Sample records for active surface processes

  1. High surface area carbon and process for its production

    DOEpatents

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  2. Mechanics of active surfaces

    NASA Astrophysics Data System (ADS)

    Salbreux, Guillaume; Jülicher, Frank

    2017-09-01

    We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.

  3. Organic cloud condensation nuclei: the effect of phase, surface tension, trace soluble species, and oxidative processing on particle activation.

    NASA Astrophysics Data System (ADS)

    Broekhuizen, K. E.; Thornberry, T.; Abbatt, J. P.

    2003-12-01

    The ability of organic aerosols to act as cloud condensation nuclei (CCN) will be discussed. A variety of laboratory experiments will be presented which address several key questions concerning organic particle activation. Does the particle phase impact activation? How does surface tension play a role and can a trace amount of a surface active species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of organic aerosols be enhanced through oxidative processing? To systematically address these issues, the CCN activity of various diacids such as oxalic, malonic, succinic, adipic and azelaic acid have been studied, as well as the addition of trace amounts of nonanoic acid and ammonium sulfate to examine the roles of surface active and soluble species, respectively. The first examination of the role of oxidative processing on CCN activity has involved investigating the effect of ozone oxidation on the activity of oleic acid particles.

  4. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  5. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  6. Report of the panel on the land surface: Process of change, section 5

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.

    1991-01-01

    The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.

  7. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  8. Strong catalytic activity of iron nanoparticles on the surfaces of reduced olivine

    NASA Astrophysics Data System (ADS)

    Tucker, William C.; Quadery, Abrar H.; Schulte, Alfons; Blair, Richard G.; Kaden, William E.; Schelling, Patrick K.; Britt, Daniel T.

    2018-01-01

    It is demonstrated that olivine powders heated to subsolidus temperatures in reducing conditions can develop significant concentrations of 10-50 nm diameter Fe nanoparticles on grain surfaces and that these display strong catalytic activity not observed in powders without Fe nanoparticles. Reduced surfaces were exposed to NH3, CO, and H2, volatiles that may be present on the surfaces of comet and volatile-rich asteroids. In the case of NH3 exposure, rapid decomposition was observed. When exposed to a mixture of CO and H2, significant coking of the mineral surfaces occurred. Analysis of the mineral grains after reaction indicated primarily the presence of graphene or graphitic carbon. The results demonstrate that strong chemical activity can be expected at powders that contain nanophase Fe particles. This suggests space-weathered mineral surfaces may play an important role in the synthesis and processing of organic species. This processing may be part of the weathering processes of volatile-rich but atmosphereless solar-system bodies.

  9. Mineralogy and evolution of the surface of Mars: A review

    NASA Astrophysics Data System (ADS)

    Chevrier, V.; Mathé, P. E.

    2007-02-01

    We review the mineralogy of the surface of Mars, using data from various sources, including in situ characterisations performed by landers, remote observations from orbit, and studies of the SNC meteorites. We also discuss the possible alteration processes and the factor controlling them, and try to relate the mineralogical observations to the chemical evolution of the surface materials on Mars in order to identify the dominant process(es). Then we try to describe a possible chemical and mineralogical evolution of the surface materials, resulting from weathering driven by the abundance and activity of water. Even if weathering is the dominant process responsible for the surface evolution, all observations suggest that it is strongly affected locally in time and space by various other processes including hydrothermalism, volcanism, evaporites, meteoritic impacts and aeolian erosion. Nevertheless, the observed phases on the surface of Mars globally depend on the evolution of the weathering conditions. This hypothesis, if confirmed, could give a new view of the evolution of the martian surface, roughly in three steps. The first would correspond to clay-type weathering process in the Noachian, under a probable thick H 2O/CO 2-rich atmosphere. Then, during the Hesperian when water became scarcer and its activity sporadic, linked to volcanic activity, sulfate-type acidic weathering process would have been predominant. The third period would be like today, a very slow weathering by strongly oxidising agents (H 2O 2, O 2) in cold and dry conditions, through solid-gas or solid-films of water resulting frost-thaw and/or acid fog. This would favour poorly crystalline phases, mainly iron (oxy) hydroxides. But in this scenario many questions remain about the transition between these processes, and about the factors affecting the evolution of the weathering process.

  10. Study on photoemission surface of varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang

    2014-09-01

    For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.

  11. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  12. A single-step aerosol process for in-situ surface modification of nanoparticles: Preparation of stable aqueous nanoparticle suspensions.

    PubMed

    Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra

    2016-02-15

    Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process.

    PubMed

    Kante, Karifala; Nieto-Delgado, Cesar; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2012-01-30

    Activated carbons were prepared from spent ground coffee. Zinc chloride was used as an activation agent. The obtained materials were used as a media for separation of hydrogen sulfide from air at ambient conditions. The materials were characterized using adsorption of nitrogen, elemental analysis, SEM, FTIR, and thermal analysis. Surface features of the carbons depend on the amount of an activation agent used. Even though the residual inorganic matter takes part in the H(2)S retention via salt formation, the porous surface of carbons governs the separation process. The chemical activation method chosen resulted in formation of large volume of pores with sizes between 10 and 30Å, optimal for water and hydrogen sulfide adsorption. Even though the activation process can be optimized/changed, the presence of nitrogen in the precursor (caffeine) is a significant asset of that specific organic waste. Nitrogen functional groups play a catalytic role in hydrogen sulfide oxidation. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  15. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection.

    PubMed

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Jesse, Katrin; von Baum, Heike; Ostermeyer, Christiane

    2014-01-21

    Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice.

  16. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection

    PubMed Central

    2014-01-01

    Background Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Methods Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. Results 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Conclusions Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice. PMID:24447780

  17. Surface activation of dyed fabric for cellulase treatment.

    PubMed

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface modification of food contact materials for processing and packaging applications

    NASA Astrophysics Data System (ADS)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.

  19. Saturn Magnetospheric Impact on Surface Molecular Chemistry and Astrobiological Potential of Enceladus

    NASA Technical Reports Server (NTRS)

    Cooper, Paul D.; Cooper, John F.; Sittler, Edward C.; Burger, Matthew H.; Sturner, Steven J.; Rymer, Abigail M.

    2008-01-01

    The active south polar surface of Enceladus is exposed to strong chemical processing by direct interaction with charged plasma and energetic particles in the local magnetospheric environment of this icy moon. Chemical oxidation activity is suggested by detection of H202 at the surface in this region and less directly by substantial presence of C02, CO, and N2 in the plume gases. Molecular composition of the uppermost surface, including ejecta from plume activity, is radiolytically transformed mostly by penetrating energetic electrons with lesser effects from more depleted populations of energetic protons. The main sources of molecular plasma ions and E-ring dust grains in the magnetospheric environment are the cryovolcanic plume emissions from Enceladus. These molecular ions and the dust grains are chemically processed by magnetospheric interactions that further impact surface chemistry on return to Enceladus. For example, H20 neutrals dominating the emitted plume gas return to the surface mostly as H30+ ions after magnetospheric processing. Surface oxidant loading is further increased by return of radiolytically processed ice grains from the E-ring. Plume frost deposition and micrometeoroid gardening protect some fraction of newly produced molecular species from destruction by further irradiation. The evident horizontal and vertical mobility of surface ices in the south polar region drive mixing of these processed materials into the moon interior with potential impacts on deep ice molecular chemistry and plume gas production. Similarly as suggested previously for Europa, the externally driven source of radiolytic oxidants could affect evolution of life in any subsurface liquid water environments of Enceladus.

  20. U.S. Geological Survey quality-assurance plan for surface-water activities in Kansas, 2015

    USGS Publications Warehouse

    Painter, Colin C.; Loving, Brian L.

    2015-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kansas Water Science Center (KSWSC) of the U.S. Geological Survey (USGS) for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  1. When visual perception causes feeling: enhanced cross-modal processing in grapheme-color synesthesia.

    PubMed

    Weiss, Peter H; Zilles, Karl; Fink, Gereon R

    2005-12-01

    In synesthesia, stimulation of one sensory modality (e.g., hearing) triggers a percept in another, non-stimulated sensory modality (e.g., vision). Likewise, perception of a form (e.g., a letter) may induce a color percept (i.e., grapheme-color synesthesia). To date, the neural mechanisms underlying synesthesia remain to be elucidated. We disclosed by fMRI, while controlling for surface color processing, enhanced activity in the left intraparietal cortex during the experience of grapheme-color synesthesia (n = 9). In contrast, the perception of surface color per se activated the color centers in the fusiform gyrus bilaterally. The data support theoretical accounts that grapheme-color synesthesia may originate from enhanced cross-modal binding of form and color. A mismatch of surface color and grapheme induced synesthetically felt color additionally activated the left dorsolateral prefrontal cortex (DLPFC). This suggests that cognitive control processes become active to resolve the perceptual conflict resulting from synesthesia.

  2. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  3. Potential Active Processes in Porter Crater

    NASA Image and Video Library

    2015-07-15

    The extended-mission status of the Mars Reconnaissance Orbiter and the HiRISE camera has greatly increased our understanding of numerous active processes occurring on Mars. By taking carefully planned repeat images of surface, we now have an important record of how the surface evolves for a maximum of 5 Mars years. This image shows the central peak in Porter Crater. Although there are no repeat images here we can infer several active geologic processes, based on morphologic evidence and lessons learned from past well-monitored sites. Shallow gullies are located on the south and east facing slopes of the central peak. These features might have been carved by volatiles, such as carbon dioxide frost, sometime in the recent geologic past. Meanwhile on the northern slopes are several smaller slope features that have a morphology hinting at recurring slope lineae (RSL). Alternatively, these features could be the remnants of past active gullies. Several more HiRISE images would be needed to characterize their behavior and confirm their status as RSL (see "Recurring Slope Lineae in Equatorial Regions of Mars"). Southward on the slopes below the peak is a large dune field. Dunes show sharp crests with prominent ripples, both signs of actively migrating dunes. Also, we can see dust devil tracks crossing the nearby dusty surfaces and clear evidence for ongoing modification by swirling winds that persistently remove surface dust. Ongoing operations by HiRISE are dedicated to studying all of the active surface and atmospheric processes operating on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19853

  4. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-07-01

    Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c

  5. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa’s subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  6. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa's subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  7. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  8. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    PubMed

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  9. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U

    2006-08-01

    The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)

  10. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  11. fMRI evidence for areas that process surface gloss in the human visual cortex

    PubMed Central

    Sun, Hua-Chun; Ban, Hiroshi; Di Luca, Massimiliano; Welchman, Andrew E.

    2015-01-01

    Surface gloss is an important cue to the material properties of objects. Recent progress in the study of macaque’s brain has increased our understating of the areas involved in processing information about gloss, however the homologies with the human brain are not yet fully understood. Here we used human functional magnetic resonance imaging (fMRI) measurements to localize brain areas preferentially responding to glossy objects. We measured cortical activity for thirty-two rendered three-dimensional objects that had either Lambertian or specular surface properties. To control for differences in image structure, we overlaid a grid on the images and scrambled its cells. We found activations related to gloss in the posterior fusiform sulcus (pFs) and in area V3B/KO. Subsequent analysis with Granger causality mapping indicated that V3B/KO processes gloss information differently than pFs. Our results identify a small network of mid-level visual areas whose activity may be important in supporting the perception of surface gloss. PMID:25490434

  12. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy

    PubMed Central

    Zhang, Hua; Wang, Chen; Sun, Han-Lei; Fu, Gang; Chen, Shu; Zhang, Yue-Jiao; Chen, Bing-Hui; Anema, Jason R.; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2017-01-01

    Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity. By combining operando SHINERS with density functional theory calculations, we identify the working mechanisms for CO oxidation over PtFe and Pd nanocatalysts, which are typical low- and high-temperature catalysts, respectively. Active species, such as surface oxides, superoxide/peroxide species and Pd–C/Pt–C bonds are directly observed during the reactions. We demonstrate that in situ SHINERS can provide a deep understanding of the fundamental concepts of catalysis. PMID:28537269

  13. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  14. Archiving, processing, and disseminating ASTER products at the USGS EROS Data Center

    USGS Publications Warehouse

    Jones, B.; Tolk, B.; ,

    2002-01-01

    The U.S. Geological Survey EROS Data Center archives, processes, and disseminates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data products. The ASTER instrument is one of five sensors onboard the Earth Observing System's Terra satellite launched December 18, 1999. ASTER collects broad spectral coverage with high spatial resolution at near infrared, shortwave infrared, and thermal infrared wavelengths with ground resolutions of 15, 30, and 90 meters, respectively. The ASTER data are used in many ways to understand local and regional earth-surface processes. Applications include land-surface climatology, volcanology, hazards monitoring, geology, agronomy, land cover change, and hydrology. The ASTER data are available for purchase from the ASTER Ground Data System in Japan and from the Land Processes Distributed Active Archive Center in the United States, which receives level 1A and level 1B data from Japan on a routine basis. These products are archived and made available to the public within 48 hours of receipt. The level 1A and level 1B data are used to generate higher level products that include routine and on-demand decorrelation stretch, brightness temperature at the sensor, emissivity, surface reflectance, surface kinetic temperature, surface radiance, polar surface and cloud classification, and digital elevation models. This paper describes the processes and procedures used to archive, process, and disseminate standard and on-demand higher level ASTER products at the Land Processes Distributed Active Archive Center.

  15. Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Mastin, Mark C.

    2016-02-19

    This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.

  16. Adsorption of sodium dodecylbenzenesulfonate on activated carbons: effects of solution chemistry and presence of bacteria.

    PubMed

    Bautista-Toledo, M I; Méndez-Díaz, J D; Sánchez-Polo, M; Rivera-Utrilla, J; Ferro-García, M A

    2008-01-01

    The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.

  17. Photometric changes on Saturn's Titan: Evidence for active cryovolcanism

    USGS Publications Warehouse

    Nelson, R.M.; Kamp, L.W.; Lopes, R.M.C.; Matson, D.L.; Kirk, R.L.; Hapke, B.W.; Wall, S.D.; Boryta, M.D.; Leader, F.E.; Smythe, W.D.; Mitchell, K.L.; Baines, K.H.; Jaumann, R.; Sotin, Christophe; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Lunine, J.I.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Irwin, P.G.J.; Pearl, J.C.

    2009-01-01

    We report infrared spectrophotometric variability on the surface of Saturn's moon Titan detected in images returned by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Saturn Orbiter. The changes were observed at 7??S, 138??W and occurred between October 27, 2005 and January 15, 2006. After that date the surface was unchanged until the most recent observation, March 18, 2006. We previously reported spectrophotometric variability at another location (26??S, 78??W). Cassini Synthetic Aperture RADAR (SAR) images find that the surface morphology at both locations is consistent with surface flows possibly resulting from cryovolcanic activity (Wall et al., companion paper, this issue). The VIMS-reported time variability and SAR morphology results suggest that Titan currently exhibits intermittent surface changes consistent with present ongoing surface processes. We suggest that these processes involve material from Titan's interior being extruded or effiised and deposited on the surface, as might be expected from cryovolcanism. ?? 2009.

  18. Environmental Stress-mediated EPS Production Shape Microbial Activity on Various Hydrated Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.; Liu, L.; Chen, G.

    2016-12-01

    The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.

  19. Cell Surface Translocation of Annexin A2 Facilitates Glutamate-induced Extracellular Proteolysis*

    PubMed Central

    Valapala, Mallika; Maji, Sayantan; Borejdo, Julian; Vishwanatha, Jamboor K.

    2014-01-01

    Glutamate-induced elevation in intracellular Ca2+ has been implicated in excitotoxic cell death. Neurons respond to increased glutamate levels by activating an extracellular proteolytic cascade involving the components of the plasmin-plasminogen system. AnxA2 is a Ca2+-dependent phospholipid binding protein and serves as an extracellular proteolytic center by recruiting the tissue plasminogen activator and plasminogen and mediating the localized generation of plasmin. Ratiometric Ca2+ imaging and time-lapse confocal microscopy demonstrated glutamate-induced Ca2+ influx. We showed that glutamate translocated both endogenous and AnxA2-GFP to the cell surface in a process dependent on the activity of the NMDA receptor. Glutamate-induced translocation of AnxA2 is dependent on the phosphorylation of tyrosine 23 at the N terminus, and mutation of tyrosine 23 to a non-phosphomimetic variant inhibits the translocation process. The cell surface-translocated AnxA2 forms an active plasmin-generating complex, and this activity can be neutralized by a hexapeptide directed against the N terminus. These results suggest an involvement of AnxA2 in potentiating glutamate-induced cell death processes. PMID:24742684

  20. Aqueous processing of composite lithium ion electrode material

    DOEpatents

    Li, Jianlin; Armstrong, Beth L.; Daniel, Claus; Wood, III, David L.

    2017-06-20

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  1. Aqueous processing of composite lithium ion electrode material

    DOEpatents

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L

    2015-02-17

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  2. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  3. A theoretical model to determine the capacity performance of shape-specific electrodes

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  4. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.

    PubMed

    Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles

    2018-04-01

    This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.

    PubMed

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-02

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

  6. Surface cleaning for negative electron affinity GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang

    2012-10-01

    In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.

  7. Surface-Water Quality-Assurance Plan for the Tallahassee Office, U.S. Geological Survey

    USGS Publications Warehouse

    Tomlinson, Stewart A.

    2006-01-01

    This Tallahassee Office Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Tallahassee Office for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all Tallahassee Office personnel involved in surface-water data activities, and changes as the needs and requirements of the Tallahassee Office, Florida Integrated Science Center, and Water Discipline change. Reg-ular updates to this Plan represent an integral part of the quality-assurance process. In the Tallahassee Office, direct oversight and responsibility by the employee(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure high-quality data, analyses, reviews, and reports for cooperating agencies and the public.

  8. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  9. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species. Copyright © 2016. Published by Elsevier B.V.

  10. Rugometric and microtopographic inspection of teeth enamel

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Pereira, Pedro B.

    2013-06-01

    The roughness of teeth' enamel is an important parameter in orthodontics. One example is the application in the process of decreasing tooth-size by reducing the interproximal enamel surfaces (stripping) of teeth. In order to achieve smooth surfaces clinicians have been testing various methods and progressively improved this therapeutic technique. The evaluation the surface roughness following teeth interproximal reduction is fundamental in the process. In general tooth' surface is not flat presenting a variety of complex geometries. In this communication we will report on the metrological procedure employed on the rugometric and microtopographic inspection by optical active triangulation of raw and processed (interproximal stripping) tooth surfaces.

  11. Treatability of Aqueous Film-Forming Foams Used for Fire Fighting.

    DTIC Science & Technology

    BIODETERIORATION, *FIRE EXTINGUISHING AGENTS, SURFACE ACTIVE SUBSTANCES, FLUORINATED HYDROCARBONS, FOAM , ACTIVATED SLUDGE PROCESS, ACTIVATED CARBON, TOXICITY, WASTE DISPOSAL, TABLES(DATA), ADSORPTION.

  12. Activated alumina preparation and characterization: The review on recent advancement

    NASA Astrophysics Data System (ADS)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized

  13. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion

    PubMed Central

    Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai

    2013-01-01

    Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications. PMID:23981909

  14. Laser-induced surface modification of biopolymers – micro/nanostructuring and functionalization

    NASA Astrophysics Data System (ADS)

    Stankova, N. E.; Atanasov, P. A.; Nedyalkov, N. N.; Tatchev, Dr; Kolev, K. N.; Valova, E. I.; Armyanov, St. A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.

    2018-03-01

    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers’ surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.

  15. Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses

    PubMed Central

    Teissandier, Aurélie; Onésime, Djamila; Loux, Valentin; Monnet, Christophe; Irlinger, Françoise; Landaud, Sophie; Leclercq-Perlat, Marie-Noëlle; Bento, Pascal; Fraud, Sébastien; Gibrat, Jean-François; Aubert, Julie; Fer, Frédéric; Guédon, Eric; Pons, Nicolas; Kennedy, Sean; Beckerich, Jean-Marie; Swennen, Dominique; Bonnarme, Pascal

    2015-01-01

    Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process. PMID:25867897

  16. Overview of processing activities aimed at higher efficiencies and economical production

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1985-01-01

    An overview of processing activities aimed at higher efficiencies and economical production were presented. Present focus is on low-cost process technology for higher-efficiency cells of up to 18% or higher. Process development concerns center on the use of less than optimum silicon sheet, the control of production yields, and making uniformly efficient large-area cells. High-efficiency cell factors that require process development are bulk material perfection, very shallow junction formation, front-surface passivation, and finely detailed metallization. Better bulk properties of the silicon sheet and the keeping of those qualities throughout large areas during cell processing are required so that minority carrier lifetimes are maintained and cell performance is not degraded by high doping levels. When very shallow junctions are formed, the process must be sensitive to metallizatin punch-through, series resisitance in the cell, and control of dopant leaching during surface passivation. There is a need to determine the sensitivity to processing by mathematical modeling and experimental activities.

  17. Recent studies on activated carbons and fly ashes from Turkish resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayhan Demirbas; Gulsin Arslan; Erol Pehlivan

    2006-05-15

    This article deals with adsorptive properties of activated carbons (ACs) and fly ashes from Turkish coal and biomass resources. ACs because of their high surface area, microporous character and the chemical nature of their surface have been considered potential adsorbents for the removal of heavy metals from industrial wastewater. Pyrolysis is an established process method for preparation of activated carbon from biomass. The bio-char is can be used as AC. The adsorption properties of ACs were strictly defined by the physicochemical nature of their surface and their texture, i.e., pore volume, pore size distribution, surface area. It is well knownmore » that the pH of the solution-adsorbant mixture is an important variable in the adsorption process. Fly ash has the highest adsorption capacity (198.2 mg/g for Cd(II)). Almond shell AC has the lowest adsorption capacity (2.7 mg/g).« less

  18. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.

    PubMed

    Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan

    2005-10-13

    We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.

  19. Approaches to characterizing biogeochemistry effects of groundwater and surface water interaction at the riparian interface

    EPA Science Inventory

    Groundwater-surface water interaction (GSI) in riparian ecosystems strongly influences biological activity that controls nutrient flux and processes. Shallow groundwater in riparian zones is a hot spot for nitrogen removal processes, a storage zone for solutes, and a target for ...

  20. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  1. Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling

    NASA Astrophysics Data System (ADS)

    Niu, Juntian; Du, Xuesen; Ran, Jingyu; Wang, Ruirui

    2016-07-01

    Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H2/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO2 and CH4. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH4 dehydrogenation on Pt(1 1 1) surface. In the process of CO2 activation, three possible reaction pathways are considered to contribute to the CO2 decomposition: (I) CO2* + * → CO* + O*; (II) CO2* + H* → COOH* + * → CO* + OH*; (III) CO2* + H* → mono-HCOO* + * → bi-HCOO* + * [CO2* + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy to proceed on Pt(1 1 1) surface. While the CO2 activation by H adsorbed over the catalyst surface to form COOH intermediate (Path II) is much easier to be carried out with the lower activation barrier of 0.746 eV. The Csbnd O bond scission is the rate-determining step along this pathway and the process needs to overcome the activation barrier of 1.522 eV. Path III reveals the CO2 activation through H adsorbed over the catalyst surface to form HCOO intermediate firstly. This reaction requires a quite high activation barrier and is a strongly endothermic process leading to a very low forward rate constant. In conclusion, Path II is the dominant reaction pathway in CO2 activation. Additionally, there are two pathways of CH oxidation by O: (A) CH* + O* → CHO* + * → CO* + H*; (B) CH* + O* → COH* + * → CO* + H*. Both the activation barriers and kinetic results demonstrate that Path A is the prior reaction pathway. Furthermore, in the two pathways of CH oxidation by OH: (C) CH* + OH* → CHOH* + * → CHO* + H*; (D) CH* + OH* → CHOH* + * → COH* + H*. Path C is easier to proceed. In conclusion, the main reaction pathway in CH oxidation according to the mechanism: CH* + OH* → CHOH* + * → CHO* + H* → CO* + 2H*. These results could provide some useful information for the operation of DRM over Pt catalysts, and are helpful to understand the mechanisms of DRM from the atomic scale.

  2. Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus

    PubMed Central

    Wolfisberg, Raphael; Kempf, Christoph

    2016-01-01

    ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963

  3. Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.

    PubMed

    Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos

    2016-06-01

    Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Laboratory investigation of surface processes on airless bodies due to electrostatic dust mobilization

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hood, N.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2017-12-01

    Electrostatic dust mobilization on the surfaces of airless bodies due to direct exposure to solar wind and solar ultraviolet (UV) radiation has been suggested from a number of unusual planetary observations and supported by our recent laboratory experiments. This electrostatic process may have a significant contribution in the evolution of these surfaces in addition to other surface processes, e.g., thermal fragmentation. The critical questions are how this process changes the surface physical characteristics and how efficient this process can be. We report new laboratory experiments that record dust activities as function of the incoming fluxes of photons or energetic electrons over a long exposure time under Earth gravity. Dust is observed to hop and move on the surface, causing the significant change in surface morphology and becoming smoother over time. Our results indicate that the dynamics of dust mobilization may be complicated by temporal charging effect as dust moves. Various sizes and types of dust are examined, showing large effects on dust mobilization. These laboratory data will help us to predict the electrostatic surface processes and estimate their timescales in space conditions.

  5. A Phosphoinositide 3-Kinase (PI3K)-serum- and glucocorticoid-inducible Kinase 1 (SGK1) Pathway Promotes Kv7.1 Channel Surface Expression by Inhibiting Nedd4-2 Protein*

    PubMed Central

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic; Bomholtz, Sofia Hammami; Olesen, Søren-Peter; Abriel, Hugues; Jespersen, Thomas; Rasmussen, Hanne Borger

    2013-01-01

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells. PMID:24214981

  6. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein.

    PubMed

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic; Bomholtz, Sofia Hammami; Olesen, Søren-Peter; Abriel, Hugues; Jespersen, Thomas; Rasmussen, Hanne Borger

    2013-12-27

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.

  7. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  8. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Space weathering on near-Earth objects investigated by neutral-particle detection

    NASA Astrophysics Data System (ADS)

    Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; De Angelis, E.; Di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Massetti, S.; Palumbo, M. E.

    2009-03-01

    The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.

  10. Space weathering on near-Earth objects investigated by neutral-particle detection

    NASA Astrophysics Data System (ADS)

    Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; de Angelis, E.; di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Palumbo, M. E.

    2009-04-01

    The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.

  11. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    PubMed

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-08

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.

  12. Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium.

    PubMed

    Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M

    2017-02-01

    In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    NASA Astrophysics Data System (ADS)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  14. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process.

    PubMed

    Ghosh, Arjun; Yusa, Shin-ichi; Matsuoka, Hideki; Saruwatari, Yoshiyuki

    2011-08-02

    Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.

  15. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    PubMed Central

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2016-01-01

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region. PMID:28773363

  16. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol.

    PubMed

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2016-03-28

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  17. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    NASA Astrophysics Data System (ADS)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  18. A study on pore-opening behaviors of graphite nanofibers by a chemical activation process.

    PubMed

    Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin

    2007-02-15

    In this work, porous graphite nanofibers (GNFs) were prepared by a KOH activation method in order to manufacture porous carbon nanofibers. The process was conducted in the activation temperature range of 900-1100 degrees C, and the KOH:GNFs ratio was fixed at 3.5:1. The textural properties of the porous carbons were analyzed using N2 adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micro- and mesopore structures, respectively. From the results, it was found that the textural properties, including the specific surface area and the pore volumes, were proportionally enhanced with increasing activation temperatures. However, the activation mechanisms showed quite significant differences between the samples activated at low and high temperatures.

  19. Novel activation process for Mg-implanted GaN

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shin; Nakamura, Takao; Honda, Yoshio; Amano, Hiroshi

    2014-02-01

    A novel activation process for Mg-implanted GaN was demonstrated. As opposed to the conventional thermal annealing process, an H2/NH3 alternating supply annealing process achieved better optical activation, stronger near-ultraviolet luminescence and weaker yellow luminescence in the photoluminescence spectroscopy. After this process, small hexagonal hillocks were observed on the surface, which indicated that crystal regrowth was induced by this process, consisting of decomposition of GaN by H2 supplies and re-crystallization by NH3 supplies. It was revealed that the implanted Mg could easily be located at the activation site by means of crystal regrowth by this process.

  20. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    NASA Astrophysics Data System (ADS)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  1. Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-11-01

    In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.

  2. ACTIVATED CARBON PROCESS FOR TREATMENT OF WASTEWATERS CONTAINING HEXAVALENT CHROMIUM

    EPA Science Inventory

    The removal of hexavalent chromium, Cr(VI), from dilute aqueous solution by an activated carbon process has been investigated. Two removal mechanisms were observed; hexavalent chromium species were removed by adsorption onto the interior carbon surface and/or through reduction to...

  3. Kinetic modeling of microscopic processes during electron cyclotron resonance microwave plasma-assisted molecular beam epitaxial growth of GaN/GaAs-based heterostructures

    NASA Astrophysics Data System (ADS)

    Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.

    1996-03-01

    Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.

  4. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  5. Development of advanced second-generation micromirror devices fabricated in a four-level planarized surface-micromachined polycrystalline silicon process

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Comtois, John H.; Schriner, Heather K.

    1998-04-01

    This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves and surface contour measurements. These devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology. This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, various address wiring techniques, planarized mirror surfaces suing Chemical Mechanical Polishing, unique post-process metallization, and the best active surface area to date.

  6. Process for forming a porous silicon member in a crystalline silicon member

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  7. Changes of the surface structure of corn stalk in the cooking process with active oxygen and MgO-based solid alkali as a pretreatment of its biomass conversion.

    PubMed

    Pang, Chunsheng; Xie, Tujun; Lin, Lu; Zhuang, Junping; Liu, Ying; Shi, Jianbin; Yang, Qiulin

    2012-01-01

    This study presents a novel, efficient and environmentally friendly process for the cooking of corn stalk that uses active oxygen (O2 and H2O2) and a recoverable solid alkali (MgO). The structural changes on the surface of corn stalk before and after cooking were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The results showed that lignin and extractives were effectively removed, especially those on the surface of corn stalk. Additionally, the changes included becoming fibrillar, the exposure of cellulose and hemi-cellulose and the pitting corrosion on the surface, etc. The results also showed that the removal reaction is from outside to inside, but the main reaction is possibly on the surface. Furthermore, the results of active oxygen cooking with a solid alkali are compared with those of alkaline cooking in the paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    PubMed

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  9. Size-dependent surface phase change of lithium iron phosphate during carbon coating

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang

    2014-03-01

    Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

  10. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  11. Surface Water Quality-Assurance Plan for the North Florida Program Office of the U.S. Geological Survey

    USGS Publications Warehouse

    Franklin, Marvin A.

    2000-01-01

    The U.S. Geological Survey, Water Resources Division, has a policy that requires each District office to prepare a Surface Water Quality-Assurance Plan. The plan for each District describes the policies and procedures that ensure high quality in the collection, processing, analysis, computer storage, and publication of surface-water data. The North Florida Program Office Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the North Florida Program office for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  12. High-surface-area, dual-function oxygen electrocatalysts for space power applications

    NASA Technical Reports Server (NTRS)

    Ham, David O.; Moniz, Gary; Taylor, E. Jennings

    1987-01-01

    The processes of hydration/dehydration and carbonation/decarbonation are investigated as an approach to provide higher surface area mixed metal oxides that are more active electrochemically. These materials are candidates for use as electrocatalysts and electrocatalyst supports for alkaline electrolyzers and fuel cells. For the case of the perovskite, LaCoO3 , higher surface areas were achieved with no change in structure and a more active oxygen electrocatalyst.

  13. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  14. Magellan mission summary

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Spear, A. J.; Allin, P. C.; Austin, R. S.; Berman, A. L.; Chandlee, R. C.; Clark, J.; Decharon, A. V.; De Jong, E. M.; Griffith, D. G.

    1992-01-01

    Magellan started mapping the planet Venus on September 15, 1990, and after one cycle (one Venus day or 243 earth days) had mapped 84 percent of the planet's surface. This returned an image data volume greater than all past planetary missions combined. Spacecraft problems were experienced in flight. Changes in operational procedures and reprogramming of onboard computers minimized the amount of mapping data lost. Magellan data processing is the largest planetary image-processing challenge to date. Compilation of global maps of tectonic and volcanic features, as well as impact craters and related phenomena and surface processes related to wind, weathering, and mass wasting, has begun. The Magellan project is now in an extended mission phase, with plans for additional cycles out to 1995. The Magellan project will fill in mapping gaps, obtain a global gravity data set between mid-September 1992 and May 1993, acquire images at different view angles, and look for changes on the surface from one cycle to another caused by surface activity such as volcanism, faulting, or wind activity.

  15. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  16. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Bo-Hye

    2016-10-01

    A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.

  17. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface exposure rates are rather due to gravitational and landsliding movements aided by weathering and slope degradation processes. The so far neglected slope degradation and other (sub)surface processes should thus be carefully taken into consideration before attempting to recover fault slip rates using surface gathered data. The results of the present studies have been recently published (Kastelic et al., 2016) and our research is ongoing, implementing the so-far results with newer measurements and other techniques in order to improve our knowledge on the magnitude of the exposure and its causative process(es). Kastelic, V., P. Burrato, M. M. C. Carafa, and R. Basili (2016), Repeated surveys reveal nontectonic exposure of supposedly active normal faults in the central Apennines, Italy, J. Geophys. Res. Earth Surf., 121, doi:10.1002/2016JF003953.

  18. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb oxides of nitrogen.

  19. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  20. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  1. Effective reprocessing of reusable dispensers for surface disinfection tissues – the devil is in the details

    PubMed Central

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Ostermeyer, Christiane

    2014-01-01

    Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted Achromobacter species 3, when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%). Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation. Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential. PMID:24653973

  2. Advances in satellite oceanography

    NASA Technical Reports Server (NTRS)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  3. Preferences for Deep-Surface Learning: A Vocational Education Case Study Using a Multimedia Assessment Activity

    ERIC Educational Resources Information Center

    Hamm, Simon; Robertson, Ian

    2010-01-01

    This research tests the proposition that the integration of a multimedia assessment activity into a Diploma of Events Management program promotes a deep learning approach. Firstly, learners' preferences for deep or surface learning were evaluated using the revised two-factor Study Process Questionnaire. Secondly, after completion of an assessment…

  4. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.

