Science.gov

Sample records for active surface processes

  1. Imaging Active Surface Processes in Barnacle Adhesive Interfaces.

    PubMed

    Golden, Joel P; Burden, Daniel K; Fears, Kenan P; Barlow, Daniel E; So, Christopher R; Burns, Justin; Miltenberg, Benjamin; Orihuela, Beatriz; Rittshof, Daniel; Spillmann, Christopher M; Wahl, Kathryn J; Tender, Leonard M

    2016-01-19

    Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct

  2. Carbon activation process for increased surface accessibility in electrochemical capacitors

    DOEpatents

    Doughty, Daniel H.; Eisenmann, Erhard T.

    2001-01-01

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  3. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  4. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  5. Polymerization process for carboxyl containing polymers utilizing oil soluble ionic surface active agents

    SciTech Connect

    Uebele, C.E.; Ball, L.E.; Jorkasky, R.J. II; Wardlow, E. Jr.

    1987-09-08

    This patent describes a method for polymerizing olefinically unsaturated carboxylic acid monomers containing at least one activated carbon to carbon olefinic double bond and at least one carboxyl group. The monomers are polymerized in an organic media consisting essentially of organic liquids, in the presence of free radical forming catalysts and at least one oil soluble ionic surface active agent selected from the group consisting of: (a) anionic surface active agents; (b) cationic surface active agents; and (c) amphoteric surface active agents.

  6. Activity of processes on the visible surface of planets of Solar system

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  7. Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology

    PubMed Central

    Trawczyńska, Ilona; Wójcik, Marek

    2015-01-01

    Biotransformation processes accompanied by whole yeast cells as biocatalyst are a promising area of food industry. Among the chemical sanitizers currently used in food technology, hydrogen peroxide is a very effective microbicidal and bleaching agent. In this paper, permeabilization has been applied to Saccharomyces cerevisiae yeast cells aiming at increased intracellular catalase activity for decomposed H2O2. Ethanol, which is non-toxic, biodegradable and easily available, has been used as permeabilization factor. Response surface methodology (RSM) has been applied in determining the influence of different parameters on permeabilization process. The aim of the study was to find such values of the process parameters that would yield maximum activity of catalase during decomposition of hydrogen peroxide. The optimum operating conditions for permeabilization process obtained by RSM were as follows: 53% (v/v) of ethanol concentration, temperature of 14.8 °C and treatment time of 40 min. After permeabilization, the activity of catalase increased ca. 40 times and its maximum value equalled to 4711 U/g. PMID:26019618

  8. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  9. Metallization Process of a Polyimide Surface with Palladium-Free Activation for Electronic Field Applications

    NASA Astrophysics Data System (ADS)

    Li, Libo; Ma, Yue; Xie, Jingchen; Yang, Xiuchun; Wang, Heng; Tian, Haiyan; Mu, Hongjing; Wang, Wentao

    2015-10-01

    A new copper plating bath without Pd activation for electroless deposition on polyimide (PI) film is reported. The characteristics of Cu coatings on the PI via electroless plating and the effects of operating parameters on the coating coverage are discussed. The pre-treatment and plating processes are further optimized based on orthogonal experiment methods, involving variations of multiple process parameters. The electroless copper coating was characterized by scanning electron microscopy and atomic force microscopy, while the composition and crystalline structure are estimated by energy dispersive spectrometer and x-ray diffraction, respectively. These results show that the crystalline copper layer on the PI surface after electroless plating is dense, continuous and uniform. The joint tensile experiment is used to measure the adhesive strength of the coating with palladium-free and palladium activation, and the former is higher. Furthermore, the pre-treatment method proposed in this work without using palladium compounds is considered to be environmentally friendly. In addition, it provides a new concept of electroless Cu plating on the PI, which is generally difficult to plate due to its hydrophobic nature.

  10. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE PAGESBeta

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  11. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    SciTech Connect

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  12. Characterization of the surface changes during the activation process of erbium/erbium oxide for hydrogen storage.

    SciTech Connect

    Zavadil, Kevin Robert; Snow, Clark Sheldon; Ohlhausen, James Anthony; Brumbach, Michael Todd

    2010-10-01

    Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

  13. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs

    PubMed Central

    Das, Sujaan; Hertrich, Nadine; Perrin, Abigail J.; Withers-Martinez, Chrislaine; Collins, Christine R.; Jones, Matthew L.; Watermeyer, Jean M.; Fobes, Elmar T.; Martin, Stephen R.; Saibil, Helen R.; Wright, Gavin J.; Treeck, Moritz; Epp, Christian; Blackman, Michael J.

    2015-01-01

    Summary The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress. PMID:26468747

  14. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs.

    PubMed

    Das, Sujaan; Hertrich, Nadine; Perrin, Abigail J; Withers-Martinez, Chrislaine; Collins, Christine R; Jones, Matthew L; Watermeyer, Jean M; Fobes, Elmar T; Martin, Stephen R; Saibil, Helen R; Wright, Gavin J; Treeck, Moritz; Epp, Christian; Blackman, Michael J

    2015-10-14

    The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress. PMID:26468747

  15. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement

    SciTech Connect

    Wang Kaiwei; Martin, Haydn; Jiang Xiangqian

    2008-02-15

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.

  16. Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process

    NASA Astrophysics Data System (ADS)

    Darabi, A.; Wygnanski, I.

    2004-07-01

    The forced reattachment of flow to an inclined flat surface, simulating a simple flap, was investigated experimentally. The transition from a separated to an attached state of the flow was initiated by an abrupt change in the frequency and the amplitude of periodic perturbations emanating from a slot at the flap shoulder. The excitation parameters determined the total duration of the reattachment process. Minimum reattachment time occurred at an optimal excitation frequency of F_{scriptsizeopt}(+) ≈ 1.5, which was independent of amplitude and flap inclination. The control over the process was achieved by enhancing large spanwise vortices in the flow. Spatial amplification of consecutive vortices induces mean transport of fluid away from the flap surface which causes the main stream to reattach. The time scales of the excitation are at least an order of magnitude smaller than the typical reattachment times.

  17. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    PubMed

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values < or = 0.2 microm (the threshold Ra), which had no effect on bacterial adhesion. No significant difference of S. mutans adhesion was found between the surfaces of control, TiN-Ti, and N-Ti (P > 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans. PMID:27433640

  18. Morphotectonic evolution of passive margins undergoing active surface processes: large-scale experiments using numerical models.

    NASA Astrophysics Data System (ADS)

    Beucher, Romain; Huismans, Ritske S.

    2016-04-01

    Extension of the continental lithosphere can lead to the formation of a wide range of rifted margins styles with contrasting tectonic and geomorphological characteristics. It is now understood that many of these characteristics depend on the manner extension is distributed depending on (among others factors) rheology, structural inheritance, thermal structure and surface processes. The relative importance and the possible interactions of these controlling factors is still largely unknown. Here we investigate the feedbacks between tectonics and the transfers of material at the surface resulting from erosion, transport, and sedimentation. We use large-scale (1200 x 600 km) and high-resolution (~1km) numerical experiments coupling a 2D upper-mantle-scale thermo-mechanical model with a plan-form 2D surface processes model (SPM). We test the sensitivity of the coupled models to varying crust-lithosphere rheology and erosional efficiency ranging from no-erosion to very efficient erosion. We discuss how fast, when and how the topography of the continents evolves and how it can be compared to actual passive margins escarpment morphologies. We show that although tectonics is the main factor controlling the rift geometry, transfers of masses at the surface affect the timing of faulting and the initiation of sea-floor spreading. We discuss how such models may help to understand the evolution of high-elevated passive margins around the world.

  19. Anodic Methods for Covalent Attachment of Ethynylferrocenes to Electrode Surfaces: Comparison of Ethynyl Activation Processes.

    PubMed

    Sheridan, Matthew V; Lam, Kevin; Sharafi, Mona; Schneebeli, Severin T; Geiger, William E

    2016-02-16

    The electrochemical oxidation of ferrocenes having an H- or Li-terminated ethynyl group has been studied, especially as it relates to their covalent anchoring to carbon surfaces. The anodic oxidation of lithioethynylferrocene (1-Li) results in rapid loss of Li(+) and formation of the ethynyl-based radical FeCp(η(5)-C5H4)(C≡C), (1, Cp = η(5)-C5H5), which reacts with the electrode. Chemically modified electrodes (CMEs) were thereby produced containing strongly bonded, ethynyl-linked monolayers and electrochemically controlled multilayers. Strong attachments of ethynylferrocenes to gold and platinum surfaces were also possible. The lithiation/anodic oxidation process is a mirror analogue of the diazonium/cathodic reduction process for preparation of aryl-modified CMEs. A second method produced an ethynylferrocene-modified electrode by direct anodic oxidation of the H-terminated ethynylferrocene (1-H) at a considerably more positive potential. Both processes produced robust modified electrodes with well-defined ferrocene-based surface cyclic voltammetry waves that remained unchanged for as many as 10(4) scans. Ferrocene derivatives in which the ethynyl moiety was separated from the cyclopentadienyl ring by an ether group showed very similar behavior. DFT calculations were performed on the relevant redox states of 1-H, 1-Li, and 1, with emphasis on the ferrocenyl vs ethynyl character of their high valence orbitals. Whereas the HOMOs of both 1-H and 1-Li have some ethynyl character, the SOMOs of the corresponding monocations are strictly ferrocenium in makeup. Predominant ethynyl character returns to the highest valence orbitals after loss of Li(+) from [1-Li](+) or loss of H(+) from [1-H](2+). These anodic processes hold promise for the controlled chemical modification of carbon and other electrode surfaces by a variety of ethynyl or alkynyl-linked organic and metal-containing systems. PMID:26756403

  20. Impact-induced seismic activity on asteroid 433 Eros: a surface modification process.

    PubMed

    Richardson, James E; Melosh, H Jay; Greenberg, Richard

    2004-11-26

    High-resolution images of the surface of asteroid 433 Eros revealed evidence of downslope movement of a loose regolith layer, as well as the degradation and erasure of small impact craters (less than approximately 100 meters in diameter). One hypothesis to explain these observations is seismic reverberation after impact events. We used a combination of seismic and geomorphic modeling to analyze the response of regolith-covered topography, particularly craters, to impact-induced seismic shaking. Applying these results to a stochastic cratering model for the surface of Eros produced good agreement with the observed size-frequency distribution of craters, including the paucity of small craters. PMID:15567856

  1. Activation energies of photoinduced unimolecular, bimolecular and termolecular processes on silica gel surfaces.

    PubMed

    Williams, Siân L; Worrall, David R; Kirkpatrick, Iain; Vancea, Anisoara; Pan, Jiawei

    2011-01-01

    Activation energies for energy and electron transfer have been measured in various systems on silica gel. In the case of ion-electron recombination, a facile technique involving fluorescence recovery is described which complements diffuse reflectance spectroscopy in the study of these systems. In bimolecular anthracene/azulene systems, activation energies have been shown to be independent of pre-treatment temperature in the range 25-210 °C, demonstrating that physisorbed water plays little role in determining diffusion rates on silica gel. In a ternary anthracene/azulene/perylene system, we have for the first time presented comparative activation energies for the diffusion of azulene and its radical cation, and have shown a greater activation energy for diffusion of the latter species. PMID:20978659

  2. Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohd Azmier; Afandi, Nur Syahidah; Bello, Olugbenga Solomon

    2015-04-01

    This study investigates the adsorptive removal of malachite green (MG) dye from aqueous solutions using chemically modified lime-peel-based activated carbon (LPAC). The adsorbent prepared was characterized using FTIR, SEM, Proximate analysis and BET techniques, respectively. Central composite design (CCD) in response surface methodology (RSM) was used to optimize the adsorption process. The effects of three variables: activation temperature, activation time and chemical impregnation ratio (IR) using KOH and their effects on percentage of dye removal and LPAC yield were investigated. Based on CCD design, quadratic models and two factor interactions (2FI) were developed correlating the adsorption variables to the two responses. Analysis of variance (ANOVA) was used to judge the adequacy of the model. The optimum conditions of MG dye removal using LPAC are: activation temperature (796 °C), activation time (1.0 h) and impregnation ratio (2.6), respectively. The percentage of MG dye removal obtained was 94.68 % resulting in 17.88 % LPAC yield. The percentage of error between predicted and experimental results for the removal of MG dye is 0.4 %. Model prediction was in good agreement with experimental results and LPAC was found to be effective in removing MG dye from aqueous solution.

  3. Active management of naturally separated flow over a solid surface. Part 2. The separation process

    NASA Astrophysics Data System (ADS)

    Darabi, A.; Wygnanski, I.

    2004-07-01

    The controlled separation of flow from an inclined straight flap at high inclination angles was investigated experimentally. The separation process was initiated by an abrupt change in the excitation emanating from a slot at the flap shoulder. A complete cessation of the actuation resulted in formation of a large vortex above the flap akin to the familiar ‘dynamic stall vortex’ (DSV) seen over oscillating airfoils in pitch. The DSV temporarily increased the aerodynamic load over the flap before it dropped to its low separated value. The duration of this overload decreased as the flap inclination increased. The use of periodic excitation during separation slowed down the rate of separation and changed its character depending on the amplitude and the frequency used. Forcing separation by switching the excitation to a high frequency (3 {<} F(+} {<) 8) reduced or even eliminated the increase in flap loading that is associated with the DSV. A switch to low frequencies (F(+} {<) 1) extended the duration of separation and increased the transient overload during the initial stage of the process.

  4. New Carbon Activation Process for Increased Surface Accessibility in Electrochemical Capacitors

    SciTech Connect

    Doughty, Daniel H.; Eisenmann, Erhard T.

    1999-03-16

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm{sup 3} is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350 C for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  5. Influence of the water molecules near surface of viral protein on virus activation process

    NASA Astrophysics Data System (ADS)

    Shepelenko, S. O.; Salnikov, A. S.; Rak, S. V.; Goncharova, E. P.; Ryzhikov, A. B.

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  6. Simulation of surface processes.

    PubMed

    Jónsson, Hannes

    2011-01-18

    Computer simulations of surface processes can reveal unexpected insight regarding atomic-scale structure and transitions. Here, the strengths and weaknesses of some commonly used approaches are reviewed as well as promising avenues for improvements. The electronic degrees of freedom are usually described by gradient-dependent functionals within Kohn-Sham density functional theory. Although this level of theory has been remarkably successful in numerous studies, several important problems require a more accurate theoretical description. It is important to develop new tools to make it possible to study, for example, localized defect states and band gaps in large and complex systems. Preliminary results presented here show that orbital density-dependent functionals provide a promising avenue, but they require the development of new numerical methods and substantial changes to codes designed for Kohn-Sham density functional theory. The nuclear degrees of freedom can, in most cases, be described by the classical equations of motion; however, they still pose a significant challenge, because the time scale of interesting transitions, which typically involve substantial free energy barriers, is much longer than the time scale of vibrations--often 10 orders of magnitude. Therefore, simulation of diffusion, structural annealing, and chemical reactions cannot be achieved with direct simulation of the classical dynamics. Alternative approaches are needed. One such approach is transition state theory as implemented in the adaptive kinetic Monte Carlo algorithm, which, thus far, has relied on the harmonic approximation but could be extended and made applicable to systems with rougher energy landscape and transitions through quantum mechanical tunneling. PMID:21199939

  7. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    PubMed

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions. PMID:21420786

  8. Active seismic sources as a proxy for seismic surface processes: An example from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Lokmer, I.; Kennedy, B.; Keys, H. J. R.; Proctor, J.; Lyons, J. J.; Jolly, G. E.

    2014-10-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption pulses, a large chasm collapse, and a debris avalanche (volume of ~ 7 × 105 m3) that propagated ~ 2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption timing must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity that marked the eruption onset. We have discriminated the evolution of the complex surface activity by comparing active seismic source data to the seismic sequence in a new cross correlation source location approach. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9 × 106 Nm producing observable seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four stations. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross correlation approach. From the correlation processing, we obtain a best matched source position in the near vent region for the eruption period and significant down channel excitations during both the pre and post eruption periods. The total seismic energy release calculated from the new method is ~ 8 × 1011 Nm, similar to an independently estimated calculation based on the radiated seismic energy. The new energy estimate may be more robust than those calculated from standard seismic radiation equations, which may include uncertainties about the path and site effects. The

  9. Surface processes on Venus

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.

    1992-01-01

    Magellan synthetic aperture radar (SAR) and altimetry data were analyzed to determine the nature and extent of surface modification for venusian plains in the Sedna Planitia, Alpha Regio, and western Ovda Regio areas. Specific cross sections derived from the SAR data were also compared to similar data for dry terrestrial basaltic lava flows (Lunar Crater and Cima volcanic fields) and playas (Lunar and Lavic Lakes) for which microtopographic profiles (i.e., quantitative roughness information) were available.

  10. Surface processes on Venus

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.

    1992-12-01

    Magellan synthetic aperture radar (SAR) and altimetry data were analyzed to determine the nature and extent of surface modification for venusian plains in the Sedna Planitia, Alpha Regio, and western Ovda Regio areas. Specific cross sections derived from the SAR data were also compared to similar data for dry terrestrial basaltic lava flows (Lunar Crater and Cima volcanic fields) and playas (Lunar and Lavic Lakes) for which microtopographic profiles (i.e., quantitative roughness information) were available.

  11. Active frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Buchwald, Walter R.; Hendrickson, Joshua; Cleary, Justin W.; Guo, Junpeng

    2013-05-01

    Split ring resonator arrays are investigated for use as active elements for the realization of voltage controllable frequency selective surfaces. Finite difference time domain simulations suggest the absorptive and reflective properties of such surfaces can be externally controlled through modifications of the split ring resonator gap impedance. In this work, such voltage-controlled resonance tuning is obtained through the addition of an appropriately designed high electron mobility transistor positioned across the split ring resonator gap. It is shown that a 0.5μm gate length high electron mobility transistor allows voltage controllable switching between the two resonant conditions associated with a split ring resonator and that of a closed loop geometry when the surface is illuminated with THz radiation. Partial switching between these two resonant conditions is observed at larger gate lengths. Such active frequency selective surfaces are proposed, for example, for use as modulators in THz detection schemes and as RF filters in radar applications when scaled to operate at GHz frequencies.

  12. WASTE ACTIVATED SLUDGE PROCESSING

    EPA Science Inventory

    A study was made at pilot scale of a variety of processes for dewatering and stabilization of waste activated sludge from a pure oxygen activated sludge system. Processes evaluated included gravity thickening, dissolved air flotation thickening, basket centrifugation, scroll cent...

  13. Enhancement on photocatalytic activity of an amorphous titanium oxide film with nano-textured surface by selective-fluorination etching process

    SciTech Connect

    Shih, Pin-Chun; Huang, Cheng-Hao; Chen, Tai-Hong; Lai, Li-Wen; Lu, Yi-Shan; Liu, Day-Shan

    2014-04-01

    Highlights: • The amorphous TiO{sub x} film surface was modified via selective fluorination etching process. • The resulting nano-textured surface markedly enriched the specific surface area and surface acidity. • The photocatalytic activity was comparable to an annealed TiO{sub x} film with anatase structure. - Abstract: A selective-fluorination etching process achieved by an UV light pre-irradiation and the subsequently fluorination etching was developed to enhance the photocatalytic activity of a low-temperature deposited amorphous titanium oxide (a-TiO{sub x}) film. Textured surface on the a-TiO{sub x} films formed by this process were investigated using atomic force microscope and field emission scanning electron microscope. Evidence of the fluorine ions introduced into the a-TiO{sub x} films was examined using Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy. The etching thickness of the a-TiO{sub x} film was found to be deeply relevant to the film pre-irradiated by the UV light. An a-TiO{sub x} film with nano-textured surface, which was favorable to enlarge the specific surface area, thus was obtainable from the notable etching selectivity of the film pre-irradiated by UV light through a nano-sized mask. In addition, the surface acidity of the a-TiO{sub x} film was enhanced by the formation of the Ti-F chemical bonds originating from the fluorination etching process, which also was functional to facilitate the production of surface OH free radicals. Accordingly, the resulting fluorinated a-TiO{sub x} film with nano-textured surface performed a quality photocatalytic activity comparable to that of the high-temperature achieved TiO{sub x} film with anatase structures.

  14. Space environment and lunar surface processes, 2

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1982-01-01

    The top few millimeters of a surface exposed to space represents a physically and chemically active zone with properties different from those of a surface in the environment of a planetary atmosphere. To meet the need or a quantitative synthesis of the various processes contributing to the evolution of surfaces of the Moon, Mercury, the asteroids, and similar bodies, (exposure to solar wind, solar flare particles, galactic cosmic rays, heating from solar radiation, and meteoroid bombardment), the MESS 2 computer program was developed. This program differs from earlier work in that the surface processes are broken down as a function of size scale and treated in three dimensions with good resolution on each scale. The results obtained apply to the development of soil near the surface and is based on lunar conditions. Parameters can be adjusted to describe asteroid regoliths and other space-related bodies.

  15. Synthesis of large surface area nano-sized BiVO{sub 4} by an EDTA-modified hydrothermal process and its enhanced visible photocatalytic activity

    SciTech Connect

    Sun Wanting; Xie Mingzheng; Jing Liqiang; Luan Yunbo; Fu Honggang

    2011-11-15

    In this work, monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been successfully synthesized, using Bi(NO{sub 3}){sub 3} and NH{sub 4}VO{sub 3} as raw materials, through a hydrothermal process in the presence of ethylene diamine tetraacetic acid (EDTA). It is demonstrated that the nanoparticle size of as-prepared BiVO{sub 4} becomes small by decreasing hydrothermal temperature, shortening hydrothermal reaction time and increasing EDTA amount used. The resulting BiVO{sub 4} nanoparticle with large surface area exhibits a good photocatalytic performance for degrading phenol solution as a model organic pollutant under visible illumination. The key of this method is the chelating role of EDTA group in the synthetic process that it can greatly control the concentration of Bi{sup 3+}, leading to the growth inhibition of BiVO{sub 4} crystallite. The work provides a route for the synthesis of Bi-containing nano-sized composite oxides with large surface area. - Graphical abstract: High visible active nano-sized BiVO{sub 4} photocatalyst with large surface area is successfully synthesized, which is attributed to the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. Highlights: > Monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been synthesized by a hydrothermal process. > Key of this method is the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. > Resulting nano-sized BiVO{sub 4} exhibits a good photocatalytic activity for degrading phenol under visible illumination.

  16. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells. PMID:27406324

  17. Europa's Active Surface

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A newly discovered impact crater can be seen just right of the center of this image of Jupiter's moon Europa returned by NASA's Galileo spacecraft camera. The crater is about 30 kilometers (18.5 miles) in diameter. The impact excavated into Europa's icy crust, throwing debris (seen as whitish material) across the surrounding terrain. Also visible is a dark band, named Belus Linea, extending east-west across the image. This type of feature, which scientists call a 'triple band,' is characterized by a bright stripe down the middle. The outer margins of this and other triple bands are diffuse, suggesting that the dark material was put there as a result of possible geyser-like activity which shot gas and rocky debris from Europa's interior. The curving 'X' pattern seen in the lower left corner of the image appears to represent fracturing of the icy crust and infilling by slush which froze in place. The crater is centered at about 2 degrees north latitude by 239 degrees west longitude. The image was taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996, during Galileo's first orbit around Jupiter. The area shown is 860 by 700 kilometers (530 by 430 miles), or about the size of Oregon and Washington combined. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  18. Active particles on curved surfaces

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael

    Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.

  19. Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area

    SciTech Connect

    Kim, Jongsik; Kim, Dong Ok; Kim, Dong Wook; Sagong, Kil

    2013-01-15

    To accomplish the postsynthetic modification of MOF with organic-metal precursors (OMPs) described in our previous researches more efficiently, synthesis of MOF (HCC-2) possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit than those of HCC-1 has been successfully conducted via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as a metal source, respectively. Also, optimization about the Activation process of HCC-2 was performed to maximize its BET (Brunauer-Emmett-Teller) surface area which was proved to be proportional to the number of exposed active sites on which its postsynthetic modification occurred. However, Activation process having been validated to be so effective with the acquirement of highly-purified HCC-1 (CO{sub 2} supercritical drying step followed by vacuum drying step) was less satisfactory with the case of HCC-2. This might be attributed to relatively higher hydrophilicity and bulkier molecular structure of organic ligand of HCC-2. However, it was readily settled by simple modification of above Activation process. Moreover, indispensable residues composed of both DMF and its thermally degraded derivatives which were chemically attached via coordination bond with hydroxyl functionalities even after Activation process III might enable their H{sub 2} adsorption properties to be seriously debased compared to that of IRMOF-16 having no hydroxyl functionalities. - Graphical abstract: Synthesis of new-structured MOF (HCC-2) simultaneously possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit at the same time than those of HCC-1 has been performed via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as a metal source, respectively. Also, the optimization of activation process for HCC-2

  20. Titanium surface hydrophilicity enhances platelet activation.

    PubMed

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Titanium implant surface modification is a key strategy used to enhance osseointegration. Platelets are the first cells that interact with the implant surface whereupon they release a wide array of proteins that influence the subsequent healing process. This study therefore investigated the effect of titanium surface modification on the attachment and activation of human platelets. The surface characteristics of three titanium surfaces: smooth (SMO), micro-rough (SLA) and hydrophilic micro-rough (SLActive) and the subsequent attachment and activation of platelets following exposure to these surfaces were determined. The SLActive surface showed the presence of significant nanoscale topographical features. While attached platelets appeared to be morphologically similar, significantly fewer platelets attached to the SLActive surface compared to both the SMO and SLA surfaces. The SLActive surface however induced the release of the higher levels of chemokines β-thromboglobulin and platelet factor 4 from platelets. This study shows that titanium surface topography and chemistry have a significant effect on platelet activation and chemokine release. PMID:25311339

  1. Remarkable activity of PdIr nanoparticles supported on the surface of carbon nanotubes pretreated via a sonochemical process for formic acid electro-oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Jinwei; Li, Yuanjie; Liu, Shuangren; Wang, Gang; Tian, Jing; Jiang, Chunping; Zhu, Shifu; Wang, Ruilin

    2013-12-01

    It was reported for the first time that the surface treated multi-walled carbon nanotubes supported PdIr (PdIr/CNT-SCP) catalyst presents remarkable electrocatalytic activity and stability for formic acid electro-oxidation (FAEO). The surface of CNTs was functionalized by a sonochemical process for the deposition of PdIr nanoparticles (NPs). The XRD and TEM characterizations show that the prepared PdIr/CNT-SCP catalyst has small mean size and good dispersion of PdIr NPs on CNTs. The electrochemical measurements show that the onset and anodic peak potentials of FAEO on PdIr/CNT-SCP catalyst are 60 and 50 mV more negative than that on the commercial Pd/C catalyst. The mass-normalized peak current density of PdIr/CNT-SCP is 3365 mA mg-1Pd, which is 4.5, 1.4 and 2.7 times higher than that of PdIr/CNT-Untreated, PdIr/C-SCP and commercial Pd/C, respectively. It demonstrates the promotion of Ir and functionalized CNTs to Pd for FAEO.

  2. Surface studies of plasma processed Nb samples

    SciTech Connect

    Tyagi, Puneet V; Doleans, Marc; Hannah, Brian S; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  3. Surface modification by plasma immersion ion processing

    NASA Astrophysics Data System (ADS)

    Walter, Kevin C.; Lee, Deok H.; He, X. M.; Baker, N. P.; Nastasi, Michael; Munson, C. P.; Scarborough, W. K.; Tuszewski, M.; Wood, B. P.

    1998-09-01

    Los Alamos National Laboratory is actively researching a surface modification technique called plasma immersion ion processing (PIIP). PIIP is the latest innovation of the plasma source ion implantation (PSII) approach to surface modification. Like PSII, PIIP allows the modification of large areas and non-planar surface geometries, however PIIP is primarily a coating deposition technology rather than solely an ion implantation technology. PIIP utilizes a pulsed-bias on a target to extract ions out of plasma for ion implantation and coating deposition. Plasmas can be made by capacitive or inductive radio frequency sources or by initiating a glow discharge during each pulse of high voltage. Plasmas of hydrocarbon gases have been used to deposit adherent diamond-like carbon (DLC) coating son a variety of ferrous and non-ferrous materials. Instead of sputter depositing interlayers to improve the adhesion of DLC, PIIP uses ion implantation to create a graded interface between the metallic substrate and the DLC coating. Demonstrating the scaleability of PIIP, a 3 m2 area has been simultaneously coated with an adherent DLC coating approximately 7 micrometers thick. Plasmas of diborane and acetylene mixtures are being used to develop deposition processes for boron-carbide coatings. Through the use of organometallics and inorganic gases, other coatings are possible. The PIIP deposition conditions, composition and tribological properties of DLC and boron-carbide coatings will be highlighted.

  4. Processing of polymer surfaces by laser radiation

    NASA Astrophysics Data System (ADS)

    Kreutz, E. W.; Frerichs, H.; Stricker, J.; Wesner, D. A.

    1995-11-01

    The processing of polymer surfaces by laser radiation is investigated as a function of laser parameters (fluence, mode of operation) and processing variables (repetition rate, pulse number). Polymers under investigation are polyamide, polymethylmethacrylate, polypropylene, polystyrene, polycarbonate, acrylonitrile-butadiene-styrene copolymer, styrene-acrylonitrile copolymer, polybutadiene terephtalate, and polyoxymethylene, which are studied in air within different processing regimes such as modification of surface properties for subsequent metallization and removal of material for structuring of surface geometry. The metallization of polymers, which are pretreated by laser irradiation, wet chemical etching or plasma etching, is performed via electroplating and physical vapour deposition as a function of surface properties. The removal of polymers including non-thermal and thermal processes is done by direct processing techniques in the demagnification mode within one processing step. The diagnosis and the modelling of physical processes involved in tailoring the surface properties of polymers with laser radiation have to be implied to improve any application of these materials.

  5. Geochemical processes at mineral surfaces

    SciTech Connect

    Davis, J.A.; Hayes, K.F.

    1986-01-01

    This volume includes 32 papers which were presented at a symposium on geochemical processes at mineral-water interfaces in 1985 and which bring to bear on this area a very wide range of expertise. The discontinuities in properties which occur at the mineral-water interface have profound effects on the movement of naturally occurring ions. Weathering and precipitation processes control the concentrations and speciation of ions in natural waters and the movements of these within the hydrosphere; both classes of processes take place at mineral-water interfaces. After an introductory overview, the book is divided into seven major sections, each dealing with one of the aspects of the processes occurring at the mineral-water interface. Five papers deal with the physical properties of the mineral-water interface; these represent a well-balanced mix of experimental and theoretical (mathematical modeling) work. Adsorption phenomena are dealt with in another five papers; these are largely experimental in character. Ion-exchange processes are discussed in four papers, one of which addresses the use of relaxation methods to study ion exchange kinetics at the microscopic level. Spectroscopic techniques (including electron-spin resonance and Moessbauer spectroscopy) are utilized in four papers. Chemical reactions, mainly redox processes, at mineral-water interfaces are treated in four papers, one of which deals with non-biological organic reactions. Solid-solution formation and equilibria are the subjects of another set of four articles, and the last group of papers deals with the processes involved in precipitation and dissolution, including weathering.

  6. Nitrate postdeposition processes in Svalbard surface snow

    NASA Astrophysics Data System (ADS)

    Björkman, Mats P.; Vega, Carmen P.; Kühnel, Rafael; Spataro, Francesca; Ianniello, Antonietta; Esposito, Giulio; Kaiser, Jan; Marca, Alina; Hodson, Andy; Isaksson, Elisabeth; Roberts, Tjarda J.

    2014-11-01

    The snowpack acts as a sink for atmospheric reactive nitrogen, but several postdeposition pathways have been reported to alter the concentration and isotopic composition of snow nitrate with implications for atmospheric boundary layer chemistry, ice core records, and terrestrial ecology following snow melt. Careful daily sampling of surface snow during winter (11-15 February 2010) and springtime (9 April to 5 May 2010) near Ny-Ålesund, Svalbard reveals a complex pattern of processes within the snowpack. Dry deposition was found to dominate over postdeposition losses, with a net nitrate deposition rate of (0.6 ± 0.2) µmol m-2 d-1 to homogeneous surface snow. At Ny-Ålesund, such surface dry deposition can either solely result from long-range atmospheric transport of oxidized nitrogen or include the redeposition of photolytic/bacterial emission originating from deeper snow layers. Our data further confirm that polar basin air masses bring 15N-depleted nitrate to Svalbard, while high nitrate δ(18O) values only occur in connection with ozone-depleted air, and show that these signatures are reflected in the deposited nitrate. Such ozone-depleted air is attributed to active halogen chemistry in the air masses advected to the site. However, here the Ny-Ålesund surface snow was shown to have an active role in the halogen dynamics for this region, as indicated by declining bromide concentrations and increasing nitrate δ(18O), during high BrO (low-ozone) events. The data also indicate that the snowpack BrO-NOx cycling continued in postevent periods, when ambient ozone and BrO levels recovered.

  7. Water surface capturing by image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  8. Prebiotic activation processes.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Orgel, L. E.

    1973-01-01

    Questions regarding the combination of amino acids and ribonucleotides to polypeptides and polynucleotides are investigated. Each of the reactions considered occurs in the solid state in plausible prebiotic conditions. Together they provide the basis for a unified scheme of amino acid and nucleotide activation. Urea, imidazole and Mg(++) are essential catalytic components of the reaction mixtures. However, these compounds could probably be replaced by other organic molecules.

  9. Lunar soil and surface processes studies

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1975-01-01

    Glass particles in lunar soil were characterized and compared to terrestrial analogues. In addition, useful information was obtained concerning the nature of lunar surface processes (e.g. volcanism and impact), maturity of soils and chemistry and heterogeneity of lunar surface material. It is felt, however, that the most important result of the study was that it demonstrated that the investigation of glass particles from the regolith of planetary bodies with little or no atmospheres can be a powerful method for learning about the surface processes and chemistry of planetary surfaces. Thus, the return of samples from other planetary bodies (especially the terrestrial planets and asteroids) using unmanned spacecraft is urged.

  10. Bactericidal activity of biomimetic diamond nanocone surfaces.

    PubMed

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-01

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections. PMID:26992656

  11. Artist's rendering of Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Lunar Surface Activities: Instruments erected on the surface are a seismometer to record any subsurface activity of the Moon, a laser reflector, a solar wind collector, and possibly an antenna for improving communications and television picture transmission.

  12. Integrated mold/surface-micromachining process

    SciTech Connect

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  13. Energetic Processing of Planetary Surfaces & Ices

    NASA Astrophysics Data System (ADS)

    Johnson, Robert E.

    2009-05-01

    Solar system surfaces can be exposed to both solar UV and plasma radiation. Depending on the surface properties, the incident radiation can produce defects and chemistry, as well as desorption and sputtering. Such effects can be seen in the composition of the ambient neutrals and plasma as well as in surface reflectance spectra. Therefore, an understanding of the radiation effects is needed to interpret observations of a number of interesting planetary bodies. In this paper we will summarize the connections between models of laboratory results and telescopic and spacecraft data. In the inner solar system, radiation-induced desorption of trace and adsorbed species has been critical for understanding observations of Mercury and the Moon. The more volatile surfaces in the outer solar are, not surprisingly, more dramatically affected by radiation processing. Stimulated desorption of alkalis is still a marker for radiation processing, but the sputtering yields for icy surfaces can be enormous. One of the more important effects in the outer solar system is radiation-induced decomposition. For an icy body, decomposition leads to the production of H2 and O2, which, due to their volatility, can populate the ambient gas. Since hydrogen is typically lost preferentially, decomposition is often accompanied by the production of oxygen-rich molecules in the surface and, even, micro-bubbles of oxygen and ozone. Hydrogen is also lost preferentially from surfaces containing trapped ammonia, methane, hydrogen sulfide, and organics. Radiation processing of icy surfaces containing trace amounts of carbon or sulfur can form steady state amounts of oxides, hydrated-acids and refractory residues in the surface. On surfaces rich in sulfur or carbon, radiation-induced degradation produces carbon and sulfur lag deposits. These effects will be reviewed with emphasis on the need for good models of radiation processing in order to understand observations of planetary bodies and their gaseous

  14. Quantitative Modeling of Earth Surface Processes

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

  15. More details...
  16. Stable surface passivation process for compound semiconductors

    DOEpatents

    Ashby, Carol I. H.

    2001-01-01

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  17. Surface processes in OMVPE the frontiers

    NASA Astrophysics Data System (ADS)

    Stringfellow, G. B.; Shurtleff, J. K.; Lee, R. T.; Fetzer, C. M.; Jun, S. W.

