Science.gov

Sample records for active surface species

  1. Surface-Active Agents from Two Bacillus Species

    PubMed Central

    Cooper, David G.; Goldenberg, Beena G.

    1987-01-01

    Two Bacillus species were studied which produced bioemulsifiers; however, they were distinctly different compounds. Bacillus sp. strain IAF 343 produced unusually high yields of extracellular biosurfactant when grown on a medium containing only water-soluble substrates. The yield of 1 g/liter was appreciably better than those of most of the biosurfactants reported previously. This neutral lipid product, unlike most lipid biosurfactants, had significant emulsifying properties. It did not appreciably lower the surface tension of water. On the same medium, Bacillus cereus IAF 346 produced a more conventional polysaccharide bioemulsifier, but it also produced a monoglyceride biosurfactant. The bioemulsifier contained substantial amounts of glucosamine and originated as part of the capsule layer. The monoglyceride lowered the surface tension of water to 28 mN/m. It formed a strong association with the polysaccharide, and it was necessary to use ultrafiltration to effect complete separation. The removal of the monoglyceride caused the polysaccharide to precipitate. It is suggested that earlier reports of biopolymers which both stabilized emulsions and lowered surface tension were actually similar aggregates of lipid and bioemulsifier. PMID:16347271

  2. Interaction of organic surfaces with active species in the high-vacuum environment

    NASA Astrophysics Data System (ADS)

    Podzorov, V.; Menard, E.; Pereversev, S.; Yakshinsky, B.; Madey, T.; Rogers, J. A.; Gershenson, M. E.

    2005-08-01

    Using single-crystal organic field-effect transistors with the conduction channel exposed to environmental agents, we have observed generation of electronic defects at the organic surface in the high-vacuum environment. Rapid decrease of the source-drain current of an operating device is observed upon exposure of the channel to the species generated by high-vacuum gauges. We attribute this effect to interaction of the organic surface with electrically neutral free radicals produced in the process of hydrocarbon cracking on hot filaments with a relatively low activation energy Ea˜2.5eV (240kJ/mol). The reported results might be important for optimizing the high-vacuum processes of fabrication and characterization of a wide range of organic and molecular electronic devices.

  3. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    NASA Astrophysics Data System (ADS)

    Cheng, He; Liu, Xin; Lu, Xinpei; Liu, Dawei

    2016-07-01

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6-7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  4. Characterization of the Active Surface Species Responsible for UV-Induced Desorption of O2 from the Rutile TiO2(110) Surface

    SciTech Connect

    Henderson, Michael A.; Shen, Mingmin; Wang, Zhitao; Lyubinetsky, Igor

    2013-03-21

    We have examined the chemical and photochemical properties of molecular oxygen on the (110) surface of rutile TiO2 at 100 K using electron energy loss spectroscopy (EELS), photon stimulated desorption (PSD) and scanning tunneling microscopy (STM). Oxygen chemisorbs on the TiO2(110) surface at 100 K through charge transfer from surface Ti3+ sites. The charge transfer process is evident in EELS by a decrease in the intensity of the Ti3+ d-to-d transition in EELS at ~0.9 eV and formation of a new loss ~2.8 eV. Based on comparisons with the available homogeneous and heterogeneous literature for complexed/adsorbed O2, the species responsible for the 2.8 eV peak can be assigned to a surface peroxo (O2 2-) state of O2. This species was identified as the active form of adsorbed O2 on TiO2(110) for PSD. The adsorption site of this peroxo species was assigned to that of a regular five-cooridinated Ti4+ (Ti5c) site based on comparisons between the UV exposure dependent behavior of O2 in STM, PSD and EELS data. Assignment of the active form of adsorbed O2 to a peroxo species at normal Ti5c sites necessitates reevaluation of the simple mechanism in which a single valence band hole neutralizes a singly charged O2 species (superoxo or O2-) leading to desorption of O2 from a physisorbed potential energy surface. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), and was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL.

  5. Degradation of dyes by active species injected from a gas phase surface discharge

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Tiecheng; Lu, Na; Zhang, Dandan; Wu, Yan; Wang, Tianwei; Sato, Masayuki

    2011-06-01

    A reactor, based on the traditional gas phase surface discharge (GPSD), is designed for degradation of dye wastewater in this study. The reactor is characterized by using the dye wastewater as a ground electrode. A spiral discharge electrode of stainless steel wire attached on the inside wall of a cylindrical insulating medium and the wastewater surrounding the insulating medium for simultaneous cooling of the discharge electrode constitute the reactor. The active chemical radicals generated by the discharge of the spiral electrode are injected into the water with the carrier gas. The removal of three organic dyes (including methyl red (MR), reactive brilliant blue (RBB) and cationic red (CR)) in aqueous solution is investigated. The effects of electrode configuration, discharge voltage and solution pH value on the decoloration efficiency of MR are discussed. The experimental results show that over 95% of decoloration efficiencies for all the dyes are obtained after several minutes of plasma treatment. 40% of chemical oxygen demand removal of MR is obtained after 8 min of discharge treatment. Furthermore, it is found that ozone mainly affects the removal of dyes and several aliphatic compounds are identified as the oxidation products of MR. The possible degradation pathways of MR by GPSD are proposed.

  6. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Zhou, Gang

    2016-04-01

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO2 is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.

  7. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study.

    PubMed

    Zhang, Libo; Zhou, Gang

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO2 is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs. PMID:27083744

  8. Histochemical evidence for generation of active oxygen species on the apical surface of cigarette-smoke-exposed tracheal explants.

    PubMed Central

    Hobson, J.; Wright, J.; Churg, A.

    1991-01-01

    Cigarette smoke is known to contain many types of free radicals, and solutions of smoke tar have been shown to liberate hydrogen peroxide as well as superoxide radical. To further investigate the relationship of smoke exposure and generation of active oxygen species, the authors exposed rat tracheal explants to varying amounts of smoke for 10 minutes in a humidified chamber. After smoke exposure was completed, tracheal segments were incubated in a modification of the ultrastructural cerium chloride technique that was devised by Briggs et al. to demonstrate hydrogen peroxide production. Smoke dose-dependent deposition of cerium-containing reaction product was found on the cilia and the apical membranes; with low-dose smoke, the reaction product appeared as individual dots along the apical surface, but with greater amounts of smoke, heavy linear deposits of reaction product were found along the apical membranes. Smoke produced focal dose-related cell damage with blebbing of the apical membranes, loss of cilia, and focal cell necrosis. Catalase prevented both the positive histochemical reaction and the cell damage; if the catalase was first boiled, its protective effect was destroyed. Similarly, after smoke exposure was completed, tracheal segments were covered with a solution of nitroblue tetrazolium to demonstrate production of superoxide anion. A positive reaction was observed by light microscopy on the surface of tracheas that was exposed to smoke but not that exposed to air; the reaction could be prevented by addition of superoxide dismutase. The authors conclude that exposure of tracheal explants to cigarette smoke in vitro is associated with histochemical evidence of continuing production of both hydrogen peroxide and superoxide anion at the apical cell membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1653519

  9. Inverse modelling of Köhler theory - Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

    NASA Astrophysics Data System (ADS)

    Lowe, Samuel; Partridge, Daniel; Topping, David; Stier, Philip

    2016-04-01

    In this study an inverse modelling framework for the calculation of CCN spectra is developed to facilitate a more robust treatment of evaluation of Köhler models against observations. To achieve this, we define an objective function that provides a diagnostic metric of the deviation of modelled CCN spectra from observations as a function of input parameters. This allows for the assessment of model accuracy while simultaneously examining global parameter sensitivities and identifying parameter interactions across all atmospherically relevant supersaturations, corresponding to a broad range of cloud types and updraft velocities. The focus of this study is two-fold. Firstly, we assess the feasibility of inverse modelling as a new methodology for aerosol-CCN spectra closure. To achieve this goal, responses in the objective function to parameter perturbations in 2D cross-sections of the complete parameter space, response surfaces, are used to examine the likelihood of our chosen objective function containing enough information to constrain the model input parameters considered using automatic search algorithms. Secondly, these response surfaces are employed to conduct an extensive parametric sensitivity analysis and subsequently rank the relative importance of aerosol physiochemical parameters in determining CCN spectra. Using Köhler theory to model CCN concentrations requires knowledge of many physiochemical parameters, some of which are difficult to measure in-situ at the scale of interest. Therefore, novel methodologies, such as the one developed here, are required to probe the entire parameter space of aerosol-cloud interaction problems and provide global sensitivity analyses to constrain parametric uncertainties. Partitioning of surface-active species from the bulk to the surface phase can alter the point of CCN activation. Therefore, the analysis conducted here is carried out for a standard Köhler model as well as more complex Köhler models accounting for the

  10. Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark.

    PubMed

    Lakshmi Prasanna, V; Vijayaraghavan, Rajagopalan

    2015-08-25

    A systematic and complete antibacterial study on well-designed and well-characterized microparticle (micro), nanoparticle (nano), and capped nano ZnO has been carried out in both dark and light conditions with the objective of arriving at the mechanism of the antibacterial activity of ZnO, particularly in the dark. The present systematic study has conclusively proved that reactive oxygen species (ROS) such as (•)OH, (•)O2(-), and H2O2 are significantly produced from aqueous suspension of ZnO even in the dark and are mainly responsible for the activity in the dark up to 17%, rather than Zn(2+) ion leaching as proposed earlier. This work further confirms that surface defects play a major role in the production of ROS both in the presence and absence of light. In the dark, superoxide ((•)O2(-)) radical mediated ROS generation through singly ionized oxygen vacancy is proposed for the first time, and it is confirmed by EPR and scavenger studies. ROS such as (•)O2(-), H2O2, and (•)OH have been estimated by UV-visible spectroscopy using nitro blue tetrazolium (NBT), KMnO4 titrations, and fluorescence spectroscopy, respectively. These are correlated to the antibacterial activity of ZnO in the dark and light. The activity is found to be highest for nano ZnO and least for micro ZnO, with capped ZnO between the two, highlighting the important role of surface defects in generation of ROS. The surface charge density of ZnO in dark and light has been estimated for the first time to the best of our knowledge, and it can influence antibacterial activity. Our work proposes a new mechanism mediated by superoxide species, for antibacterial activity of ZnO especially in the dark. PMID:26222950

  11. A new form of chemisorbed photo- and electro-active atomic H species on the TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yates, John T.

    2016-10-01

    Hydrogen adsorption on TiO2 is of importance in chemical and photochemical reduction processes. Using several surface science methods, we clearly distinguish two kinds of H species on the surface of rutile TiO2(110)-1 × 1. In contrast with the well-studied bridge-bonded OH species (α-H) originating from H2O dissociation on the surface oxygen vacancy site on TiO2(110), atomic H adsorption on the TiO2(110) (denoted as β-H) exhibits special high sensitivity to the electronic excitation of the TiO2(110) by either electrons or UV photons. The formation of molecular H2 gas by photoexcitation of β-H/TiO2(110) surfaces has been observed, which may shed light on the basic understanding of the processes of photocatalytic H2 production by splitting water.

  12. Active frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Buchwald, Walter R.; Hendrickson, Joshua; Cleary, Justin W.; Guo, Junpeng

    2013-05-01

    Split ring resonator arrays are investigated for use as active elements for the realization of voltage controllable frequency selective surfaces. Finite difference time domain simulations suggest the absorptive and reflective properties of such surfaces can be externally controlled through modifications of the split ring resonator gap impedance. In this work, such voltage-controlled resonance tuning is obtained through the addition of an appropriately designed high electron mobility transistor positioned across the split ring resonator gap. It is shown that a 0.5μm gate length high electron mobility transistor allows voltage controllable switching between the two resonant conditions associated with a split ring resonator and that of a closed loop geometry when the surface is illuminated with THz radiation. Partial switching between these two resonant conditions is observed at larger gate lengths. Such active frequency selective surfaces are proposed, for example, for use as modulators in THz detection schemes and as RF filters in radar applications when scaled to operate at GHz frequencies.

  13. Antifungal activity of some Cuban Zanthoxylum species.

    PubMed

    Diéguez-Hurtado, R; Garrido-Garrido, G; Prieto-González, S; Iznaga, Y; González, L; Molina-Torres, J; Curini, M; Epifano, F; Marcotullio, M C

    2003-06-01

    Ethanolic extracts of the trunk bark of Zanthoxylum fagara, Z. elephantiasis and Z. martinicense showed activity against different species of fungi. No antibacterial activity was detected. PMID:12781811

  14. Electrochemically active species and multielectron processes in ionic melts

    NASA Astrophysics Data System (ADS)

    Shapoval, Viktor I.; Solov'ev, Veniamin V.; Malyshev, Viktor V.

    2001-02-01

    The model concepts for the mechanisms of formation of electrochemically active species and multielectron processes in ionic nitrate-, carbonate-, boron- and titanium-containing fluoride melts are generalised. The fundamental importance of the acid-base properties of a melt in the mechanism of formation of electrochemically active species is shown for nitrate- and carbonate-containing melts. This fact is confirmed by electrochemical measurements and by calculations of force constants for oxyanions. The optimum form of electrochemically active species has been established; their reduction abilities depend on the cationic composition of a melt, the adsorption properties of the electrode surface and the electric field strength. The bibliography includes 218 references.

  15. Enhanced photocatalytic H2-production activity of CdxZn1-xS nanocrystals by surface loading MS (M = Ni, Co, Cu) species

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Li, Bo; Chen, Jiazang; Li, Na; Zheng, Jianfeng; Zhao, Jianghong; Zhu, Zhenping

    2012-10-01

    To investigate the role of metal sulfides as co-catalyst for photocatalytic hydrogen production under visible light irradiation, we have loaded small amounts of transition-metal sulfides (MS), such as NiS, CoS and CuS, onto the surface of CdxZn1-xS solid solution. It can be found that the rate of H2 evolution over the MS/Cd0.4Zn0.6S was 5 times higher than that of the pure Cd0.4Zn0.6S, and is comparable to the Cd0.4Zn0.6S modified with 1 wt% platinum (Pt) co-catalysts. The MS/Cd0.4Zn0.6S photocatalysts were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-visible spectrophotometer (UV-vis), and photoluminescence (PL) spectroscopy. It can be speculated that the MS provided active sites for H2 production and caused the migration of excited electrons from Cd0.4Zn0.6S toward MS, leading to the enhancement of photocatalytic activity.

  16. Texas Endangered Species Activity Book.

    ERIC Educational Resources Information Center

    Jackson, Kathleen Marie; Campbell, Linda

    This publication is the result of the Texas Parks and Wildlife Division's (TPWD's) commitment to education and the fertile partnerships formed between TPWD biologists and educators. This activity book brings together the expertise and practical knowledge of a classroom teacher with the technical knowledge and skills of a TPWD biologist and artist.…

  17. Europa's Active Surface

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A newly discovered impact crater can be seen just right of the center of this image of Jupiter's moon Europa returned by NASA's Galileo spacecraft camera. The crater is about 30 kilometers (18.5 miles) in diameter. The impact excavated into Europa's icy crust, throwing debris (seen as whitish material) across the surrounding terrain. Also visible is a dark band, named Belus Linea, extending east-west across the image. This type of feature, which scientists call a 'triple band,' is characterized by a bright stripe down the middle. The outer margins of this and other triple bands are diffuse, suggesting that the dark material was put there as a result of possible geyser-like activity which shot gas and rocky debris from Europa's interior. The curving 'X' pattern seen in the lower left corner of the image appears to represent fracturing of the icy crust and infilling by slush which froze in place. The crater is centered at about 2 degrees north latitude by 239 degrees west longitude. The image was taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996, during Galileo's first orbit around Jupiter. The area shown is 860 by 700 kilometers (530 by 430 miles), or about the size of Oregon and Washington combined. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  18. Active particles on curved surfaces

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael

    Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.

  19. Surface carbonaceous deposits as activity and selectivity influencing species in ring-opening reactions of propylcyclobutane catalyzed by Pt/SiO[sub 2

    SciTech Connect

    Toeroek, B.; Molnar, A.; Palinko, I.; Bartok, M. )

    1994-02-01

    Active site formation in the hydrogenative ring opening of propylcyclobutane over Pt/SiO[sub 2] was investigated in a static reactor, mainly at 373 K. Changes in the ring-opening rates and selectivities on variously treated catalyst are described. Three types of treatment were applied: repeated runs with (i) only evacuation or (ii) inter-run reduction (H[sub 2], 473 K, 0.5 h), or (iii) prepoisoning of the catalyst with propylcyclobutane at 373 K or 673 K. The observed (in some cases dramatic) increase in selectivity towards the formation of heptane (1,2 C-C bond scission) is interpreted in terms of the formation of a metal-carbonaceous deposit interface where the deposit provides an anchoring site for the adsorption of the propyl side-chain and the ring opens on the clean Pt atoms. Changes in activity due to the various treatments are also discussed. 19 refs., 2 figs., 2 tabs.

  20. Antifungal activity of five species of Polygala

    PubMed Central

    Johann, Susana; Mendes, Beatriz G.; Missau, Fabiana C.; de Resende, Maria A.; Pizzolatti, Moacir G.

    2011-01-01

    Crude extracts and fractions of five species of Polygala – P. campestris, P. cyparissias, P. paniculata, P. pulchella and P. sabulosa – were investigated for their in vitro antifungal activity against opportunistic Candida species, Cryptococcus gattii and Sporothrix schenckii with bioautographic and microdilution assays. In the bioautographic assays, the major extracts were active against the fungi tested. In the minimal concentration inhibitory (MIC) assay, the hexane extract of P. paniculata and EtOAc fraction of P. sabulosa showed the best antifungal activity, with MIC values of 60 and 30 μg/mL, respectively, against C. tropicalis, C. gattii and S. schenckii. The compounds isolated from P. sabulosa prenyloxycoumarin and 1,2,3,4,5,6-hexanehexol displayed antifungal activity against S. schenckii (with MICs of 125 μg/mL and 250 μg/mL, respectively) and C. gattii (both with MICs of 250 μg/mL). Rutin and aurapten isolated from P. paniculata showed antifungal activity against C. gattii with MIC values of 60 and 250 μg/mL, respectively. In the antifungal screening, few of the isolated compounds showed good antifungal inhibition. The compound α-spinasterol showed broad activity against the species tested, while rutin had the best activity with the lowest MIC values for the microorganisms tested. These two compounds may be chemically modified by the introduction of a substitute group that would alter several physico-chemical properties of the molecule, such as hydrophobicity, electronic density and steric strain. PMID:24031724

  1. Xerotolerant Cladosporium sphaerospermum Are Predominant on Indoor Surfaces Compared to Other Cladosporium Species.

    PubMed

    Segers, Frank J J; Meijer, Martin; Houbraken, Jos; Samson, Robert A; Wösten, Han A B; Dijksterhuis, Jan

    2015-01-01

    Indoor fungi are a major cause of cosmetic and structural damage of buildings worldwide and prolonged exposure of these fungi poses a health risk. Aspergillus, Penicillium and Cladosporium species are the most predominant fungi in indoor environments. Cladosporium species predominate under ambient conditions. A total of 123 Cladosporium isolates originating from indoor air and indoor surfaces of archives, industrial factories, laboratories, and other buildings from four continents were identified by sequencing the internal transcribed spacer (ITS), and a part of the translation elongation factor 1α gene (TEF) and actin gene (ACT). Species from the Cladosporium sphaerospermum species complex were most predominant representing 44.7% of all isolates, while the Cladosporium cladosporioides and Cladosporium herbarum species complexes represented 33.3% and 22.0%, respectively. The contribution of the C. sphaerospermum species complex was 23.1% and 58.2% in the indoor air and isolates from indoor surfaces, respectively. Isolates from this species complex showed growth at lower water activity (≥ 0.82) when compared to species from the C. cladosporioides and C. herbarum species complexes (≥ 0.85). Together, these data indicate that xerotolerance provide the C. sphaerospermum species complex advantage in colonizing indoor surfaces. As a consequence, C. sphaerospermum are proposed to be the most predominant fungus at these locations under ambient conditions. Findings are discussed in relation to the specificity of allergy test, as the current species of Cladosporium used to develop these tests are not the predominant indoor species. PMID:26690349

  2. Xerotolerant Cladosporium sphaerospermum Are Predominant on Indoor Surfaces Compared to Other Cladosporium Species

    PubMed Central

    Segers, Frank J. J.; Meijer, Martin; Houbraken, Jos; Samson, Robert A.; Wösten, Han A. B.; Dijksterhuis, Jan

    2015-01-01

    Indoor fungi are a major cause of cosmetic and structural damage of buildings worldwide and prolonged exposure of these fungi poses a health risk. Aspergillus, Penicillium and Cladosporium species are the most predominant fungi in indoor environments. Cladosporium species predominate under ambient conditions. A total of 123 Cladosporium isolates originating from indoor air and indoor surfaces of archives, industrial factories, laboratories, and other buildings from four continents were identified by sequencing the internal transcribed spacer (ITS), and a part of the translation elongation factor 1α gene (TEF) and actin gene (ACT). Species from the Cladosporium sphaerospermum species complex were most predominant representing 44.7% of all isolates, while the Cladosporium cladosporioides and Cladosporium herbarum species complexes represented 33.3% and 22.0%, respectively. The contribution of the C. sphaerospermum species complex was 23.1% and 58.2% in the indoor air and isolates from indoor surfaces, respectively. Isolates from this species complex showed growth at lower water activity (≥ 0.82) when compared to species from the C. cladosporioides and C. herbarum species complexes (≥ 0.85). Together, these data indicate that xerotolerance provide the C. sphaerospermum species complex advantage in colonizing indoor surfaces. As a consequence, C. sphaerospermum are proposed to be the most predominant fungus at these locations under ambient conditions. Findings are discussed in relation to the specificity of allergy test, as the current species of Cladosporium used to develop these tests are not the predominant indoor species. PMID:26690349

  3. Antibacterial activity of some Artemisia species extract.

    PubMed

    Poiată, Antonia; Tuchiluş, Cristina; Ivănescu, Bianca; Ionescu, A; Lazăr, M I

    2009-01-01

    The antimicrobial activities of ethanol, methanol and hexane extracts from Artemisia absinthium, Artemisia annua and Artemisia vulgaris were studied. Plant extracts were tested against five Gram-positive bacteria, two Gram-negative bacteria and one fungal strain. The results indicated that Artemisia annua alcoholic extracts are more effective against tested microorganisms. However, all plants extracts have moderate or no activity against Gram-negative bacteria. The obtained results confirm the justification of extracts of Artemisia species use in traditional medicine as treatment for microbial infections. PMID:20191854

  4. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  5. Reactions of aqueous aluminum species at mineral surfaces

    USGS Publications Warehouse

    Brown, David Wayne; Hem, John David

    1975-01-01

    Aqueous aluminum solutions containing 4.5 ? 10 4 molar aluminum in 0.01 molar NaC104 were partly neutralized with NaOH to give OH:A1 mole ratios from 1.40 to 2.76. Measured amounts of montmorillonite, kaolinite, volcanic ash, or feldspathic sand were added to provide an area of inert surface. Reactions that occurred during 100 days of aging were compared with those in similar solutions without added surfaces, studied in earlier work. Adsorption of monomeric species Al(H20)6+3, AlOH(H2O)5+2, and Al(OH)2(H2O 4? on the added surfaces follows a cation exchange mass law equilibrium model, and adsorption is essentially complete in 1 hour. Only minor changes in monomeric aluminum species occurred after that. Rapid adsorption of polynuclear aluminum hydroxide species also occurs and follows the pattern of the Langmuir adsorption isotherm. In the absence of surfaces, the polynuclear ions slowly increase in size and become microcrystalline gibbsite during aging. Electron micrographs showed microcrystalline gibbsite was present or surfaces after aging only 2 days. However, the analytical data suggest this material must have been adsorbed after it had already attained a near-crystalline state. Adsorbed polynuclear aluminum hydroxide species were not extensively converted to microcrystalline gibbsite during 100 days of aging.

  6. Phytochemistry and biological activities of Phlomis species.

    PubMed

    Limem-Ben Amor, Ilef; Boubaker, Jihed; Ben Sgaier, Mohamed; Skandrani, Ines; Bhouri, Wissem; Neffati, Aicha; Kilani, Soumaya; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2009-09-01

    The genus Phlomis L. belongs to the Lamiaceae family and encompasses 100 species native to Turkey, North Africa, Europe and Asia. It is a popular herbal tea enjoyed for its taste and aroma. Phlomis species are used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation, and wounds. This review aims to summarize recent research on the phytochemistry and pharmacological properties of the genus Phlomis, with particular emphasis on its ethnobotanical uses. The essential oil of Phomis is composed of four chemotypes dominated by monoterpenes (alpha-pinene, limonene and linalool), sesquiterpenes (germacrene D and beta-caryophyllene), aliphalic compounds (9,12,15-octadecatrienoic acid methyl ester), fatty acids (hexadecanoic acid) and other components (trans-phytol, 9,12,15-octadecatrien-1-ol). Flavonoids, iridoids and phenylethyl alcohol constitute the main compounds isolated from Phlomis extracts. The pharmacological activities of some Phlomis species have been investigated. They are described according to antidiabetic, antinociceptive, antiulcerogenic, protection of the vascular system, anti-inflammatory, antiallergic, anticancer, antimicrobial and antioxidant properties. PMID:19563875

  7. Antimicrobial activities of some Euphorbia species.

    PubMed

    Kirbag, Sevda; Erecevit, Pınar; Zengin, Fikriye; Guvenc, Ayşe Nilay

    2013-01-01

    In this study, the antimicrobial activities of methanolic extracts and latex of some Euphorbia species used for medical purposes in Turkey were investigated. The extracts of Euphorbia aleppica L., Euphorbia szovitsii Fisch.&Mey. var. harputensis Aznav. ex M. S. Khan, Euphorbia falcata L. sub. falcata var. falcata, Euphorbia denticulata Lam., Euphorbia macroclada Boiss., Euphorbia cheiradenia Boiss.&Hohen, Euphorbia virgata Waldst.&Kit., Euphorbia petiolata Banks&Sol. were prepared with methanol. The antimicrobial activities of these extracts were examined on test microorganisms as follows: Staphylococcus aureus COWAN 1, Bacillus megaterium DSM 32, Proteus vulgaris FMC 1, Klebsiella pneumonia FMC 5, Escherichia coli ATCC 25922, Pseudomonas aeruginosa DSM 50071, Candida albicans FMC 17, Candida glabrata ATCC 66032, Epidermophyton sp. and Trichophyton sp. by the disc diffusion methods and well agar method. The MIC values of extracts were determined according to the broth microdulitions method. Results indicated that extracts of Euphorbia species inhibited the growth of tested microorganisms in the different ratio. Also, the MIC values of extracts were determined as 31,2-1000 µg. PMID:24311840

  8. Artist's rendering of Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Lunar Surface Activities: Instruments erected on the surface are a seismometer to record any subsurface activity of the Moon, a laser reflector, a solar wind collector, and possibly an antenna for improving communications and television picture transmission.

  9. The Economics of Saving Endangered Species: A Teaching Activity.

    ERIC Educational Resources Information Center

    Schug, Mark C.; Shaw, Jane S.

    1997-01-01

    Argues that well-intentioned government policies, such as the Endangered Species Act, can actually cause harm to endangered species by creating disincentives to preserving the habitat for endangered species. Maintains that the use of incentives can lead to voluntary species protection. Includes instructions for an in-class teaching activity. (MJP)

  10. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces

    USGS Publications Warehouse

    Arai, Yuji; Fuller, C.C.

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.

  11. Relationship between the surface coverage of spectator species and the rate of electrocatalytic reactions.

    SciTech Connect

    Strmcnik, D. S.; Rebec, P.; Gaberscek, M.; Tripkovic, D.; Stamenkovic, V.; Lucas, C.; Markovic, N. M.; Materials Science Division; Univ. of Chicago; National Inst. of Chemistry; Univ. of Liverpool

    2007-12-20

    Relationships between the surface coverage of spectator (blocking) species and the rate of the hydrogen oxidation reaction (HOR), the oxygen reduction reaction (ORR), and the bulk oxidation of dissolved CO on Pt(100) and Pt(111) single crystals in acidic electrolytes has been probed by cyclic voltammetry, in situ surface X-ray scattering (SXS), and ex situ scanning tunneling microscopy (STM) techniques. It is shown that the surface coverage by spectator species during the HOR and the ORR are the same as for the corresponding coverage obtained in the inert (Ar-saturated) environment. This observation is consistent with the proposition that the availability of active sites for H{sub 2} and O{sub 2} is determined almost entirely by the coverage of adsorbates from the supporting electrolyte and not by the active intermediates. Related electrochemical-SXS studies undertaken for bulk CO oxidation reveal that the maximum rate above the ignition potential is reached on a surface that is covered by {approx}90% of an ordered CO adlayer. The nature of the active sites in this case is determined by a combination of electrochemical and STM results. It is found that the active sites in this potential region are steps, which appear to be active sites for OH adsorption. To get insight into the relationship between the diffusion-limiting current and the surface coverage by the inactive CO adlayer, we introduce the concept of a partially blocked electrode surface with active and inactive areas. On the basis of the calculations and experimental results, it is proposed that the active sites for given electrochemical reactions on Pt electrodes are arrays of adsorbate-free nanoscale patches embedded in an inactive adlayer of nonreactive molecular species.

  12. Antifungal activity of heartwood extracts from three Juniperus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heartwood samples from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane, ethanol and methanol and the hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi. These three species represent the ...

  13. Does Titan have an Active Surface?

    NASA Astrophysics Data System (ADS)

    Nelson, R.

    2009-12-01

    ammonia, a compound expected in Titan’s interior. This, combined with the previous evidence from VIMS and RADAR images, creates a strong case for Titan having a presently active surface, possibly due to cryovolcanism. Cassini encountered Titan at very close range on 2008-11-19-13:58 and again on 2008-12-05-12:38. These epochs are called T47 and T48. Comparison of earlier lower resolution data (T5) with the recent T47 and T48 data reveal changes of the surface reflectance and morphology in the Hotei region. This is the first evidence from VIMS that confirms the RADAR report that Hotei Reggio has morphology consistent with volcanic terrain. It has not escaped our attention that ammonia, in association with methane and nitrogen, the principal species of Titan’s atmosphere, closely replicates the environment at the time that live first emerged on earth. If Titan is currently active then these results raise the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan’s chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? This work done at JPL under contract with NASA. Refs: [1]R. M. Nelson et al., Icarus 199 (2009) 429-441. [2]R. M. Nelson et al., GRL, VOL. 36, L04202, doi:10.1029/2008GL036206, 2009. [3]S. D. Wall GRL, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009

  14. Ixodes ticks: serum species sensitivity of anticomplement activity.

    PubMed

    Lawrie, C H; Randolph, S E; Nuttall, P A

    1999-12-01

    Ixodid ticks feed for extended periods of up to 2 weeks or more. To complete engorgement, they must overcome their host's innate immune mechanisms of which the complement system is a major component. Using in vitro assays, salivary gland extracts of the ixodid ticks, Ixodes ricinus, I. hexagonus, and I. uriae, were shown to inhibit activity of the alternative pathway of complement. The ability of the different Ixodes species to inhibit complement activity varied with the animal species used as a complement serum source. Serum species sensitivity correlates to the reported host range of the tick species tested. PMID:10600446

  15. Titanium surface hydrophilicity enhances platelet activation.

    PubMed

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Titanium implant surface modification is a key strategy used to enhance osseointegration. Platelets are the first cells that interact with the implant surface whereupon they release a wide array of proteins that influence the subsequent healing process. This study therefore investigated the effect of titanium surface modification on the attachment and activation of human platelets. The surface characteristics of three titanium surfaces: smooth (SMO), micro-rough (SLA) and hydrophilic micro-rough (SLActive) and the subsequent attachment and activation of platelets following exposure to these surfaces were determined. The SLActive surface showed the presence of significant nanoscale topographical features. While attached platelets appeared to be morphologically similar, significantly fewer platelets attached to the SLActive surface compared to both the SMO and SLA surfaces. The SLActive surface however induced the release of the higher levels of chemokines β-thromboglobulin and platelet factor 4 from platelets. This study shows that titanium surface topography and chemistry have a significant effect on platelet activation and chemokine release. PMID:25311339

  16. Lactococcal 936-species phage attachment to surface of Lactococcus lactis.

    PubMed

    Geller, B L; Ngo, H T; Mooney, D T; Su, P; Dunn, N

    2005-03-01

    The interactions of the 936-species phages sk1, jj50, and 64 with the cell surface of Lactococcus lactis LM0230 were analyzed. Cell envelopes (walls + plasma membrane), cell wall, or plasma membrane from L. lactis ssp. lactis LM0230 each inactivated the phages in vitro. However, other 936-species phages kh and P008, which do not infect strain LM0230, were not inactivated by any of the subcellular fractions. Treating cell walls or plasma membrane with the cell wall hydrolase mutanolysin eliminated inactivation of phage sk1. This suggested that intact cell wall fragments were required for inactivation. A role for plasma membrane in phage sk1 inactivation was further investigated. Boiling, washing in 2 M KCl, 8 M urea, or 0.1 M Na(2)CO(3)/pH 11, or treating the plasma membrane with proteases did not reduce adsorption or inactivation of phage. Adding lipoteichoic acid or antibodies to lipoteichoic acid did not reduce inactivation of phage in a mixture with membrane, suggesting that lipoteichoic acid was not involved. Inactivation by envelopes or cell wall correlated with ejection of DNA from the phage sk1 capsid. Although calcium is required for plaque formation, it was not required for adsorption, inactivation, or ejection of phage DNA by envelopes or cell wall. The results suggest that at least for phages sk1, jj50, and 64, adsorption and phage DNA injection into the host does not require a host membrane protein or lipoteichoic acid, and that cell wall components are sufficient for these initial steps of phage infection. PMID:15738223

  17. Surface activity of Corophium volutator: A role for parasites?

    NASA Astrophysics Data System (ADS)

    Damsgaard, Jacob Tørring; Mouritsen, Kim N.; Jensen, K. Thomas

    2005-08-01

    In soft-bottom intertidal habitats, the normally infaunal amphipod Corophium volutator is often found active on the sediment surface during low tide, exposed to desiccation and shorebird predation. Here we examine whether such risky behaviour is related to parasite infections. Surface-active and buried C. volutator were collected during a low tide period in the Danish Wadden Sea, and the infection patterns of the two groups were described in relation to sex and size. Surface-active males and females were more heavily infested by microphallid trematodes (four species) than buried specimens of the same sex and size class. Although the density of surfaced amphipods decreased as a function of exposure time, the mean parasite load of those that remained on the surface increased. A narrow size-specific parasite intensity threshold above which the amphipods were always surface active did not exist: heavily infected individuals were also found buried in the substrate. Although likely to be beneficial to the parasites, this suggests that the behavioural alteration is a side-effect of the infections rather than a consequence of direct parasitic manipulation. Besides the presumed mortality associated with the parasite-related surface activity in a range of size-classes, the intensity-size frequency distribution indicated that larger and hence heavily infected hosts are removed from the population. Together it demonstrates that microphallid trematodes impact the population dynamics of C. volutator.