    PubMed

    Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng

    2006-02-15

    The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

  5. Effects of Build Orientation on Surface Morphology and Bone Cell Activity of Additively Manufactured Ti6Al4V Specimens.

    PubMed

    Weißmann, Volker; Drescher, Philipp; Seitz, Hermann; Hansmann, Harald; Bader, Rainer; Seyfarth, Anika; Klinder, Annett; Jonitz-Heincke, Anika

    2018-05-29

    Additive manufacturing of lightweight or functional structures by selective laser beam (SLM) or electron beam melting (EBM) is widespread, especially in the field of medical applications. SLM and EBM processes were applied to prepare Ti6Al4V test specimens with different surface orientations (0°, 45° and 90°). Roughness measurements of the surfaces were conducted and cell behavior on these surfaces was analyzed. Hence, human osteoblasts were seeded on test specimens to determine cell viability (metabolic activity, live-dead staining) and gene expression of collagen type 1 (Col1A1), matrix metalloprotease (MMP) 1 and its natural inhibitor, TIMP1, after 3 and 7 days. The surface orientation of specimens during the manufacturing process significantly influenced the roughness. Surface roughness showed significant impact on cellular viability, whereas differences between the time points day 3 and 7 were not found. Collagen type 1 mRNA synthesis rates in human osteoblasts were enhanced with increasing roughness. Both manufacturing techniques further influenced the induction of bone formation process in the cell culture. Moreover, the relationship between osteoblastic collagen type 1 mRNA synthesis rates and specimen orientation during the building process could be characterized by functional formulas. These findings are useful in the designing of biomedical applications and medical devices.

  6. Surface photoisomerization activity vs. functionalization of azobenzene derivatives

    NASA Astrophysics Data System (ADS)

    Berbil-Bautista, Luis; Cho, Jongweon; Levy, Niv; Comstock, Matthew J.; Poulsen, Dan; Frechet, Jean M. J.; Crommie, Michael F.

    2008-03-01

    Azobenzene and its derivatives can be reversibly photoisomerized between their cis and trans conformations in solution. The photoisomerization process is wavelength selective and results in a large length change. Hence, it is ideally suited to actuating molecular nanomachines on surfaces. However, it has recently been shown [1] that to recover photoisomerization activity on a metallic surface molecules must be functionalized with bulky spacing groups to decouple the optically active part of the molecule from the surface. This results in various trade-offs between molecular optical activity and overall flexibility/functionality. We have explored the photoisomerization activity of different azobenzene derivatives on metallic surfaces using a scanning tunneling microscope (STM) with optical access to the sample. The effects on molecular photo-activity and self-assembly for different substituent groups has been studied. [1] Matthew J. Comstock, Niv Levy, Armen Kirakosian, Jongweon Cho, Frank Lauterwasser, Jessica H. Harvey, David A. Strubbe, Jean M. J. Fr'echet, Dirk Trauner, Steven G. Louie, and Michael F. Crommie Phys. Rev. Lett. 99, 038301 (2007)

  7. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Biomarker Sensors and Method for Multi-Color Imaging and Processing of Single-Molecule Life Signatures

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor); Collier, Charles Patrick (Inventor)

    2013-01-01

    The invention is a device including array of active regions for use in reacting one or more species in at least two of the active regions in a sequential process, e.g., sequential reactions. The device has a transparent substrate member, which has a surface region and a silane material overlying the surface region. A first active region overlies a first portion of the silane material. The first region has a first dimension of less than 1 micron in size and has first molecules capable of binding to the first portion of the silane material. A second active region overlies a second portion of the silane material. The second region has a second dimension of less than 1 micron in size, second molecules capable of binding to the second portion of the active region, and a spatial distance separates the first active region and the second active region.

  9. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  10. Biocide leaching during field experiments on treated articles.

    PubMed

    Schoknecht, Ute; Mathies, Helena; Wegner, Robby

    2016-01-01

    Biocidal products can be sources of active substances in surface waters caused by weathering of treated articles. Marketing and use of biocidal products can be limited according to the European Biocidal Products Regulation if unacceptable risks to the environment are expected. Leaching of active substances from treated articles was observed in field experiments to obtain information on leaching processes and investigate the suitability of a proposed test method. Leaching under weathering conditions proceeds discontinuously and tends to decrease with duration of exposure. It does not only mainly depend on the availability of water but is also controlled by transport processes within the materials and stability of the observed substances. Runoff amount proved to be a suitable basis to compare results from different experiments. Concentrations of substances are higher in runoff collected from vertical surfaces compared to horizontal ones, whereas the leached amounts per surface area are higher from horizontal surfaces. Gaps in mass balances indicate that additional processes such as degradation and evaporation may be relevant to the fate of active substances in treated articles. Leached amounts of substances were considerably higher when the materials were exposed to intermittent water contact under laboratory conditions as compared to weathering of vertically exposed surfaces. Experiences from the field experiments were used to define parameters of a procedure that is now provided to fulfil the requirements of the Biocidal Products Regulation. The experiments confirmed that the amount of water which is in contact with exposed surfaces is the crucial parameter determining leaching of substances.

  11. Processing of zero-derived words in English: an fMRI investigation.

    PubMed

    Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C

    2014-01-01

    Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalitybridge-V) i.e., zero-derivation (Aronoff, 1980). We compared the processing of one-step (soaking

  12. Microwave-Assisted Preparation of Activated Carbon from Eupatorium Adenophorum: Effects of Preparation Parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Zhang, Shengzhou; Zhang, Libo; Xia, Hongying; Peng, Jinhui; Wang, Shixing

    2017-09-01

    Eupatorium adenophorum, global exotic weeds, was utilized as feedstock for preparation of activated carbon (AC) via microwave-induced KOH activation. Influences of the three vital process parameters - microwave power, activation time and impregnation ratio (IR) - have been assessed on the adsorption capacity and yield of AC. The process parameters were optimized utilizing the Design Expert software and were identified to be a microwave power of 700 W, an activation time of 15 min and an IR of 4, with the resultant iodine adsorption number and yield being 2,621 mg/g and 28.25 %, respectively. The key parameters that characterize the AC such as the brunauer emmett teller (BET) surface area, total pore volume and average pore diameter were estimated to be 3,918 m2/g, 2,383 ml/g and 2.43 nm, respectively, under the optimized process conditions. The surface characteristics of AC were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and Transmission electron microscope.

  13. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adraider, Y.; Pang, Y.X., E-mail: F6098038@tees.ac.uk; Nabhani, F.

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surfacemore » morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.« less

  14. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.

    PubMed

    Rivera-Utrilla, J; Sánchez-Polo, M

    2003-08-01

    The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.

  15. Boundary Recovery For Delaunay Tetrahedral Meshes Using Local Topological Transformations

    PubMed Central

    Ghadyani, Hamid; Sullivan, John; Wu, Ziji

    2009-01-01

    Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially 3 new active faces are created. This methodology is the underpinnings of our last resort method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved. PMID:20305743

  16. Methods for increasing the rate of anammox attachment in a sidestream deammonification MBBR.

    PubMed

    Klaus, Stephanie; McLee, Patrick; Schuler, Andrew J; Bott, Charles

    2016-01-01

    Deammonification (partial nitritation-anammox) is a proven process for the treatment of high-nitrogen waste streams, but long startup time is a known drawback of this technology. In a deammonification moving bed biofilm reactor (MBBR), startup time could potentially be decreased by increasing the attachment rate of anammox bacteria (AMX) on virgin plastic media. Previous studies have shown that bacterial adhesion rates can be increased by surface modification or by the development of a preliminary biofilm. This is the first study on increasing AMX attachment rates in a deammonification MBBR using these methods. Experimental media consisted of three different wet-chemical surface treatments, and also media transferred from a full-scale mainstream fully nitrifying integrated fixed-film activated sludge (IFAS) reactor. Following startup of a full-scale deammonification reactor, the experimental media were placed in the full-scale reactor and removed for activity rate measurements and biomass testing after 1 and 2 months. The media transferred from the IFAS process exhibited a rapid increase in AMX activity rates (1.1 g/m(2)/day NH(4)(+) removal and 1.4 g/m(2)/day NO(2)(-) removal) as compared to the control (0.2 g/m(2)/day NH(4)(+) removal and 0.1 g/m(2)/day NO(2)(-) removal) after 1 month. Two out of three of the surface modifications resulted in significantly higher AMX activity than the control at 1 and 2 months. No nitrite oxidizing bacteria activity was detected in either the surface modified media or IFAS media batch tests. The results indicate that startup time of a deammonification MBBR could potentially be decreased through surface modification of the plastic media or through the transfer of media from a mature IFAS process.

  17. Chemical Evolution of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Semenov, Dmitry A.

    2011-12-01

    In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.

  18. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  19. The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface

    PubMed Central

    Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, MW; Liu, Li-Min

    2016-01-01

    CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2− anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process. PMID:26984417

  20. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC.

  1. Mars - A planet with a complex surface evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Coradini, M.

    1975-01-01

    The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.

  2. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    PubMed

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-09-01

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  3. On the kinetics of the pack - Aluminization process

    NASA Technical Reports Server (NTRS)

    Sivakumar, R.; Seigle, L. L.

    1976-01-01

    An investigation has been made of the aluminization of unalloyed Ni in fluoride-activated packs of varying Al activity. In packs of low Al activity, in which the ratio of Al to Ni was less than 50 at. pct, the specimen surface quickly came to equilibrium with the pack and remained close to equilibrium for the duration of normal coating runs. In these packs the kinetics of aluminization was controlled by diffusion in the solid. In packs of higher Al activity the surface of the specimen did not come to equilibrium with the pack and the kinetics of the process was governed by a combination of solid and gas diffusion rates. Under most conditions however, the surface composition was time-invariant and a steady-state appeared to exist at the pack-coating interface. By combining Levine and Caves' model for gaseous diffusion in pure-Al packs with calculations of solid diffusion rates some success has been achieved in explaining the results.

  4. Exchange processes from the deep interior to the surface of icy moons

    NASA Astrophysics Data System (ADS)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and present dynamics of icy surfaces: erosion, tectonics and cryovolcanism. This second topic is devoted to the description of the surface features. A synthesis of what has been seen in the jovian system and a presentation of what is now discovered in the saturnian system might be useful. 3) Internal processes: dynamics of icy mantles. Many works have been done specifically for icy moons (rheology of icy mantles, heating modes, effect of ice composition, internal activity of small moons, internal oceans,. . . ). Icy mantles present so many different convective processes, depending on parameters such as the ice composition, the heating mode, . . . , that a full review of the recent progress on the subject is required. 4) Physics and chemistry of ices: experimental constraints on hydrates, clathrates and organics. Nothing can be done without experimental data. Thermodynamical constraints, phase diagrams, but also mechanical properties of icy materials are required for constraining all models. Many progress have been made these last five years, especially for clathrate structures so important in the case of Titan. A review of these progresses is required. 5) Earth analogs: a tool for understanding surface/ internal features. Tectonic and volcanic features on icy moons are sometimes confronted to Earth structures. This procedure is very interesting. While materials are different (on Earth the melt is lighter than the rock, but on icy moons it is the contrary), tectonic and volcanic features can be very similar. Our good understanding of the Earth can be very useful for describing the processes responsible of tectonic/volcanic features on the moons. Discussing around the five themes described above may provide some constraints on open questions such as the characteristics of liquid layers within icy moons, the cryovolcanism on Titan, the resurfacing of Europa, the composition of Titan's surface, and the activity on Enceladus. 2

  5. The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.

  6. Photochromic cross-link polymer for color changing and sensing surface

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric

    2016-12-01

    Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.

  7. Mechanism of the surface runoff generation processes of a permafrost watershed in the Qinghai-Tibet plateau

    NASA Astrophysics Data System (ADS)

    Genxu, W.

    2017-12-01

    There is a lack of knowledge about how to quantify runoff generation and the hydrological processes operating in permafrost catchments on permafrost-dominant catchments. To understand the mechanism of runoff generation processes in permafrost catchments, a typical headwater catchment with continuous permafrost on the Tibetan Plateau was measured. A new approach is presented in this study to account for runoff processes on the spring thawing period and autumn freezing period, when runoff generation clearly differs from that of non-permafrost catchments. This approach introduces a soil temperature-based water saturation function and modifies the soil water storage curve with a soil temperature threshold. The results show that surface soil thawing induced saturation excess runoff and subsurface interflow account for approximately 66-86% and 14-34% of total spring runoff, respectively, and the soil temperature significantly affects the runoff generation pattern, the runoff composition and the runoff coefficient with the enlargement of the active layer. The suprapermafrost groundwater discharge decreases exponentially with active layer frozen processes during autumn runoff recession, whereas the ratio of groundwater discharge to total runoff and the direct surface runoff coefficient simultaneously increase. The bidirectional freezing of the active layer controls and changes the autumn runoff processes and runoff composition. The new approach could be used to further develop hydrological models of cold regions dominated by permafrost.

  8. Wind and Rock

    NASA Image and Video Library

    2011-03-09

    This image from NASA Mars Odyssey is located west of Zephyria Planum. Surfaces in this region have undergone extensive erosion by the wind. Wind is one of the most active processes of erosion on the surface of Mars today.

  9. Nutrient sampling slam: high resolution surface-water sampling in streams reveals patterns in groundwater chemistry and flow paths

    EPA Science Inventory

    The groundwater–surface water interface (GSWI), consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water intera...

  10. Electrospinning Fabrication of SrTiO3 Nanofibers and Their Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhao, Yiping; Wang, Wei; Liu, Hao; Wang, Rui

    2018-06-01

    SrTiO3 nanofibers were fabricated by an electrospinning process. The phase, microstructure and photocatalytic activity of the obtained SrTiO3 nanofibers were investigated. The XRD patterns and the SEM images suggest that SrTiO3 nanofibers with perovskite phase and rough surface have been fabricated in the current work. The SrTiO3 nanofibers show a high efficiency decomposition of RhB under ultraviolet light irradiation. The high photocatalytic activity of SrTiO3 nanofibers results from the large specific surface area. The large specific surface area provides more surface active sits and makes an easier charge carrier transport. On the basis of the photocatalytic performance of SrTiO3 nanofibers, the possible photocatalysis mechanism was proposed.

  11. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32)

    PubMed Central

    2011-01-01

    Background Elevated numbers of regulatory T cells (Tregs) have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells. PMID:21615933

  12. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  13. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption.

    PubMed

    Wibowo, N; Setyadhi, L; Wibowo, D; Setiawan, J; Ismadji, S

    2007-07-19

    The influence of surface chemistry and solution pH on the adsorption of benzene and toluene on activated carbon and its acid and heat treated forms were studied. A commercial coal-based activated carbon F-400 was chosen as carbon parent. The carbon samples were obtained by modification of F-400 by means of chemical treatment with HNO3 and thermal treatment under nitrogen flow. The treatment with nitric acid caused the introduction of a significant number of oxygenated acidic surface groups onto the carbon surface, while the heat treatment increases the basicity of carbon. The pore characteristics were not significantly changed after these modifications. The dispersive interactions are the most important factor in this adsorption process. Activated carbon with low oxygenated acidic surface groups (F-400Tox) has the best adsorption capacity.

  14. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials.

    PubMed

    Nelson, Andrew P; Farha, Omar K; Mulfort, Karen L; Hupp, Joseph T

    2009-01-21

    Careful processing of four representative metal-organic framework (MOF) materials with liquid and supercritical carbon dioxide (ScD) leads to substantial, or in some cases spectacular (up to 1200%), increases in gas-accessible surface area. Maximization of surface area is key to the optimization of MOFs for many potential applications. Preliminary evidence points to inhibition of mesopore collapse, and therefore micropore accessibility, as the basis for the extraordinarily efficacious outcome of ScD-based activation.

  15. Topographic expression of active faults in the foothills of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Picotti, Vincenzo; Ponza, Alessio; Pazzaglia, Frank J.

    2009-09-01

    Active faults that rupture the earth's surface leave an imprint on the topography that is recognized using a combination of geomorphic and geologic metrics including triangular facets, the shape of mountain fronts, the drainage network, and incised river valleys with inset terraces. We document the presence of a network of active, high-angle extensional faults, collectively embedded in the actively shortening mountain front of the Northern Apennines, that possess unique geomorphic expressions. We measure the strain rate for these structures and find that they have a constant throw-to-length ratio. We demonstrate the necessary and sufficient conditions for triangular facet development in the footwalls of these faults and argue that rock-type exerts the strongest control. The slip rates of these faults range from 0.1 to 0.3 mm/yr, which is similar to the average rate of river incision and mountain front unroofing determined by corollary studies. The faults are a near-surface manifestation of deeper crustal processes that are actively uplifting rocks and growing topography at a rate commensurate with surface processes that are eroding the mountain front to base level.

  16. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    PubMed

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  17. Cyclic process for producing methane with catalyst regeneration

    DOEpatents

    Frost, Albert C.; Risch, Alan P.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

  18. Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase.

    PubMed

    Shim, Jae-Hoon; Seo, Nam-Seok; Roh, Sun-Ah; Kim, Jung-Wan; Cha, Hyunju; Park, Kwan-Hwa

    2007-06-13

    A bread-baking process was developed using a potential novel enzyme, cyclodextrin glucanotransferase[3-18] (CGTase[3-18]), that had previously been engineered to have enhanced hydrolyzing activity with little cyclodextrin (CD) formation activity toward starch. CGTase[3-18] was primarily manipulated to be displayed on the cell surface of Saccharomyces cerevisiae. S. cerevisiae carrying pdeltaCGT integrated into the chromosome exhibited starch-hydrolyzing activity at the same optimal pH and temperature as the free enzyme. Volumes of the bread loaves and rice cakes prepared using S. cerevisiae/pdeltaCGT increased by 20% and 45%, respectively, with no detectable CD. Retrogradation rates of the bread and rice cakes decreased significantly during storage. In comparison to the wild type, S. cerevisiae/pdeltaCGT showed improved viability during four freeze-thaw cycles. The results indicated that CGTase[3-18] displayed on the surface of yeast hydrolyzed starch to glucose and maltose that can be used more efficiently for yeast fermentation. Therefore, display of an antistaling enzyme on the cell surface of yeast has potential for enhancing the baking process.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tam, M.S.; Antal, M.J. Jr.

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbonmore » mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.« less

  20. Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-02-01

    Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.

  1. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    PubMed

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    PubMed

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  3. Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation.

    PubMed

    Stanford, Clark M

    2010-01-25

    Bone adaptation or integration of an implant is characterized by a series of biological reactions that start with bone turnover at the interface (a process of localized necrosis), followed by rapid repair. The wound healing response is guided by a complex activation of macrophages leading to tissue turnover and new osteoblast differentiation on the implant surface. The complex role of implant surface topography and impact on healing response plays a role in biological criteria that can guide the design and development of future tissue-implant surface interfaces.

  4. Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).

    PubMed

    Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe

    2016-10-26

    Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lehao

    A nanocrystalline surface layer was produced on Mg-3 wt.% Li-6 wt.% Al alloy by means of surface mechanical attrition treatment (SMAT). Microstructure features of various sections were systematically characterized by transmission electron microscopy. The results indicate that grain refinement induced by SMAT is dominated mainly by dislocation slip. Twinning is active at the early stage of grain refinement process when the grain size is large. The dislocation-dominated deformation mechanism is attributed to the change of c/a ratio due to the alloying of Li in Mg matrix and the suppression of twinning due to grain refinement. Nanoindentation results show that themore » hardness of the surface is enhanced by SMAT. - Highlights: •Nanocrystalline surface layer was produced on Mg-3 wt.%Li-6 wt.%Al alloy by SMAT. •Grain refinement induced by SMAT is dominated mainly by dislocation slip. •Twinning is active at the early stage of grain refinement process. •The hardness of the surface was enhanced by SMAT.« less

  6. Space environment and lunar surface processes, 2

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1982-01-01

    The top few millimeters of a surface exposed to space represents a physically and chemically active zone with properties different from those of a surface in the environment of a planetary atmosphere. To meet the need or a quantitative synthesis of the various processes contributing to the evolution of surfaces of the Moon, Mercury, the asteroids, and similar bodies, (exposure to solar wind, solar flare particles, galactic cosmic rays, heating from solar radiation, and meteoroid bombardment), the MESS 2 computer program was developed. This program differs from earlier work in that the surface processes are broken down as a function of size scale and treated in three dimensions with good resolution on each scale. The results obtained apply to the development of soil near the surface and is based on lunar conditions. Parameters can be adjusted to describe asteroid regoliths and other space-related bodies.

  7. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    NASA Astrophysics Data System (ADS)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  8. Water and processes of degradation in the Martian landscape

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1973-01-01

    It is shown that erosion has been active on Mars so that many of the surface landforms are products of degradation. Unlike earth, erosion has not been a universal process, but one areally restricted and intermittently active so that a landscape is the product of one or two cycles of erosion and large areas of essentially undisturbed primitive terrain; running water has been the principal agent of degradation. Many features on Mars are most easily explained by assuming running surface water at some time in the past; for a few features, running water is the only possible explanation.

  9. Early stages of Cs adsorption mechanism for GaAs nanowire surface

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu

    2018-03-01

    In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.

  10. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  11. Organic materials for ceramic molding processes

    NASA Technical Reports Server (NTRS)

    Saito, K.

    1984-01-01

    Ceramic molding processes are examined. Binders, wetting agents, lubricants, plasticizers, surface active agents, dispersants, etc., for pressing, rubber pressing, sip casting, injection casting, taping, extrusion, etc., are described, together with forming machines.

  12. Active surface model improvement by energy function optimization for 3D segmentation.

    PubMed

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms.

    PubMed

    Awad, Tarek Samir; Asker, Dalal; Hatton, Benjamin D

    2018-06-11

    Biofilm formation on stainless steel (SS) surfaces of food processing plants, leading to foodborne illness outbreaks, is enabled by the attachment and confinement within microscale cavities of surface roughness (grooves, scratches). We report Foodsafe Oil-based Slippery Coatings (FOSCs) for food processing surfaces that suppress bacterial adherence and biofilm formation by trapping residual oil lubricant within these surface cavities to block microbial growth. SS surfaces were chemically functionalized with alkylphosphonic acid to preferentially wet a layer of food grade oil. FOSCs reduced the effective surface roughness, the adhesion of organic food residue, and bacteria. FOSCs significantly reduced Pseudomonas aeruginosa biofilm formation on standard roughness SS-316 by 5 log CFU cm-2, and by 3 log CFU cm-2 for mirror-finished SS. FOSCs also enhanced surface cleanability, which we measured by bacterial counts after conventional detergent cleaning. Importantly, both SS grades maintained their anti-biofilm activity after erosion of the oil layer by surface wear with glass beads, which suggests there is a residual volume of oil that remains to block surface cavity defects. These results indicate the potential of such low-cost, scalable approaches to enhance the cleanability of SS food processing surfaces and improve food safety by reducing biofilm growth.

  14. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with thismore » microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.« less

  15. Stability and activity of lactate dehydrogenase on biofunctional layers deposited by activated vapor silanization (AVS) and immersion silanization (IS)

    NASA Astrophysics Data System (ADS)

    Calvo, Jorge Nieto-Márquez; Elices, Manuel; Guinea, Gustavo V.; Pérez-Rigueiro, José; Arroyo-Hernández, María

    2017-09-01

    The interaction between surfaces and biological elements, in particular, proteins is critical for the performance of biomaterials and biosensors. This interaction can be controlled by modifying the surface in a process known as biofunctionalization. In this work, the enzyme lactate dehydrogenase (LDH) is used to study the stability of the interaction between a functional protein and amine-functionalized surfaces. Two different functionalization procedures were compared: Activated Vapor Silanization (AVS) and Immersion Silanization (IS). Adsorption kinetics is shown to follow the Langmuir model for AVS-functionalized samples, while IS-functionalized samples show a certain instability if immersed in an aqueous medium for several hours. In turn, the enzymatic activity of LDH is preserved for longer times by using glutaraldehyde as crosslinker between the AVS biofunctional surface and the enzyme.

  16. Plasma Surface Modification of Polyaramid Fibers for Protective Clothing

    NASA Astrophysics Data System (ADS)

    Widodo, Mohamad

    2011-12-01

    The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the formation carboxylic and phenyl amine groups, which may provide additional active sites for grafting by way of hydrogen abstraction from the latter. Further analysis of XPS data, however, showed that macroradicals and active sites of grafting were formed at least at one of the carbon atoms in the aromatic ring. A reduction of microbial activity up to 3-log reduction was achieved by plasma treated Kevlar grafted by either diallyl diammonium chloride (DADMAC) or 3- ((trimethoxysilyl)-propyl) dimethylammonium chloride (TMS), with the latter being the one with better performance. It was found that high antimicrobial activity was obtained by the combination of high RF power, short time of exposure, and low concentration of monomer. Of the three processing methods studied, the one with immersion method produced higher graft yield. However, one-step plasma graft-polymerization with pad-dry method has proven itself more interesting due to its potential for an open continuous process. This research has been successful in producing effective antimicrobial properties on Kevlar fabric by plasma-initiated and plasma-controlled graft polymerization, which is unprecedented. The design of experiments showed that better results with higher order of log reduction can be obtained by process optimization, e.g. by using response surface methods. It would also be very beneficial to continue the research for the development of plasma graft-polymerization process with more rigorous design, which involves the use of crosslinker and antimicrobial monomers with different chemistry. A study that involves the development of a robust design for processes that perform consistently as intended under a wide range of user's conditions and yet produce high-level performance with high reliability would also be advantageous. The major implication of the findings from this research for the finishing of Kevlar is that a wide array of different surface functionalities may become more readily available now than ever. Plasma technology has made surface chemistry functionalization of Kevlar more straightforward and easier to perform, which opens new avenues for achieving functional and multifunctional Kevlar fabrics using a fast, more economic and environmentally friendly continuous process for niche market such as military applications and protective clothing for emergency responders.

  17. Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2

    NASA Astrophysics Data System (ADS)

    Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.

    2006-06-01

    Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonisation temperature and the ZnCl 2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N 2 at -196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m 2 g -1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.

  18. Regulated internalization of caveolae

    PubMed Central

    1994-01-01

    Caveolae are specialized invaginations of the plasma membrane which have been proposed to play a role in diverse cellular processes such as endocytosis and signal transduction. We have developed an assay to determine the fraction of internal versus plasma membrane caveolae. The GPI-anchored protein, alkaline phosphatase, was clustered in caveolae after antibody-induced crosslinking at low temperature and then, after various treatments, the relative amount of alkaline phosphatase on the cell surface was determined. Using this assay we were able to show a time- and temperature-dependent decrease in cell-surface alkaline phosphatase activity which was dependent on antibody-induced clustering. The decrease in cell surface alkaline phosphatase activity was greatly accelerated by the phosphatase inhibitor, okadaic acid, but not by a protein kinase C activator. Internalization of clustered alkaline phosphatase in the presence or absence of okadaic acid was blocked by cytochalasin D and by the kinase inhibitor staurosporine. Electron microscopy confirmed that okadaic acid induced removal of caveolae from the cell surface. In the presence of hypertonic medium this was followed by the redistribution of groups of caveolae to the center of the cell close to the microtubule-organizing center. This process was reversible, blocked by cytochalasin D, and the centralization of the caveolar clusters was shown to be dependent on an intact microtubule network. Although the exact mechanism of internalization remains unknown, the results show that caveolae are dynamic structures which can be internalized into the cell. This process may be regulated by kinase activity and require an intact actin network. PMID:7962085

  19. Mechanochemical activation and gallium and indiaarsenides surface catalycity

    NASA Astrophysics Data System (ADS)

    Kirovskaya, I. A.; Mironova, E. V.; Umansky, I. V.; Brueva, O. Yu; Murashova, A. O.; Yureva, A. V.

    2018-01-01

    The present work has been carried out in terms of determining the possibilities for a clearer identification of the active sites nature, intermediate surface compounds nature, functional groups during adsorption and catalysis, activation of the diamond-like semiconductors surface (in particular, the AIIIBV type) based on mechanochemical studies of the “reaction medium (H2O, iso-C3H7OH) - dispersible semiconductor (GaAs, InAs)” systems. As a result, according to the read kinetic curves of dispersion in water, both acidification and alkalinization of the medium have been established and explained; increased activity of the newly formed surface has been noted; intermediate surface compounds, functional groups appearing on the real surface and under H2O adsorption conditions, adsorption and catalytic decomposition of iso-C3H7OH have been found (with explanation of the origin). The unconcealed role of coordinatively unsaturated atoms as active sites of these processes has been shown; the relative catalytic activity of the semiconductors studied has been evaluated. Practical recommendations on the preferred use of gallium arsenide in semiconductor gas analysis and semiconductor catalysis have been given in literature searches, great care should be taken in constructing both.

  20. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries--A hypothesis.

    PubMed

    Damodaran, Srinivasan

    2015-07-01

    Many life-sustaining processes in living cells occur at the membrane-water interface. The pertinent questions that need to be asked are what is the evolutionary reason for biology to choose the membrane-water interface as the site for performing and/or controlling crucial biological reactions and what is the key physical principle that is singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this review, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes and receptor activated processes via manipulating the thermodynamic activity of water at the membrane-water interfacial region. In support of this hypothesis, first we establish that the surface pressure of a lipid monolayer is a direct measure of a reduction in the thermodynamic activity of interfacial water. Second, we show that the surface pressure-dependent activation/inactivation of interfacial enzymes is fundamentally related to their dependence on interfacial water activity. We extend this argument to infer that cells might manipulate activities of membrane-associated biological processes via manipulating the activity of interfacial water via localized compression or expansion of the interface. In this paper, we critically analyze literature data on mechano-activation of large pore ion channels in Escherichia coli spheroplasts and G-proteins in reconstituted lipid vesicles, and show that these pressure-induced activation processes are fundamentally and quantitatively related to changes in the thermodynamic state of interfacial water, caused by mechanical stretching of the bilayer. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Biochip-based instruments development for space exploration: influence of the antibody immobilization process on the biochip resistance to freeze-drying, temperature shifts and cosmic radiations

    NASA Astrophysics Data System (ADS)

    Coussot, G.; Moreau, T.; Faye, C.; Vigier, F.; Baqué, M.; Le Postollec, A.; Incerti, S.; Dobrijevic, M.; Vandenabeele-Trambouze, O.

    2017-04-01

    Due to the diversity of antibody (Ab)-based biochips chemistries available and the little knowledge about biochips resistance to space constraints, immobilization of Abs on the surface of the biochips dedicated to Solar System exploration is challenging. In the present paper, we have developed ten different biochip models including covalent or affinity immobilization with full-length Abs or Ab fragments. Ab immobilizations were carried out in oriented/non-oriented manner using commercial activated surfaces with N-hydroxysuccinic ester (NHS-surfaces) or homemade surfaces using three generations of dendrimers (dendrigraft of poly L-lysine (DGL) surfaces). The performances of the Ab -based surfaces were cross-compared on the following criteria: (i) analytical performances (expressed by both the surface density of immobilized Abs and the amount of antigens initially captured by the surface) and (ii) resistance of surfaces to preparation procedure (freeze-drying, storage) or spatial constraints (irradiation and temperature shifts) encountered during a space mission. The latter results have been expressed as percentage of surface binding capacity losses (or percentage of remaining active Abs). The highest amount of captured antigen was achieved with Ab surfaces having full-length Abs and DGL-surfaces that have much higher surface densities than commercial NHS-surface. After freeze-drying process, thermal shift and storage sample exposition, we found that more than 80% of surface binding sites remained active in this case. In addition, the resistance of Ab surfaces to irradiation with particles such as electron, carbon ions or protons depends not only on the chemistries (covalent/affinity linkages) and strategies (oriented/non-oriented) used to construct the biochip, but also on the type, energy and fluence of incident particles. Our results clearly indicate that full-length Ab immobilization on NHS-surfaces and DGL-surfaces should be preferred for potential use in instruments for planetary exploration.

  2. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  3. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    PubMed

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-07-15

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Modeling Coupled Physical and Chemical Erosional Processes Using Structure from Motion Reconstruction and Multiphysics Simulation: Applications to Knickpoints in Bedrock Streams in Limestone Caves and on Earth's Surface

    NASA Astrophysics Data System (ADS)

    Bosch, R.; Ward, D.

    2017-12-01

    Investigation of erosion rates and processes at knickpoints in surface bedrock streams is an active area of research, involving complex feedbacks in the coupled relationships between dissolution, abrasion, and plucking that have not been sufficiently addressed. Even less research has addressed how these processes operate to propagate knickpoints through cave passages in layered sedimentary rocks, despite these features being common along subsurface streams. In both settings, there is evidence for mechanical and chemical erosion, but in cave passages the different hydrologic and hydraulic regimes, combined with an important role for the dissolution process, affect the relative roles and coupled interactions between these processes, and distinguish them from surface stream knickpoints. Using a novel approach of imaging cave passages using Structure from Motion (SFM), we create 3D geometry meshes to explore these systems using multiphysics simulation, and compare the processes as they occur in caves with those in surface streams. Here we focus on four field sites with actively eroding streambeds that include knickpoints: Upper River Acheron and Devil's Cooling Tub in Mammoth Cave, Kentucky; and two surface streams in Clermont County, Ohio, Avey's Run and Fox Run. SFM 3D reconstructions are built using images exported from 4K video shot at each field location. We demonstrate that SFM is a viable imaging approach for reconstructing cave passages with complex morphologies. We then use these reconstructions to create meshes upon which to run multiphysics simulations using STAR-CCM+. Our approach incorporates multiphase free-surface computational fluid dynamics simulations with sediment transport modeled using discrete element method grains. Physical and chemical properties of the water, bedrock, and sediment enable computation of shear stress, sediment impact forces, and chemical kinetic conditions at the bed surface. Preliminary results prove the efficacy of commercially available multiphysics simulation software for modeling various flow conditions, erosional processes, and their complex coupled interactions in cave passages and in surface stream channels to expand knowledge and understanding of overall cave system development and river profile erosion.

  5. Widespread surface meltwater drainage in Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.

    2016-12-01

    Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.