    2000-12-01

    Surface processes have long been known to be an important part of any epitaxial growth process. These processes are closely linked to the surface structure. However, until recently, the surface structure and the surface processes were difficult to study experimentally for conventional vapor-phase epitaxy (VPE) and liquid-phase epitaxy. Recently, optical techniques such as surface photo absorption (SPA) have been developed to the point that they give useful information about the surface reconstruction in situ during organometallic vapor-phase epitaxial (OMVPE) growth. Thus, they can in many cases be used to monitor the surface processes. A powerful method for controlling the surface structure during epitaxial growth using surfactants has recently emerged. This work describes the use of the surfactants Te, a donor, and As, Sb, and Bi, elements that are isoelectronic with P, on the properties of GaInP grown by OMVPE. These surfactants are found to significantly affect the microscopic arrangement of Ga and In atoms in the bulk solid by effecting a change in the surface structure. CuPt ordering is ubiquitous in III/V semiconductor alloys. It is significant because of the dependence of bandgap energy on the degree of order. The CuPt structure is formed due to the strain induced by the formation of [ 1¯ 1 0] P dimers on the surface. Each of the surfactants studied is found to result in disordering for layers grown using conditions that would otherwise produce highly ordered GaInP. Te yields disordered material with no change in the SPA spectra. However, the step velocity is found to increased markedly. Thus, the effect appears to be kinetic. Sb causes disordering due to a replacement of [ 1¯ 1 0] P dimers on the nominally (0 0 1) surface by larger Sb dimers, which reduces the strain-induced driving force for CuPt ordering at the surface. Thus, the effect is due to surface thermodynamics. For high Sb concentrations in the vapor, a triple-period ordered structure is

  18. Intramolecular motion during stimulated surface processes

    SciTech Connect

    Burns, A.R.; Jennison, D.R.; Stechel, E.B. ); Li, Y.S. )

    1994-06-13

    Ammonia and deuterated ammonia exhibit an anomalously large isotope effect in their relative yields and rotational spinning energy for electron-stimulated desorption from Pt(111). Quantum-resolved desorption measurements and [ital ab] [ital initio], two-dimensional, potential energy calculations suggest that the desorbate undergoes a geometry change (molecular inversion) induced by the excited state. Inverted molecules deexcite to a repulsive hard wall potential and desorb. In general, [ital multidimensional] potential energy surfaces determine the dynamics of stimulated surface processes.

  19. Modification of surfaces and surface layers by non equilibrium processes

    NASA Astrophysics Data System (ADS)

    Beamson, G.; Brennan, W. J.; Clark, D. T.; Howard, J.

    1988-01-01

    Methods for using plasma in the synthesis and modification of materials in ways impossible by conventional routes are introduced. The equipment used in these methods is described. The chemical analysis of polymer surfaces undergoing modification by inert gas, hydrogen or oxygen plasmas is shown to give physical information regarding the relative roles of diffusion of active species and direct and radiative energy transfer from the plasma. Surface modification by plasma depositing a new material onto an existing substrate is discussed with particular reference to the deposition of amorphous carbon films. Applications of the unique properties of these films are outlined together with current understanding of these properties based on chemical and physical methods of analysis of both the films and the plasmas producing them. Finally, surface modification by ion beams is briefly illustrated using examples from the electronics and metals industries.

  20. Surface potential profiles. [for electrocardiographic data processing

    NASA Technical Reports Server (NTRS)

    Sharp, J. K.; Jones, W. P., Jr.

    1974-01-01

    The gathering of surface potential profiles by computerized processing of electrocardiogram data is projected. These profiles are concerned with the detail of localized potentials on the human body and are obtained by voltages plotted against electrode positions with time as the variable held constant. Sample and hold circuits are considered for processing the multiplexed signal and to digitize and code it for the tape recorder.

  21. Land surface processes and Sahel climate

    NASA Astrophysics Data System (ADS)

    Nicholson, Sharon

    2000-02-01

    This paper examines the question of land surface-atmosphere interactions in the West African Sahel and their role in the interannual variability of rainfall. In the Sahel, mean rainfall decreased by 25-40% between 1931-1960 and 1968-1997; every year in the 1950s was wet, and nearly every year since 1970 has been anomalously dry. Thus the intensity and multiyear persistence of drought conditions are unusual and perhaps unique features of Sahel climate. This article presents arguments for the role of land surface feedback in producing these features and reviews research relevant to land surface processes in the region, such as results from the 1992 Hydrologic Atmospheric Pilot Experiment (HAPEX)-Sahel experiment and recent studies on aerosols and on the issue of desertification in the region, a factor implicated by some as a cause of the changes in rainfall. Included also is a summary of evidence of feedback on meteorological processes, presented from both model results and observations. The reviewed studies demonstrate numerous ways in which the state of the land surface can influence interactions with the atmosphere. Surface hydrology essentially acts to delay and prolong the effects of meteorological drought. Each evaporative component of the surface water balance has its own timescale, with the presence of vegetation affecting the process both by delaying and prolonging the return of soil moisture to the atmosphere but at the same time accelerating the process through the evaporation of canopy-intercepted water. Hence the vegetation structure, including rooting depth, can modulate the land-atmosphere interaction. Such processes take on particular significance in the Sahel, where there is a high degree of recycling of atmospheric moisture and where the meteorological processes from the scale of boundary layer development to mesoscale disturbance generation are strongly influenced by moisture. Simple models of these feedback processes and their various timescales

  1. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1997-01-01

    The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.

  2. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  3. Process For Patterning Dispenser-Cathode Surfaces

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Deininger, William D.

    1989-01-01

    Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.

  4. Processing of Activated Core Components

    SciTech Connect

    Friske, A.; Gestermann, G.; Finkbeiner, R.

    2003-02-26

    Used activated components from the core of a NPP like control elements, water channels from a BWR, and others like in-core measurement devices need to be processed into waste forms suitable for interim storage, and for the final waste repository. Processing of the activated materials can be undertaken by underwater cutting and packaging or by cutting and high-pressure compaction in a hot cell. A hot cell is available in Germany as a joint investment between GNS and the Karlsruhe Research Center at the latter's site. Special transport equipment is available to transport the components ''as-is'' to the hot cell. Newly designed underwater processing equipment has been designed, constructed, and operated for the special application of NPP decommissioning. This equipment integrates an underwater cutting device with an 80 ton force underwater in-drum compactor.

  5. Asteroid Surface Alteration by Space Weathering Processes

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Loeffler, M. J.; Nesvorný, D.; Sasaki, S.; Strazzulla, G.

    Micrometeorite bombardment and irradiation by solar wind and cosmic-ray ions cause variations in the optical properties of small solar system bodies surfaces, affecting efforts to draw connections between specific meteorites and asteroid types. These space weathering processes have been widely studied for the Moon and S- and V-type asteroids, and they are currently being investigated for other asteroid types. Here we review the laboratory studies performed by several groups on meteorites and asteroid surface analogs, aimed at simulating space weathering by using ion irradiation and laser ablation. Together with direct evidence of weathering of particles from asteroid Itokawa acquired by the Hayabusa mission, these results have provided a fundamental contribution to the spectral interpretation of asteroid observations, to establish a solid asteroids-meteorites link, and to understand the energetic processes affecting the surfaces of minor bodies. A general scheme for asteroid optical maturation is thus emerging. Slope trends from large surveys and in particular of young asteroid families have confirmed that solar wind is the main source of rapid (104-106 yr) weathering, and that a number of rejuvenating processes (impacts by small meteorites, planetary encounters, regolith shaking, etc.) efficiently counterbalance the fast weathering timescales.

  6. ENVISAT Land Surface Processes. Phase 2

    NASA Technical Reports Server (NTRS)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  7. Does Titan have an Active Surface?

    NASA Astrophysics Data System (ADS)

    Nelson, R.

    2009-12-01

    ammonia, a compound expected in Titan’s interior. This, combined with the previous evidence from VIMS and RADAR images, creates a strong case for Titan having a presently active surface, possibly due to cryovolcanism. Cassini encountered Titan at very close range on 2008-11-19-13:58 and again on 2008-12-05-12:38. These epochs are called T47 and T48. Comparison of earlier lower resolution data (T5) with the recent T47 and T48 data reveal changes of the surface reflectance and morphology in the Hotei region. This is the first evidence from VIMS that confirms the RADAR report that Hotei Reggio has morphology consistent with volcanic terrain. It has not escaped our attention that ammonia, in association with methane and nitrogen, the principal species of Titan’s atmosphere, closely replicates the environment at the time that live first emerged on earth. If Titan is currently active then these results raise the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan’s chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? This work done at JPL under contract with NASA. Refs: [1]R. M. Nelson et al., Icarus 199 (2009) 429-441. [2]R. M. Nelson et al., GRL, VOL. 36, L04202, doi:10.1029/2008GL036206, 2009. [3]S. D. Wall GRL, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009

  8. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  9. Novel Surface Reaction Model in Dry-Etching Process Simulator

    NASA Astrophysics Data System (ADS)

    Misaka, Akio; Harafuji, Kenji; Kubota, Masafumi; Nomura, Noboru

    1992-12-01

    A new surface reaction model has been presented to simulate topological evolutions by taking into account the existence of adsorbed radicals on the substrate surface. The model treats the etching rate as a function of the coverage ratio by adsorbed radicals on the surface. Based on the model, a two-dimensional topography simulator has been developed. The simulator is applied to silicon-dioxide trench etchings made by hydrofluorocarbon gases. First, micro-loading effects in an important ion-assisted etching process are studied. It is confirmed that the micro-loading effect is due to the shortage of supplied active radicals inside the trench structure. Secondly, the competitive process between etching and deposition is examined. The side-wall protection phenomena resulting from the process are well simulated.

  10. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  11. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  12. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  13. Adjoint active surfaces for localization and imaging.

    PubMed

    Cook, Daniel A; Mueller, Martin Fritz; Fedele, Francesco; Yezzi, Anthony J

    2015-01-01

    This paper addresses the problem of localizing and segmenting regions embedded within a surrounding medium by characterizing their boundaries, as opposed to imaging the entirety of the volume. Active surfaces are used to directly reconstruct the shape of the region of interest. We describe the procedure for finding the optimal surface, which is computed iteratively via gradient descent that exploits the sensitivity of an error minimization functional to changes of the active surface. In doing so, we introduce the adjoint model to compute the sensitivity, and in this respect, the method shares common ground with several other disciplines, such as optimal control. Finally, we illustrate the proposed active surface technique in the framework of wave propagation governed by the scalar Helmholtz equation. Potential applications include electromagnetics, acoustics, geophysics, nondestructive testing, and medical imaging. PMID:25438311

  14. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  15. Early contacts between T lymphocytes and activating surfaces

    NASA Astrophysics Data System (ADS)

    Cretel, E.; Touchard, D.; Benoliel, A. M.; Bongrand, P.; Pierres, A.

    2010-05-01

    Cells continually probe their environment to adapt their behaviour. A current challenge is to determine how they analyse nearby surfaces and how they process information to take decisions. We addressed this problem by monitoring human T lymphocyte attachment to surfaces coated with activating anti-CD3 or control anti-HLA antibodies. Interference reflection microscopy allowed us to monitor cell-to-surface apposition with a few nanometre vertical resolution during the first minutes following contact. We found that (i) when a cell fell on a surface, contact extension was preceded by a lag of several tens of seconds. (ii) During this lag, vertical membrane undulations seemed to generate transient contacts with underlying surfaces. (iii) After the lag period, the contact area started increasing linearly with a rate of about 1.5 µm2 s - 1 on activating surfaces and about 0.2 µm2 s - 1 on control surfaces. (iv) Concomitantly with lateral surface extension, the apparent distance between cell membranes and surfaces steadily decreased. These results are consistent with the hypothesis that the cell decision to spread rapidly on activating surfaces resulted from the integration of information yielded by transient contacts with these surfaces generated by membrane undulations during a period of about 1 min.

  16. Surface Decontamination Using Laser Ablation Process - 12032

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-07-01

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  17. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  18. Asphaltene surface activity at oil/water interfaces

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.

    1995-11-01

    Small angle neutron scattering (SANS) dynamic surface tension (DST), dynamic interfacial tension (DIFT), and zero shear viscosity were used to study the surface activity of Ratawi asphaltenes in organic solvents, in the asphaltene/water/toluene emulsions and at the toluene/aqueous solution interfaces. In organic solvents, the kinetic process of micellization and the micellar structure are characterized. Their dependence on asphaltene concentration was investigated. The emulsion droplet structure and their capability in water uptake was tested. Also, the enhancement of surface activity of asphaltenes and its potential applications are briefly discussed.

  19. Impact of Urban Surfaces on Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Shepherd, J. M.

    2004-01-01

    The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.

  20. Boltzmann active walkers and rough surfaces

    NASA Astrophysics Data System (ADS)

    Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.

    1993-06-01

    An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.

  1. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  2. Regional scale hydrology with a new land surface processes model

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Crosson, William

    1995-01-01

    Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.

  3. Uncovering deformation processes from surface displacements

    NASA Astrophysics Data System (ADS)

    Stramondo, Salvatore

    2013-04-01

    The aim of this talk is to provide an overview about the most recent outcomes in Earth Sciences, describe the role of satellite remote sensing, together with GPS, ground measurement and further data, for geophysical parameter retrieval in well known case studies where the combined approach dealing with the use of two or more techniques/datasets have demonstrated their effectiveness. The Earth Sciences have today a wide availability of instruments and sensors able to provide scientists with an unprecedented capability to study the physical processes driving earthquakes, volcanic eruptions, landslides, and other dynamic Earth systems. Indeed measurements from satellites allow systematic observation of the Earth surface covering large areas, over a long time period and characterized by growing sample intervals. Interferometric Synthetic Aperture Radar (InSAR) technique has demonstrated its effectiveness to investigate processes responsible for crustal faulting stemming from the detection of surface deformation patterns. Indeed using satellite data along ascending and descending orbits, as well as different incident angles, it is possible in principle to retrieve the full 3D character of the ground motion. To such aim the use of GPS stations providing 3D displacement components is a reliable complementary instrument. Finally, offset tracking techniques and Multiple Aperture Interferometry (MAI) may provide a contribution to the analysis of horizontal and NS deformation vectors. The estimation of geophysical parameters using InSAR has been widely discussed in seismology and volcanology, and also applied to deformation associated with groundwater and other subsurface fluids. These applications often involve the solution of an inverse problem, which means the retrieval of optimal source parameters at depth for volcanoes and earthquakes, from the knowledge of surface deformation from InSAR. In recent years, InSAR measurements combined with traditional seismological and

  4. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  5. Green Bank Telescope active surface system

    NASA Astrophysics Data System (ADS)

    Lacasse, Richard J.

    1998-05-01

    During the design phase of the Green Bank Telescope (GBT), various means of providing an accurate surface on a large aperture paraboloid, were considered. Automated jacks supporting the primary reflector were selected as the appropriate technology since they promised greater performance and potentially lower costs than a homologous or carbon fiber design, and had certain advantages over an active secondary. The design of the active surface has presented many challenges. Since the actuators are mounted on a tipping structure, it was required that they support a significant side-load. Such devices were not readily available commercially so they had to be developed. Additional actuator requirements include low backlash, repeatable positioning, and an operational life of at least 230 years. Similarly, no control system capable of controlling the 2209 actuators was commercially available. Again a prime requirement was reliability. Maintaining was also a very important consideration. The system architecture is tree-like. An active surface 'master-computer' controls interaction with the telescope control system, and controls ancillary equipment such as power supplies and temperature monitors. Two slave computers interface with the master- computer, and each closes approximately 1100 position loops. For simplicity, the servo is an 'on/off' type, yet achieves a positioning resolution of 25 microns. Each slave computer interfaces with 4 VME I/O cards, which in turn communicate with 140 control modules. The control modules read out the positions of the actuators every 0.1 sec and control the actuators' DC motors. Initial control of the active surface will be based on an elevation dependant structural model. Later, the model will be improved by holographic observations.Surface accuracy will be improved further by using laser ranging system which will actively measure the surface figure. Several tests have been conducted to assure that the system will perform as desired when

  6. Photochemical Transformation Processes in Sunlit Surface Waters

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  7. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  8. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  9. Nanovalve Activation by Surface-Attached Photoacids

    PubMed Central

    Guardado-Alvarez, T. M.; Russell, M. M.

    2015-01-01

    Proton transfer caused by excitation of a photoacid attached to the surface of a mesoporous silica nanoparticle activates a nanovalve and causes release of trapped molecules. The protonation of an aniline- based stalk releases a noncovalently bound cyclodextrin molecule that blocked a pore. The results show that pH-responsive molecular delivery systems can be externally controlled using light. PMID:24942753

  10. Space environment and lunar surface processes

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1979-01-01

    The development of a general rock/soil model capable of simulating in a self consistent manner the mechanical and exposure history of an assemblage of solid and loose material from submicron to planetary size scales, applicable to lunar and other space exposed planetary surfaces is discussed. The model was incorporated into a computer code called MESS.2 (model for the evolution of space exposed surfaces). MESS.2, which represents a considerable increase in sophistication and scope over previous soil and rock surface models, is described. The capabilities of previous models for near surface soil and rock surfaces are compared with the rock/soil model, MESS.2.

  11. Measurement of heterogeneous chemical processes relevant to aerosol surfaces and trace gases active in the marine environment. Progress report, February 1994--January 1995

    SciTech Connect

    Davidovits, P.; Worsnop, D.R.; Zahniser, M.S.; Jayne, J.T.; Kolb, C.E.

    1995-02-01

    Biogenically produced reduced sulfur compounds from the marine environment, deliver a sulfur burden to the atmosphere which is about half as large as that due to sulfur oxides produced by fossil fuel combustion. The multiphase chemical processes for these species must be understood in order to evaluate the relative roles of biogenic and combustion produced sulfur oxides over the oceans. The aim of the studies funded by the subject DOE grant is to measure parameters governing the heterogeneous chemistry of the species occurring in the marine environment. During the past year, uptake studies for the sulfur species MSA, DMSO, DMSO{sub 2}, DMS, OCS, CS{sub 2}, H{sub 2}S, and CH{sub 3}SH have been finalized. Studies of the reactive uptake of Cl{sub 2} and Br{sub 2} by Br{sup -} and I{sup -} solutions as a function of temperature have been completed. The uptake of O{sub 3} by aqueous NaI solutions has also been studied for the purpose of comparison. We have begun co-deposition studies and have obtained some preliminary results for the codeposition with ozone of DMS, DMSO, DMSO{sub 2} and MSA. For the next phase of the work, a new horizontal bubbler apparatus was designed and built and construction to improve the detection sensitivity of the apparatuses was begun. Altogether during 1994, 8 articles have been accepted for publication and 2 Ph.D. dissertations have been submitted and approved.

  12. Biochemical activities in soil overlying Paraho processed oil shale

    SciTech Connect

    Sorensen, D.L.

    1982-01-01

    Microbial activity development in soil materials placed over processed oil shale is vital to the plant litter decomposition, cycling of nutrients, and soil organic matter accumulation and maintenance. Samples collected in the summers of 1979, 1980, and 1981 from revegetated soil 30-, 61-, and 91-cm deep overlying spent oil shale in the Piceance Basin of northwestern Colorado were assayed for dehydrogenease activity with glucose and without glucose, for phosphatase activity, and for acetylene reduction activity. Initial ammonium and nitrite nitrogen oxidation rates and potential denitrification rates were determined in 1981. Zymogenous dehydrogenase activity, phosphatase activity, nitrogenase activity, potential denitrification rates, and direct microscopic counts were lower in surface soil 30 cm deep, and were frequently lower in surface soil 61 cm deep over processed shale than in a surface-disturbed control area soil. Apparently, microbial activities are stressed in these more shallow replaced soils. Soil 61 cm deep over a coarse-rock capillary barrier separating the soil from the spent shale, frequently had improved biochemical activity. Initial ammonium and nitrite nitrogen oxidation rates were lower in all replaced soils than in the disturbed control soil. Soil core samples taken in 1981 were assayed for dehydrogenase and phosphatase activities, viable bacteria, and viable fungal propagules. In general, microbial activity decreased quickly below the surface. At depths greater than 45 cm, microbial activities were similar in buried spent shale and surface-disturbed control soil.

  13. Microhydrodynamics of flotation processes in the sea surface layer

    NASA Astrophysics Data System (ADS)

    Grammatika, Marianne; Zimmerman, William B.

    2001-10-01

    The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of

  14. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  15. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In situ processing activities. 785.22 Section 785.22 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR PERMITS...

  16. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  17. Asphaltenes as a surface active agent

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.; Storm, D.A.

    1995-12-31

    Asphaltene represents the heavy-end materials of the crude oil, conventionally defined via solvent solubility (either heptane or pentane). Chemically, it consists of polynuclear aromatics with the H/C ratio close to unity. Additionally, it contains a great deal of heteroatoms, such as sulfur, nitrogen, nickel, vanadium, etc. Several experiments have revealed the surface activity of asphaltenes in some selected solvents through measurements of their rheology or critical micelle concentrations in these solvents. The asphaltene micelles were found thermodynamically reversible. In a two phase asphaltene/water system, asphaltenes appear to vary their surface activities depending upon the polarity of the aqueous phase. Our recent experiment further showed that asphaltene/water/toluene may form, water-in-oil emulsion under certain conditions.

  18. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim; Mahmoudi, Seyed Reza; Abu-Dheir, Numan; Varanasi, Kripa

    2014-11-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  19. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Mahmoudi, Seyed Reza; Abu-dheir, Numan; Varanasi, Kripa K.

    2014-07-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  20. Intrepretation of surface features and surface processes on Mars

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, M.; Howard, A.; Morton, J. B.; Pierce, D.

    1975-01-01

    Eolian erosion and deposition on earth was studied in order to interpret the eolian land forms of Mars. Emphasis of the wind tunnel studies was on the flow field around models of eolian forms. Areas of the wind tunnel studies include: simulation of the atmospheric boundary layer; velocity profile measurements around different models in the desert boundary layer, and estimating shear stress distributions on the model surfaces; flow visualization techniques; streamline mapping using tuft photographs; and roughness contrasts.

  1. Volatile processes in Triton's atmosphere and surface

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1992-01-01

    A basic model for latitudinal transport of nitrogen is reviewed focusing on its limitations and some complications associated with surface and atmospheric physics. Data obtained by 1989 Voyager encounter with the Neptune system revealed the complexity in the pure nitrogen transport which is caused by the nonuniform albedo of the frosts. It is concluded that Triton is similar to Mars in terms of the complexity of volatile transport and to understand Triton's surface-atmosphere system, Mars may be a very good analog.

  2. Do surface active parenteral formulations cause inflammation?

    PubMed

    Söderberg, Lars; Engblom, Johan; Lanbeck, Peter; Wahlgren, Marie

    2015-04-30

    Local irritation and inflammation at the site of administration are a common side effect following administration of parenteral formulations. Biological effects of surface (interfacial) activity in solutions are less well investigated than effects caused by other physico-chemical parameters such as pH and osmolality. The interfacial activity in different systems, including human plasma, typical amphiphilic substances with fundamental biological relevance such as free fatty acids, anesthetic depot formulations and six different antibiotics was measured. The relative interfacial pressure, and/or concentration of active substance, required to obtain 50% of the maximal attainable effect in terms of interfacial pressure were calculated. The aim was to test the hypothesis that these parameters would allow comparison to biological effects reported in in vivo studies on the investigated substances. The highest interfacial activity was found in a triglyceride/plasma system. Among the antibiotic tested, the highest interfacial activities were found in erythromycin and dicloxacillin, which is in accordance with previous clinical findings of a high tendency of infusion phlebitis and cell toxicity. Independently of investigated system, biological effects were minimal below a 15% relative increase of interfacial activity. Above 35-45% the effects were severe. Interfacial activity in parenteral formulations may well cause damages to tissues followed by inflammation. PMID:25708007

  3. Wright Valley Sediments as Potential Analogs for Martian Surface Processes

    NASA Astrophysics Data System (ADS)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2015-12-01

    The Antarctic Dry Valleys (ADV) may provide a unique terrestrial analog for current Martian surface processes. The Wright Valley located in the ADV contains streams, lakes and ponds that host highly saline, sedimentary environments. This project highlights comparisons of formation and salt accumulation processes at the Don Juan Pond (DJP) and Don Quixote Pond (DQP). These are located in the north and south forks of the Wright Valley, which are unique areas where unusual terrestrial processes can be studied. DQP is located in the western part of the north fork about 100 m above mean seawater level. The DQP Valley walls are up to 2500 m high and the brine is seasonally frozen. DJP from the south fork is located ~9 km west of Lake Vanda. The basin floor is 117 m above mean seawater level with activity to the north and south rising above 1000 m. The DJP brine does not freeze and may be a model environment for Ca and Cl weathering and distribution on Mars. Our findings indicate that DJP and DQP have formed in similar climatic and geological environments, but likely experienced different formation conditions. Samples were collected from surface, soil pits and depth profiles during the 1979/1980, the 1990/1991 and the 2005/2006 field seasons. Elemental abundances and mineralogy were evaluated for several sets of sediments. The DJP basin shows low surface abundances of halite and relatively high abundances of sulfates throughout with gypsum or anhydrite dominating at different locations. The DQP area has high surface abundances of halite with gypsum present as the major sulfate. Two models have been proposed to explain these differences: DQP may have formed through a combination of shallow and some deep groundwater influx, while deep groundwater upwelling likely played the dominant role of salt formation at DJP. Our study seeks to understand the formation of DQP and DJP as unique terrestrial processes and as models for Ca, Cl, and S weathering and distribution on Mars.

  4. Vibrating surface actuators for active flow control

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Clingman, Dan J.

    2002-07-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits from active flow control (AFC). AFC seeks to control large scale flows by exploiting natural response triggered by small energy inputs. The principal target application is download alleviation of the V-22 Osprey under the DARPA sponsored Boeing Active Flow Control System program. One method of injecting energy into the flow over the V22 wings is to use an active vibrating surface on the passive seal between the wing and flapperon. The active surface is an oscillating cantilevered beam which injects fluid into the flow, similar to a synthetic jet, and interacts with the flow field. Two types of actuators, or flipperons, are explored. The first is a multilayer piezoelectric polyvinylidene fluoride cantilevered bender. The second is a single crystal piezoelectric (SCP)d31 poled wafer mounted on a cantilevered spring steel substrate. This paper details the development effort including fabrication, mechanical and electrical testing, and modeling for both types of actuators. Both flipperons were mounted on the passive seal between a 1/10th scale V22 wing and flapperon and the aerodynamic performance evaluated in low speed wind tunnel. The SCP flipperon demonstrated significant cruise benefits, with increase of 10 percent lift and 20 percent angle of attack capability. The PVDF flipperon provided a 16 percent drag reduction in the hover mode.

  5. Processing ISS Images of Titan's Surface

    NASA Technical Reports Server (NTRS)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  6. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  7. Chemical processes in Triton's atmosphere and surface

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Thompson, W. R.

    1987-05-01

    Liquid solutions of N2 containing up to one-third CH4 can exist on Triton's surface in regions T > 62.5K. More generally, subsurface oceans of N2 solution are expected to be stable beneath overlying, thermally insulating, less dense layers of the abundant light hydrocarbon products of radiochemical synthesis: C2H6, C3H8, and C4H10. Cosmic rays are the main source of energy, capable of producing synthesis of organic compounds from N2 - CH4 solutions on the surface. For baseline Triton models with R = 2500 km, ρ = 2.1 g cm-3, and Ts = 65 or 55K, respectively, 4×10-3 or 7×10-3erg cm-2sec-1 (49 or 87% of the total incident flux) is deposited within a few meters below the surface. Using yields from laboratory experiments, the authors estimate the quantities of products produced.

  8. Motility of active fluid drops on surfaces

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Diana; Alexander, Gareth P.

    2015-12-01

    Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013), 10.1038/nature11591]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.

  9. Surface processing: existing and potential applications of ultraviolet light.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface. PMID:24915377

  10. Late-stage orogenic processes: How to link surface motion with distinct lithospheric processes

    NASA Astrophysics Data System (ADS)

    Neubauer, F.; Heberer, B.

    2009-04-01

    There is still a lack of knowledge of surface expression caused by deep-seated lithospheric processes, and how such processes could be distinguished from other, e.g. climate-induced, surface processes like denudation. Surface expressions of deep-seated lithospheric processes in convergent settings are expected to have been long-lived and to show large wave-length structures creating a dynamic topography (Wortel and Spakman, 2000; Cloetingh and Ziegler, 2007). Resulting continent-continent collisional orogens are bivergent, and the principal vergency of collisional orogens is controlled by the previous subduction of oceanic lithosphere (Beaumont et al., 1996). A number of tectonic processes are shown to be active during late orogenic phases and these processes particularly result in specific patterns of surface uplift and denudation of the evolving orogens as well as subsidence in the associated foreland basin. A number of these processes are not fully understood. Late-stage orogenic processes include, among others, slab break-off, slab delamination respectively of lithospheric roots, back-thrusting, tectonic indentation and consequent orogen-parallel lateral extrusion and formation of Subduction-Transform Edge Propagator (STEP) faults acting on the subducting lithosphere (Molnar and Tapponnier, 1975; Wortel and Spakman, 2000; Ratschbacher et al., 1991; Govers and Wortel, 2005). Here, we discuss these processes mainly in terms of their near-surface geological expressions within the orogen and the associated foreland basins, and how these processes could be distinguished by such geological features. We also show distinct theoretical models applied to the arcuate Alpine-Balkan-Carpathian-Dinaric system, which is driven by the oblique convergence of Africa-Europe. Slab-break-off results in lateral orogen-parallel migration of sharp subsidence in a linear belt in front of the slab window, coupled subsidence and subsequent uplift/basin inversion of peripheral foreland

  11. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1981-01-01

    A molecular dynamics technique based upon Lennard-Jones type pair interactions is used to investigate time-dependent as well as equilibrium properties. The case study deals with systems containing Si and O atoms. In this case a more involved potential energy function (PEF) is employed and the system is simulated via a Monte-Carlo procedure. This furnishes the equilibrium properties of the system at its interfaces and surfaces as well as in the bulk.

  12. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  13. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1999-01-01

    Over the course of this award we have: 1) Completed and published the results of a study of the effects of hyperfine particles on reflectance spectra of olivine and quartz, which included the development of scattering codes. Research has also progressed in the analysis of the effects of fine particle sizes on clay spectra. 2) Completed the analysis of the mineralogy of dark regions, showed the insitu compositions are highly correlated to the SNC meteorites, and determined that the martian mantle was depleted in aluminum prior to 2-3 GA ago; Studies of the mineralogic heterogeneity of surficial materials on Mars have also been conducted. and 3) Performed initial work on the study of the physical and chemical processes likely to form and modify duricrust. This includes assessments of erosion rates, solubility and transport of iron in soil environments, and models of pedogenic crust formation.

  14. Moisture processes accompanying convective activity

    NASA Technical Reports Server (NTRS)

    Sienkiewicz, M. E.; Scoggins, J. R.

    1982-01-01

    A moisture budget analysis was performed on data collected during the AVE 7 (May 2 to 3, 1978) and AVE-SESAME1 (April 10 to 11, 1979) experiments. Local rates-of-change of moisture were compared with average moisture divergence in the same time period. Results were presented as contoured plots in the horizontal and as vertical cross sections. These results were used to develop models of the distribution of moisture processes in the vicinity of convective areas in two layers representing lower and middle tropospheric conditions. Good correspondence was found between the residual term of the moisture budget and actual precipitation.

  15. UMTRA Surface Project management action process document: Final. Revision 2

    SciTech Connect

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

  16. Processes Impacting Atmosphere-Surface Exchanges at Arctic Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Grachev, Andrey; Konopleva, Elena; Cox, Chris; Stone, Robert; Crepinsek, Sara; Shupe, Matthew; Uttal, Taneil

    2015-04-01

    Surface energy fluxes are key to the annual cycle of near-surface and soil temperature and biologic activity in the Arctic. While these energy fluxes are undoubtedly changing to produce the changes observed in the Arctic ecosystem over the last few decades, measurements have generally not been available to quantify what processes are regulating these fluxes and what is determining the characteristics of these annual cycles. The U.S. National Oceanic and Atmospheric Administration has established, or contributed to the establishment of, several terrestrial "supersites" around the perimeter of the Arctic Ocean at which detailed measurements of atmospheric structure, surface fluxes, and soil thermal properties are being made. These sites include Barrow, Alaska; Eureka and Alert, Canada; and Tiksi, Russia. Atmospheric structure measurements vary, but include radiosoundings at all sites and remote sensing of clouds at two sites. Additionally, fluxes of sensible heat and momentum are made at all of the sites, while fluxes of moisture and CO2 are made at two of the sites. Soil temperatures are also measured in the upper 120 cm at all sites, which is deep enough to define the soil active layer. The sites have been operating between 3 years (Tiksi) and 24 years (Barrow). While all sites are located north of 71° N, the summer vegetation range from lush tundra grasses to rocky soils with little vegetation. This presentation will illustrate some of the atmospheric processes that are key for determining the annual energy and temperature cycles at these sites, and some of the key characteristics that lead to differences in, for instance, the length of the summer soil active layer between the sites. Atmospheric features and processes such as cloud characteristics, snowfall, downslope wind events, and sea-breezes have impacts on the annual energy cycle. The presence of a "zero curtain" period, when autumn surface temperature remains approximately constant at the freezing point

  17. Quantification of chemical transport processes from soil to surface runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there is a conceptual understanding on processes governing chemical transport from soil to surface runoff, there are little literature and research results actually quantifying these individual processes. We developed a laboratory flow cell and experimental procedures to quantify chemical ...

  18. Surface Electromyography Signal Processing and Classification Techniques

    PubMed Central

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  19. New NSO Solar Surface Activity Maps

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Harvey, J. W.

    2001-05-01

    Using NSO-Kitt Peak Vacuum Telescope (KPVT) synoptic data, we present several new solar surface activity maps. The motivation is to test conventional wisdom about conditions that are likely to produce solar activity such as flares, coronal mass ejections and high speed solar wind streams. The ultimate goal is to improve real-time, observation-based models for the purpose of predicting solar activity. A large number of maps will eventually be produced based on the wide range of ideas and models of the conditions thought to lead to solar activity events. When data from the new SOLIS instruments becomes available, the range of possible models that can be tested will be greatly expanded. At present, the daily maps include ones that show magnetic field complexity, emerging flux and high speed solar wind sources. As a proxy for local magnetic potential energy, each element of the magnetic complexity map is the distance-weighted rms of the opposing ambient magnetic field. The flux emergence map is the difference between the two most recent absolute magnetic flux images. The solar wind source map is produced from coronal hole area data. The new maps are available on the NSO-Kitt Peak World Wide Web page. This research was supported in part by the Office of Navel Research Grant N00014-91-J-1040. The NSO-Kitt Peak data used here are produced cooperatively by NSF/AURA, NASA/GSFC, and NOAA/SEC.

  20. Surface topography prediction on laser processed tool steel

    NASA Astrophysics Data System (ADS)

    Ukar, E.; Lamikiz, A.; Martínez, S.; López de Lacalle, L. N.

    2012-04-01

    In laser surface treatment the laser beam is used as energy source for surface modification improving aspects such as mechanical properties, tribology or surface texture. Modeling tools have special interest in processes with many variables, like laser surface processing, in order to minimize the tryout testing to find the optimal process parameters. The work presented here focuses on the prediction of the final topography in laser polishing process. By FFT analysis of the surface profile it is possible to get the different frequency components of the initial topography. On the other hand, thermal field simulation was carried out to evaluate the melt duration. Matching this with the spatial frequency damping during process, the reconstruction of the processed topography was obtained.

  1. Evidence of Space Weathering Processes Across the Surface of Vesta

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Blewett, D. T.; Gaffey, M.; Mittlefehldt, D. W.; De sanctis, M.; Reddy, V.; Coradini, A.; Nathues, A.; Denevi, B. W.; Li, J.; McCord, T. B.; Marchi, S.; Palmer, E. E.; Sunshine, J. M.; Filacchione, G.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    relatively strong mafic absorption features, suggesting either a concentration of mafic materials or that materials exposed have been less affected by space weathering products. These combined initial observations indicate some space weathering processes are active in this part of the main asteroid belt, but are highly variable across the surface of Vesta. Such processes include: impacts from wandering asteroidal debris and local mixing at both micro- and macro-scales, irradiation by solar wind and galactic particles, production and distribution of impact breccias or melt products, and local movement of materials to gravity lows (gradual as well as sudden).

  2. Evidence of Space Weathering Processes Across the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; McCord, Thomas B.; Marchi, Simone; Palmer, Eric E.; Sunshine, Jessica M.; Filacchione, Gianrico; Ammannito, Eleonora; Raymond, Carol A.; Russell, Christopher T.