  18. Can Any Surface Species On Meteoritic Nanodiamonds Survive The Extraction Procedure: Simulation Study

    NASA Astrophysics Data System (ADS)

    Koscheev, A. P.; Serzhantov, A. E.; Merchel, S.; Ott, U.; Guillois, O.; Reynaud, C.

    Information on the surface chemistry of interstellar diamond nanograins found in me- teorites is important for at least two reasons: 1) Diamond surface species may be responsible for some of the IR features observed in emission spectra of some circum- stellar objects; 2) Some surface chemical features acquired during the long journey of the diamonds from the stellar source region to the laboratory may have survived and carry a signature of chemical processes in the interstellar medium. It is well known that the severe acidic treatment used to extract nanodiamonds from meteorites modi- fies some of their surface IR active chemical features. However, some relation between the surface chemistry of nanodiamonds before and after treatment (memory effect) could not be excluded. The existence of such a relation hardly can be established using meteoritic diamond grains because of their uncertain initial properties. To overcome this problem we used ultradispersed detonation diamonds (UDD) with different initial surface chemistry as analogs of meteoritic ones. Five different samples of UDD were treated by the same chemical procedure used to separate meteoritic diamonds. The surface species both before and after treatment were studied by complementary meth- ods of IR spectroscopy and thermodesorption mass spectrometry. Our results strongly indicate that, even though the chemical extraction procedure affects the surface chem- istry of UDD, some surface features can either survive partially (CHx-groups) or vary in a manner controlled by the initial state (CO-groups). If this is also true in the case of meteoritic nanodiamonds, our observations may open a way to reproduce to some extent the real surface chemistry of presolar diamonds from data on chemically sepa- rated meteoritic diamonds. The work was supported in part by Russian Foundation for Basic Research (Grant #01-05-65416), DFG and the Department of Foreign Affairs of France.

  19. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  20. Trichomes as sensors: detecting activity on the leaf surface.

    PubMed

    Tooker, John F; Peiffer, Michelle; Luthe, Dawn S; Felton, Gary W

    2010-01-01

    The dramatic movements of some carnivorous plants species are triggered by sensory structures derived from trichomes. While unusual plant species such as the Venus fly trap and sundews may be expected to have elaborate sensors to capture their insect prey, more modest plant species might not be expected to have similar sensory capabilities. Our recent work, however, has revealed that glandular trichomes on tomato (Solanum lycopersicum) appear to have a function similar to trigger hairs of carnivorous species, acting as "early warning" sensors. Using a combination of behavioral, molecular, and biochemical techniques, we determined that caterpillars, moths and mechanical disruption upregulate signaling molecules and defensive genes found in glandular trichomes. Importantly, we discovered that plants whose trichomes have been broken respond more vigorously when their defenses were induced. Taken together, our results suggest that glandular trichomes can act as sensors that detect activity on the leaf surface, and ready plants for herbivore attack. PMID:20592816

  1. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  2. Identification of the haemolytic activity of Malassezia species.

    PubMed

    Juntachai, Weerapong; Kummasook, Aksarakorn; Mekaprateep, Malee; Kajiwara, Susumu

    2014-03-01

    Malassezia species are part of the normal skin flora and are associated with a number of human and animal skin diseases. However, the mechanisms that mediate infection and host-fungal interactions are poorly understood. The haemolytic activity of several microorganisms is considered a factor that contributes to pathogenicity of the organism to humans and animals. This virulence factor was previously identified in several pathogenic fungi that cause systemic mycoses, such as Aspergillus and Candida. In this study, the haemolytic activity of six major Malassezia species, including M. furfur, M. globosa, M. pachydermatis, M. restricta, M. slooffiae and M. sympodialis, was investigated. The haemolytic activity of these species was tested on tryptone soya agar with 5% sheep blood. All the examined Malassezia species produced a halo zone of complete haemolysis. A quantitative analysis of the haemolytic activity was performed by incubating sheep erythrocytes with the extraction from culture of each Malassezia species. Interestingly, M. globosa and M. restricta showed significantly high haemolytic activity compared with the other Malassezia species. In addition, M. globosa also exhibited stable haemolytic activity after treatment at 100 °C and in the presence of some proteases, indicating that this haemolytic factor is different from those of other fungi. PMID:24028702

  3. Volatile species in halide-activated-diffusion coating packs

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Jacobson, Nathan S.

    1992-01-01

    An atmospheric pressure sampling mass spectrometer was used to identify the vapor species generated in a halide-activated cementation pack. Pack powder mixtures containing a Cr-Al binary masteralloy powder, an NH4Cl activator salt, and either ZrO2 or Y2O3 (or neither) were analyzed at 1000 C. Both the equilibrium calculations for the pack and mass spectrometer results indicated that volatile AlCl(x) and CrCl(y) species were generated by the pack powder mixture; in packs containing the reactive element oxide, volatile ZrCl(z) and YCl(w) species were formed by the conversion of their oxide sources.

  4. Adjoint active surfaces for localization and imaging.

    PubMed

    Cook, Daniel A; Mueller, Martin Fritz; Fedele, Francesco; Yezzi, Anthony J

    2015-01-01

    This paper addresses the problem of localizing and segmenting regions embedded within a surrounding medium by characterizing their boundaries, as opposed to imaging the entirety of the volume. Active surfaces are used to directly reconstruct the shape of the region of interest. We describe the procedure for finding the optimal surface, which is computed iteratively via gradient descent that exploits the sensitivity of an error minimization functional to changes of the active surface. In doing so, we introduce the adjoint model to compute the sensitivity, and in this respect, the method shares common ground with several other disciplines, such as optimal control. Finally, we illustrate the proposed active surface technique in the framework of wave propagation governed by the scalar Helmholtz equation. Potential applications include electromagnetics, acoustics, geophysics, nondestructive testing, and medical imaging. PMID:25438311

  5. ECOLOGICAL RESPONSE SURFACES FOR NORTH AMERICAN BOREAL TREE SPECIES AND THEIR USE IN FOREST CLASSIFICATION

    EPA Science Inventory

    Empirical ecological response surfaces were derived for eight dominant tree species in the boreal forest region of Canada. tepwise logistic regression was used to model species dominance as a response to five climatic predictor variables. he predictor variables (annual snowfall, ...

  6. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  7. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  8. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  9. Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species.

    PubMed

    Roncal, Julissa; Guyot, Romain; Hamon, Perla; Crouzillat, Dominique; Rigoreau, Michel; Konan, Olivier N'Guessan; Rakotomalala, Jean-Jacques; Nowak, Michael D; Davis, Aaron P; de Kochko, Alexandre

    2016-02-01

    The completion of the genome assembly for the economically important coffee plant Coffea canephora (Rubiaceae) has allowed the use of bioinformatic tools to identify and characterize a diverse array of transposable elements (TEs), which can be used in evolutionary studies of the genus. An overview of the copy number and location within the C. canephora genome of four TEs is presented. These are tested for their use as molecular markers to unravel the evolutionary history of the Millotii Complex, a group of six wild coffee (Coffea) species native to Madagascar. Two TEs from the Gypsy superfamily successfully recovered some species boundaries and geographic structure among samples, whereas a TE from the Copia superfamily did not. Notably, species occurring in evergreen moist forests of eastern and southeastern Madagascar were divergent with respect to species in other habitats and regions. Our results suggest that the peak of transpositional activity of the Gypsy and Copia TEs occurred, respectively, before and after the speciation events of the tested Madagascan species. We conclude that the utilization of active TEs has considerable potential to unravel the evolutionary history and delimitation of closely related Coffea species. However, the selection of TE needs to be experimentally tested, since each element has its own evolutionary history. Different TEs with similar copy number in a given species can render different dendrograms; thus copy number is not a good selection criterion to attain phylogenetic resolution. PMID:26231981

  10. [Nocturnal flight activities of Culicoides (Diptera: Ceratopogonidae) species in Konya].

    PubMed

    Dik, Bilal; Ergül, Recep

    2006-01-01

    This study was carried out in order to determine the nocturnal flight activities of Culicoides species during July, 1997 in Konya. Light traps were used for the collection of Culicoides specimens. They were placed in or nearby pens of poultry, sheep and cattle between the hours 20:00-22:00, 22:00-24:00, 24:00-02:00, 02:00-04:00, 04:00-06:00, and 06:00-08:00. A total of 4084 specimens were caught. Twelve species (C. puncticollis, C. maritimus, C. circumscriptus, C. punctatus, C. newsteadi, C. flavipulicaris, C. obsoletus, C. pulicaris, C. simulator, C. gejgelensis, C. salinarius, and C. vexans) were identified. C. puncticollis, C. maritimus, C. circumscriptus and C. punctatus were the most abundant species. It was found that the Culicoides species fly at night and their numbers decrease in the morning. The different species were observed to have different flight activities. A maximum number of C. puncticollis was captured in between the hours 20:00-22:00. A relatively high number of C. maritimus were caught between the hours of 20.00-22.00. Flight activity of this species peaked between the hours 22:00-24:00. The maximum number of C. circumscriptus was captured between the hours of 22:00-24:00 and 24:00-02:00. Flight activity of C. punctatus increased regularly from the hours of 20:00-22:00 until 02:00-04:00. PMID:17160855

  11. Boltzmann active walkers and rough surfaces

    NASA Astrophysics Data System (ADS)

    Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.

    1993-06-01

    An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.

  12. Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.

  13. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  14. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  15. Comparison of Cas9 activators in multiple species.

    PubMed

    Chavez, Alejandro; Tuttle, Marcelle; Pruitt, Benjamin W; Ewen-Campen, Ben; Chari, Raj; Ter-Ovanesyan, Dmitry; Haque, Sabina J; Cecchi, Ryan J; Kowal, Emma J K; Buchthal, Joanna; Housden, Benjamin E; Perrimon, Norbert; Collins, James J; Church, George

    2016-07-01

    Several programmable transcription factors exist based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems, and we assess the role of cooperativity in maximizing gene expression. PMID:27214048

  16. Preparation of active HDS catalysts by controlling the dispersion of active species

    NASA Astrophysics Data System (ADS)

    Inamura, Kazuhiro; Uchikawa, Kei; Matsuda, Satoshi; Akai, Yoshio

    1997-11-01

    It is demonstrated that the structural control of the metal ion precursors in the impregnating solution by adding the chelating agents is effective to prepare the higher active CoMo supported on alumina catalysts ( Co-Mo/Al 2O 3) for hydrodesulfurization (HDS). Coordination structures of the Co and Mo complexes in the CoMo impregnating solution and distributions of the Co and Mo complexes were evaluated by spectroscopic characterization techniques and by using a computational calculation, respectively. An addition of a chelating agent, such as NTA (nitrilotriacetic acid) and Glu (L-glutamic acid), in the CoMo solution results in the selective formation of the Co complexes, while the amount of the Mo complex is negligibly small at the practical pH of 9.2. The addition of the chelating agent increases the thiophene HDS activity of the sulfided catalysts typically by 50%, compared with that prepared without the chelating agent. Dispersion results of Co and Mo species on both oxidic and sulfided catalysts indicate that the higher HDS activity is explained by the higher degree of surface exposure of Co sites (namely the dispersion of Co) rather than that of Mo sites. The selective formation of the Co-chelate complexes keeps Co ions stable in solution up to high concentration. Furthermore, the Co complexes are estimated to be stable on the support even in the initial step of calcination, which would depress the formation of crystalline Co compounds, such as CoAl 2O 4 and CoMoO 4. These effects result in the higher dispersion of the active Co surface species.

  17. MIXED-SPECIES COLONIZATION OF SOLID SURFACES IN LABORATORY BIOFILMS

    EPA Science Inventory

    Colonization of glass substrata by populations of three or four bacterial species over periods of four weeks or more was investigated using recirculating, model laboratory systems. umbers of coryneform, Aeromonas hydrophile, Pseudomonas fluoresces, and Xanthomonas maltophilia on ...

  18. Green Bank Telescope active surface system

    NASA Astrophysics Data System (ADS)

    Lacasse, Richard J.

    1998-05-01

    During the design phase of the Green Bank Telescope (GBT), various means of providing an accurate surface on a large aperture paraboloid, were considered. Automated jacks supporting the primary reflector were selected as the appropriate technology since they promised greater performance and potentially lower costs than a homologous or carbon fiber design, and had certain advantages over an active secondary. The design of the active surface has presented many challenges. Since the actuators are mounted on a tipping structure, it was required that they support a significant side-load. Such devices were not readily available commercially so they had to be developed. Additional actuator requirements include low backlash, repeatable positioning, and an operational life of at least 230 years. Similarly, no control system capable of controlling the 2209 actuators was commercially available. Again a prime requirement was reliability. Maintaining was also a very important consideration. The system architecture is tree-like. An active surface 'master-computer' controls interaction with the telescope control system, and controls ancillary equipment such as power supplies and temperature monitors. Two slave computers interface with the master- computer, and each closes approximately 1100 position loops. For simplicity, the servo is an 'on/off' type, yet achieves a positioning resolution of 25 microns. Each slave computer interfaces with 4 VME I/O cards, which in turn communicate with 140 control modules. The control modules read out the positions of the actuators every 0.1 sec and control the actuators' DC motors. Initial control of the active surface will be based on an elevation dependant structural model. Later, the model will be improved by holographic observations.Surface accuracy will be improved further by using laser ranging system which will actively measure the surface figure. Several tests have been conducted to assure that the system will perform as desired when

  19. Analysis of Genomic DNAs from Nine Rosaceae Species Using Surface-Enhanced Raman Scattering.

    PubMed

    Lu, Qiu; Lang, Tao; Fan, Shuguo; Chen, Wen; Zang, Deqing; Chen, Jing; Shi, Minzhen

    2015-12-01

    Surface-enhanced Raman scattering (SERS) of genomic DNA was used to determine genetic relationships and species identification of nine plants from three subfamilies of Rosaceae. Genomic DNA was extracted, and the SERS spectra were obtained by using a nanosilver collosol at an excitation wavelength of 785 nm. Adenine and ribodesose were the active sites of genomic DNAs in the silver surface-enhanced Raman spectra. The strong peak at 714 cm(-1) was assigned to the stretching vibration of adenine, the strong peak at 1011cm(-1) contributed to the stretching vibration of the deoxyribose and the scissoring vibrations of cytosine, and the strong peak at 625 cm(-1) is the stretching vibration of glycosidic bond and the scissoring vibrations of guanine. The three-dimensional plot of the first, second, and third principal components showed that the nine species could be classified into three categories (three subfamilies), consistent with the traditional classification. The model of the hierarchical cluster combined with the principal component of the second derivative was more reasonable. The results of the cluster analysis showed that apricot (Prunus armeniaca L.) and cherry (Prunus seudocerasus Lindl.) were clustered into one category (Prunoideae); firethorn (Firethorn fortuneana Li.), loquat (Eriobotrya japonica Lindl.), apple (Malus pumila Mill.), and crabapple (Malus hallianna Koehne.) were clustered into a second category (Pomoideae); and potentilla (Potentilla fulgens Wall.), rose (Rosa chinensis Jacd.), and strawberry (Fragaria chiloensis Duchesne.) were clustered into a third category (Rosoideae). These classifications were in accordance with the traditional classification with a correction rate of clustering of 100%. The correct rate of species identification was 100%. These five main results indicate that the genetic relationship and species identification of nine Rosaceae species could be determined by using SERS spectra of their genomic DNAs. PMID:26555541

  20. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.

    PubMed

    Widmann, D; Behm, R J

    2014-03-18

    Although highly dispersed Au catalysts with Au nanoparticles (NPs) of a few nanometers in diameter are well-known for their high catalytic activity for several oxidation and reduction reactions already at rather low temperatures for almost 30 years, central aspects of the reaction mechanism are still unresolved. While most studies focused on the active site, the active Au species, and the effect of the support material, the most crucial step during oxidation reactions, the activation of molecular oxygen and the nature of the resulting active oxygen species (Oact), received more attention just recently. This is topic of this Account, which focuses on the formation, location, and nature of the Oact species present on metal oxide supported Au catalysts under typical reaction conditions, at room temperature and above. It is mainly based on quantitative temporal analysis of products (TAP) reactor measurements, which different from most spectroscopic techniques are able to detect and quantify these species even at the extremely low concentrations present under realistic reaction conditions. Different types of pulse experiments were performed, during which the highly dispersed, realistic powder catalysts are exposed to very low amounts of reactants, CO and/or O2, in order to form and reactively remove Oact species and gain information on their formation, nature, and the active site for Oact formation. Our investigations have shown that the active oxygen species for CO oxidation on Au/TiO2 for reaction at 80 °C and higher is a highly stable atomic species, which at 80 °C is formed only at the perimeter of the Au-oxide interface and whose reactive removal by CO is activated, but not its formation. From these findings, it is concluded that surface lattice oxygen represents the Oact species for the CO oxidation. Accordingly, the CO oxidation proceeds via a Au-assisted Mars-van Krevelen mechanism, during which surface lattice oxygen close to the Au NPs is removed by reaction

  1. Active hydrogen species on TiO2 for photocatalytic H2 production.

    PubMed

    Wu, Zongfang; Zhang, Wenhua; Xiong, Feng; Yuan, Qing; Jin, Yuekang; Yang, Jinlong; Huang, Weixin

    2014-04-21

    Photocatalytic H2 production over TiO2 has attracted tremendous attention and achieved great progress, but the active hydrogen species is still unknown. Employing a rutile TiO2(110) surface as a model catalyst we report here for the first time the direct observation of photocatalytic H2 production under ultrahigh vacuum conditions during UV-light irradiation at 115 K and the identification of negatively-charged hydride-type H-Ti species as the corresponding photoactive surface species by means of thermal desorption spectroscopy, photon-stimulated desorption spectroscopy, X-ray photoelectron spectroscopy and DFT calculations. The formation and stability of H-Ti species are closely related to available surplus electrons on the rutile TiO2(110) surface that can be created by the formation of surface BBO vacancies or by the formation of surface hydroxyls via the adsorption of atomic H or molecular H2 on O sites. The photocatalytic H2 production from H-Ti species is hole-mediated and co-existing water exerts a negative effect on this process. PMID:24614827

  2. The functionalization of metallic and semiconductor surfaces with organic and inorganic species

    NASA Astrophysics Data System (ADS)

    Schmeltzer, Jason M.

    The discipline of surface chemistry has rapidly expanded within recent years, attaining richness and diversity not unlike the more traditional divisions of organic, inorganic, physical, and biological chemistries. The boundless human drive to better understand the natural order as well as to better improve the existence of mankind has not ignored the physical, material, and chemical activities of interfaces, but rather the opposite. As computers shrink to ever-smaller sizes while growing in complexity---as devices and machines diminish to near-inconceivable dimensions---as the agents of technology miniaturize to comply with the endless demands of more-for-less---the chemistry of surfaces will continue to fulfill a crucial part in the advancement of new industries. This thesis details work into three realms of surface chemistry. Chapter One introduces porous silicon and presents a background of this unique, nanocrystalline substance. Described particularly is a new surface reaction to functionalize this material with organic groups; named carbocation-mediated hydrosilylation, this chemical treatment yields substrates derivatized with silicon-carbon bonds, the optimal surface group for imparting stability and functionality to the easily corroded, chemically limited material. Chapter Two discusses the electroless deposition of noble metal particles upon a number of metal and semiconductor surfaces. These reactions require neither external reducing agents nor electrical current to accomplish the formation of metal films, exciting and essential not merely from the fundamental perspectives of surface researches, but also from the aspects of fabricating micro- and nanoscale devices via controlled and patterned metallization reactions. Chapter Three returns to porous silicon and discusses attempts to covalently functionalize the material surface with thiolate-encapsulated gold nanoparticles; such surface-bound species may be useful for sensing, composite materials, and a

  3. Nanovalve Activation by Surface-Attached Photoacids

    PubMed Central

    Guardado-Alvarez, T. M.; Russell, M. M.

    2015-01-01

    Proton transfer caused by excitation of a photoacid attached to the surface of a mesoporous silica nanoparticle activates a nanovalve and causes release of trapped molecules. The protonation of an aniline- based stalk releases a noncovalently bound cyclodextrin molecule that blocked a pore. The results show that pH-responsive molecular delivery systems can be externally controlled using light. PMID:24942753

  4. Bactericidal activity of biomimetic diamond nanocone surfaces.

    PubMed

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-01

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections. PMID:26992656

  5. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  6. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  7. A new species of Capnobotryella from monument surfaces.

    PubMed

    Sert, Hacer Bakir; Sümbül, Hüseyin; Sterflinger, Katja

    2007-10-01

    Capnobotryella is a monotypic genus of melanized fungi based on C. renispora. The purpose of this investigation was to use morphological and molecular genetic techniques to characterize strains of newly discovered species isolated in Turkey on historical marble monuments. PMID:17997298

  8. DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces

    NASA Astrophysics Data System (ADS)

    Han, Yonghua; Liu, Wenli; Chen, Jianhua

    2016-05-01

    The adsorption of Si(OH)4 molecules and the SiO(OH)3- anion on kaolinite surfaces was studied using density functional theory (DFT) calculations to investigate the dispersion mechanism of sodium silicate on kaolinite particles. The calculated results demonstrate that Si(OH)4 and SiO(OH)3- primarily adsorb on kaolinite Al-terminated (0 0 1) surfaces. Both Si(OH)4 and SiO(OH)3- bond with the Al-terminated surface by hybridization of the O2p orbital and H1s orbital. The unbonded O atom of SiO(OH)3- is notably active. The SiO(OH)3- anion can add more electrons and form a stronger electrostatic interaction with the Al surface. The adsorption of SiO(OH)3- is more stable than the adsorption of Si(OH)4. After adsorption of sodium silicate, the surfaces of kaolinite can become more hydrophilic and carry more negative charge. Therefore, the adsorption of silicate species makes the fine particles of kaolinite disperse in aqueous solution more easily.

  9. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    PubMed Central

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  10. Metabolomic profiling and antioxidant activity of some Acacia species

    PubMed Central

    Abdel-Farid, I.B.; Sheded, M.G.; Mohamed, E.A.

    2014-01-01

    Metabolomic profiling of different parts (leaves, flowers and pods) of Acacia species (Acacia nilotica, Acacia seyal and Acacia laeta) was evaluated. The multivariate data analyses such as principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were used to differentiate the distribution of plant metabolites among different species or different organs of the same species. A.nilotica was characterized with a high content of saponins and A.seyal was characterized with high contents of proteins, phenolics, flavonoids and anthocyanins. A.laeta had a higher content of carbohydrates than A. nilotica and A. seyal. On the basis of these results, total antioxidant capacity, DPPH free radical scavenging activity and reducing power of the methanolic extracts of studied parts were evaluated. A.nilotica and A.seyal extracts showed less inhibitory concentration 50 (IC50) compared to A.laeta extracts which means that these two species have the strongest radical scavenging activity whereas A. laeta extracts have the lowest radical scavenging activity. A positive correlation between saponins and flavonoids with total antioxidant capacity and DPPH radical scavenging activity was observed. Based on these results, the potentiality of these plants as antioxidants was discussed. PMID:25313274

  11. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  12. Acoustic physics of surface-attached biochemical species

    PubMed Central

    Ellis, Jonathan S.; Thompson, Michael

    2008-01-01

    In this Commentary, we discuss the paper Quantitative Determination of Size and Shape of Surface-Bound DNA Using an Acoustic Wave Sensor [Tsortos et al., Biophys. J. 94(7), 2706–2715 (2008)]. The paper under discussion presents a novel theory that uses the response of a Shear-Horizontal Surface Acoustic Wave device to characterize surface-attached double- and triple-strand DNA. The authors relate the length and curvature of the DNA strands to the interfacial viscosity using classical polymer theory. In this Commentary, we discuss their results in the broader context of acoustic wave detection of biochemical interactions and some of the factors involved when probing “soft” surfaces. Specifically, we present a review of interfacial coupling and slip, and discuss how these phenomena can affect biosensors employing acoustic wave detection techniques. PMID:19404427

  13. Acoustic physics of surface-attached biochemical species.

    PubMed

    Ellis, Jonathan S; Thompson, Michael

    2008-08-01

    In this Commentary, we discuss the paper Quantitative Determination of Size and Shape of Surface-Bound DNA Using an Acoustic Wave Sensor [Tsortos et al., Biophys. J. 94(7), 2706-2715 (2008)]. The paper under discussion presents a novel theory that uses the response of a Shear-Horizontal Surface Acoustic Wave device to characterize surface-attached double- and triple-strand DNA. The authors relate the length and curvature of the DNA strands to the interfacial viscosity using classical polymer theory. In this Commentary, we discuss their results in the broader context of acoustic wave detection of biochemical interactions and some of the factors involved when probing "soft" surfaces. Specifically, we present a review of interfacial coupling and slip, and discuss how these phenomena can affect biosensors employing acoustic wave detection techniques. PMID:19404427

  14. Reverse Water-Gas Shift or Sabatier Methanation on Ni(110)? Stable Surface Species at Near-Ambient Pressure.

    PubMed

    Roiaz, Matteo; Monachino, Enrico; Dri, Carlo; Greiner, Mark; Knop-Gericke, Axel; Schlögl, Robert; Comelli, Giovanni; Vesselli, Erik

    2016-03-30

    The interaction of CO, CO2, CO + H2, CO2 + H2, and CO + CO2 + H2 with the nickel (110) single crystal termination has been investigated at 10(-1) mbar in situ as a function of the surface temperature in the 300-525 K range by means of infrared-visible sum frequency generation (IR-vis SFG) vibrational spectroscopy and by near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). Several stable surface species have been observed and identified. Besides atomic carbon and precursors for graphenic C phases, five nonequivalent CO species have been distinguished, evidencing the role of coadsorption effects with H and C atoms, of H-induced activation of CO, and of surface reconstruction. At low temperature, carbonate species produced by the interaction of CO2 with atomic oxygen, which stems from the dissociation of CO2 into CO + O, are found on the surface. A metastable activated CO2(-) species is also detected, being at the same time a precursor state toward dissociation into CO and O in the reverse water-gas shift mechanism and a reactive species that undergoes direct conversion in the Sabatier methanation process. Finally, the stability of ethylidyne is deduced on the basis of our spectroscopic observations. PMID:26954458

  15. What are the active carbon species during graphene chemical vapor deposition growth?

    NASA Astrophysics Data System (ADS)

    Shu, Haibo; Tao, Xiao-Ming; Ding, Feng

    2015-01-01

    The dissociation of carbon feedstock is a crucial step for understanding the mechanism of graphene chemical vapor deposition (CVD) growth. Using first-principles calculations, we performed a comprehensive theoretical study for the population of various active carbon species, including carbon monomers and various radicals, CHi (i = 1, 2, 3, 4), on four representative transition-metal surfaces, Cu(111), Ni(111), Ir(111) and Rh(111), under different experimental conditions. On the Cu surface, which is less active, the population of CH and C monomers at the subsurface is found to be very high and thus they are the most important precursors for graphene CVD growth. On the Ni surface, which is more active than Cu, C monomers at the subsurface dominate graphene CVD growth under most experimental conditions. In contrast, on the active Ir and Rh surfaces, C monomers on the surfaces are found to be very stable and thus are the main precursors for graphene growth. This study shows that the mechanism of graphene CVD growth depends on the activity of catalyst surfaces and the detailed graphene growth process at the atomic level can be controlled by varying the temperature or partial pressure of hydrogen.The dissociation of carbon feedstock is a crucial step for understanding the mechanism of graphene chemical vapor deposition (CVD) growth. Using first-principles calculations, we performed a comprehensive theoretical study for the population of various active carbon species, including carbon monomers and various radicals, CHi (i = 1, 2, 3, 4), on four representative transition-metal surfaces, Cu(111), Ni(111), Ir(111) and Rh(111), under different experimental conditions. On the Cu surface, which is less active, the population of CH and C monomers at the subsurface is found to be very high and thus they are the most important precursors for graphene CVD growth. On the Ni surface, which is more active than Cu, C monomers at the subsurface dominate graphene CVD growth under most

  16. Distinguishing Candida Species by β-N-Acetylhexosaminidase Activity

    PubMed Central

    Niimi, Kyoko; Shepherd, Maxwell G.; Cannon, Richard D.

    2001-01-01

    A variety of fungi produce the hydrolytic enzyme β-N-acetylhexosaminidase (HexNAcase), which can be readily detected in assays by using p-nitrophenyl-N-acetyl-β-d-glucosaminide as a substrate. In the present study we developed a microtiter plate-based HexNAcase assay for distinguishing Candida albicans and Candida dubliniensis strains from other yeast species. HexNAcase activity was detected in 89 of 92 (97%) C. albicans strains and 4 of 4 C. dubliniensis strains but not in 28 strains of eight other Candida species, 4 Saccharomyces cerevisiae strains, or 2 Cryptococcus neoformans strains. The HexNAcase activity in C. albicans and C. dubliniensis was strain specific. All except three clinical C. albicans isolates among the C. albicans strains tested produced enzyme activity within 24 h. These strains did produce enzyme activity, however, after a prolonged incubation period. For two of these atypical strains, genomic DNA at the C. albicans HEX1 gene locus, which encodes HexNAcase, showed nucleotide differences from the sequence of control strains. Among the other Candida species tested, only C. dubliniensis had a DNA sequence that hybridized with the HEX1 probe under low-stringency conditions. The microtiter plate-based assay used in the present study for the detection of HexNAcase activity is a simple, relatively inexpensive method useful for the presumptive identification of C. albicans and C. dubliniensis. PMID:11376040

  17. Asphaltenes as a surface active agent

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.; Storm, D.A.

    1995-12-31

    Asphaltene represents the heavy-end materials of the crude oil, conventionally defined via solvent solubility (either heptane or pentane). Chemically, it consists of polynuclear aromatics with the H/C ratio close to unity. Additionally, it contains a great deal of heteroatoms, such as sulfur, nitrogen, nickel, vanadium, etc. Several experiments have revealed the surface activity of asphaltenes in some selected solvents through measurements of their rheology or critical micelle concentrations in these solvents. The asphaltene micelles were found thermodynamically reversible. In a two phase asphaltene/water system, asphaltenes appear to vary their surface activities depending upon the polarity of the aqueous phase. Our recent experiment further showed that asphaltene/water/toluene may form, water-in-oil emulsion under certain conditions.

  18. Surface Water Storage Capacity of Twenty Tree Species in Davis, California.

    PubMed

    Xiao, Qingfu; McPherson, E Gregory

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage capacity is known to vary widely among tree species, but it is little studied. This research measured surface storage capacities of 20 urban tree species in a rainfall simulator. The measurement system included a rainfall simulator, digital balance, digital camera, and computer. Eight samples were randomly collected from each tree species. Twelve rainfall intensities (3.5-139.5 mm h) were simulated. Leaf-on and leaf-off simulations were conducted for deciduous species. Stem and foliar surface areas were estimated using an image analysis method. Results indicated that surface storage capacities varied threefold among tree species, 0.59 mm for crape myrtle ( L.) and 1.81 mm for blue spruce ( Engelm.). The mean value across all species was 0.86 mm (0.11 mm SD). To illustrate application of the storage values, interception was simulated and compared across species for a 40-yr period with different rainfall intensities and durations. By quantifying the potential for different tree species to intercept rainfall under a variety of meteorological conditions, this study provides new knowledge that is fundamental to validating the cost-effectiveness of urban forestry as a green infrastructure strategy and designing functional plantings. PMID:26828174

  19. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim; Mahmoudi, Seyed Reza; Abu-Dheir, Numan; Varanasi, Kripa

    2014-11-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  20. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Mahmoudi, Seyed Reza; Abu-dheir, Numan; Varanasi, Kripa K.

    2014-07-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  1. Quality assessment and antiplasmodial activity of West African Cochlospermum species.

    PubMed

    Lamien-Meda, Aline; Kiendrebeogo, Martin; Compaoré, Moussa; Meda, Roland N T; Bacher, Markus; Koenig, Karin; Pacher, Thomas; Fuehrer, Hans-Peter; Noedl, Harald; Willcox, Merlin; Novak, Johannes

    2015-11-01

    The present study focuses on development of phytochemical methods for quality assessment of two West-African Cochlospermum species (Cochlospermum planchonii and Cochlospermum tinctorium) traditionally used for malaria treatment in Burkina Faso. Antimalarial activity of preparations from dried rhizomes (decoction) was tested against the chloroquine-sensitive Plasmodium strain 3D7 using the histidine-rich protein II (HRP2) drug susceptibility assay and compared with extract preparations using organic solvents of different polarity. Two main apocarotenoids were isolated from rhizomes of C. planchonii and unambiguously identified as dihydrocochloxanthine and cochloxanthine by spectroscopic methods. Comparative HPLC analyses of thirty-nine (39) samples from markets and from collections in natural habitats of both species showed a high variability in the accumulation of cochloxanthines and related carotenoids which were proven to be characteristic for rhizomes of both species and generally absent in leaves. Furthermore, content of total phenolics and antioxidant activities (DPPH and FRAP) as well as haemolytic activity of various extracts was tested. The HPLC method presented here was validated and provides a good separation of both compounds including 10 minor carotenoids. Extracts from both species and pure cochloxanthine offered pronounced antioxidant activities and weak haemolytic activity while, in contrast, dihydrocochloxanthine had a strong haemolytic effect at the highest concentration analysed. However, cochloxanthine as well as dihydrocochloxanthine showed erythroprotective effects against the haemolytic activity of the reference saponin. Moderate antiplasmodial activity between 16 and 63 μg/ml were observed with all tested extracts, and lower IC50 values were obtained with pure dihydrocochloxanthine (IC50=6.9 μg/ml), cochloxanthine (IC50=6.8 μg/ml), the DCM fraction (IC50=2.4 μg/ml) and the ethyl acetate fraction (IC50=11.5μg/ml) derived from a methanolic

  2. Do surface active parenteral formulations cause inflammation?

    PubMed

    Söderberg, Lars; Engblom, Johan; Lanbeck, Peter; Wahlgren, Marie

    2015-04-30

    Local irritation and inflammation at the site of administration are a common side effect following administration of parenteral formulations. Biological effects of surface (interfacial) activity in solutions are less well investigated than effects caused by other physico-chemical parameters such as pH and osmolality. The interfacial activity in different systems, including human plasma, typical amphiphilic substances with fundamental biological relevance such as free fatty acids, anesthetic depot formulations and six different antibiotics was measured. The relative interfacial pressure, and/or concentration of active substance, required to obtain 50% of the maximal attainable effect in terms of interfacial pressure were calculated. The aim was to test the hypothesis that these parameters would allow comparison to biological effects reported in in vivo studies on the investigated substances. The highest interfacial activity was found in a triglyceride/plasma system. Among the antibiotic tested, the highest interfacial activities were found in erythromycin and dicloxacillin, which is in accordance with previous clinical findings of a high tendency of infusion phlebitis and cell toxicity. Independently of investigated system, biological effects were minimal below a 15% relative increase of interfacial activity. Above 35-45% the effects were severe. Interfacial activity in parenteral formulations may well cause damages to tissues followed by inflammation. PMID:25708007

  3. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  4. Identification of Active Radical Species in Alkaline Persulfate Oxidation.