  6. The topographic development and areal parametric characterization of a stratified surface polished by mass finishing

    NASA Astrophysics Data System (ADS)

    Walton, Karl; Blunt, Liam; Fleming, Leigh

    2015-09-01

    Mass finishing is amongst the most widely used finishing processes in modern manufacturing, in applications from deburring to edge radiusing and polishing. Processing objectives are varied, ranging from the cosmetic to the functionally critical. One such critical application is the hydraulically smooth polishing of aero engine component gas-washed surfaces. In this, and many other applications the drive to improve process control and finish tolerance is ever present. Considering its widespread use mass finishing has seen limited research activity, particularly with respect to surface characterization. The objectives of the current paper are to; characterise the mass finished stratified surface and its development process using areal surface parameters, provide guidance on the optimal parameters and sampling method to characterise this surface type for a given application, and detail the spatial variation in surface topography due to coupon edge shadowing. Blasted and peened square plate coupons in titanium alloy are wet (vibro) mass finished iteratively with increasing duration. Measurement fields are precisely relocated between iterations by fixturing and an image superimposition alignment technique. Surface topography development is detailed with ‘log of process duration’ plots of the ‘areal parameters for scale-limited stratified functional surfaces’, (the Sk family). Characteristic features of the Smr2 plot are seen to map out the processing of peak, core and dale regions in turn. These surface process regions also become apparent in the ‘log of process duration’ plot for Sq, where lower core and dale regions are well modelled by logarithmic functions. Surface finish (Ra or Sa) with mass finishing duration is currently predicted with an exponential model. This model is shown to be limited for the current surface type at a critical range of surface finishes. Statistical analysis provides a group of areal parameters including; Vvc, Sq, and Sdq, showing optimal discrimination for a specific range of surface finish outcomes. As a consequence of edge shadowing surface segregation is suggested for characterization purposes.

  7. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, Charles T.; Layman, Lawrence R.; Gallimore, David L.

    1988-01-01

    A nebulizer for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets.

  8. Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby

    DOEpatents

    Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu

    2014-04-01

    A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.

  9. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    NASA Astrophysics Data System (ADS)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  10. Improved Design of Optical MEMS Using the SUMMiT Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.

  11. Regional scale hydrology with a new land surface processes model

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Crosson, William

    1995-01-01

    Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.

  12. Kinetic examination of femoral bone modeling in broilers.

    PubMed

    Prisby, R; Menezes, T; Campbell, J; Benson, T; Samraj, E; Pevzner, I; Wideman, R F

    2014-05-01

    Lameness in broilers can be associated with progressive degeneration of the femoral head leading to femoral head necrosis and osteomyelitis. Femora from clinically healthy broilers were dissected at 7 (n = 35, 2), 14 (n = 32), 21 (n = 33), 28 (n = 34), and 42 (n = 28) d of age, and were processed for bone histomorphometry to examine bone microarchitecture and bone static and dynamic properties in the secondary spongiosa (IISP) of the proximal femoral metaphysis. Body mass increased rapidly with age, whereas the bone volume to tissue volume ratio remained relatively consistent. The bone volume to tissue volume ratio values generally reflected corresponding values for both mean trabecular thickness and mean trabecular number. Bone metabolism was highest on d 7 when significant osteoblast activity was reflected by increased osteoid surface to bone surface and mineralizing surface per bone surface ratios. However, significant declines in osteoblast activity and bone formative processes occurred during the second week of development, such that newly formed but unmineralized bone tissue (osteoid) and the percentages of mineralizing surfaces both were diminished. Osteoclast activity was elevated to the extent that measurement was impossible. Intense osteoclast activity presumably reflects marked bone resorption throughout the experiment. The overall mature trabecular bone volume remained relatively low, which may arise from extensive persistence of chondrocyte columns in the metaphysis, large areas in the metaphysis composed of immature bone, destruction of bone tissue in the primary spongiosa, and potentially reduced bone blood vessel penetration that normally would be necessary for robust development. Delayed bone development in the IISP was attributable to an uncoupling of osteoblast and osteoclast activity, whereby bone resorption (osteoclast activity) outpaced bone formation (osteoblast activity). Insufficient maturation and mineralization of the IISP may contribute to subsequent pathology of the femoral head in fast-growing broilers.

  13. Hetero-diffusion of Au epitaxy on stepped Ag(110) surface: Study of the jump rate and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Benlattar, M.; El koraychy, E.; Kotri, A.; Mazroui, M.

    2017-12-01

    We have used molecular dynamics simulations combined with an interatomic potential derived from the embedded atom method, to investigate the hetero-diffusion of Au adatom near a stepped Ag(110) surface with the height of one monoatomic layer. The activation energies for different diffusion processes, which occur on the terrace and near the step edge, are calculated both by molecular statics and molecular dynamics simulations. Static energies are found by the drag method, whereas the dynamic barriers are computed at high temperature from the Arrhenius plots. Our numerical results reveal that the jump process requires very high activation energy compared to the exchange process either on the terrace or near the step edge. In this work, other processes, such as upward and downward diffusion at step edges, have also been discussed.

  14. Influence of the aging process on the dealloying activity of an induction salt bath

    NASA Astrophysics Data System (ADS)

    Simonenko, A. N.

    1992-12-01

    The process of dealloying of the surface of high-alloy steels in heating in induction salt baths with a graphite crucible is neutralized by the process of carburizing and electrochemical interaction in a high-frequency electromagnetic field.

  15. Structural properties of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in contrast to the typical spherical TiO2.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.

    Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less

  17. Significant Quantum Effects in Hydrogen Activation

    DOE PAGES

    Kyriakou, Georgios; Davidson, Erlend R. M.; Peng, Guowen; ...

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature revealmore » completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H 2 up to ~190 K and for D 2 up to ~140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H 2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D 2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Here, examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.« less

  18. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy.

    PubMed

    ONeil, Colleen E; Jackson, Joshua M; Shim, Sang-Hee; Soper, Steven A

    2016-04-05

    We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.

  19. Quantifying, Analysing and Modeling Rockfall Activity in two Different Alpine Catchments using Terrestrial Laserscanning

    NASA Astrophysics Data System (ADS)

    Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M.

    2011-12-01

    Rockfall processes play a major role as a natural hazard, especially if the rock faces are located close to infrastructure. However these processes cause also the retreat of the steep rock faces by weathering and the growth of the corresponding talus cones by routing debris down the talus cones. That's why this process plays also an important role for the geomorphic system and the sediment budget of high mountain catchments. The presented investigation deals with the use of TLS for quantification and for analysis of rockfall activity in two study areas located in the Alps. The rockfaces of both catchments and the corresponding talus cones were scanned twice a year from different distances. Figure 1 shows an example for the spatial distribution of surface changes at a rockface in the Northern Dolomites between 2008 and 2010. The measured surface changes at this location yields to a mean rockwall retreat of 0.04 cm/a. But high resolution TLS data are not only applicable to quantify rockfall activity they can also be used to characterize the surface properties of the corresponding talus cones and the runout distances of bigger boulders and this can lead to a better process understanding. Therefore the surface roughness of talus cones in both catchments was characterized from the TLS point clouds by a GIS approach. The resulting detailed maps of the surface conditions on the talus cones were used to improve an existing process model which is able to model runout distances on the talus cones using distributed friction parameters. Beside this the investigations showed, that also the shape of the boulders has an influence on the runout distance. That's why the interrelationships between rock fragment morphology and runout distance of over 600 single boulders were analysed at the site of a large rockfall event. The submitted poster will show the results of the quantification of the rockfall activity and additionally it will show the results of the analyses of the talus cones and of the large rockfall event and applying these results to an existing rockfall model.

  20. Measuring the Impact of Wildfire on Active Layer Thickness in a Discontinuous Permafrost region using Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.

    2017-12-01

    In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of the ALOS, ALOS-2, and Sentinel systems for characterizing permafrost dynamics.

  1. Superheated water pretreatment combined with CO2 activation/regeneration of the exhausted activated carbon used in the treatment of industrial wastewater.

    PubMed

    Xiao, Jin; Yu, Bailie; Zhong, Qifan; Yuan, Jie; Yao, Zhen; Zhang, Liuyun

    2017-10-01

    This paper examines a novel method of regenerating saturated activated carbon after adsorption of complex phenolic, polycyclic aromatic hydrocarbons with low energy consumption by using superheated water pretreatment combined with CO 2 activation. The effects of the temperature of the superheated water, liquid-solid ratio, soaking time, activation temperature, activation time, and CO 2 flow rate of regeneration and adsorption of coal-powdered activated carbon (CPAC) were studied. The results show that the adsorption capacity of iodine values on CPAC recovers to 102.25% of the fresh activated carbon, and the recovery rate is 79.8% under optimal experimental conditions. The adsorption model and adsorption kinetics of methylene blue on regenerated activated carbon (RAC) showed that the adsorption process was in accordance with the Langmuir model and the pseudo-second-order kinetics model. Furthermore, the internal diffusion process was the main controlling step. The surface properties, Brunauer-Emmett-Teller (BET) surface area, and pore size distribution were characterized by Fourier transform infrared spectroscopy (FT-IR) and BET, which show that the RAC possesses more oxygen-containing functional groups with a specific surface area of 763.39 m 2 g -1 and a total pore volume of 0.3039 cm 3 g -1 . Micropores account for 79.8% and mesopores account for 20.2%.

  2. Formation of continuous activated carbon fibers for barrier fabrics

    NASA Astrophysics Data System (ADS)

    Liang, Ying

    1997-08-01

    Commercial protective suits made of active carbon granules or nonwoven fabrics are heavy, have low moisture vapor transport rate, and are uncomfortable. Inherent problems due to construction of barrier fabrics lead to severe heat stress when worn for even short time in warm environments. One proposed method to eliminate these problems is to facilitate the construction of a fabric made of continuous activated carbon fibers (CACF). This study is directed toward investigating the possibility of developing CAFC from two precursors: aramid and fibrillated PAN fiber. It was shown in this study that Kevlar-29 fibers could be quickly carbonized and activated to CACF with high adsorptivity and relatively low weight loss. CACF with high surface area (>500 msp2/g) and reasonable tenacity (≈1g/denier) were successfully prepared from Kevlar fibers through a three-step process: pretreatment, carbonization, and activation. X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis were conducted to understand the evolution of physical and chemical properties during pretreatment. The influence of temperature, heating rate, and pyrolysis environment on the thermal behavior was determined by DSC and TGA/DTA and used as an indicator for optimizing the pyrolysis conditions. Surface analysis by nitrogen isotherms indicated that the resultant fibers had micropores and mesopores on the surface of CACF. This was also inferred by studies on the surface morphology through Scanning Electron Microscopy (SEM) and Scanning Tunneling Microscopy (STM). An investigation of the surface chemical structure by X-ray photoelectron spectroscopy (XPS) before and after activation and elemental analysis confirmed that adsorption of Kevlar based CACF mainly arises due to the physisorption instead of chemisorption. A multistep stabilization along with carbonization and activation was used to prepare active carbon fiber from fibrillated PAN fiber. The resultant fiber retained its fibrillar structure and provided a very high surface area, up to 1400 msp2/g, but was brittle. The characterization of the thermal behavior, mechanical properties, and surface structure of the pyrolyzed fiber at each processing step was also carried out by using various techniques, such as DSC and TGA, Instron, and SEM. These studies provide directions for preparation of CACF from novel precursors.

  3. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Thilagavathi, G.; Rajendran, R.

    2007-06-01

    The paper deals with a thorough investigation on the antimicrobial activity of RF oxygen plasma and Azadirachtin (neem extract) treated cotton fabric. The hydrophilicity of cotton fabric was found to improve when treated with RF oxygen plasma. The process parameters such as electrode gap, time of exposure and oxygen pressure have been varied to study their effect on improving the hydrophilicity of the cotton fabric. The static immersion test has been carried out to assess the hydrophilicity of the oxygen plasma treated samples and the process parameters were optimized based on these test results. The formation of carbonyl group during surface modification in the plasma treated sample was analysed using FTIR studies. The surface morphology has been studied using SEM micrographs. The antimicrobial activity was imparted to the RF oxygen plasma treated samples using methanolic extract of neem leaves containing Azadirachtin. The antimicrobial activity of these samples has been analysed and compared with the activity of the cotton fabric treated with neem extract alone. The investigation reveals that the surface modification due to RF oxygen plasma was found to increase the hydrophilicity and hence the antimicrobial activity of the cotton fabric when treated with Azadirachtin.

  4. The effect of activation agent on surface morphology, density and porosity of palm shell and coconut shell activated carbon

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Zakaria, S.; Salleh, M. N. M.; Sunar, N. M.; Feriyanto, D.; Nazri, A. A.

    2017-09-01

    Activated carbon (AC) has one of the promising alternative technology for filtration and adsorption process. It inexpensive material because the sources is abundant especially in Malaysia. Main purpose of this project is to develop AC by chemical activation process to improve adsorption capacity by improving porosity of AC. AC developed via carbonization using designed burner at temperature of 650°C to 850 °C and activated by Potassium Hydroxide (KOH) in 12 hour and then dried at temperature of 300°C. Characterization and analysis is conducted by Scanning Electron Microscopy (SEM) for surface morphology analysis, Energy Dispersive Spectroscopy (EDS) for composition analysis, density and porosity analysis. Results shows that uneven surface has been observed both of AC and non-AC and also AC shows higher porosity as compared to non-AC materials. Density value of raw material has lower than AC up to 11.67% and 47.54% and porosity of raw material has higher than AC up to 31.45% and 45.69% for palm shell and coconut shell AC. It can be concluded that lower density represent higher porosity of material and higher porosity indicated higher adsorption capacity as well.

  5. Enhanced carbon monoxide utilization in methanation process

    DOEpatents

    Elek, Louis F.; Frost, Albert C.

    1984-01-01

    Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

  6. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE PAGES

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; ...

    2015-02-01

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  7. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  8. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  9. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  10. Influence of selected physicochemical parameters on microbiological activity of mucks.

    NASA Astrophysics Data System (ADS)

    Całka, A.; Sokołowska, Z.; Warchulska, P.; Dąbek-Szreniawska, M.

    2009-04-01

    One of the basic factor decided about soil fertility are microorganisms that together with flora, determine trend and character of biochemical processes as well totality of fundamental transformations connected with biogeochemistry and physicochemical properties of soil. Determination of general bacteria number, quantity of selected groups of microorganisms and investigation of respiration intensity let estimate microbiological activity of soil. Intensity of microbiological processes is directly connected with physicochemical soil parameters. In that case, such structural parameters as bulk density, porosity, surface or carbon content play significant role. Microbiological activity also changes within the bounds of mucks with different stage of humification and secondary transformation. Knowledge of relations between structural properties, microorganism activity and degree of transformation and humification can lead to better understanding microbiological processes as well enable to estimate microbiological activity at given physicochemical conditions and at progressing process of soil transformation. The study was carried out on two peaty-moorsh (muck) soils at different state of secondary transformation and humification degree. Soil samples were collected from Polesie Lubelskie (layer depth: 5 - 25 cm). Investigated mucks originated from soils formed from low peatbogs. Soil sample marked as I belonged to muck group weakly secondary transformed. Second sample (II) represented soil group with middle stage of secondary transformation. The main purpose of the research was to examine the relations between some physicochemical and surface properties and their biological activity. Total number and respiration activity of microorganisms were determined. The effectiveness of utilizing the carbon substances from the soil by the bacteria increased simultaneously with the transformation state of the peat-muck soils. Quantity of organic carbon decreased distinctly in the soil at the higher stage of secondary transformation and it influenced quantity and activity of soil microorganisms. Bulk density and surface increased with increasing secondary transformation degree. On the other hand, porosity decreased with increasing secondary transformation index. Process of secondary transformation influenced the soil environment for the microbes by changing the physicochemical properties. This way it influenced the number of microorganisms and caused changes of biological activity in the soils.

  11. Surfactant-associated bacteria in the near-surface layer of the ocean.

    PubMed

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-12

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.

  12. Surfactant-associated bacteria in the near-surface layer of the ocean

    PubMed Central

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  13. Monitoring and characterizing natural hazards with satellite InSAR imagery

    USGS Publications Warehouse

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel

    2010-01-01

    Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.

  14. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32).

    PubMed

    Chan, Derek V; Somani, Ally-Khan; Young, Andrew B; Massari, Jessica V; Ohtola, Jennifer; Sugiyama, Hideaki; Garaczi, Edina; Babineau, Denise; Cooper, Kevin D; McCormick, Thomas S

    2011-05-26

    Elevated numbers of regulatory T cells (T(regs)) have been implicated in certain cancers. Depletion of T(regs) has been shown to increase anti-tumor immunity. T(regs) also play a critical role in the suppression of autoimmune responses. The study of T(regs) has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated T(regs). However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of T(regs) expressing LRRC32. Using naturally-occurring freshly isolated T(regs), we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ T(regs) are distinct from LRRC32- T(regs) with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ T(regs) are more potent suppressors than LRRC32- T(regs). A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent T(reg) populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of T(regs) and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Peterson; Jessica Trudeau; Bill Cleary

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the diemore » lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E. S.; Trudeau, J.; Cleary, B.

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the diemore » lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.« less

  17. Simulations of surface stress effects in nanoscale single crystals

    NASA Astrophysics Data System (ADS)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  18. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    PubMed

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We aspire to address scientists, who will get involved in the fields of (super)hydrophobicity and/or in atmospheric pressure plasma processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGES

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  20. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    PubMed

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  1. Stabilization of surface-immobilized enzymes using grafted polymers

    NASA Astrophysics Data System (ADS)

    Moskovitz, Yevgeny; Srebnik, Simcha

    2004-03-01

    Vast research efforts focus on improving the biocompatibility and biofunctionality of surfaces for artificial implants and organs. A relatively successful approach involves grafting of polymer (usually PEG) on the artificial surface, which significantly improves its biocompatibility. In addition, positioning enzymes on or in the vicinity of the surface can significantly enhance bioseparation processes. However, the catalytic activity of the anchored enzyme is often drastically impaired by the nonnatural environment, leading to loss of activity and denaturation. We study protein adsorption and stabilization by grafted polymers using a mean-field lattice model. The model protein is designed as a compact HP with a specific bulk conformation reproducing a catalytic cleft of natural enzymes. Using hydrophilic grafted polymers of tailored length and density, we show that the conformation as well as hydrophobic and active centers of the model enzyme can be restored. This research is inspired by the problem of biocompatibility and biofunctionality of surfaces for artificial implants and organs.

  2. Homogeneous near surface activity distribution by double energy activation for TLA

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Tárkányi, F.

    2007-10-01

    Thin layer activation (TLA) is a versatile tool for activating thin surface layers in order to study real-time the surface loss by wear, corrosion or erosion processes of the activated parts, without disassembling or stopping running mechanical structures or equipment. The research problem is the determination of the irradiation parameters to produce point-like or large area optimal activity-depth distribution in the sample. Different activity-depth profiles can be produced depending on the type of the investigated material and the nuclear reaction used. To produce activity that is independent of the depth up to a certain depth is desirable when the material removed from the surface by wear, corrosion or erosion can be collected completely. By applying dual energy irradiation the thickness of this quasi-constant activity layer can be increased or the deviation of the activity distribution from a constant value can be minimized. In the main, parts made of metals and alloys are suitable for direct activation, but by using secondary particle implantation the wear of other materials can also be studied in a surface range a few micrometers thick. In most practical cases activation of a point-like spot (several mm2) is enough to monitor the wear, corrosion or erosion, but for special problems relatively large surfaces areas of complicated spatial geometry need to be activated uniformly. Two ways are available for fulfilling this task, (1) production of large area beam spot or scanning the beam over the surface in question from the accelerator side, or (2) a programmed 3D movement of the sample from the target side. Taking into account the large variability of tasks occurring in practice, the latter method was chosen as the routine solution in our cyclotron laboratory.

  3. Kinetic Characteristics of Hydrogen Transfer Through Palladium-Modified Membrane

    NASA Astrophysics Data System (ADS)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2018-01-01

    The paper deals with hydrogen transfer through Pd-23%Ag alloy membrane, the surface of which is modified by the electrolytic deposition of highly dispersed palladium. The dependence between the density of hydrogen flow and its excess pressure on the input surface of membrane is well approximated by the first-order curve. This fact indicates that the process of hydrogen permeability is defined by its dissociation on the input surface. Activation energy of this process is 47.9 kJ/mol which considerably exceeds that of the process of hydrogen transfer through palladium (22-30 kJ/mol). This confirms the fact that the chemisorption is a rate-controlling step of the hydrogen transfer through membrane.

  4. Cross-coherent vector sensor processing for spatially distributed glider networks.

    PubMed

    Nichols, Brendan; Sabra, Karim G

    2015-09-01

    Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.

  5. Method for providing adhesion to a metal surface

    DOEpatents

    Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.

    1992-02-18

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  6. Method for providing adhesion to a metal surface

    DOEpatents

    Harrah, Larry A.; Allred, Ronald E.; Wilson, Jr., Kennard V.

    1992-01-01

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  7. Specificity of marine microbial surface interactions.

    PubMed Central

    Imam, S H; Bard, R F; Tosteson, T R

    1984-01-01

    The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293

  8. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    PubMed

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  9. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  10. The Effect of Solution Chemistry on Nucleation of Nesquehonite

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhu, C.; Wang, Z.

    2016-12-01

    The interfaces between minerals and aqueous solutions are key to important Earth surface processes, including chemical weathering, mineral dissolution/precipitation, and pollutant absorption/release. Mineral surface properties, such as the surface structure and the surface energy, determine the outcomes of many geochemical reactions. Several factors could affect surface energy, but the effect of solution chemistry, particularly the solution stoichiometry, on the surface energy and nucleation process is poorly understood. The goal of this study is to understand the effect of solution chemistry on the nucleation of nesquehonite. Nesquehonite nucleation experiments were conducted in aqueous solutions having similar Mg2+/ CO32- activity ratios, but different saturation states and solution pH. The experimental results show that induction-time estimates from our precipitation experiments with similar Mg2+/CO32- activity ratios are consistent with classical nucleation theory (CNT), while the surface energy derived from CNT varies with Mg2+/CO32- activity ratios. Our observations can be explained by the different absorption behaviors of Mg2+ and CO32- and and/or reduced Gibbs free energies through better screening of the electric double layer. A surface energy model involving solution composition is developed that combines surface complexation with electrostatic models. The new model takes into account how surface charge may affect surface energy. It implies that the highest surface energy may occur around the point of zero charge (p.z.c), where the nucleation is fastest (or conversely, where the induction time is shortest) under low saturation states, but not under high saturation states. An accelerated attachment rate of monomers at the p.z.c. is consistent with high surface energy, since it represents higher reactivity of surface ions and less work needed to break the solvated water molecules. This study provides deeper insights into mechanisms of nesquehonite nucleation in nature, and guidelines for accelerating the precipitation rates of nesquehonite.

  11. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  12. Hydrophobic surface functionalization of Philippine natural zeolite for a targeted oil remediation application

    NASA Astrophysics Data System (ADS)

    Osonio, Airah P.; Olegario-Sanchez, Eleanor M.

    2017-12-01

    The objective of this study is to modify and compare the oil sorption capacity on the surface of natural zeolite (NZ) and functionalized natural zeolite (FNZ) and to compare with activated charcoal samples. The NZ samples were surface modified via esterification process and characterized using XRD, SEM, and IR spectroscopy. The NZ, FNZ and activated charcoal were then tested using ASTM method F726-12 to validate the oil sorption capacity and TGA was used for the oil selectivity of the adsorbents. The results indicate that FNZ has an improved oil/water adsorption capacity than NZ when functionalized with ester and has a comparable capacity with activated charcoal.

  13. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, C.T.; Layman, L.R.; Gallimore, D.L.

    1988-05-10

    A nebulizer is described for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets. 2 figs.

  14. Engineering a biospecific communication pathway between cells and electrodes

    NASA Astrophysics Data System (ADS)

    Collier, Joel H.; Mrksich, Milan

    2006-02-01

    Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction

  15. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    NASA Astrophysics Data System (ADS)

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah; Ali, Umi Fazara Md

    2015-05-01

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m2/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.

  16. Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene.

    PubMed

    de Rancourt, Yoann; Couturaud, Benoit; Mas, André; Robin, Jean Jacques

    2013-07-15

    Antibacterial polymer surfaces were designed using ZnO nanoparticles as a bactericide. Mineral encapsulated nanoparticles were grafted onto activated polymer surfaces through their shells. Polypropylene (PP) surfaces were treated using an innovative process coupling core-shell technology and plasma grafting, well-known techniques commonly used to obtain active surfaces for biomedical applications. First, ZnO nanoparticles were encapsulated by (co)polymers: poly(acrylic acid) (PAA) or a poly(methyl methacrylate-co-methacrylic acid) copolymer [P(MMA-MA)]. Second, PP substrates were activated using plasma treatment. Finally, plasma-treated surfaces were immersed in solutions containing the encapsulated nanoparticles dispersed in an organic solvent and allowed to graft onto it. The presence of nanoparticles on the substrates was demonstrated using Fourier-Transform Infrared Spectroscopy (FTIR) analysis, Scanning Electron Microspcopy (SEM)/Energy-Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) studies. Indeed, the ZnO-functionalized substrates exhibited an antibacterial response in Escherichia coli adhesion tests. Moreover, this study revealed that, surprisingly, native ZnO nanoparticles without any previous functionalization could be directly grafted onto polymeric surfaces through plasma activation. The antibacterial activity of the resulting sample was shown to be comparable to that of the other samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD)

    PubMed Central

    Frank, Matthias J.; Walter, Martin S.; Rubert, Marina; Thiede, Bernd; Monjo, Marta; Reseland, Janne E.; Haugen, Håvard J.; Lyngstadaas, Ståle Petter

    2014-01-01

    The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity. PMID:28788564

  18. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  19. The hydrochemistry of glacial Ebba River (Petunia Bay, Central Spitsbergen): Groundwater influence on surface water chemistry

    NASA Astrophysics Data System (ADS)

    Dragon, Krzysztof; Marciniak, Marek; Szpikowski, Józef; Szpikowska, Grażyna; Wawrzyniak, Tomasz

    2015-10-01

    The article presents the investigation of surface water chemistry changes of the glacial Ebba River (Central Spitsbergen) during three melting seasons of 2008, 2009 and 2010. The twice daily water chemistry analyses allow recognition of the surface water chemistry differentiation. The surface water chemistry changes are related to the river discharge and changes in the influence of different water balance components during each melting season. One of the most important process that influence river water component concentration increase is groundwater inflow from active layer occurring on the valley area. The significance of this process is the most important at the end of the melting season when temperatures below 0 °C occur on glaciers (resulting in a slowdown of melting of ice and snow and a smaller recharge of the river by the water from the glaciers) while the flow of groundwater is still active, causing a relatively higher contribution of groundwater to the total river discharge. The findings presented in this paper show that groundwater contribution to the total polar river water balance is more important than previously thought and its recognition allow a better understanding of the hydrological processes occurring in a polar environment.

  20. Biogeochemistry and Hydrology in Streams Impacted by Legacy Sediments and Urbanization: Implications for Stream Restoration

    EPA Science Inventory

    The groundwater–surface water interface, consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water interac...

  1. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    NASA Astrophysics Data System (ADS)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  2. Assessment of weaning indexes based on diaphragm activity in mechanically ventilated subjects after cardiovascular surgery. A pilot study

    PubMed Central

    Ortega, Isabel Cristina Muñoz; Valdivieso, Alher Mauricio Hernández; Lopez, Joan Francesc Alonso; Villanueva, Miguel Ángel Mañanas; Lopez, Luis Horacio Atehortúa

    2017-01-01

    Objective The aim of this pilot study was to evaluate the feasibility of surface electromyographic signal derived indexes for the prediction of weaning outcomes among mechanically ventilated subjects after cardiac surgery. Methods A sample of 10 postsurgical adult subjects who received cardiovascular surgery that did not meet the criteria for early extubation were included. Surface electromyographic signals from diaphragm and ventilatory variables were recorded during the weaning process, with the moment determined by the medical staff according to their expertise. Several indexes of respiratory muscle expenditure from surface electromyography using linear and non-linear processing techniques were evaluated. Two groups were compared: successfully and unsuccessfully weaned patients. Results The obtained indexes allow estimation of the diaphragm activity of each subject, showing a correlation between high expenditure and weaning test failure. Conclusion Surface electromyography is becoming a promising procedure for assessing the state of mechanically ventilated patients, even in complex situations such as those that involve a patient after cardiovascular surgery. PMID:28977261

  3. Probing equilibrium of molecular and deprotonated water on TiO 2 (110)

    DOE PAGES

    Wang, Zhi-Tao; Wang, Yang-Gang; Mu, Rentao; ...

    2017-02-06

    Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociation barrier.more » Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. The techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less

  4. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering.

    PubMed

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-05-08

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal-dielectric-metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm(-1) is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry.

  5. Intrinsic activation: the relationship between biomass inorganic content and porosity formation during pyrolysis.

    PubMed

    Stratford, James P; Hutchings, Tony R; de Leij, Frans A A M

    2014-05-01

    The utility of pyrolytic carbons is closely related to their porosity and surface area, there is a clear benefit to the development of biomass pyrolysis processes which produce highly porous carbons. The results presented in this work demonstrate that by using biomass precursors with high inorganic content along with specified process conditions, carbons can be consistently produced with specific surface areas between 900 and 1600 m(2)/g. Results from 12 different source materials show that the formation of increased porosity in pyrolytic carbons is strongly associated with the presence of inorganic elements in the precursors including: magnesium, potassium and sulfur. It was found that pyrolysis of macro-algae can produce especially high specific surface area carbons (mean: 1500 m(2)/g), without externally applied activating agents. Using cheap readily available agricultural residues such as oilseed rape straw, pyrolytic carbons can be produced with specific surface areas of around 950 m(2)/g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fabrication of superhydrophobic Pt3Fe/Fe surface for its application

    NASA Astrophysics Data System (ADS)

    Cui, Shuo; Lu, Shixiang; Xu, Wenguo; Wu, Bei

    2017-10-01

    Well-defined Pt3Fe/Fe superhydrophobic materials on iron sheet with special properties, such as corrosion resistance, superhydrophobicity and superoleophilicity, was fabricated. The fabrication process involved etching in hydrochloric acid aqueous solution and simple replacement deposition process without using any seed and organic solvent, and then annealing. The electrochemical measurements show that the resultant surface in 3.5% sodium chloride solution displays good corrosion resistance. Also, it is proved that the obtained surface has better mechanical abrasion resistance via scratch test. The superoleophilicity and low water adhesion force of the obtained surface endow it high oil/water separation capacity. The as-prepared nanocomposites display enhanced catalytic activity and kinetics toward degradation of methyl orange. In particular, it possesses the most efficient degradation capacity (95%) towards methyl orange at a high concentration (17.5 mg/L) in 80 min. The improved stability and excellent catalytic activity of the Pt3Fe/Fe nanocomposites promise new opportunities for the development of waste water treatment.

  7. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Zhang, Zhijun

    2011-02-01

    Tetraethyl orthosilicate (TEOS) and dimethyldiethoxysilane (DEDMS) were used as co-precursors to prepare organically modified silica (ormosil) via sol-gel process. The resultant ormosil was adopted for surface-capping of ZnO nanoparticle, where methyl (organic functional group) and silica (inorganic component) were simultaneously introduced onto the surface of the nanoparticles for realizing dual surface-modification. The ormosil-capped ZnO nanoparticle showed strong hydrophobicity and good compatibility with organic phases, as well as effectively decreased photocatalytic activity and almost unchanged ultraviolet (UV)-shielding ability. More importantly, the comprehensive properties of ormosil-capped ZnO nanoparticle could be manipulated by adjusting the molar ratio of TEOS to DEDMS during sol-gel process. This should help to open a wider window to better utilizing the unique and highly attractive properties such as high UV-shielding ability and high-visible light transparency of ZnO nanoparticle in sunscreen cosmetics.

  8. Probing equilibrium of molecular and deprotonated water on TiO 2(110)

    DOE PAGES

    Wang, Zhi -Tao; Wang, Yang -Gang; Mu, Rentao; ...

    2017-02-06

    Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO 2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociationmore » barrier. Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. In conclusion, the techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less

  9. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.

  10. Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials (HazMats) or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) A void duplication of effort in actions required to reduce or eliminate HazMats through joint center cooperation and technology sharing. This project will identify, evaluate and approve alternative surface preparation technologies for use at NASA and Air Force Space Command (AFSPC) installations. Materials and processes will be evaluated with the goal of selecting those processes that will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination and reduce the amount of hazardous waste generated. This Joint Test Protocol (JTP) contains the critical requirements and tests necessary to qualify alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel Applications. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of NASA and Air Force Space Command (AFSPC) participants. The Field Test Plan (FTP), entitled Joint Test Protocol for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, prepared by ITB, defines the field evaluation and testing requirements for validating alternative surface preparation/depainting technologies and supplements the JTP.

  11. Vesiculation Processes During Transient and Sustained Explosive Activity at Halema'uma'u Crater, Kīlauea in 2008-2013.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Orr, T. R.; Taddeucci, J.; Carey, R.; Del Bello, E.; Scarlato, P.; Patrick, M. R.

    2015-12-01

    The 2008-2015 summit eruption within Halema'uma'u crater, Kilauea has been characterized by alternations of passive degassing with two styles of explosive activity, both frequently triggered by rock falls that perturb the free surface of magma in the vent. In the first, larger rock falls trigger second vesiculation of magma at depths up to 100 m below the free surface ejecting juvenile bomb and lapilli populations of very variable vesicularity. The second, the topic of this presentation, consists of intervals of minutes to tens-of-minutes duration of low fountaining activity often from multiple locations. Vents may migrate with time, first across the free surface to its margins, and then around the margins, in response to convection processes in the underlying melt. Analysis of short sequences of high-speed, high-resolution video footage shows that the sustained fountaining is maintained by not by a continuous discharge but rather by closely spaced bursting of two-to-five meter-wide bubbles. Bubbles accelerate through the free surface at velocities of 10 to 40 m/s disrupting the viscoelastic crust and forming large fall-back, lacework pyroclasts and smaller highly vesicular bombs and lapilli.

  12. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.

  13. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during themore » coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.« less

  14. Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature.

    PubMed

    Herawan, S G; Hadi, M S; Ayob, Md R; Putra, A

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  15. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].

