Remarkably, such convergent slip patterns are also evident in field records of cumulative fault slip (e.g., Jackson et al., 1982; Roberts & Koukouvelas 1996), which underlines the coseismic origin of the cumulative slip pattern. Here we use three-dimensional numerical modeling to demonstrate that the observed fault-parallel motions are a characteristic feature of the coseismic slip pattern on normal and thrust faults (Hampel et al., in press). Modeled slip vectors converge toward the center of normal faults whereas they diverge for thrust faults, which causes contrasting fault-parallel displacements at the model surface. Our model also predicts divergent movements in normal fault footwalls, which were recorded for the first time during the L'Aquila earthquake. During the postseismic phase, viscous flow in the lower crust induces fault-parallel surface displacements, which have the same direction as the coseismic displacements but are distributed over a larger area that extends far beyond the fault tips. Hence, detecting this signal requires GPS stations in the prolongation of the fault's strike. Postseismic velocities vary over several orders of magnitude depending on the lower-crustal viscosity and may reach tens of millimeters per year for low viscosities. Our study establishes the link between coseismic and cumulative slip patterns on normal and thrust faults and

  13. Alluvial deposits from the strike-slip fault Lo River Basin (Oligocene/Miocene), Red River Fault Zone, north-western Vietnam

    NASA Astrophysics Data System (ADS)

    Wysocka, Anna; Swierczewska, Anna

    2003-08-01

    The Lo River Basin (LRB) is one of several narrow sedimentary basins associated with the main faults of the Red River Fault Zone separating the South China and Indochina microplates. The basin is located on the NE boundary of the high-grade metamorphic Con Voi Massif and the sedimentary and metasedimentary Viet Bac fold zone in north-eastern Vietnam. The LRB is filled with over 6000 m of Oligocene/Miocene alluvial deposits. The source area was probably located on the NE margin of the basin and was composed mostly of low-grade metamorphic rocks with a minor component of sedimentary rocks. Three alluvial systems are recognised. The oldest system was a proximal braided river system, with the minor occurrence of alluvial fans. The younger systems record changes in clast composition and lithofacies, which suggests a transition from a distal braided river to a distal braidplain system. The LRB fill shows a range of features characteristic of strike-slip fault basins. The origin of the LRB is correlated with the left-lateral transtensional regime. The present shape of the basin is a result of post-sedimentation tectonic activity.

  14. Photogeologic and kinematic analysis of lineaments at Yucca Mountain, Nevada: Implications for strike-slip faulting and oroclinal bending

    SciTech Connect

    O`Neill, J.M.; Whitney, J.W.; Hudson, M.R.

    1992-12-31

    The main structural grain at Yucca Mountain, as seen from aerial photographs, is a pronounced north-trending linear fabric defined by parallel east-tilted fault-block ridges. The ridges are bounded on the west by normal faults that are easily recognizable on aerial photographs, mainly as isolated, colinear scarps in alluvium and as offset bedrock units. AH ridge-bounding to adjacent faults, most commonly by short northwest-trending fault splays. The generally north-trending high-angle faults primarily display down-to-the-west normal offset, but also have an auxiliary component of left-lateral slip. Left-lateral slip is indicated by offset stream channels, slickenlines, and en echelon fault splays that are structurally linked, commonly by pull-apart grabens. These grabens, best seen on low-sun angle aerial photographs, rangefrom tens of meters to more than 3 kilometers wide. The smallest pull-apart zones are well developed along the Windy Wash and Solitario Canyon faults on the west side of Yucca Mountain; the largest of these features is interpreted to structurally link the Bow Ridge and Solitario Canyon faults in the north-central part of Yucca Mountain; the pronounced northwest-trending drainage system in this part of Yucca Mountain appears to be controlled by tension fractures related to left-lateral strike-slip movement on these north-trending faults. Midway Valley, directly east of this pull-apart graben, may also owe its origin, in part, to a pull-apart mechanism.

  15. The 3D fault and vein architecture of strike-slip releasing- and restraining bends: Evidence from volcanic-centre-relatedmineral deposits

    USGS Publications Warehouse

    Berger, B.R.; ,

    2007-01-01

    High-temperature, volcanic-centre-related hydrothermal systems involve large fluid-flow volumes and are observed to have high discharge rates in the order of 100-400 kg/s. The flows and discharge occur predominantly on networks of critically stressed fractures. The coupling of hydrothermal fluid flow with deformation produces the volumes of veins found in epithermal mineral deposits. Owing to this coupling, veins provide information on the fault-fracture architecture in existence at the time of mineralization. They therefore provide information on the nature of deformation within fault zones, and the relations between different fault sets. The Virginia City and Goldfield mining districts, Nevada, were localized in zones of strike-slip transtension in an Early to Mid-Miocene volcanic belt along the western margin of North America. The Camp Douglas mining area occurs within the same belt, but is localized in a zone of strike-slip transpression. The vein systems in these districts record the spatial evolution of strike-slip extensional and contractional stepovers, as well as geometry of faulting in and adjacent to points along strike-slip faults where displacement has been interrupted and transferred into releasing and restraining stepovers. ?? The Geological Society of London 2007.

  16. Morphotectonic evolution of the Alhama de Murcia strike-slip fault overprinting drainage systems inherited from Late Miocene extension (Western Mediterranean-Eastern Betics)

    NASA Astrophysics Data System (ADS)

    Ferrater Gómez, Marta; Booth Rea, Guillermo; Azañón, José Miguel; Pérez Peña, José Vicente; Masana, Eulàlia

    2013-04-01

    The adaptation of drainage systems to the evolution of tectonic structures offers important clues to the tectonic regime present in an area and to the tectonic changes that have occurred. The development of new mountain fronts can produce the abandonment of earlier drainage networks by way of fluvial captures. He we analyse the response of a drainage network inherited from late Miocene extension to tectonic forcing associated to the growth and activity of the Alhama de Murcia sinistral strike-slip in a new transpressive tectonic setting. Rock uplift related to the Alhama de Murcia strike-slip fault and associated structures are conditioning the recent drainage network; overprinting the previous extensional related drainage. We carried out a structural and a qualitative and quantitative relief analysis to understand how the relief has evolved and which are the main active structures that currently control the drainage configuration. We identify river capture sites and we present a geomorphic index analysis using SLk anomalies, hypsometric curves, mountain front sinuosity, the comparison between longitudinal and projected river profiles with the SLk values and the position of active faults and folds, and a slope analysis of the area. The results show: 1) the reactivation of the ending part of the main basins by the current uplift of the Sierra de la Tercia, 2) progressive capture processes related to the growth of the Rambla de Lebor and Totana transverse drainages upon the previous drainage, evidenced by the presence of wind gaps, abrupt changes in flow direction, oblique relationship between current river direction and paleosurfaces maximum slope direction and changes in the lithologic composition of terraces, and 3) basin shapes controlled by the interference between an old NE-SW-directed drainage network controlled by extensional structures and another NW-SE one controlled by the sinistral Alhama de Murcia Fault.

  17. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  18. Cenozoic strike-slip faults in the northern Wassuk Range, Walker Lane

    SciTech Connect

    Dilles, J.H. . Geosciences Dept.)

    1993-04-01

    The N. Wassuk Ra. yields estimates of right-lateral Cenozoic strain in a portion of the northwest-trending Walker Lane, which has a total estimated right-lateral strain of 48--60 km (Ekren et al., 1984). The net right-lateral strain is < 10 km within an east-west 50 km-long segment extending from the N. Wassuk Ra. west to the Pine Nut Mts on the basis of continuous Jurassic plutonic units: Yerington batholith and quartz monzodiorite porphyry dikes. One of two dikes in the N. Wassuk Ra. may correlate easterly to Gillis Ra., suggesting [approximately]10 or 25 km right-lateral offset (Diles and R. Hardyman, unpub). In the N. Wassuk Ra. there are several ages of northwesterly striking faults. The oldest are [approximately]N45[degree]W striking, steeply dipping faults including the White Mt. and Wassuk Spur faults that step left to the northwest. Associated moderately dipping faults have tilted Oligocene tuffs to the W or SW to the SW of the fault zone, and both E and W on the NW; based on offset of the Jurassic porphyry dike and slickensides, these faults were dominantly oblique-slip normal faults with WNW-ESE slip. No lateral offsets can be directly measured across the steeply dipping faults; however, they juxtapose different Mesozoic metamorphic rocks and different thicknesses of Oligocene ignimbrites, suggesting significant lateral offset. Bingler's (1978) proposal that the White Mt. fault had left-laterally offset the White Mt. granite (WMG) from granite of Black Mountain (BMG) is unreasonable because the BMG intrudes the Wassuk Range diorite and contain biotite aplites, whereas the WMG intrudes metavolcanic rocks and contains tourmaline-muscovite aplites.

  19. The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault

    NASA Technical Reports Server (NTRS)

    Talebian, M.; Fielding, E. J.; Funning, G. J.; Ghorashi, M.; Jackson, J.; Nazari, H.; Parsons, B.; Priestley, K.; Rosen, P. A.; Walker, R.; Wright, T. J.

    2004-01-01

    A magnitude 6.5 earthquake devastated the town of Bam in southeast Iran on 26 December 2003. Surface displacements and decorrelation effects, mapped using Envisat radar data, reveal that over 2 m of slip occurred at depth on a fault that had not previously been identified. It is common for earthquakes to occur on blind faults which, despite their name, usually produce long-term surface effects by which their existence may be recognised. However, in this case there is a complete absence of morphological features associated with the seismogenic fault that destroyed Bam.

  20. Landslide and tsunami hazard at Yate volcano, Chile as an example of edifice destruction on strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Watt, Sebastian F. L.; Pyle, David M.; Naranjo, José A.; Mather, Tamsin A.

    2009-07-01

    The edifice of Yate volcano, a dissected stratocone in the Andean Southern Volcanic Zone, has experienced multiple summit collapses throughout postglacial time restricted to sectors NE and SW of the summit. The largest such historic event occurred on 19th February 1965 when ˜6.1-10 × 106 m3 of rock and ice detached from 2,000-m elevation to the SW of the summit and transformed into a debris flow. In the upper part of the flow path, velocities are estimated to have reached 40 m s-1. After travelling 7,500 m and descending 1,490 m, the flow entered an intermontane lake, Lago Cabrera. A wavemaker of estimated volume 9 ± 3 × 106 m3 generated a tsunami with an estimated amplitude of 25 m and a run-up of ˜60 m at the west end of the lake where a settlement disappeared with the loss of 27 lives. The landslide followed 15 days of unusually heavy summer rain, which may have caused failure by increasing pore water pressure in rock mechanically weathered through glacial action. The preferential collapse directions at Yate result from the volcano’s construction on the dextral strike-slip Liquiñe-Ofqui fault zone. Movement on the fault during the lifetime of the volcano is thought to have generated internal instabilities in the observed failure orientations, at ˜10° to the fault zone in the Riedel shear direction. This mechanically weakened rock may have led to preferentially orientated glacial valleys, generating a feedback mechanism with collapse followed by rapid glacial erosion, accelerating the rate of incision into the edifice through repeated landslides. Debris flows with magnitudes similar to the 1965 event are likely to recur at Yate, with repeat times of the order of 102 years. With a warming climate, increased glacial meltwater due to snowline retreat and increasing rain, at the expense of snow, may accelerate rates of edifice collapse, with implications for landslide hazard and risk at glaciated volcanoes, in particular those in strike-slip tectonic

  1. Numerical Simulations of Lithospheric Shear Zones Associated with Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Takeuchi, C. S.; Fialko, Y.; Sclater, J. G.

    2010-12-01

    Models of earthquake cycles typically range between two idealized end members. The first holds that seismogenic faults are loaded by bottom tractions due to localized shear in the underlying aseismic medium (e.g., the Savage-Burford dislocation model). The second holds that seismogenic faults are loaded by side tractions on the elastic-brittle layer and postseismic transfer of stress from a relaxing viscoelastic substrate back to the brittle crust. Geologic and seismic observations indicate that localized shear zones do exist well below the brittle-ductile transition as deep roots of major crustal faults. We study the development of lithospheric shear zones using finite element simulations. In particular, we investigate the degree of strain localization in a ductile substrate as a function of the total fault offset. Our models incorporate quasi-periodic earthquakes in the brittle crust underlain by a viscoelastic medium with a temperature-dependent power law rheology. We use these models to test the hypothesis that young and/or infrequently slipping faults are more likely to generate broad “viscoelastic” postseismic transients whereas mature and fast-slipping faults are more likely to generate “afterslip-like” transients. We recognize that strain localization in lithospheric shear zones underlying major faults can be produced via several processes. We use thermo-mechanical coupling as a proxy for all strain-softening mechanisms by adjusting the preexponential factor in the constitutive equation for the temperature-dependent power law creep. We compare the results of our models to the postseismic transient observed following the 1906 San Francisco earthquake to place constraints on the effective rheologic parameters of the ductile substrate.

  2. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  3. 'Extra-regional' strike-slip fault systems in Chile and Alaska: the North Pacific Rim orogenic Stream vs. Beck's Buttress

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.

    2010-12-01

    The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading

  4. The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system

    NASA Astrophysics Data System (ADS)

    Riccio, Steven J.; Fitzgerald, Paul G.; Benowitz, Jeff A.; Roeske, Sarah M.

    2014-11-01

    Horizontal-slip along restraining bends of strike-slip faults is often partitioned into a vertical component via splay faults. The active Susitna Glacier Thrust Fault (SGTF), as shown by its initiation of the 2002 M7.9 Denali Fault earthquake, lies south of, and intersects the dextral strike-slip Denali Fault. Geochronology and thermochronology data from samples across the SGTF constrain the region's tectonic history and the role of thrusting in the formation of the eastern Alaska Range south of the Denali fault. U-Pb zircon ages indicate intrusion of plutons in the footwall (~57 Ma) and hanging wall (~98 Ma). These U-Pb zircon ages correlate to those from the Ruby Batholith/Kluane Terrane ~400 km east along the Denali Fault, supporting geologic correlations and hence constraints on long-term slip rates. 40Ar/39Ar mica and K-feldspar data from footwall and hanging wall samples (~54 to ~46 Ma) reflect cooling following magmatism and/or regional Eocene metamorphism related to ridge subduction. Combined with apatite fission track data (ages 43-28 Ma) and thermal models, both sides of the SGTF acted as a coherent block during the Eocene and early Oligocene. Contrasting apatite (U-Th)/He ages across the Susitna Glacier (~25 Ma footwall, ~15 Ma hanging wall) suggest initiation of faulting during the middle Miocene. Episodic cooling and exhumation is related to thrusting on known or hypothesized faults that progressively activate due to varying partition of strain along the Denali Fault associated with changing kinematics and plate interaction (Yakutat microplate collision, flat-slab subduction and relative plate motion change) at the southern Alaskan plate margin.

  5. An old question revisited: the mechanics of shallow creep events on strike-slip faults and their triggering by nearby earthquakes

    NASA Astrophysics Data System (ADS)

    Wei, M.; Liu, Y.; McGuire, J. J.

    2012-12-01

    Tectonic displacement on faults can occur as seismic slip, continuous aseismic creep, or transient creep events. Shallow creep events on strike-slip faults can take place in a coupled process with earthquake afterslip, spontaneously, or be triggered by nearby earthquakes. Despite more than five decades of observations, the mechanics of shallow creep events and their implications for seismic hazard are still not fully understood. To understand the mechanics and triggering of creep events, we developed a physics-based model to simulate shallow creep events on a strike-slip fault with rate-and-state frictional properties that vary both in depth and along strike. Our 1D simulation shows that a simple 2-layer model as proposed by Bilham and Behr [1992] cannot explain both the rapid afterslip and shallow creep events that were observed on the Superstition Hills Fault following the 1987 earthquake. Therefore, we propose a 3-layer model that can reproduce all the known surface deformation observations, including the co-seismic slip, afterslip, and the creep events. Using the strike-slip fault model, we also study the triggering process of creep events, by a static, a dynamic or a combined stress perturbation induced on the fault by a nearby earthquake. Preliminary results show that the magnitude of the perturbation relative to the ambient stress level and the timing of perturbation are the important parameters. By developing state-of-the-art models and constraining parameters with rich datasets from the Salton Trough, we aim to transition from a conceptual understanding of fault creep towards a quantitative and predictive understanding of the physical mechanism of creep events on strike-slip faults.

  6. Origin and structure of major orogen-scale exhumed strike-slip

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  7. New c. 270 kyr strike-slip and uplift rates for the southern Alpine Fault and implications for the New Zealand plate boundary

    NASA Astrophysics Data System (ADS)

    Barth, N. C.; Kulhanek, D. K.; Beu, A. G.; Murray-Wallace, C. V.; Hayward, B. W.; Mildenhall, D. C.; Lee, D. E.

    2014-07-01

    Along 100 km of the Alpine Fault, major valleys and glacial deposits can be matched across an 8000 m dextral offset. We use paleontologic and stratigraphic age constraints to date c. 270 ka marine sediments uplifted to 600 m elevation and overlying c. 270 ka glacial deposits related to the 8000 m dextral offset. These constraints yield a fault-proximal Australian plate uplift rate of 2.6 (-0.5/+0.4) mm/yr and an Alpine Fault dextral slip rate of 29.6 (-2.5/+4.5) mm/yr. Our rates resolve an apparent along-strike drop in strike-slip rate and instead support a relatively constant along-strike dextral slip rate of ˜28 mm/yr (˜80% of current Australian-Pacific plate boundary motion). We argue that the rate of dextral slip on the southern Alpine Fault has been relatively constant over the last ≥3.5 myr, and that ductile fault processes may rate-limit the fault from accommodating a progressively higher percentage of plate boundary motion through time (i.e., the fault reached maturity long ago). The spatiotemporally constant strike-slip rate of the southern Alpine Fault and a previously published paleoseismic record of near-regular earthquake recurrence both characterize the Alpine Fault as a mature plate boundary fault zone that behaves in a constant way with behavior predictable over timescales of thousands and hundreds of thousands of years.

  8. Tectonics, magmatism and fluid flow in a transtensional strike-slip setting: The northern termination of the Liquiñe-Ofqui fault System, Chile

    NASA Astrophysics Data System (ADS)

    Cembrano, J. M.; Perez-Flores, P.; Sánchez, P.; Sielfeld, G.

    2013-12-01

    vein systems, which appear to be associated with dextral strike-slip displacement on the LOFS. Fault-vein and vein structure varies from mineral fibers to typical ridge-and-groove striae. Bladed calcite occurs in dilational jogs along the main LOFS master faults; they are interpreted to represent boiling episodes. Thicker and more pervasive WNW sinistral-reverse fault-vein systems and breccias bodies suggest that the fault-valve mechanism was active during fluid transport and mineral precipitation. In some sites the WNW-striking system cuts and displaces the active LOFS, suggesting that their active has extended to at least the Pleistocene. Internally consistent structural and kinematic data from fault-fracture systems spatially and temporally associated with volcanoes and hydrothermal systems suggest that the same processes that drive the interplay between volcanism and tectonics may also control the nature, geometry and composition of geothermal reservoirs in the southern Andes.

  9. Cyclical Stress Field Switching and (Total?) Relief of Fault Shear Stress Recorded in Quartz Vein Systems Hosted by Proterozoic Strike-Slip Faults, Mt Isa, Australia

    NASA Astrophysics Data System (ADS)

    Sibson, R. H.; Begbie, M. J.; Ghisetti, F. C.; Blenkinsop, T. G.

    2003-12-01

    The Proterozoic Mt Isa inlier ( ˜50,000 km2) in NW Queensland, Australia, underwent a complex tectonothermal history involving multiple episodes of intracontinental rifting, sedimentation, and magmatism that culminated in the Isan Orogeny (1590-1500 Ma) where strong E-W shortening led to compressional inversion of former rift basins. The resulting metamorphic complex of subgreenschist to amphibolite facies assemblages is disrupted by brittle, late-orogenic (1500-1450 Ma?) strike-slip faults. The faults occur in two mutually cross-cutting sets; a set of dextral strike-slip faults striking NE-SW to NNE-SSW with offsets <20 km, and a conjugate set of sinistral faults striking NW-SE to NNW-SSE. The two contemporaneous fault sets therefore lie at +/-45-60° to inferred E-W maximum compression, approaching the expected lock-up angle for 'Byerlee' friction coefficients. The faults commonly outcrop as linear blade-like ridges extending for many kilometres across the semi-arid terrain. Transects across the NE-SW Fountain Range and Overlander Faults which crosscut Corella Formation amphibolite facies assemblages and granites have shown that the fault zones are about 100 m in width with a composite brittle fabric comprising: (1) subvertical silicified cataclastic shear zones (cataclasites plus microbreccias containing vein fragments); (2) innumerable subvertical quartz-veins (cm to m thickness) lying subparallel to the principal shear zones (some retain purely dilational textures; others are multiply recemented fault-breccias with wallrock fragments); (3) highly irregular non-systematic veins; and (4) a systematic set of predominantly extensional, steep planar quartz veins oriented 080-120° at moderate angles to the main faults. Mutual cross-cutting relationships occur between all structural components, indicating broad contemporaneity. Recorded dextral separations along shear fracture components are commonly of the order of 1-10 cm, consistent with small-moderate seismic

  10. From 2012 HAITI-SIS Survey: thick-skin versus thin-skin tectonics partitioned along offshore strike-slip Faults-Haïti

    NASA Astrophysics Data System (ADS)

    Ellouz, N.; Leroy, S. D.; Momplaisir, R.; Mercier de Lepinay, B.

    2013-12-01

    The characterization of the deformation along large strike-slip fault-systems like transpressive boundaries between N. Caribbean/N America is a challenging topic, which requires a multi-scale approach. Thanks to Haiti-sis new data, the precise description of the fault segmentation pattern, the sedimentogical distribution, the uplift/subsidence rates, the along-fault and intra-basin fluids circulations, allows to actualize the evolution of the deformation history up to present-day . All the co-seismic surface to near-surface events, have to be also identified in order to integrate geophysical solutions for the earthquake, within the present-day geological and structural pattern. These two approaches, ranging from geological to instantaneous time-scales have been used during multi-tools Haiti-Sis oceanographic survey, allowing to document and image these different aspects at a large scale. The complex strike-slip North Caribbean boundary registered significative stress partitioning. Oblique convergence is expressed by along-strike evolution; from rifted segments (Cayman Through) to transpressive ones (Haiti, Dominican Rep.), to subduction (Porto Rico). In the Haiti-Sis survey, we acquired new offshore data surrounding the active fault areas, in the Gonâve Bay, the Jamaica Channel and along Southern Peninsula. Mapping the sea-floor, and HR seismic acquisition were our main objectives, in order to characterize the fault and fold architecture, with a new delineation of active segments. Offshore piston cores, have been used as representative of the modern basin sedimentation, and to document the catastrophic events (earthquakes, massive flood or sudden destabilization of the platform ) represented by turbiditic or mass-flow sequences, with the objective to track the time recurrence of seismic events by dating some of these catastrophic sediment deposition. At surface, the other markers of the fault activity are linked with along-fault permeability and fluid circulation

  11. Tectonic burial and exhumation cycles tracked by muscovite and K-feldspar 40Ar/39Ar thermochronology in a strike-slip fault zone, central Turkey

    NASA Astrophysics Data System (ADS)

    Idleman, Lauren; Cosca, Michael A.; Heizler, Matthew T.; Thomson, Stuart N.; Teyssier, Christian; Whitney, Donna L.

    2014-02-01

    Muscovite and K-feldspar 40Ar/39Ar ages from the eastern margin of the Niğde massif in central Anatolia track the timing of initial exhumation, reburial, and final exhumation and cooling of metamorphic rocks deformed within a strike-slip fault zone. Although the ages of initial and final cooling were known from previous studies, our new results document the timing of the reheating/reburial event. Muscovite from four of eight gneiss samples have Late Cretaceous 40Ar/39Ar ages that date initial cooling at ~ 75 Ma. The remaining samples have perturbed spectra that climb to Late Cretaceous ages with increasing extraction temperatures during analysis. These perturbed samples are located beneath a faulted unconformity overlain by Paleogene sedimentary deposits that were derived in part from the metamorphic rocks, then buried, metamorphosed, and deformed under greenschist facies conditions. Samples close to the faulted unconformity are more perturbed than structurally deeper samples. The age of the thermal perturbation is determined at 30 ± 5 Ma using multi-diffusion domain modeling of K-feldspar 40Ar/39Ar data from two gneiss samples, one located close to the unconformity and one at a structurally deeper level. Muscovite 40Ar/39Ar results and modeled K-feldspar temperature-time histories show that the eastern margin of the Niğde massif experienced a reheating event that peaked at ~ 30 Ma. The thermal pulse has been attributed to reburial associated with transpression in the Ecemiş segment of the Central Anatolian Fault Zone along the eastern margin of the Niğde massif. Activity of this fault zone may represent a far-field expression of the onset of collision of Arabia with Eurasia in SE Anatolia.

  12. Refined Views of Strike-slip Fault Zones, Seismicity, and State of Stress Associated With the Pacific-North America Plate Boundary in Southern California

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Nicholson, C.; Shaw, J. H.; Plesch, A.; Shearer, P. M.; Sandwell, D. T.; Yang, W.

    2013-12-01

    The mostly strike-slip plate boundary in southern California is expressed as a system of late Quaternary faults or principal slip zones (PSZs), with numerous adjacent smaller slip surfaces. It is complex, even after large cumulative displacements, and consists of major fault systems with multi-stranded, non-planar fault geometry, including some in close proximity to each other. There are also secondary cross faults and low-angle detachments that interact with the PSZs accommodating main plate boundary motion. The loading of plate-tectonic strain causes the largest earthquakes along PSZs, moderate-sized events in their immediate vicinity, and small earthquakes across the whole region. We apply relocated earthquake and refined focal mechanism (1981-2013) catalogs, as well as other geophysical datasets to provide refined views of the 3D fault geometry of these active fault systems. To determine properties of individual fault zones, we measure the Euclidian distance from every hypocenter to the nearest PSZ. In addition, we assign crustal geophysical parameters such as heat flow value and shear or dilatation strain rates to each epicenter. We investigate seismogenic thickness and fault zone width as well as earthquake source processes. We find that the seismicity rate is a function of location, with the rate dying off exponentially with distance from the PSZ. About 80% of small earthquakes are located within 5 km of a PSZ. For small earthquakes, stress drops increase in size with distance away from the PSZs. The magnitude distribution near the PSZs suggests that large earthquakes are more common close to PSZs, and they are more likely to occur at greater depth than small earthquakes. In contrast, small quakes can occur at any geographical location. An optimal combination of heat flow and strain rate is required to concentrate the strain along rheologically weak fault zones, which accommodate the crustal deformation processes, causing seismicity. The regional trend of

  13. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    USGS Publications Warehouse

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  14. Fault Segmentation and Earthquake Generation in the Transition from Strike-slip to Subduction Plate Motion, Saint Elias Orogen, Alaska and Yukon (Invited)

    NASA Astrophysics Data System (ADS)

    Bruhn, R. L.; Shennan, I.; Pavlis, T. L.

    2010-12-01

    The structural transition from strike-slip motion along the Fairweather transform fault to subduction on the Aleutian megathrust occurs within the collision zone between the Yakutat microplate and southern Alaska. The collision is marked by belts of thrust and strike-slip faulting both within the microplate and along its margins, forming a complex fault network that mechanically interacts with rupturing of the Aleutian megathrust on one hand, and the Fairweather transform fault on the other. For example, stress released by M8+ earthquakes within the central and eastern parts of the Yakutat microplate in 1899 may have constrained the 1964 rupture on the Aleutian megathrust to the western part of the microplate. However, megathrust earthquakes circa 900 BP and 1500 BP may have ruptured farther east than in 1964, generating earthquakes of significantly greater magnitude and tsunami potential. Structurally, the thrust-faulting earthquake of Sept. 10, 1899 occurred on faults that are loaded primarily by the Fairweather transform, but the earlier event of Sept. 4 is more closely linked to the Aleutian megathrust. Large reverse faults that rise off of the megathrust are superimposed on older structures within the microplate; creating complex duplex and wedge fault geometries beneath the mountains onshore that link to simpler fault propagation folds offshore. These lateral variations in fault network style correlate with 1) permanent uplift of the coast at ≈ 1 cm/yr in the Yakataga region of the microplate, 2) an abrupt change in structural style and orientation across the Kayak Island - Bering Glacier deformation zone, and 3) the seaward limit of ruptures in the 1899 earthquakes which occurred beneath the mountains onshore. Future goals include refining locations of earthquake source faults and determining the recurrence history of earthquakes within the Yakutat microplate. The history of rupturing within the microplate offshore is of particular interest given the

  15. Walker Lake, Nevada: sedimentation in an active, strike-slip related basin

    SciTech Connect

    Link, M.H.; Roberts, M.T.

    1984-04-01

    Walker Lake, Nevada, is in an active fault-controlled basin related to the right-lateral, northwest-trending Walker Lane Shear Zone on the western side of the Basin and Range province. The lake occurs in a half graben bounded on its west side by a high-angle normal fault zone along the Wassuk Range front. This fault zone may merge to the north into the Walker Lane fault system, which forms the northeast boundary of the basin. To the south of Walker Lake, the Wassuk front fault merges with an east-northeast trending left-lateral fault. The Walker Lake basin is interpreted to be a pull-apart basin formed within the triangular zone bounded by the Wassuk front, the Walker Lane, and left-lateral faults. The Walker River drainage basin occupies about 10,000 km/sup 2/ (3800 mi/sup 2/) in western Nevada and parts of California and is essentially a closed hydrologic system that drains from the crest of the Sierra Nevada in California and terminates in Walker Lake. Walker Lake trends north-northwest and is 27.4 km (17 mi) long and 8 km (5 mi) wide with water depths exceeding 30 m (100 ft). Lake Lahontan (Wisconsinian) shorelines ring Walker Lake and suggest water depths of 150 m (500 ft) above the present lake level. The lake is situated in an asymmetric basin with steep alluvial fans flanking the western shoreline (Wassuk Range) and gentle, areally more extensive fans flanking the eastern shoreline (Gillis Range). The Walker River delta enters the lake from the north and is a major sediment point source for the basin. Older dissected shoreline, alluvial fan, Gilbert delta, and beach ridge deposits were built largely of coarse-grained, locally derived materials. Stromatolites, oncolites, and tufas formed along the shorelines, whereas mud and organic sediments accumulated in the lake on the west side of the basin. Extensive submerged sand flats and local sand dunes occur on the east side of the basin.

  16. The Border Ranges fault system in Glacier Bay National Park, Alaska: Evidence for major early Cenozoic dextral strike-slip motion

    USGS Publications Warehouse

    Smart, K.J.; Pavlis, T.L.; Sisson, V.B.; Roeske, S.M.; Snee, L.W.

    1996-01-01

    The Border Ranges fault system of southern Alaska, the fundamental break between the arc basement and the forearc accretionary complex, is the boundary between the Peninsular-Alexander-Wrangellia terrane and the Chugach terrane. The fault system separates crystalline rocks of the Alexander terrane from metamorphic rocks of the Chugach terrane in Glacier Bay National Park. Mylonitic rocks in the zone record abundant evidence for dextral strike-slip motion along north-northwest-striking subvertical surfaces. Geochronologic data together with regional correlations of Chugach terrane rocks involved in the deformation constrain this movement between latest Cretaceous and Early Eocene (???50 Ma). These findings are in agreement with studies to the northwest and southeast along the Border Ranges fault system which show dextral strike-slip motion occurring between 58 and 50 Ma. Correlations between Glacier Bay plutons and rocks of similar ages elsewhere along the Border Ranges fault system suggest that as much as 700 km of dextral motion may have been accommodated by this structure. These observations are consistent with oblique convergence of the Kula plate during early Cenozoic and forearc slivering above an ancient subduction zone following late Mesozoic accretion of the Peninsular-Alexander-Wrangellia terrane to North America.

  17. Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn's moon Enceladus

    NASA Astrophysics Data System (ADS)

    Yin, An; Zuza, Andrew V.; Pappalardo, Robert T.

    2016-03-01

    We present the first mechanical analysis based on realistic rheology and boundary conditions on the formation of evenly spaced strike-slip faults. Two quantitative models employing the stress-shadow concept, widely used for explaining extensional-joint spacing, are proposed in this study: (1) an empirically based stress-rise-function model that simulates the brittle-deformation process during the formation of evenly spaced parallel strike-slip faults, and (2) an elastic plate model that relates fault spacing to the thickness of the fault-hosting elastic medium. When applying the models for the initiation and development of the tiger-stripe fractures (TSF) in the South Polar Terrain (SPT) of Enceladus, the mutually consistent solutions of the two models, as constrained by the mean spacing of the TSF at ∼35 km, requires that the brittle ice-shell thickness be ∼30 km, the elastic thickness be ∼0.7 km, and the cohesive strength of the SPT ice shell be ∼30 kPa. However, if the brittle and elastic models are decoupled and if the ice-shell cohesive strength is on the order of ∼1 MPa, the brittle ice shell would be on the order of ∼10 km.

  18. Deformation of Rock Mass Caused by Strike-Slip Faulting: 3D Analysis of Analogue Models by Helical X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Ueta, K.

    2007-12-01

    Strike-slip fault zones are induced experimentally in artificial rock subjected to strike-slip displacement along basement fault. The purpose is to investigate in three dimensions, the geometries and sequence of development of structural elements comprising the fault zones by use of a helical X-ray CT scanner. 860 mm long, 310 mm wide, 25 mm high artificial rocks were made by mixing sand, plaster and water. The basement fault was displaced up to 100 mm at a displacement rate of 0.1mm/sec. The deformation of the artificial rocks with increasing basement displacement was observed as follows. 1) En echelon fractures corresponding to the Riedel shears are observed at the surface of the artificial rock. These Riedel structures contain within them similar Riedels on a smaller scale (Riedel within Riedel structures). The length of the first and second order Riedel fractures is of the order of 100 mm and 10 mm, respectively. In three dimensions, each fracture has helicoidal shape. 2) Fractures corresponding to the first and second order P-shears form at the junctions between two first and second order Riedel shears, and serve to connect the Riedel shears. The combination of displacement along the Riedel and P-shears leads to the formation of the principal displacement shears including first and second order jogs and pull-aparts. 3) New shears (outer shears) branch off from Riedel and P- shears in compressional jogs and propagate aside from the fault zone that consists of Riedel and P-shears. The outer shears do not join the basement fault directly and develop near the surface of the artificial rock. The region among the Riedel shear, P-shear and outer shear is an up-squeezed block (push-up), which undergo rotation with increasing displacement. The push-up structures tend to be limited to shallow part of the artificial rock. The lower artificial rock on the one side of basement fault adheres to one on the other side in the compressional jogs. 4) As slip proceed, wear erode

  19. Fault slip and earthquake recurrence along strike-slip faults - Contributions of high-resolution geomorphic data

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; Klinger, Yann; Arrowsmith, J. Ramon

    2015-01-01

    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault's rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault's offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of the

  20. Offset of latest pleistocene shoreface reveals slip rate on the Hosgri strike-slip fault, offshore central California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Hartwell, Stephen R.; Dartnell, Peter

    2014-01-01

    The Hosgri fault is the southern part of the regional Hosgri–San Gregorio dextral strike‐slip fault system, which extends primarily in the offshore for about 400 km in central California. Between Morro Bay and San Simeon, high‐resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by an ∼265  m wide slope interpreted as the shoreface of a latest Pleistocene sand spit. This sand spit crossed an embayment and connected a western fault‐bounded bedrock peninsula and an eastern bedrock highland, a paleogeography resembling modern coastal geomorphology along the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6±0.9  mm/yr, considered a minimum rate for the Hosgri given the presence of an active western strand. This slip rate indicates that the Hosgri system takes up the largest share of the strike‐slip fault budget and is the most active strike‐slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high‐resolution bathymetry in characterization of active offshore faults.

  1. Width of late Quaternary deformation of the Enriquillo-Plantain Garden strike-slip fault zone in Haiti and the Jamaica Passage and implications for accumulated stress

    NASA Astrophysics Data System (ADS)

    Mann, P.; Bachhuber, J. L.

    2010-12-01

    The devastating Haiti earthquake of January 12, 2010, is now known to have occurred on multiple rupture planes with most of the seismic energy release along a north-dipping thrust fault located from 0.5 to 15 km north of the main late Quaternary trace of the EPGFZ. Two alternative views of this rupture are that this north-dipping thrust is unrelated to the main trace of the fault - which showed no rupture during the event - or this north-dipping thrust is part of its larger, subsurface “flower zone” of deformation poorly understood because we have no seismic reflection images crossing the EGPFZ in epicentral area of the 2010 earthquake. The significance of distinguishing these two views of fault behavior relates to whether centuries of accumulated stress were not released on the main trace of the EPGFZ (first model) or whether some accumulated stress was released on the low-angle thrust as part of a broad and linked “flower zone” of deformation parallel to the EPGFZ (second model). In this talk we review observations on the width of the EPGFZ deformation to support the latter view that the EPGFZ is in fact a broad zone of deformation commensurate with its tectonic role as a major, active plate boundary fault. Three areas of broad late Quaternary tectonic deformation varying from transpressional to transtensional in structural style are examined using DEM, imagery, surface geologic maps, and aftershock locations. The Cul-de-Sac basin of Haiti is the xx-km-wide, fault bounded alluvial plain upon which the city of Port-au-Prince was constructed in the early 18th century. Merged DEM and geologic map data from the Cul-de-Sac plain show that an en echelon array of large, open folds deforming uplifted and deeply dissected Plio-Pleistocene fans can be traced 3 to 7 km north of the main trace of the EPGFZ. Map studies show that west-northwest-striking, sub-parallel reverse-oblique/strike-slip faults can be mapped transecting the folds at distances of 3 to 5 km north

  2. Coordinated strike-slip and normal faulting in the Southern Ozark dome of Northern Arkansas: Deformation in a late Paleozoic foreland

    USGS Publications Warehouse

    Hudson, M.R.

    2000-01-01

    Structures that formed on the southern flank of the Ozark dome, in the foreland of the late Paleozoic Ouachita orogeny, have received little modern study. New mapping of the western Buffalo River region of northern Arkansas identifies diversely oriented faults and monoclinal folds that displace the generally flat lying Mississippian Boone Formation over a 180 m elevation range. Kinematic measurements and spatial relations reveal the presence of both east-striking normal faults and broader northeast-striking dextral strike-slip fault zones that acted in a coordinated fashion to accommodate constrictional strain, in which north-south extension was balanced by vertical and east-directed shortening. North-south extension in the Buffalo River region probably reflects Pennsylvanian-Early Permian deformation within the flexural forebulge of the developing Ouachita orogeny, which closed progressively westward along the southern margin of the craton.