    PubMed

    Liang, Chenju; Lei, Jung-Hsuan

    2015-07-01

    A proposed mechanism for alkaline activation of persulfate involves generation of sulfate (SO(4)(-)), hydroxyl (HO·), and superoxide radicals (O(2)(-)). The present study investigated the feasibility of chloroform (CF) degradation using alkaline activated persulfate and identified the active radical species using a radical inhibition technique. 2-propanol (PrOH) (preferentially reacted with HO·), phenol (preferentially reacted with both HO· and SO(4)(-)), and carbon tetrachloride (CT) (preferentially reacted with O(2)(-)) were used to inhibit the degradation of CF, and the extent of inhibited degradation was used to indicate the predominant radical species. Additions of PrOH and phenol appeared to significantly scavenge SO(4)(-) and HO· and resulted in inhibited CF degradation. Here, the authors demonstrated that SO(4)(-) and HO· were predominant radicals in the alkaline activated persulfate system. The presence of O(2)(-) scavengers (i.e., CT) resulted in a partial inhibition of CF degradation and, hence, one can speculate that O(2)(-) is a minor radical species. PMID:26163502

  5. Effect of reactive species on surface crosslinking of plasma-treated polymers investigated by surface force microscopy

    SciTech Connect

    Tajima, S.; Komvopoulos, K.

    2006-09-18

    Polymer surface modification by ions, uncharged particles, and photons of inductively coupled Ar plasma was investigated with a surface force microscope. Optical windows consisting of crystals with different cutoff wavelengths and a metal shield were used to deconvolute the effects of the various plasma species on the modification of the surface nanomechanical properties of polyethylene. The extent of surface crosslinking was related to the frictional energy dissipated during nanoscratching. It is shown that surface crosslinking is primarily due to the simultaneous effects of uncharged particles and vacuum ultraviolet photons, while the ion bombardment effect is secondary.

  6. Vibrating surface actuators for active flow control

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Clingman, Dan J.

    2002-07-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits from active flow control (AFC). AFC seeks to control large scale flows by exploiting natural response triggered by small energy inputs. The principal target application is download alleviation of the V-22 Osprey under the DARPA sponsored Boeing Active Flow Control System program. One method of injecting energy into the flow over the V22 wings is to use an active vibrating surface on the passive seal between the wing and flapperon. The active surface is an oscillating cantilevered beam which injects fluid into the flow, similar to a synthetic jet, and interacts with the flow field. Two types of actuators, or flipperons, are explored. The first is a multilayer piezoelectric polyvinylidene fluoride cantilevered bender. The second is a single crystal piezoelectric (SCP)d31 poled wafer mounted on a cantilevered spring steel substrate. This paper details the development effort including fabrication, mechanical and electrical testing, and modeling for both types of actuators. Both flipperons were mounted on the passive seal between a 1/10th scale V22 wing and flapperon and the aerodynamic performance evaluated in low speed wind tunnel. The SCP flipperon demonstrated significant cruise benefits, with increase of 10 percent lift and 20 percent angle of attack capability. The PVDF flipperon provided a 16 percent drag reduction in the hover mode.

  7. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species

    PubMed Central

    Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Aleixo, José Antonio G.

    2016-01-01

    Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus. PMID:27489951

  8. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species.

    PubMed

    Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Bhunia, Arun K; Aleixo, José Antonio G

    2016-01-01

    Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus. PMID:27489951

  9. Microstructure and surface properties of lignocellulosic-based activated carbons

    NASA Astrophysics Data System (ADS)

    González-García, P.; Centeno, T. A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L. C.

    2013-01-01

    Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp2 content ≈ 95% and average mass density of 1.65 g/cm3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m2/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm2) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  10. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  11. Hemolytic activity of dermatophytes species isolated from clinical specimens.

    PubMed

    Aktas, E; Yıgıt, N

    2015-03-01

    Hemolytic activity was recently reported for several pathogenic fungal species, such as Aspergillus, Candida, Trichophyton, Penicillium and Fusarium. Based on a number of mechanistic and characterization studies, several fungal hemolysins have been proposed as virulence factors. Hemolysins lyse red blood cells resulting in the release of iron, an important growth factor for microbes especially during infection. The requirement of iron in fungal growth is necessary for metabolic processes and as a catalyst for various biochemical processes. Expression of a hemolytic protein with capabilities to lyse red blood cells has also been suggested to provide a survival strategy for fungi during opportunistic infections. The aims of this study were to investigate the hemolytic activities of dermatophytes species isolated from patients with dermatophytosis. Hair, skin and nail samples of patients were examined with direct microscopy using potassium hydroxide and cultivated on Mycobiotic agar and Sabouraud's dextrose agar. To determine hemolytic activities of dermatophytes species, they were subcultured on Columbia Agar with 5% sheep blood and incubated for 7-14 days at 25°C in aerobic conditions. Media which displayed hemolysis were further incubated for 1-5 days at 37°C to increase hemolytic activity. In this study, 66 dermatophytes strains were isolated from clinical specimens and were identified by six different species: 43 (65.1%) Trichophyton rubrum, 7 (10.7%) Trichophyton mentagrophytes, 5 (7.6%) Microsporum canis, 5 (7.6%) Trichophyton tonsurans, 4 (6.0%) Epidermophyton floccosum and 2 (3.0%) Trichophyton violaceum. Twenty-one T. rubrum strains showed incomplete (alpha) hemolysis and nine T. rubrum strains showed complete (beta) hemolysis, whereas hemolysis was absent in 13 T. rubrum strains. Four T. mentagrophytes strains showed complete hemolysis and three T. tonsurans strains showed incomplete hemolysis. However, M. canis, E. floccosum and T. violaceum species had

  12. Motility of active fluid drops on surfaces

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Diana; Alexander, Gareth P.

    2015-12-01

    Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013), 10.1038/nature11591]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.

  13. Aureobasidium thailandensis, a new species isolated from leaves and wooden surfaces in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aureobasidium thailandense is described from material collected on leaves and wooden surfaces in Thailand. Phylogenetically it is distinct from other species of Aureobasidium. Phenotypically it is distinguished by its cardinal temperatures, salt tolerance, and production of reddish brown hyphal pigm...

  14. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level. PMID:27315378

  15. Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco.

    PubMed

    Xu, Juan; Yang, Kwang-Yeol; Yoo, Seung Jin; Liu, Yidong; Ren, Dongtao; Zhang, Shuqun

    2014-07-01

    Plant mitogen-activated protein kinases represented by tobacco WIPK (wounding-induced protein kinase) and its orthologs in other species are unique in their regulation at transcriptional level in response to stress and pathogen infection. We previously demonstrated that transcriptional activation of WIPK is essential for induced WIPK activity, and activation of salicylic acid-induced protein kinase (SIPK) by the constitutively active NtMEK2(DD) is sufficient to induce WIPK gene expression. Here, we report that the effect of SIPK on WIPK gene expression is mediated by reactive oxygen species (ROS). Using a combination of pharmacological and gain-of-function transgenic approaches, we studied the relationship among SIPK activation, WIPK gene activation in response to fungal cryptogein, light-dependent ROS generation in chloroplasts, and ROS generated via NADPH oxidase. In the conditional gain-of-function GVG-NtMEK2(DD) transgenic tobacco, induction of WIPK expression is dependent on the ROS generation in chloroplasts. Consistently, methyl viologen, an inducer of ROS generation in chloroplasts, highly activated WIPK expression. In addition to chloroplast-originated ROS, H(2)O(2) generated from the cell-surface NADPH oxidase could also activate WIPK gene expression, and inhibition of cryptogein-induced ROS generation also abolished WIPK gene activation. Our data demonstrate that WIPK gene activation is mediated by ROS, which provides a mechanism by which ROS influence cellular signalling processes in plant stress/defence response. PMID:24392654

  16. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species

    PubMed Central

    2013-01-01

    Background Extracts from Potentilla species have been applied in traditional medicine and exhibit antioxidant, hypoglycemic, anti-inflammatory, antitumor and anti-ulcerogenic properties, but little has been known about the diversity of phytochemistry and pharmacology on this genus. This study investigated and compared the phytochemical profiles, antioxidant and antimicrobial activities of leaf extracts from three Potentilla species (Potentilla fruticosa, Potentilla glabra and Potentilla parvifolia) in order to discover new resources for lead structures and pharmaceutical products. Methods Chemical composition and content of six phenolic compounds were evaluated and determined by RP-HPLC; Total phenolic and total flavonoid content were determined using Folin-Ciocalteau colourimetric method and sodium borohydride/chloranil-based method (SBC); Antioxidant activities were determined using DPPH, ABTS and FRAP assays; Antimicrobial properties were investigated by agar dilution and mycelial growth rate method. Results The results showed hyperoside was the predominant phenolic compound in three Potentilla species by RP-HPLC assay, with the content of 8.86 (P. fruticosa), 2.56 (P. glabra) and 2.68 mg/g (P. parvifolia), respectively. The highest content of total identified phenolic compounds (hyperoside, (+)-catechin, caffeic acid, ferulic acid, rutin and ellagic acid) was observed in P. parvifolia (14.17 mg/g), follow by P. fruticosa (10.01 mg/g) and P. glabra (7.01 mg/g). P. fruticosa possessed the highest content of total phenolic (84.93 ± 0.50 mmol gallic acid equivalent/100 g) and total flavonoid (84.14 ± 0.03 mmol quercetin equivalent/100 g), which were in good correlation with its significant DPPHIC50 (16.87 μg/mL), ABTS (2763.48 μmol Trolox equivalent/g) and FRAP (1398.70 μmol Trolox equivalent/g) capacities. Furthermore, the effective methodology to distinguish the different species of Potentilla was also established by chromatographic fingerprint analysis for

  17. New NSO Solar Surface Activity Maps

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Harvey, J. W.

    2001-05-01

    Using NSO-Kitt Peak Vacuum Telescope (KPVT) synoptic data, we present several new solar surface activity maps. The motivation is to test conventional wisdom about conditions that are likely to produce solar activity such as flares, coronal mass ejections and high speed solar wind streams. The ultimate goal is to improve real-time, observation-based models for the purpose of predicting solar activity. A large number of maps will eventually be produced based on the wide range of ideas and models of the conditions thought to lead to solar activity events. When data from the new SOLIS instruments becomes available, the range of possible models that can be tested will be greatly expanded. At present, the daily maps include ones that show magnetic field complexity, emerging flux and high speed solar wind sources. As a proxy for local magnetic potential energy, each element of the magnetic complexity map is the distance-weighted rms of the opposing ambient magnetic field. The flux emergence map is the difference between the two most recent absolute magnetic flux images. The solar wind source map is produced from coronal hole area data. The new maps are available on the NSO-Kitt Peak World Wide Web page. This research was supported in part by the Office of Navel Research Grant N00014-91-J-1040. The NSO-Kitt Peak data used here are produced cooperatively by NSF/AURA, NASA/GSFC, and NOAA/SEC.

  18. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  19. In Silico Study of Variable Surface Proteins in Plasmodium Species: Perspectives in Drug Design.

    PubMed

    Yadav, Manoj Kumar; Swati, D

    2016-09-01

    The variable surface proteins expressed by P. falciparum and P. vivax are transported to the surface of infected erythrocyte and are exposed to the host immune system. The possibility of using variable surface proteins as a common drug target has been analyzed in both the Plasmodium species. Sequence analysis of variable surface proteins showed a low-level conservation within as well as between the species. Amino acid composition analysis revealed higher frequency of hydrophilic amino acids as compared with that of hydrophobic residues. In order to gain more insight into their diverse functional role, the three-dimensional structure was predicted using comparative modeling approach. These models were evaluated and validated by checking stereochemistry of underlying amino acids. Structural alignment of variable surface proteins by superimposing them shows less conservation. Due to differences at sequence as well as structural level, the variable surface proteins are expected to show difference in their degree of invasiveness. These differences were also cross-examined by evolutionary study, and the results obtained were in accordance with the aforesaid study. The existence of structural differences noticed in the present study showed that the variable surface proteins could not be used as a common drug target in both the malarial species. Therefore, species-specific strategy may be followed for drug targeting against variable surface proteins of P. falciparum and P. vivax. PMID:26253721

  20. Numerical investigation of the spatiotemporal distribution of chemical species in an atmospheric surface barrier-discharge

    NASA Astrophysics Data System (ADS)

    Hasan, M. I.; Walsh, J. L.

    2016-05-01

    Using a one dimensional time dependent convection-reaction-diffusion model, the temporal and spatial distributions of species propagating downstream of an atmospheric pressure air surface barrier discharge was studied. It was found that the distribution of negatively charged species is more spatially spread compared to positive ions species, which is attributed to the diffusion of electrons that cool down and attach to background gas molecules, creating different negative ions downstream of the discharge region. Given the widespread use of such discharges in applications involving the remote microbial decontamination of surfaces and liquids, the transport of plasma generated reactive species away from the discharge region was studied by implementing mechanical convection through the discharge region. It was shown that increased convection causes the spatial distribution of species density to become uniform. It was also found that many species have a lower density close to the surface of the discharge as convection prevents their accumulation. While for some species, such as NO2, convection causes a general increase in the density due to a reduced residence time close to the discharge region, where it is rapidly lost through reactions with OH. The impact of the applied power was also investigated, and it was found that the densities of most species, whether charged or neutral, are directly proportional to the applied power.

  1. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly.

    PubMed

    Mainwaring, David E; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N; Wu, Alex H-F; Marchant, Richard; Crawford, Russell J; Ivanova, Elena P

    2016-03-28

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces. PMID:26935293

  2. Large roads reduce bat activity across multiple species.

    PubMed

    Kitzes, Justin; Merenlender, Adina

    2014-01-01

    Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations. PMID:24823689

  3. Large Roads Reduce Bat Activity across Multiple Species

    PubMed Central

    Kitzes, Justin; Merenlender, Adina

    2014-01-01

    Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations. PMID:24823689

  4. The Role of Activated Nitrogen Species on Double-folded Screen Nitriding Process

    NASA Astrophysics Data System (ADS)

    Kim, Sanggweon; Lee, Jaehoon; Saito, Nagahiro; Takai, Osamu

    2013-03-01

    As clean and energy saving surface hardening technology, plasma nitriding techniques have been evolved with object of higher performance in the last decades. Even though the diffusion of nitrogen inward to steel is occurred at the final step, solid diffusion from surface, energy transition from gas molecule of nitrogen to atomic or an activated state have many different steps depending on the plasma conditions, parameters and the design of each equipment. And this study made comparative on nitrogen sources transfer with conventional DC plasma nitriding and novel nitriding process using plasma diagnosis and metallurgical observation. With different vacuum pressure, gas ratio and new designed electrode (double-folded screen cathode electrode), it showed a different behavior of DC plasma nitriding including the nano-sized nitride on the outer surface of specimen due to nitrogen source of determining plasma species. In this study, plasma species was able to identify with optical emission spectroscopy (OES) studies. From these observations, we could understand better role of ions or neutral nitrogen species, like neutral nitrogen (N), N2+ and NHx radicals in plasma nitriding process with different parameters. And cutting layers of nitride specimen were showed the results due to a different species gas flow ratio or plasma conditions.

  5. Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes.

    PubMed

    Sohail, Manzar; De Marco, Roland; Jarolímová, Zdeňka; Pawlak, Marcin; Bakker, Eric; He, Ning; Latonen, Rose-Marie; Lindfors, Tom; Bobacka, Johan

    2015-09-29

    The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath

  6. Lectin activity in mycelial extracts of Fusarium species.

    PubMed

    Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

    2016-01-01

    Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age. PMID:27237111

  7. Reactive oxygen species-activated nanomaterials as theranostic agents.

    PubMed

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  8. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  9. Surface active properties of chitosan and its derivatives.

    PubMed

    Elsabee, Maher Z; Morsi, Rania Elsayed; Al-Sabagh, A M

    2009-11-01

    This review discusses the definition of surface active agents and specifically natural polymeric surface active agents. Chitosan by itself was found to have weak surface activity since it has no hydrophobic segments. Chemical modifications of chitosan could improve such surface activity. This is achieved by introducing hydrophobic substituents in its glucosidic group. Several examples of chitosan derivatives with surfactant activity have been surveyed. The surface active polymers form micelles and aggregates which have enormous importance in the entrapment of water-insoluble drugs and consequently applications in the controlled drug delivery and many biomedical fields. Chitosan also interacts with several substrates by electrostatic and hydrophobic interactions with considerable biomedical applications. PMID:19682870

  10. Antimicrobial activity of Amazonian oils against Paenibacillus species.

    PubMed

    Santos, Roberto Christ Vianna; dos Santos Alves, Camilla Filippi; Schneider, Taiane; Lopes, Leonardo Quintana Soares; Aurich, Carlos; Giongo, Janice Luehring; Brandelli, Adriano; de Almeida Vaucher, Rodrigo

    2012-03-01

    The Gram-positive, spore-forming bacterium Paenibacillus larvae is the primary bacterial pathogen of honeybee brood and the causative agent of American foulbrood disease (AFB). One of the feasible alternative treatments being used for their control of this disease is essential oils. In this study in vitro antimicrobial activity of Andiroba and Copaíba essential oils against Paenibacillus species, including P. larvae was evaluated. Minimal inhibitory concentration (MIC) in Mueller-Hinton broth by the microdilution method was assessed. Andiroba registered MIC values of 1.56-25%, while the MICs values obtained for Copaíba oil were of 1.56-12.5%. In order to determine the time-response effect of essential oils on P. larvae, this microorganism was exposed to the oils for up to 48 h. After 24 h treatment with Andiroba oil and after 48 h treatment with Copaíba oil no viable cells of P. larvae ATCC 9545 were observed. The possible toxic effect of essential oils were assessed by the spraying application method of the same concentrations of MICs. Bee mortality was evident only in treatment with Andiroba oil and the Copaíba oil shows no toxic effects after 10 days of observation. Taking together ours results showed for the first time that these oils presented a high activity against Paenibacillus species showing that Copaíba oil may be a candidate for the treatment or prevention of AFB. PMID:22200645

  11. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms. PMID:27261732

  12. Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV

    NASA Astrophysics Data System (ADS)

    Li, Yubiao; Qian, Gujie; Li, Jun; Gerson, Andrea R.

    2015-07-01

    To better understand chalcopyrite dissolution in hydrogeochemical processes and the related environmental issue of acid and metalliferous drainage (AMD), the kinetics as well as the influence of solution composition and the nature of surface species formed during chalcopyrite dissolution have been examined under the controlled conditions of Eh 650 mV (SHE), pH 1.0-2.0 and 75 °C, with/without 4 mM Fe2+ addition. SEM and XPS analyses indicate that the surface products, both at micro- and nano-scales, did not passivate dissolution under the conditions examined. Extensive S0 was formed mostly as discrete particles rather than coatings on the chalcopyrite surface. Jarosite was only observed for dissolution at pH 2.0 with 4 mM added Fe2+. Without Fe2+ addition, the initial dissolution rate was observed to be only correlated to H+ activity as aH+0.12(±0.01), indicating chalcopyrite dissolution was controlled via chemical oxidation of chalcopyrite by H+/O2. When reaction between chalcopyrite and Fe3+ predominated chalcopyrite dissolution (i.e. later stage of dissolution without Fe2+ addition), the dissolution rate was found to be positively correlated to the activities of Fe3+, as aFe3+1.54(±0.07), and H+, as aH+0.13(±0.05). When 4 mM Fe2+ was added, no clear correlation was observed between the dissolution rate and the activities of either Fe3+or H+. It is proposed that the relative reactive surface area may not be proportional to that predicted by a shrinking sphere model as was assumed for derivation of the rate laws for the systems without added Fe2+, with the predicted rate being greater than the measured rate. Irrespective, it is clear that the addition of a relatively low Fe2+ concentration plays an important role in accelerating the copper dissolution rate at this Eh.

  13. Effect of Surface-Active Pseudomonas spp. on Leaf Wettability

    PubMed Central

    Bunster, Lillian; Fokkema, Nyckle J.; Schippers, Bob

    1989-01-01

    Different strains of Pseudomonas putida and P. fluorescens isolated from the rhizosphere and phyllosphere were tested for surface activity in droplet cultures on polystyrene. Droplets of 6 of the 12 wild types tested spread over the surface during incubation, and these strains were considered surface active; strains not showing this reaction were considered non-surface active. Similar reactions were observed on pieces of wheat leaves. Supernatants from centrifuged broth cultures behaved like droplets of suspensions in broth; exposure to 100°C destroyed the activity. Average contact angles of the supernatants of surface-active and non-surface-active strains on polystyrene were 24° and 72°, respectively. The minimal surface tension of supernatants of the surface-active strains was about 46 mN/m, whereas that of the non-surface-active strains was 64 mN/m (estimations from Zisman plots). After 6 days of incubation, wheat flag leaves sprayed with a dilute suspension of a surface-active strain of P. putida (WCS 358RR) showed a significant increase in leaf wettability, which was determined by contact angle measurements. Increasing the initial concentration of bacteria and the amount of nutrients in the inoculum sprayed on leaves reduced the contact angles from 138° on leaves treated with antibiotics (control) to 43° on leaves treated with surface-active bacteria. A closely related strain with no surface activity on polystyrene did not affect leaf wettability, although it was present in densities similar to those of the surface-active strain. Nutrients alone could occasionally also increase leaf wettability, apparently by stimulating naturally occurring surface-active bacteria. When estimating densities of Pseudomonas spp. underneath droplets with low contact angles, it appeared that populations on leaves treated with a surface-active strain could vary from about 104 to 106 CFU cm−2, suggesting that the surface effect may be prolonged after a decline of the

  14. Anticholinesterase and Antityrosinase Activities of Ten Piper Species from Malaysia

    PubMed Central

    Salleh, Wan Mohd Nuzul Hakimi Wan; Hashim, Nur Athirah; Ahmad, Farediah; Heng Yen, Khong

    2014-01-01

    Purpose: The aim of this study was to investigate acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and antityrosinase activities of extracts from ten Piper species namely; P. caninum, P. lanatum, P. abbreviatum, P. aborescens, P. porphyrophyllum, P. erecticaule, P. ribesioides, P. miniatum, P. stylosum, and P. majusculum. Methods: Anticholinesterase and antityrosinase activities were evaluated against in vitro Ellman spectroscopy method and mushroom tyrosinase, respectively. Results: The EtOAc extract of P. erecticaule showed the highest AChE and BChE inhibitory with 22.9% and 70.9% inhibition, respectively. In antityrosinase activity, all extracts of P. porphyrophyllum showed the highest inhibitory effects against mushroom tyrosinase, compared to standard, kojic acid. Conclusion: This study showed that P. erecticaule and P. porphyrophyllum have potential AChE/BChE and tyrosinase inhibition activities. The respective extracts can be explored further for the development of novel lead as AChE/BChE and tyrosinase inhibitors in therapeutic management of Alzheimer’s disease. PMID:25671185

  15. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability.

    PubMed

    Stamenkovic, Vojislav R; Fowler, Ben; Mun, Bongjin Simon; Wang, Guofeng; Ross, Philip N; Lucas, Christopher A; Marković, Nenad M

    2007-01-26

    The slow rate of the oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cell (PEMFC) is the main limitation for automotive applications. We demonstrated that the Pt3Ni(111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-fold more active than the current state-of-the-art Pt/C catalysts for PEMFC. The Pt3Ni(111) surface has an unusual electronic structure (d-band center position) and arrangement of surface atoms in the near-surface region. Under operating conditions relevant to fuel cells, its near-surface layer exhibits a highly structured compositional oscillation in the outermost and third layers, which are Pt-rich, and in the second atomic layer, which is Ni-rich. The weak interaction between the Pt surface atoms and nonreactive oxygenated species increases the number of active sites for O2 adsorption. PMID:17218494

  16. Prehistoric blood residues: detection on tool surfaces and identification of species of origin.

    PubMed

    Loy, T H

    1983-06-17

    Blood residues from several animal species have been discovered on the surfaces of chert, basalt, and obsidian prehistoric tools (1000 to 6000 years old) from open-air sites along the western coast and in the northern boreal forest of Canada. A screening test has been developed to detect residual blood. Hemoglobin has been crystallized from the residues, and the species of origin determined. PMID:17769366

  17. Comparison of the physicochemical surface properties of Streptococcus rattus with those of other mutans streptococcal species.

    PubMed

    van der Mei, H C; de Soet, J J; de Graaff, J; Rouxhet, P G; Busscher, H J

    1991-01-01

    Mutans streptococci comprise a group of seven closely related, yet distinct species. The distinction between the four species used in this study, namely Streptococcus sobrinus, Streptococcus cricetus, Streptococcus rattus, and Streptococcus mutans, has been made only recently on the basis of DNA homologies. In order to determine if there is a difference in the physicochemical surface properties of these species, strains were characterized by contact angles, zeta potentials and isoelectric points (IEP), elemental surface compositions by X-ray photoelectron spectroscopy, and molecular moieties by infrared spectroscopy. Contact angles, particularly when measured with water, can be considered a measure of cell surface hydrophobicity; zeta potentials reflect the charge of the outermost cell surface; X-ray photoelectron spectroscopy yields the relative abundance of carbon, oxygen, nitrogen, and phosphorus over the outer 5 nm of the bacterial cell surface; infrared spectroscopy enables a molecular characterization in terms of proteins, phosphates, and polysaccharides. All four species were homogeneous with regard to their physicochemical surface properties. However, the S. rattus species were clearly different from the others on the basis of the low water contact angle (21 +/- 2 vs. 26-31 degrees), highly negative zeta potential and lack of IEP, and high oxygen/carbon (0.50 +/- 0.02 vs. 0.41-0.43) and phosphorus/carbon (0.016 +/- 0.001 vs. 0.006-0.008) surface concentration ratios. Amongst the other differences observed, each species had a characteristic pH dependence of their zeta potential measured in phosphate buffer, yielding an IEP of 1.7, 2.1, and 2.5 for S. cricetus, S. sobrinus, and S. mutans, respectively. However, a cluster analysis on the zeta potential data showed only an isolated cluster for the S. rattus species. Thus it is likely that the higher cariogenicity of S. sobrinus with respect to S. cricetus and S. mutans is, in addition to a higher acidogenicity

  18. Alkaloid profiling and anticholinesterase activity of South American Lycopodiaceae species.

    PubMed

    Konrath, Eduardo Luis; Ortega, María Gabriela; de Loreto Bordignon, Sérgio; Apel, Miriam Anders; Henriques, Amélia Teresinha; Cabrera, José Luis

    2013-02-01

    The alkaloid extracts of four Huperzia and one Lycopodiella species, from Brazilian habitats, were tested for their in vitro anticholinesterase activities. IC(50) values showed a potent acetylcholinesterase inhibition for H. reflexa (0.11 ± 0.05 μg/mL), followed by H. quadrifariata (2.0 ± 0.3 μg/mL), H. acerosa (5.5 ± 0.9 μg/mL), H. heterocarpon (25.6 ± 2.7 μg/mL) and L. cernua (42.6 ± 1.5 μg/mL). A lower inhibition of butyrylcholinesterase was observed for all species with the exception of H. heterocarpon (8.3 ± 0.9 μg/mL), whose alkaloid extract presented a selectivity for pseudocholinesterase. Moreover, the chemical study of the bioactive extracts performed by GC-MS, revealed the presence of a number of Lycopodium alkaloids belonging to the lycopodane, flabellidane and cernuane groups. Surprisingly, the potent acetylcholinesterase inhibitors huperzines A and B were not detected in the extracts, suggesting that other alkaloids may be responsible for such an effect. PMID:22117191

  19. Organ- and species-specific biological activity of rosmarinic acid.

    PubMed

    Iswandana, R; Pham, B T; van Haaften, W T; Luangmonkong, T; Oosterhuis, D; Mutsaers, H A M; Olinga, P

    2016-04-01

    Rosmarinic acid (RA), a compound found in several plant species, has beneficial properties, including anti-inflammatory and antibacterial effects. We investigated the toxicity, anti-inflammatory, and antifibrotic effects of RA using precision-cut liver slices (PCLS) and precision-cut intestinal slices (PCIS) prepared from human, mouse, and rat tissue. PCLS and PCIS were cultured up to 48h in the absence or presence of RA. Gene expression of the inflammatory markers: IL-6, IL-8/CXCL1/KC, and IL-1β, as well as the fibrosis markers: pro-collagen 1a1, heat shock protein 47, α-smooth muscle actin, fibronectin (Fn2) and plasminogen activator inhibitor-1 (PAI-1) were evaluated by qPCR. RA was only toxic in murine PCIS. RA failed to mitigate the inflammatory response in most models, while it clearly reduced IL-6 and CXCL1/KC gene expression in murine PCIS at non-toxic concentrations. With regard to fibrosis, RA decreased the gene levels of Fn2 and PAI-1 in murine PCLS, and Fn2 in murine PCIS. Yet, no effect was observed on the gene expression of fibrosis markers in human and rat PCIS. In conclusion, we observed clear organ- and species-specific effects of RA. RA had little influence on inflammation. However, our study further establishes RA as a potential candidate for the treatment of liver fibrosis. PMID:26804033

  20. Guiding Catalytically Active Particles with Chemically Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M.

    2016-07-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemiosmosis, providing an additional contribution to self-motility. Chemiosmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemiosmotic flows can cause particles to either "dock" at the chemical step between the two materials or follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  1. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Juan; Xing, Zhen-Jiao; Duan, Zheng-Kang; Li, Meng; Wang, Yin

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption-desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm3 min-1. Under these conditions, AC with a BET surface area of 1210 m2 g-1 and total pore volume of 0.542 cm-3 g-1was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g-1 for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  2. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation

    NASA Astrophysics Data System (ADS)

    Zhou, Guilin; Liu, Huiran; Cui, Kaikai; Jia, Aiping; Hu, Gengshen; Jiao, Zhaojie; Liu, Yunqi; Zhang, Xianming

    2016-10-01

    CeO2, which was used as support to prepare mesoporous Ni/CeO2 catalyst, was prepared by the hard-template method. The prepared NiO/CeO2 precursor and Ni/CeO2 catalyst were studied by H2-TPR, in-situ XPS, and in-situ FT-IR. The catalytic properties of the prepared Ni/CeO2 catalyst were also investigated by CO2 catalytic hydrogenation methanation. H2-TPR and in-situ XPS results showed that metal Ni species and surface oxygen vacancies could be formed by H2 reduction. In-situ FT-IR and in-situ XPS results indicated that CO2 molecules could be reduced by active metal Ni species and surface oxygen vacancies to generate active CO species and promote CO2 methanation. The Ni/CeO2 catalyst presented the high CO2 methanation activity, and CO2 conversion and CH4 selectivity reached 91.1% and 100% at 340 °C and atmospheric pressure.

  3. Benzenethiol chemistry on the Ni(111) surface: The influence of coadsorbed species

    SciTech Connect

    Kane, S.M.; Rufael, T.S.; Gland, J.L.; Huntley, D.R.

    1996-10-01

    The effect of several coadsorbed species on the reactions of benzenethiol on the Ni(111) surface has been characterized. On the clean surface, benzenethiol is adsorbed as phenylthiolate with an orientation tilted form the surface normal, and hydrogenolysis to form benzene at 260 K is the primary reaction. H{sub 2} preadsorption onto the surface affects reaction selectivity at submonolayer coverages. Higher thiol coverages show no change in hydrogenolysis kinetics, either under either UHV conditions as measured by isothermal TPD or at H{sub 2} pressures up to 7X10{sup {minus}3} torr (measured by FYNES). HREELS indicates that coadsorbed hydrogen induces a change in the orientation of the phenylthiolate. Coadsorbed oxygen is shown to remove surface hydrogen by water formation and broadens the benzene desorption state. A novel reaction between coadsorbed methanethiol and benzethiol to form toluene, and the role of surface hydrogen and oxygen on this reaction, have been investigated.

  4. Market-based control of active surfaces

    NASA Astrophysics Data System (ADS)

    Berlin, Andrew A.; Hogg, Tad; Jackson, Warren B.

    1998-12-01

    This paper describes a market-based approach to controlling a smart matter-based object transport system, in which an array of distributed air jets applies forces to levitate and control the motion of a planar object. In the smart matter regime, the effects of spatial and temporal variation of operating parameters among a multiplicity of sensor, actuators, and controllers make it desirable for a control strategy to exhibit a minimal dependence on system models, and to be able to arbitrate among conflicting goals. A market-based strategy is introduced that aggregates the control requirements of multiple relatively simple local controllers, each of which seeks to optimize the performance of the system within a limited spatial and temporal range. These local controllers act as the market's consumers, and two sets of distributed air jets act as the producers. Experiments are performed comparing the performance of the market-based strategy to a near-optimal model-derived benchmark, as well as to a hand-tuned PD controller. Results indicate that even though the local controllers in the market are not based on a detailed model of the system dynamics, the market is able to effectively approximate the performance of the model-based benchmark. In certain specialized cases, such as tracking a step trajectory, the performance of the market surpasses the performance of the model-based benchmark by balancing the needs of conflicting control goals. A brief overview of the active surface smart matter prototype being developed at Xerox PARC that is the motivation behind this work is also presented.

  5. Isolation and identification of bacteria associated with the surfaces of several algal species

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Xiao, Tian; Pang, Shaojun; Liu, Min; Yue, Haidong

    2009-09-01

    We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G. textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

  6. Discovering Engangered Species. A Learning and Activity Book.

    ERIC Educational Resources Information Center

    Field, Nancy; Machlis, Sally

    Up to 33 million species share the earth; no one knows the exact number for sure. All over the world, many species are becoming extinct. This workbook is designed to help children become more aware of the concept of extinction, and to develop personal strategies for helping with the problem of endangered species. Included are 31 activities…

  7. Controlled Release of Biologically Active Silver from Nanosilver Surfaces

    PubMed Central

    Liu, Jingyu; Sonshine, David A.; Shervani, Saira; Hurt, Robert H.