    PubMed

    Jiang, Peng; Bao, Xinhe; Salmeron, Miquel

    2015-05-19

    Heterogeneous catalysis is of great importance for modern society. About 80% of the chemicals are produced by catalytic reactions. Green energy production and utilization as well as environmental protection also need efficient catalysts. Understanding the reaction mechanisms is crucial to improve the existing catalysts and develop new ones with better activity, selectivity, and stability. Three components are involved in one catalytic reaction: reactant, product, and catalyst. The catalytic reaction process consists of a series of elementary steps: adsorption, diffusion, reaction, and desorption. During reaction, the catalyst surface can change at the atomic level, with roughening, sintering, and segregation processes occurring dynamically in response to the reaction conditions. Therefore, it is imperative to obtain atomic-scale information for understanding catalytic reactions. Scanning probe microscopy (SPM) is a very appropriate tool for catalytic research at the atomic scale because of its unique atomic-resolution capability. A distinguishing feature of SPM, compared to other surface characterization techniques, such as X-ray photoelectron spectroscopy, is that there is no intrinsic limitation for SPM to work under realistic reaction conditions (usually high temperature and high pressure). Therefore, since it was introduced in 1981, scanning tunneling microscopy (STM) has been widely used to investigate the adsorption, diffusion, reaction, and desorption processes on solid catalyst surfaces at the atomic level. STM can also monitor dynamic changes of catalyst surfaces during reactions. These invaluable microscopic insights have not only deepened the understanding of catalytic processes, but also provided important guidance for the development of new catalysts. This Account will focus on elementary reaction processes revealed by SPM. First, we will demonstrate the power of SPM to investigate the adsorption and diffusion process of reactants on catalyst surfaces at the atomic level. Then the dynamic processes, including surface reconstruction, roughening, sintering, and phase separation, studied by SPM will be discussed. Furthermore, SPM provides valuable insights toward identifying the active sites and understanding the reaction mechanisms. We also illustrate here how both ultrahigh vacuum STM and high pressure STM provide valuable information, expanding the understanding provided by traditional surface science. We conclude with highlighting remarkable recent progress in noncontact atomic force microscopy (NC-AFM) and inelastic electron tunneling spectroscopy (IETS), and their impact on single-chemical-bond level characterization for catalytic reaction processes in the future.

  16. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    PubMed

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Active Serpentinization and the Potential for a Diverse Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Canovas, P. A.; Shock, E.

    2013-12-01

    The ubiquitous nature of serpentinization and the unique fluids it generates have major consequences for habitat generation, abiotic organic synthesis, and biosynthesis. The production of hydrogen from the anaerobic hydrolysis of ultramafic minerals sets the redox state of serpentinizing fluids to be thermodynamically favorable for these processes. Consequently, a host of specialized microbial populations and metabolisms can be sustained. Active low-temperature serpentinizing systems, such as the Samail ophiolite in Oman, offer an ideal opportunity to investigate biogeochemical processes during the alteration of ultramafic minerals. At the Samail ophiolite in particular, serpentinization may provide the potential for an active subsurface microbial community shielded from potentially unfavorable surface conditions. Support for this assertion comes from geochemical data including Mg, Ca, CH4 (aq), and H2 (aq) abundances indicating that methane is a product of serpentinization. To further investigate viable metabolic strategies, affinity calculations were performed on both the surface waters and the hyperalkaline springs, which may be considered as messengers of processes occurring in the subsurface. Almost all sites yield positive affinities (i.e., are thermodynamically favorable) for a diverse suite of serpentinization metabolisms including methanogenesis, anammox, and carbon monoxide, nitrate, and sulfate reduction with hydrogen, as well as anaerobic methanotrophy coupled to nitrate, nitrite, and sulfate reduction. Reaction path modeling was performed to ascertain the extent to which serpentinization and mixing of surface waters with hyperalkaline spring waters in the subsurface can generate suitable habitats. The serpentinization model simulates the reaction of pristine Oman harzburgite with surface water to quantify the redox state and generation of hyperalkaline spring water. Preliminary results show that water-rock ratios as high as 100 could effectively reduce the system and create a thermodynamic drive sufficient to convert all of the dissolved inorganic carbon into methane. This indicates that the system is poised to create the reducing conditions necessary to support a subsurface biosphere very early in the serpentinizing process, and that the subsurface biosphere could extend upwards to very near the surface. The mixing model simulates the percolation of surface water into the active serpentinization zone. During the mixing process, methane is calculated to be more stable than carbonate species until approximately 100g of surface water have been added to 1 kg of the serpentinizing fluid. These results suggest that unreacted surface water flowing directly into the serpentinizing zone can create the disequilibria necessary for methanogenesis, and possibly other metabolisms, to proceed while still maintaining the low redox state of the system. As long as the recharge to the hyperalkaline reservoir does not exceed ten percent of the reservoir, methanogenesis and other serpentinization metabolisms can thrive off the disequilibria generated through mixing.

  18. Glycan Engineering for Cell and Developmental Biology.

    PubMed

    Griffin, Matthew E; Hsieh-Wilson, Linda C

    2016-01-21

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  20. Identifying the Active Surfaces of Electrochemically Tuned LiCoO 2 for Oxygen Evolution Reaction

    DOE PAGES

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; ...

    2017-04-18

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces andmore » their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.« less

  1. Effect of polymer coating on the osseointegration of CP-Ti dental implant

    NASA Astrophysics Data System (ADS)

    Al-Hassani, Emad; Al-Hassani, Fatima; Najim, Manar

    2018-05-01

    Modifications achieved coatings of titanium samples were investigated in order to improve their surface characteristics so as to facilitate bio-integration. Chitosan coating was use for commercial pure Ti alloys manufactured by two different methods in which commercial pure titanium rod converted in form of implant screw by using wire cut machine and lathe, second method included the used of powder technology for producing the implant screws. The coating process of chitosan polymer was carried out using advance technology (electrospnning process) to create fibrous structure from Nano to micro scale of the chitosan on the implant surface which result in a bioactive surface. The characterization includes; microstructure observation, surface chemical composition analysis (EDS), surface roughness (AFM), and the histological analysis. from the SEM No morphological differences were observed among the implants surfaces except for some inconsiderable morphological differences that results from the manufacturing process, by using EDX analysis the surfaces chemical compositions were completely changed and there was large decrease in the percentage of titanium element at the surface which indicates that the surface is covered with chitosan and had a new surface composition and topography. The sample was produced by powder technology process have higher roughness (845.36 nm) than sample produced by machining without any surface treatment (531.7nm),finally The histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance.

  2. Optimized micromirror arrays for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M. Adrian

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics. {copyright} {ital 1999 American Institute of Physics.}« less

  3. Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film

    EPA Science Inventory

    Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...

  4. MICROFRACTURE SURFACE GEOCHEMISTRY AND ADHERENT MICROBIAL POPULATION METABOLISM IN TCE-CONTAMINATED COMPETENT BEDROCK

    EPA Science Inventory

    A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture (MF) surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE bi...

  5. Path planning and parameter optimization of uniform removal in active feed polishing

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Shaozhi; Zhang, Chunlei; Zhang, Linghua; Chen, Huanan

    2015-06-01

    A high-quality ultrasmooth surface is demanded in short-wave optical systems. However, the existing polishing methods have difficulties meeting the requirement on spherical or aspheric surfaces. As a new kind of small tool polishing method, active feed polishing (AFP) could attain a surface roughness of less than 0.3 nm (RMS) on spherical elements, although AFP may magnify the residual figure error or mid-frequency error. The purpose of this work is to propose an effective algorithm to realize uniform removal of the surface in the processing. At first, the principle of the AFP and the mechanism of the polishing machine are introduced. In order to maintain the processed figure error, a variable pitch spiral path planning algorithm and the dwell time-solving model are proposed. For suppressing the possible mid-frequency error, the uniformity of the synthesis tool path, which is generated by an arbitrary point at the polishing tool bottom, is analyzed and evaluated, and the angular velocity ratio of the tool spinning motion to the revolution motion is optimized. Finally, an experiment is conducted on a convex spherical surface and an ultrasmooth surface is finally acquired. In conclusion, a high-quality ultrasmooth surface can be successfully obtained with little degradation of the figure and mid-frequency errors by the algorithm.

  6. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  7. Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption.

    PubMed

    Ooi, Chee-Heong; Cheah, Wee-Keat; Sim, Yoke-Leng; Pung, Swee-Yong; Yeoh, Fei-Yee

    2017-07-15

    Urea removal is an important process in household wastewater purification and hemodialysis treatment. The efficiency of the urea removal can be improved by utilizing activated carbon fiber (ACF) for effective urea adsorption. In this study, ACF was prepared from oil palm empty fruit bunch (EFB) fiber via physicochemical activation using sulfuric acid as an activating reagent. Based on the FESEM result, ACF obtained after the carbonization and activation processes demonstrated uniform macropores with thick channel wall. ACF was found better prepared in 1.5:1 acid-to-EFB fiber ratio; where the pore size of ACF was analyzed as 1.2 nm in diameter with a predominant micropore volume of 0.39 cm 3  g -1 and a BET surface area of 869 m 2  g -1 . The reaction kinetics of urea adsorption by the ACF was found to follow a pseudo-second order kinetic model. The equilibrium amount of urea adsorbed on ACF decreased from 877.907 to 134.098 mg g -1 as the acid-to-fiber ratio increased from 0.75 to 4. During the adsorption process, the hydroxyl (OH) groups on ACF surface were ionized and became electronegatively charged due to the weak alkalinity of urea solution, causing ionic repulsion towards partially anionic urea. The ionic repulsion force between the electronegatively charged ACF surface and urea molecules became stronger when more OH functional groups appeared on ACF prepared at higher acid impregnation ratio. The results implied that EFB fiber based ACF can be used as an efficient adsorbent for the urea removal process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antibacterial and anticancer PDMS surface for mammalian cell growth using the Chinese herb extract paeonol(4-methoxy-2-hydroxyacetophenone)

    NASA Astrophysics Data System (ADS)

    Jiao, Jiajia; Sun, Lili; Guo, Zaiyu; Hou, Sen; Holyst, Robert; Lu, Yun; Feng, Xizeng

    2016-12-01

    Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.

  9. Quantitative analysis of geomorphic processes using satellite image data at different scales

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr.

    1985-01-01

    When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.

  10. Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…

  11. Surface-mediated molecular events in material-induced blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Kaushik

    Coagulation and thrombosis persist as major impediments associated with the use of blood-contacting medical devices. We are investigating the molecular mechanism underlying material-induced blood-plasma coagulation focusing on the role of the surface as a step towards prospective development of improved hemocompatible biomaterials. A classic observation in hematology is that blood/blood-plasma in contact with clean glass surface clots faster than when in contact with many plastic surfaces. The traditional biochemical theory explaining the underlying molecular mechanism suggests that hydrophilic surfaces, like that of glass, are specific activators of the coagulation cascade because of the negatively-charged groups on the surface. Hydrophobic surfaces are poor procoagulants or essentially "benign" because they lack anionic groups. Further, these negatively-charged surfaces are believed to not only activate blood factor XII (FXII), the key protein in contact activation, but also play a cofactor role in the amplification and propagation reactions that ultimately lead to clot formation. In sharp contrast to the traditional theory, our investigations indicate a need for a paradigm shift in the proposed sequence of contact activation events to incorporate the role of protein adsorption at the material surfaces. These studies have lead to the central hypothesis for this work proposing that protein adsorption to hydrophobic surfaces attenuates the contact activation reactions so that poorly-adsorbent hydrophilic surfaces appear to be stronger procoagulants relative to hydrophobic surfaces. Our preliminary studies measuring the plasma coagulation response of activated FXII (FXIIa) on different model surfaces suggested that the material did not play a cofactor role in the processing of this enzyme dose through the coagulation pathway. Therefore, we focused our efforts on studying the mechanism of initial production of enzyme at the procoagulant surface. Calculations for the amounts of FXIIa generated at material surfaces in plasma using a mathematical model for measured coagulation responses indicate that the relative contributions of the individual pathways of enzyme generation are similar at both hydrophilic and hydrophobic surfaces, only the amounts of enzyme generated scale with surface energy and area of the activating surface. Further, from direct measurement of enzyme activation at test surfaces we observed that contact activation reactions are not specific to negatively-charged hydrophilic surfaces. Rather, the molecular interactions are attenuated at hydrophobic surfaces due to protein adsorption so that poorly-adsorbent hydrophilic surfaces exhibit an apparent specificity for contact activation reactions. Preliminary studies were preformed to assay the plasma coagulation response to low-fouling surfaces prepared by either grafting poly(ethylene glycol) chains or using zwitterions. Results indicate that poly(ethylene glycol)-modified surfaces are significantly weaker procoagulants than surfaces containing zwitterions underscoring a need to specifically evaluate the coagulation response despite similarities in observed protein adsorption to both surfaces. In summary, our studies demonstrate a need to incorporate protein-adsorption competition at procoagulant surfaces into the mechanism of contact activation to account for the observed moderation of FXII activation by blood proteins unrelated to the plasma coagulation cascade.

  12. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The pressure control technology of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-10-01

    The active stressed lap polishing technology is a kind of new polishing technology that can actively deform the lap surface to become an off-axis asphere according to different lap position on mirror surface and different angle of lap. The pressure of the lap on the mirror is an important factor affecting the grinding efficiency of the optics mirror. The active stressed lap technology using dynamic pressure control solution in the process of polishing astronomical Aspheric Mirror with faster asphericity will provide the advantage like high polishing speed and natural smooth, etc. This article puts emphases on the pressure control technology of the active stressed lap technology. It requires that the active stressed lap keeps symmetrical vertical compression on the mirrors in the process of grinding mirrors. With a background of an active stressed lap 450mm in diameter, this article gives an outline of the pressure control organization, analyzes the principle of pressure control and proposes the limitations of the present pressure control organization and the relevant solutions, designs a digital pressure controller with C32-bit RISC embedded and gives the relevant experimental test result finally.

  14. Methanation of gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  15. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria

    NASA Astrophysics Data System (ADS)

    Mahfoudh, Ahlem; Barbeau, Jean; Moisan, Michel; Leduc, Annie; Séguin, Jacynthe

    2010-03-01

    Surfaces of materials can be modified to ensure specific interaction features with microorganisms. The current work discloses biocidal properties of polystyrene (PS) Petri-dish surfaces that have been exposed to a dry gaseous-ozone flow. Such treated PS surfaces are able to inactivate various species of vegetative and sporulated bacteria on a relatively short contact time. Denaturation of proteins seems likely based on a significant loss of enzymatic activity of the lysozyme protein. Characterization of these surfaces by atomic-force microscopy (AFM), Fourier-transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals specific structural and chemical modifications as compared to untreated PS. Persistence of the biocidal properties of these treated surfaces is observed. This ozone-induced process is technically simple to achieve and does not require active precursors as in grafting.

  16. Quaternary Tectonic and Climatic Processes shaping the Central Andean hyperarid forearc (southern Peru)

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Benavente, Carlos; Zerathe, Swann; Saillard, Marianne; Hall, Sarah R.; Farber, Daniel L.

    2015-04-01

    Understanding the forearc structure and processes related to Quaternary evolution and uplift of the Western Andean Cordillera remains an outstanding scientific issue. Models of Andean Plateau evolution based on Tertiary volcanic stratigraphy since 5Ma suggest that the deformation was focused along the eastern margin of the plateau and that minimal uplift occurred along the Pacific margin. On the contrary, new tectonic data and Quaternary surface 10Be dating highlight the presence of recently active deformation, incision and alluvial processes within the upper Andean forearc together with a regional uplift of the coastal zone. Additionally, the high obliquity observed in the northern Arica Bend region makes it an ideal target to discuss whether partitioning of the oblique convergence is accommodated by the neotectonic features that dissect the Quaternary forearc. Our goals are both to decipher the Quaternary tectonic and climatic processes shaping the hyperarid forearc along strike and across strike. Finally, we aim to quantify the respective influence of these factors in the overall uplift of the Western Andes. Indeed, sequences of pediment surfaces, landslide products, paleolake deposits and marine terraces found along the oblique Peruvian margin are a unique set of datable markers that can be used to quantify the rates of Quaternary processes. In this study, we focus on the southern Peru hyperarid Atacama area where regional surfaces and tectonic markers (scarps, folds, temporary streams and paleolake levels offsets…) are well preserved for the Quaternary timescale. Numerous landsliding events align on the major fault segments and reflect Plio-Pleistocene climatic and tectonic activity together with filled and strath terraces. As the present day sea-level is one of the highest levels recorded for Quaternary time span, any emerged marine terrace is preserved by tectonic coastal uplift. In particular, the geomorphic and chronologic correlation between marine and continental planation surfaces or terraces permit to deduce net vertical rates and suggests that the along strike uplift affected not only the coast but also the overall ~50 km-wide forearc of the Western Andes. We produced a chronology of remnant low-relief surfaces and a new neotectonic map of the Central Andean forearc between ~14° and 18°S based on detailed field mapping and 10Be cosmogenic dating. We address 1) the spatial and temporal correlations of various markers, and 2) the correlation of the surface abandonment ages to various regional climatic events and 3) the description of neotectonic activity accommodating both uplift and partitioning. Multiple markers yield 10Be surface abandonment ages that spanning 35 ka to >2 Ma. Erosion surfaces >2 Ma yield low erosion rates of <0.1mm/yr. However uplift rates of ~0.1-1mm/yr and multiple surfaces dated at ~35 ka suggest that the hyperarid forearc landscape has been recently modified through Quaternary surface uplift and climatic events, contradicting the Miocene fossil forearc hypothesis. Generally, surface abandonment ages and activated landslides periods tend to correlate with cold wet periods preceding Plio Pleistocene deglaciation on the Altiplano. Finally, neotectonic oblique faults connecting at depth participate to topography building in the Arica Bend region and suggest that Quaternary surface abandonment is the result of both surface uplift in the forearc and specific high-discharge climate periods in the high Andes. Obtained Quaternary regional uplift rates and individual slip-rates suggest that the Andean forearc may accommodate as much as 0.5 to 1 mm/yr of regional uplift for the Quaternary time period.

  17. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.

    PubMed

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2017-03-01

    Activated carbon (AC) was synthesized from golden shower (GS) through a new chemical activation process. The three-stage process comprised (1) hydrothermal carbonization of GS to produce hydrochar, (2) pyrolysis of hydrochar to produce biochar, and (3) subsequent chemical activation of biochar with K 2 CO 3 to obtain GSHBAC. The traditional synthesis processes (i.e., one-stage and two-stage) were also examined for comparison. In the one-stage process, GS that was impregnated with K 2 CO 3 was directly pyrolyzed (GSAC), and the two-stage process consisted of (1) pyrolytic or hydrothermal carbonization to produce biochar or hydrochar and (2) subsequent chemical activation was defined as GSBAC and GSHAC, respectively. The synthesized ACs were characterized by scanning electron microscope, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectrometry, point zero charge, and Boehm titration. The adsorption results demonstrated that the MG5 adsorption process was not remarkably affected by neither the solution pH (2.0-10) nor ionic strength (0-0.5 M NaCl). Kinetic studies showed that the adsorption equilibrium was quickly established, with a low activation energy required for adsorption (Ea; 3.30-27.8 kJ/mol), and the ACs removed 50-73% of the MG5 concentration from solution within 01 min. Desorption studies confirmed the adsorption was irreversible. Thermodynamic experiments suggested that the MG5 adsorption was spontaneous (-ΔG°) and endothermic (+ΔH°), and increased the randomness (+ΔS°) in the system. Although the specific surface areas of the ACs followed the order GSAC (1,413) > GSHAC (1,238) > GSHBAC (903) > GSBAC (812 m 2 /g), the maximum adsorption capacities determined from the Langmuir model (Q o max ) at 30 °C exhibited the following order: GSHBAC (531) > GSAC (344) > GSHAC (332) > GSBAC (253 mg/g). Oxygenation of the ACs' surface through a hydrothermal process with acrylic acid resulted in a decrease in MG5 adsorption and identified the importance of π-π interactions to the adsorption process. The primary interactions in MG5 adsorption were π-π interactions and pore filling, while hydrogen bonding and n-π interactions were minor contributors. The three-stage process can be regarded as the effective preparation method of AC with a high adsorption capacity toward the cationic dye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes

    NASA Astrophysics Data System (ADS)

    Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.

    2007-12-01

    At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that monitoring infrasound on an active volcano could represent an alternative way to monitor the vesiculation process of an open conduit system.

  19. Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins

    PubMed Central

    Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.

    2008-01-01

    All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126

  20. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  1. Surface diffusion in homoepitaxial SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho; Charm Lab Team; Nano Spintronics Lab Collaboration

    The development of growth techniques such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) has facilitated growths of complex oxide thin films at the atomic level .... Systematic studies on surface diffusion process of adatoms using theoretical and experimental methods allow us to understand growth mechanism enabling atomically flat thin film surface. In this presentation, we introduce the synthesis of homoepitaxial SrTiO3 thin films using a PLD equipped with reflection of high energy electron diffraction (RHEED). We determine the surface diffusion time as a function of growth temperature and extract the activation energy of diffusion on the surface by in-situ monitoring the RHEED intensity recovery during the film deposition. From the extracted experimental results, we discuss the microscopic mechanism of the diffusion process

  2. Ag/Bi2MoO6-x with enhanced visible-light-responsive photocatalytic activities via the synergistic effect of surface oxygen vacancies and surface plasmon

    NASA Astrophysics Data System (ADS)

    Wang, Danjun; Shen, Huidong; Guo, Li; Wang, Chan; Fu, Feng; Liang, Yucang

    2018-04-01

    In this study, a heterostructured Ag/Bi2MoO6-x photocatalyst was rationally designed and successfully fabricated via the deposition of plasmonic silver nanoparticles onto the surface of Bi2MoO6 with surface oxygen vacancy (denoted as Bi2MoO6-x). Bi2MoO6-x (Abbr. BMO6-x was first synthesized via a solvothermal synthesis and calcination process. The plasmonic silver nanoparticles were then loaded onto the surface of BMO6-x using a simple photoreduction process to form Ag/BMO6-x composite. Surface oxygen vacancies (SOVs) in BMO6-x were confirmed by electron paramagnetic resonance (EPR) spectrum. The structures of BMO6-xand Ag/BiMoO6-x) were characterized using high-resolution transmission electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Under visible light irradiation, sample Ag/BMO6-x exhibits a highest visible-light-responsive photocatalytic performance compared to those of pure-Bi2MoO6 (BMO), BMO6-x and Ag/BMO for the degradation of rhodamine B (RhB), which is attributed predominantly to the synergistic effect of SOVs and Ag surface plasmonic resonance (SPR) on the surface of Bi2MoO6-x leading to the efficient separation and migration of photogenerated electrons/holes and hence broadening light responsive region. The significant improvement of the migration and separation of photogenerated electrons/holes in the Ag/BMO6-x was evidenced by photoluminescence spectra, time-resolved fluorescence decay, photocurrent, and electrochemical impedance spectrum. The ESR with spin-trap technique and reactive species trapping experiments confirm that the mainly active species O2- and h+ are playing key roles in the RhB photodegradation process over Ag/BMO6-x. This study not only provides an understandable synergistic effect of SOVs and SPR Ag but also pioneers a new approach for fabricating a series of highly catalytically active metal-semiconductor photocatalysts with surface atom defects.

  3. Influence of surface defects on the tensile strength of carbon fibers

    NASA Astrophysics Data System (ADS)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  4. Activated carbon electrode from banana-peel waste for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Taslim, R.; Aini, Z.; Hartati, S. D.; Mustika, W. S.

    2017-01-01

    Seven types of activated carbon electrode (ACM) have been produced from the banana peel waste for supercapacitor application. The difference type of the electrode was synthesized by the various conditions of carbonization and activation. The production of the ACM was begun by the milling process and molded by a solution casting technique. The next step was followed by drying, carbonization and activation process. Physical properties of the ACM were studied by the N2 gas absorption-desorption method to characterize the specific surface area of the sample. On the other side, the electrochemical properties such as specific capacitance (Csp), specific energy (E) and specific power (P) were resulted by calculating the current (I) and voltage (V) data from the cyclic voltammetry testing. Based on the data obtained the surface area of the ACM has a significant relationship with the electrochemical properties. The specific surface area (SBET), Csp, E and P were found the maximum value as high as 581m2 / g, 68 F/g, 0.75 Wh/kg and 31 W/kg, respectively. Further more, this paper were also analyzed the relationship between electrochemical properties of supercapacitor with the degree of crystallization of the ACM.

  5. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    PubMed Central

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme’s adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. PMID:25453976

  6. Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation.

    PubMed

    Wilson, Kerry A; Finch, Craig A; Anderson, Phillip; Vollmer, Frank; Hickman, James J

    2015-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme's adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13 F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  9. Use of lignocellulose materials as sorption media for phosphorus removal

    Treesearch

    K.G. Karthikeyan; Mandla A. Tshabalala; Dongmei Wang

    2002-01-01

    The suitability of modified bark or wood fiber derived from southern yellow pine to function as P sorbents was investigated. Sorbent preparation process included grinding, size fractionation] extraction for surface activation] and treatment with polyallylamine hydrochloride (PAA HCI) or 3-chloro-2-hydroxypropyltrimethlyammonium chloride. SEM images revealed surface...

  10. Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool

    NASA Astrophysics Data System (ADS)

    Barman, Anwesa; Das, Manas

    2017-02-01

    Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.

  11. Functional specializations in human cerebral cortex analyzed using the Visible Man surface-based atlas

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.

    1997-01-01

    We used surface-based representations to analyze functional specializations in the human cerebral cortex. A computerized reconstruction of the cortical surface of the Visible Man digital atlas was generated and transformed to the Talairach coordinate system. This surface was also flattened and used to establish a surface-based coordinate system that respects the topology of the cortical sheet. The linkage between two-dimensional and three-dimensional representations allows the locations of published neuroimaging activation foci to be stereotaxically projected onto the Visible Man cortical flat map. An analysis of two activation studies related to the hearing and reading of music and of words illustrates how this approach permits the systematic estimation of the degree of functional segregation and of potential functional overlap for different aspects of sensory processing.

  12. Expression of TNF-alpha and immunohistochemical distribution of hepatic macrophage surface markers in carbon tetrachloride-induced chronic liver injury in rats.

    PubMed

    Orfila, C; Lepert, J C; Alric, L; Carrera, G; Beraud, M; Vinel, J P; Pipy, B

    1999-10-01

    In liver injury induced by carbon tetrachloride, secondary hepatic injury occurs from inflammatory processes originating from products released by activated Kupffer cells, which play a central role in hepatic inflammation. The purpose of our study was to demonstrate, in rats, the relationships between a function of the hepatic macrophages, TNF-alpha production and the state of activation of these cells, characterized by their phenotype, in the different phases of the process and development of fibrosis in a carbon tetrachloride-induced cirrhosis model. The immunohistochemical localization of proinflammatory cytokine TNF-alpha and surface surface makers (ED1 and ED2) was studied in hepatitis and cirrhosis in response to 3 and 9 weeks ingestion of carbon tetrachloride. After carbon tetrachloride ingestion, accompanying the increased necrosis, immunohistochemical analysis of liver tissue sections demonstrated the significantly increased number of cells expressing ED1, ED2 and TNF-alpha, compared to normal. The number of cells expressing the surface phenotypic markers of liver macrophages increased and this change was concomitantly associated with an increased cellular expression of TNF-alpha. Local macrophage proliferation and influx of newly recruited blood monocytes resulted in an increase of the macrophage population. The populational changes involved difference in functional activity and enhanced TNF-alpha expression. This cytokine expressed in the carbon tetrachloride-induced inflammatory process is associated with the development of fibrosis and may contribute to disease severity.

  13. Gold-plasmon enhanced photocatalytic performance of anatase titania nanotubes under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bingyang; He, Dawei, E-mail: dwhe@bjtu.edu.cn; Wang, Wenshuo

    2016-02-15

    Highlights: • APTMS/(TNTs-Au) was synthesized using a deposition-precipitation process. • APTMS/(TNTs-Au) showed superior visible light activity for the degradation of methylene blue. • The electromagnetic field distribution at the interface between TNTs and Au NPs were estimated by the 3D finite-difference time domain simulation. • The working mechanism of the photocatalytic activity of APTMS/(TNTs-Au) was illustrated. - Abstract: [3-Aminopropyl]trimethoxysilane-modified titania nanotubes decorated with Au nanoparticles (APTMS/(TNTs-Au)) nanocomposites were synthesized using a deposition-precipitation process. The results showed that Au nanoparticles (NPs) in the metallic state were firmly adhered to the surface of the anatase TNTs. APTMS/(TNTs-Au) exhibited great photocatalytic activities whichmore » were evaluated from the degradation rate of methylene blue aqueous solution under visible light irradiation. 3D finite-difference time domain simulation was performed to estimate the electromagnetic field distribution at the interface between TNTs and Au NPs. The visible photocatalytic activity of APTMS/(TNTs-Au) was largely attributed to the surface plasmon absorption of metallic Au NPs, which generated and transferred hot electrons to the CB of TNTs. In addition, the hot electrons on the surface of TNTs also suppressed the radiative electron–hole recombination and consequently enhanced the photocatalytic activity.« less

  14. Ground-based LiDAR Measurements of Actively Inflating Pahoehoe Flows, Kilauea Volcano, Hawaii: Implications for Emplacement of Basaltic Units on Mars

    NASA Astrophysics Data System (ADS)

    Byrnes, J. M.; Finnegan, D. C.; Nicoll, K.; Anderson, S. W.

    2007-05-01

    Remote sensing datasets enable planetary volcanologists to extract information regarding eruption processes. Long-lived effusive eruptions at sites such as Kilauea Volcano (HI) provide opportunities to collect rich observational data sets, including detailed measurements of topography and extrusion rates, that allow comparisons between lava flow surface morphologies and emplacement conditions for use in interpreting similar morphological features associated with planetary lava flows. On Mars, the emplacement of basaltic lava flows is a volumetrically and spatially important process, creating both large-scale and small-scale surface morphologies. On Earth, low effusion rate eruptions on relatively horizontal slopes tend to create inflated lava flows that display hummocky topography. To better understand the processes involved in creating observed surface characteristics, we repeatedly measured the surface topography of an actively flowing and inflating basaltic unit within the Pu'u O'o flow field over a 5-day period. We used a ground-based laser-scanner (LiDAR) system that provided vertical and horizontal accuracies of 4 mm. Comparing DEMs from repeated laser scans yielded the magnitudes and styles of constructional processes, allowing us to quantify the relationship between pre- and post-emplacement surface topography. Our study site (roughly 200 m x 200 m) experienced about 5 m of vertical inflation over a 3 day period and created a new hummocky surface containing several tumuli. The temporal and spatial patterns of inflation were complex and showed no obvious relationship with underlying topography. High-precision morphometric measurements acquired using ground-based LiDAR affords us the opportunity to capture the essential boundary conditions necessary for evaluating and comparing high-resolution planetary data sets, such as those acquired by the MOC, HRSC, and HiRISE instruments.

  15. Processes Affecting the Annual Surface Energy Budget at High-Latitude Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, P. O. G.; Stone, R. S.; Grachev, A.; Matrosova, L.

    2012-04-01

    Instrumentation at four Study of Environmental Arctic Change (SEARCH) sites (Barrow, Eureka, Alert, and Tiksi) have been enhanced in the past 6 years, including during the 2007-2008 IPY. Data from these sites are used to investigate the annual cycle of the surface energy budget (SEB), its coupling to atmospheric processes, and for Alert, its interannual variability. The comprehensive data sets are useful for showing interactions between the atmosphere, surface, and soil at high temporal resolution throughout the annual cycle. Processes that govern the SEB variability at each site are identified, and their impacts on the SEB are quantified. For example, mesoscale modulation of the SEB caused by forcing from the local terrain (downslope wind events) and coastlines (sea and land breezes) are significant at Alert and Eureka, with these processes affecting both radiative, turbulent, and ground heat flux terms in the SEB. Sub-seasonal and interannual variations in atmospheric processes and SEB impact soil thermal structures, such as the depth and timing of the summer active layer. These analyses provide an improved understanding of the processes producing changes in surface and soil temperature, linking them through the SEB as affected by atmospheric processes.

  16. Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.

    2017-06-01

    In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.

  17. Data-based diffraction kernels for surface waves from convolution and correlation processes through active seismic interferometry

    NASA Astrophysics Data System (ADS)

    Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc

    2018-05-01

    We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.

  18. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  19. Effect of sulfation on the surface activity of CaO for N2O decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Dong, Changqing; Yang, Yongping

    2015-12-01

    Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N2O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N2O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N2O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO2 or SO3 molecule forms stable local CaSO3 or CaSO4 on the CaO (1 0 0) surface with strong hybridization between the S atom of SOx and the surface O anion. The formed local CaSO3 increases the barrier energy of N2O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO4 remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO3 into CaSO4 is therefore the crucial step for deactivating the surface activity for N2O decomposition. Completely sulfated CaSO4 (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO4 for N2O decomposition.

  20. The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments.

    PubMed

    Saghiri, M-A; Asatourian, A; Garcia-Godoy, F; Sheibani, N

    2016-07-01

    Angiogenesis plays an important role in osseointegration process by contributing to inflammatory and regenerative phases of surrounding alveolar bone. The present review evaluated the effect of titanium alloys and their surface characteristics including: surface topography (macro, micro, and nano), surface wettability/energy, surface hydrophilicity or hydrophobicity, surface charge, and surface treatments of dental implants on angiogenesis events, which occur during osseointegration period. An electronic search was performed in PubMed, MEDLINE, and EMBASE databases via OVID using the keywords mentioned in the PubMed and MeSH headings regarding the role of angiogenesis in implant dentistry from January 2000-April 2014. Of the 2,691 articles identified in our initial search results, only 30 met the inclusion criteria set for this review. The hydrophilicity and topography of dental implants are the most important and effective surface characteristics in angiogenesis and osteogenesis processes. The surface treatments or modifications of dental implants are mainly directed through the enhancement of biological activity and functionalization in order to promote osteogenesis and angiogenesis, and accelerate the osseointegration procedure. Angiogenesis is of great importance in implant dentistry in a manner that most of the surface characteristics and treatments of dental implants are directed toward creating a more pro-angiogenic surface on dental implants. A number of studies discussed the effect of titanium alloys, dental implant surface characteristic and treatments on agiogenesis process. However, clinical trials and in-vivo studies delineating the mechanisms of dental implants, and their surface characteristics or treatments, action in angiogenesis processes are lagging.