  3. Late Cretaceous-Paleocene strike-slip faults along the East Greenland margin (63°N to 75°N): constraints for the North East Atlantic opening

    NASA Astrophysics Data System (ADS)

    Guarnieri, P.

    2012-04-01

    The East Greenland margin is a long stretch starting from 60°N up to 81°N in a distance of almost 3000 km. It represents the conjugate of the European margin now separated by the North East Atlantic (NEA). After a long period of E-W extension and almost N-S oriented rift basins since Early Cretaceous, separation between Greenland and Europe began at 55 Ma following a NE-SW oriented line of breakup and the emplacement of the North Atlantic Igneous Province (NAIP). Post-breakup thermal subsidence followed in the Eocene, and the Oligocene initiated a period of plate re-organization together with the initial separation of Jan Mayen microcontinent, a complex tectonic history with inversion structures and uplifts along both the East Greenland and European margins. The effect of this history is represented by exhumed sedimentary basins, dyke swarms, fault systems, intrusive centers, shield volcanoes and plateau lavas constituting highest mountain of Greenland with some peaks up to 3700 m (e.g. Watkins Bjerge). During expeditions for fieldwork in East Greenland (2009 to 2011) to collect new geological and structural data related to the North East Atlantic tectonics, four areas were visited: Skjoldungen 63°N, Kangerlussuaq 68°N, Traill Ø 72°N and Wollaston Forland 75°N. More than 1000 measurement of fault-slip data for structural analysis along major faults were collected and helicopter flights to collect oblique pictures for 3D-photogeology and 3D-mapping were taken. Kinematic analysis of brittle deformation associated with Late Cretaceous-Paleocene rift shows strike-slip movements. Palaeo-stress tensors reconstructed from fault-slip data highlight a NE-SW maximum horizontal stress in a strike-slip tectonic setting along the entire East Greenland margin (Guarnieri 2011a; Guarnieri 2011b; Guarnieri et al. 2011). Structural data show clear evidence for oblique rifting that corresponds in time to the "volcanic rift" (61-55 Ma) with in some cases the magmatic

  4. Short-Term Interactions between Strike-Slip Faults across a Plate Boundary Zone at the Transition from Subduction to Collision: Comparison to the Marlborough Fault System, New Zealand

    NASA Astrophysics Data System (ADS)

    Ellis, S. M.; Eberhart-Phillips, D. M.; Williams, C. A.; Nuechter, J. A.; Robinson, R.; Upton, P.

    2009-12-01

    We use numerical models to investigate stress interactions between semi-parallel strike-slip faults in a zone of transition from subduction to transpressive collision. The models are broadly inspired by the tectonic setting at the northern end of the South Island, New Zealand. After an initial stress-buildup period during which the faults are given a low frictional strength, the faults are locked for a specified interseismic interval. Stresses build up as a result of applied far-field and basal boundary conditions representing average plate motion. Slip along the faults is self-determined in the model as an effect of stresses built up in the initial setup stage, and is strongly controlled by the inelastic rheology. The model rheology includes elasticity, pressure-sensitive brittle yield, and thermally-controlled ductile creep. After the setup stage we turn various fault strands "on" or "off" in order to investigate the effect on neighbouring faults in terms of stress changes. We investigate these changes for a hierarchy of models with increasing complexity in rheology, and for defined sequences of events, prescribed by unlocking certain faults in a given sequence. As found previously for Critical Coulomb Stress elastic models, we predict that an "Alpine Fault" event will preferentially load one strand of the Marlborough Fault system (in our model, it loads the fault corresponding to the approximate location of the Awatere Fault). The inelastic rheology used in the models allows us to go further, and to investigate stress changes in subsequent interseismic steps. Postseismic creep beneath the brittle crust following an Alpine Fault-type event relieves stress in the mid-crust beneath it and loads the southern end of a strike-slip fault corresponding to the Clarence Fault. An "Awatere Fault" event unloads the shallow crust around itself and neighbouring strike slip faults, causing a stress shadow, but loads the mid-crust below, and to a much lesser extent at the

  5. Microstructural investigations of principal slip zones in carbonates, examples from shallow crustal strike-slip faults in the Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Grasemann, Bernhard; Decker, Kurt

    2014-05-01

    Faults in the upper crust can move episodically by seismic deformation (individual earthquake ruptures) and/or continuously by aseismic creep deformation. In carbonate fault zones, several studies have shown that seismic deformation produces very narrow principal slip zones (cm to mm wide) that accommodate most of the fault displacement during an individual earthquake. Within these principal slip zones, ultracataclasites containing the principal slip surface, fluidization of ultracataclastic sub-layers and clast cortex grains have been proposed to be characteristic for seismic slip. In contrast, pressure solution has been proposed as a mechanism of aseismic sliding along a fault. Spaced cleavage solution planes and associated veins indicate diffusive mass transfer and precipitation in pervasive vein networks. At micro-scale, calcite CPO in fine-grained matrix of principal slip zones has been suggested to result from post-seismic pressure solution creep. Here, we present field data from the Salzchtal-Ennstal-Mariazell-Puchberg (SEMP) fault system (Austria) to interpret the principal slip zones with regard to possible indicators of seismic or aseismic deformation. We investigated exhumed, ancient sinistral strike-slip faults in dolomite and limestone that formed during eastward lateral extrusion of the Eastern Alps during Oligocene to Lower Miocene. The faults belong to a system of convergent strike-slip duplexes that developed at a restraining bend on an eastern segment of the SEMP-fault system. Distinct fault cores contain cataclastic fault rocks differing in textural complexity. Microstructural analysis of cataclastic fault rocks was done using both, optical and electron microscopy. Microstructures reveal several cataclastic types that can be interpreted in terms of different stages of cataclastic evolution. Coarser grained, well cemented cataclasites underlie fine grained ultracataclastic layers. For at least two of the faults, cataclasites containing clast

  6. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Stein, Ross S.

    2004-02-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nuñez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought

  7. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.

    2004-01-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought

  8. A reality check on the timing of initiation, geological offsets, slip rates and geodetic rates on the Karakoram strike-slip fault.

    NASA Astrophysics Data System (ADS)

    Searle, M. P.; Phillips, R. J.

    2003-12-01

    Total geological offset of 1000 km along the dextral Karakoram fault (Peltzer & Tapponnier 1989) were based on incorrect correlation of granite belts from the Pamir to S. Tibet and active slip rates of 30mm/yr-1 were based on an assumption of the age of offset post-glacial features (10 +/- 2 ka; Liu et al. 1992). Detailed mapping and U-Pb and 40Ar/39Ar geochronology has confirmed that total dextral offsets are less than 120 km, the timing of initiation of the fault must have been younger than 15 Ma and that exhumation of sheared leucogranites and migmatites occurred between 15-11 Ma (Searle et al., 1997; Dunlap et al., 1998). We stress that: 1. All Tibetan fault slip rates published prior to 1996 are invalid as no precise timing constraints on the post-glacial Quaternary features were used. The common assumption was that all glacial features were formed 10 +/- 2 ka, without any absolute dating. The glacial and fluvial features used to constrain offsets could have been awry by a factor of 3 or 4 (from 3.5 Ma - 20,000 ka). 2. Recent slip rates derived from cosmogenic isotope dating of offset Quaternary features should be treated with immense caution because during the continual recycling process of glacial moraine or alluvial fan burial, exposure and re-deposition, it cannot be known precisely which phase of exhumation is being dated. 3. Long-term geological slip rates on offset granites, precisely constrained by U-Pb geochronology remain the best estimates of timing of initiation, total finite offset and slip rates on Tibetan strike-slip faults. 4. The Karakoram fault is unlikely to be a lithospheric scale fault, because (a) temperatures beneath the southern part of the Tibetan plateau and beneath the faults are high enough to induce melting (>700° C at only 20 km depth), and (b) the lower crust beneath these faults must be underplated cold, old granulite facies crust of the Indian shield. 5. There appears to be a distinct lack of seismicity located along the

  9. Microstructural record of cataclastic and dissolution-precipitation processes from shallow crustal carbonate strike-slip faults, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Grasemann, Bernhard; Decker, Kurt

    2015-04-01

    The concept of coseismic slip and aseismic creep deformation along faults is supported by the variability of natural fault rocks and their microstructures. Faults in carbonate rocks are characterized by very narrow principal slip zones (cm to mm wide) containing (ultra)cataclastic fault rocks that accommodate most of the fault displacement. Fluidization of ultracataclastic sub layers and thermal decomposition of calcite due to frictional heating have been proposed as possible indicators for seismic slip. Dissolution-precipitation (DP) processes are possible mechanism of aseismic sliding, resulting in spaced cleavage solution planes and associated veins, indicating diffusive mass transfer and precipitation in pervasive vein networks. We investigated exhumed, sinistral strike-slip faults in carbonates of the Northern Calcareous Alps. The study presents microstructural investigations of natural carbonate fault rocks that formed by cataclastic and dissolution-precipitation related deformation processes. Faults belong to the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system that was formed during eastward lateral extrusion of the Eastern Alps in Oligocene to Lower Miocene. The investigated faults accommodated sinistral slip between several tens and few hundreds of meters. Microstructural analysis of fault rocks was done with scanning electron microscopy and optical microscopy. Deformation experiments of natural fault rocks are planned to be conducted at the Sapienza University of Roma and should be available at the meeting. The investigated fault rocks give record of alternating cataclastic deformation and DP creep. DP fault rocks reveal various stages of evolution including early stylolites, pervasive pressure solution seams and cleavage, localized shear zones with syn-kinematic calcite fibre growth and mixed DP/cataclastic microstructures, involving pseudo sc- and scc'-fabrics. Pressure solution seams host fine grained kaolinit, chlorite

  10. Pushing the Limits of Geological Mapping Outside the Earth: 3D Modeling of Strike-Slip and Extensional Fault Systems in Meridiani Planum Region, Mars.

    NASA Astrophysics Data System (ADS)

    Vidal Royo, O.

    2014-12-01

    GIS and geological modeling software have radically changed the means by which geological mapping is produced, published and visualized. This type of software environment normally requires a spatially aware reference system to position data and interpretation, often referred as georeferenced data (i.e. geographic data referenced on the Earth). However, for this study we coin the term areoreferenced data (i.e. Mars-referenced "geographic" data). Thanks to the wealth of areoreferenced data made available by the NASA and the HiRise at University of Arizona it is now possible to carry out 3D areographic and areologic (i.e. related to the topography and geology of Mars, respectively) reconstructions in great detail. The present work benefits from the availability of software and areographic data, and presents the results of an areologic map and 3D model of the fault systems in the Meridiani Planum of Mars. The work has been carried out in Move™ (developed by Midland Valley Exploration), a geological modeling toolkit that allows for easy data loading in a wide range of formats as well as straightforward 2D/3D model building tools of geological bodies. Initial data consisted of Digital Terrain Model and orthoimages (NASA/JPL/University of Arizona/USGS). From these we have interpreted several structural domains: right-lateral strike-slip systems with associated releasing bends, which gave room to an extensional event causing a horizontal-axis rotation of the bedding. Bedding ranges from subhorizontal in the southern domain where strike-slip prevails to nearly 40º in the central and northern domains, where a more complex interaction between strike-slip and extensional faults is described. The stratigraphic sequence is mainly composed by moderately rounded well laminated basaltic sandstones (Squyres et al., 2004) in which a high component of sulfurs (e.g. sulfate anhydrate, hexahydrite, epsomite, gypsum) and salts (e.g. halite) has been described (Squyres et al., 2004

  11. Precarious rock evidence for low near-source accelerations for trans-tensional strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Brune, James N.

    2003-05-01

    This paper describes precarious rock evidence for low ground motions associated with extensional sections of strike-slip faults. Recent evidence from physical and numerical models and data regressions has indicated that ground motion for extensional strike-slip regions may be lower than for strike-slip faults with a large fault-normal tectonic stress component, and for thrust faults in general. Data from compressional strike-slip and thrust earthquakes dominates the database used in most regression curves for ground acceleration, and in the calculation of current probabilistic seismic hazard maps. Therefore, estimates of ground accelerations on these seismic hazard maps may be too high for sites near extensional sections of strike-slip faults. This paper discusses precariously balanced rock data from three areas near extensional sections of strike-slip faulting: (1) the region of the Honey fault, California, with an active Holocene fault, (2) the Red Rock Canyon region of the Garlock fault, near a dilatational step-over, and (3) the region just south of Beaumont, California, near the Hemet dilatational step-over in the San Jacinto fault. These are all active strike-slip faults, with at least a few large earthquakes in the Holocene, and, in the case of the San Jacinto example, historic large earthquakes ( M=7). Thus, the precarious rocks at these sites are evidence of relatively low ground motions associated with extensional strike-slip faulting. The results of this study could be very important in developing more detailed seismic hazard maps in the future.

  12. Properties of Ductile Shear Zones Below Strike-Slip Faults: Insights From Numerical Experiments Incorporating Laboratory-Derived Rheologies (Invited)

    NASA Astrophysics Data System (ADS)

    Fialko, Y. A.; Takeuchi, C. S.

    2013-12-01

    We investigate the long-term evolution of stress and strain in a ductile substrate driven by far-field plate motion and slip on a vertical transform fault cutting through the brittle crust. Numerical models that incorporate laboratory-derived power-law rheologies with Arrhenius temperature dependence, viscous dissipation, and conductive heat transfer give rise to long-lived fault "roots" that localize deformation below the brittle-ductile transition. Strain localization in the viscoelastic medium in this case results from thermomechanical coupling and power law dependence of strain rate on stress. For conditions corresponding to the San Jacinto and San Andreas Faults in Southern California, the predicted width of the shear zone in the lower crust is a few kilometers; this shear zone accommodates more than 50% of the far-field plate motion. Coupled thermomechanical models predict a single-layer lithosphere in case of "dry" composition of the lower crust and upper mantle, and a "jelly sandwich" lithosphere in case of "wet" composition. Deviatoric stress in the lithosphere in our models is relatively insensitive to the water content, the far-field loading rate, and the fault strength, and is of the order of 102 MPa. Furthermore, stress in the lithosphere is found to inversely correlate with the velocity of relative plate motion. Somewhat surprisingly, we find that the thermally-activated shear zones have little effect on postseismic relaxation. In particular, the presence of such zones does not change the polarity of vertical displacements in cases of rheologies that are able to generate robust postseismic transients. We conclude that additional (to thermomechanical coupling) mechanisms of strain localization are required for a viscoelastic model to produce a vertical deformation pattern similar to that due to afterslip on a deep extension of a fault. Possible candidates include dynamic grain re-crystallization, and fabric development (mylonitization).

  13. Geochemistry and fluid inclusions across a crustal strike-slip Mesozoic fault: insights of fluid-flow / rock interaction in the Atacama Fault System

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen, E.; Rempe, M.; Cembrano, J. M.; Hoshino, K.; Faulkner, D.

    2012-12-01

    Faults architecture and their permeability related fractures play a first order role in fluid-flow migration throughout the upper crust. Commonly, the interaction between fluid-flow migration and host rock is reflected as mineral precipitation in a vein mesh and/or as mineralogical changes (alteration) of the host rock. Often, however, the relationship between a fault zone and the fluid-flow passing through it is poorly understood. In order to improve our understanding of this process we have chosen, as a case study, the Jorgillo Fault (JF), which lies within the Atacama Fault System, a trench-parallel large-scale structure developed within Mesozoic rocks of the present-day Coastal Cordillera in northern Chile. The JF is represented as a ca. 18 km long NNW-SSE, in its southern end, to NW-SE, in its northern part, west-ward concave-shape sinistral strike-slip fault showing a maximum left-lateral displacement of about 4 km and a subvertical dip. The fault cuts through crystalline rocks of gabbric, dioritic and granodioritic composition. The JF core is composed by a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm in average while its minimum damage zone extension, based in field observations, is ca. 2 m wide each side of the core zone. A fault perpendicular transect was mapped and sampled in order to run XRF and XRD analyses of the fault core, damage zone and undeformed protolith. XRF analyses of the rocks revealed that contents of Al and Ca decrease with increasing Si, while Na increases towards the fault core. Fujita et al. (2012) interpreted similar behavior in analysis of rocks belonging to the Coloso Fault, which is genetically and spatially related to the JF, as compositional changes of plagioclase to albite-rich ones due to chloritic-propilitic alteration processes. In the damage zone, L.O.I. data increase towards the fault core but decrease inside the core in its cataclastic zone. This behavior of L.O.I. data is explained by the

  14. Earthquake depths and the relation to strain accumulation and stress near strike-slip faults in southern California

    SciTech Connect

    Sanders, C.O. )

    1990-04-10

    Earthquakes in the major fault zones are predominantly deep. Earthquakes in the crustal blocks bounding the fault zones are predominantly shallow. In the San Jacinto fault zone, maximum earthquake depths correlate with surface heat flow. These relations together with focal mechanisms, geodetic strain measurements, and fault zone models are consistent with the following ideas: (1) Interseismic plate motion is accommodated by aseismic slip along an extension of the major fault zone below a brittle zone that is locked between large earthquakes. (2) The aseismic slip in a narrow fault zone in the brittle-plastic transition region concentrates strain at the base of the brittle fault zone. (3) Deep earthquakes occur in thelower part of the brittle fault zone due to stick-slip failure of highly stressed patches. (4) Background earhtquakes and aftershocks that occur several kilometers deeper than large earthquake hypocenters suggest that a zone of mixed slip behavior may exist between the stable sliding (deep) and stick-slip (shallow) regions of the fault zone. Furthermore, the difference in seismicity between the San Jacinto and southern San Andreas faults suggests that the nature of this mixed zone may evolve as total displacement in the fault zone increases. (5) Shear stress may be less in the crustal blocks than in the deep brittle fault zones and generally at a level sufficient to cause brittle failure only shallow in the crustal blocks. (6) In the stress field produced by plate motion and slip in the deep fault zone, the upper brittle fault zone is not oriented favorably for shear failure. Lack of shallow earthquakes in the fault zones and the predominance of shallow earthquakes on favorably oriented fractures in the adjacent crustal blocks suggest that either stress in the upper brittle fault zone is relatively low or the upper fault zone is effectively strong due to its orientation.

  15. Strike-slip Fault Structure in the Salton Trough and Deformation During and After the 2010 M7.2 El Mayor-Cucapah Earthquake from Geodetic and Seismic Data

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Sun, J.; Gonzalez-Ortega, A.; González-Escobar, M.; Freed, A. M.; Burgmann, R.; Samsonov, S. V.; Gonzalez-Garcia, J.; Fletcher, J. M.; Hinojosa, A.

    2013-12-01

    The Pacific-North America plate boundary character changes southward from the strike-slip and transpressional configuration along most of California to oblique rifting in the Gulf of California, with a transitional zone of transtension beneath the Salton Trough in southernmost California and northern Mexico. The Salton Trough is characterized by extremely high heat flow and thin lithosphere with a thick fill of sedimentary material delivered by the Colorado River during the past 5-6 million years. Because of the rapid sedimentation, most of the faults in Salton Trough are buried and reveal themselves when they slip either seismically or aseismically. They can also be located by refraction and reflection of seismic waves. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in Baja California and Sonora, Mexico is probably the largest earthquake in the Salton Trough for at least 120 years, and had primarily right-lateral strike-slip motion. The earthquake ruptured a complex set of faults that lie to the west of the main plate boundary fault, the Cerro Prieto Fault, and shows that the strike-slip fault system in the southern Salton Trough has multiple sub-parallel active faults, similar to southern California. The Cerro Prieto Fault is still likely absorbing the majority of strain in the plate boundary. We study the coseismic and postseismic deformation of the 2010 earthquake with interferometric analysis of synthetic aperture radar (SAR) images (InSAR) and pixel tracking by subpixel correlation of SAR and optical images. We combine sampled InSAR and subpixel correlation results with GPS (Global Positioning System) offsets at PBO (Plate Boundary Observatory) stations to estimate the likely subsurface geometry of the major faults that slipped during the earthquake and to derive a static coseismic slip model. We constrained the surface locations of the fault segments to mapped locations in the Sierra Cucapah to the northwest of the epicenter. SAR along-track offsets

  16. Helena banks strike-slip(. ) fault and the relation to other Cenozoic faults along reactivated Triassic(. ) basin boundary fault zones in the Charleston, South Carolina, earthquake area - results from a marine high-resolution multichannel seismic-reflection survey

    SciTech Connect

    Behrendt, J.C.; Yuan, A.

    1985-01-01

    In 1981, the USGS conducted a high-resolution multichannel seismic (MCS) survey offshore of Charleston, South Carolina, to study the relation of Cenozoic faulting to future earthquake hazard. High-angle reverse displacement of Coastal Plain sedimentary rock indicating a linear increase with depth of 51 +/- 12 m/km is observed on the reflection profiles. This is similar to the Gants and Cooke faults in the meizoseismal area of the 1886 Charleston earthquake. The authors interpret these results to indicate that the stress field cannot have varied significantly in direction or in magnitude from Late Cretaceous time to Miocene or Pliocene time in the region. The HBF zone trends N 66/sup 0/ E; it comprises several 15- to 40-km-long segments that trend from N 68/sup 0/ E to N 77/sup 0/ E. The en-echelon pattern of the segments is compatible with left-lateral strike-slip and is thus consistent with the present northeast-trending maximum compressional stress field. The HBF zone appears to be an obliquely compressional reactivation of a tensional Triassic(.) fault zone bounding the Triassic(.) Kiawah Basin that has been identified on several MCS profiles. Similarly, the northeast-trending Gants reverse or strike-slip fault was probably reactivated from an old tensional fault bounding the Jedburg Triassic(.) basin in the 1886 meizoseismal area.

  17. Calcite veins as an indicator of fracture dilatancy and connectivity during strike-slip faulting in Toarcian shale (Tournemire tunnel, Southern France)

    NASA Astrophysics Data System (ADS)

    Lefèvre, Mélody; Guglielmi, Yves; Henry, Pierre; Dick, Pierre; Gout, Claude

    2016-02-01

    The reactivation of faults induced by natural/human induced fluid pressure increases is a major concern to explain subsurface fluid migration and to estimate the risk of losing the integrity of reservoir/seal systems. This study focusses on paleo-fluid migration in a strike slip fault with >100 m long, affecting a Toarcian shale (Causses Basin, France). A high calcite concentration is observed in a 5 cm thick zone at the boundary between the fault core and damage zone. Cumulated displacements in this zone are of millimeter-to-centimeter-scale offsets and different dilatant deformation textures are observed. The zone is affected by thin slip planes containing gouge. Cathodo-luminescence observations indicate that two phases of vein formation occurred. The first phase coincides with the fluid migration along this centimeter thick dilatant zone. The second one is associated to re-shear along the millimeter thick slip planes that results in more localized mineralization, but also in a better hydrologic connection through the shale formation. These results show that in shales fluids may migrate off a slipping surface in centimeter scale dilatant volumes, at first controlled by the intact shale anisotropy related to bedding and then favored by brecciating, structures re-orientation and strengthening processes induced by calcite sealing effects.

  18. Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-central Australia

    NASA Astrophysics Data System (ADS)

    Ring, Uwe; Tonguç Uysal, I.; Yüce, Galip; Ünal-İmer, Ezgi; Italiano, Francesco; İmer, Ali; Zhao, Jian-xin

    2016-11-01

    The interior of the Australian continent shows evidence for late Quaternary to Recent fault-controlled mantle 3He and CO2 degassing. A series of interconnected NW-striking sinistral faults, the Norwest fault zone (NFZ), in south-central Australia are associated with travertine mounds, the latter show a regular spacing of 50-70 km. U-series ages on 26 samples range from 354 ± 7 to 1.19 ± 0.02ka (2σ errors) and suggest a clustering every ∼3-4 ka since ∼26 ka. Geochemical data demonstrate a remarkable mantle-to-groundwater connection. Isotopic data indicate that the groundwater is circulating to depths >3 km and interacting with Neoproterozoic/Cambrian basement and mantle volatiles. 3He/4He isotope ratios show that the He comes in part from the mantle. This demonstrates that the NFZ cuts through the entire crust and provides pathways for mantle degassing. Scaling relationships suggest that the series of sinistral faults that make up the NFZ are interconnected at depths and have a significant strike length of 60-70 km or more. The NFZ occurs where a major compositional boundary and a significant heat flow anomaly occurs, and a major step in lithospheric thickness has been mapped. We discuss a tectonic model in which recent stress field, heat flow and lithospheric structure in central Australia reactivated a set of steeply dipping Neoproterozoic faults, which may now be growing into a crustal/lithospheric-scale structure.

  19. The influence of volcanism on fluvial depositional systems in a Cenozoic strike-slip basin, Denali fault system, Yukon Territory, Canada

    SciTech Connect

    Cole, R.B.; Ridgway, K.D. )

    1993-01-01

    The depositional history of the Eocene-Oligocene Burwash strike-slip basin is characterized by a transition from non-volcanic clastic sedimentation of the Amphitheater Formation to deposition of lavas and volcaniclastic rocks of the overlying lower Wrangell volcanic sequence. The purpose of this paper is twofold: (1) to document the contemporaneous fluvial and volcanic depositional history of a nonmarine strike-slip basin, and (2) to discuss the transition from non-volcanic to volcanic deposition in the context of strike-slip basin evolution. The authors indicate that the onset of volcanism within strike-slip basins can result in major reorganizations of drainage systems as well as changes in sediment sources.

  20. New constraints shed light on strike-slip faulting beneath the southern Apennines (Italy): The 21 August 1962 Irpinia multiple earthquake

    NASA Astrophysics Data System (ADS)

    Vannoli, Paola; Bernardi, Fabrizio; Palombo, Barbara; Vannucci, Gianfranco; Console, Rodolfo; Ferrari, Graziano

    2016-11-01

    On 21 August 1962 an earthquake sequence set off near the city of Benevento, in Italy's southern Apennines. Three earthquakes, the largest having Mw 6.1, struck virtually the same area in less than 40 min (at 18:09, 18:19 and 18:44 UTC, respectively). Several historical earthquakes hit this region, and its seismic hazard is accordingly among the highest countrywide. Although poorly understood in the past, the seismotectonics of this region can be revealed by the 1962 sequence, being the only significant earthquake in the area for which modern seismograms are available. We determine location, magnitude, and nodal planes of the first event (18:09 UTC) of the sequence. The focal mechanism exhibits dominant strike-slip rupture along a north-dipping, E-W striking plane or along a west-dipping, N-S striking plane. Either of these solutions is significantly different from the kinematics of the typical large earthquakes occurring along the crest of the Southern Apennines, such as the 23 November 1980 Irpinia earthquake (Mw 6.9), caused by predominant normal faulting along NW-SE-striking planes. The epicentre of the 21 August 1962, 18:09 event is located immediately east of the chain axis, near one of the three north-dipping, E-W striking oblique-slip sources thought to have caused one of the three main events of the December 1456 sequence (Io XI MCS), the most destructive events in the southern Apennines known to date. We maintain that the 21 August 1962, 18:09 earthquake occurred along the E-W striking fault system responsible for the southernmost event of the 1456 sequence and for two smaller but instrumentally documented events that occurred on 6 May 1971 (Mw 5.0) and 27 September 2012 (Mw 4.6), further suggesting that normal faulting is not the dominant tectonic style in this portion of the Italian peninsula.

  1. The Hills are Alive: Dynamic Ridges and Valleys in a Strike-Slip Environment

    NASA Astrophysics Data System (ADS)

    Duvall, A. R.; Tucker, G. E.

    2014-12-01

    Strike-slip fault zones have long been known for characteristic landforms such as offset and deflected rivers, linear strike-parallel valleys, and shutter ridges. Despite their common presence, questions remain about the mechanics of how these landforms arise or how their form varies as a function of slip rate, geomorphic process, or material properties. We know even less about what happens far from the fault, in drainage basin headwaters, as a result of strike-slip motion. Here we explore the effects of horizontal fault slip rate, bedrock erodibility, and hillslope diffusivity on river catchments that drain across an active strike-slip fault using the CHILD landscape evolution model. Model calculations demonstrate that lateral fault motion induces a permanent state of landscape disequilibrium brought about by fault offset-generated river lengthening alternating with abrupt shortening due to stream capture. This cycle of shifting drainage patterns and base level change continues until fault motion ceases thus creating a perpetual state of transience unique to strike-slip systems. Our models also make the surprising prediction that, in some cases, hillslope ridges oriented perpendicular to the fault migrate laterally in conjunction with fault motion. Ridge migration happens when slip rate is slow enough and/or diffusion and river incision are fast enough that the hillslopes can respond to the disequilibrium brought about by strike-slip motion. In models with faster slip rates, stronger rocks or less-diffusive hillslopes, ridge mobility is limited or arrested despite the fact that the process of river lengthening and capture continues. Fast-slip cases also develop prominent steep fault-facing hillslope facets proximal to the fault valley and along-strike topographic profiles with reduced local relief between ridges and valleys. Our results demonstrate the dynamic nature of strike-slip landscapes that vary systematically with a ratio of bedrock erodibility (K) and

  2. How crustal-scale strike-slip faults initiate and further develop: The Red River fault and the East Himalaya Syntaxis as a result of the two-stage

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2014-05-01

    One major question of tectonics is how and where major intracontinental transcurrent strike-slip faults initiate. Models assume an important rheological contrast between rheologically weak and strong lithologies, e.g. at margins of a stiff craton and juxtaposed mobile belts (Molnar & Dayem, 2010 and references therein). Several models assume weakening of the lithosphere by uprise of magma, e.g., formed by subduction or break off of the previously subducted lithosphere or as K-granites at the bases of a metasomatized lithosphere. In the case of slab break-off following oblique convergence, orogen-parallel strike-slip accommodation has been documented. Especially, the spatiotemporal relationships between synkinematic plutons and crustal-scale strike-slip faults have been documented worldwide. It is a matter of continuous debate whether strike-slip faults nucleate where melts have previously weakened the crust/lithosphere or whether pre-existing faults represent the preferred pathways for the ascending melt. A few further models document the role of lateral boundaries of metamorphic core complexes. The significance of some of these processes could be studied along the Red River (RR) fault, SE, Asia. Here we propose a model, how the development of RR fault evolved in response to the two-stage India-Asia collision that recently was proposed by van Hinsbergen et al., (2012 and references therein) and the interaction of the northeastern corner of the East Himalayan Syntaxis with Himalayan-Burman/Indochina collision belt. We propose a four-phase tectonic evolution for the RR fault. During the Eocene accretion of the Tethyan block to Asia, the Sichuan foreland subducted and Eocene K-granites evolved, which started to vertically extrude and introduced, causing a zone of weakness within the crust (Phase 1) along the future RR fault. Another consequence of continuing shortening after the Tethyan block-Asia collision (Stage 1 collision) is lateral extrusion of blocks, and the

  3. Neotectonics of a subduction/strike-slip transition: the northeastern Dominican Republic

    SciTech Connect

    Winslow, M.A.; McCann, W.R.

    1985-01-01

    The Septentrional fault system in the northeastern Dominican Republic marks the zone where the North American-Carribean plate boundary is evolving from subduction to strike-slip motion, and where terranes appear to be forming and migrating laterally in a subduction complex/forearc region. On the Island of Hispaniola, slip vectors are oblique to the strike of the Puerto Rico trench, and oblique subduction thrusts the upper plate over normal seafloor. The offshore geology and seismicity of the northern Caribbean suggest that uplift, broad crustal warping, thrusting, and strike-slip faulting (ie. collisional tectonics) should be present in the northern part of the Dominican Republic. The high topography (>1000m), high levels of seismicity, and large earthquakes support the hypothesis of contemporary deformation in Hispaniola. In this region, the subduction regime dies out toward the west, and deformation is transferred to onshore, oblique-slip faults. As this change in tectonic style has occurred in Neogene to Recent times, we are investigating the modern evolution of a plate boundary. We have already documented: (1) the presence of a strike-slip faulting in the northeastern Dominican Republic; (2) an anomalous push-up structure; and (3) a region of numerous splay faults. In conclusion, recent seismicity suggest a wide zone of deformation and variations in interplate motions near Hispaniola. This island lies at the western limit of active underthrusting and at the eastern limit of onshore faulting, i.e., at an important transition from a subduction to strike-slip regime.

  4. The influence of fault geometry and frictional contact properties on slip surface behavior and off-fault damage: insights from quasi-static modeling of small strike-slip faults from the Sierra Nevada, CA

    NASA Astrophysics Data System (ADS)

    Ritz, E.; Pollard, D. D.

    2011-12-01

    Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.

  5. Mapping the Deeply Eroded Roots of a Major Strike-Slip Fault System: a Summary of Recent Bedrock Mapping Along the Norumbega Fault System in Maine

    NASA Astrophysics Data System (ADS)

    West, D. P.; Pollock, S. G.; Grover, T. W.

    2010-12-01

    Deeply eroded ancient fault systems provide a natural laboratory for the study of processes occurring in the deeper inaccessible portions of currently active fault systems. Detailed mapping of the spatial distribution of fault rocks associated with these exhumed systems, combined with microstructural and geochronological studies, provide a wealth of information on the eroded seismogenic faults that once overlay these faults and shear zones. The regionally extensive Norumbega fault system in Maine (> 400 km in length and up to 40 km in width) represents the eroded roots of a major plate boundary-parallel fault system that was active in mid-Paleozoic to Mesozoic time. A variety of both brittle (including abundant pseudotachylyte) and ductile fault rocks can be found along the length of the Norumbega and understanding their spatial distribution is critical to understanding the temporal, spatial, and kinematic evolution of this and other long-lived fault systems. Recent 1:24,000 scale mapping along the south-central Maine portion of the Norumbega fault system has been sponsored by the National Cooperative Geologic Mapping Program of the U.S.G.S. in cooperation with the Maine Geological Survey. This new mapping has provided greater detail in areas containing previously recognized structures, and revealed the existence of previously unrecognized zones of significant displacement. Complicating the mapping efforts is the distribution of a wide variety of protoliths across the strike of the fault system. Thus differences in fault rock distribution and structural style across the fault system not only reflects different episodes of displacement under different boundary conditions (e.g., temperature, pressure, fluids, differential stresses), but also differences in the rheological properties of materials upon which these conditions are operating. In addition, because of differences in the ways that different workers define and recognize various types of fault rocks, there

  6. Analogue modelling of strike-slip fault propagation across a rheological/morphological crustal anisotropy: implications for the morphotectonic evolution of the Gloria Fault - Tore Madeira Rise area in NE Atlantic.

    NASA Astrophysics Data System (ADS)

    Tomás, Ricardo; Rosas, Filipe M.; Duarte, João C.; Terrinha, Pedro; Kullberg, Maria C.; Almeida, Jaime; Barata, Frederico; Carvalho, Bruno; Almeida, Pedro

    2015-04-01

    The Gloria Fault (GF) marks the E-W dextral transcurrent plate boundary between Eurasia and Africa in NE Atlantic, displaying complying high magnitude (historical and instrumental) seismic activity (e.g. M=7.1 in 1939 and M=8.4 in 1941, Bufforn et al., 1988), and cutting across a NNE-SSW 1000 km long bathymetric ridge: the so called Tore-Madeira Rise - TMR (rising in average 3km above the abyssal plain). The precise origin and tectono-magmatic evolution of the TMR is still not fully understood, although reported wide-angle refraction data points to a rheological configuration comprising an isostatically compensated thickened oceanic crust, possibly formed during a period of high accretion in the Mid-Atlantic Ridge (Pierce and Barton, 1991). Widespread evidence for volcanic activity has also been recognized, spanning from late Cretaceous to Present (Geldmacher et al. 2006, Merle et al. 2009), noticeably with the most recent volcanism (~500 Ky) occurring as tectonically aligned volcanic plugs, distributed along the E-W tectonic trend of the GF-related structures. To better understand the complex interference at play in this key area between the tectonic structures (essentially determined by the Gloria Fault system), the present and past magmatic activity and the resulting seafloor morphology, a series of dynamically scaled analogue modelling experiments have been conceived and carried out. The main focus of this experimental work was to decipher the potential influence of a rheological vs. morphological anisotropy (accounting for the TMR) on the lateral propagation of a major right-lateral strike-slip fault (representing the GF). The preliminary comparison of the obtained experimental results with the natural morphotectonic pattern in the study area reveals, not only a strong tectonic control of the ongoing volcanism, manifested by the observed preferred directions of aligned volcanic plugs, but also a so far unsuspected deflection/distributed pattern of several

  7. Short- and long-term earthquake triggering along the strike-slip Kunlun fault, China: Insights gained from the Ms 8.1 Kunlun earthquake and other modern large earthquakes

    NASA Astrophysics Data System (ADS)

    Xie, Chaodi; Lei, Xinglin; Wu, Xiaoping; Hu, Xionglin

    2014-03-01

    Following the 2001 Ms8.1 Kunlun earthquake, earthquake records of more than 10 years, in addition to more than one century's records of large earthquakes, provide us with a chance to examine short-term (days to a few years) and long-term (years to decades) seismic triggering following a magnitude ~ 8 continental earthquake along a very long strike-slip fault, the Kunlun fault system, located in northern Tibet, China. Based on the calculations of coseismic Coulomb stress changes (ΔCFS) from the larger earthquake and post-seismic stress changes due to viscoelastic stress relaxation in the lower crust and upper mantle, we examined the temporal evolution of seismic triggering. The ETAS (epidemic type aftershocks sequence) model shows that the seismic rate in the aftershock area over ~ 10 years was higher than the background seismicity before the mainshock. Moreover, we discuss long-term (years to decades) triggering and the evolution of stress changes for the sequence of five large earthquakes of M ≥ 7.0 that ruptured the Kunlun fault system since 1937. All subsequent events of M ≥ 7.0 occurred in the regions of positive accumulated ΔCFS. These results show that short-term (up to 200 days in our case) triggering along the strike-slip Kunlun fault is governed by coseismic stress changes, while long-term triggering is somewhat due to post-seismic Coulomb stress changes resulting from viscoelastic relaxation.