    2010-01-01

    Major pathways in the antibacterial activity and eukaryotic toxicity of nano-silver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nano-silver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nano-silver is widely recognized, the drug delivery paradigm has not been well developed for this system, and there is significant potential to improve nano-silver technologies through controlled release formulations. This article applies elements of the drug delivery paradigm to nano-silver dissolution and presents a systematic study of chemical concepts for controlled release. After presenting thermodynamic calculations of silver species partitioning in biological media, the rates of oxidative silver dissolution are measured for nanoparticles and macroscopic foils and used to derive unified area-based release kinetics. A variety of competing chemical approaches are demonstrated for controlling the ion release rate over four orders of magnitude. Release can be systematically slowed by thiol and citrate ligand binding, formation of sulfidic coatings, or the scavenging of peroxy-intermediates. Release can be accelerated by pre-oxidation or particle size reduction, while polymer coatings with complexation sites alter the release profile by storing and release inventories of surface-bound silver. Finally, the ability to tune biological activity is demonstrated through bacterial inhibition zone assay carried out on selected formulations of controlled release nano-silver. PMID:20968290

  8. A new technique for Auger analysis of surface species subject to electron-induced desorption

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.

  9. Survival of selected bacterial species in sterilized activated carbon filters and biological activated carbon filters.

    PubMed Central

    Rollinger, Y; Dott, W

    1987-01-01

    The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects. PMID:3579281

  10. Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains.

    PubMed Central

    Reinholdt, J; Kilian, M

    1997-01-01

    Immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region are produced constitutively by a number of pathogens, including Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, and Streptococcus pneumoniae, as well as by some members of the resident oropharyngeal flora. Whereas IgA1 proteases have been shown to interfere with the functions of IgA antibodies in vitro, the exact role of these enzymes in the relationship of bacteria to a human host capable of responding with enzyme-neutralizing antibodies is not clear. Conceivably, the role of IgA1 proteases may depend on the quantity of IgA1 protease generated as well as on the balance between secreted and cell-associated forms of the enzyme. Therefore, we have compared levels of IgA1 protease activity in cultures of 38 bacterial strains representing different genera and species as well as strains of different pathogenic potential. Wide variation in activity generation rate was found overall and within some species. High activity was not an exclusive property of bacteria with documented pathogenicity. Almost all activity of H. influenzae, N. meningitidis, and N. gonorrhoeae strains was present in the supernatant. In contrast, large proportions of the activity in Streptococcus, Prevotella, and Capnocytophaga species was cell associated at early stationary phase, suggesting that the enzyme may play the role of a surface antigen. Partial release of cell-associated activity occurred during stationary phase. Within some taxa, the degree of activity variation correlated with degree of antigenic diversity of the enzyme as determined previously. This finding may indicate that the variation observed is of biological significance. PMID:9353019

  11. Pathogenic Leptospira Species Acquire Factor H and Vitronectin via the Surface Protein LcpA

    PubMed Central

    da Silva, Ludmila Bezerra; Miragaia, Lidia dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima

    2014-01-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn2+-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. PMID:25534939

  12. Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.

    NASA Astrophysics Data System (ADS)

    Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip

    2006-03-01

    Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.

  13. Candida patagonica sp. nov., a new species of yeast from cellar surfaces.

    PubMed

    Sangorrín, Marcela P; Lopes, Christian A; Belloch, Carmela; Querol, Amparo; Caballero, Adriana C

    2007-07-01

    A novel anamorphic yeast species belonging to the genus Candida has been isolated from cellar surfaces in North Patagonia. Morphological and physiological observation and phylogenetic analysis were performed. Pseudomycelium was plentifully produced. No sexual reproduction was observed. From sequence analysis of the 26S rDNA D1/D2 region, Candida bituminiphila and Zygoascus hellenicus were the closest species with 40 and 79 bp substitutions, respectively. C. bituminiphila differed physiologically from the novel species in its ability to assimilate sucrose and erythritol, in not fermenting any sugars, in growing without some vitamin compounds, and in growing at 40 degrees C. All these data support the hypothesis that the new yeast, named Candida patagonica, is a novel species related to C. bituminiphila. The type strain is UNCOMA 159.5 (= CECT 12029 = CBS 10443). PMID:17265102

  14. Species Turnover and Diel Flight Activity of Species of Dung Beetles, Onthophagus, in the Tropical Lowland Forest of Peninsular Thailand

    PubMed Central

    Boonrotpong, Singtoe; Sotthibandhu, Sunthorn; Satasook, Chutamas

    2012-01-01

    Species turnover and temporal variation of forest insects were used to explain the ecological succession and ecological segregation between efficiently competing species. In this study, species richness, abundance, and beta-diversity of the genus Onthophagus (Coleoptera: Scarabaeidae) assemblages between 2003 and 2007 were described and the diel—flight activity was examined in the disturbed forest and the interior forest of the lowland tropical rain forest at Ton Nga Chang Wildlife Sanctuary in peninsular Thailand. A total of 2,260 individuals of 22 species in 2003 and 2,382 individuals of 24 species in 2007 were collected. Although species richness and abundance did not differ significantly between the two years, all similarity indices were significantly different. The community structure of Onthophagus assemblage in 2003 demonstrated a heterogeneous pattern, whereas there was a tendency for the pattern to shift toward a more homogeneous structure in 2007. The temporal variation showed two distinct diel—flight activities; diurnal and crepuscular patterns. Six species were crepuscular (O. deflexicollis Lansberge, O. orientalis Harold, O. rudis Sharp, O. sp 1, O. sp 2, and O. sp 4), whereas most of Onthophagus species demonstrated diurnal pattern. Remarkably, five species (O. taurinus White, O. pilularius Lansberge, O. punneeae Masumoto, O. laevis Harold, and O. sp 3.) could not be classified as either diurnal or crepuscular species. It was suggested that the species turnover was probably influenced by the recovery of the forest structure and the decrease of anthropogenic disturbance. Resource partitioning was suggested to be a key factor for crepuscular adaptation in Onthophagus species. PMID:23418986

  15. Associative oxygen species on the oxidized silver surface formed under O 2 microwave excitation

    NASA Astrophysics Data System (ADS)

    Boronin, A. I.; Koscheev, S. V.; Murzakhmetov, K. T.; Avdeev, V. I.; Zhidomirov, G. M.

    2000-09-01

    The experimental methods of X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS, respectively) and the quantum mechanical calculations are applied for analysis of oxygen states on the silver oxide surface. At low temperatures ( T<470 K), the silver surface is intensively oxidized by a microwave oxygen discharge to form cuprite Ag 2O. Two adsorbed oxygen species of the atomic (dissociative) and molecular (associative) nature can be adsorbed on the cuprite Ag 2O surface. A comparison of the UPS data and the DFT calculations of molecular models Ag 2-O 2 and Ag 2-O 3 shows that the formation of ozonide-like structures is preferable to that of peroxide species. Thermal stability and the reaction probability of the adsorbed states are investigated.

  16. Crustose coralline algal species host distinct bacterial assemblages on their surfaces.

    PubMed

    Sneed, Jennifer M; Ritson-Williams, Raphael; Paul, Valerie J

    2015-11-01

    Crustose coralline algae (CCA) are important components of many marine ecosystems. They aid in reef accretion and stabilization, create habitat for other organisms, contribute to carbon sequestration and are important settlement substrata for a number of marine invertebrates. Despite their ecological importance, little is known about the bacterial communities associated with CCA or whether differences in bacterial assemblages may have ecological implications. This study examined the bacterial communities on four different species of CCA collected in Belize using bacterial tag-encoded FLX amplicon pyrosequencing of the V1-V3 region of the 16S rDNA. CCA were dominated by Alphaproteobacteria, Gammaproteobacteria and Actinomycetes. At the operational taxonomic unit (OTU) level, each CCA species had a unique bacterial community that was significantly different from all other CCA species. Hydrolithon boergesenii and Titanoderma prototypum, CCA species that facilitate larval settlement in multiple corals, had higher abundances of OTUs related to bacteria that inhibit the growth and/or biofilm formation of coral pathogens. Fewer coral larvae settle on the surfaces of Paragoniolithon solubile and Porolithon pachydermum. These CCA species had higher abundances of OTUs related to known coral pathogens and cyanobacteria. Coral larvae may be able to use the observed differences in bacterial community composition on CCA species to assess the suitability of these substrata for settlement and selectively settle on CCA species that contain beneficial bacteria. PMID:25918832

  17. "Invented Invaders": An Engaging Activity to Teach Characteristics Control of Invasive Species

    ERIC Educational Resources Information Center

    Lampert, Evan

    2015-01-01

    Invasive species, defined as exotic species that reach pest status, are major threats to global biodiversity. Although invasive species can belong to any taxonomic group, general characteristics such as rapid growth and reproduction are shared by many invasive species. "Invented Invaders" is a collaborative activity in which students…

  18. [Structure of surface glycoconjugates or Rhizobium species and their function in nitrogen fixation]; Progress report

    SciTech Connect

    1991-01-01

    Lipopolysaccharides (LPS) were isolated and purified from the surface of the Rhizobium species R. trifolii, R. leguminosarium and R. meliloti. A novel core tetrasaccharide and a trisaccharide required for nodulation were discovered. Several types of LPS from a single culture, inducible by nod gene inducers, were resolved by electrophoresis and chromatography. Other potential inducers are being investigated. At least three separate loci control LPS biosynthesis in R. meliloti. We maintain secreted, sulphated LPS involved in nodulation is attached to the cell surface, and have demonstrated sulphated, lipid-linked carbohydrates on the surface of R. meliloti. Antibodies to purified cell surface carbohydrate oligomers are being prepared. These antibodies will be used to screen bacteria, and also to identify cell surface changes associated with differentiation of a bacteria to a bacteroid.

  19. Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability.

    PubMed

    Sivaram, Saujan V; Shin, Naechul; Chou, Li-Wei; Filler, Michael A

    2015-08-12

    Surface adsorbates are well-established choreographers of material synthesis, but the presence and impact of these short-lived species on semiconductor nanowire growth are largely unknown. Here, we use infrared spectroscopy to directly observe surface adsorbates, hydrogen atoms and methyl groups, chemisorbed to the nanowire sidewall and show they are essential for the stable growth of Ge nanowires via the vapor-liquid-solid mechanism. We quantitatively determine the surface coverage of hydrogen atoms during nanowire growth by comparing ν(Ge-H) absorption bands from operando measurements (i.e., during growth) to those after saturating the nanowire sidewall with hydrogen atoms. This method provides sub-monolayer chemical information at relevant reaction conditions while accounting for the heterogeneity of sidewall surface sites and their evolution during elongation. Our findings demonstrate that changes to surface bonding are critical to understand Ge nanowire synthesis and provide new guidelines for rationally selecting catalysts, forming heterostructures, and controlling dopant profiles. PMID:26147949

  20. How does the deposition of gas phase species affect surface pH at frozen salty interfaces?

    NASA Astrophysics Data System (ADS)

    Donaldson, D. J.; Wren, S. N.

    2012-12-01

    Chemical processes occurring on snow and ice surfaces play an important role in controlling the oxidative capacity of the overlying atmosphere. However, efforts to gain a better, mechanistic understanding of such processes are impeded by a poor understanding of the chemical nature of the air-ice interface. In consequence, constraining the substrates that are most relevant to these processes (e.g., new sea ice, first-year ice, frost flowers, brine layers, saline snow) as well as understanding how chemistry will be affected as the areal extent of these substrates succumbs to polar environmental change, remains difficult. In this study, we used glancing-angle laser-induced fluorescence and a surface-active fluorescent pH indicator to investigate how the nature of the ice, whether frozen pure water, salt water or seawater, influences pH changes at the surface. We find that deposition of HCl(g) leads to a very different pH response at the frozen pure water surface than at the frozen salt water surface indicating that these two surfaces present different chemical environments. Results indicate that the frozen salt water surface is covered by a brine layer which behaves like a true liquid layer. On the other hand, the disordered interface at the pure ice surface presents a unique chemical environment. Our results also suggest that the sea ice surface is buffered against pH changes arising from the deposition of gas phase species. These results have important implications for understanding pH-sensitive processes occurring at the air-ice boundary, such as bromine activation.

  1. Active control of compressible flows on a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.; Turkel, E.

    1985-01-01

    The effect of localized, time periodic surface heating and cooling over a curved surface is studied. This is a mechanism for the active control of unstable disturbances by phase cancellation and reinforcement. It is shown that the pressure gradient induced by the curvature significantly enhances the effectiveness of this form of active control. In particular, by appropriate choice of phase, active surface heating can completely stabilize and unstable wave.

  2. Characterization of molecular and atomic species adsorbed on ferroelectric and semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Bharath, Satyaveda Chavi

    In order to clarify the mechanisms behind the adsorption of atomic and molecular species adsorbed on ferroelectric surfaces, single crystalline lithium niobate (LiNbO3, LN), 'Z-cut' along the (0001) plane, has been prepared, characterized and subsequently exposed to molecular and atomic species. 4-n-octyl-4'-cyanobiphenyl (8CB) liquid crystal was chosen as a polar molecule for our model system for this study. Low-energy electron diffraction (LEED), atomic force microscopy (AFM), surface contact angles (CA), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface of LN as well as the nature of the liquid crystal films grown on the surface. Atomically flat LN surfaces were prepared as a support for monolayer thick, 8CB molecular domains. Also, for the purpose of gaining a fundamental understanding of low coverage interactions of metal atoms on ferroelectric surfaces, we choose to deposit gold onto the LN surface. These gold atomic layers were grown under UHV conditions and characterized. Understanding anchoring mechanisms and thin film organization for LC molecules and metal atoms on uniformly poled surfaces allows for a fuller appreciation of how molecular deposition of other polarizable molecules on patterned poled LN surfaces would occur as well as yielding greater insight on the atomic characteristics of metal on ferroelectric interfaces. Also, to reveal the mechanisms involved in the adsorption of organic aromatic molecules on high-index Si surfaces, thiophene (C4H 4S) and pyrrole (C4H5N) molecules were dosed on prepared Si(5 5 12)-2x1 surfaces as our experimental system. The Si(5 5 12) surface was prepared to produce a 2x1 reconstruction after which molecules were dosed at low exposure to observe the preferred adsorption sites on the surface. All surface preparation and experiments were performed in UHV and measurements of the surface before and after deposition were performed using scanning tunneling microscopy (STM). Fundamental

  3. Pharmacologically active compounds in the Anoectochilus and Goodyera species.

    PubMed

    Du, Xiao-Ming; Irino, Nobuto; Furusho, Norihiro; Hayashi, Jun; Shoyama, Yukihiro

    2008-04-01

    The extract of Anoectochilus formosanus showed significant activity in decreasing the levels of the cytosolic enzymes LDH, GOT, and GPT, and the result demonstrated that A. formosanus possessed prominent hepatoprotective activity against CCl(4)-induced hepatotoxicity. Moreover, in the results of the test using aurothioglucose-induced obese mice, the extract showed a significant antihyperliposis effect. A. formosanus grown in the wild and propagated by tissue culture contain ten compounds, including a major known component, (3R)-3-(beta-D-glucopyranosyloxy)butanolide (kinsenoside; 1), and two new components, (3R)-3-(beta-D-glucopyranosyloxy)-4-hydroxybutanoic acid (2) and 2-[(beta-D-glucopyranosyloxy)methyl]-5-hydroxymethylfuran (3), along with the known compounds, isopropyl-beta-D-glucopyranoside (4), (R)-3,4-dihydroxybutanoic acid gamma-lactone (5), 4-(beta-D-glucopyranosyloxy) benzyl alcohol (6), (6R,9S)-9-(beta-D-glucopyranosyloxy)megastigma-4,7-dien-3-one (7), and (3R)-3-(beta-D-glucopyranosyloxy)-4-hydroxybutanolide (8). Since a higher concentration of kinsenoside (1) was detected in the crude drugs A. formosanus and A. koshunensis by high-performance liquid chromatography (HPLC) analysis, we proved a simple purification system for kinsenoside (1), giving 180 mg of kinsenoside (1) from 1 g of dried samples for further pharmacological experiments. In an anti-hyperliposis assay using high-fat-diet rats, 1 significantly reduced the weights of the body and the liver, and also decreased the triglyceride level in the liver compared to those of control rats. On the other hand, the epimer of 1, (3S)-3-(beta-D-glucopyranosyloxy)butanolide, goodyeroside A (9), which was isolated from the Goodyera species, had no effect for anti-hyperliposis. In aurothioglucose-induced obese mice, 1 suppressed the body and liver weight increase, significantly ameliorated the triglyceride level in the liver, and also reduced the deposition of uterine fat pads. The anti

  4. Vitronectin-binding staphylococci enhance surface-associated complement activation.

    PubMed Central

    Lundberg, F; Lea, T; Ljungh, A

    1997-01-01

    Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn. PMID:9038294

  5. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    PubMed

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  6. Pesticide-induced surface migration by lumbricid earthworms in grassland: life-stage and species differences.

    PubMed

    Christensen, O M; Mather, J G

    2004-01-01

    Pesticide-induced changes in surface migration by earthworms in grassland were investigated using trapping and the fungicide benomyl. Traps were tended daily for 15 days after spraying, resulting in 2152 earthworms, five species, and juvenile predominance which reflected species/life-stage composition in the soil. Significant increases in migration (all worms) occurred already by day 2 due to spraying, final treatment level being 2.8 x control. Life-stage composition indicated an increased juvenile proportion from 55% to 75% due to treatment. Spraying caused surfacing juveniles to increase significantly by day 2, reaching a final level 3.8 x control, whereas for mature worms a significant increase did not occur until day 4. Species rank-order was Aporrectodea longa>A. rosea>Lumbricus terrestris>A. caliginosa in control areas, but A. longa>L. terrestris>A. rosea>A. caliginosa in sprayed areas; spraying altered the rank-order such that the anecic A. longa and L. terrestris dominated, jointly increasing from 59% to 78%. At species level, L. terrestris and A. longa exhibited significant increases of 4.6 x and 3.6 x in final migration levels in treated areas, the endogeic A. rosea and A. caliginosa having trends for increase. Species-specific differences for reaction time occurred, with significantly elevated migration already by day 1 for L. terrestris, and day 2 for A. longa and A. caliginosa. For each species, juveniles consistently showed greater increases than mature worms due to spraying, significantly so for juvenile L. terrestris, A. longa, and A. caliginosa, the two anecics reaching as high as 5.3 x and 4.7 x. The response of mature worms differed: A. longa and A. rosea increased surfacing due to treatment, L. terrestris showed a delayed reaction, whereas A. caliginosa exhibited suppressed migration. Results are discussed relative to behavior, ecological category, and risk of toxic exposure. PMID:14659371

  7. Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY

    PubMed Central

    2010-01-01

    Background Porphyromonas gingivalis is a major etiological agent of chronic periodontitis. The aim of this study was to examine the species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of the P. gingivalis heme-binding protein HmuY. Results HmuY is a unique protein of P. gingivalis since only low amino-acid sequence homology has been found to proteins encoded in other species. It is exposed on the cell surface and highly abundant in the outer membrane of the cell, in outer-membrane vesicles, and is released into culture medium in a soluble form. The protein is produced constitutively at low levels in bacteria grown under high-iron/heme conditions and at higher levels in bacteria growing under the low-iron/heme conditions typical of dental plaque. HmuY is immunogenic and elicits high IgG antibody titers in rabbits. It is also engaged in homotypic biofilm formation by P. gingivalis. Anti-HmuY antibodies exhibit inhibitory activity against P. gingivalis growth and biofilm formation. Conclusions Here it is demonstrated that HmuY may play a significant role not only in heme acquisition, but also in biofilm accumulation on abiotic surfaces. The data also suggest that HmuY, as a surface-exposed protein, would be available for recognition by the immune response during chronic periodontitis and the production of anti-HmuY antibodies may inhibit biofilm formation. PMID:20438645

  8. Development of Superoxide Dismutase Mimetic Surfaces to Reduce Accumulation of Reactive Oxygen Species for Neural Interfacing Applications

    PubMed Central

    Potter-Baker, Kelsey A.; Nguyen, Jessica K.; Kovach, Kyle M.; Gitomer, Martin M.; Srail, Tyler W.; Stewart, Wade G.; Skousen, John L.; Capadona, Jeffrey R.

    2014-01-01

    Despite successful initial recording, neuroinflammatory-mediated oxidative stress products can contribute to microelectrode failure by a variety of mechanisms including: inducing microelectrode corrosion, degrading insulating/passivating materials, promoting blood-brain barrier breakdown, and directly damaging surrounding neurons. We have shown that a variety of anti-oxidant treatments can reduce intracortical microelectrode-mediated oxidative stress, and preserve neuronal viability. Unfortunately, short-term soluble delivery of anti-oxidant therapies may be unable to provide sustained therapeutic benefits due to low bio-availability and fast clearance rates. In order to develop a system to provide sustained neuroprotection, we investigated modifying the microelectrode surface with an anti-oxidative coating. For initial proof of concept, we chose the superoxide dismutase (SOD) mimetic Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP). Our system utilizes a composite coating of adsorbed and immobilized MnTBAP designed to provide an initial release followed by continued presentation of an immobilized layer of the antioxidant. Surface modification was confirmed by XPS and QCMB-D analysis. Antioxidant activity of composite surfaces was determined using a Riboflavin/NitroBlue Tetrazolium (RF/NBT) assay. Our results indicate that the hybrid modified surfaces provide several days of anti-oxidative activity. Additionally, in vitro studies with BV-2 microglia cells indicated a significant reduction of intracellular and extracellular reactive oxygen species when cultured on composite MnTBAP surfaces. PMID:25132966

  9. Infrared spectroscopic study of the rotation of chemisorbed methoxy species on an alumina surface

    SciTech Connect

    Beebe, T.P. Jr.; Crowell, J.E.; Yates, J.T. Jr. )

    1990-04-15

    We present experimental and calculated vibration--rotation spectra as a function of temperature for the methoxy species (--OCH{sub 3} and --OCD{sub 3}) chemisorbed on an alumina surface. The axis of rotation is the C--O bond axis. The model for our calculations is that of free rotation, and we describe the methods employed here in full detail. The qualitative agreement between the calculated and experimental spectra suggests that the adsorbed methoxy species is undergoing free rotational motion about the C--O bond axis.

  10. Scratch resistance of the ventral skin surface in four snake species (Squamata, Serpentes).

    PubMed

    Klein, Marie-Christin G; Gorb, Stanislav N

    2016-04-01

    Snakes are limbless tetrapods highly specialized for sliding locomotion on various substrates. Their skin is constantly exposed to high friction forces, which promotes abrasion. Snake skin has material and surface specializations, presumably optimized for friction and abrasion resistance. We found that different snake species living in different habitats have different abrasion patterns and hypothesized that this correlates with specific epidermal architecture and surface topography. To test this hypothesis artificial scratches, under controlled load conditions, were created on the ventral skin material (epidermis) of four snake species adapted to different habitats: Lampropeltis getula californiae (stony and sandy soil substrates), Epicrates cenchria cenchria (trees, soil and water), Morelia viridis (trees), and Gongylophis colubrinus (burrowing in sand). Abrasion appearance on the skin surface was examined using scanning electron microscopy and white light interferometry. The material failure was different between the species, which we attribute to differences in the epidermis' response to the same abrasive challenge. We also discuss abrasion resistance mechanisms and the correlation with the different ultrastructure and surface microstructure. PMID:26874374

  11. Chemical profiles of body surfaces and nests from six Bornean stingless bee species.

    PubMed

    Leonhardt, Sara Diana; Blüthgen, Nico; Schmitt, Thomas

    2011-01-01

    Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces. PMID:21165680

  12. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus

    PubMed Central

    Stahl, Bethany A.; Gross, Joshua B.; Speiser, Daniel I.; Oakley, Todd H.; Patel, Nipam H.; Gould, Douglas B.; Protas, Meredith E.

    2015-01-01

    Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual), and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment. PMID:26462237

  13. Retrieval of Temperature and Species Distributions from Multispectral Image Data of Surface Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Annen, K. D.; Conant, John A.; Weiland, Karen J.

    2001-01-01

    Weight, size, and power constraints severely limit the ability of researchers to fully characterize temperature and species distributions in microgravity combustion experiments. A powerful diagnostic technique, infrared imaging spectrometry, has the potential to address the need for temperature and species distribution measurements in microgravity experiments. An infrared spectrum imaged along a line-of-sight contains information on the temperature and species distribution in the imaged path. With multiple lines-of-sight and approximate knowledge of the geometry of the combustion flowfield, a three-dimensional distribution of temperature and species can be obtained from one hyperspectral image of a flame. While infrared imaging spectrometers exist for collecting hyperspectral imagery, the remaining challenge is retrieving the temperature and species information from this data. An initial version of an infrared analysis software package, called CAMEO (Combustion Analysis Model et Optimizer), has been developed for retrieving temperature and species distributions from hyperspectral imaging data of combustion flowfields. CAMEO has been applied to the analysis of multispectral imaging data of flame spread over a PMMA surface in microgravity that was acquired in the DARTFire program. In the next section of this paper, a description of CAMEO and its operation is presented, followed by the results of the analysis of microgravity flame spread data.

  14. The potential for using wildflower species to increase natural habitat in contour surface mine reclamation

    SciTech Connect

    Heckman, J.R.; Sabre, M.; Cairns, J. Jr.; Holl, K.D.

    1996-12-31

    While non-native herbaceous species are commonly used for mine reclamation, these species have low wildlife and aesthetic value and may inhibit long-term succession. The goal of this study was to determine the suitability of wildflowers for surface mine reclamation in the Appalachian mountains. A seed mixture composed of native and naturalized wildflower species was compared to the standard revegetation mixture by testing greenhouse germination rates of all species in both mine spoils and potting soil and establishing field plots at reclamation sites in southwestern Virginia. In May 1993, two 9-m{sup 2} (97-ft{sup 2}) plots were seeded with each revegetation mixture on four slopes with different aspects. Vegetation cover and composition were recorded in all plots during the 1993 and 1994 field seasons. Wildflower species had germination rates ranging from 0-52%. In field studies, all but 2 of the 14 species of wildflowers seeded became established in study plots, while only 4 of the 8 species in the standard mixture were recorded. Cover was highly variable among plots on different aspects seeded with the same mixture. In most cases, total vegetative cover did not differ significantly between plots seeded with different mixtures. Some native and naturalized wildflower species appear to have potential for use in mine reclamation and could be included with standard revegetation mixtures in order to provide more native diversity. However, further research is necessary due to a number of factors confounding these results, including the low seeding rates used, drought conditions during the 1993 field season, and problems with regrowth of previous vegetation.

  15. Requirements for extravehicular activities on the lunar and Martian surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Mariann F.; Schentrup, Susan M.

    1990-01-01

    Basic design reference requirements pertinent to EVA equipment on lunar and martian surfaces are provided. Environmental factors affecting surface EVA are analyzed including gravity, dust, atmospheric conditions, thermal gradients, lightning conditions, and radiation effects, and activities associated with surface EVA are outlined. Environmental and activity effects on EVA equipment are assessed, and emphasis is placed on planetary surface portable life support systems (PLSS), suit development, protection from micrometeoroids, dust, and radiation, food and water supplies, and the extravehicular mobility-unit thermal-control system. Environmental and activity impacts on PLSS design are studied, with focus on base self-sufficiency and reduction in resupply logistics.

  16. The tegumental surface membranes of Schistosoma mansoni are enriched in parasite-specific phospholipid species.

    PubMed

    Retra, Kim; deWalick, Saskia; Schmitz, Marion; Yazdanbakhsh, Maria; Tielens, Aloysius G M; Brouwers, Jos F H M; van Hellemond, Jaap J

    2015-08-01

    The complex surface structure of adult Schistosoma mansoni, the tegument, is essential for survival of the parasite. This tegument is syncytial and is covered by two closely-apposed lipid bilayers that form the interactive surface with the host. In order to identify parasite-specific phospholipids present in the tegument, the species compositions of the major glycerophospholipid classes, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol, including lysophospholipid species, were analysed in adult S. mansoni worms, isolated tegumental membranes and hamster blood cells. It was shown that there are large differences in species composition in all four phospholipid classes between the membranes of S. mansoni and those of the host blood cells. The species compositions of phosphatidylserine and phosphatidylcholine were strikingly different in the tegument compared with the whole worm. The tegumental membranes are especially enriched in lysophospholipids, predominantly eicosenoic acid (20:1)-containing lyso-phosphatidylserine and lyso-phosphatidylethanolamine species. Furthermore, the tegument was strongly enriched in phosphatidylcholine that contained 5-octadecenoic acid, an unusual fatty acid that is not present in the host. As we have shown previously that lysophospholipids from schistosomes affect the parasite-host interaction, excretion of these tegument-specific phospholipid species was examined in vitro and in vivo. Our experiments demonstrated that these lysophospholipids are not significantly secreted during in vitro incubations and are not detectable in peripheral blood of infected hosts. However, these analyses demonstrated a substantial decrease in PI content of blood plasma from schistosome-infected hamsters, which might indicate that schistosomes influence exosome formation by the host. PMID:25975668

  17. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    SciTech Connect

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  18. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    DOE PAGESBeta

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  19. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR.

    PubMed

    Johnson, Robert L; Perras, Frédéric A; Kobayashi, Takeshi; Schwartz, Thomas J; Dumesic, James A; Shanks, Brent H; Pruski, Marek

    2016-01-31

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticle catalysts. By offering >2500-fold time savings, the technique enabled the observation of (13)C-(13)C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface. PMID:26675287

  20. Active control technology and the use of multiple control surfaces

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1976-01-01

    Needed criteria for active control technology applications in commercial transports are lacking. Criteria for redundancy requirements, believed to be consistent with certification philosophy, are postulated to afford a discussion of the relative value of multiple control surfaces. The control power and frequency bandpass requirements of various active control technology applications are shown to be such that multiple control surfaces offer advantages in minimizing the hydraulic or auxiliary power for the control surface actuators.

  1. Various Molecular Species of Diacylglycerol Hydroperoxide Activate Human Neutrophils via PKC Activation

    PubMed Central

    Kambayashi, Yasuhiro; Takekoshi, Susumu; Tanino, Yutaka; Watanabe, Keiichi; Nakano, Minoru; Hitomi, Yoshiaki; Takigawa, Tomoko; Ogino, Keiki; Yamamoto, Yorihiro

    2007-01-01

    We have proposed that diacylglycerol hydroperoxide-induced unregulated signal transduction causes oxidative stress-related diseases. In this study, we investigated which molecular species of diacylglycerol hydroperoxide activated human peripheral neutrophils. All diacylglycerol hydroperoxides, diacylglycerol hydroxides, and diacyglycerols tested in the present study induced superoxide production by neutrophils. The ability to activate neutrophils among molecular species containing the same fatty acid composition was as follows; diacylglycerol hydroperoxide>diacylglycerol hydroxide≥diacylglycerol. The diacylglycerol hydroperoxide composed of linoleate was a stronger activator for neutrophils than that composed of arachidonate. 1-Palmitoyl-2-linoleoylglycerol hydroperoxide (PLG-OOH) was the strongest stimulator for neutrophils. We reconfirmed that PLG-OOH activated protein kinase C (PKC) in neutrophils. PLG-OOH induced the phosphorylation of p47phox, a substrate of PKC and a cytosolic component of NADPH oxidase, in neutrophils, as did N-formyl-methionyl-leucyl-phenylalanine or 4β-phorbol-12β-myristate-13α-acetate. Moreover, the time course of p47phox phosphorylation was comparable to that of superoxide production. These results suggest that PLG-OOH activated intracellular protein kinase C. PLG-OOH, produced via an uncontrolled process, can act as a biological second messenger to cause inflammatory disease from oxidative stress. PMID:18392102

  2. X-Ray Photoelectron Spectroscopy Investigation of the Nitrogen Species in Photoactive Perfluorophenylazide-Modified Surfaces

    PubMed Central

    Zorn, Gilad; Liu, Li-Hong; Árnadóttir, Líney; Wang, Hui; Gamble, Lara J.; Castner, David G.; Yan, Mingdi

    2014-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to characterize the nitrogen species in perfluorophenylazide (PFPA) self-assembled monolayers. PFPA chemistry is a novel immobilization method for tailoring the surface properties of materials. It is a simple route for the efficient immobilization of graphene, proteins, carbohydrates and synthetic polymers onto a variety of surfaces. Upon light irradiation, the azido group in PFPA is converted to a highly reactive singlet nitrene species that readily undergoes CH insertion and C=C addition reactions. Here, the challenge of characterizing the PFPA modified surfaces was addressed by detailed XPS experimental analyses. The three nitrogen peaks detected in the XPS N1s spectra were assigned to amine/amide (400.5 eV) and azide (402.1 and 405.6 eV) species. The observed 2:1 ratio of the areas from the 402.1 eV to 405.6 eV peaks suggests the assignment of the peak at 402.1 eV to the two outer nitrogen atoms in the azido group and assignment of the peak at 405.6 eV to the central nitrogen atom in the azido group. The azide decomposition as the function of x-ray exposure was also determined. Finally, XPS analyses were conducted on patterned graphene to investigate the covalent bond formation between the PFPA and graphene. This study provides strong evidence for the formation of covalent bonds during the PFPA photocoupling process. PMID:24535931

  3. Tick species (Acari: Ixodida) in Antalya City, Turkey: species diversity and seasonal activity.

    PubMed

    Koc, Samed; Aydın, Levent; Cetin, Huseyin

    2015-07-01

    Ticks (Acari: Ixodida) are an important group of ectoparasites of vertebrates. Most species are known vectors of diseases including Lyme disease, Q fever, and Crimean-Congo hemorrhagic fever. A 3-year research was conducted in Antalya, Turkey, to determine tick species composition, seasonal abundance, and spatial distribution. The study was carried out in five districts (Aksu, Dosemealtı, Kepez, Konyaaltı, and Muratpasa) of Antalya Metropolitan Municipality area in Turkey, between May 2010 and May 2013, where 1393 tick specimens were collected from domestic and wild animals (cattle, goats, sheep, hedgehogs, tortoises, dogs, cats, chickens) and from the environment. The collected ticks were preserved in 70 % alcohol and then were identified. Five genus and eight hard and soft tick species were identified, including Argas persicus, Rhipicephalus annulatus, R. sanguineus, R. turanicus, Hyalomma aegyptium, H. marginatum, Haemaphysalis parva, and Dermacentor niveus. Rhipicephalus sanguineus, R. turanicus, and H. aegyptium were the most common tick species in Antalya city. Rhipicephalus turanicus and R. sanguineus were the most abundant tick species infesting dogs in the city. The hosts of H. aegyptium are primarily tortoises in Antalya. The results of this research will contribute to establishing appropriate measures to control tick infestations on animals and humans and their environment in the city of Antalya. PMID:25869959

  4. Method for measuring surface activity of silicon nitride powder

    NASA Technical Reports Server (NTRS)

    Kanno, Y.; Imai, H.