  1. The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time

    NASA Astrophysics Data System (ADS)

    Taer, E.; Dewi, P.; Sugianto, Syech, R.; Taslim, R.; Salomo, Susanti, Y.; Purnama, A.; Apriwandi, Agustino, Setiadi, R. N.

    2018-02-01

    The synthesis of carbon electrode from durian shell based on variations in the activation time has been carried out. Synthesis of carbon electrode was started by a carbonization process at a temperature of 600°C in nitrogen gas and then followed by physical activation process using water vapor at a temperature of 900°C by varying time of 1, 2 and 3 h. All of the variations of the samples were chemically activated using an activator of ZnCl2 with a concentration of 0.4 M. The physical properties such as density, surface morphology, degree of crystallinity and elemental content were analyzed. Moreover, the electrochemical properties such as specific capacitance of supercapacitor cells were studied using Cyclic Voltammetry methods. The density, stack height and carbon content were increased as activation time increases, while the specific capacitance of the supercapacitor cell decreases against the increase of activation time. Specific capacitances for 1, 2 and 3 h activation time are 88.39 F/g, 80.08 F/g and 74.61 F/g, respectively. Based on the surface morphology study it was shown that the increased in activation time causes narrowing of the pores between particles.

  2. Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Chen, Y C; Shiea, J; Sunner, J

    2000-01-01

    A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.

  3. Surface charge engineering of a Bacillus gibsonii subtilisin protease.

    PubMed

    Jakob, Felix; Martinez, Ronny; Mandawe, John; Hellmuth, Hendrik; Siegert, Petra; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2013-08-01

    In proteins, a posttranslational deamidation process converts asparagine (Asn) and glutamine (Gln) residues into negatively charged aspartic (Asp) and glutamic acid (Glu), respectively. This process changes the protein net charge affecting enzyme activity, pH optimum, and stability. Understanding the principles which affect these enzyme properties would be valuable for protein engineering in general. In this work, three criteria for selecting amino acid substitutions of the deamidation type in the Bacillus gibsonii alkaline protease (BgAP) are proposed and systematically studied in their influence on pH-dependent activity and thermal resistance. Out of 113 possible surface amino acids, 18 (11 Asn and 7 Gln) residues of BgAP were selected and evaluated based on three proposed criteria: (1) The Asn or Gln residues should not be conserved, (2) should be surface exposed, and (3) neighbored by glycine. "Deamidation" in five (N97, N253, Q37, Q200, and Q256) out of eight (N97, N154, N250, N253, Q37, Q107, Q200, and Q256) amino acids meeting all criteria resulted in increased proteolytic activity. In addition, pH activity profiles of the variants N253D and Q256E and the combined variant N253DQ256E were dramatically shifted towards higher activity at lower pH (range of 8.5-10). Variant N253DQ256E showed twice the specific activity of wild-type BgAP and its thermal resistance increased by 2.4 °C at pH 8.5. These property changes suggest that mimicking surface deamidation by substituting Gln by Glu and/or Asn by Asp might be a simple and fast protein reengineering approach for modulating enzyme properties such as activity, pH optimum, and thermal resistance.

  4. High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments

    NASA Astrophysics Data System (ADS)

    Bailey, Bevin L.

    S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore fluids, and could be particularly useful in near-surface settings. However, S-wave surveys can be plagued by processing pitfalls unique to near-surface studies such as interference of Love waves with reflections, and the stacking of Love waves as coherent noise, leading to possible misinterpretations of the subsurface. Two lines of S-wave data are processed and used to locate previously unknown faults in Quaternary sediments in a region where earthquake activity poses a threat to surface structures. This study provides clear examples of processing pitfalls such as Love waves with hyperbolic appearances on shot gathers, and a CMP section with coherent noise that is easily misinterpreted as reflections. This study demonstrates pros and cons of using SH reflection data in the near surface.

  5. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    PubMed

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  6. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8.

    PubMed

    Wang, Feifan; Huang, Yanjie; Chai, Zhigang; Zeng, Min; Li, Qi; Wang, Yuan; Xu, Dongsheng

    2016-12-01

    Conventional semiconductor photocatalysis based on band-edge absorption remains inefficient due to the limited harvesting of solar irradiation and the complicated surface/interface chemistry. Herein, novel photothermal-enhanced catalysis was achieved in a core-shell hierarchical Cu 7 S 4 nano-heater@ZIF-8 heterostructures via near-infrared localized surface plasmon resonance. Our results demonstrated that both the high surface temperature of the photothermal Cu 7 S 4 core and the close-adjacency of catalytic ZIF-8 shell contributed to the extremely enhanced catalytic activity. Under laser irradiation (1450 nm, 500 mW), the cyclocondensation reaction rate increased 4.5-5.4 fold compared to that of the process at room temperature, in which the 1.6-1.8 fold enhancement was due to the localized heating effect. The simulated sunlight experiments showed a photothermal activation efficiency (PTAE) of 0.07%, further indicating the validity of photothermal catalysis based on the plasmonic semiconductor nanomaterials. More generally, this approach provides a platform to improve reaction activity with efficient utilization of solar energy, which can be readily extended to other green-chemistry processes.

  7. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance.

    PubMed

    Alia, Shaun M; Pivovar, Bryan S

    2018-04-27

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing to 250 °C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 °C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. These techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.

  8. Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes.

    PubMed

    Klein, Géraldine; Devineau, Stéphanie; Aude, Jean Christophe; Boulard, Yves; Pasquier, Hélène; Labarre, Jean; Pin, Serge; Renault, Jean Philippe

    2016-01-12

    We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.

  9. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.

    PubMed

    Chandra, A P; Gerson, A R

    2009-01-30

    A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial resolution are needed to precisely verify surface structures formed after copper activation. Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.

  10. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols.

    PubMed

    Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio

    2017-01-10

    Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N -acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS production was assessed as DCF fluorescence by flow cytometry. HSA-AOPP induced the differentiation of RAW264.7 cells into a dendritic-like phenotype, as shown by morphological changes, by increased CD40, CD86 and MHC class II surface expression and by induction of T cell proliferation. The cell surface thiols dose dependently decreased following HSA-AOPP treatment, while ROS production increased. NAC pre-treatment enhanced the amount of cell surface thiols and prevented their reduction due to treatment with AOPP. Both ROS production and RAW264.7 differentiation into DC-like cells induced by HSA-AOPP were reduced by NAC. Our results highlight that oxidized plasma proteins modulate specific immune responses of macrophages through a process involving changes in the thiol redox equilibrium. We suggest that this mechanism may play a role in determining the rapid progression of the atherosclerotic process observed in CKD patients.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces andmore » their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.« less

  12. Ion beam activation for materials analysis: Methods and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlon, T.W.

    1981-04-01

    A number of ion beam methods for materials analysis have been developed using Harwell's high voltage accelerators and these are currently being exploited for applications 'in house' and in industry. Ion beam activation is a relatively new area which has exhibited exceptional growth over the last few years. Activation by ion beams to produce a single dominant radioisotope as a surface label (thin layer activation or TLA) is becoming a mature technology offering ever increasing sensitivity for surface loss measurement (currently better than 0.1 ..mu..m or 10/sup -7/ cm/sup 3/ depending on the method of measurement) and remote monitoring ofmore » inaccessible components during studies of wear/erosion/ corrosion/sputtering and the like. With the increasingly established credibility of the method has come the realisation that: (i) more complex and even multiple activation profiles can be used to extract more information on the characteristics of the surface loss process, (ii) that an analogous method can be used even on radiation sensitive materials through the newly established indirect recoil implantation process. (iii) that there is scope for treatment of truly immovable objects through the implantation of fission fragments, (iv) there is vast potential in the area of activation analysis. The current state of development of these methods which greatly extend the scope of conventional TLA will be briefly reviewed. Current applications of these and TLA in industry are discussed.« less

  13. Numerosity processing is context driven even in the subitizing range: An fMRI study

    PubMed Central

    Leibovich, Tali; Henik, Avishai; Salti, Moti

    2015-01-01

    Numerical judgments are involved in almost every aspect of our daily life. They are carried out so efficiently that they are often considered to be automatic and innate. However, numerosity of non-symbolic stimuli is highly correlated with its continuous properties (e.g., density, area), and so it is hard to determine whether numerosity and continuous properties rely on the same mechanism. Here we examined the behavioral and neuronal mechanisms underlying such judgments. We scanned subjects' hemodynamic responses to a numerosity comparison task and to a surface area comparison task. In these tasks, numerical and continuous magnitudes could be either congruent or incongruent. Behaviorally, an interaction between the order of the tasks and the relevant dimension modulated the congruency effects. Continuous magnitudes always interfered with numerosity comparison. Numerosity, on the other hand, interfered with the surface area comparison only when participants began with the numerosity task. Hemodynamic activity showed that context (induced by task order) determined the neuronal pathways in which the dimensions were processed. Starting with the numerosity task led to enhanced activity in the right hemisphere, while starting with the continuous task led to enhanced left hemisphere activity. Continuous magnitudes processing relied on activation of the frontal eye field and the post-central gyrus. Processing of numerosities, on the other hand, relied on deactivation of these areas, suggesting active suppression of the continuous dimension. Accordingly, we suggest that numerosities, even in the subitizing range, are not always processed automatically; their processing depends on context and task demands. PMID:26297625

  14. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO 2 Reduction: The Elucidation of Size and Surface Condition Effects

    DOE PAGES

    Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; ...

    2016-08-08

    Here we report an efficient electrochemical conversion of CO 2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO 2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi 3+ species) formed during the synthesis and purification process hinders the CO 2 reduction, leading to a 20% drop in Faradaic efficiency formore » CO evolution (FE CO). Bi particle size showed a significant effect on FE CO when the surface of Bi was air-oxidized, but this effect of size on FE CO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO 2 to CO (96.1% FE CO), and a mass activity for CO evolution (MA CO) of 15.6 mA mg –1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO 2 conversion on metal NPs and paves the way for understanding the CO 2 electrochemical reduction mechanism in nonaqueous media.« less

  15. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  16. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics.

    PubMed

    Peterman, W E; Semlitsch, R D

    2014-10-01

    Many patterns observed in ecology, such as species richness, life history variation, habitat use, and distribution, have physiological underpinnings. For many ectothermic organisms, temperature relationships shape these patterns, but for terrestrial amphibians, water balance may supersede temperature as the most critical physiologically limiting factor. Many amphibian species have little resistance to water loss, which restricts them to moist microhabitats, and may significantly affect foraging, dispersal, and courtship. Using plaster models as surrogates for terrestrial plethodontid salamanders (Plethodon albagula), we measured water loss under ecologically relevant field conditions to estimate the duration of surface activity time across the landscape. Surface activity time was significantly affected by topography, solar exposure, canopy cover, maximum air temperature, and time since rain. Spatially, surface activity times were highest in ravine habitats and lowest on ridges. Surface activity time was a significant predictor of salamander abundance, as well as a predictor of successful recruitment; the probability of a juvenile salamander occupying an area with high surface activity time was two times greater than an area with limited predicted surface activity. Our results suggest that survival, recruitment, or both are demographic processes that are affected by water loss and the ability of salamanders to be surface-active. Results from our study extend our understanding of plethodontid salamander ecology, emphasize the limitations imposed by their unique physiology, and highlight the importance of water loss to spatial population dynamics. These findings are timely for understanding the effects that fluctuating temperature and moisture conditions predicted for future climates will have on plethodontid salamanders.

  17. Assessment of Scheduling and Plan Execution of Apollo 14 Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.

    2010-01-01

    Although over forty years have passed since first landing on the Moon, there is not yet a comprehensive, quantitative assessment of Apollo extravehicular activities (EVAs). Quantitatively evaluating lunar EVAs will provide a better understanding of the challenges involved with surface operations. This first evaluation of a surface EVA centers on comparing the planned and the as-ran timeline, specifically collecting data on discrepancies between durations that were estimated versus executed. Differences were summarized by task categories in order to gain insight as to the type of surface operation activities that were most challenging. One Apollo 14 EVA was assessed utilizing the described methodology. Selected metrics and task categorizations were effective, and limitations to this process were identified.

  18. Effects of O 2 plasma and UV-O 3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH 4 sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humayun, Md Tanim; Sainato, Michela; Divan, Ralu

    We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less

  19. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah; Ali, Umi Fazara Md

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC)more » developed new pores on its surface and the BET surface area measured was 451.87 m{sup 2}/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.« less

  20. Effects of O 2 plasma and UV-O 3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH 4 sensors

    DOE PAGES

    Humayun, Md Tanim; Sainato, Michela; Divan, Ralu; ...

    2017-07-28

    We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less

  1. The influence of activated carbon surface properties on the adsorption of the herbicide molinate and the bio-regeneration of the adsorbent.

    PubMed

    Coelho, Cláudia; Oliveira, Ana Sofia; Pereira, Manuel Fernando R; Nunes, Olga C

    2006-11-16

    In the present study, the effect of the textural and surface chemistry properties of the activated carbon were evaluated in a combined treatment system to remove the herbicide molinate from waters. The process consists of an initial adsorption step followed by the bio-regeneration of the activated carbon through the utilization of a defined bacterial mixed culture (DC), previously described as able to mineralize molinate. Molinate adsorption and partial bio-regeneration was favoured with activated carbons with larger pores, consisting mainly of meso and macropores. In order to study the effect of different surface chemical characteristics while maintaining the original textural properties, a commercial activated carbon was submitted to thermal and nitric acid treatments. The thermal treatment improved the molinate adsorption capacity of activated carbon. However, the bio-regeneration of the nitric acid oxidised activated carbon was slightly higher. With all the activated carbon materials used it was observed that the biological consumption of molinate present in the liquid phase displaced the equilibrium towards the activated carbon partial regeneration.

  2. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithmmore » for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.« less

  3. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    NASA Astrophysics Data System (ADS)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  4. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  5. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  6. Rapid control of mold temperature during injection molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less

  7. Ion processing element with composite media

    DOEpatents

    Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand

    2003-02-04

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  8. Ion processing element with composite media

    DOEpatents

    Mann, Nick R [Blackfoot, ID; Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ

    2009-03-24

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  9. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  10. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    PubMed

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt nanoparticles on oxide supports and Pt-CdSe-Pt nanodumbbells. We show that the accumulation or depletion of hot electrons on metal nanoparticles, in turn, can also influence catalytic reactions. Mechanisms suggested for hot-electron-induced chemical reactions on a photoexcited plasmonic metal are discussed. We propose that the manipulation of the flow of hot electrons by changing the electrical characteristics of metal-oxide and metal-semiconductor interfaces can give rise to the intriguing capability of tuning the catalytic activity of hybrid nanocatalysts.

  11. Numerical Study of the Role of Microphysical Latent Heating and Surface Heat Fluxes in a Severe Precipitation Event in the Warm Sector over Southern China

    NASA Astrophysics Data System (ADS)

    Yin, Jin-Fang; Wang, Dong-Hai; Liang, Zhao-Ming; Liu, Chong-Jian; Zhai, Guo-Qing; Wang, Hong

    2018-02-01

    Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation, and the surface latent heating has only a slight impact on the precipitation intensity. The results indicate that microphysical latent heating might be an important factor for severe precipitation forecast in the warm sector over southern China. Surface sensible heating can have considerable influence on the precipitation spatial distribution and should not be neglected in the case of weak large-scale conditions with abundant water vapor in the warm sector.

  12. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants.

    PubMed

    Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L

    2015-05-01

    Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dynamic Speckle Imaging with Low-Cost Devices

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Arizaga, Ricardo; Rabal, Hector; Molesini, Giuseppe

    2008-01-01

    Light from a rough sample surface illuminated with a laser consists of a speckle pattern. If the surface evolves with time, the pattern becomes dynamic, following the activity of the sample. This phenomenon is used both in research and in industry to monitor processes and systems that change with time. The measuring equipment generally includes…

  14. Grand challenges in understanding the interplay of climate and land changes

    USDA-ARS?s Scientific Manuscript database

    Half of the Earth’s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affects a myriad of land surface processes and our adaptation behaviors. After reviewing the status and major knowledge gap...

  15. Laser peening for reducing hydrogen embrittlement

    DOEpatents

    Hackel, Lloyd A.; Zaleski, Tania M.; Chen, Hao-Lin; Hill, Michael R.; Liu, Kevin K.

    2010-05-25

    A laser peening process for the densification of metal surfaces and sub-layers and for changing surface chemical activities provides retardation of the up-take and penetration of atoms and molecules, particularly Hydrogen, which improves the lifetime of such laser peened metals. Penetration of hydrogen into metals initiates an embrittlement that leaves the material susceptible to cracking.

  16. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs

    PubMed Central

    2014-01-01

    Background Lipases including the lipase from Burkholderia cepacia are in a main focus in biotechnology research since many years because of their manifold possibilities for application in industrial processes. The application of Burkholderia cepacia lipase for these processes appears complicated because of the need for support by a chaperone, the lipase specific foldase. Purification and reconstitution protocols therefore interfere with an economic implementation of such enzymes in industry. Autodisplay is a convenient method to express a variety of passenger proteins on the surface of E. coli. This method makes subsequent purification steps to obtain the protein of interest unnecessary. If enzymes are used as passengers, the corresponding cells can simply be applied as whole cell biocatalysts. Furthermore, enzymes surface displayed in this manner often acquire stabilization by anchoring within the outer membrane of E. coli. Results The lipase and its chaperone foldase from B. cepacia were co-expressed on the surface of E. coli via autodisplay. The whole cell biocatalyst obtained thereby exhibited an enzymatic activity of 2.73 mU mL-1 towards the substrate p-nitrophenyl palmitate when applied in an OD578 =1. Outer membrane fractions prepared from the same culture volume showed a lipase activity of 4.01 mU mL-1. The lipase-whole cell biocatalyst as well as outer membrane preparations thereof were used in a standardized laundry test, usually adopted to determine the power of washing agents. In this test, the lipase whole cell biocatalyst and the membrane preparation derived thereof exhibited the same lipolytic activity as the purified lipase from B. cepacia and a lipase preparation which is already applied in commercial washing agents. Conclusions Co-expression of both the lipase and its chaperone foldase on the surface of E. coli yields a lipid degrading whole cell biocatalyst. Therefore the chaperone supported folding process, absolutely required for the lipolytic activity appears not to be hindered by surface display. Furthermore, the cells and the membrane preparations appeared to be stable enough to endure a European standard laundry test and show efficient fat removal properties herein. PMID:24476025

  17. Lightning and middle atmospheric discharges in the atmosphere

    NASA Astrophysics Data System (ADS)

    Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha

    2015-11-01

    Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.

  18. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padama, Allan Abraham B.; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp; Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871

    2014-06-28

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrencemore » of reconstructed surface.« less

  19. Assessment of the denitrification process in alluvial wetlands at floodplain scale using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    As alluvial plains support intensive agricultural activities, they often suffer from groundwater nitrate pollution. Denitrification is recognized as an important process in nitrate pollution control in riparian zones. In shallow aquifer zones influenced by recharged surface water, denitrification ...

  20. Isolation of fish skin and bone gelatin from tilapia (Oreochromis niloticus): Response surface approach

    NASA Astrophysics Data System (ADS)

    Arpi, N.; Fahrizal; Novita, M.

    2018-03-01

    In this study, gelatin from fish collagen, as one of halal sources, was extracted from tilapia (Oreochromis niloticus) skin and bone, by using Response Surface Methodology to optimize gelatin extraction conditions. Concentrations of alkaline NaOH and acid HCl, in the pretreatment process, and temperatures in extraction process were chosen as independent variables, while dependent variables were yield, gel strength, and emulsion activity index (EAI). The result of investigation showed that lower NaOH pretreatment concentrations provided proper pH extraction conditions which combine with higher extraction temperatures resulted in high gelatin yield. However, gelatin emulsion activity index increased proportionally to the decreased in NaOH concentrations and extraction temperatures. No significant effect of the three independent variables on the gelatin gel strength. RSM optimization process resulted in optimum gelatin extraction process conditions using alkaline NaOH concentration of 0.77 N, acid HCl of 0.59 N, and extraction temperature of 66.80 °C. The optimal solution formula had optimization targets of 94.38%.

  1. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production [Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production directly observed using environmental transmission electron microscopy

    DOE PAGES

    Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...

    2015-12-01

    Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less

  2. Fast and ultrafast endocytosis.

    PubMed

    Watanabe, Shigeki; Boucrot, Emmanuel

    2017-08-01

    Clathrin-mediated endocytosis (CME) is the main endocytic pathway supporting housekeeping functions in cells. However, CME may be too slow to internalize proteins from the cell surface during certain physiological processes such as reaction to stress hormones ('fight-or-flight' reaction), chemotaxis or compensatory endocytosis following exocytosis of synaptic vesicles or hormone-containing vesicles. These processes take place on a millisecond to second timescale and thus require very rapid cellular reaction to prevent overstimulation or exhaustion of the response. There are several fast endocytic processes identified so far: macropinocytosis, activity-dependent bulk endocytosis (ABDE), fast-endophilin-mediated endocytosis (FEME), kiss-and-run and ultrafast endocytosis. All are clathrin-independent and are not constitutively active but may use different molecular mechanisms to rapidly remove receptors and proteins from the cell surface. Here, we review our current understanding of fast and ultrafast endocytosis, their functions, and molecular mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process

    NASA Astrophysics Data System (ADS)

    Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S.

    2011-11-01

    Silver nanoparticles were produced in iron containing float glasses by silver-sodium ion exchange and post-annealing. In particular, the effect of the concentration and the oxidation state of iron in the host glass on the nanoparticle formation was studied. After the nanoparticle fabrication process, the samples were characterized by optical absorption measurements. The samples were etched to expose nanoparticle aggregates on the surface, which were studied by optical microscopy and scanning electron microscopy. The SERS-activity of these glass samples was demonstrated and compared using a dye molecule Rhodamine 6G (R6G) as an analyte. The importance of the iron oxidation level for reduction process is discussed. The glass with high concentration of Fe 2+ ions was found to be superior in SERS applications of silver nanoparticles. The optimal surface features in terms of SERS enhancement are also discussed.

  4. Atomic steps on an ultraflat Si(111) surface upon sublimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnikov, S. V., E-mail: sitnikov@isp.nsc.ru; Latyshev, A. V.; Kosolobov, S. S.

    2016-05-15

    The kinetics of atomic steps on an ultraflat Si(111) surface is studied by in situ ultrahigh-vacuum reflection electron microscopy at temperatures of 1050–1350°C. For the first time it is experimentally shown that the rate of displacement of an atomic step during sublimation nonlinearly depends on the width of the adjacent terrace. It is established that the atomic mechanism of mass-transport processes at the surface at temperatures higher than 1200°C is controlled by nucleation and the diffusion of surface vacancies rather than of adsorbed Si atoms. The studies make it possible to estimate the activation energy of the dissolution of vacanciesmore » from the surface into the bulk of Si. The estimated activation energy is (4.3 ± 0.05) eV.« less

  5. Simulations of ecosystem hydrological processes using a unified multi-scale model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less

  6. Teaching Basic Science Environmentally.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1984-01-01

    Five activities on the concept of evaporation as a cooling process is presented. Activities include discovering which hand, the wet one or dry one, is cooler; reviving a wilted plant; measuring surface area of leaves; collecting water vapor from leaves; and finding out the cooling effect of trees. (ERB)

  7. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  8. In vitro genotoxicity of chlorinated drinking water processed from humus-rich surface water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liimatainen, A.; Grummt, T.

    Chlorination by-products of drinking waters are capable of inducing sister chromatid exchanges (SCE) and chromosome aberrations (CA) in vitro, in addition to their mutagenic activity in the Ames test. Finnish drinking waters, processed from humus-rich surface water using chlorine disinfection, have been found to be highly mutagenic in the Ames' test. The highest activities have been found in the acidic, non-volatile fraction of the water concentrates using tester strain TA100 without metabolic activation by S9mix. The mutagenicities have varied between 500 and 14,000 induced revertants per liter. These figures are one to two magnitudes higher than those reported elsewhere. Themore » authors studied five Finnish drinking water samples for their potency to exert genotoxic effects, SCEs and CAs, in mammalian cells in vitro (human peripheral lymphocytes and Chinese hamster lung fibroblasts).« less

  9. Construction of reactive potential energy surfaces with Gaussian process regression: active data selection

    NASA Astrophysics Data System (ADS)

    Guan, Yafu; Yang, Shuo; Zhang, Dong H.

    2018-04-01

    Gaussian process regression (GPR) is an efficient non-parametric method for constructing multi-dimensional potential energy surfaces (PESs) for polyatomic molecules. Since not only the posterior mean but also the posterior variance can be easily calculated, GPR provides a well-established model for active learning, through which PESs can be constructed more efficiently and accurately. We propose a strategy of active data selection for the construction of PESs with emphasis on low energy regions. Through three-dimensional (3D) example of H3, the validity of this strategy is verified. The PESs for two prototypically reactive systems, namely, H + H2O ↔ H2 + OH reaction and H + CH4 ↔ H2 + CH3 reaction are reconstructed. Only 920 and 4000 points are assembled to reconstruct these two PESs respectively. The accuracy of the GP PESs is not only tested by energy errors but also validated by quantum scattering calculations.

  10. Preparation of capacitor's electrode from sunflower seed shell.

    PubMed

    Li, Xiao; Xing, Wei; Zhuo, Shuping; Zhou, Jin; Li, Feng; Qiao, Shi-Zhang; Lu, Gao-Qing

    2011-01-01

    Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Double-aberration corrected TEM/STEM of solid acid nanocatalysts in the development of pharmaceutical NSAIDS

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N.; Brown, R.; Wright, I.; Boyes, E. D.; Gai, P. L.

    2012-07-01

    We report nanostructural and physico-chemical studies in the development of an efficient low temperature heterogeneous catalytic process for nonsteroidal anti-inflammatory drugs (NSAIDS) such as N-acetyl-p-aminophenol (paracetamol or acetaminophen) on tungstated zirconia nanocatalysts. Using a double-aberration corrected TEM/STEM, modified in-house for in-situ studies at the sub-Angstrom level, we directly observed in real-time, the dynamic precursor transformation to the active catalyst. We quantified the observations with catalytic activity studies for the NSAIDS. The studies have provided the direct evidence for single tungsten promoter atoms and surface WOx species of <= 0.35 nm, with nanoclusters of WOx (0.6 to 1nm), located at grain boundaries on the surface of the zirconia nanoparticles. The correlation between the nanostructure and catalytic activity indicates that the species create Brønsted acid sites highly active for the low temperature process. The results open up opportunities for developing green heterogeneous methods for pharmaceuticals.

  12. Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.

    PubMed

    Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît

    2011-01-01

    Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.

  13. Determination of airborne nanoparticles from welding operations.

    PubMed

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  14. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  15. Distribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. ?? 2009 Elsevier Inc.

  16. Disribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.

  17. Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array

    NASA Astrophysics Data System (ADS)

    Burtin, A.; Hovius, N.; Milodowski, D.; Chen, Y.-G.; Wu, Y.-M.; Lin, C.-W.; Chen, H.

    2012-04-01

    The monitoring of geomorphic processes during extreme climatic events is of a primary interest to estimate their impact on the landscape dynamics. However, available techniques to survey the surface activity do not provide a relevant time and/or space resolution. Furthermore, these methods hardly investigate the dynamics of the events since their detection are made a posteriori. To increase our knowledge of the landscape evolution and the influence of extreme climatic events on a catchment dynamics, we need to develop new tools and procedures. In many past works, it has been shown that seismic signals are relevant to detect and locate surface processes (landslides, debris flows). During the 2010 typhoon season, we deployed a network of 12 seismometers dedicated to monitor the surface processes of the Chenyoulan catchment in Taiwan. We test the ability of a two dimensional array and small inter-stations distances (~ 11 km) to map in continuous and at a catchment-scale the geomorphic activity. The spectral analysis of continuous records shows a high-frequency (> 1 Hz) seismic energy that is coherent with the occurrence of hillslope and river processes. Using a basic detection algorithm and a location approach running on the analysis of seismic amplitudes, we manage to locate the catchment activity. We mainly observe short-time events (> 300 occurrences) associated with debris falls and bank collapses during daily convective storms, where 69% of occurrences are coherent with the time distribution of precipitations. We also identify a couple of debris flows during a large tropical storm. In contrast, the FORMOSAT imagery does not detect any activity, which somehow reflects the lack of extreme climatic conditions during the experiment. However, high resolution pictures confirm the existence of links between most of geomorphic events and existing structures (landslide scars, gullies...). We thus conclude to an activity that is dominated by reactivation processes. It highlights the major interest of a seismic monitoring since it allows a detailed spatial and temporal survey of events that classic approaches are not able to observe. In the future, dense two dimensional seismological arrays will assess in real-time the landscape dynamics of an entire catchment, tracking sediments from slopes to rivers.

  18. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  19. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  20. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less

  1. An analysis of the effect of defect structures on catalytic surfaces by the boundary element technique

    NASA Astrophysics Data System (ADS)

    Peirce, Anthony P.; Rabitz, Herschel

    1988-08-01

    The boundary element (BE) technique is used to analyze the effect of defects on one-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to include the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat the non-linear equations associated with defect sites. The proposed BE algorithm is shown to provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it exploits the actual Green's function of the linear diffusion-desorption process that takes place on the surface, the BE algorithm is extremely stable. The BE algorithm is applied to a number of interesting physical problems in which non-linear reactions occur at localized defects. The Lotka-Volterra system is considered in which the source, sink and predator-prey interaction terms are distributed at different defect sites in the domain and in which the defects are coupled by diffusion. This example provides a stringent test of the stability of the numerical algorithm. Marginal stability oscillations are analyzed for the Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly distributed initial perturbations is seen to take place. In another series of examples the effect of defect locations on the balance between desorptive processes on chemically active surfaces is considered. The effect of dynamic pulsing at various time-scales is considered for a one species reactive trapping model. Similar competitive behavior between neighboring defects previously observed for static adsorption levels is shown to persist for dynamic loading of the surface. The analysis of a more complex three species reaction process also provides evidence of competitive behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a useful technique for analyzing the effect of defect sites on chemically active surfaces.

  2. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters

    NASA Astrophysics Data System (ADS)

    Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli

    2018-04-01

    Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.

  3. Improving the surface properties of municipal solid waste-derived pyrolysis biochar by chemical and thermal activation: Optimization of process parameters and environmental application.

    PubMed

    Genuino, Divine Angela D; de Luna, Mark Daniel G; Capareda, Sergio C

    2018-02-01

    Biochar produced from the slow pyrolysis of municipal solid waste was activated with KOH and thermal treatments to enhance its surface and adsorptive properties. The effects of KOH concentration, activation temperature and time on the specific surface area (SSA) of the activated biochar were evaluated and optimized using central composite design (CCD) of the response surface methodology (RSM). Results showed that the activation of biochar enhanced its SSA from 402.8 ± 12.5 to 662.4 ± 28.6 m 2  g -1 . The adsorptive capacities of the pristine biochar (PBC) and activated biochar (ABC) were compared using methylene blue (MB) dye as model compound. For MB concentrations up to 25 mg L -1 , more than 99% dye removal was achieved with ABC, while only a maximum of 51% was obtained with PBC. Results of the isotherm study showed that the Langmuir model best described MB adsorption on ABC with adsorption capacity of 37.0-41.2 mg g -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  5. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  6. Effect of dry-ozone exposure on different polymer surfaces and their resulting biocidal action on sporulated bacteria

    NASA Astrophysics Data System (ADS)

    Mahfoudh, A.; Poncin-Épaillard, F.; Moisan, M.; Barbeau, J.

    2010-08-01

    The current work describes a novel technique by which certain types of polymers subjected to dry gaseous ozone acquire the ability to inactivate microorganisms, including those as resistant as bacterial spores. The originality and advantages of this ozone treatment of polymer surfaces rest on its simplicity (achieved at ambient temperature and pressure, a one step process …) and its efficacy. The inactivation efficiency is found to be specific to the nature of the treated polymer: 24 h after deposition of 10 6B. atrophaeus spores from a 100 µL suspension, high inactivation rates are observed with polymethyldisiloxane (99.997%, almost 5 log) and polystyrene (99.7%, more than 2 log), a lower rate with polyurethane (99.1%, 2 log) whereas polytetrafluoroethylene shows no detectable biocidal activity. Changes in hydrophilicity of these surfaces are monitored by means of contact-angle measurements while topographic modifications are characterized through atomic force microscopy. Ozone exposure brings about important topographic changes and chemical modifications on some polymers, which can be correlated with oxidation processes, increased wettability and surface energy. Variations of the dispersive and non-dispersive (polar) components of the surface energy are partially correlated with the polymer biocidal response. Furthermore, the basic component of the treated polymer (in contrast to its acidic component) seems to be correlated with the biocidal activity of the treated surfaces. Chemical species bearing ester groups, probably partially-oxidized styrene oligomers, as revealed by chemical analysis, could be involved in the biocidal activity. On practical grounds, since some of these treated polymers can strongly reduce microorganism loads on their surfaces, they could be particularly useful in hospital environment.

  7. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  8. Nickel extraction from nickel matte

    NASA Astrophysics Data System (ADS)

    Subagja, R.

    2018-01-01

    In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.

  9. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOEpatents

    Muradov, Nazim Z [Melbourne, FL

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  10. A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces

    NASA Astrophysics Data System (ADS)

    Fanara, Carlo; Shore, Paul; Nicholls, John R.; Lyford, Nicholas; Sommer, Phil; Fiske, Peter

    2006-06-01

    The next generation of 30-100 metre diameter extremely large telescopes (ELTs) requires large numbers of hexagonal primary mirror segments. As part of the Basic Technology programme run jointly by UCL and Cranfield University, a reactive atomic plasma technology (RAP(tm)) emerged from the US Lawrence Livermore National Laboratory (LLNL), is employed for the finishing of these surfaces. Results are presented on this novel etching technology. The Inductively Coupled Plasma (ICP) operated at atmospheric pressure using argon, activates the chemical species injected through its centre and promotes the fluorine-based chemical reactions at the surface. Process assessment trials on Ultra Low Expansion (ULE(tm)) plates, previously ground at high material removal rates, have been conducted. The quality of the surfaces produced on these samples using the RAP process are discussed. Substantial volumetric material removal rates of up to 0.446(21) mm 3/s at the highest process speed (1,200 mm/min) were found to be possible without pre-heating the substrate. The influences of power transfer, process speed and gas concentration on the removal rates have been determined. The suitability of the RAP process for revealing and removing sub-surface damage induced by high removal rate grinding is discussed. The results on SiC samples are reported elsewhere in this conference.