  8. Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (southern Italy)

    NASA Astrophysics Data System (ADS)

    Tansi, Carlo; Muto, Francesco; Critelli, Salvatore; Iovine, Giulio

    2007-04-01

    A Middle Miocene-Middle Pleistocene regional NW-SE left-lateral strike-slip fault system profoundly conditioned the evolution of central Calabria, during the late tectonic phases which involved the Apulian block and the Calabrian Arc. This system dissected an Oligocene-Early Miocene orogenic belt, made of Alpine nappes overthrusted the Apennine Chain. In the present study, three major faults, arranged in a right-hand en échelon pattern, have been identified within the mentioned strike-slip system: the Falconara-Carpanzano Fault, the Amantea-Gimigliano Fault, and the Lamezia-Catanzaro Fault. A wide active transtensional area (N-S-trending Crati Graben), developed since Late Pliocene, is located at the SE termination of the Falconara-Carpanzano Fault. In the sectors of overlapping of the faults, the transpressional regime induced tectonic extrusions of the deep-seated units of the Chain, producing push-ups within the overlying complexes. In particular, push-ups are either made of Mesozoic carbonate rocks at Mt. Cocuzzo-Mt. Guono and Mt. S. Lucerna, or of ophiolite rocks at Mt. Reventino and Gimigliano. In these sectors, the primary geometric relationships among the units of the orogenic belt were locally altered. The en échelon arrangement of the above-mentioned NW-SE major strike-slip faults indicates the existence of a left-lateral crustal shear zone, striking on average N160. The age of the regional NW-SE left-lateral strike-slip system deserves thorough investigation. Besides evidence from historical and instrumental earthquakes, and from paleoseismological investigations, the kinematic data suggests that the "cause" of the transtensional sector (Crati Graben) could be found in the regional Falconara-Carpanzano Fault.

  9. Influence of fault trend, bends, and convergence on shallow structure and geomorphology of the Hosgri strike-slip fault, offshore central California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Watt, Janet T.

    2012-01-01

    Earthquake hazard assessments should incorporate a minimum rupture length of 110 km based on continuity of the Hosgri fault zone through this area. Lateral slip rates may vary along the fault (both to the north and south) as different structures converge and diverge but are probably in the geodetically estimated range of 2–4 mm/yr.

  10. No evidence for shallow shear motion on the Mat Fault, a prominent strike slip fault in the Indo-Burmese wedge

    NASA Astrophysics Data System (ADS)

    Tiwari, R. P.; Gahalaut, V. K.; Rao, Ch U. B.; Lalsawta, C.; Kundu, B.; Malsawmtluanga

    2015-07-01

    The motion between India and Sunda plates is accommodated along the Churachandpur Mao Fault (CMF) in the Indo-Burmese Wedge (IBW) and Sagaing Fault in the Myanmar region. Within the IBW, the Mat Fault is the most prominent transverse structure with prominent topographic and geomorphic expressions. We undertook Global Positioning System (GPS) measurements across this fault to investigate the current deformation across it. Modelling of these observations using locking depth of up to 4 km yields no resolvable slip (dextral slip rate as 0 ±5 mm/year) across the fault. Due to limited spatial extent of the GPS measurements, it is not possible to comment on the status of deeper slip, if any.

  11. Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range

    USGS Publications Warehouse

    Benowitz, J.A.; Layer, P.W.; Armstrong, P.; Perry, S.E.; Haeussler, P.J.; Fitzgerald, P.G.; VanLaningham, S.

    2011-01-01

    40Ar/39Ar, apatite fission-track, and apatite (U-Th)/He thermochronological techniques were used to determine the Neogene exhumation history of the topographically asymmetric eastern Alaska Range. Exhumation cooling ages range from ~33 Ma to ~18 Ma for 40Ar/39Ar biotite, ~18 Ma to ~6 Ma for K-feldspar minimum closure ages, and ~15 Ma to ~1 Ma for apatite fission-track ages, and apatite (U-Th)/He cooling ages range from ~4 Ma to ~1 Ma. There has been at least ~11 km of exhumation adjacent to the north side of Denali fault during the Neogene inferred from biotite 40Ar/39Ar thermochronology. Variations in exhumation history along and across the strike of the fault are influenced by both far-field effects and local structural irregularities. We infer deformation and rapid exhumation have been occurring in the eastern Alaska Range since at least ~22 Ma most likely related to the continued collision of the Yakutat microplate with the North American plate. The Nenana Mountain region is the late Pleistocene to Holocene (~past 1 Ma) primary locus of tectonically driven exhumation in the eastern Alaska Range, possibly related to variations in fault geometry. During the Pliocene, a marked increase in climatic instability and related global cooling is temporally correlated with an increase in exhumation rates in the eastern Alaska Range north of the Denali fault system.

  12. Global Morphological Mapping of Strike-Slip Structures on Ganymede

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B. R.; Cameron, M. E.; Seifert, F.; Pappalardo, R. T.; Collins, G. C.

    2014-12-01

    Many inferences of strike-slip faulting and distributed shear zones on Ganymede suggest that strike-slip tectonism may be important to the structural development of its surface and in the transition from dark to light (grooved) materials. To better understand the role of strike-slip tectonism in shaping Ganymede's multifaceted surface, we identify and map key examples of strike-slip morphologies (en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) from Galileo and Voyager images. Here we present the current state of these global mapping efforts, with particular emphasis given to complex structures associated with grooved terrain (e.g. Nun Sulci) and terrains transitional from dark to light terrain (e.g. the boundary between Nippur Sulcus and Marius Regio). These results are being synthesized into a global database representing an inferred sense of shear for fractures on Ganymede. This, combined with existing observations of extensional features, is helping to narrow down the range of possible principal stress directions that could have acted at the regional or global scale to produce grooved terrain. Moreover, these data sets, combined with mechanical models of shear failure and global stress sources, are providing constraints for testing possible mechanisms for grooved terrain formation on Ganymede.

  13. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili Mw 7.8 and Denali fault Mw 7.9 strike-slip earthquakes with global P wave back projection imaging

    NASA Astrophysics Data System (ADS)

    Walker, Kristoffer T.; Shearer, Peter M.

    2009-02-01

    The Denali and Kokoxili strike-slip earthquakes are two of the longest recent intracontinental ruptures. Previous studies report a range of rupture velocities. Here we image these earthquakes by reverse time migration of the intermediate-frequency P wave train recorded by global broadband seismometers. This technique permits a relatively direct measure of rupture velocity (speed and direction) as constrained by the radiated seismic energy, free from restrictive assumptions or rupture speed bounds placed on the solution. We compare our results with published seismic, GPS displacement, and surface slip inversion results. Both ruptures were initially subshear and transitioned over a distance no longer than 40 km to supershear speeds close to the P wave speed of ˜5.6 km/s. We investigate the accuracy of our results with synthetic data and experiment with using different imaging parameters and seismic subnetworks. These tests allow us to rule out the possibility of subshear speeds along the supershear segments. Although we cannot exclude supershear speeds of 4.5-6.5 km/s, our most reliable rupture velocities of ˜5.6 km/s are close to the local P wave speeds. We hypothesize that these intracontinental faults have weak shear strengths or high breakdown slips or crustal rigidities and experience at least moderate slip or slip rate weakening. Our observations and previous published results lead us to speculate that very long, surface-extending faults with general homogeneity in prestress and fault strength, together with smaller adjacent fault segments to provide triggering, may be necessary ingredients for the sub-Rayleigh to supershear rupture speed transition in strike-slip earthquakes.

  14. World's largest coseismic strike-slip offset: The 1855 rupture of the Wairarapa Fault, New Zealand, and implications for displacement/length scaling of continental earthquakes

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Little, T. A.

    2006-12-01

    We used detailed microtopographic surveys to measure fault offset along the southern trace of the Wairarapa fault, near Wellington, New Zealand, which most recently experienced a Mw > 8.1 earthquake in 1855. Our measurements at 16 localities support the inference that dextral slip in 1855 reached 18.7 m and averaged ˜16 m over the 16 km length that we studied. Five measurements were made where a single active strand comprises the fault zone, yielding "smallest" dextral offsets of 13.0-18.7 m. At Pigeon Bush, sequential beheading of a stream and new 14C dating support the interpretation that its 18.7 ± 1.0 m of offset accumulated in 1855. We also measured three "next-smallest" offsets on single-strand faults of 26.3-32.7 m, evidence that dextral slip during the previous event was ˜14 m. Eight measurements were made where the Wairarapa fault includes two closely spaced strands, yielding smallest dextral offsets of 12.9-16.0 m. At Tauherenikau River, 14C dating of postoffset mud yielded ages indistinguishable from A.D. 1855. Combining all single-strand and two-strand (minimum) estimates yields an average dextral slip of 15.5 ± 1.4 m in the study area. Historical observations and our data indicate that vertical slip reached ˜2.5 m. The large displacement and short (˜145 km) strike length yield an unusually high displacement/length ratio for the rupture. As suggested by previous dislocation modeling, we propose that the rupture extended tens of kilometers downdip (W) to merge with the underlying subduction interface. Alternatively, the rupture may have been strongly segmented at depth, yielding an earthquake with an unusually large static stress drop.

  15. Reworking of structural inheritance at strike-slip restraining-bends: templates from sandbox analogue models

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Storti, Fabrizio; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Piero Righetti, Fabrizio

    2016-04-01

    Structural inheritance plays a fundamental role during crustal deformation because pre-existing fault and shear zones typically provide weakness zone suitable to fail again when affected by a new regional stress field. Re-activation of structural inheritance is expected to unavoidably increase the complexity of structural architectures, whose geometric and kinematic patterns can significantly deviate from what expected in newly deformed crustal sectors. Availability of templates from analogue models can provide a very effective tool to help unraveling such a structural complexity. For this purpose, we simulated the reworking of a set of basement hosted pre-existing fault zones at strike-slip restraining fault bends. In the models, the mechanical stratigraphy consists of a basement, made of a mixture of dry kaolin and sand to slightly increase cohesion, and a sedimentary cover made by pure dry sand. Inherited fault zones are confined to the basement and coated by a thin veneer of silicone putty. In the experimental programme, the geometry of the left-lateral restraining bend is maintained the same, with a bending angle of 30° of the restraining fault segment. The strike of the inherited fault zones, measured counterclockwise with respect to that of the master strike-slip fault zone outside the restraining bend, was 0°, 30°, and 60° in different experiments, respectively. An end member experiment without inheritance was also run for comparison. Our experimental results show that the angle that the inherited fault zones make with the restraining bend plays a fundamental role in governing the deformation pattern. When structural inheritance is near parallel to the master strike-slip fault zone, synthetic shears form and severely compartmentalize the transpressional pop-up anticline growing on top of the restraining bend. Fault-bounded blocks undergo sinistral escape during transpression. On the other hand, when structural inheritance makes a high angle to the

  16. From extension to transpression: Quaternary reorganization of an extensional-related drainage network by the Alhama de Murcia strike-slip fault (eastern Betics)

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Booth-Rea, Guillermo; Pérez-Peña, José Vicente; Azañón, José Miguel; Giaconia, Flavio; Masana, Eulàlia

    2015-11-01

    The complex present-day drainage network of the Lorca-Totana area records the changing tectonic setting, from extension to transpression, in the eastern Betics. Through a detailed morphometric analysis we evaluate the topographic response to this major change in the tectonic setting and the influence in the drainage of Miocene extension and middle Pleistocene to present day transpression. The present-day drainage network preserves geomorphic features inherited from Late Miocene extension that are being overprinted by a new transverse fluvial system. This new system advanced towards the NW since the middle Pleistocene in response to a localized base-level drop related to the NE-SW oriented Alhama de Murcia sinistral-reverse fault. Geomorphic indexes calculated in this work suggest the present-day activity of the Alhama de Murcia fault and the Sierra de la Tercia anticline, the two major tectonic structures in the area. The landscape rejuvenation associated with this process results in: contrasting mountain front sinuosity values between old and new mountain fronts, high SLk index anomalies, convex-shaped and complex hypsometric curves, knickpoints in river profiles, contrasting slope-area plots and high steepness index values. This fluvial reorganization was driven progressively by successive fluvial captures preserved as wind-gaps in the present-day drainage network.

  17. Pattern of dynamic displacements in a strike-slip earthquake

    NASA Astrophysics Data System (ADS)

    Saltogianni, V.; Gianniou, M.; Moschas, F.; Stiros, S.

    2016-07-01

    High-rate (1 Hz) records from GPS stations uniformly distributed along the fault ruptures of the 2014 Samothraki-Gökçeada Mw6.9 earthquake in the North Aegean Trough, at the extension of the North Anatolian Fault Zone, were analyzed using the Precise Point Positioning (PPP) technique. Computed dynamic displacements shed light to the pattern of dynamic displacements during shallow strike-slip earthquakes. The area of near-field static seismic displacements bounds ramp-type, long-period dynamic displacements (fling steps) in the sense of static displacements. Along-fault and normal to fault components of dynamic displacement follow typical attenuation laws, but attenuation is higher in the fault-parallel component hence confined to the area of static dislocations. Forward directivity and local, especially topography-controlled amplification effects, consistent with accelerometer evidence, were also observed. The overall pattern seems to characterize shallow strike-slip earthquakes and is expected to prove useful to explain or even predict the near-field damaging potential of strike-slip earthquakes.

  18. Late Palaeozoic to Mesozoic kinematic history of the Talas-Ferghana strike-slip fault (Kyrgyz West Tianshan) as revealed by 40Ar/39Ar dating of syn-kinematic white mica

    NASA Astrophysics Data System (ADS)

    Rolland, Yann; Alexeiev, Dmitriy V.; Kröner, Alfred; Corsini, Michel; Loury, Chloé; Monié, Patrick

    2013-05-01

    The NW-trending Talas-Ferghana Fault (TFF) in Kyrgyzstan, Central Asia, is one of the largest intracontinental strike-slip faults in the world. It extends over a distance of more than 2000 km from southern Tourghai to western Tarim and exhibits a maximum dextral offset of ˜200 km during the late Palaeozoic to present. The history of the fault provides important insights for the understanding of the evolution of southern Central Asia but remains poorly constrained due to lack of reliable geochronological data. We present new Ar-Ar ages and structural data from the Kyrgyz West Tianshan, that elucidate the kinematic history of the TFF in the Palaeozoic and Mesozoic. 40Ar/39Ar ages on mylonitic white micas document a deformational history consisting of several episodes. A late Carboniferous age of 312 ± 4 Ma point to initiation of top-to-the-south and dextral transpressional deformation during a metamorphic overprint in Precambrian and Palaeozoic rocks along the northern compartment of the TFF. The main phase of dextral motion along the entire fault occurred in the Permian as suggested by minimum ages of 260-290 Ma obtained at two different locations in the NW and central parts of the TFF. Partial isotopic resetting occurred between 240 and 210 Ma and younger ages of <200-210 Ma are ascribed to late brittle reactivation and hydrothermal fluid flow in the Late Triassic to Early Jurassic times. The Jurassic trans-tensional phase is featured by emplacement of 195 ± 3 Ma pegmatitic dykes. The Ar-Ar mineral ages and structural data argue for a major phase of dextral shearing, affecting the entire region from the West Tianshan to Mongolia in the late Permian and leading to formation of almost equally spaced major NW-trending dextral strike-slip faults. The uniform character of this deformation indicates that the process of amalgamation in this part of the CAOB ended prior to the late Permian, and Central Asia evolved as a single coherent continental block since that time.

  19. Overview of cenozoic strike-slip displacement of the caribbean plate

    SciTech Connect

    Mann, P.

    1985-01-01

    Geologic and tectonic studies in the Caribbean region have traditionally focused on Cretaceous and Paleogene arc rocks which, for the most part, record a long period (approx. = 100 Ma) of plate convergence. Since the recognition of the plate structure of the Caribbean by Molnar and Sykes in 1969, there has been steadily increasing interest in mapping widespread ares of Neogene sedimentary and volcanic rocks that generally record a long period (65.-40 Ma) of eastward displacement of the Caribbean plate relative to the Americas. The purpose of this talk is to review different aspects of present knowledge on this strike-slip displacement, namely: 1) location of major strike-slip faults within the northern and southern plate boundary zones; 2) sense, offset, rate of slip of major strike-slip faults; 3) secondary deformational features related to strike-slip displacements; 4) intraplate deformational features related to interplate strike-slip movements; 5) relation of seismicity to major strike-slip faults; and 6) constraints imposed by strike-slip fault systems on plate motion models. Based on these observations, several critical problems which future studies might help resolve are pointed out.

  20. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    USGS Publications Warehouse

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  1. Late Cretaceous through Cenozoic strike-slip tectonics of southwestern Alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; McClelland, W.

    2002-01-01

    New geologic mapping and geochronology show that margin-parallel strike-slip faults on the western limb of the southern Alaska orocline have experienced multiple episodes of dextral motion since ~100 Ma. These faults are on the upper plate of a subduction zone ~350-450 km inboard of the paleotrench. In southwestern Alaska, dextral displacement is 134 km on the Denali fault, at least 88-94 km on the Iditarod-Nixon Fork fault, and perhaps tens of kilometers on the Dishna River fault. The strike-slip regime coincided with Late Cretaceous sedimentation and then folding in the Kuskokwim basin, and with episodes of magmatism and mineralization at ~70, ~60, and ~30 Ma. No single driving mechanism can explain all of the ~95 million-year history of strike-slip faulting. Since ~40 Ma, the observed dextral sense of strike slip has run contrary to the sense of subduction obliquity. This may be explained by northward motion of the Pacific plate driving continental margin slivers into and/or around the oroclinal bend. From 44 to 66 Ma, oroclinal rotation, perhaps involving large-scale flexural slip, may have been accompanied by westward escape of crustal blocks along strike-slip faults. However, reconstructions of this period involve unproven assumptions about the identity of the subducting plate, the position of subducting ridges, and the exact timing of oroclinal bending, thus obscuring the driving mechanisms of strike slip. Prior to 66 Ma, oblique subduction is the most plausible driving mechanism for dextral strike slip. Cumulative displacement on all faults of the western limb of the orocline is at least 400 km, about half that on the eastern limb; this discrepancy might be explained by a combination of thrusting and unrecognized strike-slip faulting.

  2. Palaeoseismic evidence for a medieval earthquake, and preliminary estimate of late Pleistocene slip-rate, on the Firouzkuh strike-slip fault in the Central Alborz region of Iran

    NASA Astrophysics Data System (ADS)

    Nazari, H.; Ritz, J.-F.; Walker, R. T.; Salamati, R.; Rizza, M.; Patnaik, R.; Hollingsworth, J.; Alimohammadian, H.; Jalali, A.; Kaveh Firouz, A.; Shahidi, A.

    2014-03-01

    The ˜55 km-long Firouzkuh fault is located in the Central Alborz Mountains of Iran. It is a left-lateral fault, which dips to the south, and possesses a small dip-slip component of motion that we interpret to result from extension. The ratio of horizontal to vertical displacement across the fault, calculated from the cumulative displacement of landscape features, is 7.6. We provide constraints on the timing of the last earthquake on the Firouzkuh fault from two trenches (T1 and T2) across the fault zone, excavated in 2004, and located east of Firouzkuh city. The trenches expose faulted sedimentary deposits. Two optically-stimulated luminescence (OSL) ages from sediments in the lower part of trench T1 date from the late Pleistocene (15.9 ± 0.9 ka and 27.1 ± 1.7 ka). The younger of the two dated units in T1 is displaced vertically across the fault by 2.2-4.4 m, from which we estimate a strike-slip displacement of 18.2-33.4 m, and hence a average horizontal slip-rate of 1.1-2.2 mm/yr. The sediments exposed in T1 do not yield constraints on the most recent earthquake history. In trench T2, however, human skeletal remains of a middle aged male, which yield a radiocarbon age of 1159 ± 28 BP (corresponding to a mean calendar age of 791 AD), were found within a faulted alluvial layer at a depth of 60-70 cm from the surface. The existence of these medieval human places shows that a surface-rupturing earthquake occurred at some time after 1159 ± 28 BP. The amount of slip in each earthquake on the Firouzkuh fault is difficult to estimate, but assuming the entire ˜55 km fault length ruptures in each event, they will have had a maximum magnitude of 7.1. At our estimated late Quaternary slip-rate of ˜1.1-2.2 mm/yr magnitude 7.1 earthquakes, involving ˜1.2 m average displacement, would be expected to occur every ˜1100-540 years. As the last earthquake on the Firouzkuh fault may be up to ˜700 years in age we suggest that the Firouzkuh fault is a major hazard for

  3. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  4. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    NASA Astrophysics Data System (ADS)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  5. Rifting and subduction in the papuan peninsula, papua new guinea: The significance of the trobriand tough, the nubara strike-slip fault, and the woodlark rift to the present configuration of papua new guinea

    NASA Astrophysics Data System (ADS)

    Cameron, Milo Louis

    The calculated extension (~111 km) across the Woodlark rift is incompatible with the > 130 km needed to exhume the Metamorphic Core Complexes on shallow angle faults (< 30°) using N-S extension in the Woodlark Basin. High resolution bathymetry, seismicity, and seismic reflection data indicate that the Nubara Fault continues west of the Trobriand Trough, intersects the Woodlark spreading center, and forms the northern boundary of the Woodlark plate and the southern boundary of the Trobriand plate. The newly defined Trobriand plate, to the north of this boundary, has moved SW-NE along the right lateral Nubara Fault, creating SW-NE extension in the region bounded by the MCC's of the D'Entrecasteaux Islands and Moresby Seamount. Gravity and bathymetry data extracted along four transect lines were used to model the gravity and flexure across the Nubara Fault boundary. Differences exist in the elastic thickness between the northern and southern parts of the lines at the Metamorphic Core Complexes of Goodenough Island (Te_south = 5.7 x 103 m; Te_north = 6.1 x 103 m) and Fergusson Island (Te_south = 1.2 x 103 m; Te_north = 5.5 x 103 m). Differences in the elastic strength of the lithosphere also exist at Moresby Seamount (Te_south = 4.2 x 103 m; Te_north = 4.7 x 103 m) and Egum Atoll (Te_south =7.5 x 103 m; Te_north = 1.3 x 104 m). The differences between the northern and southern parts of each transect line imply an east-west boundary that is interpreted to be the Nubara Fault. The opening of the Woodlark Basin resulted in the rotation of the Papuan Peninsula and the Woodlark Rise, strike slip motion between the Solomon Sea and the Woodlark Basin at the Nubara Fault, and the formation of the PAC-SOL-WLK; SOL-WLK-TRB triple junctions. The intersection of the Woodlark Spreading Center with the Nubara Fault added the AUS-WLK-TRB triple junction and established the Nubara Fault as the northern boundary of the Woodlark plate.

  6. Structural Evolution of the Central Venezuelan Andes: Changes From Compression to Strike-slip and Extension

    NASA Astrophysics Data System (ADS)

    Hervouet, Y.; Dhont, D.; Backe, G.

    2006-12-01

    The Venezuelan Andes form a N50°E-trending belt extending from the colombian border in the SW to the Caribbean sea in the NE. The belt is 100 km wide and its highest summits reach 5000 m in its central part. Uplift of the belt is a consequence of the relative convergence between the triangular-shaped Maracaibo crustal block on the west and the Guyana shield belonging to South America. The Maracaibo block is cut by a series of strike-slip faults separating several crustal units. Among these, the easternmost Trujillo triangular block is limited on the west by the N-S left-lateral Valera fault and on the south-east by the NE-trending right-lateral Bocono fault. Our methodology, based on the analysis of radar satellite and digital elevation model imagery and implemented by structural field work and the compilation of seismotectonic data, presents a new understanding of the tectonic evolution of the Venezuelan Andes during the Neogene-Quaternary. We have characterized three stages of deformation. The first, Mio-Pliocene in age, corresponds to the NW-SE Andean compression responsible for the uplift of the Venezuelan Andes. The second tectonic stage is consitent with a strike-slip regime of deformation marked by shearing along the Bocono and Valera faults and hence individualizing the Trujillo block, which has been cut into two smaller triangular wedges. This strike-slip faulting- dominated compressional-extensional tectonic regime started at some point between the Pliocene and the Quaternary and allowed the Trujillo crustal block to move towards the NE. The third stage of deformation corresponds to extension in the Trujillo block and is still active today. The present-day distribution of the deformation in the Venezuelan Andes is consistent with strain partitioning. While compression is restricted on both flanks of the belt, strike-slip and extension occurs in the central part of the mountain range. Extension is associated with the motion of crustal blocks moving

  7. The Northern Caribbean Plate Boundary Offshore Hispaniola: Strike-slip and Compressive Tectonic Processes

    NASA Astrophysics Data System (ADS)

    Corbeau, J.; Rolandone, F.; Leroy, S. D.; Mercier De Lepinay, B. F.; Meyer, B.; Ellouz, N.

    2014-12-01

    The boundary between the Caribbean plate and the North American plate is transpressive due to the oblique collision between these two plates. The transpressive movement is partitioned and accommodated in the Hispaniola region along two left-lateral strike-slip structures surrounding a fold-and-thrust belt. New multibeam bathymetry data and multichannel seismic reflection profiles have been recently collected during the Haiti-SIS and Haiti-SIS 2 cruises, along part of the northern Caribbean plate boundary between Cuba, Jamaica and Hispaniola. From the north to the south, three types of deformations are observed. In the Windward Passage, the analysis of the data set reveals that the movement on the Oriente fault between Cuba and Hispaniola is purely left-lateral strike-slip according to the GPS measurements. In the Gonave basin, west of Hispaniola, the deformation is compressive. A series of folds is identified and moves toward the southwest. The Enriquillo-Plantain-Garden Fault (EPGF) is localized in the Jamaica Passage, between Jamaica and Hispaniola. The analysis of the data set reveals that the left-lateral EPGF recently intersects inherited basins from the eastern Cayman Trough margin. The study of the actual EPGF active trace shows that this fault moves with a pure strike-slip component, at least in its western part: the presence of a little push-up structure and a set of three en echelon folds is highlighting in the western part of the Jamaica Passage. The shortening rate in the inherited basins crossed by the EPGF increases from west to east (5.8% to 8.5%), indicating that a thrusting component is also accommodated around the EPGF.

  8. Strike-slip tectonic processes in the northern Caribbean between Cuba and Hispaniola (Windward Passage)

    NASA Astrophysics Data System (ADS)

    Calais, Eric; de Lépinay, Bernard Mercier

    1995-02-01

    Marine geophysical data including Seabeam, seismic reflection, magnetics, gravimetry and side-scan sonar have been recently collected along the northern Caribbean strike-slip plate boundary between Cuba and Hispaniola, in the Windward Passage area. The analysis of this comprehensive data set allows us to illustrate active strike-slip tectonic processes in relation to the kinematics of the Caribbean Plate. We show that the transcurrent plate boundary trace runs straight across the Windward Passage, from the southern Cuban Margin in the west (Oriente Fault) to the Tortue Channel in the east. The Windward Passage Deep is thus not an active pull-apart basin, as previously suggested. The plate boundary geometry implies that the motion of the Caribbean Plate relative to the North American Plate is partitioned between a strike-slip component, accommodated by the Windward Passage active fault zone, and a convergence component, accommodated by compression at the bottom of the Northern Hispaniola Margin. On the basis of a correlation with onland geological data, an age is given to the stratigraphic sequences identified on seismic profiles. A kinematic reconstruction is proposed that follows the tectonic unconformities recognized at sea and on land (Late Eocene, Early Miocene, Middle Miocene and Late Pliocene). Each one of these tectonic events corresponds to a drastic reorganization of the plate boundary geometry. We propose to correlate these events with successive collisions of the northern Caribbean mobile terranes against the Bahamas Bank. During each event, the plate boundary trace is shifted to the south and a part of the Caribbean Plate is accreted to North America.

  9. Fast rupture propagation for large strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Mori, Jim; Koketsu, Kazuki

    2016-04-01

    Studying rupture speeds of shallow earthquakes is of broad interest because it has a large effect on the strong near-field shaking that causes damage during earthquakes, and it is an important parameter that reflects stress levels and energy on a slipping fault. However, resolving rupture speed is difficult in standard waveform inversion methods due to limited near-field observations and the tradeoff between rupture speed and fault size for teleseismic observations. Here we applied back-projection methods to estimate the rupture speeds of 15 Mw ≥ 7.8 dip-slip and 8 Mw ≥ 7.5 strike-slip earthquakes for which direct P waves are well recorded in Japan on Hi-net, or in North America on USArray. We found that all strike-slip events had very fast average rupture speeds of 3.0-5.0 km/s, which are near or greater than the local shear wave velocity (supershear). These values are faster than for thrust and normal faulting earthquakes that generally rupture with speeds of 1.0-3.0 km/s.

  10. Magma storage in a strike-slip caldera

    NASA Astrophysics Data System (ADS)

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-07-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  11. Magma storage in a strike-slip caldera

    PubMed Central

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-01-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions. PMID:27447932

  12. Magma storage in a strike-slip caldera.

    PubMed

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  13. Source characteristics of large strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Song, Seok-Goo

    We investigate complex earthquake source processes using both spontaneous dynamic rupture modeling and kinematic finite-source inversion. Dynamic rupture modeling is an efficient tool with which we can examine how stress conditions and frictional behavior on a fault plane play a role in determining kinematic motions on the fault and the resulting ground motions at the Earth's surface. It enables us to develop a physical understanding of the earthquake rupture process in terms of Newtonian mechanics. We construct a set of spontaneous dynamic rupture models for several recent earthquakes in Japan and California in order to have a physical understanding of the earthquake source processes for several specific events. Our dynamic models are used to investigate the scaling properties of dynamic source parameters, i.e., fracture energy and stress drop. Many interesting features of the earthquake source process can also be inferred from the kinematic source inversion of observed seismic or geodetic data. We carry out a comprehensive source study of the 1906 San Francisco earthquake by re-analyzing both geodetic and seismic data in order to reconcile two existing, and mutually inconsistent, source models and obtain a unified one. Our study has important implications for seismic hazard in California, and perhaps more generally for large strike-slip earthquakes. Lastly it is important to utilize our knowledge of the earthquake source to improve our understanding of near-field ground motion characteristics because source complexities are quite uncertain and can be the dominant factor in determining the characteristics of near-field ground motion. We develop a pseudo-dynamic source modeling method with which we can generate physically self-consistent finite source models of large strike-slip earthquakes without high-cost, fully dynamic rupture simulation. The new pseudo-dynamic modeling method enables us to effectively characterize the earthquake source complexities for

  14. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  15. Shell tectonics: A mechanical model for strike-slip displacement on Europa

    NASA Astrophysics Data System (ADS)

    Rhoden, A.; Wurman, G.; Manga, M.; Hurford, T. A.

    2010-12-01

    We introduce a new model for producing strike-slip displacement on Europa, which we call shell tectonics. We invoke general principles of stress and failure along faults and include the influence of Europa’s elastic shell when determining the response of faults to periodic tidal stress. We apply a Coulomb failure criterion to determine when and if failure will occur and adopt a linear elastic model for slip and stress release to determine the direction of net offsets along pre-existing faults. Our model reproduces the global-scale strike-slip fault pattern observed on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults do so in the far south, and near-equatorial regions display a mixture of both types of faults. One of the most compelling attributes of the tidal walking model for strike-slip formation on Europa (Hoppa et al., 1999) is its ability to generate this global pattern. The shell tectonics model includes a more physical treatment of fault mechanics than tidal walking and makes a prediction of slip direction along faults by computing the net slip over several orbits. Also, several assumptions made in the tidal walking model are incorporated explicitly in the shell tectonics model. A strike-slip formation model with application to Enceladus has also been proposed (Smith-Konter & Pappalardo, 2008) that includes a mechanical treatment of faults but does not incorporate the effects of the elastic shell. Since this model should be equally applicable to Europa, we present predictions made using this plate-tectonics model along with our shell tectonics predictions. We find that a model neglecting the elastic shell effects does not agree as well with the observations. In addition to global predictions of slip direction, shell tectonics provides an estimate of the relative growth rates of faults and implications for seismicity and heating along faults.

  16. A prototype earthquake warning system for strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Nafi Toksöz, M.; Dainty, Anton M.; Bullitt, John T.

    1990-05-01

    A prototype expert system has been developed to provide rapid warning of earthquakes while they are occurring. Warning times of up to 100 seconds will be possible. In the complete system, several accelerometers are distributed at intervals within a few kilometers of a known fault; data are telemetered to a central computer which implements the expert system. The expert system incorporates specific information about the type of fault to be monitored, and includes simple rules for estimating the fault slip, rupture length, and seismic moment, all in real time. If the seismic moment exceeds a preset value, an alarm may be issued. The prototype is designed for deployment on near-surface strike-slip faults such as the San Andreas and has been successfully tested with data from the 1979 Imperial Valley and 1984 Morgan Hill earthquakes. Crucial concepts have also been tested using synthetic data calculated for a model of the 1857 Fort Tejon earthquake. Parkfield, California, could be used as a test site.

  17. Architectural Characteristics and Distribution of Hydromechanical Properties within a Small Strike-Slip Fault Zone in a Carbonates Reservoir: Impact on fault stability, induced seismicity, and leakage during CO2 injection

    NASA Astrophysics Data System (ADS)

    Jeanne, P.; Cappa, F.; Guglielmi, Y.; Rinaldi, A. P.

    2014-12-01

    Within the LSBB National Underground Research Laboratory (France), we performed an in situ multidisciplinary and multi-scale analysis of a small fault zone intersecting a layered carbonates reservoir. The study area is located in a gallery at 250 m depth in the unsaturated and unaltered zone of the reservoir. In order to study the distribution of the fault zone properties, we took advantage of the gallery wall and of three vertical 20 m long boreholes located near the fault core, in the damage zone, and in the host rock. Geological, petrophysical (porosity observations and measurements), geotechnical (Q-value) and geophysical measurements (acoustic velocities, uniaxial compressive strength, electrical resistivity, borehole logging), and injection tests were conducted at various scales. We show that horizontal and vertical variations in hydromechanical properties within the damage zone are related to the initial petrophysical properties of the host rock. In the initial low-porosity and fractured layers, the deformations are accommodated by fractures and micro-cracks extending significantly from the fault core. In these layers, the Young modulus of the rock mass (Em) is low and the permeability of the rock mass (Km) is high. In the initial porous and low fractured layers, deformations are accommodated by micro-mechanical processes resulting in a decrease in micro-porosity near the fault core. There is a rapid attenuation of the damage zone. In these layers, Em is high and Km is low. The seismic signature of this kind of fault is complex and the seismic visibility low making them hard to detect. Finally, to assess fault zone stability in case of CO2 injection and the risk of CO2 leakage through the fault itself, we performed some geomechanical numerical simulations and some field hydromechanical tests. We show that the presence of hydromechanical heterogeneity favors the fluid accumulation but strengthen the fault zone and impede fluid migration upward along the fault.

  18. Subsidence and strike-slip tectonism of the upper continental slope off Manzanillo, Mexico

    NASA Astrophysics Data System (ADS)

    Bandy, William L.; Michaud, François; Bourgois, Jacques; Calmus, Thierry; Dyment, Jérôme; Mortera-Gutiérrez, Carlos A.; Ortega-Ramírez, Jose; Pontoise, Bernard; Royer, Jean-Yves; Sichler, Bertrand; Sosson, Marc; Rebolledo-Vieyra, Mario; Bigot-Cormier, Florence; Díaz-Molina, Oscar; Hurtado-Artunduaga, Angel D.; Pardo-Castro, Guillermo; Trouillard-Perrot, Corrine

    2005-04-01

    The direction of convergence between the Rivera and North American plates becomes progressively more oblique (in a counter-clockwise sense as measured relative to the trench-normal direction) northwestward along the Jalisco subduction zone. By analogy to other subduction zones, the forces resulting from this distribution of convergence directions are expected to produce a NW moving, fore-arc sliver and a NW-SE stretching of the fore-arc area. Also, a series of roughly arc parallel strike-slip faults may form in the fore-arc area, both onshore and offshore, as is observed in the Aleutian arc. In the Jalisco subduction zone, the Jalisco block has been proposed to represent such a fore-arc sliver. However, this proposal has encountered one major problem. Namely, right-lateral strike-slip faulting within the fore-arc sliver, and between the fore-arc sliver and the North American plate, should be observed. However, evidence for the expected right-lateral strike-slip faulting is sparse. Some evidence for right-lateral strike-slip faulting along the Jalisco block-North American plate boundary (the Tepic-Zacoalco rift system) has been reported, although some disagreement exists. Right-lateral strike-slip faulting has also been reported within the interior of the Jalisco block and in the southern Colima rift, which forms the SE boundary of the Jalisco block. Threefold, multi-channel seismic reflection data were collected in the offshore area of the Jalisco subduction zone off Manzanillo in April 2002 during the FAMEX campaign of the N/O L'Atalante. These data provide additional evidence for recent strike-slip motion within the fore-arc region of the Jalisco subduction zone. This faulting offsets right-laterally a prominent horst block within the southern Colima rift, from which we conclude that the sense of motion along the faulting is dextral. These data also provide additional evidence for recent subsidence within the area offshore of Manzanillo, as has been proposed.

  19. Subsidence and Strike-slip Tectonism of the Upper Continental Slope off Manzanillo, Mexico

    NASA Astrophysics Data System (ADS)

    Bandy, W. L.; Michaud, F.; Bourgois, J.; Calmus, T.; Dyment, J.; Mortera-Gutierrez, C. A.; Ortega-Ramirez, J.; Pontoise, B.; Royer, J.; Sichler, B.; Sosson, M.

    2004-12-01

    The direction of convergence between the Rivera and North American plates becomes progressively more oblique (in a counter-clockwise sense as measured relative to the trench-normal direction) northwestward along the Jalisco subduction zone. By analogy to other subduction zones, the forces resulting from this distribution of convergence directions are expected to produce a NW moving, fore-arc sliver and a NW-SE stretching of the fore-arc area. Also, a series of roughly arc parallel strike slip faults may form in the fore-arc area, both onshore and offshore, as is observed in the Aleutian arc. In the Jalisco subduction zone, the Jalisco block has been proposed to represent such a fore-arc sliver. However, this proposal has encountered one major problem. Namely, right-lateral strike slip faulting within the fore-arc sliver, and between the fore-arc sliver and the North American plate, should be observed. However, evidence for the expected right-lateral strike slip faulting is sparse. Some evidence for right-lateral strike-slip faulting along the Jalisco block-North American plate boundary (the Tepic-Zacoalco rift system) has been reported, although some disagreement exists. Right-lateral strike-slip faulting has also been reported within the interior of the Jalisco block and in the southern Colima rift, which forms the SE boundary of the Jalisco block. Three-fold, multi-channel seismic reflection data were collected in the offshore area of the Jalisco subduction zone off Manzanillo in April 2002 during the FAMEX campaign of the N/O L'Atalante. These data provide additional evidence for recent strike-slip motion within the fore-arc region of the Jalisco subduction zone. This faulting offsets right-laterally a prominent horst block within the southern Colima rift, from which we conclude that the sense of motion along the faulting is dextral. These data also provide additional evidence for recent subsidence within the area offshore of Manzanillo, as has been proposed.

  20. An Exhumed Strike-Slip Duplex Formed at the Seismogenic Base of the Crust

    NASA Astrophysics Data System (ADS)

    Hartman, S. M.; Paterson, S. R.; Holk, G. J.