    1985-01-01

    Amorphous, alpha-, and beta-Si3N4 powders were activated by vibration ball milling in purified MeOH, and the surface activity of ground powders was determined by the temperature programmed desorption (TPD) method using NH3 gas. The concentration of active sites with a potential energy equivalent to the peak temperature in the spectrum increased was markedly by ball milling the amorphous Si3N4. The alpha- and beta-Si3N4 also had active sites produced by ball milling. The concentration of active site increased with increased ball milling time. A method for measuring surface activity of ceramic raw materials by TPD is proposed.

  5. Interaction of methanol and its dehydrogenation species with Pt-alloy surfaces

    NASA Astrophysics Data System (ADS)

    Cahyanto, Wahyu Tri; Widanarto, Wahyu; Effendi, Mukhtar; Hamdi, Muhammad Raihan; Kasai, Hideaki

    2016-02-01

    Adsorption of sequential single methanol dehydrogenation intermediate species on Pt-, PtRu-, and PtRuMo-surfaces is investigated by using density functional theory (DFT). This work is a part of our efforts in understanding the methanol oxidation reaction (MOR) on Pt-alloy surfaces for further possible prediction of decomposition processes. Particularly, effects of Ru and Mo impurity to the pure Pt surface to form PtRu and PtRuMo surfaces as possible candidates for promising catalysts of direct methanol fuel cells (DMFCs) are given. However, the study is limited to the scientific point of view, i.e., fundamental interactions between adsorbates and surfaces, in correspondence with adsorption mechanism using charge transfer analysis. The trend in the increase of adsorption energy and charge transfer by alloying Ru and Mo to the Pt surface is observed. Moreover, the increase of the d-orbital vacancy caused by alloying Ru and Mo possessing lesser filled d-orbital is suggested to responsible for the increase of surface-adsorbate interaction strength.

  6. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species

    NASA Astrophysics Data System (ADS)

    Frunza, Stefan; Frunza, Ligia; Ganea, Constantin Paul; Zgura, Irina; Brás, Ana Rita; Schönhals, Andreas

    2016-02-01

    Surface layers have already been observed by broadband dielectric spectroscopy for composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species ns was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees.

  7. Propylene on Pt(111)I. Characterization of surface species by infra-red spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaera, Francisco; Chrysostomou, Demetrius

    2000-06-01

    The adsorption of propylene on Pt(111) single-crystal surfaces was characterized by reflection-absorption infra-red spectroscopy (RAIRS). The uptake of propylene on the surface at 90 K results in the development of at least four adsorption species as a function of coverage. Significant rehybridization of the CC double bond of propylene takes place at low coverages, so the molecule primarily interacts with the metal via two σ metalcarbon bonds. Below half-saturation, the molecule mainly bonds through the central carbon atom, but at higher coverage, the CC bond becomes flat, and the terminal methyl group tilts towards a more vertical orientation. Further dosing of propylene after saturation of the di-σ state leads to the build-up of a flat π-bonded second layer. Ultimately, a layer of condensed propylene could be grown on the surface under the vacuum conditions of the experiment as long as the temperature was kept below 80 K. Annealing of the low-temperature propylene-saturated Pt(111) surface first induces the desorption of the weakly held π species, and later, between 230 and 250 K, to the dehydrogenation and rearrangement of the remaining di-σ species to propylidyne (Pt 3CCH 2CH 3). The details of the conversion of propylene to propylidyne change somewhat with the conditions under which this transformation is carried out, and appear to involve a stable and identifiable intermediate [2-propyl, CH 3CH(Pt)CH 3, and/or propylidene, Pt 2CHCH 2CH 3]. Propylene π-bonding is also possible on propylidyne-saturated Pt(111) surfaces under vacuum.

  8. Enzyme and root activities in surface-flow constructed wetlands.

    PubMed

    Kong, Ling; Wang, Yu-Bin; Zhao, Li-Na; Chen, Zhang-He

    2009-07-01

    Sixteen small-scale wetlands planted with four plant species were constructed for domestic wastewater purification. The objective of this study was to determine the correlations between contaminant removal and soil enzyme activity, root activity, and growth in the constructed wetlands. The results indicated that correlations between contaminant removal efficiency and enzyme activity varied depending on the contaminants. The removal efficiency of NH4+ was significantly correlated with both urease and protease activity in all wetlands, and the removal of total phosphorus and soluble reactive phosphorus was significantly correlated with phosphatase activity in most wetlands, while the removal of total nitrogen, NO3(-) , and chemical oxygen demand (COD) was significantly correlated with enzyme activity only in a few instances. Correlations between soil enzyme activity and root activity varied among species. Activities of all enzymes were significantly correlated with root activity in Vetiveria zizanioides and Phragmites australis wetlands, but not in Hymenocallis littoralis wetlands. Significant correlations between enzyme activity and root biomass and between enzyme activity and root growth were found mainly in Cyperus flabelliformis wetlands. Root activity was significantly correlated with removal efficiencies of all contaminants except NO3(-) and COD in V. zizanioides wetlands. Enzyme activities and root activity showed single-peak seasonal patterns. Activities of phosphatase, urease, and cellulase were significantly higher in the top layer of the substrate than in the deeper layers, and there were generally no significant differences between the deeper layers (deeper than 15 cm). PMID:19497608

  9. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  10. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    PubMed

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  11. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  12. APOLLO 10: Training for Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts train on a mock-up lunar surface, practicing the procedures they will follow on the real thing, and adjusting to the demands of the workload. From the film documentary 'APOLLO 10: 'Green Light for a Lunar Landing''. Part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 10: Manned lunar orbital flight with Thomas P Stafford, John W. Young, and Eugene A. Cernan to test all aspects of an actual manned lunar landing except the landing. Mission Duration 192hrs 3mins 23 sec

  13. Antioxidant, hemolytic and cytotoxic activities of Senecio species used in traditional medicine of northwestern Argentina.

    PubMed

    Lizarraga, Emilio; Castro, Felipe; Fernández, Francisco; de Lampasona, Marina P; Catalán, César A N

    2012-05-01

    Senecio nutans Sch. Bip., S. viridis var. viridis Phill. and S. spegazzinii Cabrera are native species used in traditional medicine of northwestern Argentina. The total phenolics, flavonoids and caffeoylquinic acids contents, as well as radical scavenging, antioxidant, hemolytic and cytotoxic activities of aqueous extracts (infusion and decoction) of all three species were determined. S. nutans was the most active. The extracts did not show antibacterial activity. Alkaloids were not detected in any of the aqueous extracts of the three studied species. PMID:22799087

  14. Switching on the Metathesis Activity of Re Oxo Alkylidene Surface Sites through a Tailor-Made Silica-Alumina Support.

    PubMed

    Valla, Maxence; Stadler, David; Mougel, Victor; Copéret, Christophe

    2016-01-18

    Re oxo alkylidene surface species are putative active sites in classical heterogeneous Re-based alkene-metathesis catalysts. However, the lack of evidence for such species questions their existence and/or relevance as reaction intermediates. Using Re(O)(=CH-CH=CPh2)(OtBuF6)3(THF), the corresponding well-defined Re oxo alkylidene surface species can be generated on both silica and silica-alumina supports. While inactive on the silica support, it displays very good activity, even for functionalized olefins, on the silica-alumina support. PMID:26756446

  15. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior

    PubMed Central

    Lee, Daniel Z.; Chung, Jin M.; Chung, Kyungsoon; Kang, Myoung-Goo

    2012-01-01

    Sensitization of dorsal horn neurons (DHNs) in the spinal cord is dependent on pain-related synaptic plasticity and causes persistent pain. The DHN sensitization is mediated by a signal transduction pathway initiated by the activation of NMDA receptors (NMDA-Rs). Recent studies have shown that elevated levels of reactive oxygen species (ROS) and phosphorylation-dependent trafficking of GluA2 subunit of AMPA receptors (AMPA-Rs) are a part of the signaling pathway for DHN sensitization. However, the relationship between ROS and AMPA-R phosphorylation and trafficking is not known. Thus, this study investigated the effects of ROS scavengers on the phosphorylation and cell-surface localization of GluA1 and GluA2. Intrathecal NMDA- and intradermal capsaicin-induced hyperalgesic mice were used for this study since both pain models share the NMDA-R activation-dependent DHN sensitization in the spinal cord. Our behavioral, biochemical, and immunohistochemical analyses demonstrated that: 1) NMDA-R activation in vivo increased the phosphorylation of AMPA-Rs at GluA1 (S818, S831, and S845) and GluA2 (S880) subunits, 2) NMDA-R activation in vivo increased cell-surface localization of GluA1 but decreased that of GluA2, and 3) reduction of ROS levels by ROS scavengers PBN or TEMPOL reversed these changes in AMPA-Rs, as well as pain-related behavior. Given that AMPA-R trafficking to the cell surface and synapse is regulated by NMDA-R activation-dependent phosphorylation of GluA1 and GluA2, our study suggests that the ROS-dependent changes in the phosphorylation and cell-surface localization of AMPA-Rs are necessary for DHN sensitization and thus pain-related behavior. We further suggest that ROS reduction will ameliorate these molecular changes and pain. PMID:22770842

  16. Selective adsorption of benzoic acid species on patterned OH/Si(100) surface

    SciTech Connect

    Ihm, Kyuwook; Han, Jin Hee; Kim, Bongsoo; Chung, Sukmin; Hwang, Chan-Cuk; Kang, Tai-Hee; Kim, Ki-Jeong; Jung, Yu Jin; An, Ki-Seok

    2006-08-15

    It has recently been observed that benzoic acid strongly reacts with OH group on the silicon surface. Here, by defining the area in which OH group is adsorbed on the Si surface, the selective adsorption of benzoic acid species was attempted. The patterned OH/Si surface was prepared by irradiating the zeroth order beam from the bending magnet of the synchrotron facility through the gold mesh placed in front of the OH/Si sample. For discerning the selectively adsorbed molecule by x-ray photoelectron emission microscopy (X-PEEM) at N k edge, 4-nitrobenzoic acid was utilized instead of benzoic acid. Near edge x-ray absorption fine structure spectra at carbon and oxygen k edges were in good accord with the previous results obtained from the benzoic acid system. The X-PEEM images around N k edge clearly showed that the molecules adsorb only on the area in which OH groups remain.

  17. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    PubMed Central

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-01-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408

  18. A new technique for Auger analysis of surface species subject to electron-induced desorption.

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time-independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the sample velocity, incident electron current, beam diameter, and desorption cross section is analyzed. It is shown that it is advantageous to analyze the moving sample with a high beam current, in contrast to the usual practice of using a low beam current to minimize desorption from a stationary sample. The method is illustrated by the analysis of a friction transfer film of PTFE, in which the fluorine is removed by electron-induced desorption. The method is relevant to surface studies in the field of lubrication and catalysis.

  19. Catalytic reduction of NO by CO over rhodium catalysts. 2. Effect of oxygen on the nature, population, and reactivity of surface species formed under reaction conditions

    SciTech Connect

    Kondarides, D.I.; Chafik, T.; Verykios, X.E.

    2000-04-01

    The effect of oxygen on the nature, population, and reactivity of surface species formed during reduction of NO by CO over Rh/TiO{sub 2} catalysts has been examined employing FTIR and transient MS techniques. It has been found that the activity of Rh is hindered by accumulation of surface oxygen originating from NO decomposition and gas-phase oxygen in the feed. Adsorbed CO and reduced TiO{sub 2{minus}x} species in the vicinity of Rh particles act as oxygen atom scavengers and, under fuel-rich conditions, remove atomic oxygen from the surface and restore the catalytic properties. Results of the present study provide additional evidence that production of N{sub 2} is related to dissociation of adsorbed Rh-NO{sup {minus}} while production of N{sub 2}O is related to the presence of Rh(NO){sub 2}. The presence of reduced RH{sup 0} sites is necessary for the formation of both reduction products. In the absence of oxygen in the feed, surface isocyanate species are also observed under reaction conditions. Their formation requires the presence of adjacent Rh{sup 0}-CO and reduced Rh{sup 0} sites. Although these species are favored under conditions in which NO conversion to reduction products is observed, there is no evidence that they are catalytically active species.

  20. Early contacts between T lymphocytes and activating surfaces

    NASA Astrophysics Data System (ADS)

    Cretel, E.; Touchard, D.; Benoliel, A. M.; Bongrand, P.; Pierres, A.

    2010-05-01

    Cells continually probe their environment to adapt their behaviour. A current challenge is to determine how they analyse nearby surfaces and how they process information to take decisions. We addressed this problem by monitoring human T lymphocyte attachment to surfaces coated with activating anti-CD3 or control anti-HLA antibodies. Interference reflection microscopy allowed us to monitor cell-to-surface apposition with a few nanometre vertical resolution during the first minutes following contact. We found that (i) when a cell fell on a surface, contact extension was preceded by a lag of several tens of seconds. (ii) During this lag, vertical membrane undulations seemed to generate transient contacts with underlying surfaces. (iii) After the lag period, the contact area started increasing linearly with a rate of about 1.5 µm2 s - 1 on activating surfaces and about 0.2 µm2 s - 1 on control surfaces. (iv) Concomitantly with lateral surface extension, the apparent distance between cell membranes and surfaces steadily decreased. These results are consistent with the hypothesis that the cell decision to spread rapidly on activating surfaces resulted from the integration of information yielded by transient contacts with these surfaces generated by membrane undulations during a period of about 1 min.

  1. Assessing the antimicrobial activity of polyisoprene based surfaces.

    PubMed

    Badawy, Hope; Brunellière, Jérôme; Veryaskina, Marina; Brotons, Guillaume; Sablé, Sophie; Lanneluc, Isabelle; Lambert, Kelly; Marmey, Pascal; Milsted, Amy; Cutright, Teresa; Nourry, Arnaud; Mouget, Jean-Luc; Pasetto, Pamela

    2015-01-01

    There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the "miracle solution" has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred. PMID:25706513

  2. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  3. Assessing the Antimicrobial Activity of Polyisoprene Based Surfaces

    PubMed Central

    Badawy, Hope; Brunellière, Jérôme; Veryaskina, Marina; Brotons, Guillaume; Sablé, Sophie; Lanneluc, Isabelle; Lambert, Kelly; Marmey, Pascal; Milsted, Amy; Cutright, Teresa; Nourry, Arnaud; Mouget, Jean-Luc; Pasetto, Pamela

    2015-01-01

    There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the “miracle solution” has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred. PMID:25706513

  4. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid

    PubMed Central

    Wang, Lixin; Zhou, Qiang

    2016-01-01

    To investigate the hydrophobicity of slippery zones, static contact angle measurement and microstructure observation of slippery surfaces from two Nepenthes species and a hybrid were conducted. Marginally different static contact angles were observed, as the smallest (133.83°) and greatest (143.63°) values were recorded for the N. alata and N. miranda respectively, and the median value (140.40°) was presented for the N. khasiana. The slippery zones under investigation exhibited rather similar surface morphologies, but different structural dimensions. These findings probably suggest that the geometrical dimensions of surface architecture exert primary effects on differences in the hydrophobicity of the slippery zone. Based on the Wenzel and Cassie-Baxter equations, models were proposed to analyze the manner in which geometrical dimensions affect the hydrophobicity of the slippery surfaces. The results of our analysis demonstrated that the different structural dimensions of lunate cells and wax platelets make the slippery zones present different real area of the rough surface and thereby generate somewhat distinguishable hydrophobicity. The results support a supplementary interpretation of surface hydrophobicity in plant leaves, and provide a theoretical foundation for developing bioinspired materials with hydrophobic properties and self-cleaning abilities. PMID:26813707

  5. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    PubMed

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented. PMID:18600919

  6. Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity

    SciTech Connect

    Krishnan,S.; Ward, R.; Hexemer, A.; Sohn, K.; Lee, K.; Angert, E.; Fischer, D.; Kramer, E.; Ober, C.

    2006-01-01

    Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.

  7. Application of solid state NMR for the study of surface bound species and fossil fuels

    NASA Astrophysics Data System (ADS)

    Althaus, Stacey

    Recent advances in solid state NMR have been utilized to study a variety of systems. These advancements have allowed for the acquisition of sequences previously only available for solution state detection. The protocol for the measurement of coals and other carbonaceous materials was updated to incorporate the recent advancements in fast magic angle spinning (MAS) and high magnetic fields. Argonne Premium Coals were used to test the sensitivity and resolution of the experiments preformed at high field and fast MAS. The higher field spectra were shown to be slightly less sensitive than the traditional lower field spectra, however, the new high field fast MAS spectra had better resolution. This increased resolution allowed for the separation of a variety of different functional groups, thereby allowing the composition of the coal to be determined. The use of 1 H detection allowed for 2D spectra of coals for the first time. These spectra could be filtered to examine either through-space or through-bond correlations. Indirect detection via 1 H was also pivotal in the detection of natural abundance 15 N spectra. Through-space and through-bond 2D spectra of natural abundance bulk species are shown with a sensitivity increase of 15 fold over traditional detection. This sensitivity enhancement allowed for the detection of natural abundance 15 N surface bound species in 2D, something that could not be acquired via traditional methods. The increased efficiency of the through-space magnetization transfer, Cross polarization, at fast MAS compared to the slower MAS rates is shown. The through-bond magnetization transfer via INEPT was examined and the effect of J-coupling is confirmed. Solid State NMR can be utilized to help improve catalytic interactions. Solid state NMR was used to examine the aldol condensation between p-nitrobenzaldehyde and acetone. The formation of a stable intermediate with p-nitrobenzaldehyde was found on the primary functionalized amine mesoporous

  8. Survival and persistence of Campylobacter and Salmonella species under various organic loads on food contact surfaces.

    PubMed

    De Cesare, Alessandra; Sheldon, Brian W; Smith, Katie S; Jaykus, Lee-Ann

    2003-09-01

    Although many cases of Campylobacter and Salmonella enteritis have been attributed to the undercooking of poultry and other foods, cross-contamination between raw and cooked foods via food contact surfaces and worker contact has also been identified as a significant risk factor. Cross-contamination may be particularly important in relation to the high prevalence of contamination in raw poultry products and other foods and the low infectious doses that have been reported for Campylobacter species. Lag phase and decimal reduction times (D-values at 27 degrees C [81 degrees F] and 60 to 62% relative humidity) were determined for Campylobacter jejuni and Salmonella species (five-strain pools) suspended in either a phosphate-buffered saline (PBS) solution or Trypticase soy broth (TSB) and then inoculated (0.1-ml drop per surface) on 5-cm2 samples of Formica laminate (F), glazed ceramic tile (CT), 304 polished stainless steel (SS), and 100% cotton dishcloth (D). Triplicate samples were collected from each contact surface periodically, and the populations of surviving organisms were enumerated on Campy Cefex and brain heart infusion agars for C. jejuni and Salmonella species, respectively. Lag time and rate of inactivation were influenced by organism type, contact surface, and suspending medium. Initial mean lag times ranging from 60 to 190 min were followed by log-linear (r2 > 0.94) decreases in cell populations that varied across contact surfaces. D-values of 12.5, 19.1, 24.1, and 29.7 min and of 23.7, 10.5, 12.7, and 13.9 min were calculated for C. jejuni suspended in PBS and TSB and then spotted on D, F, SS, and CT surfaces, respectively. The times required to produce a 3-log reduction in population with PBS and TSB ranged from 102 (D) to 247 (F) min and from 112 (CT) to 167 (F) min, respectively. C. jejuni cells suspended in the nutritionally enriched medium (TSB) and spotted on the hard surfaces were inactivated about 1.4 times as fast as cells suspended in PBS. For

  9. Active nematics of flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Dogic, Zvonimir

    2014-03-01

    The laws of equilibrium statistical mechanics impose severe constraints on the properties of conventional materials assembled from inanimate building blocks. Consequently, such materials cannot exhibit spontaneous motion or perform macroscopic work; i.e., a fluid in a beaker remains quiescent unless driven by external forces. Inspired by biological phenomena such as ciliary beating or Drosophila cytoplasmic streaming our aim is to develop a new category of materials assembled from animate, energy-consuming building blocks. Starting from a few well-characterized biochemical components we assemble and study far-from-equilibrium analogs of conventional liquid crystals. Released from the constraints of equilibrium, this internally driven polymeric material exhibits a host of highly-sought after properties including appearance of steady-state streaming flows that are accompanied by the spontaneous unbinding and annihilations of motile defects as well as appearance and subsequent self-healing of fracture lines. Active liquid crystals can serve as a platform for developing novel material applications, testing fundamental theoretical models of far-from-equilibrium active matter and potentially shedding light on self-organization in living cells.

  10. Surface Adsorbed Species: IR Studies of SO2 and H2S Adsorbed on Oxides

    NASA Astrophysics Data System (ADS)

    Lavalley, J. C.; Lamotte, J.; Saur, O.; Mohammed Saad, A. B.; Tripp, C.; Morrow, B. A.

    1985-12-01

    The adsorption of SO, on alumina leads to the formation of several species such as SO3=, HSO3- and coordinated SO2. In addition sulfates are produced under oxidizing conditions. However, definitive vibra- tional assignments are hampered by the paucity of data below 1000 cm-1 where alumina is strongly absorbing. On the other hand, silica is partially transparent at low frequencies and subtractive IR spectroscopy has permitted us to observe bands which are tentatively assigned to the SO bending modes of bisulfite (HSO3-, 635 cm-I) and disulfite (S2O5-, 660 cm-I) surface species on sodium promoted silica catalysts when SO and H2O are coadsorbed. H2S addition to a surface pretreated with SO2 gives rise to a new band at 680 cm-1 which is pos- sibly due to S2O3 orS2O on the surface. The results are discussed in terms of intermediates in the Claus process (2 H2S + SO2 + 3/n Sn + 2 H2O).

  11. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  12. The relative importance of respiratory water loss in scorpions is correlated with species habitat type and activity pattern.

    PubMed

    Gefen, Eran

    2011-01-01

    Scorpions exhibit some of the lowest recorded water loss rates compared with those of other terrestrial arthropods of similar body size. Evaporative water loss (EWL) includes cuticular transpiration and respiratory water loss (RWL) from gas exchange surfaces, that is, book lung lamellae. Estimated fractions of cuticular and respiratory losses currently available from the literature show considerable variation, at least partly as a result of differences in methodology. This study reports RWL rates and their relative importance in scorpions from two families (Buthidae and Scorpionidae), including both xeric and mesic species (or subspecies). Two of the included Buthidae were surface-dwelling species, and another inhabits empty burrows of other terrestrial arthropods. This experimental design enabled correlating RWL importance with scorpion phylogeny, habitat type, and/or homing behavior. Buthidae species exhibited significantly lower EWL rates compared with those of Scorpionidae, whereas effects of habitat type and homing behavior were not significant. Resting RWL rates were not significantly affected by scorpion phylogeny, but rates for the xeric species (totaling ~10% of EWL rates at 30°C) were significantly lower compared with those of mesic species. These lower RWL values were correlated with significantly lower H(2)O/CO(2) emission rates in xeric species. The experimental setup and ~24-h duration of each individual recording allowed estimating the effect of interspecific variation in activity on RWL proportions. The high respiratory losses in active hydrated Scorpio maurus fuscus, totaling 30% of EWL, suggest that behavioral discretion in this species is a more likely mechanism for body water conservation under stressful conditions when compared with the responses of other studied species. PMID:21133796

  13. A Hands-On Activity to Introduce the Effects of Transmission by an Invasive Species

    ERIC Educational Resources Information Center

    May, Barbara Jean

    2013-01-01

    This activity engages students to better understand the impact of transmission by invasive species. Using dice, poker chips, and paper plates, an entire class mimics the spread of an invasive species within a geographic region. The activity can be modified and conducted at the K-16 levels.

  14. Ion scattering and electron spectroscopy of the chemical species at a HF-prepared Si(211) surface

    SciTech Connect

    Jaime-Vasquez, M.; Martinka, M.; Groenert, M.; Dinan, J.

    2006-01-16

    The species and the nature of their chemical bonds at the surface of a hydrogen-terminated Si(211) wafer were characterized using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. The surface region is dominated by monohydride species with dihydrides present in small amounts. Fluorine is distributed across the top layer as largely a physisorbed species to the Si substrate. Low-energy {sup 3}He{sup +} ions remove the H and F species with only minimal damage to the underlying region.

  15. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  16. Characterization of surface active materials derived from farm products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...

  17. Surface-Energy Dependent Contact Activation of Blood Factor XII

    PubMed Central

    Golas, Avantika; Parhi, Purnendu; Dimachkie, Ziad O.; Siedlecki, Christopher A.; Vogler, Erwin A.

    2009-01-01

    Contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension τao=γlvocosθ in dyne/cm, where γlvo is water interfacial tension in dyne/cm and θ is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties −36<τao<72 dyne/cm (0° ≤ θ < 120°), falling sharply through a broad minimum within the 20<τao<40 dyne/cm (55° < θ < 75°) range over which activation yield (putatively FXIIa) rises just above detection limits. Activation is very rapid upon contact with all activators tested and did not significantly vary over 30 minutes of continuous FXII-procoagulant contact. Results suggest that materials falling within the 20<τao<40 dyne/cm surface-energy range should exhibit minimal activation of blood-plasma coagulation through the intrinsic pathway. Surface chemistries falling within this range are, however, a perplexingly difficult target for surface engineering because of the critical balance that must be struck between hydrophobicity and hydrophilicity. Results are interpreted within the context of blood plasma coagulation and the role of water and proteins at procoagulant surfaces. PMID:19892397

  18. Surface activity of Acinetobacter calcoaceticus sp. 2CA2

    SciTech Connect

    Neufeld, R.J.; Zajic, J.E.

    1984-01-01

    The hydrocarbon metabolizing Acinetobacter calcoaceticus sp. 2CA2 reduces the surface tension of the culture broth during growth on liquid hydrocarbons. This activity, which is not evident during growth on soluble substrates, is associated with the whole cells. Removing the cells from the culture broth increases the surface tension of the liquid phase. The cells when resuspended in water result in a dramatic lowering of the surface tension. Acinetobacter sp. 2CA2 tends to partition between the two liquid phases during growth on hydrocarbons. Both the hydrocarbon bound and nonadhering cells are equally surface active. The whole cells are also able to form and stabilize kerosene-water emulsions. This ability is not related to the lowering of the liquid surface or interfacial tension, since both surface active and nonsurface active cells demonstrated the same emulsifying properties. An extracellular lipopeptide produced during growth on hydrocarbons is not surface active but effectively forms and stabilizes kerosene-water emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The lipopeptide product reduced the half-life of a Tween-Span (TS) stabilized kerosene-water emulsion from 650 to 0.4 h at product concentrations of less than 1% (w/v).

  19. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  20. Evaluation of multi-activities of 14 edible species from Zingiberaceae.

    PubMed

    Lu, Chuan-Li; Zhao, Hai-Yan; Jiang, Jian-Guo

    2013-02-01

    Fourteen Zingiberaceae species, widely used in China for both food and medicine, were selected to evaluate and compare their antioxidant, antimicrobial and cytotoxic activities. Results indicated that seven species displayed high antioxidant activity, while eight species exhibited different degrees of antimicrobial activities (minimum inhibitory concentrations were 2.00-40.00 μg/ml), and six species exhibited cytotoxicity on the SMMC-7721 cells. Alpinia officinarum and Alpinia oxyphylla showed a broader antimicrobial spectrum, while Curcuma phaeocaulis and Zingiber officinale displayed specific inhibition on Escherichia coli. Amomum villosum showed strong radical scavenging capacity. Amomum kravanh and Curcuma longa exhibited significant cytotoxicity. Overall, the antioxidant, antimicrobial and cytotoxic activities of the 14 species showed obvious diversities. It is hoped that, from the results, the biological activity of ginger plants can be used more rationally and effectively in future. PMID:22716965

  1. Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy

    DOEpatents

    Angel, S.M.; Sharma, S.K.

    1987-11-30

    Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the adsorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.

  2. Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy

    DOEpatents

    Angel, S.M.; Sharma, S.K.

    1988-11-01

    Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the absorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.

  3. Stopping the growth of particles to silica-supported mono-nuclear Ru hydride surface species by tuning silica with surface silanes

    SciTech Connect

    Berthoud, Romain; Fenet, Bernard; Lukens, Wayne; Pelzer, Katrin; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe

    2007-07-11

    Tuning silica by replacing surface silanols with silanes allows chemical grafting of Ru(COD)(COT) through a covalent Ru-Si bond, as evidenced by elemental analysis, IR spectroscopy and EXAFS. Treatment of these surface species under H2 at 300 oC yields a mononuclear Ru hydride species, without any sintering of the metal according to TEM and EXAFS analyses. This supported system displays catalytic properties different from those of supported Ru particles (2 nm), selectively hydrogenating olefins over aromatics.

  4. Phytochemical profiling of five medicinally active constituents across 14 Eutrema species.

    PubMed

    Hao, Guoqian; Wang, Qian; Liu, Bingbing; Liu, Jianquan

    2016-04-01

    Wasabi or Japanese horseradish (Eutrema japonicum) is both a traditional condiment and a medicinally important plant with diverse uses. Its medicinally active constituents appear to include five isothiocyanates, but their spatial variations in naturally occurring congeners are unknown. Thus, in this study we measured concentrations of these five active constituents in 20 populations of 14 species of Eutrema and one related species, Yinshania sinuata. Three to five of these constituents were detected in each of the examined species, at concentrations that varied greatly between sampled species and populations of the same species. However, two species, Eutrema tenue and Eutrema deltoideum, had higher total concentrations of the five isothiocyanates and substantially higher concentrations of one or two, than the widely cultivated E. japonicum. Thus, both of these species could be important wild resources for artificial cultivation, in addition to the currently widely cultivated E. japonicum. PMID:26946379

  5. Asphaltene surface activity at oil/water interfaces

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.

    1995-11-01

    Small angle neutron scattering (SANS) dynamic surface tension (DST), dynamic interfacial tension (DIFT), and zero shear viscosity were used to study the surface activity of Ratawi asphaltenes in organic solvents, in the asphaltene/water/toluene emulsions and at the toluene/aqueous solution interfaces. In organic solvents, the kinetic process of micellization and the micellar structure are characterized. Their dependence on asphaltene concentration was investigated. The emulsion droplet structure and their capability in water uptake was tested. Also, the enhancement of surface activity of asphaltenes and its potential applications are briefly discussed.

  6. Animal Related Activities as Determinants of Species Knowledge

    ERIC Educational Resources Information Center

    Randler, Christoph

    2010-01-01

    Previous work has established a relationship between knowledge and environmental concern. Different factors may contribute to this knowledge and animal-related leisure activities may also contribute to this knowledge. 390 participants in Leipzig, Germany were interviewed to assess their animal-related leisure activities, their demographic status…

  7. Antifungal activity of local anesthetics against Candida species.

    PubMed Central

    Pina-Vaz, C; Rodrigues, A G; Sansonetty, F; Martinez-De-Oliveira, J; Fonseca, A F; Mårdh, P A

    2000-01-01

    OBJECTIVE: To evaluate the activity of benzydamine, lidocaine, and bupivacaine, three drugs with local anesthetic activity, against Candida albicans and non-albicans strains and to clarify their mechanism of activity. METHODS: The minimal inhibitory concentration (MIC) was determined for 20 Candida strains (18 clinical isolates and two American Type Culture Collection strains). The fungistatic activity was studied with the fluorescent probe FUN-1 and observation under epifluorescence microscopy and flow cytometry. The fungicidal activity of the three drugs was assayed by viability counts. Membrane alterations induced in the yeast cells were evaluated by staining with propidium iodide, by quantitation of intracellular K+ leakage and by transmission electron microscopy of intact yeast cells and prepared spheroplasts. RESULTS: The MIC ranged from 12.5-50.0 microg/mL, 5.0-40.0 mg/mL, and 2.5-10.0 mg/mL for benzydamine, lidocaine, and bupivacaine, respectively. The inhibitory activity of these concentrations could be detected with the fluorescent probe FUN-1 after incubation for 60 minutes. A very fast fungicidal activity was shown by 0.2, 50, and 30 mg/mL of benzydamine, lidocaine, and bupivacaine, respectively. CONCLUSIONS: At lower concentrations, the tested drugs have a fungistatic activity, due to yeast metabolic impairment, while at higher concentrations they are fungicidal, due to direct damage to the cytoplasmic membrane. PMID:10968594

  8. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts.

    PubMed

    Olsbye, U; Svelle, S; Lillerud, K P; Wei, Z H; Chen, Y Y; Li, J F; Wang, J G; Fan, W B

    2015-10-21

    The methanol to hydrocarbon (MTH) process provides an efficient route for the conversion of carbon-based feedstocks into olefins, aromatics and gasoline. Still, there is room for improvements in product selectivity and catalytic stability. This task calls for a fundamental understanding of the formation, catalytic mechanism and degradation of active sites. The autocatalytic feature of the MTH process implies that hydrocarbons are active species on the one hand and deactivating species on the other hand. The steady-state performance of such species has been thoroughly studied and reviewed. However, the mechanism of formation of the initial hydrocarbon species (i.e.; the first C-C bond) and the evolution of active species into deactivating coke species have received less attention. Therefore, this review focuses on the significant progress recently achieved in these two stages by a combination of theoretical calculations, model studies, operando spectroscopy and catalytic tests. PMID:26185806

  9. Comparison of compounds of three Rubus species and their antioxidant activity.

    PubMed

    Caidan, Rezeng; Cairang, Limao; Pengcuo, Jiumei; Tong, Li

    2015-12-01

    Rubus amabilis, Rubus niveus Thunb., and Rubus sachalinensis are three Rubus species that are alternatively found in Manubzhithang, a Tibetan medicine, in different areas of China. The current study analyzed HPLC/UV chromatograms and it compared compounds of these three Rubus species in contrast to reference substances such as 2,6-dimethoxy-4-hydroxyphenol-1-O-β-D-glucopyranoside, procyanidin B4, and isovitexin-7-O-glucoside. The three Rubus species produced similar peaks in chromatograms. The antioxidant activity of the three Rubus species was determined using an assay for DPPH free radical scavenging activity. Results indicated that the three Rubus species extracts had almost the same level of free radical scavenging activity. Thus, findings indicated the rationality of substituting these species for one another as an ingredient in Manubzhithang. PMID:26781923

  10. Antimicrobial activities of three species of family mimosaceae.

    PubMed

    Mahmood, Adeel; Mahmood, Aqeel; Qureshi, Rizwana Aleem

    2012-01-01

    The antimicrobial activities of crude methanolic extract of leaves of Acacia nilotica L., Albizia lebbeck L. and Mimosa himalayana Gamble belonging to family mimosaceae were investigated in this research work. Antibacterial activity was studied by agar well diffusion method against one gram-positive Bacillus subtilis and three gram-negative Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumonia. Crude extract of all plants showed best activity against gram-negative bacterial strains while minor inhibition zones were found against gram positive bacterial strains. Antifungal activity of crude plant extract was screened by agar tube dilution method against Aspergillus nigar and Aspergillus flavus. These results showed that these plants extracts have potential against bacterias, while against fungi their activity is not much effective. PMID:22186331

  11. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein. PMID:26620444

  12. Surface activation-based nanobonding and interconnection at room temperature

    NASA Astrophysics Data System (ADS)

    Howlader, M. M. R.; Yamauchi, A.; Suga, T.