  11. PROCESS OF TREATING OR FORMING AN INSOLUBLE PLUTONIUM PRECIPITATE IN THE PRESENCE OF AN ORGANIC ACTIVE AGENT

    DOEpatents

    Balthis, J.H.

    1961-07-18

    Carrier precipitation processes for the separation of plutonium from fission products are described. In a process in which an insoluble precipitate is formed in a solution containing plutonium and fission products under conditions whereby plutonium is carried by the precipitate, and the precipitate is then separated from the remaining solution, an organic surface active agent is added to the mixture of precipitate and solution prior to separation of the precipitate from the supernatant solution, thereby improving the degree of separation of the precipitate from the solution.

  12. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  13. Synthesizing Pt nanoparticles in the presence of methylamine: Impact of acetic acid treatment in the electrocatalytic activity of formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Ooi, M. D. Johan; Aziz, A. Abdul

    2017-05-01

    Surfactant removal from the surface of platinum nanoparticles prepared by solution based method is a prerequisite process to accomplish a high catalytic activity for electrochemical reactions. Here, we report a possible approach of combining acid acetic with thermal treatment for improving catalytic performance of formic acid oxidation. This strategy involves conversion of amine to amide in acetic acid followed by surfactant removal via subsequent thermal treatment at 85 °C. This combined activation technique produced monodisperse nanoparticle with the size of 3 to 5 nm with enhanced formic acid oxidation activity, particularly in perchloric acid solution. Pt treated in 1 h of acetic acid and heat treatment of 9 h shows high electrochemical surface area value (27.6 m2/g) compares to Pt without activation (16.6 m2/g). The treated samples also exhibit high current stability of 0.3 mA/cm2 compares to the as-prepared mA/cm2). Shorter duration of acid wash and longer duration of heating process result in high electrocatalytic activity. This work demonstrates a possible technique in improving catalytic activity of platinum nanoparticles synthesized using methylamine as surfactant.

  14. Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center

    USGS Publications Warehouse

    Garn, H.S.

    2007-01-01

    This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.

  15. Surface-water quality-assurance plan for the Wisconsin district of the U. S. Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Garn, H.S.

    2002-01-01

    This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin District of the U.S. Geological Survey, Water Resources Division, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of District personnel in following these policies and procedures including those related to safety and training are presented.

  16. A versatile system for processing geostationary satellite data with run-time visualization capability

    NASA Technical Reports Server (NTRS)

    Landsfeld, M.; Gautier, C.; Figel, T.

    1995-01-01

    To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. We are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government agencies. Our contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of our first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, we have produced an environment whereby we can easily modify and monitor the data processing as required. Through the principles of modular programming, we have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants. In this way, the data flow can be interactively assessed and altered as needed. In this environment, the intermediate data processing 'images' can be viewed, enabling the investigator to easily monitor the various data processing steps as they progress. Additionally, this environment allows the rapid testing of new processing modules and allows their effects to be visually compared with previous results.

  17. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process.

    PubMed

    Natarajan, Subramanian; Bajaj, Hari C; Tayade, Rajesh J

    2018-03-01

    The problem of textile dye pollution has been addressed by various methods, mainly physical, chemical, biological, and acoustical. These methods mainly separate and/or remove the dye present in water. Recently, advanced oxidation processes (AOP) have been focused for removal of dye from waste water due to their advantages such as ecofriendly, economic and capable to degrade many dyes or organic pollutant present in water. Photocatalysis is one of the advance oxidation processes, mainly carried out under irradiation of light and suitable photocatalytic materials. The photocatalytic activity of the photocatalytic materials mainly depends on the band gap, surface area, and generation of electron-hole pair for degradation dyes present in water. It has been observed that the surface area plays a major role in photocatalytic degradation of dyes, by providing higher surface area, which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity. This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts. In addition, it also provides the properties of the water polluting dyes, their mechanism and various photocatalytic materials; and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water. Copyright © 2017. Published by Elsevier B.V.

  18. Synthesis of a Carbon-activated Microfiber from Spider Webs Silk

    NASA Astrophysics Data System (ADS)

    Taer, E.; Mustika, W. S.; Taslim, R.

    2017-03-01

    Carbon fiber of spider web silk has been produced through the simple carbonization process. Cobwebs are a source of strong natural fiber, flexible and micrometer in size. Preparation of micro carbon fiber from spider webs that consist of carbonization and activation processes. Carbonization was performed in N2 gas environment by multi step heating profile up to temperature of 400 °C, while the activation process was done by using chemical activation with KOH activating agent assistance. Measurement of physical properties was conducted on the surface morphology, element content and the degree of crystallinity. The measurement results found that micro carbon fiber from spider webs has a diameter in the range of 0.5 -25 micrometers. It is found that the carbon-activated microfiber takes the amorphous form with the carbon content of 84 %.

  19. Surface Modification of Biomaterials: A Quest for Blood Compatibility

    PubMed Central

    de Mel, Achala; Cousins, Brian G.; Seifalian, Alexander M.

    2012-01-01

    Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency. PMID:22693509

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajita, Shin; Yoshida, Tomoko; Kitaoka, Daiki

    It has been found recently that low-energy helium (He) plasma irradiation to tungsten (W) leads to the growth of W nanostructures on the surface. The process to grow the nanostructure is identified as a self-growth process of He bubbles and has a potential to open up a new plasma processing method. Here, we show that the metallic nanostructure formation process by the exposure to He plasma can occur in various metals such as, titanium, nickel, iron, and so on. When the irradiation conditions alter, the metallic cone arrays including nanobubbles inside are formed on the surface. Different from W cases,more » other processes than growth of fiberform structure, i.e., physical sputtering and the growth of large He bubbles, can be dominant on other metals during irradiation; various surface morphology changes can occur. The nanostructured W, part of which was oxidized, has revealed a significant photocatalytic activity under visible light (wavelength >700 nm) in decolorization of methylene blue without any co-catalyst.« less

  1. Delayed ignition and propulsion of catalytic microrockets based on fuel-induced chemical dealloying of the inner alloy layer.

    PubMed

    Jodra, Adrián; Soto, Fernando; Lopez-Ramirez, Miguel Angel; Escarpa, Alberto; Wang, Joseph

    2016-09-27

    The delayed ignition and propulsion of catalytic tubular microrockets based on fuel-induced chemical dealloying of an inner alloy layer is demonstrated. Such timed delay motor activation process relies on the preferential gradual corrosion of Cu from the inner Pt-Cu alloy layer by the peroxide fuel. The dealloying process exposes the catalytically active Pt surface to the chemical fuel, thus igniting the microrockets propulsion autonomously without external stimuli. The delayed motor activation relies solely on the intrinsic material properties of the micromotor and the surrounding solution. The motor activation time can thus be tailored by controlling the composition of the Cu-Pt alloy layer and the surrounding media, including the fuel and NaCl concentrations and local pH. Speed acceleration in a given fuel solution is also demonstrated and reflects the continuous exposure of the Pt surface. The versatile "blastoff" control of these chemical microrockets holds considerable promise for designing self-regulated chemically-powered nanomachines with a "built-in" activation mechanism for diverse tasks.

  2. Adsorption of SOx and NOx in activated viscose fibers.

    PubMed

    Plens, Ana Carolina O; Monaro, Daniel L G; Coutinho, Aparecido R

    2015-01-01

    SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF) were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  3. Isolation of Mucorales from processed maize (Zea mays L.) and screening for protease activity

    PubMed Central

    de Azevedo Santiago, André Luiz Cabral Monteiro; de Souza Motta, Cristina Maria

    2008-01-01

    Mucorales were isolated from maize flour, corn meal and cooked cornflakes using surface and depth plate methods. Rhizopus oryzae, Circinella muscae, Mucor subtilissimus, Mucor hiemalis f. hiemalis, Syncephalastrum racemosum, Rhizopus microsporus var. chinensis and Absidia cylindrospora showed protease activity. PMID:24031292

  4. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  5. Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

    PubMed Central

    Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther

    2015-01-01

    The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyles, Kelly R.; Chajkowski, Sarah M.; Disselkamp, Robert S.

    An H/D isotope effect study of the (H2 versus D2) hydrogenation of the aqueous substrates 3-buten-2-ol (3B2OL) and 1,4-pentadien-3-ol (14PD3OL) was performed using Pd-black catalyst. Either H2O or D2O solvents were employed (for alcohol H/D isotope substitution). Two experimental processing conditions of cavitating ultrasound (CUS) and stirred/silent (SS) methods were used. Products formed include 2-butanol and 2-butanone for the former, and 3-pentanol and 3-pentanone for the latter. The observed selectivity and pseudo-first order reaction rate coefficients (e.g., activity) to these products enabled a mechanistic interpretation of the various reaction conditions to be proposed. Experiments utilized a 50 mL batch reactormore » maintained at 298 K, employed 5.4 atm of H2 or D2 gas, while seven aliquots were collected during the course of the reaction. We have utilized 1-propanol as an inert dopant in all experiments to enable the rapid onset of cavitation in the CUS systems as described earlier [R.S. Disselkamp et al., J. Catal., 227, 552 (2004)]. The following conclusions were noted. First, the activity of the CUS compared to SS processing were ~100-fold larger. Second, variable catalyst loading experiments for stirred/silent D2 hydrogenation processing indicated that mass transfer of hydrogen gas to the Pd-surface played a role such that higher catalyst loading reduced surface D-atom concentrations and reduced saturated alcohol formation (e.g., via reduced H-addition to surface alkyl radicals). Third, for CUS processing the ketone selectivities for experiments employing water compared to D2O indicated that 3B2OL were twice as large, whereas for 14PD3OL they were comparable. This suggests, somewhat surprisingly, that for 3B2OL enol tautomerization to ketone is a slow, and possibly rate-controlling, process. Finally, again for CUS processing, the similarity in ketone selectivities (all ~17%) for H2 compared to D2 hydrogenation for both 3B2OL and 14PD3OL suggest that both H/D isotopes have rapid surface diffusion and hence give rise to nearly equal selectivies. Restated, the thermal or cavitating ultrasound activation is much greater than the surface H/D diffusion barrier.« less

  7. Solvent dependence of the activation energy of attachment determined by single molecule observations of surfactant adsorption.

    PubMed

    Honciuc, Andrei; Baptiste, Denver Jn; Campbell, Ian P; Schwartz, Daniel K

    2009-07-07

    Single-molecule total internal reflection fluorescence microscopy was used to obtain real-time images of fluorescently labeled hexadecanoic (palmitic) acid molecules as they adsorbed at the interface between fused silica and three different solvents: hexadecane (HD), tetrahydrofuran (THF), and water. These solvents were chosen to explore the effect of solvent polarity on the activation energy associated with the attachment rate, i.e., the rate at which molecules were transferred to the surface from the near-surface layer. Direct counting of single-molecule events, made under steady-state conditions at extremely low coverage, provided direct, model-independent measurements of this attachment rate, in contrast with conventional ensemble-averaged methods, which are influenced by bulk transport and competing detachment processes. We found that the attachment rate increased with increasing temperature for all solvents. Arrhenius analyses gave activation energies of 5+/-2 kJ/mol for adsorption from HD, 10+/-2 kJ/mol for adsorption from THF, and 19+/-2 kJ/mol for adsorption from water. These energies increased systematically with the solvent polarity and, therefore, with the expected strength of the solvent-substrate interaction. We hypothesize that the adsorption of amphiphilic solute molecules from solution can be regarded as a competitive exchange between solute molecules and surface-bound solvent. In this scenario, adsorption is an activated process, and the activation energy for attachment is associated with the solvent-substrate interaction energy.

  8. Presenilin-1 affects trafficking and processing of βAPP and is targeted in a complex with nicastrin to the plasma membrane

    PubMed Central

    Kaether, Christoph; Lammich, Sven; Edbauer, Dieter; Ertl, Michaela; Rietdorf, Jens; Capell, Anja; Steiner, Harald; Haass, Christian

    2002-01-01

    Amyloid β-peptide (Aβ) is generated by the consecutive cleavages of β- and γ-secretase. The intramembraneous γ-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with γ-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Aβ production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the γ-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with γ-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by γ-secretase inhibitors results in delayed reinternalization of the β-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in γ-secretase processing and in trafficking. PMID:12147673

  9. Method and apparatus for synthesis of arrays of DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, whichmore » may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.« less

  10. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    PubMed

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  11. Antibacterial properties of modified biodegradable PHB non-woven fabric.

    PubMed

    Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V

    2016-08-01

    The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Release of active TGF-β1 from the latent TGF-β1/GARP complex on T regulatory cells is mediated by integrin β8.

    PubMed

    Edwards, Justin P; Thornton, Angela M; Shevach, Ethan M

    2014-09-15

    Activated T regulatory cells (Tregs) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4(+)Foxp3(+) Treg, but not CD4(+)Foxp3(-) T cells, expressed integrin β8 (Itgb8) as detected by quantitative RT-PCR. Itgb8 expression was a marker of thymically derived (t)Treg, because it could not be detected on Foxp3(+)Helios(-) Tregs or on Foxp3(+) T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis but failed to provide TGF-β1 to drive Th17 or induced Treg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs.

  13. Importance of hydrologic data for interpreting wetland maps and assessing wetland loss and mitigation

    USGS Publications Warehouse

    Carter, V.

    1991-01-01

    The US Geological Survey collects and disseminates, in written and digital formats, groundwater and surface-water information related to the tidal and nontidal wetlands of the United States. This information includes quantity, quality, and availability of groundwater and surface water; groundwater and surface-water interactions (recharge-discharge); groundwater flow; and the basic surface-water characteristics of streams, rivers, lakes, and wetlands. Water resources information in digital format can be used in geographic information systems (GISs) for many purposes related to wetlands. US Geological Survey wetland-related activities include collection of information important for assessing and mitigating coastal wetland loss and modification, hydrologic data collection and interpretation, GIS activities, identification of national trends in water quality and quantity, and process-oriented wetland research. -Author

  14. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent

    NASA Astrophysics Data System (ADS)

    Chomicz-Kowalska, Anna; Mrugała, Justyna; Maciejewski, Krzysztof

    2017-10-01

    The article presents the analysis of the performance of foamed bitumen modified using surface active agents. Although, bitumen foaming permits production of asphalt concrete and other asphalt mix types without using chemical additives in significantly reduced temperatures, the decrease in processing temperatures still impacts the adhesion performance and bitumen coating of aggregates in final mixes. Therefore, in some cases it may be feasible to incorporate adhesion promoters and surface active agents into warm and half-warm mixes with foamed bitumen to increase their service life and resilience. Because of the various nature of the available surface active agents, varying bitumen compatibility and their possible impact on the rheological properties of bitumen, the introduction of surface active agents may significantly alter the bitumen foaming performance. The tests included basic performance tests of bitumen before and after foaming. The two tested bitumen were designated as 35/50 and 50/70 penetration grade binders, which were modified with a surface active agent widely used for improving mixture workability, compactibility and adhesion in a wide range of asphalt mixes and techniques, specifically Warm Mix Asphalt. Alongside to the reference unmodified bitumen, binders with 0.2%, 0.4% and 0.6% surface active agent concentration were tested. The analysis has shown a positive influence of the modifier on the foaming performance of both of the base bitumen increasing their maximum expansion ratio and bitumen foam halflife. In the investigations, it was found that the improvement was dependent on the bitumen type and modifier content. The improved expansion ratio and foam half-life has a positive impact on the aggregate coating and adhesion, which together with the adhesion promoting action of the modifier will have a combined positive effect on the quality of produced final asphalt mixes.

  15. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Hamid, Sharifah Bee Abd; Juan, Joon Ching; Basirun, Wan Jefrey; Kandjani, Ahmad Esmaielzadeh

    2015-12-01

    Preparation of highly photo-activated TiO2 is achievable by hydrogenation at constant temperature and pressure, with controlled hydrogenation duration. The formation of surface disorders and Ti3+ is responsible for the color change from white unhydrogenated TiO2 to bluish-gray hydrogenated TiO2. This color change, together with increased oxygen vacancies and Ti3+ enhanced the solar light absorption from UV to infra-red region. Interestingly, no band gap narrowing is observed. The photocatalytic activity in the UV and visible region is controlled by Ti3+ and oxygen vacancies respectively. Both Ti3+ and oxygen vacancies increases the electron density on the catalyst surface thus facilitates rad OH radicals formation. The lifespan of surface photo-excited electrons and holes are also sustained thus prevents charge carrier recombination. However, excessive amount of oxygen vacancies deteriorates the photocatalytic activity as it serves as charge traps. Hydrogenation of TiO2 also promotes the growth of active {0 0 1} facets and facilitates the photocatalytic activity by higher concentration of surface OH radicals. However, the growth of {0 0 1} facets is small and insignificant toward the overall photo-kinetics. This work also shows that larger role is played by Ti3+ and oxygen vacancies rather than the surface disorders created during the hydrogenation process. It also demonstrates the ability of hydrogenated TiO2 to absorb wider range of photons even though at a similar band gap as unhydrogenated TiO2. In addition, the photocatalytic activity is shown to be decreased for extended hydrogenation duration due to excessive catalyst growth and loss in the total surface area. Thus, a balance in the physico-chemical properties of hydrogenated TiO2 is crucial to enhance the photocatalytic activity by simply controlling the hydrogenation duration.

  16. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase.

    PubMed

    López-Alemany, Roser; Longstaff, Colin; Hawley, Stephen; Mirshahi, Massoud; Fábregas, Pere; Jardí, Merce; Merton, Elizabeth; Miles, Lindsey A; Félez, Jordi

    2003-04-01

    Localization of plasmin activity on leukocyte surfaces plays a critical role in fibrinolysis as well as in pathological and physiological processes in which cells must degrade the extracellular matrix in order to migrate. The binding of plasminogen to leukocytic cell lines induces a 30- to 80-fold increase in the rate of plasminogen activation by tissue-type (tPA) and urokinase-type (uPA) plasminogen activators. In the present study we have examined the role of alpha-enolase in plasminogen activation on the cell surface. We produced and characterized a monoclonal antibody (MAb) 11G1 against purified alpha-enolase, which abrogated about 90% of cell-dependent plasminogen activation by either uPA or tPA on leukocytoid cell lines of different lineages: B-lymphocytic, T-lymphocytic, granulocytic, and monocytic cells. In addition, MAb 11G1 also blocked enhancement of plasmin formation by peripheral blood neutrophils and monocytes. In contrast, MAb 11G1 did not affect plasmin generation in the presence of fibrin, indicating that this antibody did not interact with fibrinolytic components in the absence of cells. These data suggest that, although leukocytic cells display several molecules that bind plasminogen, alpha-enolase is responsible for the majority of the promotion of plasminogen activation on the surfaces of leukocytic cells. Copyright 2003 Wiley-Liss, Inc.

  17. Peeling the astronomical onion.

    PubMed

    Rosu-Finsen, Alexander; Marchione, Demian; Salter, Tara L; Stubbing, James W; Brown, Wendy A; McCoustra, Martin R S

    2016-11-23

    Water ice is the most abundant solid in the Universe. Understanding the formation, structure and multiplicity of physicochemical roles for water ice in the cold, dense interstellar environments in which it is predominantly observed is a crucial quest for astrochemistry as these are regions active in star and planet formation. Intuitively, we would expect the mobility of water molecules deposited or synthesised on dust grain surfaces at temperatures below 50 K to be very limited. This work delves into the thermally-activated mobility of H 2 O molecules on model interstellar grain surfaces. The energy required to initiate this process is studied by reflection-absorption infrared spectroscopy of small quantities of water on amorphous silica and highly oriented pyrolytic graphite surfaces as the surface is annealed. Strongly non-Arrhenius behaviour is observed with an activation energy of 2 kJ mol -1 on the silica surface below 25 K and 0 kJ mol -1 on both surfaces between 25 and 100 K. The astrophysical implication of these results is that on timescales shorter than that estimated for the formation of a complete monolayer of water ice on a grain, aggregation of water ice will result in a non-uniform coating of water, hence leaving bare grain surface exposed. Other molecules can thus be formed or adsorbed on this bare surface.

  18. Carbon dioxide hydrogenation on Ni(110).

    PubMed

    Vesselli, Erik; De Rogatis, Loredana; Ding, Xunlei; Baraldi, Alessandro; Savio, Letizia; Vattuone, Luca; Rocca, Mario; Fornasiero, Paolo; Peressi, Maria; Baldereschi, Alfonso; Rosei, Renzo; Comelli, Giovanni

    2008-08-27

    We demonstrate that the key step for the reaction of CO 2 with hydrogen on Ni(110) is a change of the activated molecule coordination to the metal surface. At 90 K, CO 2 is negatively charged and chemically bonded via the carbon atom. When the temperature is increased and H approaches, the H-CO 2 complex flips and binds to the surface through the two oxygen atoms, while H binds to the carbon atom, thus yielding formate. We provide the atomic-level description of this process by means of conventional ultrahigh vacuum surface science techniques combined with density functional theory calculations and corroborated by high pressure reactivity tests. Knowledge about the details of the mechanisms involved in this reaction can yield a deeper comprehension of heterogeneous catalytic organic synthesis processes involving carbon dioxide as a reactant. We show why on Ni the CO 2 hydrogenation barrier is remarkably smaller than that on the common Cu metal-based catalyst. Our results provide a possible interpretation of the observed high catalytic activity of NiCu alloys.

  19. Titan's Lakes in a Beaker

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.

    2017-12-01

    The surface of Titan presents a complex, varied surfaced, with mountains, plains, dunes, rivers, lakes and seas, composed of a layer of organics over a water ice bedrock. Over the past 10 years, our group at JPL has developed a variety of techniques to study the chemistry of Titan's organic surface under relevant temperature and pressure conditions (90-100 K, 1.5 bar). Dissolution, precipitation, and both covalent and non-covalent chemical processes are examined using Raman and infrared spectroscopy, mass spectrometry, optical microscopy, and synchrotron X-ray powder diffraction. Despite the low temperatures, our experiments are revealing that a rich and active organic chemistry is possible on Titan's surface. Laboratory experiments like these can provide crucial insights into the geological processes occurring Titan's surface, and help explain the wealth of observational data returned by the Cassini/Huygens mission. This type of data is also critical for the development of future missions to Titan.

  20. Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4

    NASA Astrophysics Data System (ADS)

    Qi, S. L.; Chen, Z. Z.; Fang, H.; Sun, Y. J.; Sang, L. W.; Yang, X. L.; Zhao, L. B.; Tian, P. F.; Deng, J. J.; Tao, Y. B.; Yu, T. J.; Qin, Z. X.; Zhang, G. Y.

    2009-08-01

    Hot phosphor acid (H3PO4) etching is presented to form a roughened surface with dodecagonal pyramids on laser lift-off N face GaN grown by metalorganic chemical vapor deposition. A detailed analysis of time evolution of surface morphology is described as a function of etching temperature. The activation energy of the H3PO4 etching process is 1.25 eV, indicating the process is reaction-limited scheme. And it is found that the oblique angle between the facets and the base plane increases as the temperature increases. Thermodynamics and kinetics related factors of the formation mechanism of the dodecagonal pyramid are also discussed. The light output power of a vertical injection light-emitting-diode (LED) with proper roughened surface shows about 2.5 fold increase compared with that of LED without roughened surface.

  1. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    NASA Astrophysics Data System (ADS)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval Sentinel) high-performance computing infrastructure of University of Strasbourg.

  2. Development of an active boring bar for increased chatter immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmond, J.; Barney, P.; Smith, D.

    The development and initial evaluation of a prototype boring bar featuring active vibration control for increased chatter immunity is described. The significance of active damping both normal and tangential to the workpiece surface is evaluated, indicating the need for two axis control to ensure adequate performance over expected variations in tool mounting procedures. The prototype tool features a commercially available boring bar modified to accommodate four PZT stack actuators for two axis bending control. Measured closed-loop dynamics are combined with a computer model of the boring process to simulate increased metal removal rate and improved workpiece surface finish through activemore » control.« less

  3. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    NASA Astrophysics Data System (ADS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-01

    Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  4. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity

    PubMed Central

    Wood, Jeremy P.; Silveira, Jay R.; Maille, Nicole M.; Haynes, Laura M.

    2011-01-01

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca2+-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC50 = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin. PMID:21131592

  5. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity.

    PubMed

    Wood, Jeremy P; Silveira, Jay R; Maille, Nicole M; Haynes, Laura M; Tracy, Paula B

    2011-02-03

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca(2+)-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC(50) = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin.

  6. Three-dimensional carbon fibers and method and apparatus for their production

    DOEpatents

    Muradov, Nazim Z [Melbourne, FL

    2012-02-21

    This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.

  7. Processes contributing to resilience of coastal wetlands to sea-level rise

    USGS Publications Warehouse

    Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.

    2016-01-01

    The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.

  8. Characterization of modified zeolite as microbial immobilization media on POME anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Cahyono, Rochim B.; Ismiyati, Sri; Ginting, Simparmin Br; Mellyanawaty, Melly; Budhijanto, Wiratni

    2018-03-01

    As the world’s biggest palm oil producer, Indonesia generates also huge amount of Palm Oil Mill Effluent (POME) wastewater and causes serious problem in environment. In conventional method, POME was converted into biogas using lagoon system which required extensive land area. Anaerobic Fluidized Bed Reactor (AFBR) proposes more effective biogas producing with smaller land area. In the proposed system, a immobilization media would be main factor for enhancing productivity. This research studied on characterization of Lampung natural zeolite as immobilization media in the AFBR system for POME treatment. Various activation method such as physical and chemical were attempted to create more suitable material which has larger surface area, pore size distribution as well as excellent surface structures. The physical method was applied by heating up the material till 400°C while HCl was used on the chemical activation. Based on the result, the chemical activation increased the surface area significantly into 71 m2/g compared to physical as well as original zeolite. The strong acid material was quite effective to enforce the impurities within zeolite pore structure compared to heating up the material. According to distribution data, the Lampung zeolite owned the pore size with the range of 3 – 5 μm which was mesopore material. The pore size was appropriate for immobilization media as it was smaller than size of biogas microbial. The XRD patterns verified that chemical activation could maintain the zeolite structure as the original. Obviously, the SEM photograph showed apparent structure and pore size on the modified zeolite using chemical method. The testing of modified zeolite on the batch system was done to evaluate the characterization process. The modified zeolite using chemical process resulted fast reduction of COD and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion, especially in the beginning of the process. Therefore, the chemical activation process was most suitable to produce the immobilization media from Lampung natural zeolite for POME waste treatment

  9. Analysis of surface deformation during the eruptive process of El Hierro Island (Canary Islands, Spain): Detection, Evolution and Forecasting.

    NASA Astrophysics Data System (ADS)

    Berrocoso, M.; Fernandez-Ros, A.; Prates, G.; Martin, M.; Hurtado, R.; Pereda, J.; Garcia, M. J.; Garcia-Cañada, L.; Ortiz, R.; Garcia, A.

    2012-04-01

    The surface deformation has been an essential parameter for the onset and evolution of the eruptive process of the island of El Hierro (October 2011) as well as for forecasting changes in seismic and volcanic activity during the crisis period. From GNSS-GPS observations the reactivation is early detected by analizing the change in the deformation of the El Hierro Island regional geodynamics. It is found that the surface deformation changes are detected before the occurrence of seismic activity using the station FRON (GRAFCAN). The evolution of the process has been studied by the analysis of time series of topocentric coordinates and the variation of the distance between stations on the island of El Hierro (GRAFCAN station;IGN network; and UCA-CSIC points) and LPAL-IGS station on the island of La Palma. In this work the main methodologies and their results are shown: •The location (and its changes) of the litospheric pressure source obtained by applying the Mogi model. •Kalman filtering technique for high frequency time series, used to make the forecasts issued for volcanic emergency management. •Correlations between deformation of the different GPS stations and their relationship with seismovolcanic settings.

  10. Multi-channel Analysis of Passive Surface Waves (MAPS)

    NASA Astrophysics Data System (ADS)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be used for accurate and fast imaging of high-frequency surface wave energy, and some examples also show that high quality imaging similar to those with active sources can be generated only by the use of a few minutes of noise. The use of cultural noise in town, MAPS can image S-wave velocity structure from the ground surface to hundreds of meters depth.

  11. MAMS: High resolution atmospheric moisture/surface properties

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Guillory, Anthony R.; Suggs, Ron; Atkinson, Robert J.; Carlson, Grant S.

    1991-01-01

    Multispectral Atmospheric Mapping Sensor (MAMS) data collected from a number of U2/ER2 aircraft flights were used to investigate atmospheric and surface (land) components of the hydrologic cycle. Algorithms were developed to retrieve surface and atmospheric geophysical parameters which describe the variability of atmospheric moisture, its role in cloud and storm development, and the influence of surface moisture and heat sources on convective activity. Techniques derived with MAMS data are being applied to existing satellite measurements to show their applicability to regional and large process studies and their impact on operational forecasting.

  12. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.

    PubMed

    Nair, Vaishakh; Vinu, R

    2016-09-01

    In this study, mesoporous activated biochar with high surface area and controlled pore size was prepared from char obtained as a by-product of pyrolysis of Prosopis juliflora biomass. The activation was carried out by a simple process that involved H2O2 treatment followed by microwave pyrolysis. H2O2 impregnation time and microwave power were optimized to obtain biochar with high specific surface area and high adsorption capacity for commercial dyes such as Remazol Brilliant Blue and Methylene Blue. Adsorption parameters such as initial pH of the dye solution and adsorbent dosage were also optimized. Pore size distribution, surface morphology and elemental composition of activated biochar were thoroughly characterized. H2O2 impregnation time of 24h and microwave power of 600W produced nanostructured biochar with narrow and deep pores of 357m(2)g(-1) specific surface area. Langmuir and Langmuir-Freundlich isotherms described the adsorption equilibrium, while pseudo second order model described the kinetics of adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Improving gold catalysis of nitroarene reduction with surface Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzer, Lori A.; Heck, Kimberly N.; Kim, Sean S.

    2016-04-01

    Nitroarene reduction reactions are commercialized catalytic processes that play a key role in the synthesisof many products including medicines, rubbers, dyes, and herbicides. Whereas bimetallic compositionshave been studied, a better understanding of the bimetallic structure effects may lead to improved indus-trial catalysts. In this work, the influence of surface palladium atoms supported on 3-nm Au nanoparticles(Pd-on-Au NPs) on catalytic activity for 4-nitrophenol reduction is explored. Batch reactor studies indi-cate Pd-on-Au NPs exhibit maximum catalytic activity at a Pd surface coverage of 150 sc%, with aninitial turnover frequency of ~3.7 mol-nitrophenol/mol-metalsurface/s, which was ~5.5× and ~13× moreactive than pure Au NPsmore » and Pd NPs, respectively. Pd NPs, Au NPs, and Pd-on-Au NPs below 175 sc%show compensation behavior. Three-dimensional Pd surface ensembles (with ~4–5 atoms) previouslyidentified through X-ray adsorption spectroscopy provide the active sites responsible for the catalyticmaximum. These results demonstrate the ability to adjust systematically a structural feature (i.e., Pdsurface coverage) to yield a more active material.« less

  14. Bostrycin, a novel coupling agent for protein immobilization and prevention of biomaterial-centered infection produced by Nigrospora sp. No. 407.

    PubMed

    Yang, Wen-Jen; Yang, Chih-Sheng; Huang, Chen-Ji; Chen, Ko-Shao; Lin, Shuen-Fuh

    2012-05-10

    Bostrycin, a red antibacterial agent with tetrahydroanthraquinone structure, has been isolated from Nigrospora sp. No. 407. This study investigated the potential antibacterial and multifunctional properties of matrixes through immobilization of bostrycin on their surface for immobilization of protein and prevention of bacterial growth. Bostrycin was immobilized on nonwoven polypropylene (PP) fabric by a technique using glutaraldehyde and polyethyleneimine for the activation of the surface. Glucose oxidase immobilized on bostrycin-treated nonwoven PP fabric showed high activity. The immobilization process improved thermal stability of the enzymes. During repeated assay for 30 cycles, the enzyme activity dropped to only 70% of the initial activity. Both bostrycin-treated nonwoven PP fabric sample and subsequently immobilized glucose oxidase sample on the surface also still exhibited a bacteriostatic effect. This is the first study to show that bostrycin is a promising coupling agent for surface modification on matrix and its potential applications in protein immobilization and biomaterial-centered infection. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  15. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE PAGES

    Alia, Shaun M.; Pivovar, Bryan S.

    2018-01-01

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  16. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Pivovar, Bryan S.

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  17. Infrared Algorithm Development for Ocean Observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1997-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.

  18. Mechanisms and energetics of hydride dissociation reactions on surfaces of plasma-deposited silicon thin films

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder; Valipa, Mayur S.; Mountziaris, T. J.; Maroudas, Dimitrios

    2007-11-01

    We report results from a detailed analysis of the fundamental silicon hydride dissociation processes on silicon surfaces and discuss their implications for the surface chemical composition of plasma-deposited hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of hydride dissociation on the hydrogen-terminated Si(001)-(2×1) surface and molecular-dynamics (MD) simulations of adsorbed SiH3 radical precursor dissociation on surfaces of MD-grown a-Si :H films. Our DFT calculations reveal that, in the presence of fivefold coordinated surface Si atoms, surface trihydride species dissociate sequentially to form surface dihydrides and surface monohydrides via thermally activated pathways with reaction barriers of 0.40-0.55eV. The presence of dangling bonds (DBs) results in lowering the activation barrier for hydride dissociation to 0.15-0.20eV, but such DB-mediated reactions are infrequent. Our MD simulations on a-Si :H film growth surfaces indicate that surface hydride dissociation reactions are predominantly mediated by fivefold coordinated surface Si atoms, with resulting activation barriers of 0.35-0.50eV. The results are consistent with experimental measurements of a-Si :H film surface composition using in situ attenuated total reflection Fourier transform infrared spectroscopy, which indicate that the a-Si :H surface is predominantly covered with the higher hydrides at low temperatures, while the surface monohydride, SiH(s ), becomes increasingly more dominant as the temperature is increased.

  19. Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.