    2015-12-01

    In strike-slip systems, the orientation of bedding influences local fault zone architecture. New 1:5,000 and smaller scale mapping of a paleoseismic shear zone in the central eastern Sierra Nevada, California, provides insight into the behavior of strike-slip faults deforming like-oriented bedding at a dextral shearing, pseudotachylyte-bearing brittle-ductile transition (BDT) in the Sawmill Canyon/Saddlebag Lake segment of the Sierra Crest shear zone. In and near this map area, a strike-slip duplex system, a Riedel shear system, and shear zone-parallel major fault strands all comprise a heavily quartz and silicate vein-sealed, brittle, and partially ductilely overprinted fault system. The strike-slip duplex system is defined by spectacular restraining and releasing bend duplex geometries. New and published stable isotopic compositions of these veins (𝛿18O = +14.5 to -3.2‰) and their fluid inclusions (𝛿D = -79 to -137‰) monitor mixing between three fluid sources. The main mixing trend includes an earlier local (likely hot magmatic) to a later distal (likely cool meteoric) fluid source over time. We interpret the following. (1) Strike-slip faulting subparallel to stratigraphy at the BDT can result in strike-slip duplexes and semi-ductile Riedel shears. As planar mechanical anisotropies are folded, continued offset of the fold requires either rotation of the material about an axis, or extension of the inverted limb. In homogeneous units, rotation becomes exceedingly difficult with thickness. Thus the folded material may be subjected to enhanced tension relative to outside limbs, which in turn nucleates shear zone-subparallel lateral ramps along which folds are transported. (2) This mechanism may promote the fault-assisted descent of fluids from the surface to the seismogenic base of contractional arc crust, where earlier deformation has transposed stratigraphy toward the shear plane in a simple or transpressive wrench shear zone. (3) Duplex

  1. Geomorphic signal of active faulting at the northern edge of Lut Block: Insights on the kinematic scenario of Central Iran

    NASA Astrophysics Data System (ADS)

    Calzolari, Gabriele; Della Seta, Marta; Rossetti, Federico; Nozaem, Reza; Vignaroli, Gianluca; Cosentino, Domenico; Faccenna, Claudio

    2016-01-01

    Recent works documented Neogene to Quaternary dextral strike-slip tectonics along the Kuh-e-Sarhangi and Kuh-e-Faghan intraplate strike-slip faults at the northern edge of the Lut Block of Central Iran, previously thought to be dominated by sinistral strike-slip deformation. This work focuses on the evidence of Quaternary activity of one of these fault systems, in order to provide new spatiotemporal constraints on their role in the active regional kinematic scenario. Through geomorphological and structural investigation, integrated with optically stimulated luminescence dating of three generations of alluvial fans and fluvial terraces (at ~53, ~25, and ~6 ka), this study documents (i) the topographic inheritance of the long-term (Myr) punctuated history of fault nucleation, propagation, and exhumation along the northern edge of Lut Block; (ii) the tectonic control on drainage network evolution, pediment formation, fluvial terraces, and alluvial fan architecture; (iii) the minimum Holocene age of Quaternary dextral strike-slip faulting; and (iv) the evidence of Late Quaternary fault-related uplift localized along the different fault strands. The documented spatial and temporal constraints on the active dextral strike-slip tectonics at the northern edge of Lut Block provide new insights on the kinematic model for active faulting in Central Iran, which has been reinterpreted in an escape tectonic scenario.

  2. Impact of Cenozoic strike-slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon)

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi H.; Comstock, John E.

    2014-11-01

    Sedimentary basins adjacent to plate boundaries contain key tectonic and stratigraphic elements to understand how stress is transmitted through plates. The Levant Basin is a place of choice to study such elements because it flanks the Levant Fracture System and the Africa/Anatolia boundary. This paper uses new high-quality 3-D seismic reflection data to unravel the tectonic evolution of the margin of this basin during the Cenozoic, the period corresponding to the formation of the Levant Fracture System, part of the Africa/Arabia plate boundary. Four major groups of structures are identified in the interpreted Cenozoic units: NW-SE striking normal faults, NNE-SSW striking thrust-faults, ENE-WSW striking dextral strike-slip faults, and NNE trending anticlines. We demonstrate that all structures, apart of the NW-SE striking normal faults, are inherited from Mesozoic faults. Their reactivation and associated folding started during the late Miocene prior to the Messinian salinity crisis due to a NW-SE compressional stress field. No clear evidence of shortening at present-day offshore Lebanon and no large NNE-SSW strike-slip faults parallel to the restraining bend are found indicating that the Levant Fracture System is mainly contained onshore at present day. The intermittent activity of the interpreted structures correlates with the two stages of Levant Fracture System movement during late Miocene and Pliocene. This paper provides a good example of the impact of the evolution of plate boundaries on adjacent basins and indicates that any changes in the stress field, as controlled by the plate boundary, will affect immediately the preexisting structures in adjacent basins.

  3. Active faulting in the Walker Lane

    NASA Astrophysics Data System (ADS)

    Wesnousky, Steven G.

    2005-06-01

    Deformation across the San Andreas and Walker Lane fault systems accounts for most relative Pacific-North American transform plate motion. The Walker Lane is composed of discontinuous sets of right-slip faults that are located to the east and strike approximately parallel to the San Andreas fault system. Mapping of active faults in the central Walker Lane shows that right-lateral shear is locally accommodated by rotation of crustal blocks bounded by steep-dipping east striking left-slip faults. The left slip and clockwise rotation of crustal blocks bounded by the east striking faults has produced major basins in the area, including Rattlesnake and Garfield flats; Teels, Columbus and Rhodes salt marshes; and Queen Valley. The Benton Springs and Petrified Springs faults are the major northwest striking structures currently accommodating transform motion in the central Walker Lane. Right-lateral offsets of late Pleistocene surfaces along the two faults point to slip rates of at least 1 mm/yr. The northern limit of northwest trending strike-slip faults in the central Walker Lane is abrupt and reflects transfer of strike-slip to dip-slip deformation in the western Basin and Range and transformation of right slip into rotation of crustal blocks to the north. The transfer of strike slip in the central Walker Lane to dip slip in the western Basin and Range correlates to a northward broadening of the modern strain field suggested by geodesy and appears to be a long-lived feature of the deformation field. The complexity of faulting and apparent rotation of crustal blocks within the Walker Lane is consistent with the concept of a partially detached and elastic-brittle crust that is being transported on a continuously deforming layer below. The regional pattern of faulting within the Walker Lane is more complex than observed along the San Andreas fault system to the west. The difference is attributed to the relatively less cumulative slip that has occurred across the Walker

  4. The rupture process of the Manjil, Iran earthquake of 20 june 1990 and implications for intraplate strike-slip earthquakes

    USGS Publications Warehouse

    Choy, G.L.; Zednik, J.

    1997-01-01

    In terms of seismically radiated energy or moment release, the earthquake of 20 January 1990 in the Manjil Basin-Alborz Mountain region of Iran is the second largest strike-slip earthquake to have occurred in an intracontinental setting in the past decade. It caused enormous loss of life and the virtual destruction of several cities. Despite a very large meizoseismal area, the identification of the causative faults has been hampered by the lack of reliable earthquake locations and conflicting field reports of surface displacement. Using broadband data from global networks of digitally recording seismographs, we analyse broadband seismic waveforms to derive characteristics of the rupture process. Complexities in waveforms generated by the earthquake indicate that the main shock consisted of a tiny precursory subevent followed in the next 20 seconds by a series of four major subevents with depths ranging from 10 to 15 km. The focal mechanisms of the major subevents, which are predominantly strike-slip, have a common nodal plane striking about 285??-295??. Based on the coincidence of this strike with the dominant tectonic fabric of the region we presume that the EW striking planes are the fault planes. The first major subevent nucleated slightly south of the initial precursor. The second subevent occurred northwest of the initial precursor. The last two subevents moved progressively southeastward of the first subevent in a direction collinear with the predominant strike of the fault planes. The offsets in the relative locations and the temporal delays of the rupture subevents indicate heterogeneous distribution of fracture strength and the involvement of multiple faults. The spatial distribution of teleseismic aftershocks, which at first appears uncorrelated with meizoseismal contours, can be decomposed into stages. The initial activity, being within and on the periphery of the rupture zone, correlates in shape and length with meizoseismal lines. In the second stage

  5. The Mindanao collision zone: a soft collision event within a continuous Neogene strike-slip setting

    NASA Astrophysics Data System (ADS)

    Pubellier, M.; Quebral, R.; Rangin, C.; Deffontaines, B.; Muller, C.; Butterlin, J.; Manzano, J.

    Two volcanic belts are presently juxtaposed on Mindanao Island in the southern Philippines. Southward, the collision is still active in the Molucca Sea which is commonly regarded as a region of doubly verging subduction, plunging eastward below the Halmahera arc and westward below the Sangihe arc. In the Molluca Sea, tectonic features related to the incipient collision appear only in the very thick sediments of the basin, and the morphology of the parallel Halmahera, Talaud and Sangihe ridges is closely controlled by recent N-S strike-slip faults. Among these faults, the Philippine Fault is a neotectonic feature crosscutting the Agusan-Davao Basin which seals tectonic events not younger than Eocene. In addition, the Central Cordillera shows strong similarities with the Pacific Cordillera for both stratigraphy and tectonic evolution, and several indications favour a Eurasian margin affinity for the Daguma Range (Southern and Eastern Kudarat Plateau that may be part of the Sangihe arc, as inferred for the Zamboanga Peninsula and the Northern Arm of Sulawesi. Thus the island of Mindanao can be divided into two composite terranes, the western one (northward extension of the Sangihe arc) being restricted to the Kudarat Plateau and the Zamboanga Peninsula. The apparent continuation of the Sangihe arc into the Central Cordillera of Mindanao is thus the result of post collision tectonics. The portion of the suture where the collision is completed curves westward north of the southern peninsula and extends beneath the sediments of the Cotabato Basin or the volcanic plateaus of the Lanao-Misamis-Bukidnon Highlands. In the northern part, the contact is linear and suggests, together with the absence of compressional deformation, a docking of the eastern oceanic terrane (Philippine Mobile Belt-Halmahera arc) against the western continental terrane (Zamboanga-Daguma) in a strike-slip environment. Prior to Early Pliocene, the eastern and the western terranes were subject to

  6. Strike-slip geometry inferred from the seismicity of the Northern-Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Elter, Franco Marco; Piero, Elter; Claudio, Eva; Elena, Eva; Katharina, Kraus Rita; Matteo, Padovano; Stefano, Solarino

    2011-12-01

    The aim of this paper is to draw attention to the real number and distribution of strike-slip earthquake focal mechanisms that are displayed in the recent seismicity of the Northern-Central Apennines. Their relation to the superficial normal fault plane solutions and thrust front along the Eastern side of the Apenninic chain can be described by a geometrical model (Riedel-System, also Riedel shear model). First we define three sectors characterized by their different seismological signatures: the North-Western Sector (NWS), the Western Central Sector (WCS) and the Eastern Central Sector (ECS). These three blocks, according to the available data, act independently from each other as a consequence of interaction among themselves, the forces induced by plate tectonics in the Mediterranean area and the blocking effect of the Alpine Chain, leading to an increased amount of transpressional, pure strike-slip and transtensional tectonics below 10 km depth.

  7. Modeling Strike-Slip-Driven Stream Capture in Detachment- and Transport-Limited Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.

    2014-12-01

    Rivers, especially those in mountainous settings, are known to respond to tectonic and climatic drivers through both gradual and abrupt changes in slope, hydraulic geometry, and planform. Modification of drainage network topology by stream capture, in which drainage area, and therefore water and sediment, is diverted suddenly from one catchment into another, represents the rapid end of the fluvial response spectrum. Such sudden drainage rearrangement affects the river's potential for incision and sediment transport, and thus has implications for the development of topography and for depositional histories in sedimentary basins. Despite recognition of the importance of this process in landscape evolution, the factors controlling the occurrence of stream capture are not well understood. Here we investigate the process of stream capture using strike-slip faults as a natural experiment. Lateral fault motion drives stream capture when offset is enough to juxtapose adjacent fault-perpendicular streams. In the simplest scenario, the capture events should occur regularly in space and time whenever two streams are juxtaposed, the frequency of capture depending only on drainage spacing and fault slip rate. However, in real-world settings such as the San Andreas Fault Zone of California and the Marlborough Fault System of New Zealand, such regularity is not always observed. We use the Channel-Hillslope Integrated Landscape Development Model (CHILD) to investigate the mechanisms and frequency of stream capture in a strike-slip setting. Models are designed to address the connection between the size (i.e. drainage area) of juxtaposed rivers and the likelihood that capture will occur between them. We also explore the role of sediment load in the capture process by modeling both detachment-limited and transport-limited systems. Comparison of these model results to case-study field sites will help us to interpret the landscape signature of strike-slip faulting, and to understand

  8. Interaction Between Early San Andreas Strike-Slip Faulting and Extensional Tectonism in the Chocolate Mountains: A Prologue to Growth of the Salton Trough Along the Plate Boundary in Southern California

    NASA Astrophysics Data System (ADS)

    Powell, R. E.; Fleck, R. J.

    2008-12-01

    The Chocolate Mountains (CM) along the NE margin of the southern Salton Trough (ST) lie NE of the post-5- Ma San Andreas fault (SAF) and SW of the early and middle Miocene Clemens Well-Fenner-San Francisquito strand (CW-F-SF) of the SAF system. The CM are a highly extended terrain that evolved during the late Oligocene-middle Miocene and is bounded by the CW fault. Constrained by reconstruction of a compelling array of paleogeologic patterns, the approximately 300 km displacement on the SAF NW of the Garlock fault is distributed to the SE on the SAF (ca 160 km, 0 to 5 Ma), San Gabriel fault (ca 40 km, 0-5 to 12 Ma), and CW-F-SF fault (ca 100 km, 13 to 17-22 Ma). The youngest rocks yet shown to be offset 300 km in southern CA are basalts in the Diligencia and Plush Ranch formations, as young as 22 Ma. Lack of evidence for a large-displacement dextral fault in AZ on-trend with the CW fault requires the existence of a tectonic mechanism for absorbing its dextral displacement to the SE. Structure in the CM manifests late Oligocene-middle Miocene extensional tectonism that culminated in exhumation of Orocopia Schist by tectonic denudation. In its early stages, tectonism was accompanied by sedimentation and by voluminous magma-generation producing a batholithic-to-volcanic edifice. The principal structural feature is a complexly faulted, NW-trending array of en echelon antiforms that runs the length of the range and continues SE into AZ and NW into the Orocopia Mts. In the anticlinorium core, Orocopia Schist is intruded by a late Oligocene composite batholith of mafic to felsic plutons. A succession of tectonic plates separated by detachment faults overlies the schist and plutons. The structurally lowest fault is ductile and juxtaposes mylonite against the schist. Three higher faults, all brittle, vertically stack plates of (1) Mesozoic orthogneiss, (2) little deformed Triassic and Jurassic plutonic rocks, Proterozoic gneiss and anorthosite, and dacitic to rhyolitic late

  9. Viscoelastic Postseismic Rebound to Strike-Slip Earthquakes in Regions of Oblique Plate Convergence

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.

    1999-01-01

    According to the slip partitioning concept, the trench parallel component of relative plate motion in regions of oblique convergence is accommodated by strike-slip faulting in the overriding continental lithosphere. The pattern of postseismic surface deformation due to viscoelastic flow in the lower crust and asthenosphere following a major earthquake on such a fault is modified from that predicted from the conventual elastic layer over viscoelastic halfspace model by the presence of the subducting slab. The predicted effects, such as a partial suppression of the postseismic velocities by 1 cm/yr or more immediately following a moderate to great earthquake, are potentially detectable using contemporary geodetic techniques.

  10. Direct Seafloor Imaging of the 2012 Wharton Basin Great Strike-slip Earthquakes rupture zones

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Hananto, N.; Leclerc, F.; Wei, S.; Carton, H. D.; Tapponnier, P.; Sieh, K.; Qin, Y.

    2015-12-01

    The 2012 Wharton Basin earthquakes (Mw=8.6 and Mw=8.2) were the largest intra-plate strike-slip earthquakes ever recorded. Based on seismological and geodetic studies, different, and partly contradictory, models have been proposed for the fault geometry requiring a complex faulting mechanism with several faults, oblique to one-another. These earthquakes occurred in the Wharton Basin, which is considered to be a broad diffuse zone of intra-plate deformation with deformation taking place along re-activated N5ºE striking fracture zones, which was inconsistent with most of the seismology or geodesy based rupture models. In May-June 2015, we acquired 13 high-resolution seismic reflection profiles and more than 8500 km2 of bathymetric data to the south and southwest of the main N-S segment of the Mw=8.6 earthquake rupture and across the Mw=8.2 earthquake rupture zone. We find that the epicenter of the Mw=8.2 earthquake lies on a re-activated fracture zone, expressed as a ~50-km wide region with four N5ºE striking left-lateral sub-faults. The easternmost sub-fault is most active and might be the master fault, where the maximum deformation might be taking place. The deformation along the other sub-faults becomes more diffuse moving westward. We also imaged a set of N110ºE trending 2-km wide right-lateral shear zones, which might act as transfer zones between the re-activated N5ºE striking fracture zones, and have orientations in agreement with aftershock focal mechanisms. We suggest that the 2012 great Wharton Basin earthquakes ruptured N5ºE re-activated fractures. Furthermore, the rupture of the Mw=8.6 event proceeded in en échelon fashion with this suite of N110ºE striking shear zones connecting the re-activated fracture zone imaged in this study with another N5ºE trending re-activated fracture zone on the Ninety East Ridge. Our model explains the discrepancy between direct observations on the seafloor and distant seismological and geodetic results.

  11. Shear heating in continental strike-slip shear zones:model and field examples

    NASA Astrophysics Data System (ADS)

    Leloup, Philippe Hervé; Ricard, Yannick; Battaglia, Jean; Lacassin, Robin

    1999-01-01

    A two-layer (crust and upper mantle), finite difference steady-state thermomechanical model of a long-lived (several million years) lithospheric strike-slip fault is presented, and its predictions compared with field observations from various major fault zones. In order to estimate the maximum amount of shear heating, all mechanical energy is assumed to be dissipated in heat, in ductile as well as in brittle layers. Deformation follows a friction law in the brittle layer(s), and a power-flow law in the ductile one(s). Variations of several independent parameters and their influence on the thermo-mechanical state of the fault zone and on shear heating are systematically explored. Shear heating is found to be more important in fault zones affecting an initially cold lithosphere, and increases with slip rate, friction coefficient and stiffness of materials. In extreme cases (slip rate of 10 cm yr^-1, stiff lithosphere), shear heating could lead to temperature increases close to 590 degC at the Moho, and 475 degC at 20 km depth. For more common cases, shear heating leads to smaller temperature increases, but can still explain high-grade metamorphic conditions encountered in strike-slip shear zones. However, modelled temperature conditions often fall short of those observed. This could be due to heat transport by mechanisms more efficient than conduction. Common syntectonic emplacement of granitic melts in ductile strike-slip shear zones can be explained by lower crust partial melting induced by shear heating in the upper mantle. Besides slip rate, the possibility of such melting depends mostly on the upper mantle rheology and on the fertility of the lower crust: for hard upper mantle and highly fertile lower crust, partial melting could occur at rates of 1 cm yr^-1, while in most cases it would result from the breakdown of micas for slip rates over 3 cm yr^-1. As a result of shear heating, partial melting of the upper mantle could occur in the presence of small amounts

  12. Strike-slip and extrusion tectonics of the Greater Caucasus-Kopetdagh region

    NASA Astrophysics Data System (ADS)

    Kopp, M. L.

    2012-04-01

    In the Paleogene-Early Miocene, the areas of the modern Greater Caucasus and Kopetdagh were occupied by marginal seas (parts of the Paratethys intracontinental sea) inheriting the Cretaceous back-arc basins. In the Early Miocene, a collisional compression of the seas began at the time when the Arabian plate detached from Africa to move northward. The compression proceeded in a good accordance with the Arabia movement that was manifested in a general synchroneity of the Late Alpine orogenies in the Caucasus and Kopetdagh with the rifting and spreading phases in the Aden Gulf and the Red Sea. The earliest orogeny was the Styrian one of the terminal Early Miocene. It corresponds to the initial stage of the rift opening and was mostly pronounced in the east, in Kopetdagh and East Iran, where a recent structure has been formed by the initial Middle Miocene. In the Greater Caucasus, the Styrian deformations occurred in its central part only (i.e., in front of the Arabian plate northern tip) where the main Caucasian thrusts and conjugate asymmetrical megaanticline of the Central Caucasus were formed. An essential feature of the earliest, Styrian, structure of the whole Caucasus-Kopetdagh region was a series of regional right-lateral strike-slip faults. In the Kopetdagh, the strike-slips have no submeridional but northwestern direction although they occurred in the northern continuation of the submeridional right-lateral strike-slip faults framing the Lut block. In the Caucasus, they became even sublatitudinal, in parallel with the North Anatolian fault, thus constituting a single domain with the latter. So, the right-lateral strike-slip faults of East Iran, Kopetdagh, and the Caucasus compose an extensive arc convex to the north and appeared probably as a result of the right-lateral shear caused by the known counterclockwise rotation of the Arabian lithospheric plate. The Middle Miocene was characterized by a tectonic pause both in the Red Sea-Aden rift system and in the

  13. Models of the Evolution of Finite Strain at Strike-Slip Plate Boundaries and Potential Implications for Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kurz, I.; Roy, M.

    2014-12-01

    While we are aware of the extent and distribution of strain at the surface near the Pacific-North America plate boundary at the San Andreas Fault (SAF) system in California, at depth, our understanding is poor. Recent seismic observations suggest a narrow shear zone throughout the lithosphere corresponding to the narrow plate boundary at the surface. Surrounding the SAF in California, measurements of seismic anisotropy demonstrate orientations which vary depending on the location relative to the fault. Specifically, in northern California, the orientations align along the fault in its proximity, and in the east-west direction elsewhere. We investigate how the finite-strain ellipsoid (FSE) evolves for tracers in a 3D model of the lithosphere and asthenosphere beneath the SAF. The top surface of the mesh has a right-lateral strike-slip velocity boundary condition, and the bottom, a uniform asthenospheric flow velocity condition perpendicular to the strike-slip fault. We calculate the orientations of the FSE for various ratios of strike-slip to asthenospheric velocity and viscosity stratification. The two classes of models which we investigate simulate an asthenospheric channel beneath a uniform-thickness lithosphere and a variable-depth lithosphere-asthenosphere boundary (LAB). In an isoviscous fluid beneath a uniform-thickness lithosphere, strain rates, and thus FSE orientations, are constant throughout the channel, dependent on the ratio of the velocities but not the viscosity. For a two-layered asthenospheric channel of a higher-viscosity layer overlying a lower-viscosity layer, FSE orientations align with the strike-slip boundary in the upper layer and the drag in the lower layer. When we emulate a lithosphere of variable thickness across the fault by increasing the viscosity of the upper layer, we observe asymmetric FSE orientations across the step in the LAB. The direction of lithospheric thickening across the strike-slip fault govern these orientations

  14. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  15. Jelly Quakes - Characteristics of periodic slip events in an analog model of strike slip seismotectonics using ballistic gelatin.

    NASA Astrophysics Data System (ADS)

    Rudolf, Michael; Rosenau, Matthias; Oncken, Onno

    2016-04-01

    Large lithospheric strike-slip faults, such as the San-Andreas Fault, North-Anatolian Fault, or the Tancheng-Lujiang Faultzone, are major sources of seismic hazard. The interplay of complex 3D-geometry and displacement style along the fault, coupled with a varying rheological layering makes it very difficult to model these faults on all relevant timescales. Here we present a novel experimental approach to model intra- and interplate strike-slip faults using a physical/ analog model. We model earthquakes as a stick-slip process, following a rate-and-state frictional law, with glass beads as granular material within a molded fault zone. Crustal elasticity is introduced by using ballistic gelatin (30 w%, pig skin) as analog material. Furthermore, the low-strength and viscous deep crust below 15 km depth, is modeled using a viscoelastic silicone oil (PDMS-G30M). The layered model crust floats on sugar syrup and is compressed in pure shear vice configuration. We monitor the compressive force along with surface kinematics from optical image correlation. The fault is oriented at 45° to the compression direction imposing ideal strike-slip kinematics onto it. After an initial loading phase the model shows periodic slip events occurring alongside with creep on the fault. Using digital image correlation, surface displacement maps are obtained which are similar to those of natural earthquakes. Coseismic displacement along strike is showing a similar bell-shaped distribution as for natural faults. Furthermore, the recurrence intervals and stress drops are scalable to the natural prototype. The modeling results are combined with numerical rate-and-state models using physical parameters from the experiment. This enables us to explore a wide range of parameters and to draw connections between the parameters that control the behavior of seismic and aseismic fault systems.

  16. Coarse-grained deltaic sedimentation in the Miocene Cuyama strike-slip basin, California Coast Ranges

    USGS Publications Warehouse

    Alan, Bartow J.

    1990-01-01

    The Cuyama basin, located in the southern Coast Ranges of California southwest of the San Andreas fault, developed early in the history of the San Andreas transform system. The Miocene marine basin formed in a transtensional setting along a dextral strike-slip fault of the transform system following Oligocene non-marine basin formation in an extensional setting. The lower and middle Miocene Vaqueros Formation in the northwestern part of the basin, which represents the first of two transgressive-regressive cycles, is described here in terms of nine facies in two broad facies groups. The 400-m-thick Soda Lake Shale Member (of the Vaqueros) comprises deep-basin and starved-basin facies. A thin transgressive facies occurs locally at the base of the formation. The overlying Painted Rock Sandstone Member (of the Vaqueros), which is more than 2200 m thick and consists mostly of coarse-grained sandstone and pebbly sandstone, constitutes a delta complex of prodelta, slope channel, delta front, tide-influenced distributary channel, interdistributary bay, and fluvial channel facies. The basinal depositional system consisted of turbidite mud and sand, and hemipelagic and pelagic sediments of the basinal facies deposited in a rapidly subsiding basin. The delta depositional system consisted of the delta complex facies that prograded into the deep basin and had a steep prodelta slope that extended to bathyal depths. The delta is inferred to be a mixed fluvial-wave-dominated fan delta, analogous in its delta-front morphology and processes to a fjord delta, in which coarse sediment delivered to the delta front by braided streams was transported down the prodelta slope into deep water by sediment gravity flows. Transgression and rapid deepening of the basin in the early Miocene coincided with rapid tectonic subsidence. Deepening culminated with deposition of a starved-basin facies or condensed section at the time of maximum transgression, which was followed by the beginning of a

  17. The Interaction of Strike-Slip and Convergent Deformation in the Alpine Belt of New Zealand

    NASA Astrophysics Data System (ADS)

    Houseman, G. A.; Billen, M. I.

    2002-12-01

    The South Island of New Zealand provides a type example of transpressional deformation in the continental environment. Oblique convergence between the Pacific and Australian plates is absorbed partly by strike-slip motion parallel to the Alpine Fault and partly by horizontal convergence perpendicular to the fault. The distribution of strike-parallel deformation observed geodetically is consistent with the theoretical deformation of a thin viscous sheet (England et al., J. Geophys. Res., 90, 3551-3557, 1985). In this model the displacement rate, and hence the strain-rate, decays exponentially away from a strike-slip boundary. The observed exponential length scale is consistent with an along-strike length of the zone of about 450 km, and a stress vs strain-rate exponent of the non-linear viscous constitutive law, of about n = 3. This strike-parallel deformation field implies an effective viscosity distribution across the orogen in which viscosity increases exponentially with distance from the boundary (the Alpine Fault). The length scale of this exponential increase is about 60 km, but the total width of the weak zone depends on the background viscosity level. Weakening of the lithosphere in the region adjacent to the boundary has a key influence on the progress of convergent deformation in the orthogonal direction. Firstly, the weakening localizes the convergent deformation. Secondly, and perhaps more significantly, it promotes the local rate of development of gravitational instability in which the relatively dense mantle lithosphere in the zone of shortening sinks into and is replaced by asthenosphere. The development of instability is affected by other factors also, including the buoyancy of the crustal layer and the strength of crust relative to mantle. Shear induced weakening explains why downwelling can develop relatively quickly in transpressional zones, while in typical continental environments lithosphere appears relatively stable to convective disturbances

  18. Correlation between Coulomb stress changes imparted by large historical strike-slip earthquakes and current seismicity in Japan

    NASA Astrophysics Data System (ADS)

    Ishibe, Takeo; Shimazaki, Kunihiko; Tsuruoka, Hiroshi; Yamanaka, Yoshiko; Satake, Kenji

    2011-03-01

    To determine whether current seismicity continues to be affected by large historical earthquakes, we investigated the correlation between current seismicity in Japan and the static stress changes in the Coulomb Failure Function (ΔCFF) due to eight large historical earthquakes (since 1923, magnitude ≥ 6.5) with a strike-slip mechanism. The ΔCFF was calculated for two types of receiver faults: the mainshock and the focal mechanisms of recent moderate earthquakes. We found that recent seismicity for the mainshock receiver faults is concentrated in the positive ΔCFF regions of four earthquakes (the 1927 Tango, 1943 Tottori, 1948 Fukui, and 2000 Tottori-Ken Seibu earthquakes), while no such correlations are recognizable for the other four earthquakes (the 1931 Nishi-Saitama, 1963 Wakasa Bay, 1969 Gifu-Ken Chubu, and 1984 Nagano-Ken Seibu earthquakes). The probability distribution of the ΔCFF calculated for the recent focal mechanisms clearly indicates that recent earthquakes concentrate in positive ΔCFF regions, suggesting that the current seismicity may be affected by a number of large historical earthquakes. The proposed correlation between the ΔCFF and recent seismicity may be affected by multiple factors controlling aftershock activity or decay time.

  19. Stress history controls the spatial pattern of aftershocks: case studies from strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Utkucu, Murat; Durmuş, Hatice; Nalbant, Süleyman

    2016-09-01

    Earthquake ruptures perturb stress within the surrounding crustal volume and as it is widely accepted now these stress perturbations strongly correlates with the following seismicity. Here we have documented five cases of the mainshock-aftershock sequences generated by the strike-slip faults from different tectonic environments of world in order to demonstrate that the stress changes resulting from large preceding earthquakes decades before effect spatial distribution of the aftershocks of the current mainshocks. The studied mainshock-aftershock sequences are the 15 October 1979 Imperial Valley earthquake (Mw = 6.4) in southern California, the 27 November 1979 Khuli-Boniabad (Mw = 7.1), the 10 May 1997 Qa'enat (Mw = 7.2) and the 31 March 2006 Silakhor (Mw = 6.1) earthquakes in Iran and the 13 March 1992 Erzincan earthquake (Mw = 6.7) in Turkey. In the literature, we have been able to find only these mainshocks that are mainly characterized by dense and strong aftershock activities along and beyond the one end of their ruptures while rare aftershock occurrences with relatively lower magnitude reported for the other end of their ruptures. It is shown that the stress changes resulted from earlier mainshock(s) that are close in both time and space might be the reason behind the observed aftershock patterns. The largest aftershocks of the mainshocks studied tend to occur inside the stress-increased lobes that were also stressed by the background earthquakes and not to occur inside the stress-increased lobes that fall into the stress shadow of the background earthquakes. We suggest that the stress shadows of the previous mainshocks may persist in the crust for decades to suppress aftershock distribution of the current mainshocks. Considering active researches about use of the Coulomb stress change maps as a practical tool to forecast spatial distribution of the upcoming aftershocks for earthquake risk mitigation purposes in near-real time, it is further suggested that

  20. Models of recurrent strike-slip earthquake cycles and the state of crustal stress

    NASA Technical Reports Server (NTRS)

    Lyzenga, Gregory A.; Raefsky, Arthur; Mulligan, Stephanie G.

    1991-01-01

    Numerical models of the strike-slip earthquake cycle, assuming a viscoelastic asthenosphere coupling model, are examined. The time-dependent simulations incorporate a stress-driven fault, which leads to tectonic stress fields and earthquake recurrence histories that are mutually consistent. Single-fault simulations with constant far-field plate motion lead to a nearly periodic earthquake cycle and a distinctive spatial distribution of crustal shear stress. The predicted stress distribution includes a local minimum in stress at depths less than typical seismogenic depths. The width of this stress 'trough' depends on the magnitude of crustal stress relative to asthenospheric drag stresses. The models further predict a local near-fault stress maximum at greater depths, sustained by the cyclic transfer of strain from the elastic crust to the ductile asthenosphere. Models incorporating both low-stress and high-stress fault strength assumptions are examined, under Newtonian and non-Newtonian rheology assumptions. Model results suggest a preference for low-stress (a shear stress level of about 10 MPa) fault models, in agreement with previous estimates based on heat flow measurements and other stress indicators.

  1. Rupture and frequency-dependent seismic radiation of the 2012 Mw 8.6 Sumatra strike-slip earthquake

    NASA Astrophysics Data System (ADS)

    Yin, Jiuxun; Yao, Huajian

    2016-06-01

    On 2012 April 11, a great strike-slip earthquake (moment magnitude of Mw 8.6) occurred off the west coast of northern Sumatra area followed by an Mw 8.2 aftershock 2 hr later. Different geophysical data and methods have been used to investigate the mechanism, faulting, seismic radiation and slip propagation of this event, but frequency-dependent features of its rupture process have not been discussed much. In this study, we use a compressive sensing method based on sparsity inversion in the frequency domain to study the frequency-dependent seismic radiation and rupture process of this event. Our results indicate a very complex rupture process concerning at least three different rupture stages on multiple subfaults with nearly conjugate geometries. The main shock has triggered seismicity on a series of ridge-perpendicular or ridge-parallel conjugate strike-slip faults around the Nighty East Ridge. Obvious frequency-dependent rupture process has been presented and discussed. Combining results from slip inversion based on the finite-fault model, we observe that in the beginning stage of the rupture lower frequency radiation appears to originate from the areas with large slip, while the high-frequency radiation is located at the boundary of large-slip region or rupture front. Some radiation probably originates from the repeating slip on the main faults or triggered events on some nearby faults in the rupture area. The complex frequency-dependent seismic radiation patterns observed in this study provide important information for future investigation of rupture physics of this complex strike-slip event.

  2. Active Fault Geometry and Crustal Deformation Along the San Andreas Fault System Through San Gorgonio Pass, California: The View in 3D From Seismicity

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Hauksson, E.; Plesch, A.

    2012-12-01

    Understanding the 3D geometry and deformation style of the San Andreas fault (SAF) is critical to accurate dynamic rupture and ground motion prediction models. We use 3D alignments of hypocenter and focal mechanism nodal planes within a relocated earthquake catalog (1981-2011) [Hauksson et al., 2012] to develop improved 3D fault models for active strands of the SAF and adjacent secondary structures. Through San Gorgonio Pass (SGP), earthquakes define a mechanically layered crust with predominantly high-angle strike-slip faults in the upper ~10 km, while at greater depth, intersecting sets of strike-slip, oblique slip and low-angle thrust faults define a wedge-shaped volume deformation of the lower crust. In some places, this interface between upper and lower crustal deformation may be an active detachment fault, and may have controlled the down-dip extent of recent fault rupture. Alignments of hypocenters and nodal planes define multiple principal slip surfaces through SGP, including a through-going steeply-dipping predominantly strike-slip Banning fault strand at depth that upward truncates a more moderately dipping (40°-50°) blind, oblique North Palm Springs fault. The North Palm Springs fault may be the active down-dip extension of the San Gorgonio Pass thrust offset at depth by the principal, through-going Banning strand. In the northern Coachella Valley, seismicity indicates that the Garnet Hill and Banning fault strands are most likely sub-parallel and steeply dipping (~70°NE) to depths of 8-10 km, where they intersect and merge with a stack of moderately dipping to low-angle oblique thrust faults. Gravity and water well data confirm that these faults are sub-parallel and near vertical in the upper 2-3 km. Although the dense wedge of deep seismicity below SGP and largely south of the SAF contains multiple secondary fault sets of different orientations, the predominant fault set appears to be a series of en echelon NW-striking oblique strike-slip faults

  3. Seismic analysis and design of buried pipelines for fault movement

    SciTech Connect

    Wang, L.R.L.; Yeh, Y.H.

    1984-06-01

    Lifelines, such as gas and oil transmission lines and water and sewer pipelines have been damaged heavily in recent earthquakes. The damages of these lifelines have caused major, catastrophic disruption of essential service to human needs. Large abrupt differential ground movements resulted at an active fault present one of the most severe earthquake effects on a buried pipeline system. Although simplified analysis procedures for buried pipelines across strike-slip fault zones causing tensive failure of the pipeline (called tensile strike-slip fault) have been proposed, the results are not accurate enough because of several assumptions involved. Furthermore, several other important failure mechanisms and parameters have not been investigated. This paper is to present the analysis procedures and results for buried pipeline subjected to tensile strike-slip fault after modifying some of the assumptions used previously. Based on the analysis results, this paper also discusses the design criteria for buried pipelines subjected to various fault movements.

  4. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault

  5. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    USGS Publications Warehouse

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral

  6. Evolution and dynamics of active faults in southeastern Egyptian Western Desert

    NASA Astrophysics Data System (ADS)

    Abdeen, Mamdouh

    2016-07-01

    Remote sensing data processing and analysis together with interpretation of earthquake data that are followed by extensive field studies on some of the prevailing NS and EW striking faults indicate that these faults have an intimate relationship and were formed synchronously as a conjugate Riedel shears. Parallel to the NS and the EW faults open fractures filled with blown sand dominate the area of study. The Quaternary terraces adjacent to these faults are offset by the faults. Kinematic indicators on the NS striking faults indicate major sinistral (left-lateral) strike slip and minor dip-slip (normal) movement. On the other hand, kinematic indicators on the EW striking faults indicate major dextral (right-lateral) strike slip and minor dip-slip (normal) movement. Paleo-stress analysis of the fault striae measured on the NS and EW faults indicate that these faults were formed under NNE-SSW oriented extension. Instrumental earthquake data analysis shows a comparable extension direction to that derived from field measurements of slickenlineation. These observations indicate that the NS- and EW-striking faults are contemporaneous and are related to the Red Sea rifting that is currently active.

  7. Interplay of thrust, back-thrust, strike-slip and salt tectonics in a fold and thrust belt system: an example from Zakynthos Island, Greece

    NASA Astrophysics Data System (ADS)

    Zelilidis, A.; Papatheodorou, G.; Maravelis, A. G.; Christodoulou, D.; Tserolas, P.; Fakiris, E.; Dimas, X.; Georgiou, N.; Ferentinos, G.