    2011-01-01

    relatively strong mafic absorption features, suggesting either a concentration of mafic materials or that materials exposed have been less affected by space weathering products. These combined initial observations indicate some space weathering processes are active in this part of the main asteroid belt, but are highly variable across the surface of Vesta. Such processes include: impacts from wandering asteroidal debris and local mixing at both micro- and macro-scales, irradiation by solar wind and galactic particles, production and distribution of impact breccias or melt products, and local movement of materials to gravity lows (gradual as well as sudden).

  3. Titan's Surface Diversity and Ongoing Processes-A Review

    NASA Astrophysics Data System (ADS)

    Soderblom, Laurence A.

    2012-04-01

    Titan’s landscapes exhibit a wealth of surface diversity that rivals the glossary for a textbook on Earth’s geomorphological styles and geological processes. Long before Cassini-Huygens’ arrival, evidence suggested that Titan’s surface might harbor liquid hydrocarbons, methane and ethane, in the form of lakes, seas, or even oceans. And, as the surface gradually became visible to the Huygens Probe on its slow descent, it became clear that liquids had been quite active in sculpting and dissecting the terrains: a network of dendritic channels densely drapes the highlands located a few kilometers north of the landing site. This led Tomasko and colleagues to lead off the title of their Huygens report with “Rain, winds and haze …” And not only were winds responsible for the Probe’s erratic change in direction as it neared the surface but soon we discovered that they also drive vast seas of longitudinal dunes eastward, wrapping the equatorial zone. Current thinking is that the dunes consist of coarse grains of solid hydrocarbons, perhaps mixed with water ice, that saltate in the slow-moving dense atmosphere. And, although we did not find vast methane-ethane oceans, we did find polar lakes and seas, vast in the north and sparse in the south. Elsewhere impact, tectonic, and, more arguably, volcanic features appear to be ubiquitous. The subjects of Titan’s geology continue to cascade into a host of new details of the subjects of process and geomorphology; the collection terms, familiar to terrestrial science, continues to grow. References: Tomasko, M. G., et al. (2005) “Rain, winds and haze during the Huygens probe’s descent to Titan’s surface”. Nature, Vol. 438, pp.775-778.

  4. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  5. Modeling of surface microtopography and its impacts on hydrologic processes

    NASA Astrophysics Data System (ADS)

    Habtezion, Noah Lebassi

    Understanding the impacts of surface microtopography on hydrologic processes is critical. The objectives of this thesis research are: (1) to evaluate the effects of DEM resolution on microtopographic characteristics, hydrologic connectivity, and modeling of hydrologic processes; and (2) to assess the influences of multiple rainfall events on surface and subsurface hydrologic processes with the use of a puddle-to-puddle (P2P) modeling system. The change in DEM resolution has a significant effect on how surface microtopography is depicted, which in turn alters the hydrologic response of a topographic surface. The smoothing of reduced DEM resolution tends to enhance hydrologic connectivity, reduce the depression storage and infiltration, and increase surface runoff. Temporal rainfall distribution results in spatio-temporal variations in soil water dynamics, depression storage, infiltration, hydrologic connectivity, and surface runoff. The reduction in ponding time and infiltration, and the enhancement of hydrologic connectivity further caused earlier and greater surface runoff generation.

  6. Multiphonon processes in atom-surface scattering

    NASA Astrophysics Data System (ADS)

    Celli, V.; Himes, D.; Tran, P.; Toennies, J. P.; Wöll, Ch.; Zhang, G.

    1991-06-01

    Helium-atom time-of-flight spectra taken at 69-meV incident energy in scattering from Pt(111) show energy-loss peaks that cannot be assigned to one-phonon transitions, but are qualitatively explained by simple formulas for the multiphonon processes in the classical limit. This assignment is supported by trajectory-approximation calculations that correctly reproduce the experimentally determined density of states of Pt(111).

  7. Energetics of active transport processes.

    PubMed

    Essig, A; Caplan, S R

    1968-12-01

    Discussions of active transport usually assume stoichiometry between the rate of transport J(+) and the metabolic rate J(r). However, the observation of a linear relationship between J(+) and J(r) does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J(+) and J(r) linear functions of the electrochemical potential difference, -X(+), and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Deltapsi)(I=0) and the natural limits, level flow (J(+))(X+=0), and static head X(0) (+) = (X(+))(J+=0). With high degrees of coupling -X(0) (+)/F approaches the electromotive force E(Na) (Ussing); -X(0) (+)/F cannot be identified with ((RT/F) ln f)(X+=0), where f is the flux ratio. The efficiency eta = -J(+)X(+)/J(r)A is of significance only when appreciable energy is being converted from one form to another. When either J(+) or -X(+) is small eta is low; the significant parameters are then the efficacies epsilon(J+) = J(+)/J(r)A and epsilon(X+) = -X(+)/J(r)A, respectively maximal at level flow and static head. Leak increases both J(+) and epsilon(J+) for isotonic saline reabsorption, but diminishes -X(0) (+) and epsilon(Xfemale symbol). Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows. PMID:5713453

  8. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1984-01-01

    All the investigations which were performed employed in one way or another a computer simulation technique based on atomistic level considerations. In general, three types of simulation methods were used for modeling systems with discrete particles that interact via well defined potential functions: molecular dynamics (a general method for solving the classical equations of motion of a model system); Monte Carlo (the use of Markov chain ensemble averaging technique to model equilibrium properties of a system); and molecular statics (provides properties of a system at T = 0 K). The effects of three-body forces on the vibrational frequencies of triatomic cluster were investigated. The multilayer relaxation phenomena for low index planes of an fcc crystal was analyzed also as a function of the three-body interactions. Various surface properties for Si and SiC system were calculated. Results obtained from static simulation calculations for slip formation were presented. The more elaborate molecular dynamics calculations on the propagation of cracks in two-dimensional systems were outlined.

  9. Process for laser machining and surface treatment

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2004-10-26

    An improved method and apparatus increasing the accuracy and reducing the time required to machine materials, surface treat materials, and allow better control of defects such as particulates in pulsed laser deposition. The speed and quality of machining is improved by combining an ultrashort pulsed laser at high average power with a continuous wave laser. The ultrashort pulsed laser provides an initial ultrashort pulse, on the order of several hundred femtoseconds, to stimulate an electron avalanche in the target material. Coincident with the ultrashort pulse or shortly after it, a pulse from a continuous wave laser is applied to the target. The micromachining method and apparatus creates an initial ultrashort laser pulse to ignite the ablation followed by a longer laser pulse to sustain and enlarge on the ablation effect launched in the initial pulse. The pulse pairs are repeated at a high pulse repetition frequency and as often as desired to produce the desired micromachining effect. The micromachining method enables a lower threshold for ablation, provides more deterministic damage, minimizes the heat affected zone, minimizes cracking or melting, and reduces the time involved to create the desired machining effect.

  10. Surface geomorphology of Jupiter Family Comets: A geologic process perspective

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Lisse, C. M.; A'Hearn, M.

    2013-02-01

    Recent spacecraft encounters with Jupiter Family Comets have revealed markedly diverse surface morphologies: Wild 2 is dominated by steep-walled and flat-floored depressions, Tempel 1 is relatively smooth and exhibits evidence for flows and layering, while Hartley 2 is bi-lobed with knobby terrain at its ends and a much smoother terrain in its middle. This diversity of surface morphologies has been interpreted as an evolutionary sequence (Belton, M.J.S. [2010]. Icarus 210, 881-897) where Jupiter Family Comets evolve from Wild 2 morphology, then to Tempel 1 morphology, and finally to Hartley 2 morphology. We propose instead that the diversity of surface morphology reflects geologic processing with diverse outcomes. In addition to impact cratering, we consider surface modification driven by the cometary activity which is responsible for gas and dust production. We consider eolian erosion that may be driven by the outflow of cometary vapor, making use of information from wind tunnel experiments and in situ studies of eolian erosion on Mars. We adopt the model of van der Waals cohesion recently proposed by Scheeres et al. (Scheeres, D., Hartzell, C., Sanchez, P., Swift, M. [2010]. Icarus 210, 968-984) and find that the average CO2 vapor outflow flux at Hartley 2 of 0.95 × 1017 cm-2 s-1 implies wind speeds sufficient to mobilize particles of 10 cm size even close to the icy reservoirs where the vapor is evolved, below the surface. We suggest that particles are mobilized and entrained in flows within sub-surface outflow channels, emerging to be readily lifted into the coma, and fragmenting in the process. Although water production from Hartley 2 is greater, most of it is evolved in the coma from icy particles and does not contribute to eolian erosion of the nucleus. On the other hand, the much lower vapor outflow flux at Tempel 1 of 4 × 1014 cm-2 s-1 is insufficient, in the present model, to mobilize particles but is consistent with generating repeated fluidization

  11. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1983-01-01

    Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.

  12. Thermal and Nonthermal Processes on Single Crystal Transition Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Xingcai

    This dissertation contains three parts. Part I, "Fundamentals", provides concise description of concepts, detailed accounts of historic studies, and extensive reviews of current activities. Chapter 1 deals with thermal processes (adsorption and desorption), and Chapter 2 with nonthermal processes induced by electrons and by photons. Part II, "Experimental" (Chapter 3), describes the ultrahigh vacuum apparatus, surface science techniques, and procedures for single crystal preparation and gas exposure. Part III, "Results", is a collection of ten selected publications in refereed journals. Each chapter is self-contained. Thermal desorption of CO from Pd(111) (Chapter 4) has been studied by temperature programmed desorption. It is demonstrated that the effective desorption kinetic parameters extracted from desorption spectra are correlated with the adlayer structures and dependent on the sizes of ordered domains--a nonequilibrium effect. Site exchange of CO (Chapter 5) and site retention of O_2 (Chapter 6) on Pt(112) during thermal desorption are observed with isotope labeled adsorption on specific sites--steps or terraces. The adsorption and desorption kinetics of O _2 are compared on Pt(111) and Pt(112) surfaces (Chapter 7). The mechanisms of adsorption and the effect of well-defined defects are elucidated. O_2 adsorbed on Pd(111) is studied with thermal activation (Chapter 8), electron impact (Chapter 9), and photon irradiation (Chapter 10 -12). Various thermal processes are delineated with isotopic mixing experiments. Electron-induced conversion, dissociation, and desorption processes are observed. Cross sections (10^{-17} cm^2 ) and their electron energy dependences (0-500 eV) are measured. A resonance-enhanced desorption of atomic oxygen from Pd(111) is found at ~10 eV. Photon-induced conversion, dissociation, and desorption processes are observed. Cross sections (10^ {-19} cm^2) and photon energy dependence (1.4-5.4 eV) are extracted. Possible mechanisms are

  13. Surface active properties of chitosan and its derivatives.

    PubMed

    Elsabee, Maher Z; Morsi, Rania Elsayed; Al-Sabagh, A M

    2009-11-01

    This review discusses the definition of surface active agents and specifically natural polymeric surface active agents. Chitosan by itself was found to have weak surface activity since it has no hydrophobic segments. Chemical modifications of chitosan could improve such surface activity. This is achieved by introducing hydrophobic substituents in its glucosidic group. Several examples of chitosan derivatives with surfactant activity have been surveyed. The surface active polymers form micelles and aggregates which have enormous importance in the entrapment of water-insoluble drugs and consequently applications in the controlled drug delivery and many biomedical fields. Chitosan also interacts with several substrates by electrostatic and hydrophobic interactions with considerable biomedical applications. PMID:19682870

  14. Enhancement of surface processes with low energy ions

    SciTech Connect

    Chason, E.

    1995-05-01

    Continuing trends in device fabrication towards smaller feature sizes, lower thermal budgets and advanced device structures put greater emphasis on controlling the surface structure and reactivity during processing. Since the evolution of the semiconductor surface during processing is determined by the interaction of multiple surface processes, understanding how to control and modify these processes on the atomic level would enable us to exert greater control over the resulting morphology and composition. Low energy ions represent one method for bringing controlled amounts of energy to the surface to modify surface structure and kinetics. The kinetic energy deposited by the ions can break bonds and displace atoms, creating defect populations significantly in excess of the equilibrium concentration. Consequences of these non-equilibrium conditions include the enhancement of surface kinetic processes, increased surface reactivity and formation of metastable structures and compositions. These effects can be beneficial (ion enhanced mass transport can lead to surface smoothing) or they can be detrimental (residual defects can degrade electrical properties or lead to amorphization). The net results depend on a complex balance that depends on many parameters including ion mass, energy, flux and temperature. In the following section, we review progress both in our fundamental understanding of the production of low-energy ion-induced defects and in the use of low energy ions to enhance surface morphology, stimulate low temperature growth and obtain non-equilibrium structures and compositions.

  15. Particle engineering in pharmaceutical solids processing: surface energy considerations.

    PubMed

    Williams, Daryl R

    2015-01-01

    During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance. PMID:25876912

  16. In-process characterization of surface topography changes during nitration

    NASA Astrophysics Data System (ADS)

    Ciossek, Andreas; Lehmann, Peter; Patzelt, Stefan; Goch, Gert

    2000-09-01

    The nitration process influences the mechanical and chemical properties of steel and changes the near-surface characteristics. The nitrided surfaces are less sensitive to corrosive fluids and show a better stability against abrasion. Unfortunately, during treatment pores emerge at the surface. In general this is not desired, since the pores reduce the wear stability. The change of the near-surface characteristics also leads to a remodeling of the surface topography. For example, ground, smooth surfaces show an increased but isotropic roughness after nitration. During the recent years, various speckle techniques for an in-process characterization of surface topography have been improved significantly. One of these promising techniques is the method of trichromatic speckle autocorrelation. Its measuring principle is based on trichromatic light scattering and enables to determine an integral parameter of the surface roughness by the evaluation of the speckle elongation. Especially in the case of nitration, where the specimen is located in a stove filled with ammonia at a temperature of 580 degrees Celsius, this technique offers an in-processing monitoring of surface topography changes from outside the stove. In this paper, the in-process characterization of surface topography by speckle autocorrelation will be introduced. In this context an algorithm has been developed, which allows to estimate the position of the optical axis within the speckle pattern and therefore to determine the surface roughness as well as the local inclination of isotropic surfaces. An important goal of the current research is to realize a reliable process control based on the speckle autocorrelation, that is necessary to produce nitrided surfaces without pores in the compound layer and with good abrasive and corrosive resistance.

  17. ACTIVATED CARBON PROCESS FOR TREATMENT OF WASTEWATERS CONTAINING HEXAVALENT CHROMIUM

    EPA Science Inventory

    The removal of hexavalent chromium, Cr(VI), from dilute aqueous solution by an activated carbon process has been investigated. Two removal mechanisms were observed; hexavalent chromium species were removed by adsorption onto the interior carbon surface and/or through reduction to...

  18. Effect of Surface-Active Pseudomonas spp. on Leaf Wettability

    PubMed Central

    Bunster, Lillian; Fokkema, Nyckle J.; Schippers, Bob

    1989-01-01

    Different strains of Pseudomonas putida and P. fluorescens isolated from the rhizosphere and phyllosphere were tested for surface activity in droplet cultures on polystyrene. Droplets of 6 of the 12 wild types tested spread over the surface during incubation, and these strains were considered surface active; strains not showing this reaction were considered non-surface active. Similar reactions were observed on pieces of wheat leaves. Supernatants from centrifuged broth cultures behaved like droplets of suspensions in broth; exposure to 100°C destroyed the activity. Average contact angles of the supernatants of surface-active and non-surface-active strains on polystyrene were 24° and 72°, respectively. The minimal surface tension of supernatants of the surface-active strains was about 46 mN/m, whereas that of the non-surface-active strains was 64 mN/m (estimations from Zisman plots). After 6 days of incubation, wheat flag leaves sprayed with a dilute suspension of a surface-active strain of P. putida (WCS 358RR) showed a significant increase in leaf wettability, which was determined by contact angle measurements. Increasing the initial concentration of bacteria and the amount of nutrients in the inoculum sprayed on leaves reduced the contact angles from 138° on leaves treated with antibiotics (control) to 43° on leaves treated with surface-active bacteria. A closely related strain with no surface activity on polystyrene did not affect leaf wettability, although it was present in densities similar to those of the surface-active strain. Nutrients alone could occasionally also increase leaf wettability, apparently by stimulating naturally occurring surface-active bacteria. When estimating densities of Pseudomonas spp. underneath droplets with low contact angles, it appeared that populations on leaves treated with a surface-active strain could vary from about 104 to 106 CFU cm−2, suggesting that the surface effect may be prolonged after a decline of the

  19. Processed sweet corn has higher antioxidant activity.

    PubMed

    Dewanto, Veronica; Wu, Xianzhong; Liu, Rui Hai

    2002-08-14

    Processed fruits and vegetables have been long considered to have lower nutritional value than the fresh produce due to the loss of vitamin C during processing. Vitamin C in apples has been found to contribute <0.4% of total antioxidant activity, indicating most of the activity comes from the natural combination of phytochemicals. This suggests that processed fruits and vegetables may retain their antioxidant activity despite the loss of vitamin C. Here it is shown that thermal processing at 115 degrees C for 25 min significantly elevated the total antioxidant activity of sweet corn by 44% and increased phytochemical content such as ferulic acid by 550% and total phenolics by 54%, although 25% vitamin C loss was observed. Processed sweet corn has increased antioxidant activity equivalent to 210 mg of vitamin C/100 g of corn compared to the remaining 3.2 mg of vitamin C in the sample that contributed only 1.5% of its total antioxidant activity. These findings do not support the notion that processed fruits and vegetables have lower nutritional value than fresh produce. This information may have a significant impact on consumers' food selection by increasing their consumption of fruits and vegetables to reduce the risk of chronic diseases. PMID:12166989

  20. Control of physical properties on solid surface via laser processing

    NASA Astrophysics Data System (ADS)

    Yonemoto, Yukihiro; Nishimura, Akihiko

    2012-07-01

    In a safety operation of a nuclear power plant, vapor conditions such as a droplet or liquid membrane toward a solid surface of a heat exchanger and reactor vessel is important. In the present study, focusing on the droplet, the wettability on solid surface and surface free energy of solid are evaluated. In addition, wettability on a metal plate fabricated by laser processing is also considered for the nuclear engineering application.

  1. Adaptive control of surface finish in automated turning processes

    NASA Astrophysics Data System (ADS)

    García-Plaza, E.; Núñez, P. J.; Martín, A. R.; Sanz, A.

    2012-04-01

    The primary aim of this study was to design and develop an on-line control system of finished surfaces in automated machining process by CNC turning. The control system consisted of two basic phases: during the first phase, surface roughness was monitored through cutting force signals; the second phase involved a closed-loop adaptive control system based on data obtained during the monitoring of the cutting process. The system ensures that surfaces roughness is maintained at optimum values by adjusting the feed rate through communication with the PLC of the CNC machine. A monitoring and adaptive control system has been developed that enables the real-time monitoring of surface roughness during CNC turning operations. The system detects and prevents faults in automated turning processes, and applies corrective measures during the cutting process that raise quality and reliability reducing the need for quality control.

  2. An Atomistic View on Fundamental Transport Processes on Metal Surfaces

    SciTech Connect

    Giesen, Margret

    2007-06-14

    In this lecture I present an introduction to the time-resolved observation of atomic transport processes on metal surfaces using scanning tunneling microscopy video sequences. The experimental data is analyzed using scaling law concepts known from statistical thermodynamics. I will present studies from metal surfaces in vacuum as well as in electrolyte.

  3. Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility

    NASA Astrophysics Data System (ADS)

    Sørensen, Mads R.; Jacobsen, Karsten W.; Jónsson, Hannes

    1996-12-01

    We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3-5 Å from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip are reduced. This can cause adatoms to follow the tip as it is moved over the surface.

  4. Protein immobilization and detection on laser processed polystyrene surfaces

    SciTech Connect

    Sarantopoulou, Evangelia; Kollia, Zoe; Palles, Dimitrios; Spyropoulos-Antonakakis, Nikolaos; Cefalas, Alkiviadis-Constantinos; Petrou, Panagiota S.; Kakabakos, Sotirios

    2011-09-15

    The bovine serum albumin (BSA)-polystyrene (PS) interface layer is laser photo activated at 157 nm for site selective multiple target-protein immobilization. The 5-15 nm photon induced interface layer has different chemical, wetting, and stiffness properties than the PS photon processed surface. The irradiated areas exhibit target-protein binding, followed by localized probe-target protein detection. The photon induced chemical modification of the BSA-PS interface layer is identified by: (1) Morphological, imaging, and analysis of surface parameters with atomic force microscopy, (2) spectroscopic shift (4 cm{sup -1}), of the amide I group and formation of new C=N, NH{sub 2}, C-O, C=O, and O-C=O groups following irradiation, identified with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and (3) the different hydrophilic/hydrophobic and force-distance response of the bare PS and BSA-PS surfaces. Near field edge diffraction (Fresnel) fluorescence imaging specifies the threshold photon energy and the fluence required to optically detect the protein binding on the photon induced BSA-PS interface layer. By approximating the Fresnel integrals with analytical functions, the threshold photon energy and the fluence are expressed as the sum of zero, first, and second order harmonic terms of two characteristic diffracted modes and they are specified to be 8.73x10{sup -9} Jand623 J m{sup -2}, respectively. Furthermore, a bioarray of three probe-target proteins is fabricated with 1.5 {mu}m spatial resolution using a 157 nm laser microstepper. The methodology eliminates the use of intermediate polymer layers between the blocking BSA protein and the PS substrate in bioarray fabrication.

  5. Surface chemistry relevant to material processing for semiconductor devices

    NASA Astrophysics Data System (ADS)

    Okada, Lynne Aiko

    Metal-oxide-semiconductor (MOS) structures are the core of many modern integrated circuit (IC) devices. Each material utilized in the different regions of the device has its own unique chemistry. Silicon is the base semiconductor material used in the majority of these devices. With IC device complexity increasing and device dimensions decreasing, understanding material interactions and processing becomes increasingly critical. Hsb2 desorption is the rate-limiting step in silicon growth using silane under low temperature conditions. Activation energies for Hsb2 desorption measured during Si chemical vapor deposition (CVD) versus single-crystal studies are found to be significantly lower. It has been proposed that defect sites on the silicon surface could explain the observed differences. Isothermal Hsb2 desorption studies using laser induced thermal desorption (LITD) techniques have addressed this issue. The growth of low temperature oxides is another relevant issue for fabrication of IC devices. Recent studies using 1,4-disilabutane (DSB) (SiHsb3CHsb2CHsb2SiHsb3) at 100sp°C in ambient Osb2 displayed the successful low temperature growth of silicon dioxide (SiOsb2). However, these studies provided no information about the deposition mechanism. We performed LITD and Fourier transform infrared (FTIR) studies on single-crystal and porous silicon surfaces to examine the adsorption, decomposition, and desorption processes to determine the deposition mechanism. Titanium nitride (TiN) diffusion barriers are necessary in modern metallization structures. Controlled deposition using titanium tetrachloride (TiClsb4) and ammonia (NHsb3) has been demonstrated using atomic layered processing (ALP) techniques. We intended to study the sequential deposition method by monitoring the surface intermediates using LITD techniques. However, formation of a Cl impurity source, ammonium chloride (NHsb4sp+Clsp-), was observed, thereby, limiting our ability for effective studies. Tetrakis

  6. Late-stage orogenic processes: How to link surface motion with distinct lithospheric processes

    NASA Astrophysics Data System (ADS)

    Neubauer, F.; Heberer, B.

    2009-04-01

    There is still a lack of knowledge of surface expression caused by deep-seated lithospheric processes, and how such processes could be distinguished from other, e.g. climate-induced, surface processes like denudation. Surface expressions of deep-seated lithospheric processes in convergent settings are expected to have been long-lived and to show large wave-length structures creating a dynamic topography (Wortel and Spakman, 2000; Cloetingh and Ziegler, 2007). Resulting continent-continent collisional orogens are bivergent, and the principal vergency of collisional orogens is controlled by the previous subduction of oceanic lithosphere (Beaumont et al., 1996). A number of tectonic processes are shown to be active during late orogenic phases and these processes particularly result in specific patterns of surface uplift and denudation of the evolving orogens as well as subsidence in the associated foreland basin. A number of these processes are not fully understood. Late-stage orogenic processes include, among others, slab break-off, slab delamination respectively of lithospheric roots, back-thrusting, tectonic indentation and consequent orogen-parallel lateral extrusion and formation of Subduction-Transform Edge Propagator (STEP) faults acting on the subducting lithosphere (Molnar and Tapponnier, 1975; Wortel and Spakman, 2000; Ratschbacher et al., 1991; Govers and Wortel, 2005). Here, we discuss these processes mainly in terms of their near-surface geological expressions within the orogen and the associated foreland basins, and how these processes could be distinguished by such geological features. We also show distinct theoretical models applied to the arcuate Alpine-Balkan-Carpathian-Dinaric system, which is driven by the oblique convergence of Africa-Europe. Slab-break-off results in lateral orogen-parallel migration of sharp subsidence in a linear belt in front of the slab window, coupled subsidence and subsequent uplift/basin inversion of peripheral foreland

  7. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  8. Quantitative evolution of volcanic surfaces affected by erosional processes

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Boillot-Airaksinen, Kim; Germa, Aurélie; Lavigne, Franck

    2016-04-01

    Variations through time of erosion dynamics, a key point to investigate correlation between climates and landform evolution, still remains poorly documented. One of the main issue in this type of study is the difficulty in determining for how long the erosion has operated. For this purpose, volcanic contexts are particularly suitable for defining the temporal dynamics governing erosion since the age of volcanic activity also constrains the age of emplacement of the surface today eroded, and thus the erosion duration. Furthermore, quantitative analysis of river profiles offers the opportunity to discriminate, among the wide variety of geological phenomena influencing erosion, their respective influence. Quantification of erosion processes and constrain of their signature on reliefs can be addressed by a morphometric approach of river profiles in volcanic environment through the analysis of digital topography (DEM). Break in slope zones, the so-called knickpoints, are usually related to a retreat of the point between the relict channel, upstream, and the adjusted channel, downstream. They are induced by either a lithological contrast, a change in the base level, uplift or eustatism, or a rejuvenation of the age of the volcanic surface. The stream long-profile and its watershed is also investigated by their concavity and hypsometric indexes to determine for how long the complexity and its heterogeneity along the valley incision remain visible. The present study focusses on the erosion of volcanoes in the Lesser Antilles, Reunion Island and Lombok Island (Indonesia). All located in tropical environments, these volcanoes offer a wide diversity of age (30 - 0 Ma) and lithology for investigating the respective influence of geological processes that have induced a large variety of shapes and volcanic history that we try to correlate to geometry of river profiles.

  9. Chemical surface modification of fluorocarbon polymers by excimer laser processing

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Yabe, Akira

    1996-04-01

    Surface of poly(tetrafluoroethylene) [PTFE] film was modified chemically by an ArF excimer laser-induced reaction in a hydrazine gas atmosphere. The polymer surface modified upon the irradiation of 1000 pulses at 27 mJ cm -2, which was a fairly lower fluence than the ablation threshold for usual polymer films, showed hydrophilicity (contact angle for water: 30°) enough to be metallized by chemical plating. The mechanism for chemical surface modification was investigated by FTIR, XPS, and SIMS analyses. The laser-treated PTFE film was metallized by a chemical plating process. These processes will be used to fabricate printed wiring boards for high frequency electronics.

  10. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  11. Apparatus and process for the surface treatment of carbon fibers

    DOEpatents

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  12. Fractionation of Zr and Hf in surface processes

    SciTech Connect

    Chyi, L.L.; Garg, A.N.

    1985-01-01

    Zircons from a pegmatite near Tuxedo, North Carolina were crushed and treated with different reagents under different conditions. The treated and untreated samples were determined for Zr and Hf with radiochemical neutron activation analysis. Zircons treated with 50% sulfuric acid were having lowered Zr content and Zr/Hf ratio. The conclusions are that a portion of Zr and Hf in zircons is sensitive to leaching, and Zr appears to be selectively leached over Hf. The conclusions of this work support the observations of small dissolutions of Zr in both acidic podzolic soils and in alkaline laterites, of lower Zr content in soils on glacial drift, and of lower Zr/Hf ratios in loess deposits from various parts of the world. The fractionation of Zr and Hf in surface processes appears to be due to selective leaching. Weakening of Zr-O over Hf-O bonds in zircon by fission projectiles is postulated to be the viable process. The observed fractionation from leaching experiments suggest that areas receiving leachates such as swamps, lakes, and oceans should have high to very high Zr/Hf ratios preserved in rocks. High ratios are found in the Springfield (No. 9) Coal, the Green River Shale, and various limestones. High ratio is also found in orchard leaves, which grow by absorbing leachate from soil.

  13. Market-based control of active surfaces

    NASA Astrophysics Data System (ADS)

    Berlin, Andrew A.; Hogg, Tad; Jackson, Warren B.

    1998-12-01

    This paper describes a market-based approach to controlling a smart matter-based object transport system, in which an array of distributed air jets applies forces to levitate and control the motion of a planar object. In the smart matter regime, the effects of spatial and temporal variation of operating parameters among a multiplicity of sensor, actuators, and controllers make it desirable for a control strategy to exhibit a minimal dependence on system models, and to be able to arbitrate among conflicting goals. A market-based strategy is introduced that aggregates the control requirements of multiple relatively simple local controllers, each of which seeks to optimize the performance of the system within a limited spatial and temporal range. These local controllers act as the market's consumers, and two sets of distributed air jets act as the producers. Experiments are performed comparing the performance of the market-based strategy to a near-optimal model-derived benchmark, as well as to a hand-tuned PD controller. Results indicate that even though the local controllers in the market are not based on a detailed model of the system dynamics, the market is able to effectively approximate the performance of the model-based benchmark. In certain specialized cases, such as tracking a step trajectory, the performance of the market surpasses the performance of the model-based benchmark by balancing the needs of conflicting control goals. A brief overview of the active surface smart matter prototype being developed at Xerox PARC that is the motivation behind this work is also presented.

  14. Surface engineering of glazing materials and structures using plasma processes

    SciTech Connect

    Anders, Andre; Monteiro, Othon R.

    2003-04-10

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes.

  15. Combining Noise Factors and Process Parameters in a Response Surface

    SciTech Connect

    Wyckoff, J.J.

    1998-03-19

    This presentation covers the strategy and analysis of an experiment to characterize a gas tungsten arc welding process. The experiment combined four uncontrolled noise factors and four controlled process parameters. A nontraditional response surface design was employed. Multiple responses were modeled. Optimal settings for the process parameters to successfully weld the widest range of the pertinent product features were identified. Thus, the process was made ''robust'' against ''noise'' factors. Comparisons are made between the experimental and analytical approach taken versus the Taguchi style of experimentation and analysis. This comparison is mainly done with respect to the information gained, such as product design criteria, incoming material specifications, and process adjustments for nonconforming material.

  16. Electrochemically active species and multielectron processes in ionic melts

    NASA Astrophysics Data System (ADS)

    Shapoval, Viktor I.; Solov'ev, Veniamin V.; Malyshev, Viktor V.

    2001-02-01

    The model concepts for the mechanisms of formation of electrochemically active species and multielectron processes in ionic nitrate-, carbonate-, boron- and titanium-containing fluoride melts are generalised. The fundamental importance of the acid-base properties of a melt in the mechanism of formation of electrochemically active species is shown for nitrate- and carbonate-containing melts. This fact is confirmed by electrochemical measurements and by calculations of force constants for oxyanions. The optimum form of electrochemically active species has been established; their reduction abilities depend on the cationic composition of a melt, the adsorption properties of the electrode surface and the electric field strength. The bibliography includes 218 references.

  17. Dynamical processes of transfer at the sea surface

    NASA Astrophysics Data System (ADS)

    Thorpe, S. A.

    This review describes the dynamical processes of transport from, and immediately below, the sea surface, particularly those which involve convergence and the separation of flow, and which result in the renewal of surface water at horizontal scales ranging from millimeters to hundreds of meters. Turbulence at or near the sea surface derives from several processes - breaking waves and the bubbles they may produce, precipitation and spray, Langmuir circulation and thermal convection, and turbulence which is internally generated by shear. Interest in the subject derives from the requirements to predict air-sea fluxes of heat, momentum and gases, to develop climate models, to interpret satellite images of the sea surface, including those of ship wakes, and to predict upper ocean structure, including mixing layer depth, in models of phytoplankton blooms and acoustic propagation. The general effect of subsurface turbulence on the sea surface, and the effects of surfactants, is described, and each process is discussed in turn. Laboratory experiments and theoretical studies have contributed particularly to the understanding of the interaction of vortices and turbulence with the surface and to the consequences of breaking waves. They point to the development of instability in the flow ahead of steep waves carrying parasitic capillary waves, which may contribute to the onset of flow separation on the leading face of the waves and the development of a rotor, or ‘roller’, below the wave crest, shown most clearly in the pattern of streamlines in a frame of reference moving forward with the wave. The conditions near the flow separation line on the wave surface ahead of the rotor may be similar to those produced by vortices approaching a free surface. Detailed observation of breaking waves at sea is lacking, but some progress has been made using acoustics to detect the clouds of subsurface bubbles formed by the larger breakers and the depth to which they penetrate. The

  18. Active control of compressible flows on a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.; Turkel, E.

    1985-01-01

    The effect of localized, time periodic surface heating and cooling over a curved surface is studied. This is a mechanism for the active control of unstable disturbances by phase cancellation and reinforcement. It is shown that the pressure gradient induced by the curvature significantly enhances the effectiveness of this form of active control. In particular, by appropriate choice of phase, active surface heating can completely stabilize and unstable wave.

  19. Status and directions of modified tribological surfaces by ion processes

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1988-01-01

    An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.

  20. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  1. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  2. Report of the panel on the land surface: Process of change, section 5

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.

    1991-01-01

    The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.

  3. Novel Psbnd O codoped g-C3N4 with large specific surface area: Hydrothermal synthesis assisted by dissolution-precipitation process and their visible light activity under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Ma, Huiqiang; Li, Yang; Li, Shuang; Liu, Na

    2015-12-01

    Novel Psbnd O codoped g-C3N4 with large specific surface area is hydrothermal synthesized assisted by dissolution-precipitation process. The XRD, UV-vis, SEM and PL results indicate that the introduction of phosphorus and oxygen enhances the specific surface area of graphitic carbon nitride (from 12.8 to 92.5 m2 g-1), restrains the crystal growth, decreases the band gap energy (from 2.68 to 2.51 eV) and increases the separation efficiency of photogenerated electrons and holes, which increases the anoxic photocatalytic RhB degradation constants by approximately 27 times under visible light. Oxygen doping not only promotes the adsorption ability of reactant but also captures the photogenerated electrons to produce photogenerated holes for RhB degradation under anoxic condition. This study provides new insight into the design and fabrication of oxygen-free photocatalysts.

  4. Vitronectin-binding staphylococci enhance surface-associated complement activation.

    PubMed Central

    Lundberg, F; Lea, T; Ljungh, A

    1997-01-01

    Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn. PMID:9038294

  5. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  6. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection

    PubMed Central

    2014-01-01

    Background Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Methods Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. Results 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Conclusions Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice. PMID:24447780

  7. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  8. TiN surface dynamics: role of surface and bulk mass transport processes

    SciTech Connect

    Bareno, J.; Swiech, W.; Petrova, V.; Petrov, I.; Greene, J. E.; Kodambaka, S.; Khare, S. V.

    2007-02-09

    Transition-metal nitrides, such as TiN, have a wide variety of applications as hard, wear-resistant coatings, as diffusion barriers, and as scratch-resistant and anti-reflective coatings in optics. Understanding the surface morphological and microstructural evolution of these materials is crucial for improving the performance of devices. Studies of surface step dynamics enable determination of the rate-limiting mechanisms, corresponding surface mass transport parameters, and step energies. However, most models describing these phenomena are limited in application to simple elemental metal and semiconductor surfaces. Here, we summarize recent progress toward elucidating the interplay of surface and bulk diffusion processes on morphological evolution of compound surfaces. Specifically, we analyze the coarsening/decay kinetics of two- and three-dimensional TiN(111) islands and the effect of surface-terminated dislocations on TiN(111) steps.

  9. New journal to provide venue for rigorous surface process work

    NASA Astrophysics Data System (ADS)

    Grant, Shermonta

    Robert S. Anderson, an AGU member (Hydrology) since 1987, has been selected as editor of a new section of JGR, titled Earth Surface, scheduled to begin in the spring of 2003. This new section will focus on surficial processes; in particular, the physical, chemical, and biological processes that affect the form and function of the surface of the solid Earth over all temporal and spatial scales.Anderson told Eos, "I want this journal to serve as an outlet for science that applies rigorous quantitative methods to surface process problems; and through publication, to promote this approach to such problems," emphasizing that the section could be a primary venue for science performed by individuals or small teams. Currently articles related to this discipline are printed in various publications, including some AGU journals. But with an increase in the number of scientists working in this area, a publication designated to this subject is critical.