    2011-02-01

    Flip chip nanobonding and interconnect system (NBIS) equipment with high precision alignment has been developed based on the surface activated bonding method for high-density interconnection and MEMS packaging. The 3σ alignment accuracy in the IR transmission system was approximately ±0.2 µm. The performance of the NBIS has been preliminarily investigated through bonding between relatively rough surfaces of copper through silicon vias (Cu-TSVs) and gold-stud bumps (Au-SBs), and smooth surfaces of silicon wafers. The Cu-TSVs of 55 µm diameter and the Au-SBs of 35 µm diameter with ~6-10 nm surface roughness (RMS) were bonded at room temperature after surface activation using an argon fast atom beam (Ar-FAB) under 0.16 N per bump. Silicon wafers of 50 mm diameter with ~0.2 nm RMS surface roughness were bonded without heating after surface activation. Void-free interfaces both in Cu-TSV/Au-SB and silicon/silicon with bonding strength equivalent to bulk fracture of Au and silicon, respectively, were achieved. A few nm thick amorphous layers were observed across the silicon/silicon interface that was fabricated by the Ar-FAB. This study in the interconnection and bonding facilitates the required three-dimensional integration on the same surface for high-density electronic and biomedical systems.

  13. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation

    NASA Astrophysics Data System (ADS)

    Gélabert, A.; Pokrovsky, O. S.; Viers, J.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.

    2006-02-01

    This work is devoted to characterization of zinc interaction in aqueous solution with two marine planktonic ( Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species ( Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption and electrophoretic measurements with surface complexation modeling and by assessing Zn isotopes fractionation during both long term uptake and short term adsorption on diatom cells and their frustules. Reversible adsorption experiments were performed at 25 and 5 °C as a function of exposure time (5 min to 140 h), pH (2 to 10), zinc concentration in solution (10 nM to 1 mM), ionic strength ( I = 0.001 to 1.0 M) and the presence of light. While the shape of pH-dependent adsorption edge is almost the same for all four species, the constant-pH adsorption isotherm and maximal Zn binding capacities differ by an order of magnitude. The extent of adsorption increases with temperature from 5 to 25 °C and does not depend on light intensity. Zinc adsorption decreases with increase of ionic strength suggesting competition with sodium for surface sites. Cell number-normalized concentrations of sorbed zinc on whole cells and their silica frustules demonstrated only weak contribution of the latter (10-20%) to overall zinc binding by diatom cell wall. Measurements of electrophoretic mobilities ( μ) revealed negative diatoms surface potential in the full range of zinc concentrations investigated (0.15-760 μmol/L), however, the absolute value of μ decreases at [Zn] > 15 μmol/L suggesting a change in surface speciation. These observations allowed us to construct a surface complexation model for Zn binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Zn complexation with carboxylate and silanol groups. Thermodynamic and structural parameters of this model are based on previous acid-base titration and spectroscopic results and allow

  14. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  15. Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions.

    PubMed

    Gonçalves, Maraisa; Sánchez-García, Laura; Oliveira Jardim, Erika de; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco

    2011-12-15

    The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH(3) breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH(4)(+) species interacting with the Brønsted acid sites, together with the presence of NH(3) species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers. PMID:22049916

  16. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    PubMed Central

    He, Peng; Hou, Xiaolin; Aldahan, Ala; Possnert, Göran; Yi, Peng

    2013-01-01

    Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on 129I and 127I, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30° and 50°N. The results show iodate as the predominant species in the analyzed marine waters for both 127I and 129I. Despite the rather constant ratios of 127I−/127IO3−, the 129I−/129IO3− values reveal variations that apparently response to sources, environmental conditions and residence time. These findings provide a new tracer approach that will strongly enhance the application of anthropogenic 129I in ocean environments and impact on climate at the ocean boundary layer. PMID:24284916

  17. Differentiations of Chitin Content and Surface Morphologies of Chitins Extracted from Male and Female Grasshopper Species

    PubMed Central

    Kaya, Murat; Lelešius, Evaldas; Nagrockaitė, Radvilė; Sargin, Idris; Arslan, Gulsin; Mol, Abbas; Baran, Talat; Can, Esra; Bitim, Betul

    2015-01-01

    In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25 – 90nm wide nanofibers and 90 – 250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers’ chitins; 88.45–95.48% and for commercial chitin; 94.95%. PMID:25635814

  18. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID

  19. FTIR and {sup 31}P-NMR spectroscopic analyses of surface species in phosphate-catalyzed lactic acid conversion

    SciTech Connect

    Gunter, G.C.; Tam, M.S.; Miller, D.J.

    1996-11-01

    The surface species present on silica/alumina-supported sodium phosphates, active catalysts for the conversion of lactic acid to acrylic acid and 2,3-pentanedione, are examined by pre- and postreaction MAS {sup 31}P-NMR and FTIR spectroscopies. Species present following lactic acid conversion are identified by transmission FTIR of phosphates supported on silicon disks (as a model catalyst system) and verified by {sup 31}P-NMR and diffuse reflectance IR spectroscopy of actual catalysts used in reaction. Monosodium phosphate (NaH{sub 2}PO{sub 4}) condenses to a mixture of sodium polyphosphate (NaPO{sub 3}){sub n} and sodium trimetaphosphate (Na{sub 3}P{sub 3}O{sub 9}), which exhibit little catalytic activity for converting lactic acid to desired products. Disodium phosphate (Na{sub 2}HPO{sub 4}) condenses to tetrasodium pyrophosphate (Na{sub 4}P{sub 2}O{sub 7}), and proton transfer from lactic acid to pyrophosphate results in the formation of sodium lactate. Trisodium phosphate (Na{sub 3}PO{sub 4}) accepts a proton from lactic acid to form sodium lactate and disodium phosphate, which condenses to pyrophosphate. The presence of pyrophosphate and sodium lactate on supported disodium and trisodium phosphates explains their similar catalytic properties; the larger quantity of sodium lactate present on trisodium phosphate leads to higher conversions at lower temperatures. 40 refs., 14 figs., 2 tabs.

  20. In vivo activity of aryl ozonides against Schistosoma species.

    PubMed

    Keiser, Jennifer; Ingram, Katrin; Vargas, Mireille; Chollet, Jacques; Wang, Xiaofang; Dong, Yuxiang; Vennerstrom, Jonathan L

    2012-02-01

    We evaluated the in vivo antischistosomal activities of 11 structurally diverse synthetic peroxides. Of all compounds tested, ozonide (1,2,4-trioxolane) OZ418 had the highest activity against adult Schistosoma mansoni, with total and female worm burden reductions of 80 and 90% (P < 0.05), respectively. Furthermore, treatment of S. haematobium-infected mice with OZ418 reduced the total worm burden by 86%. In conclusion, OZ418 is a promising antischistosomal lead compound. PMID:22106214

  1. Surface-active and Light-absorbing Secondary Organic Aerosol (SOA) Material

    NASA Astrophysics Data System (ADS)

    McNeill, V. F.; Sareen, N.; Schwier, A. N.; Shapiro, E. L.

    2009-12-01

    We have observed the formation of light-absorbing, high-molecular-weight, and surface-active organics from methylgyloxal interacting with ammonium salts in aqueous aerosol mimics. Mixtures of methylglyoxal and glyoxal also form light-absorbing products and exhibit surface tension depression with a Langmuir-like dependence on initial methylglyoxal concentration. We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize the product species. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These observations have potentially significant implications for our understanding of the effects of SOA on climate, since a) SOA are typically treated as non-absorbing in climate models, and b) surface tension depression in aqueous aerosols by SOA material may result in increased cloud condensation nucleus (CCN) activity. Furthermore, surface film formation could affect aerosol heterogeneous chemistry. We will also discuss aerosol flow tube O3 oxidation experiments designed to determine the atmospheric lifetimes of the observed product compounds.

  2. The detection of intestinal spike activity on surface electroenterograms

    NASA Astrophysics Data System (ADS)

    Ye-Lin, Y.; Garcia-Casado, J.; Martinez-de-Juan, J. L.; Prats-Boluda, G.; Ponce, J. L.

    2010-02-01

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 ± 0.10 for channel 1 and 0.57 ± 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  3. Production of active oxygen species by blood phagocytes of pregnant women and their newborns with intrauterine infection.

    PubMed

    Safronova, V G; Matveeva, N K; Lomova, N A; Belyaeva, A S; Vanko, L V

    2013-09-01

    We studied the relationship between changes in the maternal and newborn granulocyte functions under conditions of infection risk and realization. Women with normal gestation and their healthy newborns, pregnant women with a high risk of infection and their newborns, healthy or with intrauterine infection, were examined. Changes in the active oxygen species-dependent phagocytosis system were found in the blood of risk group patients. An inverse relationship between the parameters venous and umbilical cord blood was detected indicating a relationship between changes in functional activities of maternal and newborn granulocytes. The percentage of CD11b(+)cells in venous and umbilical cord blood strictly correlated with the percent of cells that phagocytosed FITC-labeled E. coli. Deviations in the generation of active oxygen species in phagocytosis seemed to be related to the expression of surface receptors in the risk groups. PMID:24288724

  4. Antimicrobial and antioxidant activities of three Mentha species essential oils.

    PubMed

    Mimica-Dukić, Neda; Bozin, Biljana; Soković, Marina; Mihajlović, Biserka; Matavulj, Milan

    2003-05-01

    The present study describes the antimicrobial activity and free radical scavenging capacity (RSC) of essential oils from Mentha aquatica L., Mentha longifolia L., and Mentha piperita L. The chemical profile of each essential oil was determined by GC-MS and TLC. All essential oils exhibited very strong antibacterial activity, in particularly against Esherichia coli strains. The most powerful was M. piperita essential oil, especially towards multiresistant strain of Shigella sonei and Micrococcus flavus ATTC 10,240. All tested oils showed significant fungistatic and fungicidal activity [expressed as minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values, respectively], that were considerably higher than those of the commercial fungicide bifonazole. The essential oils of M. piperita and M. longifolia were found to be more active than the essential oil of M. aquatica. Especially low MIC (4 microL/mL) and MFC (4 microL/mL) were found with M. piperita oil against Trichophyton tonsurans and Candida albicans (both 8 microL/mL). The RSC was evaluated by measuring the scavenging activity of the essential oils on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and OH radicals. All examined essential oils were able to reduce DPPH radicals into the neutral DPPH-H form, and this activity was dose-dependent. However, only the M. piperita oil reduced DPPH to 50 % (IC50 = 2.53 microg/mL). The M. piperita essential oil also exhibited the highest OH radical scavenging activity, reducing OH radical generation in the Fenton reaction by 24 % (pure oil). According to GC-MS and TLC (dot-blot techniques), the most powerful scavenging compounds were monoterpene ketones (menthone and isomenthone) in the essential oils of M. longifolia and M. piperita and 1,8-cineole in the oil of M. aquatica. PMID:12802721

  5. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound

    USGS Publications Warehouse

    Jorgenson, Zachary G.; Buhl, Kevin J.; Bartell, Stephen E.; Schoenfuss, Heiko L.

    2015-01-01

    Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption—as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration—than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered

  6. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound.

    PubMed

    Jorgenson, Z G; Buhl, K; Bartell, S E; Schoenfuss, H L

    2015-01-01

    Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption-as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration-than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered Rio

  7. Lack of surface-associated microorganisms in a mixed species community of freshwater Unionidae

    USGS Publications Warehouse

    Nichols, S. Jerrine; Allen, J.; Walker, G.; Yokoyama, M.; Garling, D.

    2001-01-01

    To determine whether unionids contain surface-attached endosymbiotic bacteria, ciliates, or fungi, we used scanning electron microscopy to examine the epithelial surface of various organs within the digestive systems and mantle cavity of temperate river and lake unionids on a seasonal basis. We also cultured material removed from the lumen of these same organs and from the mantle cavity to detect cellobiose-, cellulose-, and chitin- degrading microbes. No true endosymbiotic fauna were observed attached to the surface of the digestive or mantle tissues of any species of unionid. Microbial growth on cellulose or chitin bacteriological media varied by season and habitat, but not by unionid species or source of the isolate. Lake unionids did not contain microbes capable of digesting cellulose or chitin, whereas unionids from the river site did in March and August, but not in December. Since these cultured cellulose- and chitin-degrading bacteria were never found attached to any unionid tissues, they appeared to be transient forms, not true endosymbionts. Microbes capable of digesting cellobiose were found in every unionid collected in all seasons and habitats, but again, no microbes were directly observed attached to unionid tissues. If unionids, like most other vertebrates, lack digestive enzymes required to initiate primary bond breakage, then the lack of cellulolytic and chitinolytic endosymbionts would affect the ability to utilize cellulose or chitin foods. Thus, in captivity dry feeds based on corn, soybeans, or nauplii should be pre-digested to ensure maximum absorption of nutrients by unionids. The lack of celluloytic or chitinolytic endosymbionts should not affect relocation success, though the seasonal role of transient microbes in unionid nutrition requires further investigation.

  8. Ubiquitin Activates Patatin-Like Phospholipases from Multiple Bacterial Species

    PubMed Central

    Anderson, David M.; Sato, Hiromi; Dirck, Aaron T.; Feix, Jimmy B.

    2014-01-01

    Phospholipase A2 enzymes are ubiquitously distributed throughout the prokaryotic and eukaryotic kingdoms and are utilized in a wide array of cellular processes and physiological and immunological responses. Several patatin-like phospholipase homologs of ExoU from Pseudomonas aeruginosa were selected on the premise that ubiquitin activation of this class of bacterial enzymes was a conserved process. We found that ubiquitin activated all phospholipases tested in both in vitro and in vivo assays via a conserved serine-aspartate catalytic dyad. Ubiquitin chains versus monomeric ubiquitin were superior in inducing catalysis, and ubiquitin-like proteins failed to activate phospholipase activity. Toxicity studies in a prokaryotic dual-expression system grouped the enzymes into high- and low-toxicity classes. Toxicity measured in eukaryotic cells also suggested a two-tiered classification but was not predictive of the severity of cellular damage, suggesting that each enzyme may correspond to unique properties perhaps based on its specific biological function. Additional studies on lipid binding preference suggest that some enzymes in this family may be differentially sensitive to phosphatidyl-4,5-bisphosphate in terms of catalytic activation enhancement and binding affinity. Further analysis of the function and amino acid sequences of this enzyme family may lead to a useful approach to formulating a unifying model of how these phospholipases behave after delivery into the cytoplasmic compartment. PMID:25404699

  9. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria 1

    NASA Astrophysics Data System (ADS)

    Neal, Andrew L.; Techkarnjanaruk, Somkiet; Dohnalkova, Alice; McCready, David; Peyton, Brent M.; Geesey, Gill G.

    2001-01-01

    In the presence of sulfate-reducing bacteria ( Desulfovibrio desulfuricans) hematite (α-Fe 2O 3) dissolution is affected potentially by a combination of enzymatic (hydrogenase) reduction and hydrogen sulfide oxidation. As a consequence, ferrous ions are free to react with excess H 2S to form insoluble ferrous sulfides. X-ray photoelectron spectra indicate binding energies similar to ferrous sulfides having pyrrhotite-like structures (Fe2 p3/2 708.4 eV; S2 p3/2 161.5 eV). Other sulfur species identified at the surface include sulfate, sulfite and polysulfides. Thin film X-ray diffraction identifies a limited number of peaks, the principal one of which may be assigned to the hexagonal pyrrhotite (102) peak (d = 2.09 Å; 2θ = 43.22°), at the hematite surface within 3 months exposure to sulfate-reducing bacteria (SRB). High-resolution transmission electron microscopy identifies the presence of a hexagonal structure associated with observed crystallites. Although none of the analytical techniques employed provide unequivocal evidence as to the nature of the ferrous sulfide formed in the presence of SRB at hematite surfaces, we conclude from the available evidence that a pyrrhotite stiochiometry and structure is the best description of the sulfides we observe. Such ferrous sulfide production is inconsistent with previous reports in which mackinawite and greigite were products of biological sulfate reduction (Rickard 1969a; Herbert et al., 1998; Benning et al., 1999). The apparent differences in stoichiometry may be related to sulfide activity at the mineral surface, controlled in part by H 2S autooxidation in the presence of iron oxides. Due to the relative stability of pyrrhotite at low temperatures, ferrous sulfide dissolution is likely to be reduced compared to the more commonly observed products of SRB activity. Additionally, biogenic pyrrhotite formation will also have implications for geomagnetic field behavior of sediments.

  10. Leishmania species: mechanisms of complement activation by five strains of promastigotes.

    PubMed

    Mosser, D M; Burke, S K; Coutavas, E E; Wedgwood, J F; Edelson, P J

    1986-12-01

    The interaction of fresh serum with promastigotes of Leishmania major, L. donovani, L. mexicana mexicana, L. mexicana amazonensis, and L. braziliensis guyanensis results in lysis of all strains tested with either fresh human or guinea pig serum at 37 C for 30 min. Lysis does not occur in the cold and requires divalent cations and complement that is active hemolytically. Serum deficient in the eighth component of complement is not lytic. Lysis of L. major, L. mexicana, and L. braziliensis proceeds fully in human serum containing EGTA/Mg2+ or in guinea pig serum deficient in the fourth complement component. These species consume only small amounts of C4 from human serum and do not require calcium to optimally bind C3. The data indicate that all are activators of the alternative complement pathway and that the classical pathway is not required for the lysis of these organisms. Promastigotes of L. donovani, in contrast, activate the classical pathway. The presence of calcium is required for both optimal C3 binding and parasite lysis, and L. donovani promastigotes consume C4 when incubated in human serum. In high concentrations, human serum agglutinates all tested Leishmania spp. The agglutinating factor does not require divalent cations, is heat stable, and works at 4 C, suggesting that it is an antibody. This "naturally occurring" antibody cross reacts with all Leishmania spp. and agglutinates them. The adsorption of serum with any Leishmania species or with beads that are Protein A coated, removes the agglutinogen. This factor causes a slight enhancement in alternative pathway activation by L. major and mediates the classical activation by L. donovani. In adsorbed serum, L. donovani promastigotes only weakly activate the alternative complement pathway. Increased concentrations of adsorbed serum are therefore necessary for lysis to proceed. The titer can be partially restored by the addition of heat inactivated serum. Using purified components of the classical cascade

  11. First-principles calculations of the adsorption and hydrogenation reactions of CHx(x=0,4) species on a Fe(100) surface

    SciTech Connect

    Sorescu, D.C.

    2006-04-01

    A previous set of investigations related to adsorption, diffusion, and dissociation properties of CO [D. C. Sorescu, D. L. Thompson, M. M. Hurley, and C. F. Chabalowski, Phys. Rev. B 66, 035416 (2002)] and H2 [D. C. Sorescu, Catal. Today 105, 44 (2005)] on Fe(100) surface have been extended to the case of chemisorption properties of CHx (x=0,4) species on the same surface. Similar to our previous studies, the current work is based on first-principles plane-wave calculations using spin-polarized density functional theory (DFT) and the generalized gradient approximation (GGA). The calculations employ slab geometry and periodic boundary conditions. It was determined that CHx (x=0,2) species preferentially adsorb at the four-folded sites while the CH3 species prefer the binding at the bridge site. In contradistinction, the CH4 molecule is only weakly physisorbed on the surface, independent of surface site or molecular orientation. In the case of the C atom, the adsorption investigations have been extended to include both the coverage effects as well as the possibility for absorption at subsurface sites. The presence of the C atom at either hollow or subsurface sites was found to increase the stability of the other atomic (C, H, O) and molecular or radical species [CO, CHx (x=1,4)] adsorbed on the surface. Beside chemisorption properties, the activation energies for surface diffusion have been determined for all individual CHx (x=0,3)species while in the case of C atom diffusion to subsurface sites have also been considered. Finally, we have determined the minimum energy path for the elementary hydrogenation reactions of CHx (x=0,3) species. We found that for the ensemble of surface processes involving dissociation of CO and H2 on Fe(100) surface followed by hydrogenation of CHx (x=0,3) species with formation of CH4, the CO dissociation is the rate determining step with an activation energy of 24.5 kcal/mol.

  12. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    SciTech Connect

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X.; Ostrikov, K.

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  13. A biologically active surface enzyme assembly that attenuates thrombus formation

    PubMed Central

    Qu, Zheng; Muthukrishnan, Sharmila; Urlam, Murali K.; Haller, Carolyn A.; Jordan, Sumanas W.; Kumar, Vivek A.; Marzec, Ulla M.; Elkasabi, Yaseen; Lahann, Joerg; Hanson, Stephen R.

    2013-01-01

    Activation of hemostatic pathways by blood-contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. We postulate that surface-induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both clotting and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, we present a molecular engineering and bioorthogonal chemistry approach to site-specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non-human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface-induced thrombus formation. PMID:23532366

  14. Using Surface Curvature to Control the Dimerization of a Surface-Active Protein

    NASA Astrophysics Data System (ADS)

    Kurylowicz, Martin; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    Understanding the influence of surface geometry on adsorbed proteins promises new possibilities in biophysics, such as topographical catalysis, molecular recognition of geometric cues, and modulations of oligomerization or ligand binding. We have created nano-textured hydrophobic surfaces that are stable in buffer by spin coating polystyrene (PS) nanoparticles (NPs) to form patchy NP monolayers on a PS substrate, yielding flat and highly curved areas on the same sample. Moreover, we have separated surface chemistry from texture by floating a 10 nm thick film of monodisperse PS onto the NP-functionalized surface. Using Single Molecule Force Spectroscopy we have compared in situ the distribution of detachment lengths for proteins on curved surfaces to that measured on flat surfaces. We have shown that β-Lactoglobulin (β-LG), a surface-active protein which helps to stabilize oil droplets in milk, forms dimers on both flat PS surfaces and surfaces with a radius of curvature of 100 nm, whereas β-LG monomers exist for more highly curved surfaces with radii of curvature of 25 and 40 nm. It is surprising that rather large radii of curvature have such a strong influence on proteins whose radius is only ˜2 nm. Furthermore, the transition from dimer to monomer with changes in surface curvature offers promising applications for proteins whose function can be modified by their oligomerization state.

  15. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  16. Characterization of serum phospholipase a(2) activity in three diverse species of west african crocodiles.

    PubMed

    Merchant, Mark; Juneau, Kate; Gemillion, Jared; Falconi, Rodolfo; Doucet, Aaron; Shirley, Matthew H

    2011-01-01

    Secretory phospholipase A(2), an enzyme that exhibits substantial immunological activity, was measured in the serum of three species of diverse West African crocodiles. Incubation of different volumes of crocodile serum with bacteria labeled with a fluorescent fatty acid in the sn-2 position of membrane lipids resulted in a volume-dependent liberation of fluorescent probe. Serum from the Nile crocodile (Crocodylus niloticus) exhibited slightly higher activity than that of the slender-snouted crocodile (Mecistops cataphractus) and the African dwarf crocodile (Osteolaemus tetraspis). Product formation was inhibited by BPB, a specific PLA(2) inhibitor, confirming that the activity was a direct result of the presence of serum PLA(2). Kinetic analysis showed that C. niloticus serum produced product more rapidly than M. cataphractus or O. tetraspis. Serum from all three species exhibited temperature-dependent PLA(2) activities but with slightly different thermal profiles. All three crocodilian species showed high levels of activity against eight different species of bacteria. PMID:22110960

  17. Biofilm formation by Candida species on silicone surfaces and latex pacifier nipples: an in vitro study.

    PubMed

    da Silveira, Luiz Cezar; Charone, Senda; Maia, Lucianne Cople; Soares, Rosangela Maria de Araújo; Portela, Maristela Barbosa

    2009-01-01

    The present study assessed the growth and development of biofilm formation by isolates of C. albicans, C. glabrata and C. parapsilosis on silicone and latex pacifier nipples. The silicone and latex surfaces were evaluated by scanning electronic microscopy (SEM). The plastic component of the nipple also seems to be an important factor regarding the biofilm formation by Candida spp. The biofilm growth was measured using the MTT reduction reaction. C. albicans was found to have a slightly greater capacity of forming biofilm compared to the other Candida species. Analysis of the pattern of biofilm development by C. albicans, C. glabrata and C. parapsilosis on latex and silicon pacifier shields showed an increased biofilm formation regarding the latter substrate. Silicone was shown to be more resistant to fungal colonization, particularly in the case of C. parapsilosis, despite the lack of any statistically significant differences (P > 0.05). In addition, silicone has a smoother surface compared to latex, whose surface was found to be rugose and irregular. PMID:19476097

  18. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  19. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species. PMID:27372123

  20. Left Ventricle Segmentation Using Model Fitting and Active Surfaces

    PubMed Central

    Tay, Peter C.; Li, Bing; Garson, Chris D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    A method to perform 4D (3D over time) segmentation of the left ventricle of a mouse heart using a set of B mode cine slices acquired in vivo from a series of short axis scans is described. We incorporate previously suggested methods such as temporal propagation, the gradient vector flow active surface, superquadric models, etc. into our proposed 4D segmentation of the left ventricle. The contributions of this paper are incorporation of a novel despeckling method and the use of locally fitted superellipsoid models to provide a better initialization for the active surface segmentation algorithm. Average distances of the improved surface segmentation to a manually segmented surface throughout the entire cardiac cycle and cross-sectional contours are provided to demonstrate the improvements produced by the proposed 4D segmentation. PMID:20300558

  1. No Effect of Host Species on Phenoloxidase Activity in a Mycophagous Beetle

    PubMed Central

    Formica, Vincent; Chan, Amanda Kar-Men

    2015-01-01

    Ecological immunology is an interdisciplinary field that helps elucidate interactions between the environment and immune response. The host species individuals experience have profound effects on immune response in many species of insects. However, this conclusion comes from studies of herbivorous insects even though species of mycophagous insects also inhabit many different host species. The goal of this study was to determine if fungal host species as well as individual, sex, body size, and host patch predict one aspect of immune function, phenoloxidase activity (PO). We sampled a metapopulation of Bolitotherus cornutus, a mycophagous beetle in southwestern Virginia. B. cornutus live on three species of fungus that differ in nutritional quality, social environment, and density. A filter paper phenoloxidase assay was used to quantify phenoloxidase activity. Overall, PO activity was significantly repeatable among individuals (0.57) in adult B. cornutus. While there was significant variance among individuals in PO activity, there were surprisingly no significant differences in PO activity among subpopulations, beetles living on different host species, or between the sexes; there was also no effect of body size. Our results suggest that other factors such as age, genotype, disease prevalence, or natal environment may be generating variance among individuals in PO activity. PMID:26513243

  2. Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species.

    PubMed

    Gupta, Mahiti; Saxena, Sanjai; Goyal, Dinesh

    2015-02-01

    Pancreatic lipase (PL) is considered as one of the safest target for diet-induced anti-obesity drug development. Orlistat is the only PL inhibitor approved for anti-obesity treatment till date. In the process of exploration of new PL inhibitors, we have screened culture filtrates of 70 endophytic fungi of medicinal plants using qualitative as well as quantitative in-vitro PL assays. The qualitative assays indicated potential PL inhibition in only three isolates, namely #57 TBBALM, #33 TBBALM and #1 CSSTOT. Only ethyl acetate extracts of the culture filtrates of these isolates exhibited the PL inhibition. #57 TBBLAM ethyl acetate extract of culture filtrate exhibited potential PL inhibition with an IC50 of 3.69 µg/ml which was comparable to the positive control, i.e. Orlistat exhibiting IC50 value of 2.73 µg/ml. Further molecular phylogenetic tools and morphological studies were used to identify the isolate #57 TBBALM as Penicillium species. PMID:24417211

  3. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Sasaki, Yasuyuki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-07-01

    Malassezia globosa is a major pathogen of Malassezia folliculitis (MF) and the predominant species on human skin. The aim of this study was to clarify the differences between M. globosa and other cutaneous Malassezia species, M. restricta, M. dermatis, M. sympodialis and M. furfur. The optimum growth temperature, effects of compounds of sweat and free fatty acids on growth, and lipase activities of five cutaneous Malassezia species were determined. The growth of M. globosa was promoted strongly by the compounds of sweat and high temperature unlike that of other cutaneous Malassezia species. This result clarified that M. globosa tended to grow actively in summer conditions more than other cutaneous Malassezia species. Furthermore, M. globosa showed high lipase activity. We consider these characteristics of M. globosa to relate to the pathogenesis of MF. PMID:22229642

  4. [Extraction of pharmacologically active alkaloids from Vinca species].

    PubMed

    Gagua, N D; Bakuridze, A D; Vachnadze, N S; Berashvili, D T; Vachnadze, V Iu

    2011-06-01

    From the Genius Vinca the drugs have been received, arbitrally named: Vingerbin- with anthyarithmic activity, Vincabral-for improvement of brain blood circulation and leicobetin-as stimulator of leicopoesis. The investigations has been performed for creation of rational, resource saving, rentable phyto technologies. As a result, the liquid extraction general schema is provided for receipt of indolic alkaloids from plants V. herbaceae and V.minor. Analyses have shown that extraction with diluent gaz gives the possibility to receive the sums rich with alkaloids:Vingerbin and Vincabral. The advantage of extraction with diluent gaz is exclusion of high volumes of organic and non organic chemicals on the stage of extraction from raw material and liquid extraction, and remain and lipofil fraction converse to new phytosubtances for receipt of biologically active flavonoids, amino acids etc. PMID:21778554

  5. Antiphytoviral activity of essential oil from endemic species Teucrium arduini.

    PubMed

    Dunkić, Valerija; Bezić, Nada; Vuko, Elma

    2011-09-01

    The essential oil of Teucrium arduini L. was characterized by a high concentration of sesquiterpene hydrocarbons (43.8%) of which beta-caryophyllene (19.9%) being the major compound, followed by oxygenated sesquiterpenes (19.6%) of which caryophyllene-oxide (14.6%) was dominant. When applied to plants of Chenopodium amaranticolor and Ch. quinoa for two successive days prior inoculation, the oil was effective in reducing lesion numbers on plants infected with Tobacco mosaic virus (25.7%) and Cucumber mosaic virus (21.9%). The main components of oil, beta-caryophyllene and caryophyllene oxide showed potent antiviral activity against CMV, but weak activity against TMV infection. PMID:21941920

  6. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior.

    PubMed

    Lee, Daniel Z; Chung, Jin M; Chung, Kyungsoon; Kang, Myoung-Goo

    2012-09-01

    Sensitization of dorsal horn neurons (DHNs) in the spinal cord is dependent on pain-related synaptic plasticity and causes persistent pain. The DHN sensitization is mediated by a signal transduction pathway initiated by the activation of N-methyl-d-aspartate receptors (NMDA-Rs). Recent studies have shown that elevated levels of reactive oxygen species (ROS) and phosphorylation-dependent trafficking of GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) are a part of the signaling pathway for DHN sensitization. However, the relationship between ROS and AMPA-R phosphorylation and trafficking is not known. Thus, this study investigated the effects of ROS scavengers on the phosphorylation and cell-surface localization of GluA1 and GluA2. Intrathecal NMDA- and intradermal capsaicin-induced hyperalgesic mice were used for this study since both pain models share the NMDA-R activation-dependent DHN sensitization in the spinal cord. Our behavioral, biochemical, and immunohistochemical analyses demonstrated that: 1) NMDA-R activation in vivo increased the phosphorylation of AMPA-Rs at GluA1 (S818, S831, and S845) and GluA2 (S880) subunits; 2) NMDA-R activation in vivo increased cell-surface localization of GluA1 but decreased that of GluA2; and 3) reduction of ROS levels by ROS scavengers PBN (N-tert-butyl-α-phenylnitrone) or TEMPOL (4-hydroxy-2, 2, 6, 6-tetramethylpiperidin-1-oxyl) reversed these changes in AMPA-Rs, as well as pain-related behavior. Given that AMPA-R trafficking to the cell surface and synapse is regulated by NMDA-R activation-dependent phosphorylation of GluA1 and GluA2, our study suggests that the ROS-dependent changes in the phosphorylation and cell-surface localization of AMPA-Rs are necessary for DHN sensitization and thus, pain-related behavior. We further suggest that ROS reduction will ameliorate these molecular changes and pain. PMID:22770842

  7. Probe molecule studies: Active species in alcohol synthesis

    SciTech Connect

    Blackmond, D.G.; Wender, I.; Oukaci, R.; Wang, J.

    1992-10-01

    Goal is to understand the mechanisms of formation of alcohols and other oxygenates from syngas over supported catalysts. Work during this period: BET surface areas and XRD patterns of Cu/ZnO/Al[sub 2]O[sub 3] and Co(5%)/Cu/ZnO/Al[sub 2]O[sub 3] suggest that Co did not change the structure. CO was hydrogenated over 10% Co catalyst. C[sub 2]H[sub 4] additions increased the isopropanol and decreased the methanol production. Blank runs with H[sub 2]/He/CH[sub 3]OH/C[sub 2]H[sub 4] showed that C[sub 2]H[sub 4] does not react with CH[sub 3]OH.