    2016-10-01

    The southwestern flank of the Hellenic fold and thrust belt, situated along the southern edge of the Dinarides-Albanides-Hellenides continental convergent zone, was examined for reconstructing the tectonic deformation. This investigation presents an integrated study of onshore sedimentological and structural analyses, as well as offshore seismic lines, across the Pliocene-Pleistocene sedimentary succession in Zakynthos Island. Back-thrust faults, using the Triassic evaporites as decollement surface, during the Pliocene, and coeval diapiric intrusions formed three sub-basins on the hangingwall of the Kalamaki back-thrust fault. This interaction is responsible for the growth of the Skopos Mountain and the soft sediment deformation that formed synclines and slumps, respectively. Back-thrust and strike-slip faults were active during the early Pleistocene, and diapiric intrusions modified the bathymetry on the sea floor, giving rise to slumps and recumbent folds. At least five events of synsedimentary diapiric intrusions have been recognized and are marked by five slump horizons. During the Holocene, the diapiric intrusions between the Kalamaki back-thrust and the Vrachionas anticline could be either related to normal faults or gravitationally driven.

  8. Subsurface architecture of a strike-slip collapse structure: insights from Ilopango caldera, El Salvador

    NASA Astrophysics Data System (ADS)

    Saxby, Jennifer; Gottsmann, Joachim; Cashman, Katherine; Gutierrez, Eduardo

    2016-04-01

    While most calderas are created by roof collapse along ring-like faults into an emptying magma reservoir during a large and violent explosive eruption, an additional condition for caldera formation may be tectonically induced extensional stresses. Here we provide geophysical insights into the shallow sub-volcanic plumbing system of a collapse caldera in a major strike-slip tectonic setting by inverting Bouguer gravity data from the Ilopango caldera in El Salvador. Despite a long history of catastrophic eruptions with the most recent in 500 A.D., the internal architecture of the caldera has not been investigated, although studies of the most recent eruption have not identified the ring faults commonly associated with caldera collapse. The gravity data show that low-density material aligned along the principal stress orientations of the El Salvador Fault Zone (ESFZ) forms a pronounced gravity low beneath the caldera. Extending to around 6 km depth, the low density structure likely maps a complex stacked shallow plumbing system composed of magmatic and fractured hydrothermal reservoirs. A substantial volume of the plumbing system must be composed of a vapour phase to explain the modeled negative density contrasts. We use these constraints to map the possible multi-phase parameter space contributing to the subsurface architecture of the caldera and propose that the local extension along the complex ESFZ controls accumulation, ascent and eruption of magma at Ilopango. The data further suggest that future eruptions at Ilopango could be facilitated by rapid rise of magma along conjugate fault damage zones through a mechanically weak crust under tension. This may explain the absence of clear ring fault structures at the caldera.

  9. The Deese and Collings ranch conglomerates of the Arbuckle Mountains, Oklahoma: Evidence of strike-slip movement during the deformation stage of the southern Oklahoma Aulacogen

    SciTech Connect

    Cemen, I.; Pybas, K.; Stafford, C.; Al-Shaieb, Z. . School of Geology)

    1993-02-01

    It has been widely recognized that the Pennsylvanian conglomerates of the Arbuckle Mountains, Oklahoma, record the deformation stage of the Southern Oklahoma Aulacogen. Two of these units are the Desmoinesian Deese Conglomerate, exposed in the Mill Creek Syncline area between the Reagan and Mill Creek fault zones, and the Middle Virgilian Collings Ranch Conglomerate, exposed along the Washita Valley fault zone in the Turner Falls area. The authors investigated clast size, geometry, and content, primary sedimentary structures, petrography, petrology, and diagenesis of the two conglomerate units, as well as the geometric relationship of their basins with nearby faults. Their evidence suggests that the two conglomerates were deposited as alluvial fans in basins formed by strike-slip movements. The Collings Ranch Conglomerate was deposited in a basin formed as the result of left-stepping along the nearby Washita Valley strike-slip fault zone. The Deese Conglomerate was deposited in a basin formed due to the combined effect of strike-slip and dip-slip movements along the Reagan and Mill Creek fault zones. In the Collings Ranch basin, the deposition was accomplished primarily by channel-fill and sieve deposits in the proximal region of the fan. The Deese Conglomerate was deposited as an alluvial fan or fans which included several channel deposits while, in the deeper parts of the basin, fine-grained materials and limestones were deposited. These observations and their possible interpretations suggest that the Washita Valley, Mill Creek, and Reagan fault zones have experienced substantial strike-slip movement during the deformation stage of the Southern Oklahoma Aulacogen.

  10. Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere Earth models

    SciTech Connect

    Savage, J.C. )

    1990-04-10

    By virtue of the images used in the dislocation solution, the deformation at the free surface produced throughout the earthquake cycle by slippage on a long strike-slip fault in an Earth model consisting of an elastic plate (lithosphere) overlying a visoelastic half-space (asthenosphere) can be duplicated by prescribed slip on a vertical fault embedded in an elastic half-space. For the case in which each earthquake ruptures the entire lithosphere (thickness H), the half-space equivalent slip rate is as follows: Depth interval 0-H, slip identical to that in lithosphere-asthenosphere model (i.e., abrupt coseismic slip and no subsequent slip); depth interval (2n {minus} 1) H to (2n + 1) H (n = 1,2,...), slip rate uniform in space and dependent upon time as F{sub n}(t) exp ({minus}t/{tau}) where F{sub n} is a (n {minus} 1) degree polynomial in t, {tau} is twice the asthenosphere relaxation time, and t is measured from the instant after the preceding earthquake. The slip rate averaged over the seismic cycle in each depth interval equals the secular rate of relative plate motion. The surface deformation due to the earthquake cycle in the lithosphere-asthenosphere model can be calculated very simply from the half-space model with time-dependent slip in the two depth intervals H-3H and 3H-5H, and uniform slip at a rate equal to the secular relative plate velocity below depth 5H. Inversion of 1973-1988 geodetic measurements of deformation across the segment of the San Andrea fault in the Transverse Ranges north of Los Angeles for the half-space equivalent slip distribution suggests no significant slip on the fault above 30 km and a uniform slip rate of 36 mm/yr below 30 km.

  11. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-10-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  12. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    USGS Publications Warehouse

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  13. Spatial and temporal relationships between compression, strike-slip and extension in the Central Venezuelan Andes: Clues for Plio-Quaternary tectonic escape

    NASA Astrophysics Data System (ADS)

    Backé, Guillaume; Dhont, Damien; Hervouët, Yves

    2006-10-01

    The geometry of tectonic structures, attributed to the Neogene-Quaternary time interval, is described in the active setting of the Venezuelan Andes. Our methodology is based on the analysis of radar satellite and Digital Elevation Model imagery, complemented by structural fieldwork and the compilation of seismotectonic data to make a structural analysis on a regional scale. Radar images provide first class data for morphostructural analysis in areas of dense vegetation and frequent cloud covering, like the Venezuelan Andes. We focused our analysis in the Burbusay-Río Momboy and Boconó faults corner located in the central part of the belt. We have described three stages of deformation during the Neogene-Quaternary. The first one, Mio-Pliocene in age, is a NW-SE compression responsible for the uplift of the Venezuelan Andes. The second tectonic stage corresponds to a strike-slip regime of deformation marked by shearing along the Boconó, Burbusay and Valera faults, which separates two triangular wedges in the larger Trujillo block. This strike-slip faulting-dominated compressional-extensional tectonic regime allowed the Trujillo crustal block to move towards the NE. Wrenching has therefore started at some point between the Pliocene and the Quaternary. These two tectonic events are consistent with ongoing strain partitioning in the Venezuelan Andes. The third stage corresponds to extensional deformation limited to the Trujillo block and is still active today. Extension is associated with the motion of crustal blocks moving relative to each other, probably above the upper-lower crust boundary. Such extensional deformation can be understood considering that the crust extends and stretches at the same time as it moves towards the NE. The combination of both horizontal lateral motion and extension is characteristic of a tectonic escape process. The northeastward escape of the Trujillo block, which belongs to the larger North Andes block, occurs as a result of the

  14. Effects of Apparent Supersonic Ruptures for Strike-slip Rupture: Should We Consider it in the Seismic Hazard Analysis?

    NASA Astrophysics Data System (ADS)

    Barrows, M. B.; Shao, G.; Ji, C.

    2009-12-01

    Recent numerical studies indicated that the supersonic rupture could produce larger off-fault damage at distant sites than the sub-shear rupture, due to the famous "mach cone" effect (Dunham and Archuleta, 2005; Bhat et al, 2007). These results were obtained using the steady-state rupture simulations in a half-space earth. For more realistic layered or 3D earth models, we should also consider the effects of apparent supersonic rupture, i.e., the deep rupture is still in a speed slower than the local shear velocity, but faster than the near surface S or even the P wave velocity. The apparent super-shear rupture could excite the mach effect, but how large it is has not yet been quantitatively addressed. In this study, we explore this possibility by performing numerical simulations for pure strike-slip ruptures on a vertical fault inside various layered earth models.

  15. Triggering of tsunamigenic aftershocks from large strike-slip earthquakes: Analysis of the November 2000 New Ireland earthquake sequence

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2005-10-01

    The November 2000 New Ireland earthquake sequence started with a Mw = 8.0 left-lateral main shock on 16 November and was followed by a series of aftershocks with primarily thrust mechanisms. The earthquake sequence was associated with a locally damaging tsunami on the islands of New Ireland and nearby New Britain, Bougainville, and Buka. Results from numerical tsunami-propagation models of the main shock and two of the largest thrust aftershocks (Mw > 7.0) indicate that the largest tsunami was caused by an aftershock located near the southeastern termination of the main shock, off the southern tip of New Ireland (Aftershock 1). Numerical modeling and tide gauge records at regional and far-field distances indicate that the main shock also generated tsunami waves. Large horizontal displacements associated with the main shock in regions of steep bathymetry accentuated tsunami generation for this event. Most of the damage on Bougainville and Buka Islands was caused by focusing and amplification of tsunami energy from a ridge wave between the source region and these islands. Modeling of changes in the Coulomb failure stress field caused by the main shock indicate that Aftershock 1 was likely triggered by static stress changes, provided the fault was on or synthetic to the New Britain interplate thrust as specified by the Harvard CMT mechanism. For other possible focal mechanisms of Aftershock 1 and the regional occurrence of thrust aftershocks in general, evidence for static stress change triggering is not as clear. Other triggering mechanisms such as changes in dynamic stress may also have been important. The 2000 New Ireland earthquake sequence provides evidence that tsunamis caused by thrust aftershocks can be triggered by large strike-slip earthquakes. Similar tectonic regimes that include offshore accommodation structures near large strike-slip faults are found in southern California, the Sea of Marmara, Turkey, along the Queen Charlotte fault in British Columbia

  16. Measuring Active Faulting in Bolivia: the 1998 Aiquile Earthquake

    NASA Astrophysics Data System (ADS)

    Funning, G. J.; Barke, R.; Lamb, S. H.; Minaya, E.; Parsons, B. E.; Woodhouse, J. H.

    2003-12-01

    The Aiquile region of central Bolivia is situated in the core of the actively deforming Bolivian Orocline. Palaeomagnetic data show that differential rotations consistent with oblique convergence have continued over the past 10 Myr. Structural mapping of the sub-Andean fold-and-thrust belt to the east shows that the majority of this convergence has occurred there as shortening; however there exists a significant transverse component of motion which must be accommodated as strike-slip faulting elsewhere. Many topographic lineations assumed to be related to strike-slip faulting have been identified in the area around Aiquile, however none has been associated with large earthquakes or demonstrated to be active over the past million years. On 22nd May 1998, a Mw = 6.5 earthquake struck the region, the largest shallow earthquake to occur in Bolivia for 50 years, resulting in over 105 fatalities and rendering thousands homeless in the towns of Aiquile and Totora and their surrounding villages. Seismic observations of the event are inconclusive; the correct orientation and style of the faulting -- either right-lateral strike-slip on a N--S fault, or left-lateral on an E--W fault -- cannot be determined as large uncertainties in earthquake location mean we do not know a priori which of the two nodal planes in the focal mechanism is the fault plane, or upon which structure the earthquake occurred. We present here the first study of a Bolivian earthquake using InSAR. Despite the rugged nature of the terrain in the Aiquile region, with its sharp changes of relief ( ˜ 3000 m over 20 km) -- a consequence of its location between the high Altiplano to the west and the foreland basin to the east -- we demonstrate that by using freely-available SRTM digital elevation data we can correct for topographic artifacts and generate a clear deformation signal. Our preferred model is for slip on a N--S-striking fault, with a location which validates Modified Mercalli Intensity maps

  17. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  18. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  19. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  20. Tectonic and kinematic study of a strike-slip zone along the southern margin of Central Ovda Regio, Venus: Geodynamical implications for crustal plateaux formation and evolution

    NASA Astrophysics Data System (ADS)

    Romeo, Ignacio; Capote, Ramón; Anguita, Francisco

    2005-06-01

    The tectonic system of the southern margin of Central Ovda Regio, a crustal plateau which straddles Venus equator, has been interpreted as a dextral strike-slip array, on the basis of evidence clearly identifiable, as are Riedel fracture patterns of different scales, en échelon folds and brittle strike-slip faults. This transcurrent regime developed two main shear belts (Inner and Outer, on respectively thicker and thinner crust), whose minimum dextral displacement has been estimated in 30-50 km. Since the up or downwelling models for plateau formation cannot easily explain tectonic shears of this magnitude along their margins, an alternative hypothesis has been built, which stands on the proposed collisional belt which could form Ovda northern border (King et al., 1998, Lunar Planet. Sci. Conf. 29, Abstract 1209; Tuckwell and Ghail, 2002, Lunar Planet. Sci. Conf. 33, Abstract 1566). Within this framework, the shear would represent a transcollisional transcurrent zone, similar to the strike-slip zones produced in the foreland of the Himalayas-Tibet collision front. Eastern Ovda would be an independent area of thickened crust, pushed to the SSE by the northern collision, with the deformation concentrated at its margins, and experiencing a shear strain on its southern margin. None of the data, however, either supports nor helps to discard theoretical subduction events as a cause of the collision. On the contrary, image relationships could be interpreted as evidence that the main shear deformation took place during the last global resurfacing event on the planet.

  1. Understanding progressive-arc- and strike-slip-related rotations in curve-shaped orogenic belts: The case of the Olevano-Antrodoco-Sibillini thrust (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Turtã¹, Antonio; Satolli, Sara; Maniscalco, Rosanna; Calamita, Fernando; Speranza, Fabio

    2013-02-01

    We report on a paleomagnetic study of the southern sector of the Olevano-Antrodoco-Sibillini (OAS) thrust front, which corresponds to the southern limb of the Northern Apennines (Italy) orogenic salient. A lively debate has developed regarding the oroclinal/progressive-arc versus non-rotational nature of the OAS, which has been alternatively interpreted as a dextral strike-slip fault, dextral transpressive fault, or frontal to oblique ramp that reactivated pre-existing Jurassic normal faults. Here, we document the paleomagnetism, integrated with biostratigraphic and structural data, of 52 new sites from both the OAS hanging wall and footwall. On the basis of 39 retained sites, we find a peculiar pattern of tectonic rotations along the OAS thrust that evidences four rotational domains. The thrust footwall is characterized by a southern domain that undergoes an approximately 30° counterclockwise rotation with respect to the stable foreland, and an approximately non-rotated domain. The data from the hanging wall indicate the occurrence of a dextral strike-slip component along the southern sector of the OAS thrust supported by a strong clockwise rotation close to the NE-SW lateral ramp, which rapidly fades 1 km from the thrust front. A slight but significant CW rotation observed in the remaining sites from the hanging wall confirms the progressive nature of the OAS, and its structural position as the southern limb of the Northern Apennines salient. Our detailed paleomagnetic study is crucial in discriminating between progressive-arc- and strike-slip-related components in the main curved orogenic front of the Northern Apennines.

  2. Formation of flower structures in a geological layer at a strike-slip displacement in the basement

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.

    2015-07-01

    Formation of dislocations in a geological layer at a strike-slip displacement in its basement is studied by three-dimensional (3D) numerical modeling. It is shown that the pattern of strain localization is determined by the initial stress state or thickness of the deformed layer as well as by the Poisson ratio and strength of the medium. Three types of fracture zones are observed. Shear bands of the first type are dominated by the propeller-like surfaces of Riedel R-shears, which merge into a single main fault with feathering structures. In the second type of dislocation zones, the primary role is played by the surfaces oriented at an angle of ˜40° to the shear axis in the horizontal projections. After reaching the free surface, these discontinuities are cut by a V-shaped fault. In this case, the pattern of dislocations most closely corresponds to the flower structures. The third type is a trough, which may accommodate the formation of yet another strain localization zone along its axial part—a vertical fault.

  3. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress

    USGS Publications Warehouse

    Choy, G.L.; McGarr, A.

    2002-01-01

    The radiated energies, Es, and seismic moments, Mo, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (??a = ?? Es/Mo, where ?? is the modulus of rigidity). The globally averaged ??a for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (??a greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7-29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-??a events. The depth distribution of ??a, which shows peak values somewhat greater than 25 MPa in the depth range 20-25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5-30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10-30 km, our set of high-??a earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of ??a for

  4. Fault Branching

    NASA Astrophysics Data System (ADS)

    Dmowska, R.; Rice, J. R.; Poliakov, A. N.

    2001-12-01

    Theoretical stress analysis for a propagating shear rupture suggests that the propensity of the rupture path to branch is determined by rupture speed and by the preexisting stress state. See Poliakov, Dmowska and Rice (JGR, submitted April 2001, URL below). Deviatoric stresses near a mode II rupture tip are found to be much higher to both sides of the fault plane than directly ahead, when rupture speed becomes close to the Rayleigh speed. However, the actual pattern of predicted Coulomb failure on secondary faults is strongly dependent on the angle between the fault and the direction of maximum compression Smax in the pre-stress field. Steep Smax angles lead to more extensive failure on the extensional side, whereas shallow angles give comparable failure regions on both. Here we test such concepts against natural examples. For crustal thrust faults we may assume that Smax is horizontal. Thus nucleation on a steeply dipping plane, like the 53 ° dip for the 1971 San Fernando earthquake, is consistent with rupture path kinking to the extensional side, as inferred. Nucleation on a shallow dip, like for the 12 ° -18 ° of the 1985 Kettleman Hills event, should activate both sides, as seems consistent with aftershock patterns. Similarly, in a strike slip example, Smax is inferred to be at approximately 60 ° with the Johnson Valley fault where it branched to the extensional side onto the Landers-Kickapoo fault in the 1992 event, and this too is consistent. Further, geological examination of the activation of secondary fault features along the Johnson Valley fault and the Homestead Valley fault consistently shows that most activity occurs on the extensional side. Another strike-slip example is the Imperial Valley 1979 earthquake. The approximate Smax direction is north-south, at around 35 ° with the main fault, where it branched, on the extensional side, onto Brawley fault, again interpretable with the concepts developed.

  5. Characterising Active Fault Earthquake Sources Beneath the Coastal Environments of Christchurch and Wellington Cities, New Zealand, Using Seismic Reflection Profiles and Fault Displacement Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Barnes, P.; Nodder, S.; Gorman, A. R.; Woelz, S.; Orpin, A. R.

    2014-12-01

    The coastal cities of Christchurch and Wellington, New Zealand, lie in different tectonic settings within the obliquely convergent Pacific-Australian plate boundary zone. Both cities have experienced damaging earthquakes in the last three years, which highlight the importance of locating and characterising hidden active faults close to urban areas. The devastating and geologically complex Canterbury earthquake sequence of 2010-2012 developed on the periphery of the plate boundary, and reactivated several previously unidentified strike-slip and reverse faults. Major aftershocks initially beneath land, generally migrated eastward over time, and finally advanced offshore into Pegasus Bay. A study of active submarine faulting beneath the bay highlights the role of inherited crustal structure and inversion tectonics. Marine seismic reflection data reveals that faults have very low slip rate and negligible post-glacial (<15 ka) deformation, which is consistent with inferred long recurrence intervals between large magnitude (Mw>6) earthquakes. Wellington City is surrounded by numerous high-slip rate strike-slip faults overlying the Hikurangi subduction zone. A dense network of secondary basement structures previously recognised throughout the region, mainly from tectonic geomorphology, have, until recently, been considered mostly inactive and excluded from seismic hazard models. We used high-resolution geophysical, bathymetric and sediment-core data to determine the structure, earthquake history and earthquake potential of a newly discovered active reverse fault beneath the inner reaches of Wellington Harbour. The fault has a slip rate of ~0.6 ± 0.3 mm/y, and a vertical displacement history indicating at least two large magnitude (Mw 6.3-7.1), surface-rupturing earthquakes in the last 10 ka. We infer that the fault extends southwards onshore beneath the city and potentially into Cook Strait, and represents a significant previously unrecognised seismic hazard.

  6. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  7. Kane Basin, Nares-Strait: Strike-slip induced sediment deformation along the coastline of Ellesmere Island

    NASA Astrophysics Data System (ADS)

    Ehrhardt, A.; Schnabel, M.; Damm, V.

    2015-12-01

    fault pattern, a pull-apart development of the Kane Basin can't be supported. However, the steepening of the sedimentary beds towards Ellesmere Island and anticlinal deformation parallel to the NS point to the presence of a strike-slip fault that runs parallel to the Ellesmere Island coastline.

  8. Sedimentologic evidence for structural and topographic evolution following the onset of strike slip, E San Francisco Bay area, CA

    SciTech Connect

    Buising, A.V. )

    1992-01-01

    Mid- to Upper Miocene continental (Orinda and Mulholland Fms.) and shallow marine (Neroly Fm.) strata in the Upper San Leandro Reservoir watershed (SLR) area east of San Francisco Bay preserve important information on structural and landscape evolution during the early phases of strike slip along the Pacific-North American plate boundary. The SLR area lies between the Hayward and Calaveras Faults, major strands of the San Andreas Fault system, and is bisected by the NW-striking Cull Creek Fault (CCF). Geologic mapping delineates five completely intercalated lithofacies in the Mulholland Fm. at SLR. The conglomerate-dominated, sandstone-dominated, and interbedded conglomerate, sandstone, and siltstone facies represent fluvial channel and floodplain deposits; the sandstone + mudstone facies represent lacustrine-deltaic and shallow lacustrine deposits; the shale facies records open lacustrine deposition. Sparse unidirectional paleocurrent indicators show southerly and easterly transport west of the CCF and both westerly and easterly transport east of the CCF. Conglomerate-rich and sand-rich facies tracts are juxtaposed along the CCF. Clast assemblages in Mulholland conglomerates include abundant chart, graywacke, blueschist, and vein quartz, suggesting derivation from a Franciscan-dominated source terrane. Clast assemblages in the gradationally underlying and interfingering Neroly Fm. suggest that it shared the same source terrane; this is atypical for the primarily andesitic (Sierra-derived) Neroly. Fluvial deposits are volumetrically dominant in the Mulholland Fm. at SLR; open-lacustrine shales occur in stratigraphically isolated lenses ranging from > 1 km to < 100 m along strike. This suggests numerous small lakes on a broad drainage plain rather than the single large lake envisioned by previous workers.

  9. Upper Pleistocene - Holocene activity of the Carrascoy Fault (Murcia, SE Spain): preliminary results from paleoseismological research.

    NASA Astrophysics Data System (ADS)

    Martin-Banda, Raquel; Garcia-Mayordomo, Julian; Insua-Arevalo, Juan M.; Salazar, Angel; Rodriguez-Escudero, Emilio; Alvarez-Gomez, Jose A.; Martinez-Diaz, Jose J.; Herrero, Maria J.; Medialdea, Alicia

    2014-05-01

    The Carrascoy Fault is located in the Internal Zones of the Betic Cordillera (Southern Spain). In particular, the Carrascoy Fault is one of the major faults forming the Eastern Betic Shear Zone, the main structure accommodating the convergence between Nubian and Eurasian plates in the westernmost Mediterranean. So far, the Carrascoy Fault has been defined as a left-lateral strike-slip fault. It extends for at least 31 km in a NE-SW trend from the village of Zeneta (Murcia) at its northeastern tip, to the Cañaricos village, controlling the northern edge of the Carrascoy Range and its linkage to the Guadalentin Depression towards the southwest. This is an area of moderate seismic activity, but densely populated, the capital of the region, Murcia, being settled very close to the fault. Hence, the knowledge of the structure and kinematics of the Carrascoy Fault is essential for assessing reliably the seismic hazard of the region. We present a detailed-scale geological and geomorphological map along the fault zone created from a LIDAR DEM combined with fieldwork, and geological and geophysical information. Furthermore, a number of trenches have been dug across the fault at different locations providing insights in the fault most recent activity as well as paleoseismic data. Preliminary results suggest that the Cararscoy Fault has recently changed its kinematic showing a near pure reverse motion. According to this, the fault can be divided into two distinct segments, the eastern one: Zeneta - Fuensanta, and the western one: Fuensanta - Cañaricos, each one having its own characteristic style and geodynamics. Some new active strands of the fault locate at the foot of the very first relief towards the North of the older strand, forming the current southern border of the Guadalentin Depression. These new faults show an increasingly reverse component westwards, so that the Fuensanta - Cañaricos segment is constituted by thrusts, which are blind at its western end

  10. Geomorphic features of active faults around the Kathmandu Valley, Nepal, and no evidence of surface rupture associated with the 2015 Gorkha earthquake along the faults

    NASA Astrophysics Data System (ADS)

    Kumahara, Yasuhiro; Chamlagain, Deepak; Upreti, Bishal Nath

    2016-04-01

    The M7.8 April 25, 2015, Gorkha earthquake in Nepal was produced by a slip on the low-angle Main Himalayan Thrust, a décollement below the Himalaya that emerges at the surface in the south as the Himalayan Frontal Thrust (HFT). The analysis of the SAR interferograms led to the interpretations that the event was a blind thrust and did not produce surface ruptures associated with the seismogenic fault. We conducted a quick field survey along four active faults near the epicentral area around the Kathmandu Valley (the Jhiku Khola fault, Chitlang fault, Kulekhani fault, Malagiri fault and Kolphu Khola fault) from July 18-22, 2015. Those faults are located in the Lesser Himalaya on the hanging side of the HFT. Based on our field survey carried out in the area where most typical tectonic landforms are developed, we confirmed with local inhabitants the lack of any new surface ruptures along these faults. Our observations along the Jhiku Khola fault showed that the fault had some definite activities during the Holocene times. Though in the past it was recognized as a low-activity thrust fault, our present survey has revealed that it has been active with a predominantly right-lateral strike-slip with thrust component. A stream dissecting a talus surface shows approximately 7-m right-lateral offset, and a charcoal sample collected from the upper part of the talus deposit yielded an age of 870 ± 30 y.B.P, implying that the talus surface formed close to 870 y.B.P. Accordingly, a single or multiple events of the fault must have occurred during the last 900 years, and the slip rate we estimate roughly is around 8 mm/year. The fault may play a role to recent right-lateral strike-slip tectonic zone across the Himalayan range. Since none of the above faults showed any relationship corresponding to the April 25 Gorkha earthquake, it is possibility that a potential risk of occurrence of large earthquakes does exist close to the Kathmandu Valley due to movements of these active

  11. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  12. The offshore Yangsan fault activity in the Quaternary, SE Korea: Analysis of high-resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Kim, Han-Joon; Moon, Seonghoon; Jou, Hyeong-Tae; Lee, Gwang Hoon; Yoo, Dong Geun; Lee, Sang Hoon; Kim, Kwang Hee

    2016-12-01

    The NNE-trending dextral Yangsan fault is a > 190-km-long structure in the Korean Peninsula traced to the southeastern coast. The scarcity of Quaternary deposits onland precludes any detailed investigation of the Quaternary activity and structure of the Yangsan fault using seismic reflection profiling. We acquired offshore high-resolution seismic profiles to investigate the extension of the Yangsan fault and constrain its Quaternary activity using stratigraphic markers. The seismic profiles reveal a NNE-trending fault system consisting of a main fault and an array of subsidiary faults that displaced Quaternary sequences. Stratigraphic analysis of seismic profiles indicates that the offshore faults were activated repeatedly in the Quaternary. The up-to-the-east sense of throw on the main fault and plan-view pattern of the fault system are explained by dextral strike-slip faulting. The main fault, when projected toward the Korean Peninsula along its strike, aligns well with the Yangsan fault. We suggest that the offshore fault system is a continuation of the Yangsan fault and has spatial correlation with weak but ongoing seismicity.

  13. Tectonic geomorphology and neotectonics of the Kyaukkyan Fault, Myanmar

    NASA Astrophysics Data System (ADS)

    Crosetto, Silvia; Watkinson, Ian; Gori, Stefano; Falcucci, Emanuela; Min, Soe

    2016-04-01

    The Kyaukkyan Fault is a dextral strike-slip fault, part of a complex zone of active dextral transpression that absorbs most of the northward motion of India relative to Sundaland. While much of the strike-slip displacement is localised in western Myanmar and along the prominent Sagaing Fault, significant dextral shear also occurs across the Kyaukkyan Fault, on the Shan Plateau in the east. The largest recorded earthquake in Myanmar occurred on the Kyaukkyan Fault in 1912, near Maymyo (Mw 7.7), but the fault has generated little significant seismicity since then. Despite its demonstrated seismic potential and remarkable topographic expression, the fault's neotectonic history remains poorly known. Interpretation of ≤30 m Landsat TM/ETM+ images, together with field investigations, reveals deformation features developed along the Kyaukkyan Fault system, mostly indicative of Quaternary dextral strike-slip faulting. Well-marked fault scarps and valleys locate the fault especially in its northernmost and southernmost part; geomorphic features related with Kyaukkyan Fault activity are sag ponds, shutter ridges, offset and beheaded streams, triangular facets and low-sinuosity mountain fronts. Geomorphic markers of young fault activity such as offset and deformed alluvial fans, wind-gaps were also identified during field observation. The fault's central section is characterised by a complex pull-apart system, whose normal border faults show signals of relatively slow neotectonic activity. In the central part of the basin, deformation of Quaternary sediments by a locally-buried cross-basin fault system includes dip-slip faulting, where subsidence adjacent to linear ridges is suggested by notably active mountain fronts, dextral strike-slip faulting and local transpression. Although no direct evidence of a 1912 surface rupture has been detected, the fresh geomorphic expression of the cross-basin fault system indicates that it is likely to have been the focus of that event

  14. Transform fault earthquakes in the North Atlantic - Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1988-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  15. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  16. The Eastern Lower Tagus Valley Fault Zone in central Portugal: Active faulting in a low-deformation region within a major river environment

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana P.; Besana-Ostman, Glenda M.; Carvalho, João; Heleno, Sandra; Fonseca, Joao

    2015-10-01

    Active faulting in the Lower Tagus Valley, Central Portugal, poses a significant seismic hazard that is not well understood. Although the area has been affected by damaging earthquakes during historical times, only recently has definitive evidence of Quaternary surface faulting been found along the western side of the Tagus River. The location, geometry and kinematics of active faults along the eastern side of the Tagus valley have not been previously studied. We present the first results of mapping and paleoseismic analysis of the eastern strand of the Lower Tagus Valley Fault Zone (LTVFZ). Geomorphological, paleoseismological, and seismic reflection studies indicate that the Eastern LTVFZ is a left-lateral strike-slip fault. The detailed mapping of geomorphic features and studies in two paleoseismic trenches show that surface fault rupture has occurred at least six times during the past 10 ka. The river offsets indicate a minimum slip rate on the order of 0.14-0.24 mm/yr for the fault zone. Fault trace mapping, geomorphic analysis, and paleoseismic studies suggest a maximum magnitude for the Eastern LTVFZ of Mw ~ 7.3 with a recurrence interval for surface ruptures ~ 1.7 ka. At least two events occurred after 1175 ± 95 cal yr BP. Single-event displacements are unlikely to be resolved in the paleoseismic trenches, thus our observations most probably represent the minimum number of events identified in the trenches.

  17. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    surface along fractures associated with groundwater flow. Therefore, it will be possible to estimate the groundwater flow pathways from deep underground in fracture zones around a fault by measurement of the hydrogen gas. From this standpoint, we have obtained multipoint hydrogen gas measurements across an exposed fault zone in the Atera Fault System, an active, major strike-slip fault in Central Japan and provide a continuous cross-section from fault core to damage zone. The distribution of hydrogen gas emissions, corresponding to the microscopic structure of fracture zones, have shown that large volumes of hydrogen gas emission occur where open micro-fractures are dominant and emissions were not observed in the central part of faults with abundant clay minerals. Using these simple methods, we have obtained information on the qualitative permeability of fracture zones. A rapid evaluation of the spatial heterogeneity of hydrogen gas emissions along the faults probably increase knowledge of hydrogeological structure around faults. Reference Sugisaki et al., 1983, Jour. Geol. 91, 239-258. Kita et al., 1982, JGR 87, 10789-10795. Shimada et al., 2008, Resource Geol. 58, 196-202.

  18. Tsunamigenic Aftershocks From Large Strike-Slip Earthquakes: An Example From the November 16, 2000 Mw=8.0 New Ireland, Papua New Guinea, Earthquake

    NASA Astrophysics Data System (ADS)

    Geist, E.; Parsons, T.; Hirata, K.; Hirata, K.

    2001-12-01

    Two reverse mechanism earthquakes (M > 7) were triggered by the November 16, 2000 Mw=8.0 New Ireland (Papua New Guinea) left-lateral, strike-slip earthquake. The mainshock rupture initiated in the Bismarck Sea and propagated unilaterally to the southeast through the island of New Ireland and into the Solomon Sea. Although the mainshock caused a local seiche in the bay near Rabaul (New Britain) with a maximum runup of 0.9 m, the main tsunami observed on the south coast of New Britain, New Ireland, and Bougainville (maximum runup approximately 2.5-3 m), appears to have been caused by the Mw=7.4 aftershock 2.8 hours following the mainshock. It is unclear whether the second Mw=7.6 aftershock on November 17, 2000 (40 hours after the mainshock) also generated a tsunami. Analysis and modeling of the available tsunami information can constrain the source parameters of the tsunamigenic aftershock(s) and further elucidated the triggering mechanism. Preliminary stress modeling indicates that because the location of the first Mw=7.4 aftershock is located near the rupture termination of the mainshock, stress calculations are especially sensitive to the location of both ruptures and the assumed coefficient of friction. A similar example of a triggered tsunamigenic earthquake occurred following the 1812 Wrightwood (M ~7.5) earthquake in southern California as discussed by Deng and Sykes (1996, GRL, p. 1155-1158). In this case, they show that strike-slip rupture on the San Andreas fault produced coseismic stress changes that triggered the Santa Barbara Channel earthquake (M ~7.1), 13 days later. The mechanism for the Santa Barbara Channel event appears to have been an oblique thrust event. The November 2000 New Ireland earthquake sequence provides an important analog for studying the potential for tsunamigenic aftershocks following large San Andreas earthquakes in southern California.

  19. Near N-S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India-Seychelles rifting?

    NASA Astrophysics Data System (ADS)

    Misra, Achyuta Ayan; Bhattacharya, Gourab; Mukherjee, Soumyajit; Bose, Narayan

    2014-09-01

    This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India-Seychelles rifting during Late Cretaceous-Early Paleocene, was studied, and the paleostress tensors were deduced. Near N-S trending shear zones, lineaments, and faults were already reported without significant detail. An E-W extension was envisaged by the previous workers to explain the India-Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N-S brittle shear zones and also those faults (sub-vertical, ~NE-SW/~NW-SE, and few ~N-S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N-S to ~NE-SW/~NW-SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW-SE/NE-SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N-S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N-S extension is put forward that refutes the popular view of E-W India-Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE-SW and ~NW-SE, with some ~N-S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of

  20. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a

  1. Active faults in Lebanon : kinematics and interseismic behavior measured from radar interferometry (InSAR)

    NASA Astrophysics Data System (ADS)

    Lasserre, C.; Pinel-Puysségur, B.; Vergnolle, M.; Klinger, Y.; Pathier, E.

    2012-12-01

    The Levant fault system, more than 1000 km-long, marks the limit between the Arabian and Sinaï tectonic plates, extending from the Aqaba gulf in the Red Sea to Turkey. Mostly left-lateral, it forms a transpression zone in Lebanon, associating strike-slip faults such as the Yammouneh fault and thrust faults such as the Mount Lebanon thrust. This fault system in Lebanon is at the origin of large historical earthquakes during the past two thousand years (551 AD on the thrust offshore and 1837 along the Roum fault inland, 1759 along the Rashaia and Sergaya faults). We aim at characterizing the present-day behavior of active faults in Lebanon, in particular the Yammouneh fault which did not break since 1202, to contribute to a better assessment of the seismic hazard in this region. Space geodesy techniques (GPS, InSAR) allow to quantify the present-day displacements across faults (a few mm/yr during the interseismic period), and to model stress loading and relaxation processes during the seismic cycle, at the fault scale and at the regional scale. GPS campaign measurements have been made along profiles perpendicular to the Yammouneh fault. In addition, an important archive of radar images covering Lebanon (acquired by the ERS and Envisat satellites, along descending and ascending orbits) is also available. We process ERS and Envisat radar data to obtain the average interseismic velocity field across faults over the past 15-20 years. Techniques of interferograms networks processing (MuLSAR), atmospheric phase delays correction from global atmospherical models, DEM correction and time series inversion (NSBAS) are used to overcome the main remaining limitations in the measurements accuracy (low coherence, strong atmospheric delays, long wavelength deformation signal). The final goal is to propose a modelling of the surface displacement field to quantify the present-day kinematics of active fauts in Lebanon, taking into account GPS data as well as tectonic and

  2. Structural and stress analysis based on fault-slip data in the Amman area, Jordan

    NASA Astrophysics Data System (ADS)

    Diabat, Abdullah A.

    2009-08-01

    This study presents a structural analysis based on hundreds of striated small faults (fault-slip data) in the Amman area east of the Dead Sea Transform System. Stress inversion of the fault-slip data was performed using an improved Right-Dihedral method, followed by rotational optimization (TENSOR Program, Delvaux, 1993). Fault-slip data (totaling 212) include fault planes, striations and sense of movements, are obtained from the Turonian Wadi As Sir Formation, distributed mainly along the southern side of the Amman - Hallabat structure in Jordan the study area. Results show that σ1 (SHmax) and σ3 (SHmin) are generally sub-horizontal and σ2 is sub-vertical in 8 of 11 paleostress tensors, which are belonging to a major strike-slip system with σ1 swinging around N to NW direction. The other three stress tensors show σ2 (SHmax), σ1 vertical and σ3 is NE oriented. This situation explained as permutation of stress axes σ1 and σ2 that occur during tectonic events and partitioned strike slip deformation. NW compressional stresses affected the area and produced the major Amman - Hallabat strike-slip fault and its related structures, e.g., NW trending normal faults and NE trending folds in the study area. The new paleostress results related with the active major stress field of the region the Dead Sea Stress Field (DSS) during the Miocene to Recent.