  10. System and process for detecting and monitoring surface defects

    NASA Technical Reports Server (NTRS)

    Mueller, Mark K. (Inventor)

    1994-01-01

    A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.

  11. Object silhouettes and surface directions through stereo matching image processing

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kumagai, Hideo

    2015-09-01

    We have studied the object silhouettes and surface direction through the stereo matching image processing to recognize the position, size and surface direction of the object. For this study we construct the pixel number change distribution of the HSI color component level, the binary component level image by the standard deviation threshold, the 4 directional pixels connectivity filter, the surface elements correspondence by the stereo matching and the projection rule relation. We note that the HSI color component level change tendency of the object image near the focus position is more stable than the HSI color component level change tendency of the object image over the unfocused range. We use the HSI color component level images near the fine focused position to extract the object silhouette. We extract the object silhouette properly. We find the surface direction of the object by the pixel numbers of the correspondence surface areas and the projection cosine rule after the stereo matching image processing by the characteristic areas and the synthesized colors. The epipolar geometry is used in this study because a pair of imager is arranged on the same epipolar plane. The surface direction detection results in the proper angle calculation. The construction of the object silhouettes and the surface direction detection of the object are realized.

  12. Speech perception as an active cognitive process

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy. PMID

  13. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  14. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  15. Requirements for extravehicular activities on the lunar and Martian surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Mariann F.; Schentrup, Susan M.

    1990-01-01

    Basic design reference requirements pertinent to EVA equipment on lunar and martian surfaces are provided. Environmental factors affecting surface EVA are analyzed including gravity, dust, atmospheric conditions, thermal gradients, lightning conditions, and radiation effects, and activities associated with surface EVA are outlined. Environmental and activity effects on EVA equipment are assessed, and emphasis is placed on planetary surface portable life support systems (PLSS), suit development, protection from micrometeoroids, dust, and radiation, food and water supplies, and the extravehicular mobility-unit thermal-control system. Environmental and activity impacts on PLSS design are studied, with focus on base self-sufficiency and reduction in resupply logistics.

  16. Surface-consistent matching filters for time-lapse processing

    NASA Astrophysics Data System (ADS)

    Al Mutlaq, Mahdi H.

    The problem of mismatch between repeated time-lapse seismic surveys remains a challenge, particularly for land acquisition. In this dissertation, we present a new algorithm, which is an extension of the surface-consistent model, and which minimizes the mismatch between surveys, hence improving repeatability. We introduce the concept of surface-consistent matching filters (SCMF) for processing time-lapse seismic data, where matching filters are convolutional filters that minimize the sum-squared error between two signals. Since in the Fourier domain, a matching filter is the spectral ratio of the two signals, we extend the well known surface-consistent hypothesis such that the data term is a trace-by-trace spectral ratio of two datasets instead of only one (i.e. surface-consistent deconvolution). To avoid unstable division of spectra, we compute the spectral ratios in the time domain by first designing trace-sequential, least-squares matching filters, then Fourier transforming them. A subsequent least-squares solution then factors the trace-sequential matching filters into four operators: two surface-consistent (source and receiver), and two subsurface-consistent (offset and midpoint). We apply the algorithm to two datasets: a synthetic time-lapse model and field data from a CO2 monitoring site in Northern Alberta. In addition, two common time-lapse processing schemes (independent processing and simultaneous processing) are compared. We present a modification of the simultaneous processing scheme as a direct result of applying the new SCMF algorithm. The results of applying the SCMF together with the new modified simultaneous processing flow reveal the potential benefit of the method, however some challenges remain, specifically in the presence of random noise.

  17. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    NASA Astrophysics Data System (ADS)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  18. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  19. Active control technology and the use of multiple control surfaces

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1976-01-01

    Needed criteria for active control technology applications in commercial transports are lacking. Criteria for redundancy requirements, believed to be consistent with certification philosophy, are postulated to afford a discussion of the relative value of multiple control surfaces. The control power and frequency bandpass requirements of various active control technology applications are shown to be such that multiple control surfaces offer advantages in minimizing the hydraulic or auxiliary power for the control surface actuators.

  20. Process entanglement as a neuronal anchorage mechanism to rough surfaces

    NASA Astrophysics Data System (ADS)

    Sorkin, Raya; Greenbaum, Alon; David-Pur, Moshe; Anava, Sarit; Ayali, Amir; Ben-Jacob, Eshel; Hanein, Yael

    2009-01-01

    The organization of neurons and glia cells on substrates composed of pristine carbon nanotube islands was investigated using high resolution scanning electron microscopy, immunostaining and confocal microscopy. Neurons were found bound and preferentially anchored to the rough surfaces; moreover, the morphology of the neuronal processes on the small, isolated islands of high density carbon nanotubes was found to be conspicuously curled and entangled. We further demonstrate that the roughness of the surface must match the diameter of the neuronal processes in order to allow them to bind. The results presented here suggest that entanglement, a mechanical effect, may constitute an additional mechanism by which neurons (and possibly other cell types) anchor themselves to rough surfaces. Understanding the nature of the interface between neurons and carbon nanotubes is essential to effectively harness carbon nanotube technology in neurological applications such as neuro-prosthetic and retinal electrodes.

  1. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  2. Process to restore obliterated serial numbers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Parker, B.; Chisum, W. J.

    1974-01-01

    Metal smeared into grooves of serial numbers by grinding or filing can be cleaned out by process called cavitation. Ultrasonic vibrator generates very high frequency vibrations in water which create millions of microscopic bubbles. Cavitation bubbles impact metal surface at thousands of pounds per square inch pressure. Metal particles filling grooves are broken away.

  3. Surface Intensive Materials Processing for Multi-Functional Purposes

    SciTech Connect

    Ila, D.; Williams, E.K.; Muntele, C.I.; George, M.A.; Poker, D.B.; Hensley, D.K.; Larkin, D.J.

    2000-03-06

    We have chosen silicon carbide (SiC) as a multi-functional material to demonstrate the application of surface intensive processing for device fabrication. We will highlight two devices which are produced in house at the Center for Irradiation of materials of Alabama A and M university: (A) High temperature electronic gas sensor, (B) High temperature optical properties/sensor.

  4. Optimum Design Of Addendum Surfaces In Sheet Metal Forming Process

    NASA Astrophysics Data System (ADS)

    Debray, K.; Sun, Z. C.; Radjai, R.; Guo, Y. Q.; Dai, L.; Gu, Y. X.

    2004-06-01

    The design of addendum surfaces in sheet forming process is very important for the product quality, but it is very time-consuming and needs tedious trial-error corrections. In this paper, we propose a methodology to automatically generate the addendum surfaces and then to optimize them using a forming modelling solver. The surfaces' parameters are taken as design variables and modified in course of optimization. The finite element mesh is created on the initial addendum surfaces and mapped onto the modified surfaces without remeshing operation. The Feasible Sequential Quadratic Programming (FSQP) is adopted as our algorithm of optimization. Two objective functions are used: the first one is the thickness function to minimize the thickness variation on the workpiece ; the second one is the appearance function aiming to avoid the scratching defects on the external surfaces of panels. The FSQP is combined with our "Inverse Approach" or "One Step Approach" which is a very fast forming solver. This leads to a very efficient optimization procedure. The present methodology is applied to a square box. The addendum surfaces are characterised by four geometrical variables. The influence of optimization criteria is studied and discussed.

  5. Biofunctionalization of titanium surfaces for osseintegration process improvement

    NASA Astrophysics Data System (ADS)

    Sevilla, P.; Godoy, M.; Salvagni, E.; Rodríguez, D.; Gil, F. J.

    2010-11-01

    This study aims to improve the osseointegration of titanium implants through surface immobilization of peptides that induce a beneficial biological response. This was carried out biofunctionalizating titanium surfaces by silanization and subsequent covalent binding of a peptide with a sequence that promotes cell adhesion. Objective: The development of a new technique of immobilization of oligopeptides on the surface of titanium by using 3-chloropropyltrietoxisilane (CPTES) as bonding agent between the surface of titanium and the peptide. Materials and methods: A physicochemical characterization of the surfaces through the techniques of XPS, ToF-SIMS and contact angle was performed. Also cell adhesion studies have been conducted to evaluate in vitro biological response. Results: Through the process of silanization the titanium surface is completely covered with CPTES, which allows the subsequent accession of oligopeptides. The cell adhesion results show a higher cell adhesion and cell extension on biofunctionalized samples. Conclusions: We developed a system of covalent binding of oligopeptides on titanium surfaces that can modify the biological response of the attached cells.

  6. Method for measuring surface activity of silicon nitride powder

    NASA Technical Reports Server (NTRS)

    Kanno, Y.; Imai, H.

    1985-01-01

    Amorphous, alpha-, and beta-Si3N4 powders were activated by vibration ball milling in purified MeOH, and the surface activity of ground powders was determined by the temperature programmed desorption (TPD) method using NH3 gas. The concentration of active sites with a potential energy equivalent to the peak temperature in the spectrum increased was markedly by ball milling the amorphous Si3N4. The alpha- and beta-Si3N4 also had active sites produced by ball milling. The concentration of active site increased with increased ball milling time. A method for measuring surface activity of ceramic raw materials by TPD is proposed.

  7. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  8. Molecular reordering processes on ice (0001) surfaces from long timescale simulations.

    PubMed

    Pedersen, Andreas; Wikfeldt, Kjartan T; Karssemeijer, Leendertjan; Cuppen, Herma; Jónsson, Hannes

    2014-12-21

    We report results of long timescale adaptive kinetic Monte Carlo simulations aimed at identifying possible molecular reordering processes on both proton-disordered and ordered (Fletcher) basal plane (0001) surfaces of hexagonal ice. The simulations are based on a force field for flexible molecules and span a time interval of up to 50 μs at a temperature of 100 K, which represents a lower bound to the temperature range of earth's atmosphere. Additional calculations using both density functional theory and an ab initio based polarizable potential function are performed to test and refine the force field predictions. Several distinct processes are found to occur readily even at this low temperature, including concerted reorientation (flipping) of neighboring surface molecules, which changes the pattern of dangling H-atoms, and the formation of interstitial defects by the downwards motion of upper-bilayer molecules. On the proton-disordered surface, one major surface roughening process is observed that significantly disrupts the crystalline structure. Despite much longer simulation time, such roughening processes are not observed on the highly ordered Fletcher surface which is energetically more stable because of smaller repulsive interaction between neighboring dangling H-atoms. However, a more localized process takes place on the Fletcher surface involving a surface molecule transiently leaving its lattice site. The flipping process provides a facile pathway of increasing proton-order and stabilizing the surface, supporting a predominantly Fletcher-like ordering of low-temperature ice surfaces. Our simulations also show that eventual proton-disordered patches on the surface may induce significant local reconstructions. Further, a subset of the molecules on the Fletcher surface are susceptible to forming interstitial defects which might provide active sites for various chemical reactions in the atmosphere. PMID:25527956

  9. Molecular reordering processes on ice (0001) surfaces from long timescale simulations

    SciTech Connect

    Pedersen, Andreas; Wikfeldt, Kjartan T.; Karssemeijer, Leendertjan; Cuppen, Herma; Jónsson, Hannes

    2014-12-21

    We report results of long timescale adaptive kinetic Monte Carlo simulations aimed at identifying possible molecular reordering processes on both proton-disordered and ordered (Fletcher) basal plane (0001) surfaces of hexagonal ice. The simulations are based on a force field for flexible molecules and span a time interval of up to 50 μs at a temperature of 100 K, which represents a lower bound to the temperature range of earth's atmosphere. Additional calculations using both density functional theory and an ab initio based polarizable potential function are performed to test and refine the force field predictions. Several distinct processes are found to occur readily even at this low temperature, including concerted reorientation (flipping) of neighboring surface molecules, which changes the pattern of dangling H-atoms, and the formation of interstitial defects by the downwards motion of upper-bilayer molecules. On the proton-disordered surface, one major surface roughening process is observed that significantly disrupts the crystalline structure. Despite much longer simulation time, such roughening processes are not observed on the highly ordered Fletcher surface which is energetically more stable because of smaller repulsive interaction between neighboring dangling H-atoms. However, a more localized process takes place on the Fletcher surface involving a surface molecule transiently leaving its lattice site. The flipping process provides a facile pathway of increasing proton-order and stabilizing the surface, supporting a predominantly Fletcher-like ordering of low-temperature ice surfaces. Our simulations also show that eventual proton-disordered patches on the surface may induce significant local reconstructions. Further, a subset of the molecules on the Fletcher surface are susceptible to forming interstitial defects which might provide active sites for various chemical reactions in the atmosphere.

  10. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  11. APOLLO 10: Training for Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts train on a mock-up lunar surface, practicing the procedures they will follow on the real thing, and adjusting to the demands of the workload. From the film documentary 'APOLLO 10: 'Green Light for a Lunar Landing''. Part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 10: Manned lunar orbital flight with Thomas P Stafford, John W. Young, and Eugene A. Cernan to test all aspects of an actual manned lunar landing except the landing. Mission Duration 192hrs 3mins 23 sec

  12. Quantification of Microbial Activities in Near-Surface Soils

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Nauer, P.; Zeyer, J.

    2007-12-01

    Microbial processes in near-surface soils play an important role in carbon and nutrient cycling, and specifically in the turnover of greenhouse gases such as CO2 and CH4. We modified a recently developed technique, the gas push-pull test (GPPT), to allow for the in-situ quantification of microbial activities in near-surface soils. A GPPT consists of the controlled injection of a gas mixture containing reactive gases (e.g., CH4, O2, CO2) and nonreactive tracer gases (e.g., Ar, Ne) into the soil, followed by the extraction of the gas mixture/soil-air blend from the same location. Rates of microbial activities are computed from the gases" breakthrough curves obtained during the GPPT's extraction phase. For a GPPT to be applied successfully, it is important that sufficient mass of the injected gases can be recovered during the test, even after prolonged incubation in soil. But this may be difficult to achieve during GPPTs performed in near- surface soils, where gas loss to the atmosphere can be substantial. Our modification consisted of performing GPPTs within a steel cylinder (8.4-cm radius), which was previously driven into the soil to a depth of 50 cm. During the GPPTs, the cylinder was temporarily closed with a removable lid to minimize gas loss to the atmosphere. We performed a series of numerical simulations as well as laboratory experiments to test the usefulness of this modification. Numerical simulations confirmed that without use of the cylinder, typical near- surface GPPTs (e.g., injection/extraction depth 20 cm below soil surface) are subject to extensive gas loss to the atmosphere (mass recovery < 20% for most gases), whereas mass recovery of injected gases increased dramatically when the cylinder was employed (mass recovery > 90% for most gases). Results from laboratory experiments confirmed this observation. We will also present results of a first field application, in which a near- surface GPPT was successfully conducted in a sandy soil to quantify in

  13. Two-scale modeling of adsorption processes at structured surfaces

    NASA Astrophysics Data System (ADS)

    Kundin, Julia; de Cuba, Maria Radke; Gemming, Sibylle; Emmerich, Heike

    2009-01-01

    We present an algorithm for the simulation of vicinal surface growth. It combines a lattice gas anisotropic Ising model with a phase-field model. The molecular behavior of individual adatoms is described by the lattice gas model. The microstructure dynamics on the vicinal surface are calculated using the phase-field method. In this way, adsorption processes on two different length scales can be described: nucleation processes on the terraces (lattice gas model) and step-flow growth (phase field model). The hybrid algorithm that is proposed here, is therefore able to describe an epitaxial layer-by-layer growth controlled by temperature and by deposition rate. This method is faster than kinetic Monte Carlo simulations and can take into account the stochastic processes in a comparable way.

  14. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  15. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  16. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-03-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  17. Mechanical and tribological properties of ion beam-processed surfaces

    NASA Astrophysics Data System (ADS)

    Kodali, Padma

    A variety of surface modification and surface coating techniques are currently used in industry to modify the near-surface mechanical properties that influence the friction and wear behavior of metals, metallic alloys, ceramics, and polymers. Near-surface mechanical properties such as hardness and fracture toughness of a coating-substrate system can be tailored economically without changing the bulk properties of the system. The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) Investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation. (2) Characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation. (3) Developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. Wear mechanisms that occurred in implanted and unimplanted surfaces tested against AIS152100

  18. The Role of Surface Layer Processes in Solid Propellant Combustion.

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Satyanarayanan R.

    The qualitative multidimensional theory of composite solid propellant combustion based on the sandwich burning methodology was applied to certain specific problems: (a) burning rate enhancement by ferric oxide, (b) plateau burning behavior caused by binder melt flow effects, and (c) characterization of the combustion of new energetic oxidizers--ADN and HNIW. Exothermic reactions at the interfacial contact lines between AP particles and the binder in the surface layer of the burning propellant assume significance in the presence of ferric oxide, and control the burning rate. Binder melt flow covers adjacent AP particle surfaces increasingly at higher pressures, and disperses the O/F leading edge flames attached to coarse particles. It also causes fine AP/binder matrix areas on the surface not to support a steady premixed flame at intermediate pressures, resulting in an overall decrease in the burning rate with increasing pressure, which implies plateau or mesa effects. ADN self -deflagration rate is significantly higher than that of AP, and controls the sandwich burning rate to a great extent. The O/F flame of ADN and binder still behaves as rate limiting, although strongly supported by ADN self-deflagration. ADN melts and vaporizes substantially before the binder, allowing for the possibility of complex physical processes in the surface layer. The strong exothermic decomposition of HNIW at moderate temperatures causes the oxidizer particles in the surface layer to be the sites of burning rate control. The problems addressed in this study combinedly point to the significance of crucial surface layer processes under the situations of interest, and signal a need to characterize such processes directly and in greater detail.

  19. Growth processes and surface properties of diamondlike carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Zhang, Jialiang; Liu, Yanhong; Xu, Jun; Benstetter, Günther

    2005-05-01

    In this study, we compare the deposition processes and surface properties of tetrahedral amorphous carbon (ta-C) films from filtered pulsed cathodic arc discharge (PCAD) and hydrogenated amorphous carbon (a-C:H) films from electron cyclotron resonance (ECR)-plasma source ion implantation. The ion energy distributions (IEDs) of filtered-PCAD at various filter inductances and Ar gas pressures were measured using an ion energy analyzer. The IEDs of the carbon species in the absence of background gas and at low gas pressures are well fitted by shifted Maxwellian distributions. Film hardness and surface properties show a clear dependence on the IEDs. ta-C films with surface roughness at an atomic level and thin (0.3-0.9 nm) graphitelike layers at the film surfaces were deposited at various filter inductances in the highly ionized plasmas with the full width at half maximum ion energy distributions of 9-16 eV. The a-C:H films deposited at higher H /C ratios of reactive gases were covered with hydrogen and sp3 bonded carbon-enriched layers due to the simultaneous interaction of hydrocarbon species and atomic hydrogen. The effects of deposited species and ion energies on film surface properties were analyzed. Some carbon species have insufficient energies to break the delocalized π(nC ) bonds at the graphitelike film surface, and they can govern film formation via surface diffusion and coalescence of nuclei. Dangling bonds created by atomic hydrogen lead to uniform chemisorption of hydrocarbon species from the ECR plasmas. The deposition processes of ta-C and a-C:H films are discussed on the basis of the experimental results.

  20. South American Monsoon and the Land Surface Processes

    NASA Astrophysics Data System (ADS)

    Xue, Y.; de Sales, F. H.; Li, W.; Mechoso, C. R.; Nobre, C. A.; Juang, H. H.

    2002-12-01

    In this numerical modeling study, the NCEP GCM is applied to investigate the interactions between land surface processes and climate, particularly the effects of land processes on the South American monsoon system (SAMS). A model version with spectral triangular 42 truncation (T42) is used. The corresponding Gaussian grid for T42 is 128 by 64, which is roughly equivalent to 2.8 degrees in latitude and longitude. Two land surface parameterizations are used. One is the Simplified Simple Biosphere Model (SSiB), which includes explicit vegetation representation. The other parameterization is a surface model with two-soil layers (SOIL) and no explicit vegetation scheme. Two 12-month long simulations were performed with the two parameterizations from initial conditions corresponding to May 1, 1987 and identical distributions of soil moisture and surface albedo. The simulations will be referred to as NCEP GCM/SOIL and NCEP GCM/SSiB. The simulations, therefore, differ in the land surface parameterizations and land cover conditions: one with vegetation and the other with only soil layers (but monthly mean vegetation albedo). This experiment aims to test the role of explicit description of vegetation process in the climate model and hence the role of vegetation in the South American hydrometeorology. SAMS starts developing in Central America and then moves southeast towards the Amazons in South America. Afterwards, largest precipitation moves northward and eventually retreats northwest. NCEP GCM/SOIL and NCEP GCM/SSiB produce substantially different evolution and spatial distributions of SAMS. In the NCEP GCM/SOIL, the development of SAMS is too fast and too strong with no clear indication of the southward movement. Rainfall magnitudes are much stronger than in the observation. The NCEP/SSiB, on the other hand, correctly simulates SAMS evolution. To understand the mechanisms that contributed to the differences in the simulations, the surface energy and water balances are

  1. Ultrafast optical studies of surface reaction processes at semiconductor interfaces

    SciTech Connect

    Miller, R.J.D.

    1993-03-01

    Rectifying properties of semiconductor liquid junctions make them a simple system for converting and storing optical energy. However, interfacial electron or hole carrier transfer and competing non-radiative (energy loss) channels are not well understood at surfaces. This research has explored the use of three optical techniques, Surface Space Charge Electrooptic Sampling, Surface Restricted Transient Grating Spectroscopy, and Femtosecond Optical Kerr Spectroscopy (OKE) to obtain time evolution of the surface spatial distribution of photogenerated charge carriers, photocarrier population dynamics at semiconductor interfaces, and solvent modes responsible for charge localization and separation. These studies have shown that carriers arrive at GaAs(100) surfaces on the hundred femtosecond time scale. Improvements in time resolution, using surface grating spectroscopy, have shown interfacial hole transfer is occurring on the picosecond time scale. The OKE approach to solvent dynamics has determined the response of water to a field is multiexpontential with a major relaxation component of 100 femtoseconds. The observed interfacial hole transfer to Se[sup [minus]2] acceptors is occurring on this same time scale. This observation illustrates charge transfer processes can occur in the strong electronic coupling limit and can be competitive with carrier thermalization.

  2. Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity

    SciTech Connect

    Krishnan,S.; Ward, R.; Hexemer, A.; Sohn, K.; Lee, K.; Angert, E.; Fischer, D.; Kramer, E.; Ober, C.

    2006-01-01

    Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.

  3. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  4. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-06-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  5. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-02-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  6. New Photosensitized Processes at Aerosol and Ocean Surfaces

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; Aregahegn, K. Z.; Ciuraru, R.; Bernard, F.; Tinel, L.; Fine, L.; George, C.

    2014-12-01

    From a few years now, there is a growing body of evidence that photoinduced processes could be of great importance for the tropospheric chemistry. Here, we would like to present two additional outcomes of this new area of research, firstly the photosensitized direct VOC uptake by aerosols and, secondly, the photoinduced chemical formation of unsaturated VOC from marine microlayer proxy. It was recently shown that the chemistry of glyoxal toward ammonium ions into droplets and wet aerosols leads to the formation of light-absorbing compounds. Among them, we found that imidazole-2-carboxaldehyde (IC) acts as a photosensitizer and is able to initiate the growth of organic aerosols via the uptake of VOC, such as limonene. Given its potential importance, the mechanism of this photoinduced uptake was investigated thanks to aerosol flow tube experiments and UPLC-ESI-HRMS analysis. Results reveal hydrogen abstraction on the VOC molecule by the triplet state of IC leading to the VOC oxidation without any traditional oxidant. As well as aerosol, the sea-surface microlayer, known to be enriched in light-absorbing organics, is largely impacted by photochemical processes. Recent studies have pointed out for example the role of photosentitized processes in the loss of NO2 and ozone at water surfaces containing photoactive compounds such as chlorophyll. In order to go further, we worked from sea-surface microlayer proxy containing humic acids as photoactive material and organic acids as surfactants. Beside oxidation processes, we monitored by high resolution PTR-MS the release in the gas phase of unsaturated compounds, including C5 dienes (isoprene ?). A strong correlation between the measured surface tension and the C5 diene concentration in the gas phase was evidenced, clearly pointing toward an interfacial process. This contribution will highlight the similarities between both systems and will attempt to present a general chemical scheme for photosensitized chemistry at

  7. Complete solids retention activated sludge process.

    PubMed

    Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L

    2016-01-01

    In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration. PMID:27003077

  8. Modeling of an Active Tablet Coating Process.

    PubMed

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level. PMID:26344941

  9. Surface Expression Models for Aqueous Oceanic Activity on Titan

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Drawing upon analogs from the rocky planets with geological features, subsurface acquifers and magmatism, the range of surface manifestations of a subsurface ocean on Titan comprise a series of models. Cryovolcanism of aqueous eutectics will produce flows which may be detectable as sporadic outcrops from the hydrocarbon-rich regolith, exhumed by aeolian and/or fluid processes. Solidification of extruded cryomagma, especially if containing a significant water component, should exhibit fractional crystallization of solutes in late-freeze ponds and flow fronts. Abundant higher- Z elements such as Si, S and Fe, as influenced by the Eh-pH field of the liquid phase, might be in evidence, demonstrating communication among the principal mantle components of such bodies. Consequent availability of potential nutrients and chemical energy sources would be a key indicator for habitability by chemoautolithotrophs on Titan. With near-surface mobility and sensing, LIBS as well as active and passive IR mapping spectrometry are all possible in the environment of Titan's lower atmosphere. Although some remote measurements are infeasible because of the atmosphere, near- surface naturally radioactive rock-forming elements such as K, U, and Th could be detected with gamma ray spectrometry. Touch-and-go techniques developed for small- body sampling can provide material for onboard GC, MS, XRD, microscopy and other miniaturized analytical techniques. Surface dwell times of minutes would enable contact XRF with detection of critical element ratio's such as S/Cl, K/Ca, and Mg/Si/Fe, and Raman spectroscopy for organic and mineralogical analysis, . Longer contact times would permit electromagnetic depth sounding. Many IR and particle- detection sensors operate ideally at or near the low temperatures intrinsic to the Titan atmosphere, simplifying those aspects of instrument development. Exploration of Titan by in situ and mobility techniques would capitalize on the investments and lessons

  10. Characterization of the surface changes during the activation of erbium/erbium oxide for hydrogen storage.

    SciTech Connect

    Zavadil, Kevin Robert; Snow, Clark Sheldon; Brumbach, Michael Todd

    2010-09-01

    Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

  11. Active nematics of flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Dogic, Zvonimir

    2014-03-01

    The laws of equilibrium statistical mechanics impose severe constraints on the properties of conventional materials assembled from inanimate building blocks. Consequently, such materials cannot exhibit spontaneous motion or perform macroscopic work; i.e., a fluid in a beaker remains quiescent unless driven by external forces. Inspired by biological phenomena such as ciliary beating or Drosophila cytoplasmic streaming our aim is to develop a new category of materials assembled from animate, energy-consuming building blocks. Starting from a few well-characterized biochemical components we assemble and study far-from-equilibrium analogs of conventional liquid crystals. Released from the constraints of equilibrium, this internally driven polymeric material exhibits a host of highly-sought after properties including appearance of steady-state streaming flows that are accompanied by the spontaneous unbinding and annihilations of motile defects as well as appearance and subsequent self-healing of fracture lines. Active liquid crystals can serve as a platform for developing novel material applications, testing fundamental theoretical models of far-from-equilibrium active matter and potentially shedding light on self-organization in living cells.

  12. Degradation of corticosteroids during activated sludge processing.

    PubMed

    Miyamoto, Aoi; Kitaichi, Yuko; Uchikura, Kazuo

    2014-01-01

    Laboratory tests of the decomposition of corticosteroids during activated sludge processing were investigated. Corticosteroid standards were added to activated sludge, and aliquots were regularly taken for analysis. The corticosteroids were extracted from the samples using a solid-phase extraction method and analyzed LC-MS. Ten types of corticosteroids were measured and roughly classified into three groups: 1) prednisolone, triamcinolone, betamethasone, prednisolone acetate, and hydrocortisone acetate, which decomposed within 4 h; 2) flunisolide, betamethasone valerate, and budesonide of which more than 50% remained after 4 h, but almost all of which decomposed within 24 h; and 3) triamcinolone acetonide, and fluocinolone acetonide of which more than 50% remained after 24 h. The decomposed ratio was correlated with each corticosteroid's Log P, especially groups 2) and 3). PMID:24390495

  13. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-10-07

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  14. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  15. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  16. Mechanical and tribological properties of ion beam-processed surfaces

    SciTech Connect

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  17. Surface processes during purification of InP quantum dots

    PubMed Central

    Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana

    2014-01-01

    Summary Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular. PMID:25161857

  18. Kinetic process of nitridation on the α-sapphire surface

    NASA Astrophysics Data System (ADS)

    Xingzhou, Tang; Shuping, Li; Junyong, Kang; Jiaqi, Chen

    2014-11-01

    We established a model to simulate the growth process of nitridation and clarified the inner mechanisms of nitridation and over-nitridation by combining the kinetic Monte Carlo and molecular dynamics methods. Supported by reflection high-energy electron diffraction results with growth in an MBE system, the tendency of nitridation on α-sapphire in different conditions was observed and analyzed. The best conditions for nitridation on the α-sapphire surface are found by our simulation.

  19. Free surface BCP self-assembly process characterization with CDSEM

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  20. Probing Interfacial Processes on Graphene Surface by Mass Detection

    NASA Astrophysics Data System (ADS)

    Kakenov, Nurbek; Kocabas, Coskun

    2013-03-01

    In this work we studied the mass density of graphene, probed interfacial processes on graphene surface and examined the formation of graphene oxide by mass detection. The graphene layers were synthesized by chemical vapor deposition method on copper foils and transfer-printed on a quartz crystal microbalance (QCM). The mass density of single layer graphene was measured by investigating the mechanical resonance of the QCM. Moreover, we extended the developed technique to probe the binding dynamics of proteins on the surface of graphene, were able to obtain nonspecific binding constant of BSA protein of graphene surface in aqueous solution. The time trace of resonance signal showed that the BSA molecules rapidly saturated by filling the available binding sites on graphene surface. Furthermore, we monitored oxidation of graphene surface under oxygen plasma by tracing the changes of interfacial mass of the graphene controlled by the shifts in Raman spectra. Three regimes were observed the formation of graphene oxide which increases the interfacial mass, the release of carbon dioxide and the removal of small graphene/graphene oxide flakes. Scientific and Technological Research Council of Turkey (TUBITAK) grant no. 110T304, 109T209, Marie Curie International Reintegration Grant (IRG) grant no 256458, Turkish Academy of Science (TUBA-Gebip).

  1. Cutting edge: cell surface linker for activation of T cells is recruited to microclusters and is active in signaling.

    PubMed

    Balagopalan, Lakshmi; Barr, Valarie A; Kortum, Robert L; Park, Anna K; Samelson, Lawrence E

    2013-04-15

    A controversy has recently emerged regarding the location of the cellular pool of the adapter linker for activation of T cells (LAT) that participates in propagation of signals downstream of the TCR. In one model phosphorylation and direct recruitment of cell surface LAT to activation-induced microclusters is critical for T cell activation, whereas in the other model vesicular, but not surface, LAT participates in these processes. By using a chimeric version of LAT that can be tracked via an extracellular domain, we provide evidence that LAT located at the cell surface can be recruited efficiently to activation-induced microclusters within seconds of TCR engagement. Importantly, we also demonstrate that this pool of LAT at the plasma membrane is rapidly phosphorylated. Our results provide support for the model in which the cell utilizes LAT from the cell surface for rapid responses to TCR stimulation. PMID:23487428

  2. Surface processing by RFI PECVD and RFI PSII

    NASA Astrophysics Data System (ADS)

    Wu, Lingling

    2000-10-01

    An RFI plasma enhanced chemical vapor deposition (PECVD) system and a large-scale RF plasma source immersion ion implantation (PSII) system were designed and built to study two forms of 3-D surface processing, PECVD and PSII. Using the RFI PECVD system, Ti-6Al-4V substrates were coated with diamond-like carbon films with excellent tribological and optical properties. As an innovation, variable angle spectroscopic ellipsometry (VASE) was successfully applied for non-destructive, 3-D, large-area tribological coatings quality investigation. Based on the experience with the RFI PECVD system, a large-scale RFICP source was designed and built for the PSIL Langmuir probe and optical emission spectroscopy studies indicated that the RFI source produced stable, uniform, and clean plasma. MAGIC code was for the first time used to model PSII process, addressing different target geometries and boundaries, materials, plasma parameters, illustrated sheath formation and evolution, field distribution, ion and electron trajectories, ion incident angles, and dose distributions, which are critical for PSII design and understanding. The RF PSII system was developed into a versatile large-area, uniform, 3-D surface processing apparatus, capable of PSII, PVD, PECVD, and in situ surface cleaning and interface properties modification, for multilayer, multi-step, and high performance surface engineering. Using the RFI PSII system, for the first time, PSII was studied as a mask-based surface layer conversion technique, for pattern writing by implantation as an alternative to current deposition-based and ink-based direct write technologies. It operates at low substrate temperature, keeps the original surface finish and dimensions, and avoids adhesion problem. A different operating mode of the RF source was discovered to perform biased sputtering of high purity quartz, which turned the RFI PSII system into a novel integrated RF PSII/PVD system for large-area, uniform, nitrogen-doped, and

  3. Exposing earth surface process model simulations to a large audience

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  4. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  5. Characterization of surface active materials derived from farm products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...

  6. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  7. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  8. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  9. Surface-Energy Dependent Contact Activation of Blood Factor XII

    PubMed Central

    Golas, Avantika; Parhi, Purnendu; Dimachkie, Ziad O.; Siedlecki, Christopher A.; Vogler, Erwin A.

    2009-01-01

    Contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension τao=γlvocosθ in dyne/cm, where γlvo is water interfacial tension in dyne/cm and θ is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties −36<τao<72 dyne/cm (0° ≤ θ < 120°), falling sharply through a broad minimum within the 20<τao<40 dyne/cm (55° < θ < 75°) range over which activation yield (putatively FXIIa) rises just above detection limits. Activation is very rapid upon contact with all activators tested and did not significantly vary over 30 minutes of continuous FXII-procoagulant contact. Results suggest that materials falling within the 20<τao<40 dyne/cm surface-energy range should exhibit minimal activation of blood-plasma coagulation through the intrinsic pathway. Surface chemistries falling within this range are, however, a perplexingly difficult target for surface engineering because of the critical balance that must be struck between hydrophobicity and hydrophilicity. Results are interpreted within the context of blood plasma coagulation and the role of water and proteins at procoagulant surfaces. PMID:19892397

  10. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  11. Surface activity of Acinetobacter calcoaceticus sp. 2CA2

    SciTech Connect

    Neufeld, R.J.; Zajic, J.E.

    1984-01-01

    The hydrocarbon metabolizing Acinetobacter calcoaceticus sp. 2CA2 reduces the surface tension of the culture broth during growth on liquid hydrocarbons. This activity, which is not evident during growth on soluble substrates, is associated with the whole cells. Removing the cells from the culture broth increases the surface tension of the liquid phase. The cells when resuspended in water result in a dramatic lowering of the surface tension. Acinetobacter sp. 2CA2 tends to partition between the two liquid phases during growth on hydrocarbons. Both the hydrocarbon bound and nonadhering cells are equally surface active. The whole cells are also able to form and stabilize kerosene-water emulsions. This ability is not related to the lowering of the liquid surface or interfacial tension, since both surface active and nonsurface active cells demonstrated the same emulsifying properties. An extracellular lipopeptide produced during growth on hydrocarbons is not surface active but effectively forms and stabilizes kerosene-water emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The lipopeptide product reduced the half-life of a Tween-Span (TS) stabilized kerosene-water emulsion from 650 to 0.4 h at product concentrations of less than 1% (w/v).

  12. Surface activity of Corophium volutator: A role for parasites?

    NASA Astrophysics Data System (ADS)

    Damsgaard, Jacob Tørring; Mouritsen, Kim N.; Jensen, K. Thomas

    2005-08-01

    In soft-bottom intertidal habitats, the normally infaunal amphipod Corophium volutator is often found active on the sediment surface during low tide, exposed to desiccation and shorebird predation. Here we examine whether such risky behaviour is related to parasite infections. Surface-active and buried C. volutator were collected during a low tide period in the Danish Wadden Sea, and the infection patterns of the two groups were described in relation to sex and size. Surface-active males and females were more heavily infested by microphallid trematodes (four species) than buried specimens of the same sex and size class. Although the density of surfaced amphipods decreased as a function of exposure time, the mean parasite load of those that remained on the surface increased. A narrow size-specific parasite intensity threshold above which the amphipods were always surface active did not exist: heavily infected individuals were also found buried in the substrate. Although likely to be beneficial to the parasites, this suggests that the behavioural alteration is a side-effect of the infections rather than a consequence of direct parasitic manipulation. Besides the presumed mortality associated with the parasite-related surface activity in a range of size-classes, the intensity-size frequency distribution indicated that larger and hence heavily infected hosts are removed from the population. Together it demonstrates that microphallid trematodes impact the population dynamics of C. volutator.