  8. Investigation of cytotoxic activity in four stachys species from iran.

    PubMed

    Khanavi, Mahnaz; Manayi, Azadeh; Lotfi, Mahnaz; Abbasi, Rofeyde; Majdzadeh, Maryam; Ostad, Seyed Nasser

    2012-01-01

    The aerial parts of Stachys laxa Boiss. and Buhse. from Siah-bishe in Mazandaran province, Stachys trinervis Aitch. and Hemsl. from Karaj in Alborz province, Stachys subaphylla Rech. F. and Stachys turcomanica Trautv. from Golestan province have been collected in May 2008. Total extracts were obtained through MeOH/H2O (80/20) and then partitioned between CHCl3, EtOAc and MeOH. These fractions and total extracts have been investigated for in-vitro cytotoxic activity against the colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D) and Swiss mouse embryo fibroblast (NIH 3T3) cell lines using MTT assay (3-(4,5-di methyl thiazol-2-yl)-2,5-di phenyltetrazolium bromide). At each cell line, doses of 3.125, 6.25, 12.5, 25, 100, 200, 400 and 800 µg/mL in 1% (v/v) DMSO of all samples were tested. Ethyl acetate and chloroform fractions of Stachys laxa against proliferation of T47D and HT-29 cell lines and chloroform fraction of Stachys subaphylla and Stachys subaphylla ethyl acetate fraction toward T47D cell line exhibited highest cytotoxic activity (IC50 < 50 µg/mL). Ethyl acetate and chloroform fractions of Stachys turcomanica against HT-29 cell line, except methanol fraction of Stachys subaphylla, the other extrcts on T47D cell line, represented moderate cytotoxic activity (IC50 < 70 µg/mL). All fractions of S. trinervis demonstrated no effective cytotoxic activity. IC50 values confirmed that the growth and proliferation of HT-29 and T47D cells were most affected by chloroform and ethyl acetate fractions of Stachys laxa and Stachys turcomanica due to their nonpolar compounds. PMID:24250483

  9. Active colonization dynamics and diversity patterns are influenced by dendritic network connectivity and species interactions

    PubMed Central

    Seymour, Mathew; Altermatt, Florian

    2014-01-01

    Habitat network connectivity influences colonization dynamics, species invasions, and biodiversity patterns. Recent theoretical work suggests dendritic networks, such as those found in rivers, alter expectations regarding colonization and dispersal dynamics compared with other network types. As many native and non-native species are spreading along river networks, this may have important ecological implications. However, experimental studies testing the effects of network structure on colonization and diversity patterns are scarce. Up to now, experimental studies have only considered networks where sites are connected with small corridors, or dispersal was experimentally controlled, which eliminates possible effects of species interactions on colonization dynamics. Here, we tested the effect of network connectivity and species interactions on colonization dynamics using continuous linear and dendritic (i.e., river-like) networks, which allow for active dispersal. We used a set of six protist species and one rotifer species in linear and dendritic microcosm networks. At the start of the experiment, we introduced species, either singularly or as a community within the networks. Species subsequently actively colonized the networks. We periodically measured densities of species throughout the networks over 2 weeks to track community dynamics, colonization, and diversity patterns. We found that colonization of dendritic networks was faster compared with colonization of linear networks, which resulted in higher local mean species richness in dendritic networks. Initially, community similarity was also greater in dendritic networks compared with linear networks, but this effect vanished over time. The presence of species interactions increased community evenness over time, compared with extrapolations from single-species setups. Our experimental findings confirm previous theoretical work and show that network connectivity, species-specific dispersal ability, and species

  10. Effects of various agents on flagellar activity, flagellar autotomy and cell viability in four species of Chlamydomonas (chlorophyta: volvocales).

    PubMed

    Lewin, R A; Lee, T H; Fang, L S

    1982-01-01

    Over 200 strains of green algal flagellates, representing about 100 species, were examined for their suitability as experimental organisms for studies of flagellar activity. The cells of all species shed their flagella under unfavourable conditions of temperature or pH, or in the presence of alcohols, detergents or toxic agents of various kinds. For further studies of flagellar activity, motility and autotomy (biologically induced shedding) in particular, we selected four species of Chlamydomonas: C. dysosmos Moewus, C. moewusii Gerloff, C. monoica Strehlow and C. reinhardtii Dangeard. Agents found to inhibit motility without inducing death or flagellar autotomy included azide, arsenite, thiosulphate, cyanide, ferricyanide, hydroxylamine, chloral hydrate, malonate, p-chloro-mercury benzoate and cytochalasin-B, each in a limited range of concentrations which differed according to species and strain. Higher concentrations of these agents caused the flagella to be shed. Since flagellar autotomy is a means by which a cell can quickly reduce the area of its permeable surface, it may have a positive survival value for species liable to be subjected to unfavourable physicochemical conditions. PMID:6764045

  11. Norepinephrine Reduces Reactive Oxygen Species (ROS) and DNA Damage in Ovarian Surface Epithelial Cells

    PubMed Central

    Patel, Pooja R; Hegde, Muralidhar L; Theruvathu, Jacob; Mitra, Sankar A; Boldogh, Istvan; Sowers, Lawrence

    2015-01-01

    Objective To determine the role of norepinephrine (NE) on DNA damage and reactive oxygen species (ROS) generation in ovarian surface epithelial cells. Method Non-tumorigenic, immortalized ovarian surface epithelial cells were treated with NE, bleomycin, and bleomycin followed by NE. The comet assay was performed on each treatment group to determine the amount of single and double-strand breaks induced by treatments. ROS levels for each treatment group were measured using the H2DCF-DA fluorescence assay. Finally, RNA transcripts were measured for each treatment group with regards to the expression of DNA repair and oxidative stress genes. Results The mean tail moment of untreated cells was significantly greater than that of cells treated with NE (p=0.02). The mean tail moment of cells treated with bleomycin was significantly greater than that of cells treated with bleomycin followed by NE (p<0.01). Treatment with NE resulted in significantly less ROS generation than in untreated cells (p<0.01). NE treatment after hydrogen peroxide treatment resulted in a noticeable decrease in ROS generation. Genes associated with oxidative stress were upregulated in cells treated with bleomycin, however this upregulation was blunted when bleomycin-treated cells were treated subsequently with NE. Conclusion NE is associated with decreased DNA damage and ROS production in ovarian surface epithelial cells. This effect is protective in the presence of the oxidative-damaging agent bleomycin. These results suggest an additional physiologic role for the stress hormone NE, in protecting ovarian surface epithelial cells from oxidative stress. PMID:26167254

  12. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental

  13. Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios

    2015-03-01

    In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.

  14. In Vitro Activities of Ketoconazole, Econazole, Miconazole, and Melaleuca alternifolia (Tea Tree) Oil against Malassezia Species

    PubMed Central

    Hammer, K. A.; Carson, C. F.; Riley, T. V.

    2000-01-01

    The in vitro activities of ketoconazole, econazole, miconazole, and tea tree oil against 54 Malassezia isolates were determined by agar and broth dilution methods. Ketoconazole was more active than both econazole and miconazole, which showed very similar activities. M. furfur was the least susceptible species. M. sympodialis, M. slooffiae, M. globosa, and M. obtusa showed similar susceptibilities to the four agents. PMID:10639388

  15. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  16. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species.

    PubMed

    Itoh, Takashi; Maeda, Toshiteru; Kasuya, Atsuo

    2006-01-01

    In situ surface-enhanced Raman scattering (SERS) combined with electrochemical analysis is applied to the determination of oxygen species on silver electrodes in alkaline hydroxide aqueous solution at room temperature and gold electrodes in carbonate melts at high temperature. This technique, referred to as SERS spectroelectrochemistry, reveals Raman spectral lines in the 500-1100 cm(-1) range under electrode potential scanning, assignable to superoxide ions (O2-) and peroxide ions (O2(2-)) on the electrode surface. These lines for oxygen molecule species have potential dependence with changing potential. In the alkaline hydroxide aqueous solution, the Raman peaks due to oxygen molecules are observed at potentials between 0.2 V and -0.8 V (vs. Ag/AgCl) only in the cathodic scan. This irreversible behavior in cyclic voltammograms indicates the existence of an intermediate stage in the oxygen reduction process, in which oxygen is released from the AgO films on the electrode at potentials corresponding to the onset of the last current peak in the voltammogram. This liberated oxygen molecule remains in solution at the interface until hydroxyls or water molecules are formed when the potential reaches the potential zero charge (PZC). In the high-temperature carbonate melts, Raman lines at 1047, 1080, and 800 cm(-1) are apparent for the eutectic (62 + 38) mol% (Li + K)CO3 melt at 923 K, and at 735 cm(-1) for the Li2CO3 melt at 1123 K. These results suggest that oxygen reduction in the Li2CO3 melt involves only peroxide ions, while that in (62 + 38) mol% (Li + K)CO3 involves both peroxide and superoxide ions at the three-phase boundary interface. PMID:16833110

  17. Ab Initio Approach for Prediction of Oxide Surface Structure, Stoichiometry, and Electrocatalytic Activity in Aqueous Solution.

    PubMed

    Rong, Xi; Kolpak, Alexie M

    2015-05-01

    The design of efficient, stable, and inexpensive catalysts for oxygen evolution and reduction is crucial for the development of electrochemical energy conversion devices such as fuel cells and metal-air batteries. Currently, such design is limited by challenges in atomic-scale experimental characterization and computational modeling of solid-liquid interfaces. Here, we begin to address these issues by developing a general-, first-principles-, and electrochemical-principles-based framework for prediction of catalyst surface structure, stoichiometry, and stability as a function of pH, electrode potential, and aqueous cation concentration. We demonstrate the approach by determining the surface phase diagram of LaMnO3, which has been studied for oxygen evolution and reduction and computing the reaction overpotentials on the relevant surface phases. Our results illustrate the critical role of solvated cation species in governing the catalyst surface structure and stoichiometry, and thereby catalytic activity, in aqueous solution. PMID:26263350

  18. Diuretic and natriuretic activity of two mistletoe species in rats

    PubMed Central

    Jadhav, Namita; Patil, C. R.; Chaudhari, K. B.; Wagh, J. P.; Surana, S. J.; Jadhav, R. B.

    2010-01-01

    In different cultural groups, the hemiparasitic plants of the families Loranthaceae and Viscaceae (mistletoes) are frequently used in the treatment of hypertension and/or as diuretic agents. However, it remains unclear as to what commonality makes them diuretic agents or a remedy for hypertension. In this article, the diuretic activity of methanol extracts of Viscum articulatum (VA) Burm. f. and Helicanthus elastica (HE) (Ders.) Dans. in rats is reported. The extracts were administered orally at doses of 100, 200 and 400 mg/kg to rats that had been fasted and deprived of water for 18 hours. Investigations were carried out for diuretic, saluretic and natriuretic effects. The polyphenolic and triterpenoid contents were determined quantitatively using chemical assays and high performance liquid chromatography (HPLC) analysis, respectively. The extracts of VA and HE demonstrated significant and dose-dependent diuretic activity in rats. It was found that while VA mimics the furosemide pattern, HE demonstrated a dose-dependent increase in diuresis, along with an increase in potassium-sparing effects. Phytochemical analysis revealed that polyphenolics and triterpenoids, such as oleanolic acid and lupeol, are the major phytochemicals involved. It was also found that in different combinations, these phytochemicals differed in the way they influenced the electrolyte excretion. A higher content of polyphenolics in association with lower triterpenoid content was found to favor potassium-sparing effects. PMID:21808540

  19. Biological assessment for rare and endangered plant species: Related to CERCLA characterization activities

    SciTech Connect

    Sackschewsky, M.R.

    1992-04-01

    Environmental characterization in support of hazardous, radioactive, and mixed waste cleanup (in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980) can involve a large number of both nonintrusive and intrusive activities. Many of these activities could have a detrimental impact on listed plant species. These impacts can be minimized by following simple conservation policies while conducting the various field activities. For instance, frequent off-road vehicular traffic and have a severe impact on native habitats and, therefore, should be kept to a minimum. Personnel performing the field activities should be trained to preserve, respect, and minimize their impact on native habitat while performing work in the field. In addition, areas where sampling is planned should be surveyed for the presence of listed plant species before the initiation of the field activities. Extremely distributed areas could be exempted from this requirement provided adequate habitat assessments have been performed by qualified personnel. Twelve special status plant species are known to survive on or very near the Hanford Site. None of these species currently are listed as Federal Threatened or Endangered Species. However, four local species currently are candidates for federal protection. These species are the Northern Wormwood (Artemisia campestris ssp. borealis var. wormskioldii), Persistantsepal Yellowcress (Rorippa columbiae), Hoover's Desert Parsley (Lomatium tuberosum), and Columbia Milkvetch (Astragalus columbianus).

  20. Biological assessment for rare and endangered plant species: Related to CERCLA characterization activities

    SciTech Connect

    Sackschewsky, M.R.

    1992-04-01

    Environmental characterization in support of hazardous, radioactive, and mixed waste cleanup (in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980) can involve a large number of both nonintrusive and intrusive activities. Many of these activities could have a detrimental impact on listed plant species. These impacts can be minimized by following simple conservation policies while conducting the various field activities. For instance, frequent off-road vehicular traffic and have a severe impact on native habitats and, therefore, should be kept to a minimum. Personnel performing the field activities should be trained to preserve, respect, and minimize their impact on native habitat while performing work in the field. In addition, areas where sampling is planned should be surveyed for the presence of listed plant species before the initiation of the field activities. Extremely distributed areas could be exempted from this requirement provided adequate habitat assessments have been performed by qualified personnel. Twelve special status plant species are known to survive on or very near the Hanford Site. None of these species currently are listed as Federal Threatened or Endangered Species. However, four local species currently are candidates for federal protection. These species are the Northern Wormwood (Artemisia campestris ssp. borealis var. wormskioldii), Persistantsepal Yellowcress (Rorippa columbiae), Hoover`s Desert Parsley (Lomatium tuberosum), and Columbia Milkvetch (Astragalus columbianus).

  1. Antiparasitic activity of prenylated benzoic acid derivatives from Piper species.

    PubMed

    Flores, Ninoska; Jiménez, Ignacio A; Giménez, Alberto; Ruiz, Grace; Gutiérrez, David; Bourdy, Genevieve; Bazzocchi, Isabel L

    2009-03-01

    Fractionation of dichloromethane extracts from the leaves of Piper heterophyllum and P. aduncum afforded three prenylated hydroxybenzoic acids, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid, 3-[(2E,6E,10E)-11-carboxy-13-hydroxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl]-4,5-dihydroxybenzoic acid and 3-[(2E,6E,10E)-11-carboxy-14-hydroxy-3,7,15-trimethyl-2,6,10,15-hexadecatetraenyl]-4,5-dihydroxybenzoic acid, along with the known compounds, 4,5-dihydroxy-3-(E,E,E-11-formyl-3,7,15-trimethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid (arieianal), 3,4-dihydroxy-5-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid, 4-hydroxy-3-(3,7-dimethyl-2,6-octadienyl)benzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid. Their structures were elucidated on the basis of spectroscopic data, including homo- and heteronuclear correlation NMR experiments (COSY, HSQC and HMBC) and comparison with data reported in the literature. Riguera ester reactions and optical rotation measurements established the compounds as racemates. The antiparasitic activity of the compounds were tested against three strains of Leishmania spp., Trypanosoma cruzi and Plasmodium falciparum. The results showed that 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid exhibited potent and selective activity against L. braziliensis (IC(50) 6.5 microg/ml), higher that pentamidine used as control. Moreover, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl- 2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid showed moderate antiplasmodial (IC(50) 3.2 microg/ml) and trypanocidal (16.5 microg/ml) activities, respectively. PMID:19361822

  2. A New Methodology for Characterization of Environmentally Important Radionuclide Species Via Surface-Enhanced Raman Scattering (SERS)

    SciTech Connect

    Dai, Sheng; Bao, Li-Li; Mahurin, Shannon; Gu, Baohua

    2004-03-31

    Selective and sensitive detection and characterization of radionuclide contaminants in subsurface environments is essential to safely and to cost-effectively locate, treat, isolate or destroy contaminants encountered in DOE's environmental cleanup activity. Currently, techniques for monitoring and characterizing radionuclides rely primarily on liquid scintillation counting, ICP-MS and some limited use of the spectrofluorimetry based on fluorescence of radionuclide species under laser or UV excitation. These techniques require chemical handling, e.g., the use of complexing media, scintillation cocktails and phosphoric acids, in order to enhance signals. Furthermore, only fluorescent radionuclides (U22O+, Cm(III) and Am(III)) can be detected by the last technique. Many environmentally-important radionuclides such as plutonium, neptunium and technetium species have no strong fluorescence signals and, therefore, can not be characterized via fluorescence spectroscopy. The research presented serves to replace existing radionuclide-detection techniques through the development of a novel surface enhanced Raman scattering (SERS) spectroscopy to selectively and sensitively monitor and characterize the chemical speciation of radionuclides at trace levels. The SERS technique permits both of these measurements to be made simultaneously and results in significant improvement over current methods in reducing time of analysis, cost and sample manipulation.

  3. Nonconserved Tryptophan 38 of the Cell Surface Receptor for Subgroup J Avian Leukosis Virus Discriminates Sensitive from Resistant Avian Species

    PubMed Central

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef

    2013-01-01

    Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na+/H+ exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species. In all resistant species, the deletion or substitution of W38 within the first extracellular loop was observed either alone or in the presence of other incidental amino acid changes. Using the ectopic expression of wild-type or mutated chicken NHE1 in resistant cells and infection with a reporter recombinant retrovirus of subgroup J specificity, we studied the effect of individual mutations on the NHE1 receptor capacity. We suggest that the absence of W38 abrogates binding of the subgroup J envelope glycoprotein to ALV-J-resistant cells. Altogether, we describe the functional importance of W38 for virus entry and conclude that natural polymorphisms in NHE1 can be a source of host resistance to ALV-J. PMID:23698309

  4. Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy

    DOEpatents

    Angel, Stanley M.; Sharma, Shiv K.

    1988-01-01

    Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber (13, 13a to 13e) having a metal coating (22, 22a to 22e) on at least a portion of a light transmissive core (17, 17a to 17d). The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the absorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector (16, 16d, 16e) analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode (13e) may function as a working electrode of an electrochemical cell (53) while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface.

  5. Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy

    SciTech Connect

    Dept of Materials Science and Engineering UCB; Dept of Applied Science and Technology, UCB; Institut de Ciencia de Materials de Barcelona, Barcelona, Spain; Instituto de Ciencia de Materiales de Madrid, Madrid, Spain; Department of Mechanical Engineering, Yale University; Salmeron, Miquel; Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge I.; Heyde, Markus; Qi, Yabing; Schwarz, Udo D.; Ogletree, D. Frank; Salmeron, Miquel

    2008-04-26

    The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.

  6. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  7. Recovery of cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide

    USGS Publications Warehouse

    Fleming, W.J.; Grue, C.E.

    1981-01-01

    The responses of brain and plasma cholinesterase (ChE) activities were examined in mallard ducks, bobwhite quail, barn owls, starlings, and common grackles given oral doses of dicrotophos, an organophosphorus insecticide. Up to an eightfold difference in response of brain ChE activity to dicrotophos was found among these species. Brain ChE activity recovered to within 2 SD of normal within 26 days after being depressed 55 to 64%. Recovery of brain ChE activity was similar among species and followed the model Y = a + b (log10X).

  8. Benzoic acid derivatives from Piper species and their antiparasitic activity.

    PubMed

    Flores, Ninoska; Jiménez, Ignacio A; Giménez, Alberto; Ruiz, Grace; Gutiérrez, David; Bourdy, Genevieve; Bazzocchi, Isabel L

    2008-09-01

    Piper glabratum and P. acutifolium were analyzed for their content of main secondary constituents, affording nine new benzoic acid derivatives (1, 2, 4, 5, 7, and 10-13), in addition to four known compounds (3, 6, 8, and 9). Their structures were elucidated on the basis of spectroscopic data. Riguera ester reactions and optical rotation measurements established the new compounds as racemates. In the search for antiparasitic agents, the compounds were evaluated in vitro against the promastigote forms of Leishmania spp., Trypanosoma cruzi, and Plasmodium falciparum. Among the evaluated compounds, methyl 3,4-dihydroxy-5-(3'-methyl-2'-butenyl)benzoate (7) exhibited leishmanicidal effect (IC50 13.8-18.5 microg/mL) against the three Leishmania strains used, and methyl 3,4-dihydroxy-5-(2-hydroxy-3-methylbutenyl)benzoate (1), methyl 4-hydroxy-3-(2-hydroxy-3-methyl-3-butenyl)benzoate (3), and methyl 3,4-dihydroxy-5-(3-methyl-2-butenyl) benzoate (7) showed significant trypanocidal activity, with IC50 values of 16.4, 15.6, and 18.5 microg/mL, respectively. PMID:18712933

  9. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  10. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    PubMed Central

    Guo, Wei; Vlachos, Dionisios G.

    2015-01-01

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N−H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design. PMID:26443525

  11. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    SciTech Connect

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  12. Studies on contact activation: effects of surface and inhibitors.

    PubMed

    Cameron, C L; Fisslthaler, B; Sherman, A; Reddigari, S; Silverberg, M

    1989-01-01

    Contact activation is initiated when the plasma proteins, Hageman factor (factor XII), prekallikrein and high molecular weight kininogen interact with negatively charged materials. The activation of the intrinsic pathway of blood coagulation and the production of bradykinin are among the sequelae of contact activation. The kinetics of the activation of the contact system are modified by plasma inhibitors, C1 inhibitor being quantitatively the most important. We propose that the activation of the system requires that the stimulus provided by the surface must be greater than a threshold value to overcome the effects of the inhibitors. We show in this paper that the amount of surface required for activation is much reduced in the absence of C1 inhibitor (Hereditary Angioedema) or in the cold where the inhibitor loses much of its effectiveness. Antithrombin III inhibition of activated Hageman factor is augmented by heparin which is also an activator of Hageman factor. The rate constants for inhibition remain much lower than for C1 inhibitor, however. PMID:2530427

  13. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  14. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  15. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna).

    PubMed

    Takao, L K; Imatomi, M; Gualtieri, S C J

    2015-11-01

    There is considerable interest in identifying new antioxidants from plant materials. Several studies have emphasized the antioxidant activity of species belonging to the Myrtaceae family. However, there are few reports on these species from the Cerrado (Brazilian savanna). In this study, the antioxidant activity and phenolic content of 12 native Myrtaceae species from the Cerrado were evaluated (Blepharocalyx salicifolius, Eugenia bimarginata, Eugenia dysenterica, Eugenia klotzschiana, Hexachlamys edulis, Myrcia bella, Myrcia lingua, Myrcia splendens, Myrcia tomentosa, Psidium australe, Psidium cinereum, and Psidium laruotteanum). Antioxidant potential was assessed using the antioxidant activity index (AAI) by the DPPH method and total phenolic content (TPC) by the Folin-Ciocalteu assay. There was a high correlation between TPC and AAI values. Psidium laruotteanum showed the highest TPC (576.56 mg GAE/g extract) and was the most potent antioxidant (AAI = 7.97, IC50 = 3.86 µg·mL-1), with activity close to that of pure quercetin (IC50 = 2.99 µg·mL-1). The extracts of nine species showed IC50 of 6.24-8.75 µg·mL-1. Most species showed TPC and AAI values similar to or higher than those for Camellia sinensis, a commonly consumed tea with strong antioxidant properties. The results reveal that the analyzed Myrtaceae species from the Cerrado possess high phenolic contents and antioxidant activities. Thus, they are a potential source of new natural antioxidants. PMID:26675912

  16. Catalase activity of different Candida species after exposition to specific antiserum

    PubMed Central

    Miyasaka, Natália R.S.; Unterkircher, Carmelinda S.; Shimizu, Mario T.

    2008-01-01

    Antisera were developed in rabbits after challenge with intracellular antigens of Candida albicans, C. tropicalis and C. parapsilosis. Microorganism catalase has been correlated with virulence, resistance to drugs and immunogenicity. The intracellular catalase is consistently present in strains of Candida and in this paper, the enzyme activity was analysed by PAGE after exposition to antisera. The catalases of C. albicans, C. parapsilosis and C. tropicalis were immunogenic and differed in their binding to specific antibodies raised in rabbits. Tests of cross-reactivity between different Candida species showed that when antiserum from C. albicans immunized rabbit was incubated with intracellular extracts of these three Candida species, the catalases activities were abolished. However, the antisera from C. parapsilosis or C. tropicalis immunized rabbits did not affect the catalase activity of C. albicans; the enzyme of C. albicans was inactivated only by the antiserum to the catalase of own C. albicans. The antiserum to the catalase of C. tropicalis was species-specific and did not cross-react with catalases of C. albicans and C. parapsilosis. The activities of Aspergillus niger and bovine catalases were not affected by the antiserum from any Candida immunized rabbits. This report is a preliminary study of specific antisera that react against intracellular catalase of Candida sp. and neutralize the enzymatic activity. Further study is necessary to develop species-specific antibody once differences in the susceptibility of the Candida species to commonly used antifungal drugs make identification to the species level important. PMID:24031174

  17. Total pollen counts do not influence active surface measurements

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Schinko, Herwig; Neuberger, Manfred

    We investigated the temporal association of various aerosol parameters with pollen counts in the pollen season (April 2001) in Linz, Austria. We were especially interested in the relationship between active surface (or Fuchs' surface) because we had shown previously (Atmos. Environ. 37 (2003) 1737-1744) that this parameter during the same observation period was a better predictor for acute respiratory symptoms in school children (like wheezing, shortness of breath, and cough) and reduced lung function on the same day than particle mass (PM 10). While active surface is most sensitive for fine particles with a diameter of less than 100 nm it has no strict upper cut-off regarding particle size and so could eventually be influenced also by larger particles if their numbers were high. All particle mass parameters tested (TSP, PM 10, PM 1) were weakly ( r approximately 0.2) though significantly correlated with pollen counts but neither was active surface nor total particle counts (CPC). The weak association of particle mass and pollen counts was due mainly to similar diurnal variations and a linear trend over time. Only the mass of the coarse fraction (TSP minus PM 10) remained associated with pollen counts significantly after controlling for these general temporal patterns.

  18. Active nematics on the surface of a torus

    NASA Astrophysics Data System (ADS)

    Ellis, Perry; Chang, Ya-Wen; Fernandez-Nieves, Alberto

    Nematic materials on the surface of a sphere must have a net topological charge of s = + 2 . In equilibrium nematics experiments have shown that this net topological charge can be realized with four s = + 1 / 2 defects, which also corresponds to the theoretically expected ground state configuration. Surprisingly, even though active nematics are continuously driven out of equilibrium by the internal energy of the nematogens, when confined to the surface of a sphere these materials can also realize this net topological charge with four s = + 1 / 2 defects. In contrast to the spherical confinement case, the situation for toroidal confinement has not been experimentally explored despite the existence of theory and simulation work examining the structure of ordered materials on the surface of a torus. Here, we experimentally realize an extensile active nematic confined to a toroidal surface and explore how the interplay between topology, activity, and nematic elasticity affect the structure and dynamics of the material. PWE is supported by FLAMEL under Grant NSF 1258425.

  19. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  20. Potential of two submontane broadleaved species (Acer opalus, Quercus pubescens) to reveal spatiotemporal patterns of rockfall activity

    NASA Astrophysics Data System (ADS)

    Favillier, Adrien; Lopez-Saez, Jérôme; Corona, Christophe; Trappmann, Daniel; Toe, David; Stoffel, Markus; Rovéra, Georges; Berger, Frédéric

    2015-10-01

    Long-term records of rockfalls have proven to be scarce and typically incomplete, especially in increasingly urbanized areas where inventories are largely absent and the risk associated with rockfall events rises proportionally with urbanization. On forested slopes, tree-ring analyses may help to fill this gap, as they have been demonstrated to provide annually-resolved data on past rockfall activity over long periods. Yet, the reconstruction of rockfall chronologies has been hampered in the past by the paucity of studies that include broadleaved tree species, which are, in fact, quite common in various rockfall-prone environments. In this study, we test the sensitivity of two common, yet unstudied, broadleaved species - Quercus pubescens Willd. (Qp) and Acer opalus Mill. (Ao) - to record rockfall impacts. The approach is based on a systematic mapping of trees and the counting of visible scars on the stem surface of both species. Data are presented from a site in the Vercors massif (French Alps) where rocks are frequently detached from Valanginian limestone and marl cliffs. We compare recurrence interval maps obtained from both species and from two different sets of tree structures (i.e., single trees vs. coppice stands) based on Cohen's k coefficient and the mean absolute error. A total of 1230 scars were observed on the stem surface of 847 A. opalus and Q. pubescens trees. Both methods yield comparable results on the spatial distribution of relative rockfall activity with similar downslope decreasing recurrence intervals. Yet recurrence intervals vary significantly according to tree species and tree structure. The recurrence interval observed on the stem surface of Q. pubescens exceeds that of A. opalus by > 20 years in the lower part of the studied plot. Similarly, the recurrence interval map derived from A. opalus coppice stands, dominant at the stand scale, does not exhibit a clear spatial pattern. Differences between species may be explained by the bark

  1. From surface science to catalysis: The importance of methoxy and formate species on Cu single crystals and industrial catalysts

    NASA Astrophysics Data System (ADS)

    Bowker, M.; Waugh, K. C.

    2016-08-01

    Early work from the Madix group identified a number of simple surface intermediate species which have proved to be of significance for industrial catalytic processes. Two of these intermediates are the methoxy and formate surface species. We discuss the formation and behavior of these on copper surfaces, and go on to highlight their role in two important industrial reactions, namely methanol synthesis and the selective oxidation of methanol to formaldehyde. The formate is the pivotal intermediate for methanol synthesis and is formed from the reaction of CO2 and H2, whereas it is important to avoid the formation of that intermediate for selective methanol oxidation, which proceeds through dehydrogenation of the methoxy species.

  2. Removal of carbon contaminations by RF plasma generated reactive species and subsequent effects on optical surface

    SciTech Connect

    Yadav, P. K. Rai, S. K.; Modi, M. H.; Nayak, M.; Lodha, G. S.; Kumar, M.; Chakera, J. A.; Naik, P. A.

    2015-06-24

    Carbon contamination on optical elements is a serious issue in synchrotron beam lines for several decades. The basic mechanism of carbon deposition on optics and cleaning strategies are not fully understood. Carbon growth mechanism and optimized cleaning procedures are worldwide under development stage. Optimized RF plasma cleaning is considered an active remedy for the same. In present study carbon contaminated optical test surfaces (carbon capped tungsten thin film) are exposed for 30 minutes to four different gases, rf plasma at constant power and constant dynamic pressure. Structural characterization (thickness, roughness and density) of virgin samples and plasma exposed samples was done by soft x-ray (λ=80 Å) reflectivity measurements at Indus-1 reflectivity beam line. Different gas plasma removes carbon with different rate (0.4 to 0.65 nm /min). A thin layer 2 to 9 nm of different roughness and density is observed at the top surface of tungsten film. Ar gas plasma is found more suitable for cleaning of tungsten surface.

  3. Removal of carbon contaminations by RF plasma generated reactive species and subsequent effects on optical surface

    NASA Astrophysics Data System (ADS)

    Yadav, P. K.; Kumar, M.; Rai, S. K.; Modi, M. H.; Chakera, J. A.; Nayak, M.; Naik, P. A.; Lodha, G. S.

    2015-06-01

    Carbon contamination on optical elements is a serious issue in synchrotron beam lines for several decades. The basic mechanism of carbon deposition on optics and cleaning strategies are not fully understood. Carbon growth mechanism and optimized cleaning procedures are worldwide under development stage. Optimized RF plasma cleaning is considered an active remedy for the same. In present study carbon contaminated optical test surfaces (carbon capped tungsten thin film) are exposed for 30 minutes to four different gases, rf plasma at constant power and constant dynamic pressure. Structural characterization (thickness, roughness and density) of virgin samples and plasma exposed samples was done by soft x-ray (λ=80 Å) reflectivity measurements at Indus-1 reflectivity beam line. Different gas plasma removes carbon with different rate (0.4 to 0.65 nm /min). A thin layer 2 to 9 nm of different roughness and density is observed at the top surface of tungsten film. Ar gas plasma is found more suitable for cleaning of tungsten surface.

  4. Imaging Active Surface Processes in Barnacle Adhesive Interfaces.

    PubMed

    Golden, Joel P; Burden, Daniel K; Fears, Kenan P; Barlow, Daniel E; So, Christopher R; Burns, Justin; Miltenberg, Benjamin; Orihuela, Beatriz; Rittshof, Daniel; Spillmann, Christopher M; Wahl, Kathryn J; Tender, Leonard M

    2016-01-19

    Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct

  5. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

    PubMed Central

    Peng, Zeyu; Dittmer, Neal T.; Lang, Minglin; Brummett, Lisa M.; Braun, Caroline L.; Davis, Lawrence C.; Kanost, Michael R.; Gorman, Maureen J.

    2015-01-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surpring because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  6. A species of human alpha interferon that lacks the ability to boost human natural killer activity.

    PubMed Central

    Ortaldo, J R; Herberman, R B; Harvey, C; Osheroff, P; Pan, Y C; Kelder, B; Pestka, S

    1984-01-01

    Most species of recombinant leukocyte interferons (IFN-alpha A, -alpha B, -alpha C, -alpha D, -alpha F, -alpha I, and -alpha K) were capable of boosting human natural killer (NK) activity after a 2-hr treatment of cells at a concentration of 1-80 units/ml. In contrast, recombinant human IFN-alpha J was found to be incapable of augmenting NK activity after exposure of cells for 2 hr to concentrations as high as 10,000 units/ml. This inability of IFN-alpha J to boost NK activity was not complete because, after exposure of cells to a high concentration of IFN-alpha J (10,000 units/ml) for 18 hr, boosting of cytolysis was observed. IFN-alpha J appeared to interact with receptors for IFN on NK cells since it was found to interfere with the boosting of NK activity by other species of IFN-alpha. In contrast to its deficient ability to augment NK activity, IFN-alpha J has potent antiviral and antiproliferative activities. Such extensive dissociation of these biological activities has not been observed previously with any other natural or recombinant IFN species. Thus, this IFN species may be useful for evaluating the relative importance of various biological activities on the therapeutic effects of IFN, for understanding structure-function relationships, and for determining the biochemical pathways related to the various biological effects of IFN. PMID:6589637

  7. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  8. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters.

    PubMed

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air-water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  9. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  10. In vitro activity of Rutaceae species against the trypomastigote form of Trypanosoma cruzi.

    PubMed

    Mafezoli, J; Vieira, P C; Fernandes, J B; da Silva, M F; de Albuquerque, S

    2000-11-01

    The activity of crude plant extracts of nine species of Rutaceae against the trypomastigote form of Trypanosoma cruzi was evaluated at 4 mg/ml. Thirty-two crude extracts were tested and eight of them showed significant activity (>80%). The most active extract was obtained from the stems of Pilocarpus spicatus (97.3%). Fractionation of the active crude extracts provided 25 fractions which were tested against the trypomastigote form of T. cruzi at 2 mg/ml. Of these six showed significant activity (>80%). The most active fractions (100%) were obtained from the leaves of Almeidea coerulea (butanol fraction) and Conchocarpus inopinatus (dichloromethane fraction). PMID:11025175

  11. Lasers on the Landscape: Quantifying 3-D ecosystem structure to map continuous surfaces of carbon, avian species richness, and tree species distributions

    NASA Astrophysics Data System (ADS)

    Vierling, L. A.; Finch, S.; Vierling, K. T.; Strand, E. K.; Hudak, A. T.; Vogeler, J.; Martinuzzi, S.; Eitel, J.; Falkowski, M. J.