  3. Active faulting in the Inner California Borderlands: new constraints from high-resolution multichannel seismic and multibeam bathymetric data.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Holmes, J. J.; Sahakian, V. J.; Klotsko, S.; Kent, G.; Driscoll, N. W.; Harding, A. J.; Wesnousky, S. G.

    2014-12-01

    Geodetic data indicate that faults offshore of Southern California accommodate 6-8 mm/yr of dextral Pacific-North American relative plate motion. In the Inner California Borderlands (ICB), modern strike-slip deformation is overprinted on topography formed during plate boundary reorganization 30-15 Ma. Despite its proximity to urban Southern California, the hazard posed by active faults in the ICB remains poorly understood. We acquired a 4000-line-km regional grid of high-resolution, 2D multichannel seismic (MCS) reflection data and multibeam bathymetry to examine the fault architecture and tectonic evolution of the ICB. We interpret the MCS data using a sequence stratigraphic approach to establish a chronostratigraphy and identify discrete episodes of deformation. We present our results in a regional fault model that distinguishes active deformation from older structures. Significant differences exist between our model of ICB deformation and existing models. Mounting evidence suggests a westward temporal migration of slip between faults in the ICB. In the eastern ICB, slip on the Newport-Inglewood/Rose Canyon fault and the neighboring Coronado Bank fault (CBF) diminishes to the north and appears to decrease over time. Undeformed Late Pliocene sediments overlie the northern extent of the CBF and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, CBF slip rate estimates based on linkage with the Palos Verdes fault to the north are unwarranted. Deformation along the San Mateo, San Onofre, and Carlsbad trends is best explained as localized deformation resulting from geometrical complexities in a dextral strike-slip fault system. In the western ICB, the San Diego Trough fault (SDTF) offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident with the San Pedro Basin fault (SPBF). Farther west, the San Clemente fault (SCF) has a strong linear bathymetric expression. The length

  4. Late Cenozoic intraplate faulting in eastern Australia

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Rosenbaum, Gideon

    2014-12-01

    The intensity and tectonic origin of late Cenozoic intraplate deformation in eastern Australia is relatively poorly understood. Here we show that Cenozoic volcanic rocks in southeast Queensland have been deformed by numerous faults. Using gridded aeromagnetic data and field observations, structural investigations were conducted on these faults. Results show that faults have mainly undergone strike-slip movement with a reverse component, displacing Cenozoic volcanic rocks ranging in ages from ˜31 to ˜21 Ma. These ages imply that faulting must have occurred after the late Oligocene. Late Cenozoic deformation has mostly occurred due to the reactivation of major faults, which were active during episodes of basin formation in the Jurassic-Early Cretaceous and later during the opening of the Tasman and Coral Seas from the Late Cretaceous to the early Eocene. The wrench reactivation of major faults in the late Cenozoic also gave rise to the occurrence of brittle subsidiary reverse strike-slip faults that affected Cenozoic volcanic rocks. Intraplate transpressional deformation possibly resulted from far-field stresses transmitted from the collisional zones at the northeast and southeast boundaries of the Australian plate during the late Oligocene-early Miocene and from the late Miocene to the Pliocene. These events have resulted in the hitherto unrecognized reactivation of faults in eastern Australia.

  5. Progressive-arc- vs. strike-slip-related rotations in curved orogenic belts: a case study from the Northern Apennines (Italy).

    NASA Astrophysics Data System (ADS)

    Turtù, Antonio; Satolli, Sara; Maniscalco, Rosanna; Calamita, Fernando; Speranza, Fabio

    2013-04-01

    A detailed paleomagnetic study has been performed in the southern sector of the Olevano-Antrodoco-Sibillini (OAS) thrust front (i. e. the southern limb of the Northern Apennines, Italy). The oroclinal/progressive-arc vs. non rotational nature of the OAS thrust is still a matter of debate, as it has been interpreted in the literature as dextral strike-slip fault, dextral transpressive fault, or as a frontal to oblique ramp complex. We document the paleomagnetism of 52 sites from Jurassic to Eocene pelagic limestones and Messinian siliciclastic turbidites from both the OAS hanging wall and footwall. In the hanging wall, sampling was designed to follow two transects perpendicular to two thrust segments oriented roughly NE-SW and NNW-SSE. Paleomagnetic data have been integrated with biostratigraphical and structural data, in order to understand both the rotational nature of the OAS arc and the kinematics of the thrust front. All samples were paleomagnetically investigated by a 2G DC-SQUID cryogenic magnetometer at the INGV of Rome. Thermal cleaning was used throughout. A characteristic component of magnetization was successfully isolated in 39 (over 52) sites. The tilt-corrected directions were compared to the coeval directions expected for the Adriatic-African foreland, in order to calculate rotations due to Apennine orogenesis. On the basis of cluster analysis and tectonic constrains, we document a peculiar pattern of tectonic rotations along the OAS thrust with four rotational domains: 1. a strongly rotated clockwise (CW) domain (54.78° ±5.46° ) in the hanging wall, close to the NE-SW-trending segment of the thrust; 2. a less CW-rotated domain in the hanging wall (15.1° ±5.8° ) that includes both the NNW-SSE oriented thrust segment and sites far from the thrust; 3. a uniform counterclockwise (CCW) rotation (-30.79° ±4.73° ) in the footwall; 4. an approximately null rotation (-5.2° ±3.8° ) in the external footwall. The strong CW domain in the hanging wall

  6. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Hetzel, Ralf

    2013-01-01

    The India-Asia collision zone is a key area for understanding continental plateau formation and mountain building. Two fundamental questions in this context are how the northeastward motion of India is partitioned between strike-slip and thrust faults and how mountain building is counteracted by erosion. Cosmogenic nuclides allow us to address these questions, because they provide age constraints on tectonically offset landforms and constraints on erosion rates. After considerable debate on whether or not major strike-slip faults move at high rates of up to 20-30 mm/yr and absorb most of the continental deformation, it now appears that the three largest faults (Altyn Tagh, Haiyuan, Kunlun) have millennial slip rates of no more than 8-13 mm/yr, consistent with rates of elastic strain accumulation determined by geodetic methods. Furthermore, a significant portion of the lateral slip on these faults is transferred to thrust faults within the collision zone. Both observations indicate that the eastward tectonic escape of material along these faults is less important than often assumed. With respect to mountain building and erosion, cosmogenic nuclide studies show that thrust faults at the northeastern and eastern margins of Tibet (Qilian Shan, Longmen Shan) have vertical slip rates of ~ 0.3 to ~ 2 mm/yr while catchment-wide erosion rates vary from ~ 0.02 to ~ 1.0 mm/yr, with high-relief areas eroding significantly faster than the plateau interior and growing mountains in the foreland. The deeply incised regions have apparently reached an erosional steady-state, in which rock uplift is balanced by erosion. River terraces at active mountain fronts document repeated changes between sediment deposition and fluvial incision. During the Quaternary, incision and terrace formation occurred predominantly at glacial-interglacial transitions but also during interglacial periods. Hence, flights of terraces at the fault-bounded mountain fronts record the interplay between sustained

  7. Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores-western Mediterranean region

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Lima, Vânia; Vales, Dina; Cesca, Simone; Carrilho, Fernando

    2016-04-01

    The matching between linear trends of hypocentres and fault planes indicated by focal mechanisms (FMs) is frequently used to infer the location and geometry of active faults. This practice works well in regions of fast lithospheric deformation, where earthquake patterns are clear and major structures accommodate the bulk of deformation, but typically fails in regions of slow and distributed deformation. We present a new joint FM and hypocentre cluster algorithm that is able to detect systematically the consistency between hypocentre lineations and FMs, even in regions of distributed deformation. We apply the method to the Azores-western Mediterranean region, with particular emphasis on western Iberia. The analysis relies on a compilation of hypocentres and FMs taken from regional and global earthquake catalogues, academic theses and technical reports, complemented by new FMs for western Iberia. The joint clustering algorithm images both well-known and new seismo-tectonic features. The Azores triple junction is characterised by FMs with vertical pressure (P) axes, in good agreement with the divergent setting, and the Iberian domain is characterised by NW-SE oriented P axes, indicating a response of the lithosphere to the ongoing oblique convergence between Nubia and Eurasia. Several earthquakes remain unclustered in the western Mediterranean domain, which may indicate a response to local stresses. The major regions of consistent faulting that we identify are the mid-Atlantic ridge, the Terceira rift, the Trans-Alboran shear zone and the north coast of Algeria. In addition, other smaller earthquake clusters present a good match between epicentre lineations and FM fault planes. These clusters may signal single active faults or wide zones of distributed but consistent faulting. Mainland Portugal is dominated by strike-slip earthquakes with fault planes coincident with the predominant NNE-SSW and WNW-ESE oriented earthquake lineations. Clusters offshore SW Iberia are

  8. Probable slow slips in the mid-crust of Hsinchu, northwestern Taiwan: Temporal correlation between normal faulting earthquakes and relative uplift

    NASA Astrophysics Data System (ADS)

    Pu, H. C.; Lin, C. H.

    2016-05-01

    To investigate the seismic behavior of crustal deformation, we deployed a dense seismic network at the Hsinchu area of northwestern Taiwan during the period between 2004 and 2006. Based on abundant local micro-earthquakes recorded at this seismic network, we have successfully determined 274 focal mechanisms among ∼1300 seismic events. It is very interesting to see that the dominant energy of both seismic strike-slip and normal faulting mechanisms repeatedly alternated with each other within two years. Also, the strike-slip and normal faulting earthquakes were largely accompanied with the surface slipping along N60°E and uplifting obtained from the continuous GPS data, individually. Those phenomena were probably resulted by the slow uplifts at the mid-crust beneath the northwestern Taiwan area. As the deep slow uplift was active below 10 km in depth along either the boundary fault or blind fault, the push of the uplifting material would simultaneously produce both of the normal faulting earthquakes in the shallow depths (0-10 km) and the slight surface uplifting. As the deep slow uplift was stop, instead, the strike-slip faulting earthquakes would be dominated as usual due to strongly horizontal plate convergence in the Taiwan. Since the normal faulting earthquakes repeatedly dominated in every 6 or 7 months between 2004 and 2006, it may conclude that slow slip events in the mid crust were frequent to release accumulated tectonic stress in the Hsinchu area.

  9. Resolving Rupture Directivity of Moderate Strike-Slip Earthquakes in Sparse Network with Ambient Noise Location: A Case Study with the 2011 M5.6 Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    He, X.; Ni, S.

    2015-12-01

    Earthquake rupture directivity is essential for improving reliability of shakemap and understanding seismogenic processes by resolving the ruptured fault. Compared with field geological survey and InSAR technique, rupture directivity analysis based on seismological data provides rapid characterization of the rupture finiteness parameters or is almost the only way for resolving ruptured fault for earthquakes weaker than M5. In recent years, ambient seismic noise has been widely used in tomography and as well as earthquake location. Barmin et al. (2011) and Levshin et al. (2012) proposed to locate the epicenter by interpolating the estimated Green's functions (EGFs) determined by cross-correlation of ambient noise to arbitrary hypothetical event locations. This method does not rely on an earth model, but it requires a dense local array. Zhan et al. (2011) and Zeng et al. (2014) used the EGFs between a nearby station and remote stations as calibration for 3D velocity structure and then obtained the centroid location. In contrast, the hypocenter can be determined by P wave onsets. When assuming unilateral rupture, we can resolve the rupture directivity with relative location of the centroid location and hypocenter. We apply this method to the 2011 M5.6 Oklahoma earthquake. One M4.8 foreshock and one M4+ aftershock are chosen as reference event to calibrate the systematic bias of ambient noise location. The resolved rupture plane strikes southwest-northeast, consistent with the spatial distribution of aftershocks (McNamara et al., 2015) and finite fault inversion result (Sun et al., 2014). This method works for unilaterally ruptured strike-slip earthquakes, and more case studies are needed to test its effectiveness.

  10. Delineation of Active Basement Faults in the Eastern Tennessee and Charlevoix Intraplate Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Langston, C. A.; Cooley, M.

    2013-12-01

    Recognition of distinct, seismogenic basement faults within the eastern Tennessee seismic zone (ETSZ) and the Charlevoix seismic zone (CSZ) is now possible using local earthquake tomography and datasets containing a sufficiently large number of earthquakes. Unlike the New Madrid seismic zone where seismicity clearly defines active fault segments, earthquake activity in the ETSZ and CSZ appears diffuse. New arrival time inversions for hypocenter relocations and 3-D velocity variations using datasets in excess of 1000 earthquakes suggest the presence of distinct basement faults in both seismic zones. In the ETSZ, relocated hypocenters align in near-vertical segments trending NE-SW, parallel to the long dimension of the seismic zone. Earthquakes in the most seismogenic portion of the ETSZ delineate another set of near-vertical faults trending roughly E-ESE. These apparent trends and steep dips are compatible with ETSZ focal mechanism solutions. The solutions are remarkably consistent and indicate strike-slip motion along the entire length of the seismic zone. Relocated hypocenter clusters in the CSZ define planes that trend and dip in directions that are compatible with known Iapitan rift faults. Seismicity defining the planes becomes disrupted where the rift faults encounter a major zone of deformation produced by a Devonian meteor impact. We will perform a joint statistical analysis of hypocenter alignments and focal mechanism nodal plane orientations in the ETSZ and the CSZ to determine the spatial orientations of dominant seismogenic basement faults. Quantifying the locations and dimensions of active basement faults will be important for seismic hazard assessment and for models addressing the driving mechanisms for these intraplate zones.

  11. The End Of Chi-Shan Fault:Tectonic of Transtensional Fault

    NASA Astrophysics Data System (ADS)

    Chou, H.; Song, G.

    2011-12-01

    Chishan fault is an active strike-slip fault that located at the Southwestern Taiwan and extend to the offshore area of SouShan in Kaohsiung. The strike and dip of the fault is N80E,50N. It's believed that the Wushan Formation of Chishan fault, which is composed of sandstone, thrusts upon the Northwestern Kutingkeng Formation, which is composed of mudstone. Chishan fault is acting as a reversal fault with sinistral motion. (Tsan and Keng,1968; Hsieh, 1970; Wen-Pu Geng, 1981). This left-lateral strike-slip fault extend to shelf break and stop, with a transtensional basin at the termination. The transtensional basin has stopped extending to open sea, whereas it is spreading toward the inshore area. Therefore, we can know that a young extensional activity is developing at the offshore seabed of Tsoying Naval Port and the activity is relative to the transtension of left-lateral fault. ( Gwo-Shyh Song, 2010). Tectonic of transtensional basin deformed in strike-slip settings overland have been described by many authors, but the field outcrop could be distoryed by Weathering and made the tectonic features incomplete. Hence, this research use multibeam bathymetry and 3.5-kHz sub-bottom profiler data data collected from the offshore extended part of Chishan fault in Kaohsiung to define the transtensional characteristics of Chishan fault. At first, we use the multibeam bathymetry data to make a Geomorphological map of our research area and we can see a triangulate depressed area near shelf break. Then, we use Fledermaus to print 3D diagram for understanding the distribution of the major normal faults(fig.1). Furthermore, we find that there are amount of listric normal fault and the area between the listric faults is curving. After that, we use the 3.5-kHz sub-bottom profiler data to understand the subsurface structure of the normal faults and the curved area between the listric normal fault, which seems to be En e'chelon folds. As the amount of displacement on the wrench

  12. Late Proterozoic transpression on the Nabitah fault system-implications for the assembly of the Arabian Shield

    USGS Publications Warehouse

    Quick, J.E.

    1991-01-01

    The longest proposed suture zone in Saudi Arabia, the Nabitah suture, can be traced as a string of ophiolite complexes for 1200 km along the north-south axis of the Arabian Shield. Results of a field study in the north-central shield between 23?? and 26??N indicate that the Nabitah suture is indeed a major crustal discontinuity across which hundreds of kilometers of displacement may have occurred on north-south trending, subvertical faults of the Nabitah fault system. Although not a unique solution, many structures within and near these faults can be reconciled with transpression, i.e., convergent strike-slip, and syntectonic emplacement of calc-alkaline plutonic rocks. Transcurrent motion on the Nabitah fault system appears to have began prior to 710 Ma, was active circa 680 Ma, and terminated prior to significant left-lateral, strike slip on the Najd fault system, which began sometime after 650 Ma. Northwest-directed subduction in the eastern shield could have produced the observed association of calc-alkaline magmatism and left-lateral transpressive strike slip, and is consistent with interpretation of the Abt schist and sedimentary rocks of the Murdama group as relics of the associated accretionary wedge and fore-arc basin. ?? 1991.

  13. Identification of recently active faults and folds in Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2013-12-01

    We analyze the spatial pattern of active deformation in Java, Indonesia with the aim of characterizing the deformation of the upper plate of the subduction zone in this region. The lack of detailed neotectonic studies in Java is mostly because of its relatively low rate of deformation in spite of significant historical seismic activity. In addition, the abundance of young volcanic materials as well as the region's high precipitation rate and vegetation cover obscure structural relationships and prevent reliable estimates of offset along active faults as well as exhumed intra-arc faults. Detailed maps of active faults derived from satellite and field-based neotectonic mapping, paleoseismic data, as well as new data on the fault kinematics and estimates of orientation of principal stresses from volcano morphology characterize recently active faults and folds. The structures in West Java are dominated by strike-slip faulting, while Central and northern part of East Java are dominated by folds and thrusting with minor normal faulting. The structures vary in length from hundreds meters to tens of kilometers and mainly trend N75°E, N8°E with some minor N45°W. Our preliminary mapping indicates that there are no large scale continuous structures in Java, and that instead deformation is distributed over wide areas along small structures. We established several paleoseismic sites along some of the identified structures. We excavated two shallow trenches along the Pasuruan fault, a normal fault striking NW-SE that forms a straight 13 km scarp cutting Pleistocene deltaic deposits of the north shore of East Java. The trenches exposed faulted and folded fluvial, alluvial and colluvial strata that record at least four ground-rupturing earthquakes since the Pleistocene. The Pasuruan site proves its potential to provide a paleoseismic record rarely found in Java. Abundant Quaternary volcanoes are emplaced throughout Java; most of the volcanoes show elongation in N100°E and N20

  14. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-05-17

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  15. Moment tensors, state of stress and their relation to faulting processes in Gujarat, western India

    NASA Astrophysics Data System (ADS)

    Aggarwal, Sandeep Kumar; Khan, Prosanta Kumar; Mohanty, Sarada Prasad; Roumelioti, Zafeiria

    2016-10-01

    Time domain moment tensor analysis of 145 earthquakes (Mw 3.2 to 5.1), occurring during the period 2006-2014 in Gujarat region, has been performed. The events are mainly confined in the Kachchh area demarcated by the Island belt and Kachchh Mainland faults to its north and south, and two transverse faults to its east and west. Libraries of Green's functions were established using the 1D velocity model of Kachchh, Saurashtra and Mainland Gujarat. Green's functions and broadband displacement waveforms filtered at low frequency (0.5-0.8 Hz) were inverted to determine the moment tensor solutions. The estimated solutions were rigorously tested through number of iterations at different source depths for finding reliable source locations. The identified heterogeneous nature of the stress fields in the Kachchh area allowed us to divide this into four Zones 1-4. The stress inversion results indicate that the Zone 1 is dominated with radial compression, Zone 2 with strike-slip compression, and Zones 3 and 4 with strike-slip extensions. The analysis further shows that the epicentral region of 2001 MW 7.7 Bhuj mainshock, located at the junction of Zones 2, 3 and 4, was associated with predominant compressional stress and strike-slip motion along ∼ NNE-SSW striking fault on the western margin of the Wagad uplift. Other tectonically active parts of Gujarat (e.g. Jamnagar, Talala and Mainland) show earthquake activities are dominantly associated with strike-slip extension/compression faulting. Stress inversion analysis shows that the maximum compressive stress axes (σ1) are vertical for both the Jamnagar and Talala regions and horizontal for the Mainland Gujarat. These stress regimes are distinctly different from those of the Kachchh region.

  16. Earthquake recurrence on the southern San Andreas modulated by fault-normal stress

    NASA Technical Reports Server (NTRS)

    Palmer, Randy; Weldon, Ray; Humphreys, Eugene; Saucier, Francois

    1995-01-01

    Earthquake recurrence data from the Pallett Creek and Wrightwood paleoseismic sites on the San Andreas fault appear to show temporal variations in repeat interval. We investigate the interaction between strike-slip faults and auxiliary reverse and normal faults as a physical mechanism capable of producing such variations. Under the assumption that fault strength is a function of fault-normal stress (e.g. Byerlee's Law), failure of an auxiliary fault modifies the strength of the strike-slip fault, thereby modulating the recurrence interval for earthquakes. In our finite element model, auxiliary faults are driven by stress accumulation near restraining and releasing bends of a strike-slip fault. Earthquakes occur when fault strength is exceeded and are incorporated as a stress drop which is dependent on fault-normal stress. The model is driven by a velocity boundary condition over many earthquake cycles. Resulting synthetic strike-slip earthquake recurrence data display temporal variations similar to observed paleoseismic data within time windows surrounding auxiliary fault failures. Our simple model supports the idea that interaction between a strike-slip fault and auxiliary reverse or normal faults can modulate the recurrence interval of events on the strike-slip fault, possibly producing short term variations in earthquake recurrence interval.

  17. Transition from Subduction to Strike-Slip in the Southeast Caribbean: Effects on Lithospheric Structures and Overlying Basin Evolution

    NASA Astrophysics Data System (ADS)

    Alvarez, T.; Mann, P.; Wood, L. J.; Vargas, C. A.; Latchman, J. L.

    2013-12-01

    Topography, basin structures and geomorphology of the southeast Caribbean-northeast South American margin are controlled by a 200-km-long transition from westward-directed subduction of South American lithosphere beneath the Caribbean plate, to east-west strike-slip motion of the Caribbean and South American plates. Our study of structures and basins present in the transitional area integrates a tomographic study of the lithospheric structures associated with lateral variations in the subduction of the South American lithosphere and orientation of the slab beneath the Caribbean plate as well as the evolution of overlying sedimentary basins imaged with deep-penetration seismic data kindly provided by the oil industry and Trinidad & Tobago government agencies. We use an earthquake dataset containing more than 700 events recorded by the eastern Caribbean regional seismograph network to build travel-time and attenuation tomography models used to image the mantle to depths of 100 km beneath transition zone. Approximately 10,000 km of 2D seismic reflection lines which are recorded to depths > 12 seconds TWT are used to interpret basin scale structures including tectono-stratigraphic sequences and structures which deform and displace sedimentary sequences. We use the observed satellite gravity to generate a gravity model for key sections traversing the tectonic transitional zone and to determine depth to basement in basins with sedimentary fill > 12 km. Within the study area, the dip of subducted South American oceanic lithosphere imaged on tomographic images is variable from ~44 to ~24 degrees. There is a distinct low gravity, low velocity, high attenuation, northwest - southeast trending lineation located east of Trinidad which defines the location of a Mesozoic oceanic fracture zone which accommodated the opening of the Central Atlantic during the Jurassic to Middle Cretaceous. This feature is also coincident with the present-day continent-ocean boundary and acts as a

  18. Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey) for Disaster Management

    PubMed Central

    Halicioglu, Kerem; Ozener, Haluk

    2008-01-01

    Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE–SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters – standard strike-slip model of dislocation theory in an elastic half-space – is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems. PMID:27873783

  19. Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey) for Disaster Management.

    PubMed

    Halicioglu, Kerem; Ozener, Haluk

    2008-08-19

    Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE-SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters - standard strike-slip model of dislocation theory in an elastic half-space - is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems.

  20. Paleoseismic study of the South Lajas fault: First documentation of an onshore Holocene fault in Puerto Rico

    USGS Publications Warehouse

    Prentice, C.S.; Mann, P.

    2005-01-01

    The island of Puerto Rico is located within the complex boundary between the North America and Caribbean plates. The relative motion along this boundary is dominantly left-lateral strike slip, but compression and extension are locally significant. Although tectonic models proposed for the region suggest the presence of onshore active faults in Puerto Rico, no faults with Holocene displacement have been documented on the island before this study. Current seismic hazard assessments primarily consider only the impact of distant, offshore seismic sources because onshore fault hazard is unknown. Our mapping and trenching studies demonstrate Holocene surface rupture on a previously undocumented fault in southwestern Puerto Rico. We excavated a trench across a scarp near the southern edge of the Lajas Valley that exposed a narrow fault zone disrupting alluvial deposits. Structural relations indicate valley-side-down fault slip, with a component of strike-slip motion. Radiocarbon analyses of organic material collected from the sediments suggest that the most recent surface rupture occurred during the past 5000 yr, but no minimum age has yet been established. This fault may be part of a larger fault zone that extends from the western end of the Lajas Valley toward Ponce, the second largest city in Puerto Rico. ?? 2005 Geological Society of America.

  1. Active fault segments as potential earthquake sources: Inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.

    2010-06-01

    Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic rift extension. Two different models of extension direction (E-W to ESE-WNW and NW-SE) have been proposed. However, they were based on limited field data and lacked subsurface investigations. In this research, we delineated active fault zones from ASTER image draped on ASTER DEM, together with relocated earthquakes. Subsequently, we combined field geologic mapping, electrical resistivity, ground magnetic traverses and aeromagnetic data to investigate the subsurface character of the active faults. Our results from structural studies identified four fault sets of different age and deformational styles, namely: normal N-S; dextral NW-SE; strike slip ENE-WSW; and sinistral NE-SW. The previous studies did not recognize the existence of the sinistral oblique slip NE-SW trending faults which were created under an E-W extension to counterbalance the NW-SE faults. The E-W extension has also been confirmed from focal mechanism solutions of the swarm earthquakes, which are located where all the four fault sets intersect. Our findings therefore, bridge the existing gap in opinion on neo-tectonic extension of the rift suggested by the earlier authors. Our results from resistivity survey show that the southern faults are in filled with fluid (0.05 and 0.2 Ωm), whereas fault zones to the north contain high resistivity (55-75 Ωm) material. The ground magnetic survey results have revealed faulting activity within active fault zones that do not contain fluids. In addition, the 2D inversion of the four aero-magnetic profiles (209 km long) revealed: major vertical to sub vertical faults (dipping 75-85° east or west); an

  2. Lithospheric Control on Spatial Patterns of Active Faulting in the Southeastern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Amos, C. B.; Unruh, J. R.; Lutz, A.; Fisher, B.; Kelson, K. I.; Rood, D. H.; Jayko, A. S.

    2011-12-01

    Patterns of active faulting in the southeastern Sierra Nevada of California reflect both far-field plate motion as well as localized forces that drive seismogenic deformation. Oblique divergence between the Sierra and the western Cordillera results in an overall pattern of dextral shear and northwest-directed extension in the eastern California shear zone (ECSZ) and southern Walker Lane belt. Within the nominally rigid southern Sierra Nevada block, newly recognized active normal faulting, as well as seismicity, indicate primarily extensional deformation beneath the high topography of the southern range. Investigations of the northern Kern Canyon fault, the Little Lake fault, and the Sierra Nevada range-front faults in Rose Valley combine data from both aerial and ground-based laser scanning, paleoseismic trenching, geologic and geomorphic mapping, and surface exposure dating to define spatial and temporal patterns of fault slip. Taken together, these studies indicate that deformation kinematics along the southeastern Sierran escarpment undergo a pronounced shift at an approximate latitude of 36.5° N. To the north in Owens valley, range-front faults accommodate active extension and normal faulting, while the adjacent Owens Valley fault displays primarily dextral strike-slip motion. South of Lone Pine, however, a component of active normal faulting steps westward into the southern Sierra Nevada block to the Kern Canyon fault, while range-front faults in Rose Valley accommodate a significant component of oblique dextral extension. Focal mechanism inversion of earthquakes in the southern Sierra Nevada reveals a zone of horizontal extension and vertical crustal thinning coincident with this westward shift of normal faulting into the range. The zone of extension is directly east of the "Isabella Anomaly," a zone of anomalous high P-wave mantle velocities thought to reflect convectively downwelling or foundering lower Sierran lithosphere below the Central Valley. As such

  3. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  4. Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and Usbnd Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif)

    NASA Astrophysics Data System (ADS)

    Fernández, Rubén Díez; Pereira, Manuel Francisco

    2016-11-01

    The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial continental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to explain the processes in place during the transition from an extension-dominated state (D2) to a compression-dominated one (D3). We reveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facilitating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intrusion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel region, the D3 Tamames-Marofa-Sátão synform. New dating of syn-orogenic granitoids (SHRIMP Usbnd Pb zircon dating) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331-311 Ma, with maximum tectonomagmatic activity at ca. 321-317 Ma. The capture and apparent cessation

  5. Dextral strike-slip along the Kapıdağ shear zone (NW Turkey): evidence for Eocene westward translation of the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Türkoğlu, Ercan; Zulauf, Gernold; Linckens, Jolien; Ustaömer, Timur

    2016-10-01

    The northern part of the Kapıdağ Peninsula (Marmara Sea, NW Turkey) is affected by the E-W trending Kapıdağ shear zone, which cuts through calc-alkaline granitoids of the Ocaklar pluton resulting in mylonitic orthogneiss. Macroscopic and microscopic shear-sense indicators, such as SC fabrics, shear bands, σ-clasts and mica fish, unequivocally suggest dextral strike-slip for the Kapıdağ shear zone. Based on petrographic data, deformation microfabrics of quartz and feldspar, and the slip systems in quartz, the dextral shearing should have been active at T = 500-300 °C and P < 5 kbar. Published K-Ar and 39Ar-40Ar cooling ages of hornblende and biotite suggest that cooling below 500-300 °C occurred during the Eocene (ca. 45-ca. 35 Ma), meaning that the Kapıdağ shear zone should have been active during Middle to Late Eocene times. The differential stress related to the shearing was <50 MPa as is indicated by the size of recrystallized quartz grains. Based on the new and published data, it is concluded that the westward movement of the Anatolian plate might have been active almost continuously from the Middle Eocene until recent times.

  6. Reconnaissance Observations of Newly Identified Active Faults and Their Relationship to Evolution of the Mount McKinley Restraining Bend, Denali National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Bemis, S. P.; Benowitz, J.

    2012-12-01

    The processes of restraining bend formation and evolution along strike-slip faults remain poorly understood. Although connections between exhumation, fault displacement, and structural geometry are difficult to establish, long-lived active faults contribute to rock uplift, partition strain, and provide insight into the crustal stresses that result from the complex geometry of a restraining bend. The highest topography in North America, Mount McKinley (also known as Denali), is closely associated with an ~17 degree bend in the Denali fault and the region exhibits structural, geomorphic, and thermochronologic constraints on the late Cenozoic evolution of the Mount McKinley restraining bend. As a component of our investigation into the initiation and growth of this restraining bend, we are mapping the bedrock and surficial geology along the north side of the restraining bend to document evidence for Quaternary-active faults. Previous workers only document one active fault, the East Fork fault, north of the Denali fault. The lack of active faults is surprising due to the high rate of regional seismicity. Our initial studies recognize several previously undocumented faults that offset late Pleistocene glacial moraines and fluvial/alluvial surfaces, indicating active deformation is more widely spread than previously recognized and illustrating distinct patterns of strain accommodation. The East Fork fault and nearby structures occur east of the apex of the restraining bend and are sub-vertical with characteristically south-side-down displacements. Faults occurring adjacent to, and west of, the restraining bend apex are all south-side-up thrust faults and appear to have accommodated a significant component of the modern topographic development on the north side of the Denali fault. Future work will target the structural geometry and slip rates of these faults in order to determine how this restraining bend has evolved to the present configuration, and these results will

  7. Development of a Detailed Stress Map of Oklahoma for Avoidance of Potentially Active Faults When Siting Wastewater Injection Wells

    NASA Astrophysics Data System (ADS)

    Alt, R. C., II; Zoback, M. D.

    2014-12-01

    We report progress on a project to create a detailed map of in situ stress orientations and relative magnitudes throughout the state of Oklahoma. It is well known that the past 5 years has seen a remarkable increase in seismicity in much of the state, potentially related to waste water injection. The purpose of this project is to attempt to utilize detailed knowledge of the stress field to identify which pre-existing faults could be potentially active in response to injection-related pore pressure increases. Over 50 new stress orientations have been obtained, principally utilizing wellbore image data provided by the oil and gas industry. These data reveal a very uniform ENE direction of maximum compressive stress through much of the state. As earthquake focal plane mechanisms indicate strike-slip faulting, the stress orientation data indicate which pre-existing faults are potentially active. The data are consistent with slip on the near-vertical, NE-trending fault associated with at least one of the M 5+ earthquakes in the Prague, OK sequence in 2011. If successful, it would demonstrate that combining detailed information about pre-existing faults and the current stress field could be used to guide the siting of injection wells so as to decrease the potential for injection-related seismicity.

  8. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China

    NASA Astrophysics Data System (ADS)

    Xu, Xianbing; Tang, Shuai; Lin, Shoufa

    2016-08-01

    Eight paleostress stages are established in the Jurassic-Cretaceous Huangshan Basin based on fault-slip analysis and age estimation. The first six stages correspond to the subduction of the Paleo-Pacific Plate or the northward motion of the Philippine Block along the southeastern active margin of the South China Block: (1) the 169-162 Ma strike-slip regime was caused by westward low-angle subduction of the Paleo-Pacific Plate, which resulted in NNE-striking folds and top-to-the west thrusting along the southeastern margin of the Huangshan Basin; (2) the 156-125 Ma NW-SE extensional regime was triggered by slab break-off of the Paleo-Pacific Plate. This extension led to Early Cretaceous magmatism, deposition of Early Cretaceous sediments and development of normal faults along the northern boundary of the Huangshan Basin; (3) the 125-107 Ma strike-slip regime was induced by the N-S collision between the Philippine and South China blocks. This tectonic event caused the angular unconformity between the Upper and Lower Cretaceous and the inversion of the Early Cretaceous extensional basin; (4) the 105-86 Ma WNW-ESE extensional regime resulted from an off-shore arc jump of the subducted Paleo-Pacific Plate. This extension triggered the deposition of the Late Cretaceous Qiyunshan Formation; (5) the 86-80 Ma strike-slip regime was induced by high-angle subduction of the Pacific Plate after the off-shore arc jump. This event led to regional uplift and an unconformity at the base of the Late Cretaceous Xiaoyan Formation; (6) the 80-36 Ma N-S extensional regime was caused by the extension following the collision between the Philippine and South China blocks, corresponding to the deposition of the Late Cretaceous Xiaoyan Formation. The last two paleostress stages were the consequences of the far-field effect of the India-Asia continent-continent collision to the southwest of the South China Block: (7) the 36-30 Ma strike-slip regime was caused by the India-Asia collision. It

  9. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    USGS Publications Warehouse

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  10. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  11. Arc-oblique fault systems: their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Piquer, Jose; Berry, Ron F.; Scott, Robert J.; Cooke, David R.

    2016-08-01

    The evolution of the Main Cordillera of Central Chile is characterized by the formation and subsequent inversion of an intra-arc volcano-tectonic basin. The world's largest porphyry Cu-Mo deposits were emplaced during basin inversion. Statistically, the area is dominated by NE- and NW-striking faults, oblique to the N-striking inverted basin-margin faults and to the axis of Cenozoic magmatism. This structural pattern is interpreted to reflect the architecture of the pre-Andean basement. Stratigraphic correlations, syn-extensional deposits and kinematic criteria on fault surfaces show several arc-oblique structures were active as normal faults at different stages of basin evolution. The geometry of syn-tectonic hydrothermal mineral fibers, in turn, demonstrates that most of these structures were reactivated as strike-slip ± reverse faults during the middle Miocene - early Pliocene. Fault reactivation age is constrained by 40Ar/39Ar dating of hydrothermal minerals deposited during fault slip. The abundance and distribution of these minerals indicates fault-controlled hydrothermal fluid flow was widespread during basin inversion. Fault reactivation occurred under a transpressive regime with E- to ENE-directed shortening, and was concentrated around major plutons and hydrothermal centers. At the margins of the former intra-arc basin, deformation was largely accommodated by reverse faulting, whereas in its central part strike-slip faulting was predominant.

  12. Impact of active faulting on the post LGM infill of Le Bourget Lake (western Alps, France)

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, François; Crouzet, Christian; Beck, Christian; Jomard, Hervé; de Rycker, Koen; Van Daele, Maarten

    2015-11-01

    We have used high resolution seismic imaging to detect and characterize the recent deformation recorded by the Quaternary sediments of Le Bourget Lake. The last glacial episodes (MIS 6a and 2, i.e., Riss and Würm) scoured out an elongated over-deepened basin to more than 300 m below the present lake level and the basin accumulated 150 m of post-LGM to Holocene sediments. The well-stratified character of the infill is locally disturbed by tectonic deformations and gravity reworking. A northern fault zone, in continuation with the left-lateral strike-slip Culoz Fault, is imaged within the Holocene and Late Glacial accumulations. A southern fault zone is also detected, which can be related to the sub-lacustrine continuation of a much smaller fault affecting the Jura alpine foreland: the Col du Chat left lateral strike-slip fault. Different generations of fractures have been identified in the lake, allowing correlation and mapping. In pre-Quaternary substratum, the Culoz Fault has a N 160° orientation. Within the post-LGM sediments, fractures related to the Culoz Fault have an orientation between N135° and 95°. A Cloos model (1932) is thus proposed to explain the observed pattern of lacustrine deformations. The calculated horizontal slip rate for Culoz Fault during Holocene is about 1.3 mm·yr- 1, and for the Col du Chat Fault is around 0.6 mm·yr- 1.

  13. The Nisi Fault as a key structure for understanding the active deformation of the NW Peloponnese, Greece

    NASA Astrophysics Data System (ADS)

    Zygouri, V.; Koukouvelas, I. K.; Kokkalas, S.; Xypolias, P.; Papadopoulos, G. A.