  13. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  14. Influence of surface coverage on the chemical desorption process

    SciTech Connect

    Minissale, M.; Dulieu, F.

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  15. Mineralization at Titanium Surfaces is a Two-Step Process

    PubMed Central

    Nygren, Håkan; Ilver, Lars; Malmberg, Per

    2016-01-01

    Mapping the initial reaction of implants with blood or cell culture medium is important for the understanding of the healing process in bone. In the present study, the formation of low crystalline carbonated hydroxyapatite (CHA) onto commercially pure titanium (Ti) implants from cell culture medium and blood, is described as an early event in bone healing at implants. The Ti-implants were incubated with cell culture medium (DMEM) or whole blood and the surface concentration of Ca, P and HA was analyzed by XPS, EDX and Tof-SIMS. After incubation with DMEM for 16 h and 72 h, EDX and XPS analysis showed stable levels of Ca and P on the Ti-surface. ESEM images showed an even distribution of Ca and P. Further analysis of the XPS results indicated that CHA was formed at the implants. Analysis with ToF-SIMS yielded high m.w. fragments of HA, such as Ca2PO4 at m/z 174.9 and Ca3PO5 at m/z 230.8, as secondary ions at the Ti-surfaces. Analysis of implants incubated in blood for 16 h, with ToF-SIMS, showed initial formation of CHA yielding CaOH as secondary ion. The results indicate that early mineralization at Ti-surfaces is an important step in the healing of implants into bone. PMID:26999231

  16. Elementary surface processes during reactive magnetron sputtering of chromium

    SciTech Connect

    Monje, Sascha; Corbella, Carles Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  17. Computer Simulation Of An In-Process Surface Finish Sensor.

    NASA Astrophysics Data System (ADS)

    Rakels, Jan H.

    1987-01-01

    It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.

  18. Surface activation-based nanobonding and interconnection at room temperature

    NASA Astrophysics Data System (ADS)

    Howlader, M. M. R.; Yamauchi, A.; Suga, T.

    2011-02-01

    Flip chip nanobonding and interconnect system (NBIS) equipment with high precision alignment has been developed based on the surface activated bonding method for high-density interconnection and MEMS packaging. The 3σ alignment accuracy in the IR transmission system was approximately ±0.2 µm. The performance of the NBIS has been preliminarily investigated through bonding between relatively rough surfaces of copper through silicon vias (Cu-TSVs) and gold-stud bumps (Au-SBs), and smooth surfaces of silicon wafers. The Cu-TSVs of 55 µm diameter and the Au-SBs of 35 µm diameter with ~6-10 nm surface roughness (RMS) were bonded at room temperature after surface activation using an argon fast atom beam (Ar-FAB) under 0.16 N per bump. Silicon wafers of 50 mm diameter with ~0.2 nm RMS surface roughness were bonded without heating after surface activation. Void-free interfaces both in Cu-TSV/Au-SB and silicon/silicon with bonding strength equivalent to bulk fracture of Au and silicon, respectively, were achieved. A few nm thick amorphous layers were observed across the silicon/silicon interface that was fabricated by the Ar-FAB. This study in the interconnection and bonding facilitates the required three-dimensional integration on the same surface for high-density electronic and biomedical systems.

  19. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  20. Occurrence of Surface Active Agents in the Environment

    PubMed Central

    Olkowska, Ewa; Ruman, Marek; Polkowska, Żaneta

    2014-01-01

    Due to the specific structure of surfactants molecules they are applied in different areas of human activity (industry, household). After using and discharging from wastewater treatment plants as effluent stream, surface active agents (SAAs) are emitted to various elements of the environment (atmosphere, waters, and solid phases), where they can undergo numerous physic-chemical processes (e.g., sorption, degradation) and freely migrate. Additionally, SAAs present in the environment can be accumulated in living organisms (bioaccumulation), what can have a negative effect on biotic elements of ecosystems (e.g., toxicity, disturbance of endocrine equilibrium). They also cause increaseing solubility of organic pollutants in aqueous phase, their migration, and accumulation in different environmental compartments. Moreover, surfactants found in aerosols can affect formation and development of clouds, which is associated with cooling effect in the atmosphere and climate changes. The environmental fate of SAAs is still unknown and recognition of this problem will contribute to protection of living organisms as well as preservation of quality and balance of various ecosystems. This work contains basic information about surfactants and overview of pollution of different ecosystems caused by them (their classification and properties, areas of use, their presence, and behavior in the environment). PMID:24527257

  1. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Mollabashi, Mahmoud; Madanipour, Khosro

    2015-12-01

    Q -switched Nd:YAG laser is used to manipulate the surface morphology and wettability characteristic of 316L stainless steel (SS) and titanium biomaterials. Water and glycerol are selected as wettability testing liquids and the sessile drop method is used for the contact angle measurements. Results indicate that on both of the metals, wettability toward water improves significantly after the laser treatment. Different analyses including the study of the surface morphology, free energy and oxidation are assessed in correlation with wettability. Beside the important role of the laser-induced surface patterns, the increase in the surface roughness, oxygen content and the polar component of the surface energy, are detected as the most important physical and chemical phenomena controlling the improvement in the wettability. However, all the processed hydrophilic surfaces that are exposed to air become hydrophobic over time. The time dependency of the surface wettability is related to the chemical activities on the treated surfaces and the reduction of oxygen/carbon (O/C) ratio on them. The behavior is further studied with investigating the effect of the keeping environment and changes of the components of the surface tension. Results show that the pulsed laser treatment is a versatile approach to create either hydrophobic or super hydrophilic surfaces for industrial and medical applications.

  2. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivation.

  3. Laser shock processing on (AISI 1040) steel surface

    NASA Astrophysics Data System (ADS)

    Gomez-Rosas, G.; Rubio-González, C.; Ocaña, J. L.; Molpeceres, C.; Porro, J.; Morales, M.; Raygadas-Torres, I.; Ramírez-Ramírez, G.; Solis, J.

    2006-02-01

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surfaces treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 2.5 J/cm2 in a 8 ns laser FWHM pulse produced by a Q-switch Nd:YAG Laser. Experimental results using a pulse density of 5 000 pulses/cm2 and spots of 0.8 mm in diameter in 1040 steel samples are presented. Compressive residual stress distribution as a function of depth is assessed by the hole drilling method. High level compressive residual stresses are produced using 1064 nm wavelength. This method can be applied for surface treatment of final metal products.

  4. Multi-scale surface-groundwater interactions: Processes and Implications

    NASA Astrophysics Data System (ADS)

    Packman, A. I.; Harvey, J. W.; Worman, A.; Cardenas, M. B.; Schumer, R.; Jerolmack, D. J.; Tank, J. L.; Stonedahl, S. H.

    2009-05-01

    Site-based investigations of stream-subsurface interactions normally focus on a limited range of spatial scales - typically either very shallow subsurface flows in the hyporheic zone, or much larger scale surface- groundwater interactions - but subsurface flows are linked across this entire continuum. Broad, multi-scale surface-groundwater interactions produce complex patterns in porewater flows, and interfacial fluxes do not average in a simple fashion because of the competitive effects of flows induced at different scales. For example, reach-scale stream-groundwater interactions produce sequences of gaining and losing reaches that can either suppress or enhance local-scale hyporheic exchange. Many individual topographic features also produce long power-law tails in surface residence time distributions, and the duration of these tails is greatly extended by interactions over a wide range of spatial scales. Simultaneous sediment transport and landscape evolution further complicates the analysis of porewater flow dynamics in rivers. Finally, inhomogeneity in important biogeochemical processes, particularly microbial processes that are stimulated near the sediment- water interface, leads to a great degree of non-linearity in chemical transformation rates in stream channels. This high degree of complexity in fluvial systems requires that careful approaches be used to extend local observations of hyporheic exchange and associated nutrient, carbon, and contaminant transformations to larger spatial scales. It is important to recognize that conventional advection-dispersion models are not expected to apply, and instead anomalous transport models must be used. Unfortunately, no generally applicable model is available for stream-groundwater interactions at the present time. Alternative approaches for modeling conservative and reactive transport will be discussed, and a strategy articulated for coping with the complexity of coupled surface-subsurface dynamics in fluvial

  5. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID

  6. The detection of intestinal spike activity on surface electroenterograms

    NASA Astrophysics Data System (ADS)

    Ye-Lin, Y.; Garcia-Casado, J.; Martinez-de-Juan, J. L.; Prats-Boluda, G.; Ponce, J. L.

    2010-02-01

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 ± 0.10 for channel 1 and 0.57 ± 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  7. Rapidly rendering cells phagocytic through a cell surface display technique and concurrent Rac activation.

    PubMed

    Onuma, Hiroki; Komatsu, Toru; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo; Inoue, Takanari

    2014-07-15

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a time scale of minutes. We simultaneously induced the cell surface display of the C2 domain of milk fat globule epidermal growth factor factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  8. Rapidly rendering cells phagocytic through a cell-surface display technique and concurrent Rac activation

    PubMed Central

    Onuma, Hiroki; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo

    2014-01-01

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well-characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a timescale of minutes. We simultaneously induced the cell-surface display of the C2 domain of milk fat globule-EGF factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell-surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell-surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  9. Howardite Noble Gases as Indicators of Asteroid Surface Processing

    NASA Technical Reports Server (NTRS)

    Cartwright, J. A.; Mittlefehldt, D. W.; Herrin, J. S.; Ott, U.

    2011-01-01

    The HED (Howardite, Eucrite and Diogenite) group meteorites likely or iginate from the Asteroid 4 Vesta - one of two asteroid targets of NA SA's Dawn mission. Whilst Howardites are polymict breccias of eucriti c and diogenitic material that often contain "regolithic" petrologica l features, neither their exact regolithic nature nor their formation processes are well defined. As the Solar Wind (SW) noble gas compon ent is implanted onto surfaces of solar system bodies, noble gas anal yses of Howardites provides a key indicator of regolithic origin. In addition to SW, previous work by suggested that restricted Ni (300-12 00 micro g/g) and Al2O3 (8-9 wt%) contents may indicate an ancient we ll-mixed regolith. Our research combines petrological, compositional and noble gas analyses to help improve understanding of asteroid reg olith formation processes, which will play an intergral part in the i nterpretation of Dawn mission data. Following compositional and petrological analyses, we developed a regolith grading scheme for our sampl e set of 30 Howardites and polymict Eucrites. In order to test the r egolith indicators suggested by, our 8 selected samples exhibited a r ange of Ni, Al2O3 contents and regolithic grades. Noble gas analyses were performed using furnace stepheating on our MAP 215-50 noble gas mass spectrometer. Of our 8 howardites, only 3 showed evidence of SW noble gases (e.g approaching Ne-20/Ne-22 approximately equals 13.75, Ne-21/Ne-22 approximately equals 0.033). As these samples display low regolithic grades and a range of Ni and Al2O3 contents, so far we are unable to find any correlation between these indicators and "regolit hic" origin. These results have a number of implications for both Ho wardite and Vesta formation, and may suggest complex surface stratigr aphies and surface-gardening processes.

  10. Surface Modification of Nickel Foams by a Slurry Aluminizing Process

    SciTech Connect

    Omar, H.; Papanastasiou, N.; Psyllaki, P.; Stergioudi, F.; Tsipas, D. N.; Tsipas, S. A.; Michailidis, N.

    2010-01-21

    A novel slurry-based process for aluminizing nickel foams while improving the mechanical properties and conserving the excellent ductility is reported. Cellular unalloyed nickel foams with 92% porosity and uniform pore size and distribution were used as a starting material. Several slurries of different compositions were examined to investigate the possibility of developing an aluminide-nickel intermetallic coating on a Ni foam without considerably degrading the original ductile properties of the foam. The process temperature was varying from 400 to 850 deg. C and the process holding time was ranging between 2h to 6h. Scanning electron microscopy with an energy dispersive X-ray spectrometry and X-Ray diffraction were applied to assess the effectiveness of the aluminizing process and determine both the optimum parameters of the procedure (slurry composition, holding temperature and time) and the concentration profiles across the coating cross-section. The mechanical behavior of the aluminized Ni-foams was evaluated by the conduction of micro-tension tests. The resulting Ni-foams after aluminization retain the pore structure of original Ni-foams and present a thick outer surface layer which consists of a range of aluminide phases. The mechanical properties of the Ni-foams aluminized in low process temperature were insignificantly affected.

  11. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  12. MarsSI: Martian surface Data processing Application

    NASA Astrophysics Data System (ADS)

    Lozac'h, L.; Quantin-Nataf, C.; Loizeau, D.; Clenet, H.; Bultel, B.; Allemand, P.; Thollot, P.; Fernando, J.; Ody, A.; Harrison, S.

    2015-10-01

    We designed a distributed information system called MarsSI to manage orbital data from martian orbiters. The application easily and rapidly allows the user to process data from these orbiters and to download scientifically ready-to-use products of Mars surface. The application also allows DTM computation from CTX and HiRISE images. This application is open to the scientific community and can be found at this address: http://emars.univ-lyon1.fr The creation of an account is required, for that email Loïc Lozac'h : loic.lozach@univ-lyon1.fr

  13. Research of surface activating influence on formation of adhesion between gas-thermal coating and steel substrate

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Klimenov, V.; Zaitsev, K.

    2015-09-01

    Estimation of influence of physical and thermal activating on adhesion between steel substrates and thermal coatings has been performed. The substrates with surfaces obtained by and ultrasonic surface plastic deformation were used. To evaluate physical activating, preheating of the substrates to 600°C was performed. To evaluate the effect of thermal activating, the substrate surfaces after interfacial detachment were examined. Bonded areas on the substrate surfaces were measured by means of optical profilometry. The experiments have shown that surface physical activating is the main factor in formation of the adhesive bond between the coating and the substrate processed with the proposed methods.

  14. Collisional Processing of Comet Surfaces: Impact Experiments into Olivine

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jensen, E. A.; Cintala, M. J.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Wooden, D. H.; Fernandez, Y. R.; Zolensky, M. E.

    2011-01-01

    A new paradigm has emerged where 3.9 Ga ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. In addition, objects in the Kuiper Belt are believed to undergo extensive collisional processing while in the Kuiper Belt. Physical manifestations of shock effects (e.g., planar dislocations) in minerals typically found in comets will be correlated with spectral changes (e.g. reddening, loss and shift of peaks, new signatures) to allow astronomers to better understand geophysical impact processing that has occurred on small bodies. Targets will include solid and granular olivine (forsterite), impacted over a range of impact speeds with the Experimental Impact Laboratory at NASA JSC. Analyses include quantification of the dependence of the spectral changes with respect to impact speed, texture of the target, and temperature.

  15. EUV mask surface cleaning effects on lithography process performance

    SciTech Connect

    George, Simi; Baclea-an, Lorie Mae; Naulleau, Patrick; Chen, Robert J.; Liang, Ted

    2010-06-18

    The reflective, multilayer based, mask architectures for extreme ultraviolet (EUV) lithography are highly susceptible to surface oxidation and contamination. As a result, EUV masks are expected to undergo cleaning processes in order to maintain the lifetimes necessary for high volume manufacturing. For this study, the impact of repetitive cleaning of EUV masks on imaging performance was evaluated. Two, high quality industry standard, EUV masks are used for this study with one of the masks undergoing repeated cleaning and the other one kept as a reference. Lithographic performance, in terms of process window analysis and line edge roughness, was monitored after every two cleans and compared to the reference mask performance. After 8x clean, minimal degradation is observed. The cleaning cycles will be continued until significant loss imaging fidelity is found.

  16. Surface defects in GaAs wafer processes

    NASA Astrophysics Data System (ADS)

    Matsushita, H.; Ishida, M.; Kikawa, J.

    1990-06-01

    The causes of micro- and macro-irregularities observed on GaAs(100) polished wafers were investigated. From the results, the wafer processes were improved so that a high-quality surface was obtained without orange peel, haze, or pits. For 3-inch wafers the flatness was improved to less than 2 μm in TTV and the warp to less than 5 μm. Improvements in the wafer processes were: development of a better polishing solution, filtering of this solution with maintenance of the pad conditions, thereby eliminating scratches, annealing at high temperature to eliminate pits, advances in slicing and lapping to reduce warp, and three-stage double-sided polishing to eliminate dimples and to improve TTV.

  17. Land use and surface process domains on alpine hillslopes

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias

    2015-04-01

    Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental

  18. A biologically active surface enzyme assembly that attenuates thrombus formation

    PubMed Central

    Qu, Zheng; Muthukrishnan, Sharmila; Urlam, Murali K.; Haller, Carolyn A.; Jordan, Sumanas W.; Kumar, Vivek A.; Marzec, Ulla M.; Elkasabi, Yaseen; Lahann, Joerg; Hanson, Stephen R.

    2013-01-01

    Activation of hemostatic pathways by blood-contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. We postulate that surface-induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both clotting and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, we present a molecular engineering and bioorthogonal chemistry approach to site-specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non-human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface-induced thrombus formation. PMID:23532366

  19. Influence of the postplasma process conditions on the surface conductivity of hydrogenated diamond surfaces

    NASA Astrophysics Data System (ADS)

    Snidero, E.; Tromson, D.; Mer, C.; Bergonzo, P.; Foord, John S.; Nebel, C.; Williams, Oliver A.; Jackman, Richard B.

    2003-03-01

    It is a common observation that diamond surface conductivity rises after exposure to hydrogen plasmas. Hydrogenation treatments are known to induce a p-type conductive layer, which is not present on non-hydrogenated samples. However, the particular mechanisms predominant in the plasma treatment process are still controversial, and several antagonist conditions have been reported to be of importance, such as sample temperature (500 °C to 800 °C), duration (a few seconds to 1 h), and microwave (MW) power density, etc. Further, the post-plasma step is also crucial, especially since the surface conductivity has been reported to be affected by the presence of an adsorbate layer on the diamond surface. By setting up the arrangement to enable the in situ measurement of the surface conductivity after treatment, we have been able to control all parameters that could affect the surface conductivity, in order to determine those of importance. Among the parameters studied, we were able to analyze the influence of the surface temperature, the gas phase exposure (dry air, wet air, neutral gas, CH4, O2, and H2), the MW plasma conditions (O2,H2) as well as the exposure to UV (Hg and deuterium) and the importance of the sequence and duration of each of these treatments. We found that hydrogenated surfaces are strongly influenced by the combination of wet air exposure and UV light. We noticed that the effect of UV light is persistent and cannot be related to direct photoconduction and has to be attributed to a modification of the trapped defect population. This can, therefore, be compared with the modification of filled defect density as observed in persistent photoconduction.

  20. Thin gold layer in Ni electroforming process: optical surface characterization

    NASA Astrophysics Data System (ADS)

    Sironi, G.; Spiga, D.; Pareschi, G.; Missaglia, N.; Paganini, L.

    2009-08-01

    Mandrel replication by Nickel electroforming is a well-suited process to manufacture X-ray mirrors, making use of Gold layer playing the twofold role of release agent and reflective coating. To increase the optical performances of mirrors it is crucial to minimize the impact of X-ray scattering effects related to surface microroughness, especially when the mirror is intended to operate in hard X-rays. In this case, the Gold layer simply acts as release agent because the reflection is demanded to interferential over-coatings. Even though the replicated optical surface is usually believed to reproduce the smooth topography of the master, a surface degradation is commonly observed. Such a worsening can also suffer from a contribution from the spontaneous roughness growth of the Gold layer itself: if this is the case, the mirror's optical quality could potentially benefit from the utilization of a thin Gold layer (< 100 nm) instead of the traditional thick gold layer (> 100 nm). To prove the effectiveness of the Gold thickness reduction, a microroughness characterization of replicated thin gold layers has been achieved. We report here a preliminary roughness study of 3 electroformed Ni samples replicated from a super-polished Zerodur flat master with various Gold layer thicknesses, in the spectral range 0.02-1000 μm. The study is organized as follows: (a) characterization of the 3 replicated samples; (b) comparison of the Gold roughness for thin vs. thick layers; (c) comparison of the two sides of Gold layers.

  1. Asymptotic analysis of surface waves in continuous strip casting processes

    NASA Astrophysics Data System (ADS)

    Kluwick, Alfred; Scheichl, Stefan

    2000-09-01

    This paper presents a two-dimensional analysis of surface waves possibly emerging in a specific open channel flow with continuous solidification, i.e. the fluid consisting of molten material is cooled from below and solidifies. In modern metallurgical engineering such processes are of importance for the strip casting of steel and other metals. The study is based on the assumption that the wavelengths are large compared to the characteristic depth of the melt but small compared to the solidification length. Within the framework of a weakly nonlinear theory the use of the Euler equations supplemented with the appropriate boundary conditions at the solidification front and the free surface yields two Korteweg-de Vries equations with varying coefficients, which govern the propagation of the waves. However, the adopted form of the asymptotic expansions ceases to be valid as the point of complete solidification is approached, where the displacements at the free boundary and the depth of the melt are of the same order. Thus, a separate investigation for this region is carried out in order to describe the further evolution of the surface waves and its influence on the final shape of the fully solidified metal sheet.

  2. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  3. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  4. Using Surface Curvature to Control the Dimerization of a Surface-Active Protein

    NASA Astrophysics Data System (ADS)

    Kurylowicz, Martin; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    Understanding the influence of surface geometry on adsorbed proteins promises new possibilities in biophysics, such as topographical catalysis, molecular recognition of geometric cues, and modulations of oligomerization or ligand binding. We have created nano-textured hydrophobic surfaces that are stable in buffer by spin coating polystyrene (PS) nanoparticles (NPs) to form patchy NP monolayers on a PS substrate, yielding flat and highly curved areas on the same sample. Moreover, we have separated surface chemistry from texture by floating a 10 nm thick film of monodisperse PS onto the NP-functionalized surface. Using Single Molecule Force Spectroscopy we have compared in situ the distribution of detachment lengths for proteins on curved surfaces to that measured on flat surfaces. We have shown that β-Lactoglobulin (β-LG), a surface-active protein which helps to stabilize oil droplets in milk, forms dimers on both flat PS surfaces and surfaces with a radius of curvature of 100 nm, whereas β-LG monomers exist for more highly curved surfaces with radii of curvature of 25 and 40 nm. It is surprising that rather large radii of curvature have such a strong influence on proteins whose radius is only ˜2 nm. Furthermore, the transition from dimer to monomer with changes in surface curvature offers promising applications for proteins whose function can be modified by their oligomerization state.

  5. Surface Wave Simulation and Processing with MatSeis

    SciTech Connect

    THOMPSON,BEVERLY D.; CHAEL,ERIC P.; YOUNG,CHRISTOPHER J.; WALTER,WILLIAM R.; PASYANOS,MICHAEL E.

    2000-08-07

    In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a

  6. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene

    SciTech Connect

    Ania, C.O.; Bandosz, T.J.

    2005-08-16

    The performance of various activated carbons obtained from different carbon precursors (i.e., plastic waste, coal, and wood) as adsorbents for the desulfurization of liquid hydrocarbon fuels was evaluated. To increase surface heterogeneity, the carbon surface was modified by oxidation with ammonium persulfate. The results showed the importance of activated carbon pore sizes and surface chemistry for the adsorption of dibenzothiophene (DBT) from liquid phase. Adsorption of DBT on activated carbons is governed by two types of contributions: physical and chemical interactions. The former include dispersive interactions in the microporous network of the carbons. While the volume of micropores governs the amount physisorbed, mesopores control the kinetics of the process. On the other hand, introduction of surface functional groups enhances the performance of the activated carbons as a result of specific interactions between the acidic centers of the carbon and the basic structure of DBT molecule as well as sulfur-sulfur interactions.

  7. Process-based upscaling of surface-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.

    2015-12-01

    Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.

  8. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers. PMID:22954401

  9. Left Ventricle Segmentation Using Model Fitting and Active Surfaces

    PubMed Central

    Tay, Peter C.; Li, Bing; Garson, Chris D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    A method to perform 4D (3D over time) segmentation of the left ventricle of a mouse heart using a set of B mode cine slices acquired in vivo from a series of short axis scans is described. We incorporate previously suggested methods such as temporal propagation, the gradient vector flow active surface, superquadric models, etc. into our proposed 4D segmentation of the left ventricle. The contributions of this paper are incorporation of a novel despeckling method and the use of locally fitted superellipsoid models to provide a better initialization for the active surface segmentation algorithm. Average distances of the improved surface segmentation to a manually segmented surface throughout the entire cardiac cycle and cross-sectional contours are provided to demonstrate the improvements produced by the proposed 4D segmentation. PMID:20300558

  10. Surface modification of food contact materials for processing and packaging applications

    NASA Astrophysics Data System (ADS)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  11. Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios

    2015-03-01

    In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.

  12. Tectonics, Uplift and Surface Processes in the Moroccan Atlas Mountains

    NASA Astrophysics Data System (ADS)

    Teixell, A.; Arboleya, M.; Babault, J.; Teson, E.; Ayarza, P.; Alvarez-Lobato, F.; Owen, L. A.

    2008-12-01

    The Atlas Mountains of Morocco constitute a natural laboratory for studying interactions between tectonics and surface processes in convergent zones. The tectonic forcing of the system is well understood, where a combination of crustal and mantle processes contributed to surface uplift. A growing database on magnetostratigraphic dating of synorogenic sediments, low-temperature thermochronology and surface exposure dating constrain the relationships between tectonics, erosion, climate and drainage patterns during the late Cenozoic. The Atlas chains derive from the Cenozoic inversion of Triassic-Jurassic rifts in the NW African plate. Topography is high: large areas lie over 2000 m of mean elevation, and summits exceed 4000 m. In spite of high elevation, crustal thickening is modest: tectonic shortening is <24%, and seismic and gravity surveys fail to detect prominent crustal roots. Potential field modeling reveals that topography is partially supported by a lithospheric thinning, attributed to a thermal upwelling independent from the local tectonic regime, which also explains occurrences of alkaline volcanism contemporaneous to compression. Main compressional deformation occurred from Oligocene to Quaternary times at average rates of <<1mm/a, as recorded by tectonics-sedimentation relationships in molasse sediments. However, first foreland basin deposits suggest that orogenic growth started previously in mid Eocene times. Geomorphic evidence and paleoelevation markers suggest that the bulk of the mantle-related, long-wavelength surface uplift, which exceeds the extent of the deformed belts, occurred late with respect to shortening, in post- Miocene times, at a mean rate of 0.2 mm/a. Moderate erosion in the Atlas prevents to detect Cenozoic apatite fission-track ages except from narrow areas, where ages of 17-25 Ma record exhumation induced by the crustal shortening mechanism. The southern, best preserved foreland basin system of the Atlas Mountains was internally

  13. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  14. Coupling between mantle and surface processes: Insights from analogue modelling

    NASA Astrophysics Data System (ADS)

    Király, Ágnes; Sembroni, Andrea; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    Thermal or density anomalies located beneath the lithosphere are thought to generate dynamic topography. Such a topographic signal compensates the viscous stresses originating from the anomaly driven mantle flow. It has been demonstrated that the erosion modulates the dynamic signal of topography changing the uplift rate by unload. The characteristic time for adjustments of dynamic topography due to surface erosion is likely similar to post-glacial rebound time (10000 - 50000 years). Here we present preliminary results of a new set of analogue models realized to study and quantify the contribution given by erosion to dynamic topography, during a process specifically driven by a positively buoyant deep anomaly. The adopted set up consists of a Plexiglas box (40x40x50 cm3) filled with glucose syrup as analogue upper mantle. A silicon plate positioned on the top of the syrup simulates the lithosphere. On the silicone plate is placed a thin layer of a high viscous glucose syrup which reproduces the upper, erodible layer of the crust. To simulate the positively buoyant anomaly we used an elastic, undeformable silicon ball free to rise by buoyancy in the syrup until the floating silicone plate is hit. The changes in topography have been monitored by using a 3D laser scan, while a side-view camera recorded the position of the rising ball in time. Data have been post-processed with image analysis techniques (e.g., Particle Image Velocimetry) in order to obtain the evolution of topography, uplift rate, erosion patterns of the top layer, bulge width and mantle circulation during the experiment. We ran experiments with and without the shallow, erodible crustal layer in order to quantify the effect of erosion on dynamic topography. Preliminary results showed that both the maximum topography and uplift rate are inversely proportional to the lithospheric thickness. The maximum uplift rate and the deformation of the lithospheric plate occurred just before the arrival of the

  15. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    SciTech Connect

    Tabazadeh, A.; Turco, R.P.

    1993-07-20

    A model is developed that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. The Langmuir and Brunauer, Emmett, and Teller (BET) adsorption isotherms are used to compute surface concentrations of H{sub 2}O, HCl, HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} on ice and nitric acid trihydrate (NAT) crystals. Assuming pseudo-first-order kinetics with respect to adsorbed HOCl, ClONO{sub 2} and N{sub 2}O{sub 5}, surface reaction rates and reaction probabilities (sticking coefficients) are determined. The model parameters (surface morphology and energies) are extracted from measured uptake coefficients and reaction probabilities. For gas pressures of about 10{sup {minus}7} torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} may cover 0.01-1% of these surfaces. The model is applied to analyze laboratory data, leading to estimates of adsorption free energies, enthalpies and entropies for HCl, HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} on ice and NAT surfaces, and activation energies for the heterogeneous reactions of HCl and H{sub 2}O with HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} on these surfaces. The energy parameters are used to calculate surface parameters such as adsorption and desorption consistants, surface coverages, reaction rate coefficients, surface diffusion coefficients and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed. 53 refs., 6 figs., 4 tabs.

  16. Degassing Processes at Persistently Active Explosive Volcanoes

    NASA Astrophysics Data System (ADS)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with < 20 % error. Using the same protocol, I establish a record of the degassing patterns at Semeru volcano (Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range

  17. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process

    SciTech Connect

    Dai, K.; Villegas, J.; Stone, Z.; Shaw, L. . E-mail: lshaw@mail.ims.uconn.edu

    2004-12-01

    The surface of 5052 Al alloy plates is severely plastically deformed via multiple impacts by high-velocity tungsten carbide/cobalt (Wc/Co) balls in a surface nanocrystallization and hardening (SNH) process. The surface roughness of 5052 Al alloy plates as a function of the impacting ball size and processing time has been evaluated via non-contact 3D profilometry. A three-dimensional finite element (FE) model has been developed to simulate the formation of peaks and valleys during the SNH process. The peak-to-valley distance predicted from the FEM matches the maximum PV value measured experimentally quite well, indicating that surface roughening of 5052 Al alloy plates during the SNH process using WC/Co balls is mainly dictated by the indentation process of the impacting balls. The implications of this surface roughening mechanism in the final surface roughness, processing time, related microstructure change, and property alteration are discussed.

  18. A reclaiming process for solar cell silicon wafer surfaces.

    PubMed

    Pa, P S

    2011-01-01

    The low yield of epoxy film and Si3N4 thin-film deposition is an important factor in semiconductor production. A new design system using a set of three lamination-shaped electrodes as a machining tool and micro electro-removal as a precision reclaiming process of the Si3N4 layer and epoxy film removal from silicon wafers of solar cells surface is presented. In the current experiment, the combination of the small thickness of the anode and cathodes corresponds to a higher removal rate for the thin films. The combination of the short length of the anode and cathodes combined with enough electric power produces fast electroremoval. A combination of the small edge radius of the anode and cathodes corresponds to a higher removal rate. A higher feed rate of silicon wafers of solar cells combined with enough electric power produces fast removal. A precise engineering technology constructed a clean production approach for the removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers from solar cells that can reduce pollution and lower cost. PMID:21446525

  19. Applications of Time-Reversal Processing for Planetary Surface Communications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2007-01-01

    Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks

  20. The Amazon River reversal explained by tectonic and surface processes

    NASA Astrophysics Data System (ADS)

    Sacek, V.

    2014-12-01

    The drainage pattern in Amazonia was expressively modified during the mountain building of central and northern Andes. In Early Miocene, the fluvial systems in western Amazonia flowed to the foreland basins and northward to the Caribbean. By Late Miocene the drainage reversal occurred and formed the transcontinental Amazon River, connecting the Andes and the equatorial Atlantic margin. This event is recorded in the stratigraphic evolution of the Foz do Amazonas Basin by the onset of Andean-derived sedimentation. Additionally, an abrupt increase in sedimentation rate after the reversal occurred in the Foz do Amazonas Basin. Based on three-dimensional numerical models that couple surface processes, flexural isostasy and crustal thickening due to orogeny, I concluded that the Miocene drainage reversal can be explained by the flexural and surface processes response to the Andes formation with no need to invoke dynamic topography induced by mantle convection, as previously proposed. I observed that the instant of drainage reversal is directly linked to the rate of crustal thickening in the orogeny, the rate of erosion and, mainly, the efficiency of sediment transport. Moreover, the numerical experiments were able to predict the increase in sedimentation rate in the Amazon fan after the drainage reversal of the Amazon River as observed in the Late Miocene-Pliocene sedimentary record. However, the present numerical model fails to fully reproduce the evolution of the Pebas system, a megawetland in western Amazonia that preceded the drainage reversal. Therefore, further investigation is necessary to evaluate the mechanisms that generated and sustained the Pebas system.

  1. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    PubMed Central

    Guo, Wei; Vlachos, Dionisios G.

    2015-01-01

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N−H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design. PMID:26443525

  2. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    SciTech Connect

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  3. Studies on contact activation: effects of surface and inhibitors.

    PubMed

    Cameron, C L; Fisslthaler, B; Sherman, A; Reddigari, S; Silverberg, M

    1989-01-01

    Contact activation is initiated when the plasma proteins, Hageman factor (factor XII), prekallikrein and high molecular weight kininogen interact with negatively charged materials. The activation of the intrinsic pathway of blood coagulation and the production of bradykinin are among the sequelae of contact activation. The kinetics of the activation of the contact system are modified by plasma inhibitors, C1 inhibitor being quantitatively the most important. We propose that the activation of the system requires that the stimulus provided by the surface must be greater than a threshold value to overcome the effects of the inhibitors. We show in this paper that the amount of surface required for activation is much reduced in the absence of C1 inhibitor (Hereditary Angioedema) or in the cold where the inhibitor loses much of its effectiveness. Antithrombin III inhibition of activated Hageman factor is augmented by heparin which is also an activator of Hageman factor. The rate constants for inhibition remain much lower than for C1 inhibitor, however. PMID:2530427

  4. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  5. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  6. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    NASA Astrophysics Data System (ADS)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  7. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based

  8. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion

    PubMed Central

    Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai

    2013-01-01

    Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications. PMID:23981909

  9. Monitoring surface processes during heterogeneous asymmetric hydrogenation of ketones on a chirally modified platinum catalyst by operando spectroscopy.

    PubMed

    Meemken, Fabian; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-11

    Surface processes occurring at the catalytic chiral surface of a cinchona-modified Pt catalyst during the asymmetric hydrogenation of activated ketones have been monitored for the first time using operando ATR-IR spectroscopy. Fundamental information about this catalytic system could be gained, including the chiral modification process of the catalyst, the surface interaction of reactant ketone with preadsorbed chiral modifier, the role of hydrogen as well as the influence of the product enantiomers in the catalytic cycle. The formation of a diastereomeric transient surface complex between ketone and chiral modifier was found to be related to the ketone consumption. Among the studied activated ketones, a correlation between stereoselection and the strength of the intermolecular hydrogen bond was identified. Dissociated hydrogen from the catalytic surface is found to play a crucial role in the formation of the diastereomeric surface complex. PMID:24777839

  10. Surface ion trap structures with excellent optical access for quantum information processing

    NASA Astrophysics Data System (ADS)

    Maunz, P.; Blain, M.; Benito, F.; Chou, C.; Clark, C.; Descour, M.; Ellis, R.; Haltli, R.; Heller, E.; Kemme, S.; Sterk, J.; Tabakov, B.; Tigges, C.; Stick, D.