    PubMed

    Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang

    2014-01-01

    In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.

  20. Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke

    PubMed Central

    Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang

    2014-01-01

    In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously. PMID:25309948

  1. Advances and directions of ion nitriding/carburizing

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1989-01-01

    Ion nitriding and carburizing are plasma activated thermodynamic processes for the production of case hardened surface layers not only for ferrous materials, but also for an increasing number of nonferrous metals. When the treatment variables are properly controlled, the use of nitrogenous or carbonaceous glow discharge medium offers great flexibility in tailoring surface/near-surface properties independently of the bulk properties. The ion nitriding process has reached a high level of maturity and has gained wide industrial acceptance, while the more recently introduced ion carburizing process is rapidly gaining industrial acceptance. The current status of plasma mass transfer mechanisms into the surface regarding the formation of compound and diffusion layers in ion nitriding and carbon build-up ion carburizing is reviewed. In addition, the recent developments in design and construction of advanced equipment for obtaining optimized and controlled case/core properties is summarized. Also, new developments and trends such as duplex plasma treatments and alternatives to dc diode nitriding are highlighted.

  2. Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing

    NASA Astrophysics Data System (ADS)

    Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa

    2018-02-01

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  3. Enhancement of the surface methane hydrate-bearing layer based on the specific microorganisms form deep seabed sediment in Japan Sea.

    NASA Astrophysics Data System (ADS)

    Hata, T.; Yoneda, J.; Yamamoto, K.

    2017-12-01

    A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.

  4. Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology.

    PubMed

    Das, Dipa; Meikap, Bhim C

    2017-10-15

    The present research describes the optimal adsorption condition for methylene blue (MB). The adsorbent used here was monoethanol amine-impregnated activated carbon (MEA-AC) prepared from green coconut shell. Response surface methodology (RSM) is the multivariate statistical technique used for the optimization of the process variables. The central composite design is used to determine the effect of activation temperature, activation time and impregnation ratio on the MB removal. The percentage (%) MB adsorption by MEA-AC is evaluated as a response of the system. A quadratic model was developed for response. From the analysis of variance, the factor which was the most influential on the experimental design response has been identified. The optimum condition for the preparation of MEA-AC from green coconut shells is the temperature of activation 545.6°C, activation time of 41.64 min and impregnation ratio of 0.33 to achieve the maximum removal efficiency of 98.21%. At the same optimum parameter, the % MB removal from the textile-effluent industry was examined and found to be 96.44%.

  5. The preparation and characterization of La doped TiO 2 nanoparticles and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liqiang, Jing; Xiaojun, Sun; Baifu, Xin; Baiqi, Wang; Weimin, Cai; Honggang, Fu

    2004-10-01

    In this paper, pure and La doped TiO2 nanoparticles with different La content were prepared by a sol-gel process using Ti (OC4H9)4 as raw material, and also were characterized by XRD, TG-DTA, TEM, XPS, DRS and Photoluminescence (PL) spectra. We mainly investigated the effects of calcining temperature and La content on the properties and the photocatalytic activity for degrading phenol of as-prepared TiO2 samples, and also discussed the relationships between PL spectra and photocatalytic activity as well as the mechanisms of La doping on TiO2 phase transformation. The results showed that La3+ did not enter into the crystal lattices of TiO2 and was uniformly dispersed onto TiO2 as the form of La2O3 particles with small size, which possibly made La dopant have a great inhibition on TiO2 phase transformation; La dopant did not give rise to a new PL signal, but it could improve the intensity of PL spectra with a appropriate La content, which was possibly attributed to the increase in the content of surface oxygen vacancies and defects after doping La; La doped TiO2 nanoparticles calcined at 600°C exhibited higher photocatalytic activity, indicating that 600°C was an appropriate calcination temperature. The order of photocatalytic activity of La doped TiO2 samples with different La content was as following: 1>1.5>3>0.5>5>0 mol%, which was the same as the order of their PL intensity, namely, the stronger the PL intensity, the higher the photocatalytic activity, demonstrating that there were certain relationships between PL spectra and photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions.

  6. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano.

    PubMed

    Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung

    2012-12-01

    Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.

  7. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  8. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano

    PubMed Central

    Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung

    2012-01-01

    Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids. PMID:22739492

  9. Influence of the direct NO-donor SIN-1 on the interaction between platelets and stainless steel stents under dynamic conditions.

    PubMed

    Jung, F; Mrowietz, C; Seyfert, U T; Grewe, R; Franke, R P

    2003-01-01

    It was investigated whether the NO-donor SIN-1, the active metabolite of molsidomine, influenced the activation of platelets, the formation of circulating platelet aggregates, the spontaneous aggregation of platelets and the activation of the clotting system triggered by a body foreign surface in an in vitro closed-loop perfusion model. With human platelet-rich plasma at micromolar concentrations SIN-1 exerted pronounced effects on the interaction between platelets and an exogenous surface. In the absence of SIN-1, the number of circulating single platelets decreased significantly, which could be due either to the formation of circulating platelet aggregates or to the adhesion of platelets to the stent. Both these processes were blocked by the addition of SIN-1. Moreover, the platelets exhibited hyperaggregability in the absence of SIN-1 whereas the NO-donor was able to completely inhibit spontaneous platelet aggregation. Similar results were obtained in flow cytometry experiments. Without SIN-1, high platelet surface densities of both the GPIb/IX and GPIIb/IIIa receptors were observed. In addition, the density of the fibrinogen receptor increased significantly with the number of perfusion cycles. SIN-1 was able to suppress the augmented GPIIb/IIIa receptor expression significantly. Molsidomine seemed to have the potential to reduce the incidence of thrombotic processes triggered by the exogenous surface of the stent.

  10. Surface tension prevails over solute effect in organic-influenced cloud droplet activation.

    PubMed

    Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin

    2017-06-29

    The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.

  11. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. Copyright © 2015. Published by Elsevier B.V.

  12. Investigating Catalytic Properties of Composite Nanoparticle Assemblies

    DTIC Science & Technology

    2001-11-01

    electrode surfaces, were found to be catalytically active towards electrooxidation of CO and MeOH upon activation. The activation involved partial removal...to proceed under stirring at room temperature for 4 hours. producing a dark-brown solution of DT-encapsulated nanoparticles that was then cleaned in... ethanol or used in the heating treatment. Processing. Highly-monodispersed Au particles (5.3 ±0.3 nm) were prepared by thermally activated treatment of

  13. Surface regions of illusory images are detected with a slower processing speed than those of luminance-defined images.

    PubMed

    Mihaylova, Milena; Manahilov, Velitchko

    2010-11-24

    Research has shown that the processing time for discriminating illusory contours is longer than for real contours. We know, however, little whether the visual processes, associated with detecting regions of illusory surfaces, are also slower as those responsible for detecting luminance-defined images. Using a speed-accuracy trade-off (SAT) procedure, we measured accuracy as a function of processing time for detecting illusory Kanizsa-type and luminance-defined squares embedded in 2D static luminance noise. The data revealed that the illusory images were detected at slower processing speed than the real images, while the points in time, when accuracy departed from chance, were not significantly different for both stimuli. The classification images for detecting illusory and real squares showed that observers employed similar detection strategies using surface regions of the real and illusory squares. The lack of significant differences between the x-intercepts of the SAT functions for illusory and luminance-modulated stimuli suggests that the detection of surface regions of both images could be based on activation of a single mechanism (the dorsal magnocellular visual pathway). The slower speed for detecting illusory images as compared to luminance-defined images could be attributed to slower processes of filling-in of regions of illusory images within the dorsal pathway.

  14. Digital structural

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Tanaka, K.L.

    1998-01-01

    Magmatic and tectonic activity have both contributed significantly to the surface geology of Mars. Digital structural mapping techniques have now been used to classify and date centers of tectonic activity in the western equatorial region. For example, our results show a center of tectonic activity at Valles Marineris, which may be associated with uplift caused by intrusion. Such evidence may help explain, in part, the development of the large troughs and associated outflow channels and chaotic terrain. We also find a local centre of tectonic activity near the source region of Warrego Valles. Here, we suggest that the valley system may have resulted largely from intrusive-related hydrothermal activity. We hope that this work, together with the current Mars Global Surveyor mission, will lead to a better understanding of the geological processes that shaped the Martian surface.

  15. A new approach to define surface/sub-surface transition in gravel beds

    NASA Astrophysics Data System (ADS)

    Haynes, Heather; Ockelford, Anne-Marie; Vignaga, Elisa; Holmes, William

    2012-12-01

    The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.

  16. Method and system for optical figuring by imagewise heating of a solvent

    DOEpatents

    Rushford, Michael C.

    2005-08-30

    A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.

  17. Surface history of Mercury - Implications for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Strom, R. G.; Trask, N. J.; Gault, D. E.

    1975-01-01

    A plausible surface history of Mercury is presented which is suggested by Mariner 10 television pictures. Five periods are postulated which are delineated by successive variations in the modification of the surface by external and internal processes: accretion and differentiation, terminal heavy bombardment, formation of the Caloris basin, flooding of that basin and other areas, and light cratering accumulated on the smooth plains. Each period is described in detail; the overall history is compared with the surface histories of Venus, Mars, and the moon; and the implications of this history for earth are discussed. It is tentatively concluded that: Mercury is a differentiated planet most likely composed of a large iron core enclosed by a relatively thin silicate layer; heavy surface bombardment occurred about four billion years ago, which probably affected all the inner planets, and was followed by a period of volcanic activity; no surface modifications caused by tectonic, volcanic, or atmospheric processes took place after the volcanic period.

  18. Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.

    PubMed

    Zaki, Mohamed F; Tawfik, Salah M

    2014-01-01

    Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.

  19. Activated recombinative desorption: A potential component in mechanisms of spacecraft glow

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1985-01-01

    The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.

  20. Cell surface control of the multiubiquitination and deubiquitination of high-affinity immunoglobulin E receptors.

    PubMed Central

    Paolini, R; Kinet, J P

    1993-01-01

    Multiubiquitination of proteins is a critical step leading to selective degradation for many polypeptides. Therefore, activation-induced multiubiquitination of cell surface receptors, such as the platelet-derived growth factor (PDGF) receptor and the T cell antigen (TCR) receptor, may correspond to a degradation pathway for ligand-receptor complexes. Here we show that the antigen-induced engagement of high-affinity immunoglobulin E receptors (Fc epsilon RI) results in the immediate multiubiquitination of Fc epsilon RI beta and gamma chains. This ubiquitination is independent of receptor phosphorylation and is restricted to activated receptors. Surprisingly, receptor multiubiquitination is immediately reversible when receptors are disengaged. Therefore, multiubiquitination and deubiquitination of Fc epsilon RI receptors is controlled at the cell surface by receptor engagement and disengagement. The rapidity, specificity and, most importantly, the reversibility of the activation-induced receptor multiubiquitination suggest that this process may turn on/off a cell surface receptor signaling function thus far unsuspected. Images PMID:8382611

  1. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-09

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  2. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore, the objectives of this study were to: (1) examine the fine fraction mineralogy of several palagonitic materials from Hawaii; and (2) compare spectral properties of palagonites and submicron sized synthetic iron oxides with the spectral properties of the Martian surface.

  3. New Insights into the adsorption of aurocyanide ion on activated carbon surface: electron microscopy analysis and computational studies using fullerene-like models.

    PubMed

    Yin, Chun-Yang; Ng, Man-Fai; Saunders, Martin; Goh, Bee-Min; Senanayake, Gamini; Sherwood, Ashley; Hampton, Marc

    2014-07-08

    Despite decades of concerted experimental studies dedicated to providing fundamental insights into the adsorption of aurocyanide ion, Au(CN)2(-), on activated carbon (AC) surface, such a mechanism is still poorly understood and remains a contentious issue. This adsorption process is an essential unit operation for extracting gold from ores using carbon-in-pulp (CIP) technology. We hereby attempt to shed more light on the subject by employing a range of transmission electron microscopy (TEM) associated techniques. Gold-based clusters on the AC surface are observed by Z-contrast scanning TEM imaging and energy-filtered TEM element mapping and are supported by X-ray microanalysis. Density functional theory (DFT) calculations are applied to investigate this adsorption process for the first time. Fullerene-like models incorporating convex, concave, or planar structure which mimic the eclectic porous structures on the AC surface are adopted. Pentagonal, hexagonal, and heptagonal arrangements of carbon rings are duly considered in the DFT study. By determining the favored adsorption sites in water environment, a general adsorption trend of Au(CN)2(-) adsorbed on AC surface is revealed whereby concave > convex ≈ planar. The results suggest a tendency for Au(CN)2(-) ion to adsorb on the carbon sheet defects or edges rather than on the basal plane. In addition, we show that the adsorption energy of Au(CN)2(-) is approximately 5 times higher than that of OH(-) in the alkaline environment (in negative ion form), compared to only about 2 times in acidic environment (in protonated form), indicating the Au extraction process is much favored in basic condition. The overall simulation results resolve certain ambiguities about the adsorption process for earlier studies. Our findings afford crucial information which could assist in enhancing our fundamental understanding of the CIP adsorption process.

  4. Laser-modified titanium surfaces enhance the osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Bressel, Tatiana A B; de Queiroz, Jana Dara Freires; Gomes Moreira, Susana Margarida; da Fonseca, Jéssyca T; Filho, Edson A; Guastaldi, Antônio Carlos; Batistuzzo de Medeiros, Silvia Regina

    2017-11-28

    Titanium surfaces have been modified by various approaches with the aim of improving the stimulation of osseointegration. Laser beam (Yb-YAG) treatment is a controllable and flexible approach to modifying surfaces. It creates a complex surface topography with micro and nano-scaled patterns, and an oxide layer that can improve the osseointegration of implants, increasing their usefulness as bone implant materials. Laser beam irradiation at various fluences (132, 210, or 235 J/cm 2 ) was used to treat commercially pure titanium discs to create complex surface topographies. The titanium discs were investigated by scanning electron microscopy, X-ray diffraction, and measurement of contact angles. The surface generated at a fluence of 235 J/cm 2 was used in the biological assays. The behavior of mesenchymal stem cells from an umbilical cord vein was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a mineralization assay, and an alkaline phosphatase activity assay and by carrying out a quantitative real-time polymerase chain reaction for osteogenic markers. CHO-k1 cells were also exposed to titanium discs in the MTT assay. The best titanium surface was that produced by laser beam irradiation at 235 J/cm 2 fluence. Cell proliferation analysis revealed that the CHO-k1 and mesenchymal stem cells behaved differently. The laser-processed titanium surface increased the proliferation of CHO-k1 cells, reduced the proliferation of mesenchymal stem cells, upregulated the expression of the osteogenic markers, and enhanced alkaline phosphatase activity. The laser-treated titanium surface modulated cellular behavior depending on the cell type, and stimulated osteogenic differentiation. This evidence supports the potential use of laser-processed titanium surfaces as bone implant materials, and their use in regenerative medicine could promote better outcomes.

  5. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    NASA Astrophysics Data System (ADS)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can act as natural agents for preventing agglomeration of nanoparticles, and subsequent decrease of active surface area, on the electrode surface. The cell template was carbonized and removed via thermal treatments, leaving a catalytically active mesoporous palladium structure. The biotemplated mesoporous structure had a high surface area composed of nanoparticles, and a high pore volume and surface area. The biotemplated porous structure also exhibited an increased catalytic activity compared to an electroplated palladium electrode and an electrode coated with synthetically produced palladium nanoparticles attached to the surface with a Nafion binder. The biotemplated mesoporous structure was found to be an alternative process to form a porous structure directly on an electrode using only materials and processes that naturally occur in G. sulfurreducens biofilms. Biotemplated catalytic structures are an alternative method to form a porous structure with high catalytic activity without using any synthetic compounds. However, their uses in large scale processes require that the catalyst layer be durable. The electrochemical and mechanical stability of biotemplated mesoporous structures was tested on different support materials (polished graphite, carbon paper, carbon cloth, and stainless steel) subjected to electrochemical and/or mechanical stress. Carbon paper was found to withstand the most electrochemical and mechanical stress of the four different support materials tested. Polished graphite was able to withstand electrochemical stress, but deteriorated under a combination of electrochemical and mechanical stress. Different readily available and inexpensive polymers (polyaniline and polydimethylsiloxane) were also tested against a widely used polymer (NafionRTM) to stabilize the palladium catalyst on the polished graphite surface. The polyaniline was the most effective binder because it enhanced the catalytic activity and could be electropolymerized around the catalyst, giving the greatest amount of control over the thickness of the polymer layer. The second process studied used exoelectrogenic bacteria in METs for the conversion of electrons to hydrogen via water electrolysis in a biocathodic system. Naturally occurring biocatalytic cell material on the cathode surface was used to lower the cathode overpotential. Different cell cultures ( G. sulfurreducens, Methanosarcina barkeri, and Escherichia coli) were tested for their effect on hydrogen formation using electrons supplied to an insoluble electrode. The mode of hydrogen production was investigated by monitoring hydrogen production over three to five months using G. sulfurreducens biofilms (pregrown under anodic conditions with acetate) that were: (1) not supplied with an organic carbon source for cell growth and maintenance, (2) killed with ethanol, or (3) supplied with lactate, an organic carbon source and electron donor for G. sulfurreducens. Hydrogen was produced at a rate 10--20 times higher over five months in reactors that were either not given organic carbon or killed with ethanol, compared to reactors with lactate added. The methanogen, M. barkeri, was also tested as a biocatalyst because it is able to grow autotrophically. However, M. barkeri cells did not grow in the reactor with the electrode potential poised, based on the lack of evidence for methane production. Despite the lack of cell activity, the rate of hydrogen production with M. barkeri was similar to the rate observed in killed G. sulfurreducens reactors. The addition of E. coli, a non-exoelectrogenic bacteria, resulted in an initial elevated hydrogen gas production, but hydrogen production rates similar to background levels after three months. No cells were detected on the electrode surfaces after five months using scanning electron microscopy and unique metals, such as iron, nickel, cobalt, and zinc, were detected on the electrode surfaces exposed to cells. The identifiable peptides extracted from the electrodes were found to be derived primarily from metalloproteins produced by G. sulfurreducens and M. barkeri cells. These findings show that hydrogen can be produced in a biocathodic system by abiotic cell material attached to a graphite electrode surface and that it does not require electron uptake by living cells.

  6. Preparation and Characterization of Mesoporous Nickel derived from Liquid crystalline Template and Evaluation of its Electro catalytic activity towards Methanol Oxidation

    NASA Astrophysics Data System (ADS)

    Mohanapriya, S.; Renuka devi, R.; Raj, V.

    2018-02-01

    Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.

  7. Investigations of the surface activation of thermoplastic polymers by atmospheric pressure plasma treatment with a stationary plasma jet

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Nordmeyer, Timo; Leister, Christian; Schmidt, Martin Andreas; Grishin, Artur; Knospe, Alexander

    2016-03-01

    The production of high-quality thermoplastic parts often requires an additional process step after the injection molding stage. This may be a coating, bonding process or a 2K-injection moulding process. A commonly used process to improve the bond strength is atmospheric pressure plasma treatment. A variety of applications are realized with the aid of CNC systems. Although they ensure excellent reproducibility, they make it difficult to implement inline applications. This paper therefore examines the possibility of surface treatment using a stationary plasma jet. However, before it is possible to integrate this technology into a production process, preliminary trials need to be carried out to establish which factors influence the process. Experimental tests were performed using a special test set-up, enabling geometric, plasma-specific parameters to be identified. These results can help with the practical integration of this technology into existing production processes.

  8. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  9. (Bio)hybrid materials based on optically active particles

    NASA Astrophysics Data System (ADS)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  10. Activated Carbon Fibers with Hierarchical Nanostructure Derived from Waste Cotton Gloves as High-Performance Electrodes for Supercapacitors.

    PubMed

    Wei, Chao; Yu, Jianlin; Yang, Xiaoqing; Zhang, Guoqing

    2017-12-01

    One of the most challenging issues that restrict the biomass/waste-based nanocarbons in supercapacitor application is the poor structural inheritability during the activating process. Herein, we prepare a class of activated carbon fibers by carefully selecting waste cotton glove (CG) as the precursor, which mainly consists of cellulose fibers that can be transformed to carbon along with good inheritability of their fiber morphology upon activation. As prepared, the CG-based activated carbon fiber (CGACF) demonstrates a surface area of 1435 m 2  g -1 contributed by micropores of 1.3 nm and small mesopores of 2.7 nm, while the fiber morphology can be well inherited from the CG with 3D interconnected frameworks created on the fiber surface. This hierarchically porous structure and well-retained fiber-like skeleton can simultaneously minimize the diffusion/transfer resistance of the electrolyte and electron, respectively, and maximize the surface area utilization for charge accumulation. Consequently, CGACF presents a higher specific capacitance of 218 F g -1 and an excellent high-rate performance as compared to commercial activated carbon.

  11. The immobilization of a direct thrombin inhibitor to a polyurethane as a nonthrombogenic surface coating for extracorporeal circulation.

    PubMed

    Yu, Jane; Brisbois, Elizabeth; Handa, Hitesh; Annich, Gail; Meyerhoff, Mark; Bartlett, Robert; Major, Terry

    2016-04-07

    A biomaterial with both antithrombin and antiplatelet properties is the ideal surface for use in extracorporeal circulation (ECC) as it targets both fibrin generation and platelet adhesion. A hemocompatible surface coating avoids the need for systemic anticoagulation by providing a local anticoagulant effect at the polymer-blood interface. Previous work has demonstrated the potential use of argatroban, a direct thrombin inhibitor, as a nonthrombogenic material for extracorporeal devices. The work reported here focuses on the characterization of argatroban linked to a polyurethane-silicone polymer, CarboSil®. Chemical immobilization, the amount of argatroban, incubation times, and saturation point were evaluated to achieve maximal antithrombin activity at the polymer surface. Cross-linked polymer coatings reacted with 10 and 30 µmole of argatroban were prepared and tested. These coatings resulted in argatroban activity levels of 0.131 µM and 0.446 µM, respectively. After refining the cross-linking process, argatroban activity increased by approximately 3.6 fold. Maintenance of activity and leaching from the polymer surface were also evaluated. Using the refined process for linking argatroban to polymer, the resulting polymer was applied as a surface coating to the inner lumen of poly(vinyl chloride) ECC circuit tubing and its antithrombin effect evaluated using a 4 h rabbit ECC model. Following 4 h of blood exposure, the argatroban circuit demonstrated significantly less thrombus formation compared to the control CarboSil® coating with a 4.1 cm 2 thrombus average area for the control coating compared to 1.2 cm 2 for the argatroban coating (n=4). There was no significant change in thrombin time from baseline in plasma from animals in which the argatroban coated circuit was used, with a thrombin time of 16.2 s at t=0 and 14.5 s after 4 h. These results demonstrate the potential efficacy of immobilized argatroban as a hemocompatible biomaterial for extracorporeal life support devices.

  12. The immobilization of a direct thrombin inhibitor to a polyurethane as a nonthrombogenic surface coating for extracorporeal circulation

    PubMed Central

    Yu, Jane; Brisbois, Elizabeth; Handa, Hitesh; Annich, Gail; Meyerhoff, Mark; Bartlett, Robert; Major, Terry

    2016-01-01

    A biomaterial with both antithrombin and antiplatelet properties is the ideal surface for use in extracorporeal circulation (ECC) as it targets both fibrin generation and platelet adhesion. A hemocompatible surface coating avoids the need for systemic anticoagulation by providing a local anticoagulant effect at the polymer-blood interface. Previous work has demonstrated the potential use of argatroban, a direct thrombin inhibitor, as a nonthrombogenic material for extracorporeal devices. The work reported here focuses on the characterization of argatroban linked to a polyurethane-silicone polymer, CarboSil®. Chemical immobilization, the amount of argatroban, incubation times, and saturation point were evaluated to achieve maximal antithrombin activity at the polymer surface. Cross-linked polymer coatings reacted with 10 and 30 µmole of argatroban were prepared and tested. These coatings resulted in argatroban activity levels of 0.131 µM and 0.446 µM, respectively. After refining the cross-linking process, argatroban activity increased by approximately 3.6 fold. Maintenance of activity and leaching from the polymer surface were also evaluated. Using the refined process for linking argatroban to polymer, the resulting polymer was applied as a surface coating to the inner lumen of poly(vinyl chloride) ECC circuit tubing and its antithrombin effect evaluated using a 4 h rabbit ECC model. Following 4 h of blood exposure, the argatroban circuit demonstrated significantly less thrombus formation compared to the control CarboSil® coating with a 4.1 cm2 thrombus average area for the control coating compared to 1.2 cm2 for the argatroban coating (n=4). There was no significant change in thrombin time from baseline in plasma from animals in which the argatroban coated circuit was used, with a thrombin time of 16.2 s at t=0 and 14.5 s after 4 h. These results demonstrate the potential efficacy of immobilized argatroban as a hemocompatible biomaterial for extracorporeal life support devices. PMID:27458521

  13. Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)

    NASA Astrophysics Data System (ADS)

    Gonzalez, P. J.

    2015-12-01

    New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to engineering and meteorological monitoring problems.

  14. From Aβ Filament to Fibril: Molecular Mechanism of Surface-Activated Secondary Nucleation from All-Atom MD Simulations.

    PubMed

    Schwierz, Nadine; Frost, Christina V; Geissler, Phillip L; Zacharias, Martin

    2017-02-02

    Secondary nucleation pathways in which existing amyloid fibrils catalyze the formation of new aggregates and neurotoxic oligomers are of immediate importance for the onset and progression of Alzheimer's disease. Here, we apply extensive all-atom molecular dynamics simulations in explicit water to study surface-activated secondary nucleation pathways at the extended lateral β-sheet surface of a preformed Aβ 9-40 filament. Calculation of free-energy profiles allows us to determine binding free energies and conformational intermediates for nucleation complexes consisting of 1-4 Aβ peptides. In addition, we combine the free-energy profiles with position-dependent diffusion profiles to extract complementary kinetic information and macroscopic growth rates. Single monomers bind to the β-sheet surface in a disordered, hydrophobically collapsed conformation, whereas dimers and larger oligomers can retain a cross-β conformation resembling a more ordered fibril structure. The association processes during secondary nucleation follow a dock/lock mechanism consisting of a fast initial encounter phase (docking) and a slow structural rearrangement phase (locking). The major driving forces for surface-activated secondary nucleation are the release of a large number of hydration water molecules and the formation of hydrophobic interface contacts, the latter being in contrast to the elongation process at filament tips, which is dominated by the formation of stable and highly specific interface hydrogen bonds. The calculated binding free energies and the association rates for the attachment of Aβ monomers and oligomers to the extended lateral β-sheet surface of the filament seed are higher compared to those for elongation at the filament tips, indicating that secondary nucleation pathways can become important once a critical concentration of filaments has formed.

  15. Analysis of RFI Statistics for Aquarius RFI Detection and Mitigation Improvements

    NASA Technical Reports Server (NTRS)

    de Matthaeis, Paolo; Soldo, Yan; Le Vine, David M.

    2016-01-01

    Aquarius is an L-band active/passive sensor designed to globally map sea surface salinity from space. Two instruments, a radar scatterometer and a radiometer, observe the same surface footprint almost simultaneously. The radiometer is the primary instrument for sensing sea surface salinity (SSS), while the scatterometer is included to provide a correction for sea surface roughness, which is a primary source of error in the salinity retrieval. Although the primary objective is the measurement of SSS, the instrument combination operates continuously, acquiring data over land and sea ice as well. An important feature of the data processing includes detection and mitigation of Radio Frequency Interference (RFI) which is done separately for both active and passive instruments. Correcting for RFI is particularly critical over ocean because of the high accuracy required in the brightness temperature measurements for SSS retrieval. It is also necessary for applications of the Aquarius data over land, where man-made interference is widespread, even though less accuracy is required in this case. This paper will provide an overview of the current status of the Aquarius RFI processing and an update on the ongoing work on the improvement of the RFI detection and mitigation performance.

  16. Microstructure and mechanical properties of 2024-T3 and 7075-T6 aluminum alloys and austenitic stainless steel 304 after being exposed to hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Sofyan, Nofrijon Bin Imam

    The effect of hydrogen peroxide used as a decontaminant agent on selected aircraft metallic materials has been investigated. The work is divided into three sections; bacterial attachment behavior onto an austenitic stainless steel 304 surface; effect of decontamination process on the microstructure and mechanical properties of aircraft metallic structural materials of two aluminum alloys, i.e. 2024-T3 and 7075-T6, and an austenitic stainless steel 304 as used in galley and lavatory surfaces; and copper dissolution rate into hydrogen peroxide. With respect to bacterial attachment, the results show that surface roughness plays a role in the attachment of bacteria onto metallic surfaces at certain extent. However, when the contact angle of the liquid on a surface increased to a certain degree, detachment of bacteria on that surface became more difficult. In its relation to the decontamination process, the results show that a corrosion site, especially on the austenitic stainless steel 304 weld and its surrounding HAZ area, needs more attention because it could become a source or a harborage of bio-contaminant agent after either incidental or intentional bio-contaminant delivery. On the effect of the decontamination process on the microstructure and mechanical properties of aircraft metallic structural materials, the results show that microstructural effects are both relatively small in magnitude and confined to a region immediately adjacent to the exposed surface. No systematic effect is found on the tensile properties of the three alloys under the conditions examined. The results of this investigation are promising with respect to the application of vapor phase hydrogen peroxide as a decontaminant agent to civilian aircraft, in that even under the most severe circumstances that could occur; only very limited damage was observed. The results from the dissolution of copper by concentrated liquid hydrogen peroxide showed that the rate of copper dissolution increased for the first 15 minutes of the reaction time with an activation energy of 19 kJ/mol, and then the fraction of copper dissolved became constant. This constant dissolution was expected to be due to the formation of copper hydroxide, which was observed to precipitate after the solution settled for some time. However, because the final consumption of hydrogen peroxide was not controlled, the exact reason for this constant dissolution cannot be determined at this time. The value of activation energy is within the range of activation energy found in the literature for other dissolution process. The low activation energy for dissolution of pure copper correlates with the observation of dissolution of copper from intermetallic particles in the aluminum alloys.

  17. Surface tension propulsion of fungal spores by use of microdroplets

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-11-01

    Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.

  18. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    NASA Astrophysics Data System (ADS)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  19. Bactericidal behavior of Cu-containing stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi

    Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less

  1. Thermosonication and optimization of stingless bee honey processing.

    PubMed

    Chong, K Y; Chin, N L; Yusof, Y A

    2017-10-01

    The effects of thermosonication on the quality of a stingless bee honey, the Kelulut, were studied using processing temperature from 45 to 90 ℃ and processing time from 30 to 120 minutes. Physicochemical properties including water activity, moisture content, color intensity, viscosity, hydroxymethylfurfural content, total phenolic content, and radical scavenging activity were determined. Thermosonication reduced the water activity and moisture content by 7.9% and 16.6%, respectively, compared to 3.5% and 6.9% for conventional heating. For thermosonicated honey, color intensity increased by 68.2%, viscosity increased by 275.0%, total phenolic content increased by 58.1%, and radical scavenging activity increased by 63.0% when compared to its raw form. The increase of hydroxymethylfurfural to 62.46 mg/kg was still within the limits of international standards. Optimized thermosonication conditions using response surface methodology were predicted at 90 ℃ for 111 minutes. Thermosonication was revealed as an effective alternative technique for honey processing.

  2. Active Oxidation of a UHTC-Based CMC

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Splinter, Scott C.

    2012-01-01

    The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.

  3. Chemical activation of bituminous coal for hampering oligomerization of organic contaminants.

    PubMed

    Yan, Liang; Sorial, George A

    2011-12-15

    Activated carbons prepared by KOH activation of bituminous coal were studied for hampering oligomerization of phenolic compounds on its surface. A total of 24 activated carbons with different microporosity and BET surface area were created. The effect of the different variables of the activation process (KOH/bituminous coal ratio, heating temperature, activation time, and flow rate of nitrogen gas) on critical carbon parameters was analyzed. The impact of activated carbon on oligomerization was examined by conducting isotherm experiments at a neutral pH on Carbon(exp) produced with optimal characteristics and granular activated carbon (GAC) F400 for phenol, 2-methylphenol and 2-ethylphenol. These isotherms were collected under anoxic (absence of molecular oxygen) and oxic (presence of molecular oxygen) conditions. The single solute adsorption of phenol, 2-methylphenol and 2-ethylphenol on Carbon(exp) showed no obvious differences between oxic and anoxic environment, which indicated that the Carbon(exp) sample is very effective in hampering the oligomerization of phenolic compounds under oxic conditions. On the other hand, F400, which have lower micropore percentage and BET surface area, significant increases in the adsorptive capacity had been observed when molecular oxygen was present. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Mechanism of H adatoms improving the O2 reduction reaction on the Zn-modified anatase TiO2 (101) surface studied by first principles calculation.

    PubMed

    Liu, Liangliang; Li, Chongyang; Jiang, Man; Li, Xiaodong; Huang, Xiaowei; Wang, Zhu; Jia, Yu

    2018-06-05

    First principles calculations were performed to cast insight into the mechanism of the improvement of O2 reduction reaction (ORR) activity by Zn and H interstitials on the anatase TiO2 (101) surface. For the Zn-modified anatase TiO2 (101) surface, both surface and subsurface Zn interstitials could contribute to O2 adsorption and dissociation, but the dissociation barriers of O2 molecules are still too high, which limits the ORR activity. After a H adatom is introduced onto the Zn-modified anatase TiO2 (101) surface, the highest energy barriers are greatly reduced compared with those of the Zn-modified surface. Meanwhile, it is observed that the dissociation barriers decrease almost linearly with the increase of the charge difference of adsorption O2 between initial and transition state configurations. Specifically, subsurface Zn and surface H interstitials facilitate O2 dissociation and subsequent oxidation reactions, and further frequency analysis shows that these dissociation processes are frequent even at the room temperature of 300 K. In a word, this work provides a theoretical support to design a high ORR activity catalyst of the TiO2 nanocrystal comparable to precious Pt catalysts.

  5. Surface Modifications during a Catalytic Reaction: A Combined APT and FIB/SEM Analysis of Surface Segregation

    DOE PAGES

    Barroo, Cedric; Janvelyan, Nare; Zugic, Branko; ...

    2016-07-25

    To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less

  6. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement.