    2015-05-01

    The previously unknown Nisi Fault in NW Peloponnese was ruptured during the 2008 Movri Mountain earthquake attaining a maximum offset of 25 cm. The fault is interpreted as a branch of a flower structure above a blind strike-slip fault. We investigate the Nisi Fault seismotectonic evolution using morphotectonic analysis in order to determine whether the landscape is affected by tectonic forcing and paleoseismology to determine earthquake recurrence interval and fault slip rates. We applied several geomorphic indices, such as the asymmetry factor (AF), the stream length-gradient index (SL), the valley floor width to valley height ratio (Vf), the mountain-front sinuosity (Smf), the drainage basin shape (Bs) and the hypsometric curve (Hc), in four large drainage basins of the study area. The results show that fault-related vertical motions and the associated tilting influenced the drainage geometry and the landscape development. Values of stream-gradient indices (SL) are relatively high close to the fault trace. Mountain-front sinuosity (Smf) mean values along the fault zones range from 1.12 to 1.23. Valley floor width to valley height ratios (Vf) mean values along the studied fault range between 0.21 and 2.50. Drainage basin shape (BS) mean values along the fault range from 1.04 to 3.72. Lateral fault growth was likely achieved by propagation primarily towards north-northwestward. The paleoseismic history of the fault, investigated by a trench and 14C dating of seven samples, indicates two morphogenic earthquakes in the last 1 kyr. Therefore, we suggest that the Nisi Fault displays a slip rate on the order of 1 mm/yr and a recurrence interval ranging between 300 and 600 years. From a seismotectonic point of view, the fault is classified as high activity rate, with abundant but discontinuous geomorphic evidence of its activity. Other similar faults affecting the western Peloponnese can be envisaged with a similar procedure. Additionally, the seismic history and surface

  14. Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake

    USGS Publications Warehouse

    Pollitz, F.F.; Wicks, C.; Thatcher, W.

    2001-01-01

    Two recent large earthquakes in the Mojave Desert, California - the magnitude 7.3 1992 Landers and magnitude 7.1 1999 Hector Mine earthquakes - have each been fog[owed by elevated crustal strain rates over periods of months and years. Geodetic data collected after the Hector Mine earthquake exhibit a temporaLLy decaying horizOntaL velocity field and a quadrant uplift pattern opposite to that expected for LocaLized shear beneath the earthquake rupture. We interpret the origin of this accelerated crustal deformation to be vigorous flow in the upper mantle in response to the stress changes generated by the earthquake. Our results suggest that transient flow in the upper mantle is a fundamental component of the earthquake cycle and that the Lower crust is a coherent stress guide coupling the upper crust with the upper mantle.

  15. Geological features of Subduction Transfer Edge Propagator (STEP) faults, examples from the Betics and Rif

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Pérez-Peña, Vicente; Azañón, José Miguel; de Lis Mancilla, Flor; Morales, Jose; Stich, Daniel; Giaconia, Flavio

    2014-05-01

    Most of the geological features of the Betics and Rif have resulted from slab tearing, edge delamination and punctual slab breakoff events between offset STEP faults. New P-reciever function data of the deep structure under the Betics and Rif have helped to map the deep boundaries of slab tearing and rupture in the area. Linking surface geological features with the deep structure shows that STEP faulting under the Betics occurred along ENE-WSW segments offset towards the south, probably do to the westward narrowing of the Tethys slab. The surface expression of STEP faulting at the Betics consists of ENE-WSW dextral strike-slip fault segments like the Crevillente, Alpujarras or Torcal faults that are interrupted by basins and elongated extensional domes were exhumed HP middle crust occurs. Exhumation of deep crust erases the effects of strike-slip faulting in the overlying brittle crust. Slab tearing affected the eastern Betics during the Tortonian to Messinian, producing the Fortuna and Lorca basins, and later propagated westward generating the end-Messinian to Pleistocene Guadix-Baza basins and the Granada Pliocene-Pleistocene depocentre. At present slab tearing is occurring beneath the Málaga depression, where the Torcal dextral strike-slip fault ends in a region of active distributed shortening and where intermediate depth seismicity occurs. STEP fault migration has occurred at average rates between 2 and 4 cm/yr since the late Miocene, producing a wave of alternating uplift-subsidence pulses. These initiate with uplift related to slab flexure, subsidence related to slab-pull, followed by uplift after rupture and ending with thermal subsidence. This "yo-yo" type tectonic evolution leads to the generation of endorheic basins that later evolve to exhorheic when they are uplifted and captured above the region where asthenospheric upwelling occurs.

  16. Deformation partitioning at the junction between the Enriquillo fault and the Trans-Haitian belt

    NASA Astrophysics Data System (ADS)

    Leroy, S.; Pubellier, M.; Ellouz, N.; Momplaisir, R.; Boisson, D.; Amilcar, H.

    2010-12-01

    The recent Haiti earthquake, although it ruptured dramatically the strike-slip Enriquillo Plantain Garden Fault Zone (EPGFZ), is actually located where this fault cross-cut or is overlapped by the frontal part of the Trans-Haitian belt accretionary wedge. This belt started accreting flysch series in the North of Hispaniola during the late Palaeogene and propagated onto the carbonate platform during the Miocene and the Pliocene. Well dated flexural basins filled with clastics attest for this migration. The recent Matheux and the latest Gonave anticline are still currently uplifting as shown by marine terraces, so that the wedge has at present reached the active flower structure of the Presqu’île-du-Sud of Haiti, which is dissected by the EPGFZ. Therefore the structures and possible recent expression associated with their compression must be carefully investigated at surface as well as the strike-slip structure itself, recent ground destabilization and fluid escape. In fact, fault propagation is controlled mainly by, tectonic regime, physical/mechanical properties of the host-rocks and fluid/gas circulation within fault planes. Fluid and gas composition changes, flow increase or decrease, noble gas isotopic evolution can be used as indicators and evenly precursors of stress regime and mechanical variation along faults. We are now initiating onshore field observation on the strike-slip and compressional faults connection, coupled with fluid/gas sampling along both active and locked segments of the Haiti active fault system, similarly with methods tested in the Colorado plateau and along the South Atlas front (Morocco). Some investigations will be realized offshore, especially the mapping of the junction between Haïti and Jamaïca, in order to precise (1) newly and/or past destabilized segments, (2) the wavelength of the segmentation, (3) relationships with the oblique ridges, inherited segments, cross-cut by the EPGFZ.

  17. Holocene activity of the Rose Canyon fault zone in San Diego, California

    NASA Astrophysics Data System (ADS)

    Lindvall, Scott C.; Rockwell, Thomas K.

    1995-12-01

    The Rose Canyon fault zone in San Diego, California, has many well-expressed geomorphic characteristics of an active strike-slip fault, including scarps, offset and deflected drainages and channel walls, pressure ridges, a closed depression, and vegetation lineaments. Geomorphic expression of the fault zone from Mount Soledad south to Mission Bay indicates that the Mount Soledad strand is the most active. A network of trenches excavated across the Mount Soledad strand in Rose Creek demonstrate a minimum of 8.7 m of dextral slip in a distinctive early to middle Holocene gravel-filled channel that crosses the fault zone. The gravel-filled channel was preserved within and east of the fault but was removed west of the fault zone by erosion or possibly grading during development. Consequently, the actual displacement of the channel could be greater than 8.7 m. Radiocarbon dates on detrital charcoal recovered from the sediments beneath the channel yield a maximum calibrated age of about 8.1±0.2 kyr. The minimum amount of slip along with the maximum age yield a minimum slip rate of 1.07±0.03 mm/yr on this strand of the Rose Canyon fault zone for much of Holocene time. Other strands of the Rose Canyon fault zone, which are east and west of our site, may also have Holocene activity. Based on an analysis of the geomorphology of fault traces within the Rose Canyon fault zone, along with the results of our trenching study, we estimate the maximum likely slip rate at about 2 mm/yr and a best estimate of about 1.5 mm/yr. Stratigraphie evidence of at least three events is present during the past 8.1 kyr. The most recent surface rupture displaces the modern A horizon (topsoil), suggesting that this event probably occurred within the past 500 years. Stratigraphie and structural relationships also indicate the occurrence of a scarp-forming event at about 8.1 kyr, prior to deposition of the gravel-filled channel that was used as a piercing line. A third event is indicated by the

  18. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  19. Estimation of active faulting in a slow deformation area: Culoz fault as a case study (Jura-Western Alps junction).

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, Francois; Crouzet, Christian; Jomard, Hervé; Beck, Christian; de Rycker, Koen; van Daele, Maarten; Lebourg, Thomas

    2014-05-01

    The north-western Alps foreland is considered as still experiencing distal effects of Alpine collision, resulting in both horizontal and vertical relative displacements. Based on seismological and geodetic surveys, detailed patterns of active faulting (including subsurface décollements, blind ramps and deeper crustal thrusts have been proposed (Thouvenot et al., 1998), underlining the importance of NW-SE left-lateral strike-slip offsets as along the Vuache and Culoz faults (cf. the 1996 Epagny event: M=5.4; Thouvenot et al., 1998 and the 1822 Culoz event I=VII-VIII; Vogt, 1979). In parallel to this tectonic evolution, the last glaciation-deglaciation cycles contributed to develop large and over-deepened lacustrine basins, such as Lake Le Bourget (Perrier, 1980). The fine grain, post LGM (ie post 18 ky), sedimentary infill gives a good opportunity to evidence late quaternary tectonic deformations. This study focuses on the Culoz fault, extending from the Jura to the West, to the Chautagne swamp and through the Lake Le Bourget to the East. Historical earthquakes are known nearby this fault as ie the 1822 Culoz event. The precise location and geometry of the main fault is illustrated but its Eastern termination still needs to be determined. High resolution seismic sections and side-scan sonar images performed in the 90's (Chapron et al., 1996) showed that the Col du Chat and Culoz faults have locally deformed the quaternary sedimentary infill of the lake. These studies, mainly devoted to paleo-climate analysis were not able to determine neither the geometry of the fault, or to quantify the observed deformations. A new campaign devoted to highlight the fault geometry and associated deformation, has been performed in October 2013. Very tight profiles were performed during this high resolution seismic survey using seistec boomer and sparker sources. In several places the rupture reaches the most recent seismic reflectors underlying that these faults were active during

  20. The tsunami-like sea level disturbance in Crotone harbor, Italy, after the Mw6.5 strike-slip earthquake of 17 November 2015 in Lefkada Isl., Ionian Sea, Greece

    NASA Astrophysics Data System (ADS)

    Novikova, Tatyana; Annunziato, Alessandro; Charalampakis, Marinos; Romano, Fabrizio; Volpe, Manuela; Tonini, Roberto; Gerardinger, Andrea; Papadopoulos, Gerassimos A.

    2016-04-01

    On 17 November 2015 an Mw6.5 earthquake ruptured offshore Lefkada Isl. in Ionian Sea, Greece, causing two human victims, minor damage and several ground failures including coastal landslides. Fault plane solutions released by CMT/Harvard, NOA and other institutes have indicated that the faulting style was strike-slip right-lateral, which is quite typical for the area, as for example, the Mw6.3 event that occurred on August 14, 2003, in exactly the same fault zone. In spite of the very low tsunami potential commonly associated to this faulting mechanism, a tsunami-like sea level change was recorded after the earthquake by one tide-gauge in the Crotone harbor, Italy. Preliminary tsunami numerical simulations were performed to reproduce the observed signal. The spectral analysis of the synthetic mareograms close to the entrance of the harbor shows the presence of some peaks that could justify the relation between the natural port resonance and the observed wave amplification. Of particular interest is the coupling between the tsunami energy and the natural modes of basin oscillation enhancing tsunami wave amplitude in harbors through resonance, as shown in some historical events in the Mediterranean Sea and elsewhere. This research is a contribution to the EU-FP7 tsunami research project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe), grant agreement no: 603839, 2013-10-30.

  1. Cretaceous to Cenozoic sequential kinematics in the forearc-arc transition: effects of changing oblique plate convergence and the San Andreas system with implications for the La Paz fault (southern Baja California, Mexico)

    NASA Astrophysics Data System (ADS)

    Mattern, Frank; Pérez Venzor, José Antonio; Pérez Espinoza, Jesus Efraín; Rochin, Joel Hirales

    2010-01-01

    We studied metasediments and mylonitic arc granitoids from the forearc-arc transition of southern Baja California, Mexico. Thin section analyses and field evidence show that metamorphism of the forearc-arc transition is of the high T/P active margin type. The heat was provided by Cretaceous arc intrusions. Field observations and thin section analyses, including the time/temperature deformation path, demonstrate that the study area was first affected by dextral, ductile shearing followed by ductile, sinistral, possibly transpressive strike-slip parallel to the magmatic arc during the Cretaceous. Both intervals are related to changing oblique plate convergence and, thus, identified as trench-linked strike-slip effects. The geometric relationship between arc-dipping foliation, stretching lineation and shear sense indicates that the arc may have been pressed onto the rocks of the study area during sinistral shearing. The sinistral interval lasted up until regional cooling (Early Cenozoic?). Because the La Paz fault is closely associated with the forearc-arc transition, it must have the same Cretaceous to Early Cenozoic kinematic history. The northern segment of the La Paz fault is a modern, brittle, strike-slip fault interpreted as a dextral synthetic fault of the San Andreas system which opened the Gulf of California (Mar de Cortés/Golfo de California). We found no evidence for Miocene Basin and Range extension.

  2. Potential earthquake faults offshore Southern California, from the eastern Santa Barbara Channel south to Dana Point

    USGS Publications Warehouse

    Fisher, M.A.; Sorlien, C.C.; Sliter, R.W.

    2009-01-01

    Urban areas in Southern California are at risk from major earthquakes, not only quakes generated by long-recognized onshore faults but also ones that occur along poorly understood offshore faults. We summarize recent research findings concerning these lesser known faults. Research by the U.S. Geological Survey during the past five years indicates that these faults from the eastern Santa Barbara Channel south to Dana Point pose a potential earthquake threat. Historical seismicity in this area indicates that, in general, offshore faults can unleash earthquakes having at least moderate (M 5-6) magnitude. Estimating the earthquake hazard in Southern California is complicated by strain partitioning and by inheritance of structures from early tectonic episodes. The three main episodes are Mesozoic through early Miocene subduction, early Miocene crustal extension coeval with rotation of the Western Transverse Ranges, and Pliocene and younger transpression related to plate-boundary motion along the San Andreas Fault. Additional complication in the analysis of earthquake hazards derives from the partitioning of tectonic strain into strike-slip and thrust components along separate but kinematically related faults. The eastern Santa Barbara Basin is deformed by large active reverse and thrust faults, and this area appears to be underlain regionally by the north-dipping Channel Islands thrust fault. These faults could produce moderate to strong earthquakes and destructive tsunamis. On the Malibu coast, earthquakes along offshore faults could have left-lateral-oblique focal mechanisms, and the Santa Monica Mountains thrust fault, which underlies the oblique faults, could give rise to large (M ??7) earthquakes. Offshore faults near Santa Monica Bay and the San Pedro shelf are likely to produce both strike-slip and thrust earthquakes along northwest-striking faults. In all areas, transverse structures, such as lateral ramps and tear faults, which crosscut the main faults, could

  3. Naval Weapons Center Active Fault Map Series.

    DTIC Science & Technology

    1987-08-31

    SECURITY CLASSIFICATION OF ’MiS PACE NWC TP 6828 CONTENTS Introduction . . . . . . . . . . . . . . . . . ........... 2 Active Fault Definition ...established along the trace of the Little Take fault zone, within the City of Ridgecrest. ACTIVE FAULT DEFINITION Although it is a commonly used term...34active fault" lacks a pre- cise and universally accepted definition . Most workers, however, accept the following: "Active fault - a fault along

  4. Identification of paleoearthquakes based on geomorphological evidence and their tectonic implications for the southern part of the active Anqiu-Juxian fault, eastern China

    NASA Astrophysics Data System (ADS)

    Jiao, Qisong; Jiang, Wenliang; Zhang, Jingfa; Jiang, Hongbo; Luo, Yi; Wang, Xin

    2016-12-01

    This study utilized an unmanned aerial vehicle (UAV) photogrammetry system to acquire orthoimages and generate a digital elevation model (DEM) covering the southern part of the Anqiu-Juxian fault for geomorphological analysis and paleoearthquake identification. Six offset gullies were identified and analyzed on the orthoimages. Our results indicate that at least three large and several moderate earthquakes have occurred along the fault zone. Knickpoints recognized from the DEM reveal several paleoearthquakes. An average Holocene horizontal slip rate of 2.86 ± 0.35 mm yr-1 was estimated from the offset gullies, which is consistent with previous results from field surveys. The tectonic evolution of this fault zone is most likely related to subduction of the Pacific plate under the Eurasian plate, which gave rise to the right-lateral strike-slip and thrust movement of the Tan-Lu fault zone. This study provided valuable information regarding fault activity and paleoearthquake occurrence along the Anqiu-Juxian fault zone during the Holocene and demonstrated the potential of using UAVs for studies involving tectonic geomorphology.

  5. Multiscale seismic imaging of active fault zones for hazard assessment: A case study of the Santa Monica fault zone, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Dolan, J.F.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.; Templeton, M.E.

    1998-01-01

    High-resolution seismic reflection profiles at two different scales were acquired across the transpressional Santa Monica Fault of north Los Angeles as part of an integrated hazard assessment of the fault. The seismic data confirm the location of the fault and related shallow faulting seen in a trench to deeper structures known from regional studies. The trench shows a series of near-vertical strike-slip faults beneath a topographic scarp inferred to be caused by thrusting on the Santa Monica fault. Analysis of the disruption of soil horizons in the trench indicates multiple earthquakes have occurred on these strike-slip faults within the past 50 000 years, with the latest being 1000 to 3000 years ago. A 3.8-km-long, high-resolution seismic reflection profile shows reflector truncations that constrain the shallow portion of the Santa Monica Fault (upper 300 m) to dip northward between 30?? and 55??, most likely 30?? to 35??, in contrast to the 60?? to 70?? dip interpreted for the deeper portion of the fault. Prominent, nearly continuous reflectors on the profile are interpreted to be the erosional unconformity between the 1.2 Ma and older Pico Formation and the base of alluvial fan deposits. The unconformity lies at depths of 30-60 m north of the fault and 110-130 m south of the fault, with about 100 m of vertical displacement (180 m of dip-slip motion on a 30??-35?? dipping fault) across the fault since deposition of the upper Pico Formation. The continuity of the unconformity on the seismic profile constrains the fault to lie in a relatively narrow (50 m) zone, and to project to the surface beneath Ohio Avenue immediately south of the trench. A very high-resolution seismic profile adjacent to the trench images reflectors in the 15 to 60 m depth range that are arched slightly by folding just north of the fault. A disrupted zone on the profile beneath the south end of the trench is interpreted as being caused by the deeper portions of the trenched strike-slip

  6. Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus

    NASA Astrophysics Data System (ADS)

    Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.

    2012-12-01

    Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.

  7. Kinematic analysis of recent and active faults of the southern Umbria-Marche domain, Northern Apennines, Italy: geological constraints to geodynamic models

    NASA Astrophysics Data System (ADS)

    Pasqui, Valeria; Viti, Marcello; Mantovani, Enzo

    2013-04-01

    The recent and active deformation that affects the crest zone of the Umbria-Marche belt (Northern Apennines, Italy) displays a remarkable extensional character, outlined by development of normal fault sets that overprint pre-existing folds and thrusts of Late Miocene-Early Pliocene age. The main extensional fault systems often bound intermontane depressions hosting recent, mainly continental, i.e. fluvial or lacustrine deposits, separating the latter from Triassic-Miocene, mainly carbonatic and siliciclastic marine rocks that belong to the Romagna-Umbria-Marche stratigraphic succession. Stratigraphic data indicate that the extensional strain responsible for the development of normal fault-bounded continental basins in the outer zones of the Northern Apennines was active until Middle Pleistocene time. Since Middle Pleistocene time onwards a major geodynamic change has affected the Central Mediterranean region, with local reorganization of the kinematics in the Adria domain and adjacent Apennine belt. A wide literature illustrates that the overall deformation field of the Central Mediterranean area is presently governed by the relative movements between the Eurasia and Africa plates. The complex interaction of the Africa-Adria and the Anatolian-Aegean-Balkan domains has led the Adria microplate to migrate NW-ward and to collide against Eurasia along the Eastern Southern Alps. As a consequence Adria is presently moving with a general left-lateral displacement with respect to the Apennine mountain belt. The sinistral component of active deformations is also supported by analysis of earthquake focal mechanisms. A comparison between geophysical and geological evidence outlines an apparent discrepancy: most recognized recent and active faults display a remarkable extensional character, as shown by the geometry of continental basin-bounding structutes, whereas geodetic and seismologic evidence indicates the persistency of an active strike-slip, left-lateral dominated

  8. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    SciTech Connect

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N.; Karlin, R.; Baskin, R.; Louie, J.; Pullammanappallil, S.

    2016-08-01

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: Geothermal Resources Council Transactions, 35, 7 pp. Preprint at http://crack.seismo.unr.edu/geothermal/Eisses-GRCpaper-sm.pdf The Pyramid Lake fault zone lies within a vitally important area of the northern Walker Lane where not only can transtension can be studied through a complex arrangement of strike-slip and normal faults but also geothermal activity can be examined in the extensional regime for productivity. This study used advanced and economical seismic methods in attempt to develop the Paiute Tribe’s geothermal reservoir and to expand upon the tectonics and earthquake hazard knowledge of the area. 500 line-kilometers of marine CHIRP data were collected on Pyramid Lake combined with 27 kilometers of vibrator seismic on-land data from the northwest side of the basin were collected in 2010 that highlighted two distinct phases of faulting. Preliminary results suggest that the geothermal fluids in the area are controlled by the late Pleistoceneto Holocene-aged faults and not through the mid-Miocene-aged conduits as originally hypothesized.

  9. The southern Whidbey Island fault: An active structure in the Puget Lowland, Washington

    USGS Publications Warehouse

    Johnson, S.Y.; Potter, C.J.; Armentrout, J.M.; Miller, J.J.; Finn, C.; Weaver, C.S.

    1996-01-01

    Information from seismic-reflection profiles, outcrops, boreholes, and potential field surveys is used to interpret the structure and history of the southern Whidbey Island fault in the Puget Lowland of western Washington. This northwest-trending fault comprises a broad (as wide as 6-11 km), steep, northeast-dipping zone that includes several splays with inferred strike-slip, reverse, and thrust displacement. Transpressional deformation along the southern Whidbey Island fault is indicated by alongstrike variations in structural style and geometry, positive flower structure, local unconformities, out-of-plane displacements, and juxtaposition of correlative sedimentary units with different histories. The southern Whidbey Island fault represents a segment of a boundary between two major crustal blocks. The Cascade block to the northeast is floored by diverse assemblages of pre-Tertiary rocks; the Coast Range block to the southwest is floored by lower Eocene marine basaltic rocks of the Crescent Formation. The fault probably originated during the early Eocene as a dextral strike-slip fault along the eastern side of a continental-margin rift. Bending of the fault and transpressional deformation began during the late middle Eocene and continues to the present. Oblique convergence and clockwise rotation along the continental margin are the inferred driving forces for ongoing deformation. Evidence for Quaternary movement on the southern Whidbey Island fault includes (1) offset and disrupted upper Quaternary strata imaged on seismic-reflection profiles; (2) borehole data that suggests as much as 420 m of structural relief on the Tertiary-Quaternary boundary in the fault zone; (3) several meters of displacement along exposed faults in upper Quaternary sediments; (4) late Quaternary folds with limb dips of as much as ???9??; (5) large-scale liquefaction features in upper Quaternary sediments within the fault zone; and (6) minor historical seismicity. The southern Whidbey

  10. Geomechanical Risk Assessment on Shear Activation of Faults in the CO2 Storage Test Site, Offshore Pohang, South Korea

    NASA Astrophysics Data System (ADS)

    Jo, Y.; Chang, C.; Shinn, Y. J.; Song, I.; Kwon, Y. K.

    2015-12-01

    A pilot CO2 sequestration test project is underway in offshore Pohang, South Korea. The target brine aquifer for CO2 storage is 100 m-thick sandstone/conglomerate formations at a depth range between 750 and 850 mbsf (meter below seafloor), which were verified by a 3D seismic survey and a cored borehole (980 m deep). We also found that a family of steep-dip, NE-striking faults cross the target aquifer. In order to analyze potential risk of shear activation along the faults, we characterize in situ stress state at the site. Borehole image logs, generated by an acoustic televiewer tool showed borehole breakouts along the whole logged section to ~705 mbsf, which consistently indicate an average maximum horizontal principal stress (SHmax) direction of N135°±15°E. A leak-off test conducted at the bottom of a casing shoe (700 mbsf) yielded the magnitude of the minimum horizontal principal stress (Shmin) of 12.1 MPa, which is lower than the vertical stress (Sv =14.8 MPa). For the given Shmin and Sv conditions, we used the logged breakout widths and laboratory determined rock compressive strength to constrain possible SHmax magnitudes that could create the observed breakouts. Our stress estimation indicates that the stress regime in the CO2 injection test site is in favor of strike-slip faulting (Shmin < Sv < SHmax). We utilized our estimated stress conditions to analyze slip tendency of the faults. All regional-scale faults turn out to have relatively low slip tendency under the given stress condition, suggesting a low risk of triggering shear activation of faults during CO2 injection.

  11. The 2 March 2016 Wharton Basin Mw 7.8 earthquake: High stress drop north-south strike-slip rupture in the diffuse oceanic deformation zone between the Indian and Australian Plates

    NASA Astrophysics Data System (ADS)

    Lay, Thorne; Ye, Lingling; Ammon, Charles J.; Dunham, Audrey; Koper, Keith D.

    2016-08-01

    The diffuse deformation zone between the Indian and Australian plates has hosted numerous major and great earthquakes during the seismological record, including the 11 April 2012 Mw 8.6 event, the largest recorded intraplate earthquake. On 2 March 2016, an Mw 7.8 strike-slip faulting earthquake occurred in the northwestern Wharton Basin, in a region bracketed by north-south trending fracture zones with no previously recorded large event nearby. Despite the large magnitude, only minor source finiteness is evident in aftershock locations or resolvable from seismic wave processing including high-frequency P wave backprojections and Love wave directivity analysis. Our analyses indicate that the event ruptured bilaterally on a north-south trending fault over a length of up to 70 km, with rupture speed of ≤ 2 km/s, and a total duration of 35 s. The estimated stress drop, 20 MPa, is high, comparable to estimates for other large events in this broad intraplate oceanic deformation zone.

  12. Coastal Marine Terraces Define Late Quaternary Fault Activity and Deformation Within Northern East Bay Hills, San Francisco Bay Region

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.

    2004-12-01

    features suggestive of late Quaternary dextral strike slip and appear to truncate or displace NW-striking reverse faults (e.g., Franklin fault) that do not displace the late Quaternary marine platform sequence. These data support an interpretation that the CCSZ accommodates regional dextral shear, and possibly represents the northern extension of the Calaveras fault. Overall, the marine terraces provide excellent strain gauges from which to evaluate the pattern and rate of late Quaternary deformation throughout the northern East Bay Hills.

  13. The Distribution of Fault Slip Rates and Oblique Slip Patterns in the Greater Los Angeles, CA Region

    NASA Astrophysics Data System (ADS)

    Harper, H.; Marshall, S. T.

    2014-12-01

    The Los Angeles basin is host to a complex network of active strike-slip, reverse, and oblique slip faults. Because of the large metropolitan region occupying the basin, even moderately large earthquakes (M6+) pose a significant natural hazard. Since geologic estimates have not fully characterized the distribution of active fault slip rates in the region, we use a mechanical model driven by geodetically-measured shortening rates to calculate the full three-dimensional fault slip rate distributions in the region. The modeled nonplanar fault geometries are relatively well-constrained, and use data from the SCEC community fault model. Area-weighted average fault slip rates predicted by the model match previously measured geologic slip rates in most cases; however, some geologic measurements were made in locations where the slip rate is non-characteristic of the fault (e.g. near a fault tip) and the geologic slip rate estimate disagrees with the model-predicted average slip rate. The largest discrepancy between the model predictions and geologic estimates occurs on the Sierra Madre fault, which has a model-predicted slip rate approximately 2 mm/yr greater than the geologic estimates. An advantage of the model is that it can predict the full three-dimensional mechanically compatible slip distribution along all modeled faults. The fault surface slip distribution maps show complex oblique slip patterns that arise due to the nonplanar geometries and mechanical interactions between intersecting and neighboring faults. For example, the Hollywood fault exhibits a net slip of 0.7 mm/yr at depth which increases to 1.6 mm/yr where it is intersected by the Santa Monica fault in the near-surface. Model results suggest that nearly all faults in the region have an oblique component of slip at depth, so slip rate estimates of only dip or strike-slip may underestimate the total net slip rates and seismic hazards in the region.

  14. Focusing of relative plate motion at a continental transform fault: Cenozoic dextral displacement >700 km on New Zealand's Alpine Fault, reversing >225 km of Late Cretaceous sinistral motion

    NASA Astrophysics Data System (ADS)

    Lamb, Simon; Mortimer, Nick; Smith, Euan; Turner, Gillian

    2016-03-01

    The widely accepted ˜450 km Cenozoic dextral strike-slip displacement on New Zealand's Alpine Fault is large for continental strike-slip faults, but it is still less than 60% of the Cenozoic relative plate motion between the Australian and Pacific plates through Zealandia, with the remaining motion assumed to be taken up by rotation and displacement on other faults in a zone up to 300 km wide. We show here that the 450 km total displacement across the Alpine Fault is an artifact of assumptions about the geometry of New Zealand's basement terranes in the Eocene, and the actual Cenozoic dextral displacement across the active trace is greater than 665 km, with more than 700 km (and <785 km since 25 Ma) occurring in a narrow zone less than 10 km wide. This way, the Alpine Fault has accommodated almost all (>94%) of the relative plate motion in the last 25 Ma at an average rate in excess of 28 mm/yr. It reverses more than 225 km (and <300 km) of sinistral shear through Zealandia in the Late Cretaceous, when Zealandia lay on the margin of Gondwana, providing a direct constraint on the kinematics of extension between East and West Antarctica at this time.

  15. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  16. Variations in strength and slip rate along the san andreas fault system.

    PubMed

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  17. Origin of active blind-thrust faults in the southern Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Rivero-Ramirez, Carlos Alberto

    This dissertation describes the origins, three-dimensional geometry, slip history and present activity of a regional system of blind-thrust faults located in the Inner California Borderlands, and analyses the new earthquake scenarios they imply for the nearby coastal region of southern California. Chapter 1 is an overview of the main observations and inferences derived from geophysical data (seismic reflection profiles, well information, and seismicity) and coastal tectonics studies that are used to document the reactivation of two regional, low-angle Miocene detachments---the Oceanside and the Thirtymile faults. These active blind-thrusts comprise the Inner California Blind-Thrust System. The paper is co-authored by Prof. John H. Shaw (Harvard University) and Prof. Karl Muller (University of Colorado), and was published in the journal Geology. In this paper we associate the 1986 (ML 5.3) Oceanside earthquake and uplift of coastal marine terraces with activity on these blind-thrust faults, demonstrating their current activity and earthquake potential. We also describe the structural interactions of the blind-thrust system with regional strike-slip fault zones, and propose new earthquake hazards scenarios for the Inner California Borderlands based on these interactions. Chapter 2 presents a methodology used to generate regional 3D velocity models that allows converting seismic reflection data and derived geological surfaces into the depth domain. This chapter is co-authored with Dr. Peter Suss (University of Tubingen) and Prof. John H. Shaw (Harvard University), who developed aspects of the methodology used here in their velocity modeling of the Los Angeles basin. In our study, geologic constraints are employed to guide the interpolation of velocity structure in the Inner California Borderlands, yielding a comprehensive 3D velocity model that is consistent with the structural and stratigraphic architectures of the offshore basins. The need to properly scale time

  18. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    USGS Publications Warehouse

    Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  19. Deep-fault connection characterization from combined field and geochemical methodology; examples from Green River and Haiti fault systems

    NASA Astrophysics Data System (ADS)

    Nadine, E. Z.; Frery, E.; Leroy, S.; Mercier De Lepinay, B. F.; Momplaisir, R.

    2011-12-01

    widening of the impacted zones indicating a strong partitioning of the deformation. The resulting stress re-location is well expressed by (1) the dispersion of the aftershocks, essentially North of the strike-slip fault, (2) a progressive local uplift on the hanging wall, and (3) by along-fault fluid flow variation (leaking segments) either along the EPGF recently active segments but also around the Cul-de-Sac plain. As a first approach, we focus our attention on fault-related fluid leakage distribution, located at intersection points between strike-slip and compressive faults. Using this combined approach, mixing structural and geochemical analytical work, we will hopefully be able (i) to identify the transient and permanent fault activity, and (ii) to characterize the time recurrence (if any) and (iii) the location of the seismic activity during the Quaternary in this two natural analogues.

  20. [sup 40]Ar/[sup 39]Ar geochronology of Cenozoic magmatism and faulting, Yerington and northern Wassuk Range Nevada

    SciTech Connect

    Dilles, J.H. . Geosciences Dept.); Gans, P.B. . Dept. of Geological Sciences)

    1993-04-01

    [sup 40]Ar/[sup 39]Ar radiometric ages ([+-] sigma) refine the ages of magmatism and both normal and strike-slip faulting in the Yerington district and to the east in the northern Wassuk Range portion of the Walker Lane. The oldest rhyolite ignimbrites (28.58 [+-] 0.04 Ma (san)) underlie the Mickey Pass Tuff. Two rhyolite ignimbrites yielded 24.66 [+-] 0.02 (san) and 24.60 [+-] 0.02 (san) Ma and lie in angular unconformity upon the [approximately]26 Ma Singatse Tuff within a NW-striking fault zone in that N. Wassuk Ra., recording the earliest tectonism in the Walker Lane here. In this area, an ignimbrite from the upper part of the Hu-Pwi Rhyodacite yielded 23.09 [+-] 0.04 Ma (bi), and is cut by faults intruded by pyroxene andesites dated at 22.16 [+-] 0.27 Ma (wr). The andesite of Lincoln Flat is closely associated with tectonism throughout the Yerington-N. Wassuk area, and yielded four ages: 14.95 [+-] 0.24 (hbl), 14.08 [+-] 0.23 (hbl), 12.85 [+-] 0.33 (hbl), and 13.83 [+-] 0.17 (hbl) Ma. The 14.95 Ma-andesite is late-tectonic, whereas the 14.08 and 12.85 Ma andesites post-date early, northwest-striking vertical (strike-slip ) and normal faults in the N. Wassuk portion of the Walker Lane. In summary, tectonism initiated in the region within the Walker Lane portion of the northern Wassuk Ra. at [approximately]25 Ma, was active between 23 and 22 Ma, and in the interval prior to 14 Ma. Rapid crustal extension migrated westward to the Yerington district, where normal faulting and 30--40 W -- tilting of the upper crust initiated at 14 Ma and proceeded rapidly for the next 1--2 m.y. This period was succeeded by normal-oblique slip and strike-slip faults bounding Wassuk Group sedimentary basins in the Wassuk Ra. at [approximately]9 Ma and synchronously tilting them 10--35 W. Since [approximately]6 Ma, modern range-front normal faults and NW-striking strike-slip faults have yielded reduced rates of crustal extension and tilting.

  1. Continuity of the San Andreas Fault at San Gorgonio Pass

    NASA Astrophysics Data System (ADS)

    Carena, S.; Suppe, J.

    2002-12-01

    The San Andreas fault at San Gorgonio Pass does not have a clear surface trace and is considered aseismic. Our findings suggest in fact that the existence of a through-going vertical or near-vertical San Andreas fault between Yucaipa and North Palm Springs is highly unlikely. We mapped over 70 faults in the San Gorgonio Pass-San Bernardino Mountains region using the catalog of 43,500 relocated 1975-1998 earthquakes of Richards-Dinger and Shearer (2000). A clustering algorithm was applied to the relocated earthquakes in order to obtain tighter earthquake clouds and thus better-defined fault surfaces. The earthquakes were then imported into Gocad, a 3D modeling software that allowed us to separate earthquakes into coplanar clusters associated with different faults and fault strands and to fit optimized surfaces to them. We also used the catalog of 13,000 focal mechanisms of Hauksson (2000) to confirm the nature of the mapped faults. We were able to constrain the 3D geometry of the San Andreas fault near San Gorgonio Pass from the 3D geometry of the fault network surrounding it. None of these faults show any displacement due to an hypothetical sub-vertical San Andreas. The San Andreas fault must therefore rotate to much shallower dips, or lose its continuity at depths between 3 and 15 km The most likely configuration is the one where the San Andreas fault merges into the shallow-dipping San Gorgonio Pass thrust W of North Palm Springs. Strike-slip motion is taken up by both the thrust (the slip vector on the N. Palm Springs segment is reverse/right-lateral strike-slip) and by a series of NW striking faults in the footwall of the thrust. The W termination of the most active part of the San Gorgonio Pass thrust coincides with one of these footwall faults at depth, and with the south bend in the San Andreas fault strand N of Banning. This boundary also marks a change in the stress field, with a dominant strike-slip regime to the E (and localized thrusting between San

  2. Late Quaternary Deformation Along the Wairarapa Fault, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Schermer, E. R.; Little, T. A.

    2006-12-01

    strike-slip fault splay. New14C ages are consistent with the most recent event occurring in 1855 and suggest one earlier event. The range-bounding trace of the WH thrust appears to have been abandoned in the Holocene, with deformation occuring both west and east of this fault. Thus southern end of the Wairarapa fault consists of at least three active structures: 1) A western oblique-slip fault (or fault zone) that has ruptured repeatedly in the Holocene, including 1855, uplifting the Rimutaka anticline and accommodating large-magnitude strike-slip. Details of the 1855 event are obscured by landsliding in the Rimutaka range but the uplift is recorded by a flight of beach ridges at Turakirae Head; 2) a middle strike-slip strand that in part coincides with the projected trace of the abandoned WH thrust: 3) an eastern blind thrust that initiated after 9 ka and that has an unknown rupture history. Uplift with respect to sea level on the middle and eastern strands of the WH fault zone totals ~1mm/yr over the last 125 ka, and is indistinguishable in rate from that measured along the main (strike- slip) part of the Wairarapa fault to the north. To the west of the WH fault, the crest of the Rimutaka anticline at the coast is uplifting at 3 times this rate, (McSaveny et al., in press). The relationship between this locally enhanced rate of coastal uplift at the southern end of the Wairarapa fault zone, and the WH fault is apparently complex and changing rapidly in time, but has important implications for understanding seismic hazard and tectonics of this part of the Hikurangi margin.

  3. Reports on block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, Amos

    1990-01-01

    Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.

  4. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Nikkhoo, M.; Holohan, E. P.; Walter, T. R.