    2013-05-01

    Microfabricated surface electrode ion traps are necessary for the advancement of trapped ion quantum information processing as it offers a scalable way for realizing complex trap structures capable of storing and controlling many ions. The most promising way of performing two-qubit quantum gates in a chain of trapped ions is to focus laser beams on individual ions of the chain to drive gates. However, in surface ion traps the close proximity of the ions to the surface and the size of the chips usually cannot accommodate the tightly focused laser beams necessary to address individual ions parallel to the chip surface. Here we present a surface electrode ion trap monolithically fabricated in standard silicon technology that implements a linear quadrupole trap on a bowtie shaped chip with a narrow section that is only 1.2 mm wide. Laser beams parallel to the surface can be focused down to a waist of 4 μm with enough separation from the trap chip to prevent light scattering. The trap structure incorporates two Y-junctions for reordering ions and is optimized for quantum information processing. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Micro-structuring of polycarbonate-urethane surfaces in order to reduce platelet activation and adhesion.

    PubMed

    Clauser, Johanna; Gester, Kathrin; Roggenkamp, Jan; Mager, Ilona; Maas, Judith; Jansen, Sebastian V; Steinseifer, Ulrich

    2014-01-01

    In the development of new hemocompatible biomaterials, surface modification appears to be a suitable method in order to reduce the thrombogenetic potential of such materials. In this study, polycarbonate-urethane (PCU) tubes with different surface microstructures to be used for aortic heart valve models were investigated with regard to the thrombogenicity. The surface structures were produced by using a centrifugal casting process for manufacturing PCU tubes with defined casting mold surfaces which are conferred to the PCU surface during the process. Tubes with different structures defined by altering groove widths were cut into films and investigated under dynamic flow conditions in contact with porcine blood. The analysis was carried out by laser scanning microscopy which allowed for counting various morphological types of platelets with regard to the grade of activation. The comparison between plain and shaped PCU samples showed that the surface topography led to a decline of the activation of the coagulation cascade and thus to the reduction of the fibrin synthesis. Comparing different types of structures revealed that smooth structures with a small groove width (d ~ 3 μm) showed less platelet activation as well as less adhesion in contrast to a distinct wave structure (d ~ 90 μm). These results prove surface modification of polymer biomaterials to be a suitable method for reducing thrombogenicity and hence give reason for further alterations and improvements. PMID:24484511

  12. Process for levelling film surfaces and products thereof

    DOEpatents

    Birkmire, Robert W.; McCandless, Brian E.

    1990-03-20

    Semiconductor films and photovoltaic devices prepared therefrom are provided wherein the semiconductor films have a specular surface with a texture less than about 0.25 micron greater than the average planar film surface and wherein the semiconductor films are surface modified by exposing the surface to an aqueous solution of bromine containing an acid or salt and continuing such exposure for a time sufficient to etch the surface.

  13. Process for leveling film surfaces and products thereof

    DOEpatents

    Birkmire, R.W.; McCandless, B.E.

    1990-03-20

    Semiconductor films and photovoltaic devices prepared therefrom are provided wherein the semiconductor films have a specular surface with a texture less than about 0.25 micron greater than the average planar film surface and wherein the semiconductor films are surface modified by exposing the surface to an aqueous solution of bromine containing an acid or salt and continuing such exposure for a time sufficient to etch the surface. 8 figs.

  14. A simplified process design for P450 driven hydroxylation based on surface displayed enzymes.

    PubMed

    Ströhle, Frank W; Kranen, Eva; Schrader, Jens; Maas, Ruth; Holtmann, Dirk

    2016-06-01

    New production routes for fine and bulk chemicals are important to establish further sustainable processes in industry. Besides the identification of new biocatalysts and new production routes the optimization of existing processes in regard to an improved utilization of the catalysts are needed. In this paper we describe the successful expression of P450BM3 on the surface of E. coli cells with the Autodisplay system. The successful hydroxylation of palmitic acid by using surface-displayed P450BM3 was shown. Besides optimization of surface protein expression, several cofactor regeneration systems were compared and evaluated. Afterwards, the development of a suitable process for the biocatalytic hydroxylation of fatty acids based on the re-use of the catalysts after a simple centrifugation was investigated. It was shown that the catalyst can be used for several times without any loss in activity. By using surface-displayed P450s in combination with an enzymatic cofactor regeneration system a total turnover number of up to 54,700 could be reached, to the knowledge of the authors the highest value reported for a P450 monooxygenase to date. Further optimizations of the described reaction system can have an enormous impact on the process design for more sustainable bioprocesses. Biotechnol. Bioeng. 2016;113: 1225-1233. © 2015 Wiley Periodicals, Inc. PMID:26574191

  15. Cross comparisons of land surface process descriptions in land surface models using multiple sources of data

    NASA Astrophysics Data System (ADS)

    Park, Gi Hyeon

    2006-12-01

    Land surface-atmospheric interactions influence climate and weather varying spatial scales from local to mesoscale, and even to global. This dissertation deals with several topics: (1) evaluation of various sources of incoming solar radiations, (2) evaluation of land surface process descriptions in the land surface models in both basin-scale and point scale offline model simulations, and (3) inverse estimation of radiation components using net radiation and other meteorological variables. Incoming solar radiations from various sources were evaluated. This study identified the two sources of errors in the North American Data Assimilation system (NLDAS) solar radiation: One is related to bias inherited from the ETA Data Assimilation System (EDAS) during 2001 and 2003, and the other is software error at NESDIS operational system during 2002. Land surface processes are treated quite differently in the land surface models used in this study. Over the state of Oklahoma, Common Land Model 2.1 (CLM2.1) estimates more evaporation but less transpiration than the Variable Infiltration Capacity (VIC3L) model. This is due to the difference in the runoff algorithm, which results in more infiltration down to the soil layer and then providing more available water to plant roots in VIC3L. CLM2.1 overestimates ground heat flux in Point scale simulation. CoLM, which employs two stream radiative transfer scheme, shows better agreements to adjusted ground observations (using Bowen-ration closure method) in offline simulations than CLM2.1. CoLM, in addition, shows various model behaviors depending on vegetation cover types. Inverse radiation estimation methods were developed and evaluated at four AmeriFlux sites. Analysis of observed radiations showed a triangle shape relationship among net radiation, net solar radiation and cloud factor (defined in this study). Clear-sky downward longwave radiation is needed to be calibrated for each site. SCE-UA method was used to calibrate an

  16. Preferences for Deep-Surface Learning: A Vocational Education Case Study Using a Multimedia Assessment Activity

    ERIC Educational Resources Information Center

    Hamm, Simon; Robertson, Ian

    2010-01-01

    This research tests the proposition that the integration of a multimedia assessment activity into a Diploma of Events Management program promotes a deep learning approach. Firstly, learners' preferences for deep or surface learning were evaluated using the revised two-factor Study Process Questionnaire. Secondly, after completion of an assessment…

  17. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species. PMID:27372123

  18. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  19. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2013-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  20. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation

  1. Total pollen counts do not influence active surface measurements

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Schinko, Herwig; Neuberger, Manfred

    We investigated the temporal association of various aerosol parameters with pollen counts in the pollen season (April 2001) in Linz, Austria. We were especially interested in the relationship between active surface (or Fuchs' surface) because we had shown previously (Atmos. Environ. 37 (2003) 1737-1744) that this parameter during the same observation period was a better predictor for acute respiratory symptoms in school children (like wheezing, shortness of breath, and cough) and reduced lung function on the same day than particle mass (PM 10). While active surface is most sensitive for fine particles with a diameter of less than 100 nm it has no strict upper cut-off regarding particle size and so could eventually be influenced also by larger particles if their numbers were high. All particle mass parameters tested (TSP, PM 10, PM 1) were weakly ( r approximately 0.2) though significantly correlated with pollen counts but neither was active surface nor total particle counts (CPC). The weak association of particle mass and pollen counts was due mainly to similar diurnal variations and a linear trend over time. Only the mass of the coarse fraction (TSP minus PM 10) remained associated with pollen counts significantly after controlling for these general temporal patterns.

  2. Active nematics on the surface of a torus

    NASA Astrophysics Data System (ADS)

    Ellis, Perry; Chang, Ya-Wen; Fernandez-Nieves, Alberto

    Nematic materials on the surface of a sphere must have a net topological charge of s = + 2 . In equilibrium nematics experiments have shown that this net topological charge can be realized with four s = + 1 / 2 defects, which also corresponds to the theoretically expected ground state configuration. Surprisingly, even though active nematics are continuously driven out of equilibrium by the internal energy of the nematogens, when confined to the surface of a sphere these materials can also realize this net topological charge with four s = + 1 / 2 defects. In contrast to the spherical confinement case, the situation for toroidal confinement has not been experimentally explored despite the existence of theory and simulation work examining the structure of ordered materials on the surface of a torus. Here, we experimentally realize an extensile active nematic confined to a toroidal surface and explore how the interplay between topology, activity, and nematic elasticity affect the structure and dynamics of the material. PWE is supported by FLAMEL under Grant NSF 1258425.

  3. Effect of sulfation on the surface activity of CaO for N2O decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Dong, Changqing; Yang, Yongping

    2015-12-01

    Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N2O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N2O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N2O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO2 or SO3 molecule forms stable local CaSO3 or CaSO4 on the CaO (1 0 0) surface with strong hybridization between the S atom of SOx and the surface O anion. The formed local CaSO3 increases the barrier energy of N2O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO4 remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO3 into CaSO4 is therefore the crucial step for deactivating the surface activity for N2O decomposition. Completely sulfated CaSO4 (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO4 for N2O decomposition.

  4. Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry

    NASA Astrophysics Data System (ADS)

    Ren, Hongyu; Jiang, Xiangqian; Gao, Feng; Zhang, Zonghua

    2014-07-01

    Deflectometric methods have been studied for more than a decade for slope measurement of specular freeform surfaces through utilization of the deformation of a sample pattern after reflection from a tested sample surface. Usually, these approaches require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, which leads to some complexity for the whole measuring process. This paper proposes a new mathematical measurement model for measuring topography information of freeform specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection photogrammetry and presents a straight-forward relation between height of the tested surface and phase signals. This method only requires one direction of horizontal or vertical sinusoidal fringe patterns to be projected from a LCD screen, resulting in a significant reduction in capture time over established methods. Assuming the whole system has been precalibrated during the measurement process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD camera. The reference phase can be solved according to the spatial geometric relation between the LCD screen and the CCD camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate topography information for freeform and structured specular surfaces without integration and reconstruction processes.

  5. Low Activity Waste Feed Process Control Strategy

    SciTech Connect

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  6. Surface passivation process of compound semiconductor material using UV photosulfidation

    DOEpatents

    Ashby, Carol I. H.

    1995-01-01

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  7. Effects of surface-active impurities on the liquid bridge dynamics

    NASA Astrophysics Data System (ADS)

    Ponce-Torres, A.; Vega, E. J.; Montanero, J. M.

    2016-05-01

    We examine experimentally the effects of surface-active impurities on the small-amplitude free oscillations of axisymmetric liquid bridges. The surface tension, oscillation frequency, and damping rate are measured at different instants from the free surface formation. The experiments with n-hexadecane and n-dodecane show that none of these interfacial quantities is significantly affected by the free surface age. The damping rates exceed by a O(1) quantity their corresponding values for a clean free surface. This extra-damping can be modeled in terms of the monolayer shear viscosity exclusively. Similar values of this quantity are obtained for n-hexadecane and n-dodecane, although the impurity effects on the surface tension are much greater in the first case. We conducted experiments with deionized water liquid bridges to analyze the impurity effects on free surfaces with high elasticity numbers, where Marangoni convection is expected to increase the monolayer dissipation. In this case, the damping rates are up to three times as those of a clean free surface. The monolayer dissipative effects do not increase as the free surface ages, although the surface tension decreases considerably during this process. Similar impurity effects are observed when an anionic surfactant is dissolved in deionized water. For a fixed value of the liquid bridge slenderness, both the oscillation frequency and damping rate are functions of the liquid bridge volume exclusively, independently of the free surface age and the liquid-ambient combination. Extra-dissipation increases sharply as the liquid bridge volume decreases.

  8. Microstructure and surface properties of lignocellulosic-based activated carbons

    NASA Astrophysics Data System (ADS)

    González-García, P.; Centeno, T. A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L. C.

    2013-01-01

    Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp2 content ≈ 95% and average mass density of 1.65 g/cm3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m2/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm2) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  9. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  10. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters.

    PubMed

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air-water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  11. Atmospheric oxygen plasma activation of silicon (100) surfaces

    SciTech Connect

    Habib, Sara B.; Gonzalez, Eleazar II; Hicks, Robert F.

    2010-05-15

    Silicon (100) surfaces were converted to a hydrophilic state with a water contact angle of <5 deg. by treatment with a radio frequency, atmospheric pressure helium, and oxygen plasma. A 2 in. wide plasma beam, operating at 250 W, 1.0 l/min O{sub 2}, 30 l/min He, and a source-to-sample distance of 3{+-}0.1 mm, was scanned over the sample at 100{+-}2 mm/s. Plasma oxidation of HF-etched silicon caused the dispersive component of the surface energy to decrease from 55.1 to 25.8 dyn/cm, whereas the polar component of the surface energy increased from 0.3 to 42.1 dyn/cm. X-ray photoelectron spectroscopy revealed that the treatment generated a monolayer of covalently bonded oxygen on the Si(100) surface 0.15{+-}0.10 nm thick. The surface oxidation kinetics have been measured by monitoring the change in water contact angle with treatment time, and are consistent with a process that is limited by the mass transfer of ground-state oxygen atoms to the silicon surface.

  12. Dynamical Theory of Activated Processes in Globular Proteins

    NASA Astrophysics Data System (ADS)

    Northrup, Scott H.; Pear, Michael R.; Lee, Chyuan-Yih; McCammon, J. Andrew; Karplus, Martin

    1982-07-01

    A methos is described for calculating the reaction rate in globular proteins of activated processes such as ligand binding or enzymatic catalysis. The method is based on the determination of the probability that the system is in the transition state and of the magnitude of the reactive flux for transition-state systems. An ``umbrella sampling'' simulation procedure is outlined for evaluating the transition-state probability. The reactive flux is obtained from an approach described previously for calculating the dynamics of transition-state trajectories. An application to the rotational isomerization of an aromatic ring in the bovine pancreatic trypsin inhibitor is presented. The results demonstrate the feasibility of calculating rate constants for reactions in proteins and point to the importance of solvent effects for reactions that occur near the protein surface.

  13. Dynamical theory of activated processes in globular proteins.

    PubMed Central

    Northrup, S H; Pear, M R; Lee, C Y; McCammon, J A; Karplus, M

    1982-01-01

    A method is described for calculating the reaction rate in globular proteins of activated processes such as ligand binding or enzymatic catalysis. The method is based on the determination of the probability that the system is in the transition state and of the magnitude of the reactive flux for transition-state systems. An "umbrella sampling" simulation procedure is outlined for evaluating the transition-state probability. The reactive flux is obtained from an approach described previously for calculating the dynamics of transition-state trajectories. An application to the rotational isomerization of an aromatic ring in the bovine pancreatic trypsin inhibitor is presented. The results demonstrate the feasibility of calculating rate constants for reactions in proteins and point to the importance of solvent effects for reactions that occur near the protein surface. PMID:6955788

  14. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  15. The influence of badland surfaces and erosion processes on vegetation cover

    NASA Astrophysics Data System (ADS)

    Hardenbicker, Ulrike; Matheis, Sarah

    2014-05-01

    less dense pioneer vegetation consisting of grasses and sage bushes indicating minimal surface erosion or sedimentation. Geomorphic mapping documented a high density of active pipes in this area, transporting silt and fine sand from the sandstone cliffs to lower and basal pediments. Vegetation cover alone is a poor indicator of badland surfaces and erosion processes because of the three-dimensional nature of badland erosion processes, and the shrink-swell capacity of the bentonitic bedrock. A combination of geomorphic and vegetation mapping is needed to identify badland surfaces and processes in the study area.

  16. Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Álvarez, P. M.; Gómez-Serrano, V.

    2010-06-01

    The control of the surface chemistry of activated carbon by ozone and heat treatment is investigated. Using cherry stones, activated carbons were prepared by carbonization at 900 °C and activation in CO 2 or steam at 850 °C. The obtained products were ozone-treated at room temperature. After their thermogravimetric analysis, the samples were heat-treated to 300, 500, 700 or 900 °C. The textural characterization was carried out by N 2 adsorption at 77 K, mercury porosimetry, and density measurements. The surface analysis was performed by the Bohem method and pH of the point of zero charge (pH pzc). It has been found that the treatment of activated carbon with ozone combined with heat treatment enables one to control the acidic-basic character and strength of the carbon surface. Whereas the treatment with ozone yields acidic carbons, carbon dioxide and steam activations of the carbonized product and the heat treatment of the ozone-treated products result in basic carbons; the strength of a base which increases with the increasing heat treatment temperature. pH pzc ranges between 3.6 and 10.3.

  17. Active vision and sensor fusion for inspection of metallic surfaces

    NASA Astrophysics Data System (ADS)

    Puente Leon, Fernando; Beyerer, Juergen

    1997-09-01

    This paper deals with strategies for reliably obtaining the edges and the surface texture of metallic objects. Since illumination is a critical aspect regarding robustness and image quality, it is considered here as an active component of the image acquisition system. The performance of the methods presented is demonstrated -- among other examples -- with images of needles for blood sugar tests. Such objects show an optimized form consisting of several planar grinded surfaces delimited by sharp edges. To allow a reliable assessment of the quality of each surface, and a measurement of their edges, methods for fusing data obtained with different illumination constellations were developed. The fusion strategy is based on the minimization of suitable energy functions. First, an illumination-based segmentation of the object is performed. To obtain the boundaries of each surface, directional light-field illumination is used. By formulating suitable criteria, nearly binary images are selected by variation of the illumination direction. Hereafter, the surface edges are obtained by fusing the contours of the areas obtained before. Following, an optimally illuminated image is acquired for each surface of the object by varying the illumination direction. For this purpose, a criterion describing the quality of the surface texture has to be maximized. Finally, the images of all textured surfaces of the object are fused to an improved result, in which the whole object is contained with high contrast. Although the methods presented were designed for inspection of needles, they also perform robustly in other computer vision tasks where metallic objects have to be inspected.

  18. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.

    PubMed

    Saini, Seema; Yücel Falco, Çiğdem; Belgacem, Mohamed Naceur; Bras, Julien

    2016-01-01

    In the last decade, a new fiber pretreatment has been proposed to make easy cellulose fibrillation into microfibrils. In this context, different surface cationized MFC was prepared by optimizing the experimental parameters for cellulose fibers pretreatment before fibrillation. All MFCs were characterized by conductometric titration to establish degree of substitution, field emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and optical microscopy assessed the effect of pretreatment on the morphology of the ensuing MFCs. Antibacterial activities of neat and cationized MFC samples were investigated against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus) and Gram negative bacteria (Escherichia coli). The CATMFC sample at DS greater than 0.18 displayed promising results with antibacterial properties without any leaching of quaternary ammonium into the environment. This work proved the potential of cationic MFCs with specific DS for contact active antimicrobial surface applications in active food packaging, medical packaging or in health and cosmetic field. PMID:26453874

  19. Publications of the Western Earth Surface Processes Team, 1999

    USGS Publications Warehouse

    Stone, Paul; Powell, Charles L.

    2000-01-01

    The Western Earth Surfaces Processes Team (WESPT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth- science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 1999 as well as additional 1997 and 1998 publications that were not included in the previous list (USGS Open-file Report 99-302). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects.

  20. Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

    PubMed Central

    Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther

    2015-01-01

    The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163

  1. Evapotranspiration process as the result of land surface - atmosphere interaction.

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Sepulcre Canto, Guadalupe

    2010-05-01

    Since a few years, EUMETSAT (http://www.eumetsat.int) is developing a network of decentralized meteorological satellite data processing centers called ‘Satellite Application Facilities' (SAFs). These centers have both operational and research objectives in view to develop robust products and services. The ‘Land-Surface-Analysis' SAF (LSA-SAF, http://landsaf.meteo.pt/), develops algorithms for the estimation of operational land products using meteorological satellites. The SEVIRI instrument, on-board Meteosat Second Generation (MSG) satellites, is design to provide wide area coverage and is able to monitor quick changing surface variables affected by cloudiness and diurnal cycle. It has a 3 km spatial resolution at sub-satellite point and a high observation repetition rate (15 min). RMI participates to the LSA-SAF to develop the evapotranspiration (ET) product. ET is the combined response of soil and vegetation to environmental conditions provided by the atmosphere and soil. ET cannot be observed directly and is assessed indirectly through modeling. Different approaches exist to compute ET, from simple empirical relationships to semi-empirical and more complex models. Soil-Vegetation-Atmosphere Transfer (SVAT) schemes are conceived to mimic as best as possible the interaction between atmosphere and land surface. The proposed model is based on the SVAT scheme developed at ECMWF and is adapted to accept real-time data from meteorological satellites. In this contribution we test the capability of the algorithm to reproduce locally observed fluxes at ground measurement stations in Europe and Africa. Emphasis is put on highlighting the interaction between atmosphere and land surface. Local observations of the atmospheric variables (radiation fluxes, air temperature and humidity, wind speed, precipitation) are first compared to the input data (from LSA-SAF and ECMWF) used in the model. Resulting ET and related water and energy fluxes are then compared to observations

  2. Determination of the surface energy distributions of different processed lactose.

    PubMed

    Thielmann, Frank; Burnett, Daniel J; Heng, Jerry Y Y

    2007-11-01

    Particulate interactions between drug and lactose carrier in dry powder inhaler formulations are affected by the heterogenous energy distribution on the surface of the individual compounds. A new method based on Inverse Gas Chromatography at finite concentration is applied to study the energy heterogeneity of untreated, milled, and recrystallized lactose of similar particle size distribution. Energy distributions for the dispersive surface energy and the specific free energy of ethanol are obtained. Milling causes an increase in surface energy due to formation of amorphous regions. Untreated and recrystallized materials have similar surface energies at low surface coverages but show clear differences in energy distribution. PMID:18058321

  3. Surface process study for oil recovery using a thermal extraction process

    SciTech Connect

    Sethl, V.K.; Satchwell, R.M.; Johnson, L.A. Jr.

    1994-06-01

    Geological studies have shown that there are many surface or near-surface deposits in the United States that contain large quantities of petroleum. In the State of Wyoming, a high concentration of such deposits exists in the Wind River, Big Horn, and Powder River Basins. These shallow deposits typically occur as unconsolidated or friable formations that contain millions of barrels of oil. Conventional petroleum production techniques have been attempted in many of these deposits with little or no economic success. In an attempt to improve the production economics, the Western Research Institute was solicited to develop a technique for the recovery of oil from these deposits. WRI, with support from the Economic and Community Development Division of the State of Wyoming, and as a part of the WRI/US Department of Energy, Jointly Sponsored Research program, proposed to develop, test, and demonstrate a viable and economical technology for the recovery of oil using mining and surface recovery processes. Reneau Energy, Inc. of La Quinta, California, agreed to participate in the project in providing a test site and mined materials. The goal of the proposed project to be completed in two phases, was to develop existing energy resources which are not presently being utilized. Phase 1 of the project, consisting of six specific tasks, was conducted to evaluate the suitability of various surface processing schemes. Phase 1 also included gravity drainage tests to determine if recovery techniques such as horizontal drilling could be applied. Phase 1 work was completed, and a final report was prepared and submitted to the funding agencies. Based on the results obtained in Phase 1 of the project, fluidized-bed based thermal recovery appeared to be a viable option. A 100 tons per day pilot plant was designed, constructed, and operated in the field. This report describes the results and experiences of the Phase 2 testing.

  4. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  5. Surface Characteristics of Titanium during ECM Process for Biomedical Applications

    SciTech Connect

    Dhobe, Shirish D.; Doloi, B.; Bhattacharyya, B.

    2011-01-17

    Electrochemical machining is described as the controlled removal of metal by anodic dissolution of the workpiece in electrolyte cell. Titanium is extensively used in aerospace, defence, biomedical applications. The human response to implanted titanium parts strongly related to the implant surface conditions. The aim of this paper is to present experimental investigation on electrochemically machined surface characteristics acquired on titanium, utilizing developed cross flow electrolyte system. It is observed that applied voltage and electrolyte flow rate are the some of the persuading parameter to attain desired surface characteristics on machined surface. Attempt has made to develop surface along with self-generated oxide layer, which facilitates in improving the corrosion and chemical resistance of titanium implant in biomedical application. The surface roughness of oxide layered machined surface obtained within 2.4 {mu}m to 2.93 {mu}m, which is within acceptable value for functional attachment between bone and implant.

  6. Application of modern surface analytical tools in the investigation of surface deterioration processes

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1983-01-01

    Surface profilometry and scanning electron microscopy were utilized to study changes in the surface of polymers when eroded. The X-ray photoelectron spectroscopy (XPS) and depth profile analysis indicate the corrosion of metal and ceramic surfaces and reveal the diffusion of certain species into the surface to produce a change in mechanical properties. Ion implantation, nitriding and plating and their effects on the surface are characterized. Auger spectroscopy analysis identified morphological properties of coatings applied to surfaces by sputter deposition.

  7. Surface processes and tectonics: Forcing of continental subduction and deep processes

    NASA Astrophysics Data System (ADS)

    Burov, E.; Toussaint, G.

    2007-07-01

    It is now well accepted that surface processes provide a critical feedback on the surface tectonic deformation, whatever it is, orogenic building or basin evolution. However, the idea that the influence of these processes may go below the crustal levels, is less common. In this preliminary study, we use coupled thermo-mechanical numerical models to investigate the possible influence of surface processes on the styles of continental collision, in particular, continental subduction. For that, we further exploit the recent successful model of continental subduction of the early stages of India-Asia collision by Toussaint et al. [Toussaint G., Burov, E., and J.-P. Avouac, Tectonic evolution of a continental collision zone: a thermo-mechanical numerical model, Tectonics, 23, TC6003, doi:10.1029/2003TC001604, 2004b.]. On the example of India-Asia-like settings, we show that not only the surface topography but also the total amount of subduction may largely vary as function of denudation rate (controlled by the coefficient of erosion, k). Erosion provides a dynamic discharge of the hanging wall of the major thrust zone, whereas the sedimentation increases loading on the footwall and this helps down-thrusting of the lower plate. Both processes reduce the resistance of the major thrust and subduction channel to subduction. However, very strong or very slow erosion/sedimentation enhance the possibility of plate coupling and promote whole-scale thickening or buckling. The maximal amount of subduction is thus achieved for some intermediate values of erosion rates when the tectonic uplift rate is fine-balanced by the denudation rate. In our case the optimal balance is reached for the values of k on the order of 3000 m 2/yr. We then extended our model beyond the conditions of India-Asia collision, in terms of the tested range of k and convergence rates. The experiments suggest that for provided settings, both extra slow ( k < 50-100 m 2/yr) and extra rapid erosion ( k > 6000

  8. Influence of surface modifications to titanium on antibacterial activity in vitro.

    PubMed

    Yoshinari, M; Oda, Y; Kato, T; Okuda, K

    2001-07-01

    The antibacterial effect of surface modifications to titanium on Porphyromonas gingivalis ATCC 33277 and Actinobacillus actinomycetemcomitans ATCC 43718 was evaluated. Surface modifications were performed with dry processes including ion implantation (Ca+, N+, F+), oxidation (anode oxidation, titania spraying), ion plating (TiN, alumina), and ion beam mixing (Ag, Sn, Zn, Pt) with Ar+ on polished pure titanium plates. F+-implanted specimens significantly inhibited the growth of both P. gingivalis and A. actinomycetemcomitans than the polished titanium. The other surface-modified specimens did not exhibit effective antibacterial activity against both bacteria. No release of the fluorine ion was detected from F-implanted specimens under dissolution testing. This result and the characterization of the F+-implanted surfaces suggested that the possible antibacterial mechanism of the F+-implanted specimen was caused by the formation of a metal fluoride complex on the surfaces. In addition, F+-implanted surfaces did not inhibit the proliferation of fibroblast L929-cells. These findings indicate that surface modification by means of a dry process is useful in providing antibacterial activity of oral bacteria to titanium implants exposed to the oral cavity. PMID:11426884

  9. Frank Stinchfield Award. Titanium surface with biologic activity against infection.

    PubMed

    Parvizi, Javad; Wickstrom, Eric; Zeiger, Allen R; Adams, Christopher S; Shapiro, Irving M; Purtill, James J; Sharkey, Peter F; Hozack, William J; Rothman, Richard H; Hickok, Noreen J

    2004-12-01

    Despite immense improvements, periprosthetic infection continues to compromise the result of otherwise successful joint arthroplasty. There are various limitations in the treatment of periprosthetic infection, the most important of which is the inability to deliver antibiotics to the local tissue without the need for intravenous administration. We have developed a novel route to covalently tether vancomycin to a metal (titanium) surface, which showed effective bactericidal activity because of a vancomycin coupling. The chemistry of tethering does not affect the biological activity of the biofactors that are attached to the metal surface. This technology holds great promise for the manufacturing of "smart" implants that can be self protective against periprosthetic infection, or can be used for the treatment of periprosthetic infections when they occur. PMID:15577462

  10. Deployable Extravehiclar Activity Platform (DEVAP) for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Merbitz, Jerad; Kennedy, Kriss; Gill, Tracy; Tri, Terry; Liolios, Sotirios; Lynch, Amanda; Walsh, Edward

    2012-01-01

    The Deployable Extra-Vehicular Activity Platform (DEVAP) is a staging platform for egress and ingress attached to a lunar, Mars, or planetary surface habitat airlock, suitlock, or port. The DEVAP folds up into a compact package for transport, and deploys manually from its attached location to provide a ramp and staging platform for extra-vehicular activities. This paper discusses the latest development of the DEVAP, from its beginnings as a portable platform attached to the Lunar Outpost Pressurized Excursion Module (PEM) in the Constellation Lunar Surface Systems scenarios, to the working prototype deployed at the2011 NASA Desert Research and Technology Studies (D-RATS) analog field tests in Arizona. The paper concludes with possible future applications and directions for the DEVAP.

  11. Partial difference operators on weighted graphs for image processing on surfaces and point clouds.

    PubMed

    Lozes, Francois; Elmoataz, Abderrahim; Lezoray, Olivier

    2014-09-01

    Partial difference equations (PDEs) and variational methods for image processing on Euclidean domains spaces are very well established because they permit to solve a large range of real computer vision problems. With the recent advent of many 3D sensors, there is a growing interest in transposing and solving PDEs on surfaces and point clouds. In this paper, we propose a simple method to solve such PDEs using the framework of PDEs on graphs. This latter approach enables us to transcribe, for surfaces and point clouds, many models and algorithms designed for image processing. To illustrate our proposal, three problems are considered: (1) p -Laplacian restoration and inpainting; (2) PDEs mathematical morphology; and (3) active contours segmentation. PMID:25020095

  12. Correlations between surface structure and catalytic activity/selectivity

    SciTech Connect

    Goodman, D.W.

    1992-10-01

    Objective is to address the keys to understanding the relation between surface structure and catalytic activity/selectivity. Of concern are questions related to enhanced catalytic properties of mixed-metal catalysts and critical active site requirements for molecular synthesis and rearrangement. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), UV and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS) and infrared reflection-absorption spectroscopy (IRAS). Our research program builds upon our previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well we are exploiting our recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. The program is proceeding toward the study of the unique catalytic properties of ultrathin metal films; the investigation of the critical ensemble size requirements for principal catalytic reaction types; and the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  13. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  14. Atomistic simulations of activated processes in nanoparticles synthesis

    NASA Astrophysics Data System (ADS)

    Giberti, Federico; Galli, Giulia

    Core-shell and Janus nanopartices are promising building blocks for new, highly efficient solar cells. One of the most common synthetic pathways to produce such nanostructures is the use of cation exchange reactions. Although widely used, these procedures are not completely understood. We employed classical Molecular Dynamics and Monte Carlo simulations to understand these transformation at the molecular level; in particular we investigated the conversion from CdSe (sphalerite) to PbSe (rocksalt) NPs with 2-3 nm diameter. In order to recover the equilibrium free energy surfaces we used state of the art enhanced sampling techniques, including Metadynamics. The formation of hybrid core-shell structures resulted to be an activated process, where the limiting step is the transition of a sphalerite to a rocksalt PbSe nucleus. We found that the barrier height and the stability of the two phases depend on the size of the PbSe nucleus, suggesting that the process could proceed via a two step mechanism, where a small sphalerite nucleus is formed first, and it then transforms to a rocksalt nucleus. Our results give insight into possible manipulation processes at the molecular scale, which could be used to stabilize metastable NPs and tune their physical and chemical properties. This work was supported by the DOE Grant No. DE-FG02-06ER46262.

  15. Silanone groups on the surface of mechanically activated silicon dioxide

    SciTech Connect

    Bobyshev, A.A.; Radtsig, V.A.

    1988-12-01

    A new type of natural defects, namely, silanone groups, was identified on the surface of mechanically activated SiO/sub 2/. A study was carried out on their thermal stability, optical properties (a characteristic absorption band was found with maximum at 5.3 eV), and reactivity relative to simple molecules such as CO/sub 2/ and N/sub 2/O and radicals such as H, D, and CH/sub 3/.

  16. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  17. Influence of an electric field on near-surface processes in laser processing of metals

    SciTech Connect

    Vasil'ev, S V; Ivanov, A Yu

    2012-02-28

    It is shown that by varying the external electric field with different polarity from 0 to 10{sup 6} V m{sup -1} in the course of laser processing with the mean radiation flux density {approx}10{sup 6} W cm{sup -2} the change in the evolution features of the plasma torch at the surface of some metals (Cu, Al, Sn, Pb) at early stages is quantitative rather than qualitative. At the same time the characteristic size of the target material droplets, carried out from the irradiated zone, becomes essentially (by several times) smaller as the amplitude of the external electric field strength grows, independently of its polarity. (laser technologies)

  18. Surface electromagnetic impedance and geomagnetic activity: results of long term observation

    NASA Astrophysics Data System (ADS)

    Lemperger, István; Menvielle, Menvielle; Wesztergom, Viktor; Bencze, Pál; Szendrői, Judit; Novák, Attila; Kis, Árpád; Szalai, Sándor

    2014-05-01

    The magnetotelluric (MT) method is one of the most useful geophysical tool to discover even the deep subsurface structures. The target function of the MT data processing is the surface electromagnetic (EM) impedance. In case of practical MT exploration the surface EM impedance is computed based on a simplification related to the nature of the ionospheric source of the surface EM signals. Assuming that the ionospheric current systems result in homogeneous surface electromagnetic variations, the uncertainty of the computed surface electromagnetic impedance tensor depends only the duration of the EM observation. However the surface EM field can only be approached by plane waves in certain time periods and besides given uncertainty. The EM impedance may be sensitive to magnetospheric and -indirectly- interplanetary circumstances and solar activity. Four years continuous observation of telluric and surface geomagnetic components allowed to perform a representative survey to discover if geomagnetic activity has any effect on observed EM impedance tensor. Geomagnetic indices (Dst, ULF-index, ASY-H, SYM-H) have been used to classify dates according to geomagnetic activity. Processing to estimate the mean surface EM impedance tensor has been performed in each dataset, each class separately. The sensitivity and the characteristics of the answer of the EM impedance tensor to the geomagnetic disturbances seems to be definite. This presentation aims to briefly summarize the preliminary results of our study based on the unique dataset of the Széchenyi István Geophysical Obsevatory (Intermagnet code:NCK). In addition, pointing out the limitations of the routine way of practical MT data processing and interpretation is an important duty of this study. This study was supported by the TAMOP-4.2.2.C-11/1/KONV-2012-0015 (Earth-system) project sponsored by the EU and European Social Foundation.

  19. Tunneling Microscopy of Dynamical Processes on the LEAD/GERMANIUM(111) Surface

    NASA Astrophysics Data System (ADS)

    Hwang, Ing-Shouh

    Knowledge about atomic scale motions is essential for understanding dynamical phenomena on surfaces, such as diffusion, phase transitions, and epitaxial growth. This report describes the results of a study of dynamical processes on the Pb/Ge(111) surface using a scanning tunneling microscope (STM). Individual Pb atom diffUsion and concerted atomic motions on the Ge(111) surface are observed in real time. We also study a structural surface phase transformation at elevated temperatures. At very low Pb coverage, migration of individual Pb atoms is observed in the Ge(111)-c(2 x 8) surface near room temperature. The activation energy of this migration can be measured by analyzing a large number of individual atomic motions from room temperature to 80^ circC. The Pb diffusion is found to occur mainly along the (011) adatom row direction of the c(2 x 8) reconstruction. About half of the adatom migrations are "long jumps". We also observe the formation and annihilation of metastable structural surface excitations, which occur much less often than Pb diffusion. They involve a number of adatoms in the same row moving in concert along the row direction like beads on an abacus. This "adatom row shift" may be responsible for the anisotropy of the Pb atom diffusion. It also provides a new mechanism for atomic transport on crystal surfaces and can explain several structural phenomena associated with the Ge(111) surface. At high coverage, a one monolayer Pb/Ge(111) undergoes a reversible phase transformation from sqrt{3} x sqrt{3 }R30^circ to 1 x 1 at about 180 ^circC. Atomic structures of both high and low temperature phases are resolved, which reveals an order-order transition. Spatial and temporal fluctuations are exposed just above the transition temperature. In addition, the influence of surface strain, phase boundaries, and finite size domains are found to play an important role in the phase transformation.