    PubMed

    Wang, Kaiwei; Martin, Haydn; Jiang, Xiangqian

    2008-02-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.

  7. Occupational exposure to beryllium in French enterprises: a survey of airborne exposure and surface levels.

    PubMed

    Vincent, Raymond; Catani, Jacques; Créau, Yvon; Frocaut, Anne-Marie; Good, Andrée; Goutet, Pierre; Hou, Alain; Leray, Fabrice; André-Lesage, Marie-Ange; Soyez, Alain

    2009-06-01

    An assessment survey of occupational exposure to beryllium (Be) was conducted in France between late 2004 and the end of 2006. Exposure estimates were based on the analytical results of samples collected from workplace air and from work surfaces in 95 facilities belonging to 37 sectors of activity. The results of this study indicated airborne Be concentrations in excess of the occupational exposure limit value of 2 microg m(-3) recommended in France. Metallurgy and electronic component manufacturing represented the activities and occupations where workers had the highest arithmetic mean exposures to Be. Surface contamination levels were also high and frequently exceeded thresholds recommended by different bodies. These results should prompt the development of prevention programmes that include Be substitution, process control and surface decontamination, in conjunction with suitable medical surveillance.

  8. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process.

    PubMed

    Xu, Yan; Wang, Chenxi; Dong, Yiyang; Li, Lixiao; Jang, Kihoon; Mawatari, Kazuma; Suga, Tadatomo; Kitamori, Takehiko

    2012-01-01

    Owing to the well-established nanochannel fabrication technology in 2D nanoscales with high resolution, reproducibility, and flexibility, glass is the leading, ideal, and unsubstitutable material for the fabrication of nanofluidic chips. However, high temperature (~1,000 °C) and a vacuum condition are usually required in the conventional fusion bonding process, unfortunately impeding the nanofluidic applications and even the development of the whole field of nanofluidics. We present a direct bonding of fused silica glass nanofluidic chips at low temperature, around 200 °C in ambient air, through a two-step plasma surface activation process which consists of an O(2) reactive ion etching plasma treatment followed by a nitrogen microwave radical activation. The low-temperature bonded glass nanofluidic chips not only had high bonding strength but also could work continuously without leakage during liquid introduction driven by air pressure even at 450 kPa, a very high pressure which can meet the requirements of most nanofluidic operations. Owing to the mild conditions required in the bonding process, the method has the potential to allow the integration of a range of functional elements into nanofluidic chips during manufacture, which is nearly impossible in the conventional high-temperature fusion bonding process. Therefore, we believe that the developed low-temperature bonding would be very useful and contribute to the field of nanofluidics.

  9. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy.

    PubMed

    Eles, James R; Vazquez, Alberto L; Snyder, Noah R; Lagenaur, Carl; Murphy, Matthew C; Kozai, Takashi D Y; Cui, X Tracy

    2017-01-01

    Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 μm with the coating. Microglia as far as 270 μm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Contemporaneous ring fault activity and surface deformation at subsiding calderas studied using analogue experiments

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Kai; Ruch, Joël; Vasyura-Bathke, Hannes; Jónsson, Sigurjón

    2017-04-01

    Ground deformation analyses of several subsiding calderas have shown complex and overlapping deformation signals, with a broad deflation signal that affects the entire volcanic edifice and localized subsidence focused within the caldera. However, the relation between deep processes at subsiding calderas, including magmatic sources and faulting, and the observed surface deformation is still debated. Several recent examples of subsiding calderas in the Galápagos archipelago and at the Axial seamount in the Pacific Ocean indicate that ring fault activity plays an important role not only during caldera collapse, but also during initial stages of caldera subsidence. Nevertheless, ring fault activity has rarely been integrated into numerical models of subsiding calderas. Here we report on sandbox analogue experiments that we use to study the processes involved from an initial subsidence to a later collapse of calderas. The apparatus is composed of a subsiding half piston section connected to the bottom of a glass box and driven by a motor to control its subsidence. We analyze at the same time during the subsidence the 3D displacement at the model surface with a laser scanner and the 2D ring fault evolution on the side of the model (cross-section) with a side-view digital camera. We further use PIVLab, a time-resolved digital image correlation software tool, to extract strain and velocity fields at both the surface and in cross-section. This setup allows to track processes acting at depth and assess their relative importance as the collapse evolves. We further compare our results with the examples observed in nature as well as with numerical models that integrate ring faults.

  11. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces.

    PubMed

    Zhuang, X-M; Zhou, B; Ouyang, J-L; Sun, H-P; Wu, Y-L; Liu, Q; Deng, F-L

    2014-08-01

    Micro/nanotopographical modifications on titanium surfaces constitute a new process to increase osteoblast response to enhance bone formation. In this study, we utilized alkali heat treatment at high (SB-AH1) and low temperatures (SB-AH2) to nano-modify sandblasted titanium with microtopographical surfaces. Then, we evaluated the surface properties, biocompatibility and osteogenic capability of SB-AH1 and SB-AH2 in vitro and in vivo, and compared these with conventional sandblast-acid etching (SLA) and Ti control surfaces. SB-AH1 and SB-AH2 surfaces exhibited micro/nanotopographical modifications of nano-needle structures and nano-porous network layers, respectively, compared with the sole microtopographical surface of macro and micro pits on the SLA surface and the relatively smooth surface on the Ti control. SB-AH1 and SB-AH2 showed different roughness and elemental components, but similar wettability. MC3T3-E1 preosteoblasts anchored closely on the nanostructures of SB-AH1 and SB-AH2 surfaces, and these two surfaces more significantly enhanced cell proliferation and alkaline phosphatase (ALP) activity than others, while the SB-AH2 surface exhibited better cell proliferation and higher ALP activity than SB-AH1. All four groups of titanium domes with self-tapping screws were implanted in rabbit calvarial bone models, and these indicated that SB-AH1 and SB-AH2 surfaces achieved better peri-implant bone formation and implant stability, while the SB-AH2 surface achieved the best percentage of bone-implant contact (BIC%). Our study demonstrated that the micro/nanotopographical surface generated by sandblasting and alkali heat treatment significantly enhanced preosteoblast proliferation, ALP activity and bone formation in vitro and in vivo, and nano-porous network topography may further induce better preosteoblast proliferation, ALP activity and BIC%.

  12. Porous carbon from local coconut shell char by CO2 and H2O activation in the presence of K2CO3

    NASA Astrophysics Data System (ADS)

    Vi, Nguyen Ngoc Thuy; Truyen, Dang Hai; Trung, Bien Cong; An, Ngo Thanh; Van Dung, Nguyen; Long, Nguyen Quang

    2017-09-01

    Vietnamese coconut shell char was activated by steam and carbon dioxide at low temperatures with the presence of K2CO3 as a catalyst. The effects of process parameters on adsorption capability of the product including different ratio of impregnation of activation agents, activation temperature, activation time were investigated in this study. Iodine number, methylene blue adsorption capacity, specific surface area and pore size distribution were measured to assess the properties of the activated carbon. Accordingly, the porous carbon was applied for toluene removal by adsorption technology. Significant increases in specific surface area and the toluene adsorption capacity were observed when the coconut shell char was activated in CO2 flow at 720 °C for 150 minutes and the K2CO3/char weight ratio of 0.5.

  13. On Qualitative Differences in Learning: III--Study Skill and Learning

    ERIC Educational Resources Information Center

    Svensson, L.

    1977-01-01

    The intention in this research was to collect instances of study skill in different situations, and to relate study activity to levels of understanding and academic performance. Also reanalyzes data described by Marton and Saljo (1976a) which led to the concepts of deep-level processing and surface processing as explanations of qualitative…

  14. Synthesis of {111} Facet-Exposed MgO with Surface Oxygen Vacancies for Reactive Oxygen Species Generation in the Dark.

    PubMed

    Hao, Ying-Juan; Liu, Bing; Tian, Li-Gang; Li, Fa-Tang; Ren, Jie; Liu, Shao-Jia; Liu, Ying; Zhao, Jun; Wang, Xiao-Jing

    2017-04-12

    Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O 2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O 2 - , which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, which has an ability similar to that of noble metal Pd to activate molecular oxygen and can be used as an effective bacteriocide in the dark.

  15. Active Mirror Predictive and Requirements Verification Software (AMP-ReVS)

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.

    2012-01-01

    This software is designed to predict large active mirror performance at various stages in the fabrication lifecycle of the mirror. It was developed for 1-meter class powered mirrors for astronomical purposes, but is extensible to other geometries. The package accepts finite element model (FEM) inputs and laboratory measured data for large optical-quality mirrors with active figure control. It computes phenomenological contributions to the surface figure error using several built-in optimization techniques. These phenomena include stresses induced in the mirror by the manufacturing process and the support structure, the test procedure, high spatial frequency errors introduced by the polishing process, and other process-dependent deleterious effects due to light-weighting of the mirror. Then, depending on the maturity of the mirror, it either predicts the best surface figure error that the mirror will attain, or it verifies that the requirements for the error sources have been met once the best surface figure error has been measured. The unique feature of this software is that it ties together physical phenomenology with wavefront sensing and control techniques and various optimization methods including convex optimization, Kalman filtering, and quadratic programming to both generate predictive models and to do requirements verification. This software combines three distinct disciplines: wavefront control, predictive models based on FEM, and requirements verification using measured data in a robust, reusable code that is applicable to any large optics for ground and space telescopes. The software also includes state-of-the-art wavefront control algorithms that allow closed-loop performance to be computed. It allows for quantitative trade studies to be performed for optical systems engineering, including computing the best surface figure error under various testing and operating conditions. After the mirror manufacturing process and testing have been completed, the software package can be used to verify that the underlying requirements have been met.

  16. Sensor to detect endothelialization on an active coronary stent

    PubMed Central

    2010-01-01

    Background A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process. Sensors on several stent struts could give information about the heterogeneity of healing across the stent. Methods A piezoelectric microcantilever was insulated with parylene and demonstrated as an endothelialization detector for incorporation within an active coronary stent. After initial characterization, endothelial cells were plated onto the cantilever surface. After they attached to the surface, they caused an increase in mass, and thus a decrease in the resonant frequencies of the cantilever. This shift was then detected electrically with an LCR meter. The self-sensing, self-actuating cantilever does not require an external, optical detection system, thus allowing for implanted applications. Results A cell density of 1300 cells/mm2 on the cantilever surface is detected. Conclusions We have developed a self-actuating, self-sensing device for detecting the presence of endothelial cells on a surface. The device is biocompatible and functions reliably in ionic liquids, making it appropriate for implantable applications. This sensor can be placed along the struts of a coronary stent to detect when the struts have been covered with a layer of endothelial cells and are no longer available surfaces for clot formation. Anti-platelet therapy can be adjusted in real-time with respect to a patient's level of healing and hemorrhaging risks. PMID:21050471

  17. Reduced graphene oxide wrapped Ag nanostructures for enhanced SERS activity

    NASA Astrophysics Data System (ADS)

    Nair, Anju K.; Kala, M. S.; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    Graphene - metal nanoparticle hybrids have received great attention due to their unique electronic properties, large specific surface area, very high conductivity and more charge transfer. Thus, it is extremely advantages to develop a simple and efficient process to disperse metal nanostructures over the surface of graphene sheets. Herein, we report a hydrothermal assisted strategy for developing reduced graphene oxide /Ag nanomorphotypes (cube, wire) for surface enhanced Raman scattering (SERS) applications, considering the advantages of synergistic effect of graphene and plasmonic properties of Ag nanomorphotypes.

  18. Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification

    NASA Astrophysics Data System (ADS)

    Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.

    Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.

  19. Revisiting kinetic boundary conditions at the surface of fuel droplet hydrocarbons: An atomistic computational fluid dynamics simulation

    PubMed Central

    Nasiri, Rasoul

    2016-01-01

    The role of boundary conditions at the interface for both Boltzmann equation and the set of Navier-Stokes equations have been suggested to be important for studying of multiphase flows such as evaporation/condensation process which doesn’t always obey the equilibrium conditions. Here we present aspects of transition-state theory (TST) alongside with kinetic gas theory (KGT) relevant to the study of quasi-equilibrium interfacial phenomena and the equilibrium gas phase processes, respectively. A two-state mathematical model for long-chain hydrocarbons which have multi-structural specifications is introduced to clarify how kinetics and thermodynamics affect evaporation/condensation process at the surface of fuel droplet, liquid and gas phases and then show how experimental observations for a number of n-alkane may be reproduced using a hybrid framework TST and KGT with physically reasonable parameters controlling the interface, gas and liquid phases. The importance of internal activation dynamics at the surface of n-alkane droplets is established during the evaporation/condensation process. PMID:27215897

  20. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    PubMed

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  1. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  2. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.

    2006-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) project is creating a record of forest disturbance and regrowth for North America from the Landsat satellite record, in support of the carbon modeling activities. LEDAPS relies on the decadal Landsat GeoCover data set supplemented by dense image time series for selected locations. Imagery is first atmospherically corrected to surface reflectance, and then change detection algorithms are used to extract disturbance area, type, and frequency. Reuse of the MODIS Land processing system (MODAPS) architecture allows rapid throughput of over 2200 MSS, TM, and ETM+ scenes. Initial ("Beta") surface reflectance products are currently available for testing, and initial continental disturbance products will be available by the middle of 2006.

  3. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  4. A novel electroless method to prepare a platinum electrocatalyst on diamond for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lyu, Xiao; Hu, Jingping; Foord, John S.; Wang, Qiang

    2013-11-01

    A novel electroless deposition method was demonstrated to prepare a platinum electrocatalyst on boron doped diamond (BDD) substrates without the need for pre-activation. This green method addresses the uniformity and particle size issues associated with electrodeposition and circumvents the pre-activation procedure which is necessary for conventional electroless deposition. The inert BDD substrate formed a galvanic couple with an iron wire, to overcome the activation barrier associated with conventional electroless deposition on diamond, leading to the formation of Pt nanoparticles on the electrode surface in a galvanic process coupled to a chemical process. When sodium hypophosphite was employed as the reducing agent to drive the electroless reaction Pt deposits which were contaminated with iron and phosphorus resulted. In contrast, the reducing agent ascorbic acid gave rise to high purity Pt nanoparticles. Optimal deposition conditions with respect to bath temperature, pH value and stabilizing additives are identified. Using this approach, high purity and uniformly distributed platinum nanoparticles are obtained on the diamond electrode surface, which demonstrate a high electrochemical activity towards methanol oxidation.

  5. Understanding the Impacts of Climate Change and Land Use Dynamics Using a Fully Coupled Hydrologic Feedback Model between Surface and Subsurface Systems

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, J.; Koo, M.

    2011-12-01

    Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is developed with an object-oriented language - Python. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model after calibration was successful and results showed reliable water balance and interaction between the surface and subsurface hydrologic systems.

  6. Bioactive Surface Modification of Hydroxyapatite

    PubMed Central

    Okazaki, Yohei; Hiasa, Kyou; Yasuda, Keisuke; Nogami, Keisuke; Mizumachi, Wataru; Hirata, Isao

    2013-01-01

    The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP) by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability) and to evaluate the in vitro response of osteoblast-like cells (MC3T3-E1 cells) to the modified surfaces. This study utilized HAP and HAP treated with 10%, 20%, 30%, 40%, 50%, or 60% phosphoric acid solution for 10 minutes at 25°C, followed by rinsing 3 times with ultrapure water. The 30% phosphoric acid etching process that provided a Ca/P ratio of 1.50, without destruction of the grain boundary of HAP, was selected as a surface-modification procedure. Additionally, HAP treated by the 30% phosphoric acid etching process was stored under dry conditions at 25°C for 12 hours, and the Ca/P ratio approximated to 1.00 accidentally. The initial adhesion, proliferation, and differentiation (alkaline phosphatase (ALP) activity and relative mRNA level for ALP) of MC3T3-E1 cells on the modified surfaces were significantly promoted (P < 0.05 and 0.01). These findings show that the 30% phosphoric acid etching process for the nanostructured HAP surface can alter the Ca/P ratio effectively and may accelerate the initial adhesion, proliferation, and differentiation of MC3T3-E1 cells. PMID:23862150

  7. New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals

    NASA Astrophysics Data System (ADS)

    Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie

    2017-11-01

    Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.

  8. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian

    2015-11-01

    Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe.

  9. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates

    PubMed Central

    Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian

    2015-01-01

    Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe. PMID:26538365

  10. GIS thematic layers for assessing karst hazard in Murgia region (Italy)

    NASA Astrophysics Data System (ADS)

    Canora, Filomena; D'Angella, Annachiara; Fidelibus, Dolores; Lella, Angela; Pellicani, Roberta; Spilotro, Giuseppe

    2013-04-01

    The assessment of karst hazard in a carbonate area may be somewhat complex for the multiplicity of involved factors (geological, hydrological, morphological, anthropogenic, etc.), their history and the slow rate of evolution of the processes. In coastal areas, moreover, the long term sea level variations and the short term oscillations generally influence the generation and evolution of the karst process. Another peculiarity of the karst hazard assessment consists in the difficulty for identifying the location of subsurface forms, which may develop over very large areas without any kind of surface signal. The karst processes and landforms often require specific methods of investigation and mitigation, due to the unique and highly variable characters of karst environments. In addition, the hidden character of the karst processes, often accelerated by human activity, is an issue with significant economic impact, affecting many regions of the world. The assessment of karst hazard in the Murgia plateau (in central-west of Apulia region) is the main goal of this research. For this aim, the typologies of karst phenomena, able to produce hazard in the study area, were individuated and collected in a specific database. The hazard was evaluated on the basis of the probability of occurrence of a phenomenon of instability, active (produced by human activities) or passive (natural evolution of karst process), in relation to the presence, evolution or generation of karst forms on surface or at critical distance from the surface. The critical distance from the surface is defined as the distance at which the local or general destructive evolution of a karst process can produce a variation of the usability of the area or of the value of elements involved in the instability. The thematic layers relative to the factors influencing karst processes and landforms (doline, sinkholes, polje, lame, gravine, caves) were elaborated and managed in a GIS system. The archives of the main karst landforms were reviewed by crossing different cartographic information. Appropriated spatial buffers were defined around the landforms, according to the type of karst phenomenon and to the elevation of the karst forms, as recognized by previous researches. Finally, the karst hazard map was obtained by using an heuristic model that includes all the basic thematic layers.

  11. In situ surface treatment of nanocrystalline MFe2O4 (M = Co, Mg, Mn, Ni) spinel ferrites using linseed oil

    NASA Astrophysics Data System (ADS)

    Gherca, Daniel; Cornei, Nicoleta; Mentré, Olivier; Kabbour, Houria; Daviero-Minaud, Sylvie; Pui, Aurel

    2013-12-01

    This paper reports the synthesis by coprecipitation method of MFe2O4 nanoparticles using linseed oil as the in-situ surfactant. The decomposition process of the precursors and the formation process of MFe2O4 were investigated by thermogravimetric analysis and differential thermal analysis (TG-DTA). The crystal structure and surface morphology were examined by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The results demonstrate that the surface of MFe2O4 with a diameter in the range 5-13 nm, is activated with hydrophilic groups of the surfactant which coat them and enhance the stability. Magnetic properties are discussed.

  12. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-04-01

    Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.

  13. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  14. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).

    PubMed

    Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir

    2016-07-15

    Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Metallization of Kevlar fibers with gold.

    PubMed

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society

  16. Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials (HazMats) or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate HazMats through joint center cooperation and technology sharing. To achieve a substrate condition suitable for the application of a coating system, both new and old (in-situ) substrates must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The level of cleanliness or anchor profile desired is typically a function of the type of coating to be applied and the specification being adhered to. In high performance environments, cleanliness and surface profile requirements for carbon steel (the dominant substrate for facilities, structures and equipment) dictates the use of abrasive media. Many of the abrasive media currently used across NASA and Air Force Space Command (AFSPC) installations generate large quantities of fugitive particulate emissions and waste. The high quantities of airborne dust and waste generated from these operations pose significant environmental concern. Efforts to contain emissions and the reduce quantity of waste generated have significant implications on project cost; this is often a deterrent to engaging in maintenance activities. In response to recent technological developments and NASA's and AFSPC's need to undertake environmentally conscious corrosion prevention projects, a review of the industry needs to be undertaken to evaluate surface preparation technologies (materials and processes) for embrace. This project will identify, evaluate and approve alternative surface preparation technologies for use at NASA and AFSPC installations. Materials and processes will be evaluated with the goal of selecting those processes that will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination and reduce the amount of hazardous waste generated. This Field Evaluations Test Plan defines the field evaluation and testing requirements for validating alternative surface preparation/depainting technologies and supplements the JTP. The field evaluations will be performed at Stennis Space Center, Mississippi, under the oversight of the Project Engineer. Additional field evaluations may be performed at other NASA centers or AFSPC facilities.

  17. Using earthquake-triggered landslides as a hillslope-scale shear strength test: Insights into rock strength properties at geomorphically relevant spatial scales in high-relief, tectonically active settings

    NASA Astrophysics Data System (ADS)

    Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine

    2016-04-01

    The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that obtained using typical laboratory shear strength measurements on intact rock samples. Furthermore, the near-surface material strength is similar between the study areas despite differences in tectonic, climatic, and lithologic conditions. Variations in near-surface strength within each setting appear to be more strongly associated with factors contributing to the weakening rock through chemical or physical weathering, such as mean annual precipitation and distance to active faults (a proxy for rock shattering intensity), rather than intrinsic lithologic properties. We hypothesize that the shattering of rock through long-term permanent strain accumulation and by repeated earthquakes is an important mechanism that can explain low rock strength values among the different study sites and the spatial pattern of rock strength within each location. These findings emphasize the potential role of factors other than lithology in controlling the spatial distribution of near-surface rock strength in high-relief, tectonically active settings, which has important implications for understanding the evolution of landscapes, interpreting tectonic and climatic signals from topography, critical zone processes, and natural hazard assessment.

  18. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light

    NASA Astrophysics Data System (ADS)

    Kreis, Christian Titus; Le Blay, Marine; Linne, Christine; Makowski, Marcin Michal; Bäumchen, Oliver

    2018-01-01

    Microalgae are photoactive microbes that live in liquid-infused environments, such as soil, temporary pools and rocks, where they encounter and colonize a plethora of surfaces. Their photoactivity manifests itself in a variety of processes, including light-directed motility (phototaxis), the growth of microalgal populations, and their photosynthetic machinery. Although microbial responses to light have been widely recognized, any influence of light on cell-surface interactions remains elusive. Here, we reveal that the unspecific adhesion of microalgae to surfaces can be reversibly switched on and off by light. Using a micropipette force spectroscopy technique, we measured in vivo single-cell adhesion forces and show that the microalga's flagella provide light-switchable adhesive contacts with the surface. This light-induced adhesion to surfaces is an active and completely reversible process that occurs on a timescale of seconds. Our results suggest that light-switchable adhesiveness is a natural functionality of microalgae to regulate the transition between the planktonic and the surface-associated state, which yields an adhesive adaptation to optimize the photosynthetic efficiency in conjunction with phototaxis.

  19. Short-term solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Xie-Zhen, C.; Ai-Di, Z.

    1979-01-01

    A method of forecasting the level of activity of every active region on the surface of the Sun within one to three days is proposed in order to estimate the possibility of the occurrence of ionospheric disturbances and proton events. The forecasting method is a probability process based on statistics. In many of the cases, the accuracy in predicting the short term solar activity was in the range of 70%, although there were many false alarms.

  20. Analysis and comparison of inertinite-derived adsorbent with conventional adsorbents.

    PubMed

    Gangupomu, Roja Haritha; Kositkanawuth, Ketwalee; Sattler, Melanie L; Ramirez, David; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W

    2012-05-01

    To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples. In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 degrees C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4 x 6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated carbons. The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. UT Arlington has developed a liquefaction process that converts coal, abundant in the United States, to crude oil. This work demonstrated that the undissolvable solid coal residual from the liquefaction process, called inertinite, can be converted to an activated carbon adsorbent. Although its surface area and adsorption capacity are not as high as those for commercially available carbons, the inertinite source material would be available at no cost, and its beneficial reuse would avoid the need for disposal.

  1. NeuroGrid: recording action potentials from the surface of the brain.

    PubMed

    Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsáki, György

    2015-02-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.

  2. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.

    PubMed

    Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P; Widmer, Roland; Iannuzzi, Marcella; Radican, Kevin; Sachdev, Hermann; Müllen, Klaus; Hutter, Jürg; Gröning, Oliver

    2014-07-22

    Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant materials such as atomically precise graphene nanoribbons. However, the reaction path on the metal substrate remains unclear in most cases, and the intriguing question is how a specific atomic configuration between reactant and catalyst controls the reaction processes. In this study, we cover the metal substrate with a monolayer of hexagonal boron nitride (h-BN), reducing the reactivity of the metal, and gain unique access to atomistic details during the activation of a polyphenylene precursor by sequential dehalogenation and the subsequent coupling to extended oligomers. We use scanning tunneling microscopy and density functional theory to reveal a reaction site anisotropy, induced by the registry mismatch between the precursor and the nanostructured h-BN monolayer.

  3. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main developmentmore » region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.« less

  4. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  5. High activity of g-C3N4/multiwall carbon nanotube in catalytic ozonation promotes electro-peroxone process.

    PubMed

    Guo, Zhuang; Cao, Hongbin; Wang, Yuxian; Xie, Yongbing; Xiao, Jiadong; Yang, Jin; Zhang, Yi

    2018-06-01

    Three kinds of graphitic carbon nitride materials (bulk, porous and nanosheet g-C 3 N 4 ) were composited with a multiwall carbon nanotube (MWCNT) by a hydrothermal method, and the obtained b-C 3 N 4 /CNT, p-C 3 N 4 /CNT and n-C 3 N 4 /CNT materials were used in the electrodes for electro-peroxone process. It was found that the n-C 3 N 4 /CNT composite exhibited the highest efficiency in oxalate degradation, though it performed the worst in the oxygen-reduction reaction for H 2 O 2 production. The n-C 3 N 4 /CNT composite exhibited higher activity than CNT and other composites in catalytic ozonation experiments, due to the higher pyrrolic-N content modified on the CNT surface and higher surface area. It also has higher electron transfer ability, which benefited to the electro-reduction of both O 2 and O 3 . The result confirmed that catalytic ozonation process was an important means to enhance the degradation efficiency in the electro-peroxone process, besides peroxone process and O 3 -electrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The Otto Aufranc Award: enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation.

    PubMed

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Yong Sik

    2011-02-01

    Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants.

  7. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the polymer surface.

  8. Observations of the effect of wind on the cooling of active lava flows

    USGS Publications Warehouse

    Keszthelyi, L.; Harris, A.J.L.; Dehn, J.

    2003-01-01

    We present the first direct observations of the cooling of active lava flows by the wind. We confirm that atmospheric convective cooling processes (i.e., the wind) dominate heat loss over the lifetime of a typical pahochoe lava flow. In fact, the heat extracted by convection is greater than predicted, especially at wind speeds less than 5 m/s and surface temperatures less than 400??C. We currently estimate that the atmospheric heat transfer coefficient is about 45-50 W m-2 K-1 for a 10 m/s wind and a surface temperature ???500??C. Further field experiments and theoretical studies should expand these results to a broader range of surface temperatures and wind speeds.

  9. The Effects of Secondary Oxides on Copper-Based Catalysts for Green Methanol Synthesis.

    PubMed

    Hayward, James S; Smith, Paul J; Kondrat, Simon A; Bowker, Michael; Hutchings, Graham J

    2017-05-10

    Catalysts for methanol synthesis from CO 2 and H 2 have been produced by two main methods: co-precipitation and supercritical anti-solvent (SAS) precipitation. These two methods are compared, along with the behaviour of copper supported on Zn, Mg, Mn, and Ce oxides. Although the SAS method produces initially active material with high Cu specific surface area, they appear to be unstable during reaction losing significant amounts of surface area and hence activity. The CuZn catalysts prepared by co-precipitation, however, showed much greater thermal and reactive stability than the other materials. There appeared to be the usual near-linear dependence of activity upon Cu specific area, though the initial performance relationship was different from that post-reaction, after some loss of surface area. The formation of the malachite precursor, as reported before, is important for good activity and stability, whereas if copper oxides are formed during the synthesis and ageing process, then a detrimental effect on these properties is seen.

  10. The Effects of Secondary Oxides on Copper‐Based Catalysts for Green Methanol Synthesis

    PubMed Central

    Hayward, James S.; Smith, Paul J.; Kondrat, Simon A.; Bowker, Michael

    2017-01-01

    Abstract Catalysts for methanol synthesis from CO2 and H2 have been produced by two main methods: co‐precipitation and supercritical anti‐solvent (SAS) precipitation. These two methods are compared, along with the behaviour of copper supported on Zn, Mg, Mn, and Ce oxides. Although the SAS method produces initially active material with high Cu specific surface area, they appear to be unstable during reaction losing significant amounts of surface area and hence activity. The CuZn catalysts prepared by co‐precipitation, however, showed much greater thermal and reactive stability than the other materials. There appeared to be the usual near‐linear dependence of activity upon Cu specific area, though the initial performance relationship was different from that post‐reaction, after some loss of surface area. The formation of the malachite precursor, as reported before, is important for good activity and stability, whereas if copper oxides are formed during the synthesis and ageing process, then a detrimental effect on these properties is seen. PMID:28706570

  11. Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Taer, E.; Apriwandi, Yusriwandi, Mustika, W. S.; Zulkifli, Taslim, R.; Sugianto, Kurniasih, B.; Agustino, Dewi, P.

    2018-02-01

    The physical activation for the comparative study of carbon electrode synthesized for supercapacitor applications made from rubber wood sawdust has been performed successfully. Comparison of physical activation used in this research is based on the different gas activation such as CO2 and H2O. The CO2 and H2O activation are made by using an integrated carbonization and activation system. The carbonization process is performed in N2 atmosphere followed by CO2 and H2O activation process. The carbonization process at temperature of 600°C, the CO2 and H2O activation process at a temperature of 900°C and maintained at this condition for 2 h and 3 h. The electrochemical properties were analyzed using cyclic voltammetric (CV) method. The CV results show that the carbon electrode with CO2 activation has better capacitive properties than H2O, the highest specific capacitance obtained is 93.22 F/g for 3 h of activation time. In addition, the analysis of physical properties such as surface morphology and degree of crystallinity was also performed.

  12. Mixed Layer Temperature Budget for the Northward Propagating Summer Monsoon Intraseasonal Oscillation (MISO) in the Central Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Girishkumar, M. S.; Joseph, J.; Thangaprakash, V. P.; Pottapinjara, V.; McPhaden, M. J.

    2017-11-01

    Composite analyses of mixed layer temperature (MLT) budget terms from near-surface meteorological and oceanic observations in the central Bay of Bengal are utilized to evaluate the modulation of air-sea interactions and MLT processes in response to the summer monsoon intraseasonal oscillation (MISO). For this purpose, we use moored buoy data at 15°N, 12°N, and 8°N along 90°E together with TropFlux meteorological parameters and the Ocean Surface Current Analyses Real-time (OSCAR) current product. Our analysis shows a strong cooling tendency in MLT with maximum amplitude in the central and northern BoB during the northward propagation of enhanced convective activity associated with the active phase of the MISO; conversely, warming occurs during the suppressed phase of the MISO. The surface mixed layer is generally heated during convectively inactive phases of the MISO primarily due to increased net surface heat flux into the ocean. During convectively active MISO phases, the surface mixed layer is cooled by the combined influence of net surface heat loss to the atmosphere and entrainment cooling at the base of mixed layer. The variability of net surface heat flux is primarily due to modulation of latent heat flux and shortwave radiation. Shortwave is mostly controlled by an enhancement or reduction of cloudiness during the active and inactive MISO phases and latent heat flux is mostly controlled by variations in air-sea humidity difference.

  13. 21 CFR 172.846 - Sodium stearoyl lactylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) As an emulsifier or stabilizer in liquid and solid edible fat-water emulsions intended for use as... finished edible fat-water emulsion. (4) As a formulation aid, processing aid, or surface-active agent in...

  14. Framework for the Intelligent Transportation System (ITS) Evaluation : ITS Integration Activities

    DOT National Transportation Integrated Search

    2006-08-01

    Intelligent Transportation Systems (ITS) represent a significant opportunity to improve the efficiency and safety of the surface transportation system. ITS includes technologies to support information processing, communications, surveillance and cont...

  15. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation.

    PubMed

    Dadrasnia, Arezoo; Ismail, Salmah

    2015-08-19

    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes.

  16. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion

    PubMed Central

    2017-01-01

    Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer–Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters. PMID:28824820

  17. Study of the adsorption of Cd and Zn onto an activated carbon: Influence of pH, cation concentration, and adsorbent concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seco, A.; Marzal, P.; Gabaldon, C.

    1999-06-01

    The single adsorption of Cd and Zn from aqueous solutions has been investigated on Scharlau Ca 346 granular activated carbon in a wide range of experimental conditions: pH, metal concentration, and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removals increase on raising the pH and carbon concentration, and decrease on raising the initial metal concentration. The adsorption processes have been modeled using the surface complex formation (SCF) Triple Layer Model (TLM). The adsorbent TLM parameters were determined. Modeling has been performed assuming a single surface bidentate species or an overallmore » surface species with fractional stoichiometry. The bidentate stoichiometry successfully predicted cadmium and zinc removals in all the experimental conditions. The Freundlich isotherm has been also checked.« less

  18. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials.

    PubMed

    Corcoran, M; Morris, D; De Lappe, N; O'Connor, J; Lalor, P; Dockery, P; Cormican, M

    2014-02-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities.

  19. On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate

    NASA Astrophysics Data System (ADS)

    Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew

    2014-04-01

    The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.

  20. Release of active TGF-β1 from the Latent TGF-β1/GARP complex on T regulatory cells is mediated by Integrin β81

    PubMed Central

    Edwards, Justin P.; Thornton, Angela M.; Shevach, Ethan M.

    2014-01-01

    Activated T regulatory cells (Treg) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4+Foxp3+ Treg, but not CD4+Foxp3− T cells, expressed integrin β8 (Itgb8) as detected by qRT-PCR. Itgb8 expression was a marker of thymically-derived (t)Treg, as it could not be detected on Foxp3+Helios− Tregs or on Foxp3+ T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis, but failed to provide TGF-β1 to drive Th17 or iTreg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs. PMID:25127859

Top