    2015-07-01

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a 'sliding-trapdoor' ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano's western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that 'sliding-trapdoor' ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  5. Assessment of active faults for maximum credible earthquakes of the southern California-northern Baja region

    NASA Astrophysics Data System (ADS)

    Slemmons, D. B.; Omalley, P.; Whitney, R. A.; Chung, D. H.; Bernreuter, D. L.

    1982-06-01

    Compilation of a data base is presented for maximum or maximum credible earthquakes that can be used to compute seismic hazard spectra at the San Onofre Nuclear Generating Stations in southern California. Estimates of fault slip rate and estimated recurrence - northern Baja California region are given. According to a direct relationship between the total fault length and the earthquake magnitude, the maximum earthquake for the Offshore Zone of Deformation (OZD) is estimated to be of about 6.8 or 6.9 surface wave magnitude. Another empirical relationship relating the fractional fault length and earthquake magnitude for strike slip faults results in an estimated maximum earthquake of about M/sub S/ = 6.8 for the OZD.

  6. Deep pulverization along active faults ?

    NASA Astrophysics Data System (ADS)

    Doan, M.

    2013-12-01

    Pulverization is a intensive damage observed along some active faults. Rarely found in the field, it has been associated with dynamic damage produced by large earthquakes. Pulverization has been so far only described at the ground surface, consistent with the high frequency tensile loading expected for earthquake occurring along bimaterial faults. However, we discuss here a series of hints suggesting that pulverization is expected also several hundred of meters deep. In the deep well drilled within Nojima fault after the 1995 Kobe earthquake, thin sections reveal non localized damage, with microfractured pervading a sample, but with little shear disturbing the initial microstructure. In the SAFOD borehole drilled near Parkfield, Wiersberg and Erzinger (2008) made gas monitoring while drilling found large amount of H2 gas in the sandstone west to the fault. They attribute this high H2 concentration to mechanochemical origin, in accordance with some example of diffuse microfracturing found in thin sections from cores of SAFOD phase 3 and from geophysical data from logs. High strain rate experiments in both dry (Yuan et al, 2011) and wet samples (Forquin et al, 2010) show that even under confining pressures of several tens of megapascals, diffuse damage similar to pulverization is possible. This could explain the occurrence of pulverization at depth.

  7. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  8. Testing simple models of brittle normal faulting: slip rate, spacing, and segmentation

    NASA Astrophysics Data System (ADS)

    Connolly, J.; Dawers, N. H.

    2005-05-01

    Fault growth and evolution is a complex process, however any predictable pattern will yield important information for assessing seismic hazard and clues to what controls fault behavior. Models of slip rate variation along strike, spacing of active faults, and scaling of segment length are investigated using data from faults located within the parabola of seismicity around the Yellowstone hotspot. Based on displacement-length relations and segment size, Cowie and Roberts used fault geometry to estimate along-strike slip rate variation in their 2001 paper (JSG,23,1901-1915). Following their model, along-strike slip rate profiles were calculated for three active normal faults: the Beaverhead, Lemhi, and Lost River faults. Though the method yields estimated slip rates, the results roughly mirror along-strike variation in total displacement, because the three faults are similar in size and age. The profiles indicate that the Beaverhead is underdisplaced, i.e. having a low slip rate relative to its length. This suggests that segment linkage occurred later in the development of the Beaverhead than in the others. Cowie and Roberts also proposed a model for fault spacing based on initial fault length and spacing, and maximum length and spacing of fully developed fault systems. Fault spacing is important in determining incidence and magnitude of fault movement. If the distance between faults is too small, strain becomes localized along one while the other exhibits a decrease in seismicity until no activity occurs. In practice it is impossible to know if the distance between the largest faults represents maximum fault spacing, because the fault population is still active and evolving; thus, it is difficult to test or implement the method. A relationship was found among faults within the study area, where spacing of adjacent active faults is proportional to the sums of their lengths. It was also observed that average segment length increases with increasing total fault length

  9. Physical and Mechanical Properties of the Mozumi Fault, Japan: Petrophysics of a Fine-Grained Fault Zone

    NASA Astrophysics Data System (ADS)

    Isaacs, A. J.; Evans, J. P.; Kolesar, P. T.

    2005-12-01

    The Mozumi-Sokenobu fault, a right-lateral strike-slip fault in north-central Honshu, Japan is intersected by the Active Fault Survey Tunnel. This tunnel allows for direct observation of the fault at a depth of 300-400 m below the ground surface. Within the tunnel, the Mozumi fault cuts Jurassic Tetori Group sandstone and shale. We have characterized microstructures, mineralogy, geochemistry, and elastic properties of fault rock samples from the Mozumi fault. These data can be combined to illustrate the in-situ macroscopic hydro-mechanical structure of the fault. Core samples from the main Mozumi fault zone intersected by the Active Fault Survey Tunnel borehole A were analyzed and compared to wireline logs for a petrophysical study of the fault zone rocks. Microstructures, mineralogy, and geochemistry of Mozumi fault rocks indicate syn-tectonic fluid flow and multiple deformation events. Resistivity and sonic log values are depressed through the main fault zone. Likewise, the seismic p and s wave velocity values are decreased across the main fault relative to the surrounding rock. Calculated values for Young's modulus and Poisson's ratio fall at the top of or above the experimentally derived range for elastic moduli of siltstone, shale, and sandstone. Smaller scale variations across the fault zone itself are also present. Samples of foliated fault rocks containing predominantly muscovite have intermediate values for elastic moduli and seismic velocity relative to other fault zone samples used in this study. Fault rocks significantly depleted in oxides relative to host rock samples and containing mixed clays have higher resistivity than surrounding fault rocks and intermediate permeability values. These variations in physical and mechanical properties throughout the fault zone coincide with the complex fault-parallel combined conduit/barrier permeability structure of the Mozumi fault zone.

  10. Normal fault earthquakes or graviquakes

    PubMed Central

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  11. Normal fault earthquakes or graviquakes.

    PubMed

    Doglioni, C; Carminati, E; Petricca, P; Riguzzi, F

    2015-07-14

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors.

  12. Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in the western Qinling mountains, NW China

    NASA Astrophysics Data System (ADS)

    Wen-jun, Zheng; Xing-wang, Liu; Jing-xing, Yu; Dao-yang, Yuan; Pei-zhen, Zhang; Wei-peng, Ge; Jian-zhang, Pang; Bai-yun, Liu

    2016-09-01

    Two groups of faults striking in different direction (NWW-trending and NEE-trending) within the western Qinling mountains play important roles in the tectonic deformation and the transference slip along the east end of the east Kunlun fault. We investigated the fault geometry and kinematics properties in the area. Based on the displacements of landforms and optically stimulated luminescence (OSL) dating techniques, the late Pleistocene slip rates along the Liangdang-Jiangluo fault were determined to be 0.43 ± 0.13 mm/a (thrust) and 0.71 ± 0.18 mm/a (left-lateral strike-slip). We also investigated some other faults, and obtained characteristically low slip rates. These slip rates are consistent with decadal GPS observations. Despite previous studies that point to a systematic decrease in the left-lateral slip rates from > 10 mm/a to < 2 mm/a along the eastern end of the Kunlun fault, there has been relatively little discussion about the role of the faults, that lie between the east Kunlun and west Qinling faults in accommodating the regional tectonic deformation. From the activity, geometry, and kinematics of the regional faults in the western Qinling Mountains, we concluded that the main driving force that arises from the NE-thrusting and strike slip along the east Kunlun fault dominated the deformation in the area. Our results suggest that the < 2 mm/a slip rate at the tip of the east Kunlun fault is absorbed by low slip rate faults, crustal shortening, basin formation and mountain uplift in the western Qinling mountains, and the slip is not transferred to the west Qinling fault or further north.

  13. Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: Mw dependence of the disturbance amplitudes

    NASA Astrophysics Data System (ADS)

    Cahyadi, Mokhamad Nur; Heki, Kosuke

    2015-01-01

    We studied ionospheric responses to the 2012 April 11 Mw 8.6 North Sumatra earthquake using total electron content (TEC) measurements with the regional Global Navigation Satellite System network. This earthquake ruptured the oceanic lithosphere off the Indian Ocean coast of North Sumatra, and is known as the largest strike-slip earthquake ever recorded. Coseismic ionospheric disturbances (CIDs) with rapid TEC enhancement of a few TEC units propagated northward with a speed of acoustic waves (˜1 km s-1). Resonant atmospheric oscillation with a frequency ˜4 mHz have been found as monochromatic oscillation of TEC lasting for an hour after the main shock and the largest aftershock. We compared CID amplitudes of 21 earthquakes world-wide with moment magnitudes (Mw) 6.6-9.2. They roughly obeyed a law such that CID amplitude increases by two orders of magnitude for the Mw increase of three. The 2012 North Sumatra earthquakes slightly deviated negatively from the trend possibly reflecting their strike-slip mechanisms, that is small vertical crustal movements for their magnitudes.

  14. Structural analysis of the Wallula Gap fault, southeastern Washington

    SciTech Connect

    McQuarrie, N. . Dept. of Geology)

    1993-04-01

    The Olympic-Wallowa lineament in the area between Wallula Gap, Washington and Milton-Freewater, Oregon is a 200-m-high escarpment, the position of which is controlled by a zone of northwest-striking faults termed the Wallula Fault Zone (WFZ). Historical seismicity, including the 1936 magnitude 5--6 Milton-Freewater earthquake, indicates that some faults of the WFZ may be active. Recent studies (Mann, 1993) have revealed evidence for Quaternary motion on the Umapine Fault, the southern boundary fault of the WFZ. Abrupt topographic relief, faceted spurs, and offset drainages also imply Quaternary motion along the northern boundary fault, the Wallula Gap Fault. A detailed study of exposures of the Wallula Gap Fault in stream gullies revealed a narrow zone of northwest-striking synthetic faults dipping steeply to the northeast. Horizontal slickenline on many of the bedrock surfaces indicate that the last motion was strike-slip, although drag folds and vertical displacement of basalt flows imply past normal motion. Although fault planes have yet to be observed cutting Quaternary sediments, clastic dikes of Pleistocene Missoula Flood slackwater sediments (Touchet beds) are found in both basalt bedrock and fault breccia. The location of these dikes near the fault and their similar orientations implies a genetic relationship. Vertical stratification of the dikes into alternating coarse- and fine-grained laminations indicates multiple injections.

  15. The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Haeussler, P.J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; Dawson, T.E.; Fletcher, H.; Hansen, R.; Harp, E.L.; Harris, R.A.; Hill, D.P.; Hreinsdottir, S.; Jibson, R.W.; Jones, L.M.; Kayen, R.; Keefer, D.K.; Larsen, C.F.; Moran, S.C.; Personius, S.F.; Plafker, G.; Sherrod, B.; Sieh, K.; Sitar, N.; Wallace, W.K.

    2003-01-01

    The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

  16. Neotectonic deformations in SE Sicily: The Ispica fault, evidence of late miocene-pleistocene decoupled wrenching within the central mediterranean stress regime

    NASA Astrophysics Data System (ADS)

    Grasso, Mario; Reuther, Claus-Dieter; Tortorici, Luigi

    1992-10-01

    The Ispica fault is a NE-SW trending dextral transpression zone on the Hyblean Plateau in SE Sicily. Drag folds in Late Miocene to Pleistocene sediments within a narrow bend along the fault indicate neotectonic activity. The Ispica fault is part of a continental transform zone connecting the recent Pantelleria Rift system between Sicily and Tunisia with the eastern Sicilian active thrust belt (Gela Nappe). On the Hyblean foreland, regional fold- and thrust-planes in Upper Miocene-Pleistocene strata are parallel to the Ispica fault and reflect SE-NW directed maximum horizontal compression corresponding to the central Mediterranean stress regime. The contemporaneity of parallel strike-slip movements along the Ispica fault and the formation of regional parallel folds suggests decoupled wrenching for the Ispica fault.

  17. A neotectonic tour of the Death Valley fault zone, Inyo County

    SciTech Connect

    Wills, C.J.

    1989-09-01

    The Death Valley fault zone has recently been evaluated by the Division of Mines and Geology for zoning under the Alquist-Priolo Special Studies Zones Act of 1972. This act requires the State Geologist to zone for special studies those faults that are sufficiently active and well defined as to constitute a potential hazard to structures from surface faulting or fault creep. The Death Valley fault zone is part of a system of faults that extends over 180 miles (300 km) from Fish Lake Valley in Nevada to the Garlock fault. The northern part of this system, the Northern Death Valley-Furnace Creek fault zone, is an active right-lateral fault zone. The southern part of the system, the Death Valley fault zone, is a right-lateral oblique-slip fault between Furnace Creek and Shoreline Butte. From Shoreline Butte to the Garlock fault, it is a right-lateral strike-slip fault. Landforms along this fault indicate that it is the source of many earthquakes and that it has been active in Holocene time. The heights of the scarps and magnitude of the smallest right-lateral offsets (4 feet; 1.2 m) suggest that the most recent of these events was M 6.5 or larger. The freshness of the geomorphic features and the youth of the offset materials suggest that event occurred late in the Holocene, and that multiple Holocene earthquakes have occurred.

  18. The Channel Islands Thrust Fault, Southern California: Structure at the Juncture Between the Western Transverse Ranges and the Continental Borderland

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Langenheim, V. E.

    2004-12-01

    Potential-field data over the northern Channel Islands and Santa Barbara basin and seismic reflection data collected near these islands show the crustal structure near the tip of the Channel Island thrust fault. This fault dips north to underlie the Santa Barbara basin and is part of the regional fault system that separates the western Transverse Ranges from the California Continental Borderland. Our investigation focuses on Santa Cruz Island, where a local exposure of mainly Jurassic ophiolitic basement rocks includes the Willows Plutonic Complex. These mafic and ultramafic igneous rocks produce strong magnetic and gravity anomalies, showing that fragments of the Willows Plutonic Complex have been carried northwestward into or below the basin by sinistral translation of hanging-wall blocks in the thrust system. The potential-field anomalies indicate a cumulative left-lateral offset of about 20 km along what is probably the Santa Cruz Island fault. This fault is known from onshore trenching to be primarily a left-lateral strike-slip fault that was active during late Quaternary time. Seismic-reflection data show that where the Santa Cruz Island fault projects into the offshore a fault-bend fold deforms stratified rock in the Santa Barbara basin. Slip along this fault is partitioned into strike-slip and southwest-vergent reverse components. The Santa Cruz Island fault formed where structures of the California Borderland terminate to the northwest against the rocks that make up the northern Channel Islands. Structures developed at this termination may be similar to ones that formed where the Newport-Inglewood and the San Pedro Basin faults end to the northwest against the Santa Monica Mountains. These terminating faults pose a considerable earthquake hazard, and findings from the area of Santa Cruz Island may help elucidate this hazard.

  19. Activity on the multi-stranded Central Branch of the North Anatolian Fault along the southern shelf of the Marmara Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Okay, S.; Sorlien, C. C.; Cifci, G.; Cormier, M. H.; Dondurur, D.; Steckler, M. S.; Barin, B.; Seeber, L.

    2014-12-01

    possible. Alternatively, the late Quaternary activity could represent reactivation. High-resolution CHIRP seismic profiles confirm that tilting is ongoing and that most of the faults offset the Last Glacial Maximum unconformity. Keywords: Marmara Sea, North Anatolian Fault; central branch; strike slip fault; erosional unconformity, seismic hazard; transform fault;

  20. Fault kinematics of the Magallanes-Fagnano fault system, southern Chile; an example of diffuse strain and sinistral transtension along a continental transform margin

    NASA Astrophysics Data System (ADS)

    Betka, Paul; Klepeis, Keith; Mosher, Sharon

    2016-04-01

    A system of left-lateral faults that separates the South American and Scotia plates, known as the Magallanes-Fagnano fault system, defines the modern tectonic setting of the southernmost Andes and is superimposed on the Late Cretaceous - Paleogene Patagonian fold-thrust belt. Fault kinematic data and crosscutting relationships from populations of thrust, strike-slip and normal faults from Peninsula Brunswick adjacent to the Magallanes-Fagnano fault system, presented herein, show kinematic and temporal relationships between thrust faults and sets of younger strike-slip and normal faults. Thrust fault kinematics are homogeneous in the study area and record subhorizontal northeast-directed shortening. Strike-slip faults record east-northeast-directed horizontal shortening, west-northwest-directed horizontal extension and form Riedel and P-shear geometries compatible with left-lateral slip on the main splay of the Magallanes-Fagnano fault system. Normal faults record north-south trending extension that is compatible with the strike-slip faults. The study area occurs in a releasing step-over between overlapping segments of the Magallanes-Fagnano fault system, which localized on antecedent sutures between basement terranes with differing geological origin. Results are consistent with regional tectonic models that suggest sinistral shearing and transtension in the southernmost Andes was contemporaneous with the onset of seafloor spreading in the Western Scotia Sea during the Early Miocene.

  1. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  2. Fault Geometry and Active Stress from Earthquakes and Field Geology Data Analysis: The Colfiorito 1997 and L'Aquila 2009 Cases (Central Italy)

    NASA Astrophysics Data System (ADS)

    Ferrarini, F.; Lavecchia, G.; de Nardis, R.; Brozzetti, F.

    2015-05-01

    The fault segmentation pattern and the regional stress tensor acting since the Early Quaternary in the intra-Apennine area of central Italy was constrained by integrating two large geological and seismological fault-slip data sets collected for the areas struck by the two most energetic seismic sequences of the last 15 years (Colfiorito 1997, M w 6.0 and L'Aquila 2009, M w 6.1). The integrated analysis of the earthquake fault association and the reconstruction of the 3D shape of the seismogenic sources were exploited to identify homogeneous seismogenic volumes associated with subsets of geological and focal mechanism data. The independent analysis of geological and seismological data allowed us to observe and highlight similarities between the attitude of the long-term (e.g., Quaternary) and the instantaneous present-day (seismogenic) extensional deformations and to reveal their substantial coaxiality. Coherently, with the results from the kinematic analysis, the stress field inversion also noted a prevailing tensional seismotectonic regime associated with a subhorizontal, NE-SW, minimum stress axis. A minor, very local, and shallow (<5 km) strike-slip component of the stress field was observed in the Colfiorito sector, where an inherited N-S oriented right-lateral fault was reactivated with sinistral kinematics. Instead, an almost total absence of strike-slip solutions was observed in the L'Aquila area. These results do not agree with those indicating Quaternary regional strike-slip regimes or wide areas characterized by strike-slip deformation during the Colfiorito and L'Aquila seismic sequences.

  3. Fault Geometry and Active Stress from Earthquakes and Field Geology Data Analysis: The Colfiorito 1997 and L'Aquila 2009 Cases (Central Italy)

    NASA Astrophysics Data System (ADS)

    Ferrarini, F.; Lavecchia, G.; de Nardis, R.; Brozzetti, F.

    2014-09-01

    The fault segmentation pattern and the regional stress tensor acting since the Early Quaternary in the intra-Apennine area of central Italy was constrained by integrating two large geological and seismological fault-slip data sets collected for the areas struck by the two most energetic seismic sequences of the last 15 years (Colfiorito 1997, M w 6.0 and L'Aquila 2009, M w 6.1). The integrated analysis of the earthquake fault association and the reconstruction of the 3D shape of the seismogenic sources were exploited to identify homogeneous seismogenic volumes associated with subsets of geological and focal mechanism data. The independent analysis of geological and seismological data allowed us to observe and highlight similarities between the attitude of the long-term (e.g., Quaternary) and the instantaneous present-day (seismogenic) extensional deformations and to reveal their substantial coaxiality. Coherently, with the results from the kinematic analysis, the stress field inversion also noted a prevailing tensional seismotectonic regime associated with a subhorizontal, NE-SW, minimum stress axis. A minor, very local, and shallow (<5 km) strike-slip component of the stress field was observed in the Colfiorito sector, where an inherited N-S oriented right-lateral fault was reactivated with sinistral kinematics. Instead, an almost total absence of strike-slip solutions was observed in the L'Aquila area. These results do not agree with those indicating Quaternary regional strike-slip regimes or wide areas characterized by strike-slip deformation during the Colfiorito and L'Aquila seismic sequences.

  4. Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea)

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-André; Dominguez, Stephane; Lepinay, Bernard Mercier; Pinheiro, Luis; Gallais, Flora; Babonneau, Nathalie; Cattaneo, Antonio; Le Faou, Yann; Barreca, Giovanni; Micallef, Aaron; Rovere, Marzia

    2016-01-01

    Subduction of a narrow slab of oceanic lithosphere beneath a tightly curved orogenic arc requires the presence of at least one lithospheric scale tear fault. While the Calabrian subduction beneath southern Italy is considered to be the type example of this geodynamic setting, the geometry, kinematics and surface expression of the associated lateral, slab tear fault offshore eastern Sicily remain controversial. Results from a new marine geophysical survey conducted in the Ionian Sea, using high-resolution bathymetry and seismic profiling reveal active faulting at the seafloor within a 140 km long, two-branched fault system near Alfeo Seamount. The previously unidentified 60 km long NW trending North Alfeo Fault system shows primarily strike-slip kinematics as indicated by the morphology and steep-dipping transpressional and transtensional faults. Available earthquake focal mechanisms indicate dextral strike-slip motion along this fault segment. The 80 km long SSE trending South Alfeo fault system is expressed by one or two steeply dipping normal faults, bounding the western side of a 500+ m thick, 5 km wide, elongate, syntectonic Plio-Quaternary sedimentary basin. Both branches of the fault system are mechanically capable of generating magnitude 6-7 earthquakes like those that struck eastern Sicily in 1169, 1542, and 1693.

  5. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Alvarado, Alexandra; Nocquet, Jean-Mathieu; Lagreulet, Sarah; Segovia, Monica; Font, Yvonne; Yepes, Hugo; Mothes, Patricia; Rolandone, Frédérique; Jarrin, Pierre; Quidelleur, Xavier

    2014-05-01

    The Quito Fault System (QFS) is an intraplate reverse fault zone, that extend over 60km along the Interandean Depression in northern Ecuador. Multidisciplinary studies coherently support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the NS segmented, en-echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited NS direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected, at depth, to inactive suture to the west. A new GPS dataset indicates active shortening rates for Quito blind thrust of up to 4mm/yr, wich decreases northwards along the fold system as it connects to the strike slip Guayllabamba Fault System. The proximity of these structures to the densely-populated Quito region underlines the need of additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  6. Origin and model of transform faults in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Sanzhong; Jiang, Suhua; Suo, Yanhui; Guo, Lingli; Wang, Yongming; Zhang, Huixuan

    2017-03-01

    Transform faults in back-arc basins are the key to revealing the opening and development of marginal seas. The Okinawa Trough (OT) represents an incipient and active back-arc or marginal sea basin oriented in a general NE-SW direction. To determine the strikes and spatial distribution of transform faults in the OT, this paper dissects the NW- and NNE-SN-trending fault patterns on the basis of seismic profiles, gravity anomalies and region geological data. There are three main NW-trending transpressional faults in the OT, which are the seaward propagation of NW-trending faults in the East China Continent. The NNE-SN-trending faults with right-stepping distribution behave as right-lateral shearing. The strike-slip pull-apart process or transtensional faulting triggered the back-arc rifting or extension, and these faults evolved into transform faults with the emergence of oceanic crust. Thus, the transform fault patterns are inherited from pre-existing oblique transtensional faults at the offsets between rifting segments. Therefore, the OT performs the oblique spreading mechanism similar to nascent oceans such as the Red Sea and Gulf of Aden.

  7. Naval weapons center active fault map series

    NASA Astrophysics Data System (ADS)

    Roquemore, G. R.; Zellmer, J. T.

    1987-08-01

    The NWC Active Fault Map Series shows the locations of active faults and features indicative of active faulting within much of Indian Wells Valley and portions of the Randsburg Wash/Mojave B test range areas of the Naval Weapons Center. Map annotations are used extensively to identify criteria employed in identifying the fault offsets, and to present other valuable data. All of the mapped faults show evidence of having moved during about the last 12,500 years or represent geologically young faults that occur within seismic gaps. Only faults that offset the surface or show other evidence of surface deformation were mapped. A portion of the City of Ridgecrest is recommended as being a Seismic Hazard Special Studies Zone in which detailed earthquake hazard studies should be required.

  8. The Pombal granite pluton: Magnetic fabric, emplacement and relationships with the Brasiliano strike-slip setting of NE Brazil (Paraiba State)

    NASA Astrophysics Data System (ADS)

    Archanjo, C. J.; Bouchez, J.-L.; Corsini, M.; Vauchez, A.

    1994-03-01

    The Pombal pluton (500 km 2), a suite of diorite, syenite and porphyritic granite bodies, is here used to constrain kinematics of Brasiliano-age tectonic episodes in northeast Brazil. The pluton intrudes high-grade to migmatitic gneiss forming the western basement of the Seridó belt, and is located at the intersection between two sets of continental-scale dextral strike-slip shear zones. The northern set of shear zone strikes NE-SW and branches, southwards, into the E-W Patos mega-shear zone. A detailed microstructural and low-field magnetic susceptibility study was performed to unravel the relationships between solid-state deformation in the country rocks and magma emplacement. Porphyritic granite and syenite have quite high magnetic susceptibilities (10 -3-10 -2 SI units) indicative of magnetite as the principal carrier of susceptibility. The magnetic fabric is remarkably homogeneous in orientation throughout the pluton. It is characterized by a shape-preferred alignment of magnetite, itself parallel to the shape fabric of mainly biotite (±amphibole), i.e. to the magmatic fabric. Even close to the contact with the high-temperature mylonites of the Patos shear zone, south of Pombal, no imprint of the E-W-trending structures is observed in the fabrics of either the granite or the host rocks. Granite emplacement and its internal fabric development is concluded to be independent of the movement of the Patos shear zone. In the southwestern border of the pluton, a low-dip foliation bearing a NE-SW-striking lineation is shared in both the magmatic fabric of the pluton and the solid-state fabric. Farther to the north, approaching the NE-SW strike-slip shear zone, the magmatic fabric is characterized by a steeply dipping NE-striking foliation carrying a subhorizontal lineation. Transition from low to steep dips of the planar fabrics is progressive. Two models are proposed for emplacement of the Pombal pluton. One considers magma injection during an early episode of

  9. Structural Evolution of the India-Arabia Plate Boundary from Miocene to Present-Day (NW Indian Ocean) and Comparison with the Dead Sea Fault (Eastern Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Huchon, P.; Chamot Rooke, N.; Fournier, M.; Delescluse, M.; Ben Avraham, Z.; Ten Brink, U. S.

    2014-12-01

    Arabia is bounded by the Dead Sea Transform (DST) to the west and by the Owen Fracture Zone (OFZ) to the east. These present-day major strike-slip fault systems activated during the Plio-Pleistocene, which contrasts with the age of inception of strike-slip motion, assumed to begin around 13-18 Ma for the DST and around 20 Ma at the edge of the Owen-Murray Ridge (OMR) for the India-Arabia plate boundary. This discrepancy between the age of the active strike-slip systems and the age of inception of strike-slip motion raises the question of the kinematic driver for the transition between successive generations of strike-slip faults. Using a recent mutibeam and seismic dataset crossing the OFZ and the OMR, we provide a new geodynamic framework for the Miocene to present-day structural evolution of the India-Arabia plate boundary, and highlight some similarities with the structural evolution of the DST. We first document a Late Miocene episode of uplift of the OMR uplift along the Miocene India-Arabia plate boundary. The onset of this uplift is coeval with a plate reorganization event marked by the onset of intra-plate deformation in the Central Indian Ocean. The OFZ emplaced around 3 Ma, with major pull-apart basins opening (20°N Basin, Dalrymple Trough) dated at 2.4 Ma by far-field correlation with ODP Sites. The opening of pull-apart basins is coeval with the last structural reorganization of the Makran accretionnary wedge, marked by the regional M-unconformity, and with a major intensification of the Indian monsoon. A Late Miocene episode of folding is also recognized at the Lebanon ranges prior to the onset of the present-day DST, which occurred in the Late Pliocene-Early Pleistocene. The similarities between the geological history of the India-Arabia plate boundary and the DST in the Late Miocene and the Late Pliocene-Early Pleistocene suggest that both plate boundaries recorded the same kinematic changes. Late Miocene (i.e. Tortonian) deformation is widely

  10. Late Pliocene To Pleistocene Tectonic Activity In SW Portugal: The S.Teotónio-Aljezur- Sinceira Fault System And Evidence For Coastal Uplift

    NASA Astrophysics Data System (ADS)

    Figueiredo, P.; Cabral, J.; Rockwell, T.

    2008-12-01

    mainly by Mesozoic limestones and exhibits a generally lower topography accented by karstic morphology. In both areas, little work has been done to map the sequence of marine terraces, nor to determine their ages, although the majority of them are likely Pleistocene. The highest raised marine deposits reach an altitude of 370 m ~13 km inland and may be as old as Pliocene in age. Inland, the Säo Teotónio-Aljezur-Sinceira fault system (STASFS) extends NNE-SSW for 50 km, parallel and close to the southwest Portuguese coast, and controls the development of several small Cenozoic tectonic basins. It comprises onshore faults which may relate to the ongoing plate boundary deformation. This fault system expresses primarily sinistral strike-slip with a minor reverse component. Four cenozoic strike-slip basins occur along the STASFS, generally with lengths of less than 5 km and a maximum width of 1.5 km, filled with Miocene to Pleistocene sediments. In some areas, fault-related post-Pliocene vertical displacements of up to 100 m may have occurred, but generally they only reach a few tens of meters. This coastal region is therefore particularly appropriate for establishing the offshore-onshore link through a detailed neotectonic study of the active faults, including exploration with paleoseismological techniques, and the vertical deformation field using marine terraces as a reference frame.

  11. Analysis of the impact of fault mechanism radiation patterns on macroseismic fields in the epicentral area of 1998 and 2004 Krn Mountains earthquakes (NW Slovenia).

    PubMed

    Gosar, Andrej

    2014-01-01

    Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse

  12. Microseismicity at the North Anatolian Fault in the Sea of Marmara offshore Istanbul, NW Turkey

    USGS Publications Warehouse

    Bulut, Fatih; Bohnhoff, Marco; Ellsworth, William L.; Aktar, Mustafa; Dresen, Georg

    2009-01-01

    The North Anatolian Fault Zone (NAFZ) below the Sea of Marmara forms a “seismic gap” where a major earthquake is expected to occur in the near future. This segment of the fault lies between the 1912 Ganos and 1999 İzmit ruptures and is the only NAFZ segment that has not ruptured since 1766. To monitor the microseismic activity at the main fault branch offshore of Istanbul below the Çınarcık Basin, a permanent seismic array (PIRES) was installed on the two outermost Prince Islands, Yassiada and Sivriada, at a few kilometers distance to the fault. In addition, a temporary network of ocean bottom seismometers was deployed throughout the Çınarcık Basin. Slowness vectors are determined combining waveform cross correlation and P wave polarization. We jointly invert azimuth and traveltime observations for hypocenter determination and apply a bootstrap resampling technique to quantify the location precision. We observe seismicity rates of 20 events per month for M < 2.5 along the basin. The spatial distribution of hypocenters suggests that the two major fault branches bounding the depocenter below the Çınarcık Basin merge to one single master fault below ∼17 km depth. On the basis of a cross-correlation technique we group closely spaced earthquakes and determine composite focal mechanisms implementing recordings of surrounding permanent land stations. Fault plane solutions have a predominant right-lateral strike-slip mechanism, indicating that normal faulting along this part of the NAFZ plays a minor role. Toward the west we observe increasing components of thrust faulting. This supports the model of NW trending, dextral strike-slip motion along the northern and main branch of the NAFZ below the eastern Sea of Marmara.

  13. Illuminating Northern California's Active Faults

    NASA Astrophysics Data System (ADS)

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramón; Furlong, Kevin P.; Phillips, David A.

    2009-02-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google Earth™ and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2).

  14. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1987-01-01

    The primary effort in this study during the past year has been directed along two separate lines: (1) expanding finite element models to include the entire Anatolian plate, the Aegean Sea and the Northeastern Mediterranean Sea, and (2) investigating the relationship between fault geometry and earthquake activity for the North Anatolian and similar strike-slip faults (e.g., San Andreas Fault). Both efforts are designed to provide an improved basis for interpreting the Crustal Dynamics measurements NASA has planned for this region. The initial phases of both investigations have been completed and the results are being prepared for publication. These investigations are described briefly.

  15. Extensional step-over between the Zhongdian and Red River faults: kinematics of the Daju normal fault constrained by cosmogenic dating of the Yangtze terraces (Yulong Shan, Yunnan)

    NASA Astrophysics Data System (ADS)

    van der Woerd, J.; Perrineau, A.; Gaudemer, Y.; Leloup, P.-H.; Liu-Zeng, J.; Barrier, L.; Thuizat, R.

    2012-04-01

    Extension in western Yunnan, southeastern Tibet, is limited by two dextral strike-slip faults, the Zhongdian and Red River faults, to the north and south, respectively, and is characterized by N-S directed normal faults and basins. In the northwestern corner of this large extensional step-over, the Yangtze River crosses the Daju normal fault at the foot of the Yulong Shan. Due to uplift of the Yulong Shan, the Yangtze carved the huge Huxiao Jia (Tiger Leap) Gorges (˜3500 m deep) and abandoned sets of fluvial terraces across the fault zone and in the Daju basin to the north. Cosmogenic dating of blocks sampled on top of the terraces provide ages ranging from 8 to 30 ka. In the hanging wall basin to the north, the terraces may have been abandoned after the breach of a natural dam formed in the river (moraine or landslide) during the last glacial period. The average incision rate of the river in the basin is about 5.9 mm/yr, the vertical slip-rate on the Daju fault is 4.9±1.3 mm/yr, thus implying an incision rate of the river inside the gorge reaching about 11 mm/year. These rates may explain the exceptional size and steepness of the gorge. These results show that active faulting plays a major role in shaping the present relief of this region and that recent strain changes involve movement along the largest strike-slip faults of the region, in accordance with models implying large-scale block extrusion.

  16. Approximate active fault detection and control

    NASA Astrophysics Data System (ADS)

    Škach, Jan; Punčochář, Ivo; Šimandl, Miroslav

    2014-12-01

    This paper deals with approximate active fault detection and control for nonlinear discrete-time stochastic systems over an infinite time horizon. Multiple model framework is used to represent fault-free and finitely many faulty models. An imperfect state information problem is reformulated using a hyper-state and dynamic programming is applied to solve the problem numerically. The proposed active fault detector and controller is illustrated in a numerical example of an air handling unit.

  17. The North Anatolian Fault in the Region of Iznik (Turkey) : Geomorphological Evolution and Archeoseismicity

    NASA Astrophysics Data System (ADS)

    Benjelloun, Y. N.; de Sigoyer, J.; Sahin, M.; Garambois, S.; Dessales, H.

    2015-12-01

    This work based on a pluridisciplinary approach coupling earth sciences and archaeology aims to study the recent tectonics along Iznik Lake, which follows the North Anatolian fault middle strand (NAFMS), south of the Marmara Sea in Turkey. Today this strand records a low seismicity and presents a lower slip rate (<5 mm/yr) than the northern strand . However, historical texts suggest a significant earthquake hazard over the last two millennia in this area. Data are needed to attest for the tectonic origin of the lake and the precise location of the faults. Long-term slip rates and stress accumulation on these faults zone are also unknown, which makes it difficult to estimate seismic hazard. The main goal of this work is to collect new data on the past activity of the NAFMS and to estimate slip rates at different time scales. For this, we observe geomorphic and archeological markers of past deformation. The main fault zones were identified using a high resolution DEM (<2m) derived from Pleiades images, and confirmed on the field. These faults intersect and deform geomorphic features, such as terraces, paleoshorelines, alluvial fans.... Terraces deposited by Iznik Lake during high stands, which were tilted and crossed by several faults, were sampled for dating in order to constrain the normal and strike-slip Quaternary slip rate of the faults and their influence on the lake formation. The valley of Kirandere river east of Iznik presents many deflected and offset rivers and ridges, that will be used to constrain a Holocene strike-slip rate. To document the historical activity of the NAFMS around Iznik, we have identified ancient buildings that underwent successive damages and repairs and characterized them through an archeoseismological approach. We particularly studied the roman aqueduct of Iznik which is cut and deformed by a small fault.

  18. Selective reverse-reactivation of normal faults, and deformation around reverse-reactivated faults in the Mesozoic of the Somerset coast

    NASA Astrophysics Data System (ADS)

    Kelly, P. G.; Peacock, D. C. P.; Sanderson, D. J.; McGurk, A. C.

    1999-05-01

    Normal faults exposed in the Triassic-Jurassic limestones and shales of the Somerset coast were formed during the Mesozoic development of the Bristol Channel Basin. Reverse-reactivation of some of these normal faults occurred during Late Cretaceous to Early Tertiary north-south contraction. The contraction is also evident from thrusts and conjugate strike-slip faults. Preferential reactivation of the normal faults is attributed to: (1) decreased fault-plane friction, (2) domino block rotation, (3) displacement magnitude, and (4) fault connectivity. The geometries of overlapping and underlapping zones in reactivated fault zones are dependent on the existing structural geometry. Two distinctive styles of displacement accommodation occur between reverse-reactivated normal faults: (1) formation of a network of strike-slip faults, conjugate about NNE-SSW, and (2) oblique steeply-dipping reverse faults. Interaction between strike-slip and an existing fault is dependent on whether the normal fault was reactivated. The range of structures related to the north-south contraction has been incorporated into a single deformation model, controlled by the northwards movement of the hanging wall of the Quantock's Head Fault. Pure dip-slip movement occurred in the centre of its curved fault trace, with a sinistral component at the western tip, and a dextral component of displacement and strike-slip block rotations occurred at the eastern tip. Shortening of these blocks was achieved through development of a strike-slip fault network and NW-striking thrusts. In an underlap zone, loading of the footwall by the hanging wall block modified the local stress system to allow formation of oblique, steeply-dipping reverse faults.

  19. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Alvarado, A.; Audin, L.; Nocquet, J. M.; Lagreulet, S.; Segovia, M.; Font, Y.; Lamarque, G.; Yepes, H.; Mothes, P.; Rolandone, F.; Jarrín, P.; Quidelleur, X.

    2014-02-01

    The Quito Fault System (QFS) extends over 60 km along the Interandean Depression in northern Ecuador. Multidisciplinary studies support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the N-S segmented, en echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active, and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited N-S direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected at depth to inactive suture to the west. A new GPS data set indicates active shortening rates for Quito blind thrust of up to 4 mm/yr, which decreases northward along the fold system as it connects to the strike-slip Guayllabamba Fault System. The proximity of these structures to the densely populated Quito region highlights the need for additional tectonic studies in these regions of Ecuador to generate further hazard assessments.