  20. Osteogenic activity of titanium surfaces with nanonetwork structures

    PubMed Central

    Xing, Helin; Komasa, Satoshi; Taguchi, Yoichiro; Sekino, Tohru; Okazaki, Joji

    2014-01-01

    Background Titanium surfaces play an important role in affecting osseointegration of dental implants. Previous studies have shown that the titania nanotube promotes osseointegration by enhancing osteogenic differentiation. Only relatively recently have the effects of titanium surfaces with other nanostructures on osteogenic differentiation been investigated. Methods In this study, we used NaOH solutions with concentrations of 2.5, 5.0, 7.5, 10.0, and 12.5 M to develop a simple and useful titanium surface modification that introduces the nanonetwork structures with titania nanosheet (TNS) nanofeatures to the surface of titanium disks. The effects of such a modified nanonetwork structure, with different alkaline concentrations on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMMSCs), were evaluated. Results The nanonetwork structures with TNS nanofeatures induced by alkali etching markedly enhanced BMMSC functions of cell adhesion and osteogenesis-related gene expression, and other cell behaviors such as proliferation, alkaline phosphatase activity, extracellular matrix deposition, and mineralization were also significantly increased. These effects were most pronounced when the concentration of NaOH was 10.0 M. Conclusion The results suggest that nanonetwork structures with TNS nanofeatures improved BMMSC proliferation and induced BMMSC osteogenic differentiation. In addition, the surfaces formed with 10.0 M NaOH suggest the potential to improve the clinical performance of dental implants. PMID:24741311

  1. Environment-friendly Pd free surface activation technics for ABS surface

    NASA Astrophysics Data System (ADS)

    Shu, Zengnian; Wang, Xu

    2012-05-01

    An environment-friendly surface etching and activation technics for acrylonitrile-butadiene-styrene (ABS) surface metallization were investigated as a replacement for conventional chromic acid etching bath and palladium catalyst. After etching by H2SO4-MnO2 colloid, the ABS surfaces became roughness; meanwhile the carboxyl and hydroxyl groups were formed on the surface. With absorption and a reduction by a dimethylamineborane solution, copper particles were deposited on the ABS surface, which serves as a catalyst replacement for SnCl2/PdCl2 colloid. The effects of CuSO4 concentration, (CH3)2NHBH3 concentration, reduction temperature and reduction time on the adhesion strength between the ABS surface and the electroless copper film were investigated. And the average adhesion strengths reached 1.31 kN m-1, which is near the values (1.19 kN m-1) obtained by SnCl2/PdCl2 colloid.

  2. Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Yoon, Hye Soo; Kim, Dae Han; Kim, Yong Ho; Kim, Young Dok

    2014-11-01

    Thin film of polydimethylsiloxane (PDMS) was deposited on SiO2 nanoparticles by chemical vapor deposition, and SiO2 became completely hydrophobic after PDMS coating. Mixtures of TiO2 and PDMS-coated SiO2 nanoparticles with various relative ratios were prepared, and distributed on glass surfaces, and water contact angles and photocatalytic activities of these surfaces were studied. Samples consisting of TiO2 and PDMS-coated SiO2 with a ratio of 7:3 showed a highly stable superhydrophobicity under UV irradiation with a water contact angle of 165° and UV-driven photocatalytic activity for decomposition of methylene blue and phenol in aqueous solution. Our process can be exploited for fabricating self-cleaning surfaces with dual functionality of superhydrophobicity and photocatalytic activity at the same time.

  3. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    SciTech Connect

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  4. Modelling the Active Hearing Process in Mosquitoes

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  5. Characterization of surface processes on mineral surfaces in aqueous solutions. Annual report for fiscal year 1993

    SciTech Connect

    Leckie, J.O.

    1993-11-01

    Performance assessments by Los Alamos National Laboratory for the DOE`s Yucca Mountain Site Characterization Project (YMP) are being done investigating the environmental risk related to long-term disposal of hazardous wastes resulting from the use of radioactive materials that must subsequently be isolated from the environment. The YMP site, located in southwestern Nevada, is intended for the storage of high-level wastes generated by nuclear energy-related activities, including spent fuel and waste from reprocessed fuel rods. The work covered by this contract is necessary for producing a defensible model and dataset, and may be critical for evaluation of repository compliance. This work, performed by the Environmental Engineering and Science research group at Stanford University, will quantify the adsorption of uranyl on various minerals. The project`s principle objective is to provide sorption coefficients for uranyl and other ions of interest to predict radionuclide movements form the repository to accessible environments. This adsorption data is essential for the unambiguous interpretation of field experiments and observations. In this report, details of the activity and progress made with respect to the study of uranyl adsorption on mineral surfaces is presented and discussed.

  6. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  7. Publications of the Western Earth Surface Processes Team 2000

    USGS Publications Warehouse

    Powell, Charles L.; Stone, Paul

    2001-01-01

    The Western Earth Surface Processes Team (WESP) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2000 included southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2000 as well as additional 1999 publications that were not included in the previous list (USGS Open-file Report 00-215). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information.

  8. Publications of Western Earth Surface Processes Team 2001

    USGS Publications Warehouse

    Powell, II, Charles,(compiler); Graymer, R.W.

    2002-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth-science studies in the Western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues, such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the Western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2001, as well as additional 1999 and 2000 publications that were not included in the previous list (USGS Open-File Report 00–215 and USGS Open-File Report 01–198). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File Reports that contain large digital databases of geologic map and related information.

  9. Improving mechanical properties of polyethylene orthopaedic implants by high frequency cold plasma surface activation

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Vlad, Iulia E.; Dadarlat, Dorin N.; Anghel, Sorin D.

    2013-11-01

    Although a tremendous progress has been made in developing new methods and materials for manufacturing orthopaedic implants, the new technology still faces various problems. Polyethylene implants are relatively easy to manufacture and at lower cost compared to metallic or ceramic implants, but they present a fundamental problem: during usage and in time, due to their manufacturing technology, the material suffers from pitting and delamination which leads to crack propagation and finally to sudden fracture. Our studies and tests performed on polyethylene showed that, using cold plasma surface activation during the manufacturing process of the orthopaedic implants made from polyethylene can significantly increase their mechanical properties. The breaking tests revealed an increase of the tensile strength in the laminated polyethylene samples by a factor of 4 after plasma activation. "Aging" tests have been also performed to investigate how the cold plasma treated samples maintain their properties in time, after the surface activation process.

  10. SIMPLIFIED INJECTION OF OXYGEN GAS INTO AN ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The Las Virgenes Municipal Water District conducted a pilot investigation of the Simplox process at their Tapia Water Reclamation Facility in Calabasas, California. The Simplox process, developed by the Cosmodyne Division of Cordon International, involves covering an activated sl...

  11. Surface Gasification Materials Program plan for fiscal years 1985 through 1989. [KRW process, Mountain Fuel Resources Process, KILnGas process, Texaco process, Lurgi process

    SciTech Connect

    Judkins, R.R.; Bradley, R.A.

    1985-08-01

    This program plan for the Department of Energy Surface Gasification Materials Program (SGMP) is intended to identify those research and development needs for materials of construction for coal gasification that are appropriate for funding by the SGMP. The status and plans for research and development activities on the SGMP are discussed. Projects completed in FY 1984, those currently in progress, and those planned for initiation during the period FY 1986 through FY 1989 are discussed. Budget estimates for the projects are also presented. 43 refs., 7 figs., 4 tabs.

  12. Evaluation of Clinical Biomaterial Surface Effects on T Lymphocyte Activation

    PubMed Central

    Rodriguez, Analiz; Anderson, James M.

    2009-01-01

    Previous in vitro studies in our laboratory have shown that lymphocytes can influence macrophage adhesion and fusion on biomaterial surfaces. However, few studies have evaluated how material adherent macrophages can influence lymphocyte behavior, specifically T cells. In this study, we cultured human peripheral blood mononuclear cells from healthy donors on three synthetic non-biodegradable biomedical polymers: Elasthane 80A (PEU), Silicone rubber (SR), or polyethylene terephthalate (PET) and tissue culture polystyrene (TCPS). Upregulation of T cell surface activation markers (CD69 and CD25), lymphocyte proliferation, and interleukin-2 (IL-2) and interferon-γ (IFNγ) concentrations were evaluated by flow cytometry, carboxy-fluorescein diacetate, succinimydyl ester (CFSE) incorporation, and multiplex cytokine immunoassay, respectively, to assess T cell activation. Following 3 and 7 days of culture, CD4+ helper T cells from cultures of any of the material groups did not express the activation markers CD69 and CD25 and lymphocyte proliferation was not present. IL-2 and IFNγ levels were produced, but dependent on donor. These data indicate that T cells are not activated in response to clinically relevant synthetic biomaterials. The data also suggest that lymphocyte subsets exclusive of T cells are the source of the lymphokines, IL-2 and IFN-γ, in certain donors. PMID:19172618

  13. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  14. Uav Data Processing for Rapid Mapping Activities

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-08-01

    During disaster and emergency situations, geospatial data plays an important role to serve as a framework for decision support system. As one component of basic geospatial data, large scale topographical maps are mandatory in order to enable geospatial analysis within quite a number of societal challenges. The increasing role of geo-information in disaster management nowadays consequently needs to include geospatial aspects on its analysis. Therefore different geospatial datasets can be combined in order to produce reliable geospatial analysis especially in the context of disaster preparedness and emergency response. A very well-known issue in this context is the fast delivery of geospatial relevant data which is expressed by the term "Rapid Mapping". Unmanned Aerial Vehicle (UAV) is the rising geospatial data platform nowadays that can be attractive for modelling and monitoring the disaster area with a low cost and timely acquisition in such critical period of time. Disaster-related object extraction is of special interest for many applications. In this paper, UAV-borne data has been used for supporting rapid mapping activities in combination with high resolution airborne Interferometric Synthetic Aperture Radar (IFSAR) data. A real disaster instance from 2013 in conjunction with Mount Sinabung eruption, Northern Sumatra, Indonesia, is used as the benchmark test for the rapid mapping activities presented in this paper. On this context, the reliable IFSAR dataset from airborne data acquisition in 2011 has been used as a comparable dataset for accuracy investigation and assessment purpose in 3 D reconstructions. After all, this paper presents a proper geo-referencing and feature extraction method of UAV data to support rapid mapping activities.

  15. LEADX-2005: A system study of near-surface winter tropospheric processes near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Sturm, M.; Shepson, P. B.; Bottenheim, J. W.; Pinto, J.; Blum, J.; Simpson, W. R.; Perovich, D. K.; Douglas, T.; Brooks, S.; Rhew, R.; Keeler, G.

    2005-12-01

    In the Arctic, a set of vigorous and linked near-surface tropospheric processes commence in March with polar sunrise and continue until the snow melts in late May. In ways not fully understood, these processes produce ozone (ODE) and mercury (MDE) depletion events, the latter responsible for the introduction of mercury into the coastal marine and terrestrial arctic environments. The processes require a sea ice cover, open leads, diamond dust events, snowfall, and the presence of a snowpack on both land and sea. In March, 2005 we conducted a campaign (LEADX-2005) to investigate this suite of processes in the coastal strip near Barrow, Alaska. During a 17-day period when the coastal flaw lead was active and open, 30 scientists from more than 10 institutions made a set of coordinated measurements on, near, and inland from the lead. Measurements included continuous observations of surface weather, reactive halogens using MAX-DOAS, and near-surface mercury concentrations. Spot measurements of ozone and VOCs were made at the lead in a variety of ice and weather conditions. Airborne measurements were made using unmanned aerial vehicles (UAVs), tethered balloons, and kites. Deposited and newly fallen snow was sampled for ions, halogens, and mercury content on a daily basis on transects running from the lead inland several kilometers. Results suggest ozone depletion and mercury deposition occur at the regional (order 100 km) rather than local scale, but are confined to a thin layer of marine air (order 100 m). The processes evolve with time, the seasonal rise in air temperature, and the evolution of the snow pack, but considerable uncertainty remains as to the ultimate fate of the constituents (chiefly Hg) upon the completion of snow melt in the environment due to re-emission processes. From LEADX-2005 and follow-on studies we hope to develop a more systematic understanding of how these linked processes work across time and space.

  16. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE PAGESBeta

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  17. Synthesis of ultrafine particles by surface discharge-induced plasma chemical process (SPCP) and its application

    SciTech Connect

    Yamamoto, H. ); Shioji, S. ); Masuda, S. )

    1992-10-01

    The surface discharge-induced plasma chemical process (SPCP) is a novel means of cold plasma processing that is possible under room temperature and pressure with a very large potential in various applications, including generation of gaseous ozone and ozonated water, generation of radicals for removal of SO[sub x], NO[sub x], HCl, and Hg vapor as well as other gaseous pollutants from combustion gases, treatment of plastic sheet and powder surfaces, etc. Although the plasma layer is very thin, its electron energy is large enough to produce chemical vapor deposition (CVD) reactions. If a CVD reactive gas mixture is in good contact with the surface plasma region, it is activated to form ultrafine particles, even under room temperature and atmospheric pressure. The authors named this method SPCP-CVD. In this work, comparison was made between the present SPCP-CVD and another type of cold plasma CVD using silent glow discharge (GPCP), which was already reported. In the GPCP-CVD system, two coaxial cylindrical electrodes are used in combination with two coaxial quartz tubes spaced at a small gap to generate silent discharge in the gap. In the SPCP-CVD system, a ceramic-made electrode assembly is used, where a high frequency and high voltage is applied to form an energetic and stable surface discharge.

  18. Protein Kinase C Regulates the Cell Surface Activity of Endothelin-Converting Enzyme-1.

    PubMed

    Smith, A Ian; Lew, Rebecca A; Thomas, Walter G; Tochon-Danguy, Nathalie

    2006-09-01

    The potent vasoconstrictor endothelin is a 21 amino acid peptide whose principal physiological function is to regulate vascular tone. The generation of endothelin is crucially dependent on the local presence and activity of endothelin converting enzyme-1 (ECE-1) expressed on the surface of vascular endothelial cells. In this study, we have shown in endothelial cells that the enzyme is phosphorylated, and that phosphorylation is increased by phorbol ester stimulation of protein kinase C (PKC). Furthermore, by monitoring specific ECE-1 activity on the surface of live cells, we also show that following PKC activation, enzyme activity is significantly increased at the cell surface, where it is positioned to catalyse the generation of active endothelin. We believe this novel finding is unprecedented for a peptide processing enzyme. Indeed, this new knowledge regarding the control of endothelin production by regulating ECE-1 activity at the cell surface opens up a new area of endothelin biology and will provide novel insights into the physiology and pathophysiology of endothelin and endothelin-associated diseases. In addition, the information generated in these studies may provide valuable new insights into potential extra- and intracellular targets for the pharmacological and perhaps even therapeutic regulation of endothelin production and thus vascular tone. PMID:19617920

  19. Diaphragmatic activity induced by cortical stimulation: surface versus esophageal electrodes.

    PubMed

    Gea, J; Espadaler, J M; Guiu, R; Aran, X; Seoane, L; Broquetas, J M

    1993-02-01

    Evoked responses of the diaphragm can be induced by magnetic cortical stimulation and recorded by either surface or esophageal electrodes. The former recording system is tolerated better by the patient but has potential problems with the specificity of the diaphragmatic signal. This study compares the responses of the diaphragm to cortical stimulation that were recorded simultaneously with surface and esophageal electrodes on seven patients (61 +/- 4 yr) with chronic obstructive pulmonary diseases. Stimuli were delivered in three ventilatory conditions: at baseline, during deep breathing, and during voluntary panting. No differences were observed between results recorded by surface and esophageal electrodes [amplitude of the compound motor of the action potential (CMAP), 0.8 +/- 0.1 vs. 0.8 +/- 0.1 mV, NS; latency, 13.1 +/- 0.4 vs. 12.6 +/- 0.5 ms, NS]. In addition, significant correlations were found (CMAP, r = 0.77, P < 0.001; latency, r = 0.71, P = 0.002). The concordance analysis, however, indicated some dissimilarity between the recordings of the electrodes (CMAP, R1 = 0.31; latency, R1 = 0.26). These differences may be due to the area of the muscle mainly recorded by each electrode and/or to the additional activity from other muscles recorded by surface electrodes. On the other hand, the diaphragmatic responses observed in these patients with chronic obstructive pulmonary diseases were similar to those previously reported in healthy subjects. PMID:8458780

  20. Antibacterial activity of silver nanoparticles grafted on stone surface.

    PubMed

    Bellissima, F; Bonini, M; Giorgi, R; Baglioni, P; Barresi, G; Mastromei, G; Perito, B

    2014-12-01

    Microbial colonization has a relevant impact on the deterioration of stone materials with consequences ranging from esthetic to physical and chemical changes. Avoiding microbial growth on cultural stones therefore represents a crucial aspect for their long-term conservation. The antimicrobial properties of silver nanoparticles (AgNPs) have been extensively investigated in recent years, showing that they could be successfully applied as bactericidal coatings on surfaces of different materials. In this work, we investigated the ability of AgNPs grafted to Serena stone surfaces to inhibit bacterial viability. A silane derivative, which is commonly used for stone consolidation, and Bacillus subtilis were chosen as the grafting agent and the target bacterium, respectively. Results show that functionalized AgNPs bind to stone surface exhibiting a cluster disposition that is not affected by washing treatments. The antibacterial tests on stone samples revealed a 50 to 80 % reduction in cell viability, with the most effective AgNP concentration of 6.7 μg/cm(2). To our knowledge, this is the first report on antimicrobial activity of AgNPs applied to a stone surface. The results suggest that AgNPs could be successfully used in the inhibition of microbial colonization of stone artworks. PMID:24151026

  1. Vigorous Convection Underlies Pluto’s Surface Activity

    NASA Astrophysics Data System (ADS)

    Trowbridge, Alexander J.; Melosh, Henry Jay; Freed, Andy M.

    2015-11-01

    Against many expectations, New Horizons’ images of the surface of Pluto and Charon show seemingly young surfaces. On Pluto, images of an equatorial region south of the Tombaugh Regio reveal a mountain range with peaks jutting as high as 3,500 meters. The low concentration of craters for these mountains suggests an age of 100 million years, indicating that Pluto is geologically active. Other evidence for geologic activity includes a fault cross-cutting ridges, smooth lightly cratered plains with flow fronts, and a pair of apparent stratovolcanoes. Charon similarly possesses very few craters and a spectacular system of troughs. Both observations suggest the possible presence of active cryogeysers and cryovolcanoes. The underlying cause of modern tectonic and volcanic activity on any object is likely a vigorous mantle convection regime. We are thus led to consider what determines planetary vigor. While Pluto and Charon seem to be quite active, Ceres and the much larger Callisto seem to lack modern endogenic activity, even though all of these bodies are likely to possess water ice mantles.We coupled a parameterized convection model with a temperature dependent rheology for pure water ice, deducing a barely critical Rayleigh number of ~1600 for Pluto’s mantle and <1000 for Charon, suggesting that a water ice mantle alone may be insufficient to support vigorous convection in these bodies. However, in the outer solar system, other volatiles may have condensed. Ammonium hydrate has been reported on the surface of Charon. At temperatures above the eutectic (176 K), Durham et al. (1993) showed that NH3 lowers the viscosity of water ice by 4 orders of magnitude. Our model indicates that, with NH3, the mean temperature of the mantle of Pluto is at the eutectic and its Ra ~ 10^4. The presence of NH3 dramatically increases the vigor of convection for the two bodies and suggests that ammonia-water slurries are the basis for Pluto’s volcanism. We propose that the presence or

  2. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    NASA Astrophysics Data System (ADS)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  3. Functional Imaging of Chemically Active Surfaces with Optical Reporter Microbeads

    PubMed Central

    Ahuja, Punkaj; Nair, Sumitha; Narayan, Sreenath; Gratzl, Miklós

    2015-01-01

    We have developed a novel approach to allow for continuous imaging of concentration fields that evolve at surfaces due to release, uptake, and mass transport of molecules, without significant interference of the concentration fields by the chemical imaging itself. The technique utilizes optical “reporter” microbeads immobilized in a thin layer of transparent and inert hydrogel on top of the surface. The hydrogel has minimal density and therefore diffusion in and across it is like in water. Imaging the immobilized microbeads over time provides quantitative concentration measurements at each location where an optical reporter resides. Using image analysis in post-processing these spatially discrete measurements can be transformed into contiguous maps of the dynamic concentration field across the entire surface. If the microbeads are small enough relative to the dimensions of the region of interest and sparsely applied then chemical imaging will not noticeably affect the evolution of concentration fields. In this work colorimetric optode microbeads a few micrometers in diameter were used to image surface concentration distributions on the millimeter scale. PMID:26332766

  4. In vitro genotoxicity of chlorinated drinking water processed from humus-rich surface water

    SciTech Connect

    Liimatainen, A.; Grummt, T.

    1988-11-01

    Chlorination by-products of drinking waters are capable of inducing sister chromatid exchanges (SCE) and chromosome aberrations (CA) in vitro, in addition to their mutagenic activity in the Ames test. Finnish drinking waters, processed from humus-rich surface water using chlorine disinfection, have been found to be highly mutagenic in the Ames' test. The highest activities have been found in the acidic, non-volatile fraction of the water concentrates using tester strain TA100 without metabolic activation by S9mix. The mutagenicities have varied between 500 and 14,000 induced revertants per liter. These figures are one to two magnitudes higher than those reported elsewhere. The authors studied five Finnish drinking water samples for their potency to exert genotoxic effects, SCEs and CAs, in mammalian cells in vitro (human peripheral lymphocytes and Chinese hamster lung fibroblasts).

  5. Publications of the Western Earth Surface Processes Team 2002

    USGS Publications Warehouse

    Powell, Charles, II,(compiler); Graymer, R.W.

    2003-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2002 as well as additional 1998 and 2001 publications that were not included in the previous list (USGS Open-File Report 00-215, USGS Open-File Report 01-198, and USGS Open-File Report 02-269). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS open-file reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web or by calling 1-888-ASK-USGS. The U.S. Geological Survey’s web server for geologic information in the western United States is located at http

  6. Dust levitation as a major resurfacing process on the surface of a saturnian icy satellite, Atlas

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki; Miyamoto, Hideaki

    2012-07-01

    A small inner satellite of Saturn, Atlas, has an enigmatic saucer-like shape explained by an accumulation of particles from A-ring of Saturn. However, its unusual smooth surface remains unexplained. Gardening through continuous particle impact events cannot be a unique explanation for the smoothness, because Prometheus does not exhibit a similar surface, though it too would have experienced a similar bombardment. Here, a detailed investigation using close-up images of Atlas reveals the surface to be (1) covered by fine particles (i.e., probably as small as several tens of micrometers); (2) mostly void of impact craters (i.e., only one has been thus far identified); and (3) continuously smooth, even between the equatorial ridge and the undulating polar region. These findings imply that some sort of crater-erasing process has been active on the surface of Atlas. From electro-static analyses, we propose that the upper-most layer of the fine particles can become electro-statically unstable and migrate as a result of dust levitation, which resulted in erasing craters on the surface of Atlas. If true, Atlas would represent the first recognized body where resurfacing is dominated by dust levitation.

  7. Active multispectral near-IR detection of small surface targets

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.; Winkel, Hans; Roos, Marco J. J.

    2001-10-01

    The detection and identification of small surface targets with Electro-Optical sensors is seriously hampered by ground clutter, leading to false alarms and reduced detection probabilities. Active ground illumination can improve the detection performance of EO sensors compared to passive skylight illumination because of the knowledge of the illumination level and of its temporal stability. Sun and sky cannot provide this due to the weather variability. In addition multispectral sensors with carefully chosen spectral bands ranging from the visual into the near IR from 400-2500 nm wavelength can take benefit of a variety of cheap active light sources, ranging from lasers to Xenon or halogen lamps. Results are presented, obtained with a two- color laser scanner with one wavelength in the chlorophyll absorption dip. Another active scanner is described operating at 4 wavebands between 1400 and 2300 nm, using tungsten halogen lamps. Finally a simple TV camera was used with either a ste of narrow band spectral filters or polarization filters in front of the lamps. The targets consisted of an array of mixed objects, most of them real mines. The results how great promise in enhancing the detection and identification probabilities of EO sensors against small surface targets.

  8. Improving the work function of the niobium surface of SRF cavities by plasma processing

    DOE PAGESBeta

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; et al

    2016-01-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  9. Improving the work function of the niobium surface of SRF cavities by plasma processing

    NASA Astrophysics Data System (ADS)

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-04-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5-1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  10. Triangle geometry processing for surface modeling and cartesian grid generation

    DOEpatents

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  11. Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)

    2002-01-01

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  12. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Process for designating areas unsuitable for surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE...

  13. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Process for designating areas unsuitable for surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE...

  14. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Process for designating areas unsuitable for surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE...

  15. Cholinesterase activity per unit surface area of conducting membranes.

    PubMed

    Brzin, M; Dettbarn, W D; Rosenberg, P; Nachmansohn, D

    1965-08-01

    According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm(2) surface of sensory axons of the walking leg of lobster is 1.2 x 10(-3) microM/hr. (sigma = +/- 0.3 x 10(-3); SE = 0.17 x 10(-3)); the corresponding value for the motor axons isslightly higher: 1.93 x 10(-3) microM/hr. (sigma = +/- 0.41 x 10(-3); SE = +/- 0.14 x 10(-3)). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 microM/hr. (sigma = +/- 73.5; SE = +/- 32.6) versus 111.6 microM/hr. (sigma = +/- 28.3; SE = +/- 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10(-4) microM/mm(2)/hr. (sigma = +/- 0.96 x 10(-4); SE = +/- 0.4 x 10(-4)). (3) The Ch-esterase activity per mm(2) surface of squid giant axon is 9.5 x 10(-5) microM/hr. (sigma = +/- 1.55 x 10(-5); SE = +/- 0.38 x 10(-5)). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10(-5) microM/mm(2)/hr. (sigma = +/- 3.24 x 10(-5); SE = +/- 0.93 x 10(-5)). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm(2) per impulse. PMID:5865929

  16. From single crystal surfaces to single atoms: investigating active sites in electrocatalysis.

    PubMed

    O'Mullane, Anthony P

    2014-04-21

    Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials. PMID:24599277

  17. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... data processing or data transmission activities beyond those described in Regulation Y, it must...

  18. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Data processing activities. 211.604 Section 211.604 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM INTERNATIONAL BANKING OPERATIONS (REGULATION K) International Lending Supervision Interpretations § 211.604 Data processing activities. (a)...

  19. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Data processing activities. 211.604 Section...

  20. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Data processing activities. 211.604 Section...

  1. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Data processing activities. 211.604 Section...

  2. 23 CFR 450.208 - Coordination of planning process activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Coordination of planning process activities. 450.208 Section 450.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Statewide Transportation Planning and Programming § 450.208 Coordination of planning process activities. (a)...

  3. Activated wetting dynamics in the presence of mesoscopic surface disorder

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina; Pettersen, Michael; Rolley, Etienne

    2012-02-01

    Although disorder is commonly used to explain contact angle hysteresis, it is often neglected when considering wetting dynamics. When viscous forces are negligible, contact-line velocity is modelled by the Molecular Kinetic Theory [1], which predicts an activated motion driven by molecular jumps on preferential adsorption sites. We believe that in the presence of mesoscopic disorder, this model can be reinterpreted and that the activation length is no longer molecular-sized but is related to depinning events on the surface. This hypothesis is supported by a study of the wetting of cesium by liquid hydrogen in which it was shown that the activation length is of the order of the expected roughness [2]. However, no systematic study between the activation area and the length scale of the disorder has previously been made. We study wetting dynamics on metal films evaporated under different conditions, allowing us to obtain films with lateral grain sizes ranging from 10 to 200 nm. We find that the activation area deduced from wetting experiments is coherent with these sizes; however, its precise relation to the scale of disorder is not clear.[1] T.D. Blake and J.M. Haynes, J. Colloid Interface Sci. 30, 421 (1969)[2] E. Rolley and C. Guthmann, PRL 98, 166105 (2007)

  4. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μmprocess. PMID:25203235

  5. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal...

  6. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 939.764 Section 939.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal...

  7. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal...

  8. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal...

  9. 30 CFR 937.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 937.764 Section 937.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.764 Process for designating areas unsuitable for surface coal...

  10. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal...

  11. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal...

  12. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 947.764 Section 947.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal...

  13. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 939.764 Section 939.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal...

  14. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal...

  15. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal...

  16. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal...

  17. 30 CFR 937.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 937.764 Section 937.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.764 Process for designating areas unsuitable for surface coal...

  18. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal...

  19. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 939.764 Section 939.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal...

  20. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 947.764 Section 947.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal...

  1. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal...

  2. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal...

  3. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal...

  4. 30 CFR 941.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 941.764 Section 941.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.764 Process for designating areas unsuitable for surface coal...

  5. 30 CFR 941.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 941.764 Section 941.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.764 Process for designating areas unsuitable for surface coal...

  6. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal...

  7. 30 CFR 937.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 937.764 Section 937.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.764 Process for designating areas unsuitable for surface coal...

  8. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal...

  9. 30 CFR 941.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 941.764 Section 941.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.764 Process for designating areas unsuitable for surface coal...

  10. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal...

  11. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal...

  12. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 947.764 Section 947.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal...

  13. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 947.764 Section 947.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal...

  14. 30 CFR 937.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 937.764 Section 937.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.764 Process for designating areas unsuitable for surface coal...

  15. 30 CFR 941.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 941.764 Section 941.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.764 Process for designating areas unsuitable for surface coal...

  16. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal...

  17. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal...

  18. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal...

  19. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 939.764 Section 939.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal...

  20. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal...

  1. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal...

  2. U.S. Geological Survey quality-assurance plan for surface-water activities in Kansas, 2015

    USGS Publications Warehouse

    Painter, Collin C.; Loving, Brian L.

    2015-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kansas Water Science Center (KSWSC) of the U.S. Geological Survey (USGS) for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  3. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  4. Perspective of surface active agents in baking industry: an overview.

    PubMed

    Ahmad, Asif; Arshad, Nazish; Ahmed, Zaheer; Bhatti, Muhammad Shahbaz; Zahoor, Tahir; Anjum, Nomana; Ahmad, Hajra; Afreen, Asma

    2014-01-01

    Different researchers have previously used surfactants for improving bread qualities and revealed that these compounds result in improving the quality of dough and bread by influencing dough strength, tolerance, uniform crumb cell size, and improve slicing characteristics and gas retention. The objective of this review is to highlight the areas where surfactants are most widely used particularly in the bread industries, their role and mechanism of interaction and their contribution to the quality characteristics of the dough and bread. This review reveals some aspects of surface-active agents regarding its role physiochemical properties of dough that in turn affect the bread characteristics by improving its sensory quality and storage stability. PMID:24188269

  5. Lunar rock surfaces as detectors of solar processes

    NASA Technical Reports Server (NTRS)

    Hartung, J. B.

    1980-01-01

    Lunar rock surfaces exposed at or just below the lunar surface are considered as detectors of the solar wind, solar flares and solar-derived magnetic fields through their interactions with galactic cosmic rays. The degradation of the solar detector capabilities of lunar surface rocks by meteoroid impact erosion, accreta deposition, loose dust, and sputtering, amorphous layer formation and accelerated diffusion due to solar particles and illumination is discussed, and it is noted that the complex interactions of factors affecting the outer micron of exposed surface material has so far prevented the development of a satisfactory model for a particle detector on the submicron scale. Methods for the determination of surface exposure ages based on the accumulation of light solar wind noble gases, Fe and Mg, impact craters, solar flare tracks, and cosmogenic Kr isotopes are examined, and the systematic variations in the ages determined by the various clocks are discussed. It is concluded that a means of obtaining satisfactory quantitative rate or flux data has not yet been established.

  6. Surface processing with ionized cluster beams: computer simulation

    NASA Astrophysics Data System (ADS)

    Insepov, Z.; Yamada, I.

    1999-06-01

    Molecular Dynamics (MD) and Monte Carlo (MC) models of energetic gas cluster irradiation of a solid surface have been developed to investigate the phenomena of crater formation, sputtering, surface treatment, and the material hardness evaluation by irradiation with cluster ions. Theoretical estimation of crater dimensions formed with Ar gas cluster ion irradiation of different substrates, based on hydrodynamics and MD simulation, are presented. The atomic scale shock waves arising from cluster impact were obtained by calculating the pressure, temperature and mass-velocity of the target atoms. The crater depth is given as a unique 1/3 dependence on the cluster energy and on the cold material Brinell hardness number (BHN). A new "true material hardness" scale which can be very useful for example for thin film coatings deposited on a soft substrate, is defined. This finding could be used as a new technique for measuring of a material hardness. Evolution of surface morphology under cluster ion irradiation was described by the surface relaxation equation which contains a term of crater formation at cluster impact. The formation of ripples on a surface irradiated with oblique cluster ion beams was predicted. MD and MC models of Decaborane ion (B 10H 14) implantation into Si and the following rapid thermal annealing (RTA) have been developed.

  7. Atomic layer epitaxy of group 4 materials: Surface processes, thin films, devices and their characterization

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Bedair, S.; El-Masry, N. A.; Glass, J. T.; King, S.

    1994-12-01

    Residual surface contaminants were removed from vicinal 6H-SiC(0001) surfaces in UHV via high temperature annealing in SiH4. Characterization via AES, EELS, LEED, XPS, and UPS was conducted. At T greater than 850 C, the surface oxide was rapidly removed. Exposure to approx. 400 Langmuir (10(exp -6) Torr(dot)liter/s) of SiH4 resulted in complete surface oxide removal and a nearly stoichiometric (l x l) 6H-SiC surface suitable for ALE of SiC. Further exposure resulted in a (3 x 3)R30 deg Si-rich reconstructed surface. Subsequent annealing in UHV resulted in a (square root of 3 x square root of 3)R30 deg Si deficient/graphitic reconstructed surface. The first set of wafers containing HBT device structures were fabricated on SiC films grown via ALE. No transistor activity was detected. Electrical characterization and SEM showed the most likely fault to be inaccurate etching of the SiC emitter. Nucleation and growth of oriented diamond particles on seeded, group of zone axes (0001) oriented single crystal Co substrates was achieved via multi-step, hot-filament CVD process involving seeding, annealing, nucleation and growth. Diamond particles oriented group of zone axes (111) were obtained. Micro-Raman showed a FWHM of 4.3/cm. A very weak graphitic peak was observed on regions of the substrate not covered by the diamond particles. A nucleation model has been proposed. Initial results showed that CeO2 film grows epitaxially on (111) Si substrates. The CeO2 films had density of interfacial traps and fixed oxide charge values comparable to that of amorphous SiO2/Si.

  8. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-07-01

    Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c

  9. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  10. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  11. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas W.; Meyer, Jannik C.; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A.; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N.

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

  12. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale.

    PubMed

    Chamberlain, Thomas W; Meyer, Jannik C; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion. PMID:21860464

  13. Initial Processes of Sulfur Adsorption on Si(100) Surface

    NASA Astrophysics Data System (ADS)

    Ma, Li; Wang, Jian-Guang; Wang, Guang-Hou

    2005-10-01

    The adsorption of one monolayer S atoms on ideal Si(100) surface is studied by using the self-consistent tight binding linear muffin-tin orbital method. Energies of adsorption systems of S atoms on different sites are calculated. It is found that the adsorbed S atoms are more favorable on B1 site (bridge site) with a distance 0.131 nm above the Si surface. The S, Si mixed layer might exist at S/Si(100) interface. The layer projected density of states are calculated and compared with that of the clean surface. The charge transfers are also investigated. The project supported by National Natural Science Foundation of China under Grant Nos. 90206033 and 10274031

  14. Dental Surface Texture Characterization Based on Erosive Tooth Wear Processes.

    PubMed

    Hara, A T; Livengood, S V; Lippert, F; Eckert, G J; Ungar, P S

    2016-05-01

    The differential diagnosis of dental wear lesions affects their clinical management. We hypothesized that surface texture parameters can differentiate simulated erosion, abrasion, and erosion-abrasion lesions on human enamel and dentin. This in vitro study comprised 2 parts (both factorial 4 × 2), with 4 lesion types (erosion, abrasion, erosion-abrasion, and sound [no lesion; control]) and 2 substrates (enamel and dentin). Flattened/polished dental specimens were used in part 1, whereas natural dental surfaces were used in part 2. Testing surfaces were evaluated in blind conditions, using average surface roughness (Sa) and the following scale-sensitive fractal analysis parameters: area-scale fractal complexity (Asfc), exact proportion length-scale anisotropy of relief (eplsar), scale of maximum complexity (Smc), and textural fill volume (Tfv). Two-way analyses of variance, followed by Fisher's protected least significant difference tests (α = 0.05), were used to evaluate the effects of lesion and substrate. Classification trees were constructed to verify the strength of potential associations of the tested parameters. In part 1,Asfc, Sa, and Tfv were able to differentiate erosion and erosion-abrasion lesions from the sound (no lesion) control in both substrates; only Asfc differentiated erosion and erosion-abrasion enamel lesions (allP< 0.05). The best association of parameters correctly classified up to 84% and 94% of the lesions on enamel and dentin, respectively. In part 2, only Asfc differentiated erosion and erosion-abrasion lesions from the sound (no lesion) control in both substrates, whereas eplsar was able to differentiate erosion from erosion-abrasion (allP< 0.05). The association of parameters correctly classified up to 81% and 91% of the lesions in enamel and dentin, respectively.Asfc, Sa, and Tfv were able to differentiate erosion and erosion-abrasion lesions, despite their complicated surface textures. The association of parameters improved the

  15. Laboratory studies of aeolian sediment transport processes on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Rasmussen, Keld R.; Valance, Alexandre; Merrison, Jonathan

    2015-09-01

    , but not all, older or recent wind tunnel observations. Similarly some measurements performed with uniform sand samples having grain diameters of the order of 0.25-0.40 mm indicate that ripple spacing depends on friction velocity in a similar way as particle jump length. The observations are thus in agreement with a recent ripple model that link the typical jump length to ripple spacing. A possible explanation for contradictory observations in some experiments may be that long observation sequences are required in order to assure that equilibrium exists between ripple geometry and wind flow. Quantitative understanding of saltation characteristics on Mars still lacks important elements. Based upon image analysis and numerical predictions, aeolian ripples have been thought to consist of relatively large grains (diameter > 0.6 mm) and that saltation occurs at high wind speeds (> 26 m/s) involving trajectories that are significantly longer than those on Earth (by a factor of 10-100). However, this is not supported by recent observations from the surface of Mars, which shows that active ripples in their geometry and composition have characteristics compatible with those of terrestrial ripples (Sullivan et al., 2008). Also the highest average wind speeds on Mars have been measured to be < 20 m/s, with even turbulent gusts not exceeding 25 m/s. Electrification is seen as a dominant factor in the transport dynamics of dust on Mars, affecting the structure, adhesive properties and detachment/entrainment mechanisms specifically through the formation of aggregates (Merrison et al., 2012). Conversely for terrestrial conditions electric fields typically observed are not intense enough to significantly affect sand transport rates while little is known in the case of extra-terrestrial environments.

  16. Rheology and structure of surface crosslinked surfactant-activated microgels.

    PubMed

    Li, Dongcui; Hsu, Raymond; Figura, Brian; Jacobs, Robert; Li, Sinan; Horvath, Steve; Clifford, Ted; Chari, Krishnan

    2016-09-14

    Nonionic surfactant-activated microgels (SAMs), composed of hydrophobic alkyl acrylates and hydrophilic hydroxyalkyl esters that utilize the effects of surfactant mediated swelling and interaction to provide pH-independent rheological properties, were previously reported as a new pathway to the rheology modification of surfactant solutions. Crosslinking was shown to play an important role in the properties of these soft microgel systems. To understand the impact of crosslinking chemistry on SAM polymers, we have compared two types of SAM polymers: a conventionally crosslinked SAM polymer via allyl pentaerythritol and a novel SAM polymer, where the surface is self-crosslinked via a reactive surfactant. We have systematically characterized the polymer's swelling, rheology and microstructure in a model system containing the polymer, sodium dodecyl sulfate (SDS) and water. Surface self-crosslinking is demonstrated to be a more effective crosslinking approach to create surfactant-mediated interactions between the microgel particles, resulting in more effective rheology modification. Internal crosslinking hinders both the full swelling of the SAM polymer as well as inter-particle bridging interactions, and is therefore less effective. To our best knowledge, this is the first report on creating a novel surface self-crosslinked microgel via a dual-functional reactive surfactant that interacts with a non-reactive surfactant to create a yield stress fluid. PMID:27470971

  17. Biological surface-active compounds from marine bacteria.

    PubMed

    Dang, Nga Phuong; Landfald, Bjarne; Willassen, Nils Peder

    2016-01-01

    Surface-active compounds (SACs) are widely used in different industries as well as in many daily consumption products. However, with the increasing concern for their environmental acceptability, attention has turned towards biological SACs which are biodegradable, less toxic and more environmentally friendly. In this work, 176 marine hydrocarbon-degrading bacterial isolates from petroleum-contaminated sites along the Norwegian coastline were isolated and screened for their capacity to produce biological SACs. Among them, 18 isolates were capable of reducing the surface tension of the culture medium by at least 20 mN m(-1) and/or capable of maintaining more than 40% of the emulsion volume after 24 h when growing on glucose or kerosene as carbon and energy source. These isolates were members of the genera Pseudomonas, Pseudoalteromonas, Rhodococcus, Catenovulum, Cobetia, Glaciecola, Serratia, Marinomonas and Psychromonas. Two isolates, Rhodococcus sp. LF-13 and Rhodococcus sp. LF-22, reduced surface tension of culture medium by more than 40 mN m(-1) when growing on kerosene, n-hexadecane or rapeseed oil. The biosurfactants were produced by resting cells of the two Rhodococcus strains suggesting the biosynthesis of the biosurfactants was not necessarily associated with their growth on hydrocarbons. PMID:26506920

  18. Pioneering Objectives and Activities on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    Human Mars missions have been a topic of sustained interest within NASA, which continues to use its resources to examine many different mission objectives, trajectories, vehicles, and technologies, the combinations of which are often referred to as reference missions or architectures. The current investigative effort, known as the Evolvable Mars Campaign (EMC), is examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. These alternatives involve combinations of all the factors just mentioned. This paper is focused on the subset of these factors involved with objectives and activities that take place on the surface of Mars. "Pioneering" is a useful phrase to encapsulate the current approach being used to address this situation - one of its primary definitions is "a person or group that originates or helps open up a new line of thought or activity or a new method or technical development". Thus, in this scenario, NASA would be embarking on a path to "pioneer" a suite of technologies and operations that will result in an Earth independent, extended stay capability for humans on Mars. This paper will describe (a) the concept of operation determined to be best suited for the initial emplacement, (b) the functional capabilities determined to be necessary for this emplacement, with representative examples of systems that could carry out these functional capabilities and one implementation example (i.e., delivery sequence) at a representative landing site, and will (c) discuss possible capabilities and operations during subsequent surface missions.

  19. Prospects of DLC coating as environment friendly surface treatment process.

    PubMed

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. PMID:25084601

  20. Wave processes in dusty plasma near the Moon's surface

    NASA Astrophysics Data System (ADS)

    Morozova, T. I.; Kopnin, S. I.; Popel, S. I.

    2015-10-01

    A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon's surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak at 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon's surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.

  1. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  2. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    NASA Astrophysics Data System (ADS)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  3. Earthquake rupture process recreated from a natural fault surface

    USGS Publications Warehouse

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  4. Earthquake rupture process recreated from a natural fault surface

    NASA Astrophysics Data System (ADS)

    Parsons, Tom; Minasian, Diane L.

    2015-11-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3-D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M ~ 1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, although we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties and suggest that larger ruptures might begin and end in a similar way, although the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude-dependent phenomenon and could vary with each subsequent rupture.

  5. Superhydrophobic metallic surfaces functionalized via femtosecond laser surface processing for long term air film retention when submerged in liquid

    NASA Astrophysics Data System (ADS)

    Zuhlke, Craig A.; Anderson, Troy P.; Li, Pengbo; Lucis, Michael J.; Roth, Nick; Shield, Jeffrey E.; Terry, Benjamin; Alexander, Dennis R.

    2015-03-01

    Femtosecond laser surface processing (FLSP) is a powerful technique used to create self-organized microstructures with nanoscale features on metallic surfaces. By combining FLSP surface texturing with surface chemistry changes, either induced by the femtosecond laser during processing or introduced through post processing techniques, the wetting properties of metals can be altered. In this work, FLSP is demonstrated as a technique to create superhydrophobic surfaces on grade 2 titanium and 304 stainless steel that can retain an air film (plastron) between the surface and a surrounding liquid when completely submerged. It is shown that the plastron lifetime when submerged in distilled water or synthetic stomach acid is critically dependent on the specific degree of surface micro- and nano-roughness, which can be tuned by controlling various FLSP parameters. The longest plastron lifetime was on a 304 stainless steel sample that was submerged in distilled water and maintained a plastron for 41 days, the length of time of the study, with no signs of degradation. Also demonstrated for the first time is the precise control of pulse fluence and pulse count to produce three unique classes of surface micron/nano-structuring on titanium.

  6. Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey.

    PubMed

    Ergül, Halim Aytekin; Belivermiş, Murat; Kılıç, Önder; Topcuoğlu, Sayhan; Çotuk, Yavuz

    2013-12-01

    Surface sediments from the north-eastern coast of the Marmara Sea, Turkey's most industrialized coastal region, were enriched with radioisotopes from the Chernobyl explosion in 1986. Caesium-137 in these sediments is also thought to originate from one former paper mill located nearby that used wood contaminated by Chernobyl explosion-originated (137)Cs for paper production. The average activity concentration of the (137)Cs was 21 Bq kg(-1), while naturally occurring radioisotopes, i.e. (40)K, (226)Ra, and (228)Ra, were 568, 18 and 24 Bq kg(-1), respectively, in surface sediments. The natural radionuclide activities reached their highest levels near petrochemical, phosphate and fertilizer processing facilities. Average (137)Cs activities were generally up to ten times higher than in Middle Eastern marine sediments and lower than those in Northern European sediments. PMID:23981563

  7. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    NASA Astrophysics Data System (ADS)

    Lyons, Shawn M.; Harrison, Mark A.; Law, S. Edward

    2011-06-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  8. Adsorption-Induced Changes in Ribonuclease A Structure and Enzymatic Activity on Solid Surfaces

    PubMed Central

    2015-01-01

    Ribonuclease A (RNase A) is a small globular enzyme that lyses RNA. The remarkable solution stability of its structure and enzymatic activity has led to its investigation to develop a new class of drugs for cancer chemotherapeutics. However, the successful clinical application of RNase A has been reported to be limited by insufficient stability and loss of enzymatic activity when it was coupled with a biomaterial carrier for drug delivery. The objective of this study was to characterize the structural stability and enzymatic activity of RNase A when it was adsorbed on different surface chemistries (represented by fused silica glass, high-density polyethylene, and poly(methyl-methacrylate)). Changes in protein structure were measured by circular dichroism, amino acid labeling with mass spectrometry, and in vitro assays of its enzymatic activity. Our results indicated that the process of adsorption caused RNase A to undergo a substantial degree of unfolding with significant differences in its adsorbed structure on each material surface. Adsorption caused RNase A to lose about 60% of its native-state enzymatic activity independent of the material on which it was adsorbed. These results indicate that the native-state structure of RNase A is greatly altered when it is adsorbed on a wide range of surface chemistries, especially at the catalytic site. Therefore, drug delivery systems must focus on retaining the native structure of RNase A in order to maintain a high level of enzymatic activity for applications such as antitumor chemotherapy. PMID:25420087

  9. Diagnostics of metal inert gas and metal active gas welding processes

    NASA Astrophysics Data System (ADS)

    Uhrlandt, D.

    2016-08-01

    The paper gives a review on studies on metal inert gas (MIG) and metal active gas (MAG) welding processes with the focus on diagnostics of the arc, the material transfer, and the temporal process behaviour in welding experiments. Recent findings with respect to an improved understanding of the main mechanisms in the welding arc and the welding process are summarized. This is linked to actual developments in welding arc and welding process modelling where measurements are indispensable for validation. Challenges of forthcoming studies are illustrated by means of methods under development for welding process control as well as remaining open questions with respect to arc-surface interaction and arc power balance.

  10. Bioengineering of stainless steel surface by covalent immobilization of enzymes. Physical characterization and interfacial enzymatic activity.

    PubMed

    Caro, Anne; Humblot, Vincent; Méthivier, Christophe; Minier, Michel; Barbes, Lucica; Li, Joachim; Salmain, Michèle; Pradier, Claire-Marie

    2010-09-01

    Two hydrolytic enzymes, namely lysozyme and trypsin, were covalently immobilized onto stainless steel surfaces using wet chemistry processes. The immobilization strategy took advantage of the spontaneous physisorption of the polymer poly(ethylene imine) (PEI) onto stainless steel to yield a firmly attached, thin organic layer containing a high density of primary amine functions. Both enzymes were then covalently grafted to the surface via a glutaraldehyde cross-linker. Alternatively, a thicker underlayer of PEI was chemisorbed by cross-linking two PEI layers by glutaraldehyde. The effective presence of both enzymes on the stainless steel surfaces and their relative amount were assessed by immunochemical assays employing specific anti-enzyme antibodies. Eventually, the hydrolytic activity of the immobilized enzymes was evaluated by local enzymatic tests with suitable substrates. This work demonstrates that, although the amount of enzymes did not vary significantly with the underlayer thickness, their hydrolytic activity could be much improved by increasing the distance from the oxide surface and, likely, by favoring their accessibility. Our data suggest that the immobilization of enzymes on solid oxide surfaces is feasible and efficient, and that the enzymes retain catalytic activity. It may thus provide a promising route towards biofilm-resistant materials. PMID:20566201

  11. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  12. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  13. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, Lawrence L.

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  14. Passivation of InGaAs surfaces with an integrated process including an ammonia DECR plasma

    SciTech Connect

    Lescaut, B.; Nissim, Y.I.; Bresse, J.F.

    1996-12-31

    Stable and optimum characteristics of micro-optoelectronic devices and circuits require the passivation of the free surface of the III-V materials. An integrated process using a combination of surface cleaning and photochemical dielectric encapsulation is proposed for passivation. The passivation of InGaAs with a short ammonia plasma cleaning has been obtained. The treated surface has been protected with a photochemical dielectric encapsulation. MIS structures fabricated on treated InGaAs surfaces have shown a low density of interface traps and a small hysteresis. This process is an integration of two cold processes that enable its use at the end of the process fabrication of circuits.

  15. Atmospheric mercury accumulation and washoff processes on impervious urban surfaces

    USGS Publications Warehouse

    Eckley, C.S.; Branfireun, B.; Diamond, M.; Van Metre, P.C.; Heitmuller, F.

    2008-01-01

    The deposition and transport of mercury (Hg) has been studied extensively in rural environments but is less understood in urbanized catchments, where elevated atmospheric Hg concentrations and impervious surfaces may efficiently deliver Hg to waterways in stormwater runoff. We determined the rate at which atmospheric Hg accumulates on windows, identified the importance of washoff in removing accumulated Hg, and measured atmospheric Hg concentrations to help understand the relationship between deposition and surface accumulation. The main study location was Toronto, Ontario. Similar samples were also collected from Austin, Texas for comparison of Hg accumulation between cities. Windows provided a good sampling surface because they are ubiquitous in urban environments and are easy to clean/blank allowing the assessment of contemporary Hg accumulation. Hg Accumulation rates were spatially variable ranging from 0.82 to 2.7 ng m-2 d-1 in Toronto and showed similar variability in Austin. The highest accumulation rate in Toronto was at the city center and was 5?? higher than the rural comparison site (0.58 ng m-2 d-1). The atmospheric total gaseous mercury (TGM) concentrations were less than 2?? higher between the rural and urban locations (1.7 ?? 0.3 and 2.7 ?? 1.1 ng m-3, respectively). The atmospheric particulate bound fraction (HgP), however, was more than 3?? higher between the rural and urban sites, which may have contributed to the higher urban Hg accumulation rates. Windows exposed to precipitation had 73 ?? 9% lower accumulation rates than windows sheltered from precipitation. Runoff collected from simulated rain events confirmed that most Hg accumulated on windows was easily removed and that most of the Hg in washoff was HgP. Our results indicate that the Hg flux from urban catchments will respond rapidly to changes in atmospheric concentrations due to the mobilization of the majority of the surface accumulated Hg during precipitation events. ?? 2008 Elsevier

  16. Thin film surface processing by ultrashort laser pulses (USLP)

    NASA Astrophysics Data System (ADS)

    Scorticati, D.; Skolski, J. Z. P.; Römer, G. R. B. E.; Huis in't Veld, A. J.; Workum, M.; Theelen, M.; Zeman, M.

    2012-06-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed laser source (230 fs-10 ps) was applied using a focused Gaussian beam profile (15-30 μm). Laser parameters such as fluence, overlap (OL) and Overscans (OS), repetition frequency (100-200 kHz), wavelength (1030 nm, 515 nm and 343 nm) and polarization were varied to study the effect on periodicity, height and especially regularity of LIPSS obtained in layers of different thicknesses (150-400 nm). The aim was to produce these structures without cracking the metal layer and with as little ablation as possible. It was found that USLP are suitable to reach high power densities at the surface of the thin layers, avoiding mechanical stresses, cracking and delamination. A possible photovoltaic (PV) application could be found in texturing of thin film cells to enhance light trapping mechanisms.

  17. Process of activation of a palladium catalyst system

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  18. Photochemistry of pyrene on unactivated and activated silica surfaces

    SciTech Connect

    Reyes, C.A.; Medina, M.; Crespo-Hernandez, C.

    2000-02-01

    Photolysis of pyrene at the solid/air interface of unactivated and activated silica gel proceeds slowly to give mainly oxidized pyrene products. The authors have identified 1-hydroxypyrene, 1,6-pyrenedione, and 1,8-pyrenedione among the main reaction products. The remaining minor products show molecular weights and spectral properties consistent with oxygenated pyrenes. Furthermore, small amounts of 1,1{prime}-bipyrene dimer are also formed at higher surface coverages (2 x 10{sup {minus}5} mol/g). When photolysis is carried out at 5 x 10{sup {minus}5} mol/g pyrene, photodegradation rate drops sharply and pyrene loss becomes insignificant. No significant change in the product distribution is observed when the photolysis is carried out on unactivated or activated silica. Photodegradation rate is slightly faster on activated silica compared to unactivated silica. Mechanistic studies indicate that the precursor to photoproduct formation is pyrene cation radical which is postulated to be formed by electron transfer from pyrene excited state to oxygen (type 1) or by photoionization of pyrene. The cation radical reacts with physisorbed water on silica to give the observed oxidation products.

  19. Surface processes on the asteroid deduced from the external 3D shapes and surface features of Itokawa particles

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, A.; Matsumoto, T.

    2015-10-01

    Particles on the surface of S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (e.g., [1,2]). They are not only the first samples recovered from an asteroid, but also the second extraterrestrial regolith to have been sampled, the first being the Moon by Apollo and Luna missions. The analysis of tiny sample particles (20-200 μm) shows that the Itokawa surface material is consistent with LL chondrites suffered by space weathering as expected and brought an end to the origin of meteorites (e.g., [2-4]). In addition, the examination of Itokawa particles allow studies of surface processes on the asteroid because regolith particles can be regarded as an interface with the space environment, where the impacts of small objects and irradiation by the solar wind and galactic cosmic rays should have been recorded. External 3D shapes and surface features of Itokawa regolith particles were examined. Two kinds of surface modification, formation of space-weathering rims mainly by solar wind implantation and surface abrasion by grain migration, were recognized. Spectral change of the asteroid proceeded by formation of space-weathering rims and refreshment of the regolith surfaces. External 3D shapes and surface morphologies of the regolith particles can provide information about formation and evolution history of regolith particles in relation to asteroidal surface processes. 3D shapes of Itokawa regolith particles were obtained using microtomography [3]. The surface nanomiromorpholgy of Itokawa particles were also observed using FE-SEM [5]. However, the number of particles was limited and genial feature on the surface morphology has not been understood. In this study, the surface morphology of Itokawa regolith particles was systematically investigated together with their 3D structures.

  20. Students' Learning Activities While Studying Biological Process Diagrams

    NASA Astrophysics Data System (ADS)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-08-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal data and eye-tracking data were collected as indications of students' learning activities. For the verbal data, we applied a fine-grained coding scheme to optimally describe students' learning activities. For the eye-tracking data, we used fixation time and transitions between areas of interest in the process diagrams as indices of learning activities. Various learning activities while studying process diagrams were found that distinguished between more and less successful students. Results showed that between-student variance in comprehension score was highly predicted by meaning making of the process arrows (80%) and fixation time in the main area (65%). Students employed successful learning activities consistently across learning tasks. Furthermore, compared to unsuccessful students, successful students used a more coherent approach of interrelated learning activities for comprehending process diagrams.

  1. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets

  2. Diagnosing coupled watershed processes using a fully-coupled groundwater, land-surface, surface water and mesoscale atmospheric model

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Kollet, S. J.; Chow, F. K.

    2007-12-01

    A variably-saturated groundwater flow model with an integrated overland flow component, a land-surface model and a mesoscale atmospheric model is used to examine the interplay between coupled water and energy processes. These processes are influenced by land-surface topography and subsurface heterogeneity. This parallel, integrated model simulates spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. Spatial statistics are used to demonstrate spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating. Additionally, spectral transforms of subsurface arrival times are computed using a transient Lagrangian transport simulation. Macrodispersion is used to mimic the effects of subsurface heterogeneity for a range of Peclet numbers. The slopes of these transforms indicate fractal scaling of this system over a range of timescales. All of these techniques point to importance of realistically representing coupled processes and the need to understand and diagnose these processes in nature. This work was conducted under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory (LLNL) under contract W-7405-Eng-48. This project was funded by the Laboratory Directed Research and Development Program at LLNL

  3. Statistical and signal-processing concepts in surface metrology

    SciTech Connect

    Church, E.L.; Takacs, P.Z.

    1986-03-01

    This paper proposes the use of a simple two-scale model of surface roughness for testing and specifying the topographic figure and finish of synchrotron-radiation mirrors. In this approach the effects of figure and finish are described in terms of their slope distribution and power spectrum, respectively, which are then combined with the system point spread function to produce a composite image. The result can be used to predict mirror performance or to translate design requirements into manufacturing specifications. Pacing problems in this approach are the development of a practical long-trace slope-profiling instrument and realistic statistical models for figure and finish errors.

  4. Hold My Calls: An Activity for Introducing the Statistical Process

    ERIC Educational Resources Information Center

    Abel, Todd; Poling, Lisa

    2015-01-01

    Working with practicing teachers, this article demonstrates, through the facilitation of a statistical activity, how to introduce and investigate the unique qualities of the statistical process including: formulate a question, collect data, analyze data, and interpret data.

  5. Guiding Catalytically Active Particles with Chemically Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M.

    2016-07-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemiosmosis, providing an additional contribution to self-motility. Chemiosmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemiosmotic flows can cause particles to either "dock" at the chemical step between the two materials or follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  6. Trichomes as sensors: detecting activity on the leaf surface.

    PubMed

    Tooker, John F; Peiffer, Michelle; Luthe, Dawn S; Felton, Gary W

    2010-01-01

    The dramatic movements of some carnivorous plants species are triggered by sensory structures derived from trichomes. While unusual plant species such as the Venus fly trap and sundews may be expected to have elaborate sensors to capture their insect prey, more modest plant species might not be expected to have similar sensory capabilities. Our recent work, however, has revealed that glandular trichomes on tomato (Solanum lycopersicum) appear to have a function similar to trigger hairs of carnivorous species, acting as "early warning" sensors. Using a combination of behavioral, molecular, and biochemical techniques, we determined that caterpillars, moths and mechanical disruption upregulate signaling molecules and defensive genes found in glandular trichomes. Importantly, we discovered that plants whose trichomes have been broken respond more vigorously when their defenses were induced. Taken together, our results suggest that glandular trichomes can act as sensors that detect activity on the leaf surface, and ready plants for herbivore attack. PMID:20592816

  7. Silicon carbide wafer bonding by modified surface activated bonding method

    NASA Astrophysics Data System (ADS)

    Suga, Tadatomo; Mu, Fengwen; Fujino, Masahisa; Takahashi, Yoshikazu; Nakazawa, Haruo; Iguchi, Kenichi

    2015-03-01

    4H-SiC wafer bonding has been achieved by the modified surface activated bonding (SAB) method without any chemical-clean treatment and high temperature annealing. Strong bonding between the SiC wafers with tensile strength greater than 32 MPa was demonstrated at room temperature under 5 kN force for 300 s. Almost the entire wafer has been bonded very well except a small peripheral region and few voids. The interface structure was analyzed to verify the bonding mechanism. It was found an amorphous layer existed as an intermediate layer at the interface. After annealing at 1273 K in vacuum for 1 h, the bonding tensile strength was still higher than 32 MPa. The interface changes after annealing were also studied. The results show that the thickness of the amorphous layer was reduced to half after annealing.

  8. Microwave Processing of Planetary Surfaces for the Extraction of Volatiles

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2011-01-01

    In-Situ Resource Utilization will be necessary for sustained exploration of space. Volatiles are present in planetary soils, but water by far has the most potential for effective utilization. The presence of water at the lunar poles, Mars, and possibly on Phobos opens the possibility of producing LOX for propellant. Water is also a useful radiation shielding material , and valuable to replenish expendables (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating soil effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on soil dielectric properties. Methods for complex electric permittivity and magnetic permeability measurement are being developed and used for measurements of lunar soil simulants. A new method for delivery of microwaves deep into a planetary surface is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. We are planning to set up a planetary testbed in a large vacuum chamber in the coming year. Recent results are discussed.

  9. Microwave Processing of Planetary Surfaces for Volatile Extraction

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2011-01-01

    In-Situ Resource Utilization will be necessary for sustained exploration of space. Volatiles are present in planetary soils, but water by far has the strongest potential for effective utilization. The presence of water at the lunar poles, Mars, and possibly on Phobos opens the possibility of producing LOX for propellant. Water is also a useful radiation shielding material and water (and oxygen) are expendables that are also required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating soil effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on soil dielectric properties. Methods for measuring the complex electric permittivity and magnetic permeability are being developed and have been measured for some lunar soil simulants at 0.5, 2.45, and 10 GHz from room temperature down to liquid nitrogen temperature. A new method for delivery of microwaves deep into a planetary surface is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. We have plans to set up a planetary testbed in a large vacuum chamber in the coming year. Recent results will be presented.

  10. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  11. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets

  12. Modeling of Titan's surface processes constrained by shoreline fractal analysis and comparison with terrestrial analogs

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Byrne, S.

    2011-12-01

    been subsequently modified by many processes which have been observed to be active on Titan. These processes include fluvial and aeolian action, tectonic activity, impact cratering, cryovolcanism and mantling (fallout of solid material from the atmosphere which blankets the surface). Many of these surface processes create lakes with relatively smooth shorelines that are initially not fractal. Over time, however, fluvial modification can introduce small-scale roughness that leads to more rugged shorelines as channels erode and deposit to create embayments along the shoreline. Landscape evolution modeling has proven to be very useful for testing alternative hypotheses for surface change and for determining the linkages between form and process on both Earth and other solar system bodies. We intend to simulate several processes in our landscape evolution modeling for Titan. The results of this modeling, in conjunction with the statistical analysis of Titan's shorelines and terrestrial analogs, will be used to constrain the spatial distribution of surface process types and study the evolution of lake shorelines on Titan.

  13. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  14. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  15. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  16. 30 CFR 785.22 - In situ processing activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operations will be conducted in compliance with the requirements of 30 CFR part 828, including— (1... underground mining activities, and 30 CFR parts 817 and 828. ... monitoring surface and ground water and air quality, as required by the regulatory authority. (c) No...

  17. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  18. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  19. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  20. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  1. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  2. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  3. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  4. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designatng Areas Unsuitable for...

  5. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for...

  6. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... mining operations. Part 764 of this chapter, State Processes for Designatng Areas Unsuitable for...

  7. Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing

    NASA Astrophysics Data System (ADS)

    Xin, Qiang; Su, Xing; Wang, Bo

    2016-09-01

    Plasma processing has been widely reported as an effective tool in relieving or removing surface/subsurface damage induced by previous mechanical machining process. However, the surface morphology evolution during removing the damage using plasma processing is rarely reported. In this research, this procedure is studied based on experiments and robust numerical models developed on the basis of Level Set Method (LSM). Even if some unique properties of plasma etching are observed, such as particle redistribution, the dominant role of isotropic etching of plasma processing is verified based on experiments and 2D LSM simulations. With 2D LSM models, the damage removal process under various damage characteristics is explored in detail. Corresponding peak-to-valley roughness evolution is investigated as well. Study on morphology evolution is also conducted through the comparison between experiments and 3D LSM computations. The modeling results and experiments show good agreement with each other. The trends of simulated roughness evolution agree with the experiments as well. It is revealed that the plasma processing may end up with a planar surface depending on the damage characteristics. The planarization procedure can be divided into four parts: crack opening and pit formation; pit coalescing and shallow pits subsumed by deep ones; morphology duplicate etching; and finally a planar and damage free surface.

  8. Formal Verification of Effectiveness of Control Activities in Business Processes

    NASA Astrophysics Data System (ADS)

    Arimoto, Yasuhito; Iida, Shusaku; Futatsugi, Kokichi

    It has been an important issue to deal with risks in business processes for achieving companies' goals. This paper introduces a method for applying a formal method to analysis of risks and control activities in business processes in order to evaluate control activities consistently, exhaustively, and to give us potential to have scientific discussion on the result of the evaluation. We focus on document flows in business activities and control activities and risks related to documents because documents play important roles in business. In our method, document flows including control activities are modeled and it is verified by OTS/CafeOBJ Method that risks about falsification of documents are avoided by control activities in the model. The verification is done by interaction between humans and CafeOBJ system with theorem proving, and it raises potential to discuss the result scientifically because the interaction gives us rigorous reasons why the result is derived from the verification.

  9. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Wei, Li; Wei, Chao; Chang, Chein-Chi; You, Shao-Hong

    2015-10-01

    This is a literature review for the year 2014 and contains information specifically associated with suspended growth processes including activated sludge and sequencing batch reactors. This review is a subsection of the treatment systems section of the annual literature review. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2014. These include, nitrogen and phosphorus control, fate and effect of xenobiotics, industrial wastes treatment, and some new method for the determination of activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology of activated sludge, modeling and kinetics. Many of the subsections in the industrial wastes: converting sewage sludge into fuel gases, thermos-alkali hydrolysis of Waste Activated Sludge (WAS), sludge used as H2 S adsorbents were also mentioned in this review. PMID:26420077

  10. Threshold processes of sodium ion emission from NaAu surface alloy

    NASA Astrophysics Data System (ADS)

    Knat'ko, M. V.; Lapushkin, M. N.

    2015-04-01

    We have studied threshold processes of Na+ ion emission from a semiconductor Na x Au y film formed on the surface of a gold substrate. In contrast to the classical notions of threshold processes involved in the surface ionization of alkali metal ions from heated metal surfaces, the diffusion exchange of atomic species between the surface and volume of the Na x Au y film ensures stable emission of Na+ ions from the substrate in the region of threshold temperatures. A diffusion mechanism of self-regulation of the surface coverage of alkali metal in the Na x Au y film is proposed.

  11. Numerical analysis of instability processes in underground cavities and of the related effects at the surface

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Parise, Mario

    2010-05-01

    Natural and anthropogenic caves may represent a potential hazard for the built-up environment, due to the occurrence of underground instability processes, that may propagate upward and eventually reach the ground surface, thus inducing the occurrence of sinkholes. Especially when the caves are at shallow depth, the effects at the ground surface may result extremely severe. In the Apulia region of southern Italy, there are many sites where underground quarrying developed in the past, due to presence at a certain depth of rock of good quality for building purposes. Development of underground quarries, rather than open pit mines, was also favoured by the preservation of the terrains on the ground surface for agricultural practices. The Pliocene-Pleistocene calcarenite (a typical soft rock) was therefore quarried underground, by digging extensive networks of galleries in those levels within the local geological succession most suitable for the quarrying activity. With time, these underground activities have progressively been abandoned, and later on many quarries were used for other purposes, including illegal discharge of solid and liquid wastes. Many Apulian towns are nowadays located just above these caves, due to urban expansion in the last decades and loss of memory of the presence of the underground quarries. Thus, a serious risk exists for civil society, which should not be left uninvestigated. The present contribution deals with the analysis of the main factors at the origin of the instability processes described, also including those causing weathering of the soft rock wihich induces gradual decay of the physical and mechanical properties of the rock mass. Aimed at exploring the evolution with time of the stability conditions within the cavities, numerical analysis have been implemented by using finite element methods with respect to ideal situations which are representative of typical case studies in Apulia. Both the effects of local instability processes

  12. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    SciTech Connect

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  13. Instructional Transaction Theory: Knowledge Relationships among Processes, Entities, and Activities.

    ERIC Educational Resources Information Center

    Merrill, M. David; And Others

    1993-01-01

    Discussion of instructional transaction theory focuses on knowledge representation in an automated instructional design expert system. A knowledge structure called PEA-Net (processes, entities, and activities) is explained; the refrigeration process is used as an example; text resources and graphic resources are described; and simulations are…

  14. 76 FR 44350 - Agency Information Collection Activities: Drawback Process Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... SECURITY U.S. CUSTOMS AND BORDER PROTECTION Agency Information Collection Activities: Drawback Process... approval in accordance with the Paperwork Reduction Act: Drawback Process Regulations (CBP Forms 7551, 7552... collection was previously published in the Federal Register (76 FR 19120) on April 6, 2011, allowing for a...

  15. 76 FR 19120 - Agency Information Collection Activities: Drawback Process Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Drawback Process... Drawback Process Regulations (CBP Forms 7551, 7552 and 7553). This request for comment is being made... CBP is soliciting comments concerning the following information collection: Title: Drawback...

  16. Cascading Activation across Levels of Representation in Children's Lexical Processing

    ERIC Educational Resources Information Center

    Huang, Yi Ting; Snedeker, Jesse

    2011-01-01

    Recent work in adult psycholinguistics has demonstrated that activation of semantic representations begins long before phonological processing is complete. This incremental propagation of information across multiple levels of analysis is a hallmark of adult language processing but how does this ability develop? In two experiments, we elicit…

  17. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  18. Dehydrogenation processes via C-H activation within alkylphosphines.

    PubMed

    Grellier, Mary; Sabo-Etienne, Sylviane

    2012-01-01

    Phosphines are commonly used in organometallic chemistry and are present in a wide variety of catalytic systems. This feature article highlights the advances made in dehydrogenation processes occurring within alkylphosphines, with the aim of further developing catalytic processes involving C-H activation together with potential applications in the field of hydrogen storage. PMID:21956347

  19. 'Scaling' analysis of the ice accretion process on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Tabrizi, A. H.; Missimer, J. R.

    1982-01-01

    A comprehensive set of scaling parameters is developed for the ice accretion process by analyzing the energy equations of the dynamic freezing zone and the already frozen ice layer, the continuity equation associated with supercooled liquid droplets entering into and impacting within the dynamic freezing zone, and energy equation of the ice layer. No initial arbitrary judgments are made regarding the relative magnitudes of each of the terms. The method of intrinsic reference variables in employed in order to develop the appropriate scaling parameters and their relative significance in rime icing conditions in an orderly process, rather than utilizing empiricism. The significance of these parameters is examined and the parameters are combined with scaling criteria related to droplet trajectory similitude.

  20. Passive and active EO sensing of small surface vessels

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Berglund, Folke; Allard, Lars; Öhgren, Johan; Larsson, Hâkan; Amselem, Elias; Gustafsson, Frank; Repasi, Endre; Lutzmann, Peter; Göhler, Benjamin; Hammer, Marcus; McEwen, Kennedy; McEwan, Ken

    2015-10-01

    The detection and classification of small surface targets at long ranges is a growing need for naval security. This paper will present an overview of a measurement campaign which took place in the Baltic Sea in November 2014. The purpose was to test active and passive EO sensors (10 different types) for the detection, tracking and identification of small sea targets. The passive sensors were covering the visual, SWIR, MWIR and LWIR regions. Active sensors operating at 1.5 μm collected data in 1D, 2D and 3D modes. Supplementary sensors included a weather station, a scintillometer, as well as sensors for positioning and attitude determination of the boats. Three boats in the class 4-9 meters were used as targets. After registration of the boats at close range they were sent out to 5-7 km distance from the sensor site. At the different ranges the target boats were directed to have different aspect angles relative to the direction of observation. Staff from IOSB Fraunhofer in Germany and from Selex (through DSTL) in UK took part in the tests beside FOI who was arranging the trials. A summary of the trial and examples of data and imagery will be presented.