    2012-12-01

    Quantifying ecosystem services and species diversity at multiple spatial scales is central to the sustainable management of global natural resources. Many attempts to quantify ecosystem services and species diversity have focused on single services or taxonomic groups, used proxy relationships rather than primary data, and/or failed to adequately assess broad spatial extents with a grain size fine enough to link with individual human decisions and local knowledge. It is thus important to establish objective, repeatable monitoring tools from the parcel to the landscape scale to meet management and policy needs, and to assist with targeting areas for conservation where high collective ecosystem service values (i.e. "hotspots") occur. To meet this need, we combined detailed field observations with LiDAR-derived ecosystem structural variables and statistical modeling techniques to map continuous surfaces of aboveground carbon, bird species richness, and tree diversity across a ~20,000 ha north Idaho case study landscape. Plot-level values of carbon (range: 0-584 Mg/ha), bird species richness (range: 0-23 species/0.04 ha), and tree species variety (range: 0-6 species/0.04 ha) were extrapolated across the landscape using imputation enabled by LiDAR-based relationships. Each quantity was then transformed to normalized values ranging from 0 to 1 to enable the three quantities to be combined for hotspot identification. We found that the scale of analysis strongly affected the magnitude of hotspots containing high carbon and biodiversity values: the maximum hotspot value decreased by 32% when grain size was increased from 100m to 1500m. In addition, we found that preferentially weighting one ecosystem property relative to the others (a situation common to many management scenarios) changed the location and magnitude of hotspots across the landscape. Our results indicate that LiDAR-derived ecosystem structure provides information that is useful for mapping numerous ecosystem

  12. Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Álvarez, P. M.; Gómez-Serrano, V.

    2010-06-01

    The control of the surface chemistry of activated carbon by ozone and heat treatment is investigated. Using cherry stones, activated carbons were prepared by carbonization at 900 °C and activation in CO 2 or steam at 850 °C. The obtained products were ozone-treated at room temperature. After their thermogravimetric analysis, the samples were heat-treated to 300, 500, 700 or 900 °C. The textural characterization was carried out by N 2 adsorption at 77 K, mercury porosimetry, and density measurements. The surface analysis was performed by the Bohem method and pH of the point of zero charge (pH pzc). It has been found that the treatment of activated carbon with ozone combined with heat treatment enables one to control the acidic-basic character and strength of the carbon surface. Whereas the treatment with ozone yields acidic carbons, carbon dioxide and steam activations of the carbonized product and the heat treatment of the ozone-treated products result in basic carbons; the strength of a base which increases with the increasing heat treatment temperature. pH pzc ranges between 3.6 and 10.3.

  13. Synthesis and characterization of redox active polymers at surfaces

    SciTech Connect

    Palmore, G.T.R.

    1992-01-01

    Chapter 1. This chapter presents the basic elements of cyclic voltammetry of electroactive solution and surface confined species, surface attachment of siloxane reagents, the electrochemistry of quinones and viologens, and charge trapping phenomenon associated with molecular reagents confined at electrode surfaces. Chapter II. Electrochemical characterization of electrode-confined siloxane polymers (NQ-BV[sup 3+])[sub n] and (NQ-BV-BV[sup 5+])[sub n], derived from monomers which contain both napthoquinone (NQ) and benzyl viologen (BV[sup 2+]) subunits, is presented. Chapter III. The author reports the studies of chemical mechanisms for release of charge trapped in the pH-dependence rectifying polymers, (NQ-BV[sup 3+]/siloxane)[sub n] and (NQ-BV-BV[sup 5+]/siloxane)[sub n]. The polymers are derived from monomers which contain both naphthoquinone (NQ) and benzyl viologen (BV[sup 2+]) subunits. Particular to these types of surface confined homopolymers is the ability to trap charge at low pH in the form of reduced quinone. Chapter IV. A methylene linked chromophore-acceptor complex consisting of a rhenium tricarbonyl bipyridine chromophore and a benzylviologen acceptor, BV[sup 2+], were confined to a metal oxide surface via a trimethoxysilyl functional group at the BC[sup 2+] terminus. Photocurrent quantum yield was determined for irradiated electrodes derivatized with either the linked chromophore-acceptor complex, SRe(CO)[sub 3] [4-methyl-4'-[l brace]N-methyl-N'-(4 trimethoxysilyl phenylmethyl)-4,4'-bipyridinium[r brace]-2,2'-bipyridine][sup 2+] [Br[sup [minus

  14. Active vision and sensor fusion for inspection of metallic surfaces

    NASA Astrophysics Data System (ADS)

    Puente Leon, Fernando; Beyerer, Juergen

    1997-09-01

    This paper deals with strategies for reliably obtaining the edges and the surface texture of metallic objects. Since illumination is a critical aspect regarding robustness and image quality, it is considered here as an active component of the image acquisition system. The performance of the methods presented is demonstrated -- among other examples -- with images of needles for blood sugar tests. Such objects show an optimized form consisting of several planar grinded surfaces delimited by sharp edges. To allow a reliable assessment of the quality of each surface, and a measurement of their edges, methods for fusing data obtained with different illumination constellations were developed. The fusion strategy is based on the minimization of suitable energy functions. First, an illumination-based segmentation of the object is performed. To obtain the boundaries of each surface, directional light-field illumination is used. By formulating suitable criteria, nearly binary images are selected by variation of the illumination direction. Hereafter, the surface edges are obtained by fusing the contours of the areas obtained before. Following, an optimally illuminated image is acquired for each surface of the object by varying the illumination direction. For this purpose, a criterion describing the quality of the surface texture has to be maximized. Finally, the images of all textured surfaces of the object are fused to an improved result, in which the whole object is contained with high contrast. Although the methods presented were designed for inspection of needles, they also perform robustly in other computer vision tasks where metallic objects have to be inspected.

  15. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.

    PubMed

    Saini, Seema; Yücel Falco, Çiğdem; Belgacem, Mohamed Naceur; Bras, Julien

    2016-01-01

    In the last decade, a new fiber pretreatment has been proposed to make easy cellulose fibrillation into microfibrils. In this context, different surface cationized MFC was prepared by optimizing the experimental parameters for cellulose fibers pretreatment before fibrillation. All MFCs were characterized by conductometric titration to establish degree of substitution, field emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and optical microscopy assessed the effect of pretreatment on the morphology of the ensuing MFCs. Antibacterial activities of neat and cationized MFC samples were investigated against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus) and Gram negative bacteria (Escherichia coli). The CATMFC sample at DS greater than 0.18 displayed promising results with antibacterial properties without any leaching of quaternary ammonium into the environment. This work proved the potential of cationic MFCs with specific DS for contact active antimicrobial surface applications in active food packaging, medical packaging or in health and cosmetic field. PMID:26453874

  16. Reactive Oxygen Species Affect Transglutaminase Activity and Regulate Hematopoiesis in a Crustacean.

    PubMed

    Junkunlo, Kingkamon; Söderhäll, Kenneth; Söderhäll, Irene; Noonin, Chadanat

    2016-08-19

    Reactive oxygen species (ROS) serve as a prime signal in the commitment to hematopoiesis in both mammals and Drosophila In this study, the potential function of ROS during hematopoiesis in the crayfish Pacifastacus leniusculus was examined. The antioxidant N-acetylcysteine (NAC) was used to decrease ROS in both in vivo and in vitro experiments. An increase in ROS was observed in the anterior proliferation center (APC) after LPS injection. In the absence of NAC, the LPS-induced increase in ROS levels resulted in the rapid restoration of the circulating hemocyte number. In the presence of NAC, a delay in the recovery rate of the hemocyte number was observed. NAC treatment also blocked the spread of APC and other hematopoietic tissue (HPT) cells, maintaining these cells at an undifferentiated stage. Extracellular transglutaminase (TGase) has been shown previously to play a role in maintaining HPT cells in an undifferentiated form. In this study, we show that extracellular TGase activity increased when the ROS level in HPT or APC cells was reduced after NAC treatment. In addition, collagen, a major component of the extracellular matrix and a TGase substrate were co-localized on the HPT cell surface. Taken together, the results of this study show that ROS are involved in crayfish hematopoiesis, in which a low ROS level is required to maintain hematopoietic progenitor cells in the tissue and to reduce hemocyte release. The potential roles of TGase in this process are investigated and discussed. PMID:27339892

  17. EVAPORATION OF GRAIN-SURFACE SPECIES BY SHOCK WAVES IN A PROTOPLANETARY DISK

    SciTech Connect

    Aota, Takuhiro; Aikawa, Yuri; Inoue, Tsuyoshi

    2015-02-01

    Recent Atacama Large Millimeter/submillimeter Array observations of young protostellar objects detected warm SO emission, which could be associated with a forming protostellar disk. In order to investigate if such warm gas can be produced by accretion shock onto the forming disk, we calculate the sputtering and thermal desorption of various grain-surface species in one-dimensional shock waves. We find that thermal desorption is much more efficient than the sputtering in the post-shock region. While H{sub 2}O can be thermally desorbed, if the accretion velocity is larger than 8 km s{sup –1} with the pre-shock gas number density of 10{sup 9} cm{sup –3}, SO is desorbed if the accretion velocity ≳2 km s{sup –1} and ≳4 km s{sup –1}, with the pre-shock density of 10{sup 9} cm{sup –3} and 10{sup 8} cm{sup –3}, respectively. We also find that the column density of hydrogen nuclei in warm post-shock gas is N {sub warm} ∼ 10{sup 21} cm{sup –2}.

  18. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  19. NADPH Oxidase- and Mitochondria-derived Reactive Oxygen Species in Proinflammatory Microglial Activation: A Bipartisan Affair?

    PubMed Central

    Bordt, Evan A.; Polster, Brian M.

    2014-01-01

    Microglia are the resident immune cells of the brain and play major roles in central nervous system development, maintenance, and disease. Brain insults cause microglia to proliferate, migrate, and transform into one or more activated states. Classical M1 activation triggers the production of proinflammatory factors such as tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO), and reactive oxygen species which, in excess, can exacerbate brain injury. The mechanisms underlying microglial activation are not fully understood, yet reactive oxygen species are increasingly implicated as mediators of microglial activation. In this review, we highlight studies linking reactive oxygen species, in particular hydrogen peroxide derived from NADPH oxidase-generated superoxide, to the classical activation of microglia. In addition, we critically evaluate controversial evidence suggesting a specific role for mitochondrial reactive oxygen species in the activation of the NLRP3 inflammasome, a multiprotein complex that mediates the production of IL-1β and IL-18. Finally, the limitations of common techniques used to implicate mitochondrial ROS in microglial and inflammasome activation, such as the use of the mitochondrially-targeted ROS indicator MitoSOX and the mitochondrially-targeted antioxidant MitoTEMPO, are also discussed. PMID:25091898

  20. Frank Stinchfield Award. Titanium surface with biologic activity against infection.

    PubMed

    Parvizi, Javad; Wickstrom, Eric; Zeiger, Allen R; Adams, Christopher S; Shapiro, Irving M; Purtill, James J; Sharkey, Peter F; Hozack, William J; Rothman, Richard H; Hickok, Noreen J

    2004-12-01

    Despite immense improvements, periprosthetic infection continues to compromise the result of otherwise successful joint arthroplasty. There are various limitations in the treatment of periprosthetic infection, the most important of which is the inability to deliver antibiotics to the local tissue without the need for intravenous administration. We have developed a novel route to covalently tether vancomycin to a metal (titanium) surface, which showed effective bactericidal activity because of a vancomycin coupling. The chemistry of tethering does not affect the biological activity of the biofactors that are attached to the metal surface. This technology holds great promise for the manufacturing of "smart" implants that can be self protective against periprosthetic infection, or can be used for the treatment of periprosthetic infections when they occur. PMID:15577462

  1. Deployable Extravehiclar Activity Platform (DEVAP) for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Merbitz, Jerad; Kennedy, Kriss; Gill, Tracy; Tri, Terry; Liolios, Sotirios; Lynch, Amanda; Walsh, Edward

    2012-01-01

    The Deployable Extra-Vehicular Activity Platform (DEVAP) is a staging platform for egress and ingress attached to a lunar, Mars, or planetary surface habitat airlock, suitlock, or port. The DEVAP folds up into a compact package for transport, and deploys manually from its attached location to provide a ramp and staging platform for extra-vehicular activities. This paper discusses the latest development of the DEVAP, from its beginnings as a portable platform attached to the Lunar Outpost Pressurized Excursion Module (PEM) in the Constellation Lunar Surface Systems scenarios, to the working prototype deployed at the2011 NASA Desert Research and Technology Studies (D-RATS) analog field tests in Arizona. The paper concludes with possible future applications and directions for the DEVAP.

  2. Correlations between surface structure and catalytic activity/selectivity

    SciTech Connect

    Goodman, D.W.

    1992-10-01

    Objective is to address the keys to understanding the relation between surface structure and catalytic activity/selectivity. Of concern are questions related to enhanced catalytic properties of mixed-metal catalysts and critical active site requirements for molecular synthesis and rearrangement. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), UV and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS) and infrared reflection-absorption spectroscopy (IRAS). Our research program builds upon our previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well we are exploiting our recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. The program is proceeding toward the study of the unique catalytic properties of ultrathin metal films; the investigation of the critical ensemble size requirements for principal catalytic reaction types; and the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  3. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  4. Silanone groups on the surface of mechanically activated silicon dioxide

    SciTech Connect

    Bobyshev, A.A.; Radtsig, V.A.

    1988-12-01

    A new type of natural defects, namely, silanone groups, was identified on the surface of mechanically activated SiO/sub 2/. A study was carried out on their thermal stability, optical properties (a characteristic absorption band was found with maximum at 5.3 eV), and reactivity relative to simple molecules such as CO/sub 2/ and N/sub 2/O and radicals such as H, D, and CH/sub 3/.

  5. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    PubMed

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  6. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas

    PubMed Central

    Heim, Olga; Treitler, Julia T.; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  7. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  8. Osteogenic activity of titanium surfaces with nanonetwork structures

    PubMed Central

    Xing, Helin; Komasa, Satoshi; Taguchi, Yoichiro; Sekino, Tohru; Okazaki, Joji

    2014-01-01

    Background Titanium surfaces play an important role in affecting osseointegration of dental implants. Previous studies have shown that the titania nanotube promotes osseointegration by enhancing osteogenic differentiation. Only relatively recently have the effects of titanium surfaces with other nanostructures on osteogenic differentiation been investigated. Methods In this study, we used NaOH solutions with concentrations of 2.5, 5.0, 7.5, 10.0, and 12.5 M to develop a simple and useful titanium surface modification that introduces the nanonetwork structures with titania nanosheet (TNS) nanofeatures to the surface of titanium disks. The effects of such a modified nanonetwork structure, with different alkaline concentrations on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMMSCs), were evaluated. Results The nanonetwork structures with TNS nanofeatures induced by alkali etching markedly enhanced BMMSC functions of cell adhesion and osteogenesis-related gene expression, and other cell behaviors such as proliferation, alkaline phosphatase activity, extracellular matrix deposition, and mineralization were also significantly increased. These effects were most pronounced when the concentration of NaOH was 10.0 M. Conclusion The results suggest that nanonetwork structures with TNS nanofeatures improved BMMSC proliferation and induced BMMSC osteogenic differentiation. In addition, the surfaces formed with 10.0 M NaOH suggest the potential to improve the clinical performance of dental implants. PMID:24741311

  9. Environment-friendly Pd free surface activation technics for ABS surface

    NASA Astrophysics Data System (ADS)

    Shu, Zengnian; Wang, Xu

    2012-05-01

    An environment-friendly surface etching and activation technics for acrylonitrile-butadiene-styrene (ABS) surface metallization were investigated as a replacement for conventional chromic acid etching bath and palladium catalyst. After etching by H2SO4-MnO2 colloid, the ABS surfaces became roughness; meanwhile the carboxyl and hydroxyl groups were formed on the surface. With absorption and a reduction by a dimethylamineborane solution, copper particles were deposited on the ABS surface, which serves as a catalyst replacement for SnCl2/PdCl2 colloid. The effects of CuSO4 concentration, (CH3)2NHBH3 concentration, reduction temperature and reduction time on the adhesion strength between the ABS surface and the electroless copper film were investigated. And the average adhesion strengths reached 1.31 kN m-1, which is near the values (1.19 kN m-1) obtained by SnCl2/PdCl2 colloid.

  10. Surface Charge and Hydrophobicity of Endospores of Bacillus anthracis and Related Species in Aqueous Solution

    EPA Science Inventory

    The surface properties of microorganisms play an important role in attachment and detachment in the environment. The change in surface charge can effect coagulation, disinfection, adhesion to surfaces, uptake of chemicals, and environmental transport. In aqueous solution, cell s...

  11. Effects of helium gas mixing on the production of active species in nitrogen plasma

    NASA Astrophysics Data System (ADS)

    Naveed, M. A.; Qayyum, A.; Ali, Shujaat; Zakaullah, M.

    2006-12-01

    Optical emission spectroscopy is used to investigate the effects of helium gas mixing on the electron temperature and the production of active species in nitrogen plasma generated by 50 Hz pulsed-DC power source. The electron temperature is determined from He I line intensities, using Boltzmann's plot method. The relative changes in the concentration of active species N2(C Πu3) and N+2(B Σu+2) are monitored by measuring the emission intensities of nitrogen (0 0) bands of the second positive and the first negative systems. It is found that the electron temperature can be raised considerably by mixing helium in nitrogen plasma, which in return plays a significant role in enhancing the concentration of active species through Penning effect of metastable states of the helium.

  12. Production of β-Glucosidase from a Newly Isolated Aspergillus Species Using Response Surface Methodology

    PubMed Central

    Vaithanomsat, Pilanee; Songpim, Molnapat; Malapant, Taweesiri; Kosugi, Akihiko; Thanapase, Warunee; Mori, Yutaka

    2011-01-01

    A newly isolated fungus Aspergillus niger SOI017 was shown to be a good producer of β-glucosidase from all isolated fungal strains. Fermentation condition (pH, cellobiose concentration, yeast extract concentration, and ammonium sulfate concentration) was optimized for producing the enzyme in shake flask cultures. Response surface methodology was used to investigate the effects of 4 fermentation parameters (yeast extract concentration, cellobiose concentration, ammonium sulfate concentration, and pH) on β-glucosidase enzyme production. Production of β-glucosidase was most sensitive to the culture medium, especially the nitrogen source yeast extract. The optimized medium for producing maximum β-glucosidase specific activity consisted of 0.275% yeast extract, 1.125% cellobiose, and 2.6% ammonium sulfate at a pH value of 3. PMID:21716658

  13. Salinity effects on viability, metabolic activity and proliferation of three Perkinsus species

    USGS Publications Warehouse

    La, Peyre M.; Casas, S.; La, Peyre J.

    2006-01-01

    Little is known regarding the range of conditions in which many Perkinsus species may proliferate, making it difficult to predict conditions favorable for their expansion, to identify conditions inducing mortality, or to identify instances of potential cross-infectivity among sympatric host species. In this study, the effects of salinity on viability, metabolic activity and proliferation of P. marinus, P. olseni and P. chesapeaki were determined. Specifically, this research examined the effects of 5 salinities (7, 11, 15, 25, 35???), (1) without acclimation, on the viability and metabolic activity of 2 isolates of each Perkinsus species, and (2) with acclimation, on the viability, metabolic activity, size and number of 1 isolate of each species. P. chesapeaki showed the widest range of salinity tolerance of the 3 species, with high viability and cell proliferation at all salinities tested. Although P. chesapeaki originated from low salinity areas (i.e. <15???), several measures (i.e. cell number and metabolic activity) indicated that higher salinities (15, 25???) were more favorable for its growth. P. olseni, originating from high salinity areas, had better viability and proliferation at the higher salinities (15, 25, 35???). Distinct differences in acute salinity response of the 2 P. olseni isolates at lower salinities (7, 11???), however, suggest the need for a more expansive comparison of isolates to better define the lower salinity tolerance. Lastly, P. marinus was more tolerant of the lower salinities (7 and 11???) than P. olseni, but exhibited reduced viability at 7???, even after acclimation. ?? Inter-Research 2006.

  14. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.

    PubMed

    Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo

    2013-09-01

    The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. PMID:23496653

  15. Evaluation of Clinical Biomaterial Surface Effects on T Lymphocyte Activation

    PubMed Central

    Rodriguez, Analiz; Anderson, James M.

    2009-01-01

    Previous in vitro studies in our laboratory have shown that lymphocytes can influence macrophage adhesion and fusion on biomaterial surfaces. However, few studies have evaluated how material adherent macrophages can influence lymphocyte behavior, specifically T cells. In this study, we cultured human peripheral blood mononuclear cells from healthy donors on three synthetic non-biodegradable biomedical polymers: Elasthane 80A (PEU), Silicone rubber (SR), or polyethylene terephthalate (PET) and tissue culture polystyrene (TCPS). Upregulation of T cell surface activation markers (CD69 and CD25), lymphocyte proliferation, and interleukin-2 (IL-2) and interferon-γ (IFNγ) concentrations were evaluated by flow cytometry, carboxy-fluorescein diacetate, succinimydyl ester (CFSE) incorporation, and multiplex cytokine immunoassay, respectively, to assess T cell activation. Following 3 and 7 days of culture, CD4+ helper T cells from cultures of any of the material groups did not express the activation markers CD69 and CD25 and lymphocyte proliferation was not present. IL-2 and IFNγ levels were produced, but dependent on donor. These data indicate that T cells are not activated in response to clinically relevant synthetic biomaterials. The data also suggest that lymphocyte subsets exclusive of T cells are the source of the lymphokines, IL-2 and IFN-γ, in certain donors. PMID:19172618

  16. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species

    PubMed Central

    Al-Bakri, Amal G.; Othman, Ghadeer; Afifi, Fatma U.

    2010-01-01

    Background: Several Salvia species are indigenous to Jordan and are widely used as beverages and spices and for their medicinal properties. The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species. Materials and Methods: Methods used for planktonic culture included agar diffusion, broth microdilution, and minimal biocidal concentration determination while viable count was used for the determination of the antibiofilm and antiadhesion activities. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and clinical strains of methicillin-resistant S. aureus (MRSA) were used as test microorganisms. Results: An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA. Its volatile oil exhibited an antimicrobial activity covering all tested microorganisms with the exception of P. aeruginosa. S. triloba extract and volatile oil were successful in preventing and controlling the biofilm, demonstrating antiadhesion and antibiofilm activities, respectively. Conclusion: These reported activities for S. triloba extract and volatile oil allows their listing as potential antibiofilm and anti-MRSA natural agents. This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections. The antimicrobial activity of the other tested Salvia species was negligible. PMID:21120026

  17. Spatial Organization of Dual-Species Bacterial Aggregates on Leaf Surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2005-01-01

    The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions

  18. Gold-Adatom-Mediated Bonding in Self-Assembled Short-Chain Alkanethiolate Species on the Au(111) Surface

    SciTech Connect

    Maksymovych, P.; Sorescu, D.C.; Yates, J.T., Jr.

    2006-10-06

    Microscopic evidence for Au-adatom-induced self-assembly of alkanethiolate species on the Au(111) surface is presented. Based on STM measurements and density-functional theory calculations, a new model for the low-coverage self-assembled monolayer of alkanethiolate on the Au(111) surface is developed, which involves the adsorbate complexes incorporating Au adatoms. It is also concluded that the Au(111) herringbone reconstruction is lifted by the alkanethiolate self-assembly because the reconstructed surface layer provides reactive Au adatoms that drive self-assembly.

  19. Enhanced visible-light photocatalytic activity of active Al₂O₃/g-C₃N₄ heterojunctions synthesized via surface hydroxyl modification.

    PubMed

    Li, Fa-Tang; Zhao, Ye; Wang, Qing; Wang, Xiao-Jing; Hao, Ying-Juan; Liu, Rui-Hong; Zhao, Dishun

    2015-01-01

    Novel Al2O3/g-C3N4 heterojunction photocatalysts were fabricated through ultrasonic dispersion method. Al2O3, obtained via solution combustion, contained amorphous ingredient with lots of defect sites and was used as active component for transferring photo-induced electrons of g-C3N4. G-C3N4 was grafted surface hydroxyl groups in the presence of ammonia aqueous solution to combine with Al2O3 possessing positive charges via hydrogen bond. The XRD, SEM, element map, TEM, HRTEM, FT-IR, and XPS results indicate that these synthesized materials are two-phase hybrids of Al2O3 and g-C3N4 with interaction. The photocatalytic results for the degradation of rhodamine B (RhB) indicate that the most active heterojunction proportion is 60wt.% g-C3N4:40wt.% Al2O3, the visible light photocatalytic activity of which is 3.8 times that of a mechanical mixture. The enhanced performance is attributed to the high separation efficiency of photo-induced electrons from the LUMO of g-C3N4 injected into the defect sites of Al2O3, which is verified by photoluminescence spectroscopy (PL) and surface photovoltage (SPV) measurements. The electron paramagnetic resonance (EPR) signals and radical scavengers trapping experiments reveal holes (h(+)) and superoxide anion radical (O2(-)) are the main active species responsible for the degradation of RhB. PMID:25306536

  20. Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance

    PubMed Central

    Hulicova-Jurcakova, Denisa; Seredych, Mykola; Lu, Gao Qing; Kodiweera, N.K.A.C.; Stallworth, Phillip E.; Greenbaum, Steven; Bandosz, Teresa J.

    2009-01-01

    Micro/mesoporous activated carbons containing oxygen and phosphorus heteroatoms were modified by incorporation of nitrogen using melamine and urea precursors. The surface chemistry was analyzed by the means of elemental analysis, XPS, and 31P MAS NMR. The results indicate that upon the incorporation of nitrogen at high temperatures not only new species involving carbon/nitrogen/oxygen are formed but also the phosphorous environment is significantly altered. Both urea and melamine precursors have similar effects on formation of P–N and P–C bonds. These compounds, although present in small but measurable quantities seem to affect the performance of carbons in electrochemical capacitors. With an increase in the heterogeneity of phosphorus containing species and with a decrease in the content pyrophosphates the capacitance increases and the retention ratio of the capacitor is improved. PMID:20354586

  1. Long-Term Residual Efficacy of Spinetoram on Concrete and Steel Surfaces for the Management of Three Stored Product Beetle Species.

    PubMed

    Vassilakos, Thomas N; Athanassiou, Christos G

    2015-08-01

    In this study, the residual efficacy of spinetoram on concrete and galvanized steel surfaces was evaluated under fixed laboratory conditions against the rice weevil, Sitophilus oryzae (L.), the confused flour beetle, Tribolium confusum Jacquelin du Val, and the sawtoothed grain beetle, Oryzaephilus surinamensis (L.). Spinetoram was applied at the dose rates of 0.025 and 0.1 mg (active ingredient)/cm(2), on steel surfaces that were stored in continuous darkness and on concrete surfaces that were stored either in continuous darkness or in 12:12 (L:D) photoperiod. The experimental period for the residual effect of spinetoram was 6 mo. Bioassays were conducted for all types of surfaces and storage conditions at monthly intervals starting from the initial application period (seven bioassays in total). For each bioassay, mortality of the exposed adult beetles was measured after 3 and 7 d of exposure. Among the tested species, T. confusum was the least susceptible, regardless of the surface type, storage conditions, and dose rate. Regarding the bioassays conducted in the surfaces stored in darkness, spinetoram proved very persistent and no reduction in the efficacy was noted throughout the experimental period. Moreover, there were no differences in spinetoram efficacy between the two types of surfaces. Conversely, in light [12:12 (L:D)] conditions spinetoram efficacy was notably reduced after the first month, but remained stable for the rest of the period. The results of this study indicate that spinetoram was persistent with long residual efficacy against major stored grain beetle species on the most common types of surfaces in continuous darkness, while the presence of light reduced its efficacy. PMID:26470356

  2. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE PAGESBeta

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  3. Diaphragmatic activity induced by cortical stimulation: surface versus esophageal electrodes.

    PubMed

    Gea, J; Espadaler, J M; Guiu, R; Aran, X; Seoane, L; Broquetas, J M

    1993-02-01

    Evoked responses of the diaphragm can be induced by magnetic cortical stimulation and recorded by either surface or esophageal electrodes. The former recording system is tolerated better by the patient but has potential problems with the specificity of the diaphragmatic signal. This study compares the responses of the diaphragm to cortical stimulation that were recorded simultaneously with surface and esophageal electrodes on seven patients (61 +/- 4 yr) with chronic obstructive pulmonary diseases. Stimuli were delivered in three ventilatory conditions: at baseline, during deep breathing, and during voluntary panting. No differences were observed between results recorded by surface and esophageal electrodes [amplitude of the compound motor of the action potential (CMAP), 0.8 +/- 0.1 vs. 0.8 +/- 0.1 mV, NS; latency, 13.1 +/- 0.4 vs. 12.6 +/- 0.5 ms, NS]. In addition, significant correlations were found (CMAP, r = 0.77, P < 0.001; latency, r = 0.71, P = 0.002). The concordance analysis, however, indicated some dissimilarity between the recordings of the electrodes (CMAP, R1 = 0.31; latency, R1 = 0.26). These differences may be due to the area of the muscle mainly recorded by each electrode and/or to the additional activity from other muscles recorded by surface electrodes. On the other hand, the diaphragmatic responses observed in these patients with chronic obstructive pulmonary diseases were similar to those previously reported in healthy subjects. PMID:8458780

  4. Antibacterial activity of silver nanoparticles grafted on stone surface.

    PubMed

    Bellissima, F; Bonini, M; Giorgi, R; Baglioni, P; Barresi, G; Mastromei, G; Perito, B

    2014-12-01

    Microbial colonization has a relevant impact on the deterioration of stone materials with consequences ranging from esthetic to physical and chemical changes. Avoiding microbial growth on cultural stones therefore represents a crucial aspect for their long-term conservation. The antimicrobial properties of silver nanoparticles (AgNPs) have been extensively investigated in recent years, showing that they could be successfully applied as bactericidal coatings on surfaces of different materials. In this work, we investigated the ability of AgNPs grafted to Serena stone surfaces to inhibit bacterial viability. A silane derivative, which is commonly used for stone consolidation, and Bacillus subtilis were chosen as the grafting agent and the target bacterium, respectively. Results show that functionalized AgNPs bind to stone surface exhibiting a cluster disposition that is not affected by washing treatments. The antibacterial tests on stone samples revealed a 50 to 80 % reduction in cell viability, with the most effective AgNP concentration of 6.7 μg/cm(2). To our knowledge, this is the first report on antimicrobial activity of AgNPs applied to a stone surface. The results suggest that AgNPs could be successfully used in the inhibition of microbial colonization of stone artworks. PMID:24151026

  5. Vigorous Convection Underlies Pluto’s Surface Activity

    NASA Astrophysics Data System (ADS)

    Trowbridge, Alexander J.; Melosh, Henry Jay; Freed, Andy M.

    2015-11-01

    Against many expectations, New Horizons’ images of the surface of Pluto and Charon show seemingly young surfaces. On Pluto, images of an equatorial region south of the Tombaugh Regio reveal a mountain range with peaks jutting as high as 3,500 meters. The low concentration of craters for these mountains suggests an age of 100 million years, indicating that Pluto is geologically active. Other evidence for geologic activity includes a fault cross-cutting ridges, smooth lightly cratered plains with flow fronts, and a pair of apparent stratovolcanoes. Charon similarly possesses very few craters and a spectacular system of troughs. Both observations suggest the possible presence of active cryogeysers and cryovolcanoes. The underlying cause of modern tectonic and volcanic activity on any object is likely a vigorous mantle convection regime. We are thus led to consider what determines planetary vigor. While Pluto and Charon seem to be quite active, Ceres and the much larger Callisto seem to lack modern endogenic activity, even though all of these bodies are likely to possess water ice mantles.We coupled a parameterized convection model with a temperature dependent rheology for pure water ice, deducing a barely critical Rayleigh number of ~1600 for Pluto’s mantle and <1000 for Charon, suggesting that a water ice mantle alone may be insufficient to support vigorous convection in these bodies. However, in the outer solar system, other volatiles may have condensed. Ammonium hydrate has been reported on the surface of Charon. At temperatures above the eutectic (176 K), Durham et al. (1993) showed that NH3 lowers the viscosity of water ice by 4 orders of magnitude. Our model indicates that, with NH3, the mean temperature of the mantle of Pluto is at the eutectic and its Ra ~ 10^4. The presence of NH3 dramatically increases the vigor of convection for the two bodies and suggests that ammonia-water slurries are the basis for Pluto’s volcanism. We propose that the presence or

  6. Anti-inflammatory and anti-bacterial activity, and cytotoxicity of halloysite surfaces.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Palacios, Eduardo; Montoya, José Ascención; Gómez-Vidales, Virginia; Ramírez-Apán, María Teresa

    2013-11-01

    Halloysite is a naturally-occurring nanomaterial occurring in the thousands of tons and that serves as biomaterial, with applications in the areas of biotechnology, pharmaceutical, and medical research. This study reports on the anti-inflammatory, cytotoxic, and anti-oxidant activity of halloysite Jarrahdale (collected at ∼ 45 km SE of Perth, Western Australia; JA), Dragon Mine (provided by Natural Nano Inc., Rochester, New York; NA), and Kalgoorie Archean (collected at Siberia, ∼ 85km NW of Kalgoorlie, West Australia; PA). Prior to biological testing, halloysites were characterized by 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy, the anti-inflammatory activity was determined by (a) the mouse ear edema method, using 12-o-tetradecanoylphorbol-13-acetate (TPA) as anti-inflammatory agent; and (b) the myeloperoxidase enzymatic activity method (MPO). Cell viability was determined using the MTT method. Sample characterization by NMR method showed similar symmetry and atomic environments, with no evidence of distortion(s) due to shiftings in atomic ordering or electron density. The anti-inflammatory activity followed the order: PA>JA>NA, and remained invariant with time. Prolonged anti-inflammatory activity related inversely to surface area and lumen space. The low extent of infiltration at shorter reaction times confirmed a limiting number of active surface sites. EPR intensity signals followed the order: JA>NA>PA. The poor stabilization of RO species in PA suspensions was explained by tube alignment provoking occlusion, thus limiting transfer of H(+) or e(-) from-and-to the surface, and decreases in acidity associated to Al(oct). Cell viability (%) varied from one surface to the other, PA(92.3 ± 6.0), JA(84.9 ± 7.8), and NA(78.0 ± 5.6), but related directly to SBET values. PMID:23907053

  7. Methods of chemical analysis for selected species in marble and limestone surfaces exposed to the acidic outdoor environment

    SciTech Connect

    Jensen, K.J.; Williams, F.L.; Huff, E.A.; Youngdahl, C.A.

    1986-03-01

    There is concern for marble and limestone exposed to the acidic outdoor environment because they are widely used as the exterior structures of buildings and monuments and because the calcium carbonate stones are especially sensitive to acid. Field tests of these building materials under carefully monitored environmental conditions are being conducted to measure damage rates and ultimately to quantify the individual effects of the important damage mechanisms. The development of further quantitative understanding will provide an improved basis for control strategies. The demonstration, verification, and application of a technique to measure selected surface anionic and cationic species are important contributions to this study. These methods of stone surface chemical analysis, developed for and applied in the National Acid Precipitation Assessment Program (NAPAP), are appropriate to monitor selected species of program interest and are sufficient to determine surface sulfate and nitrate reaction products.

  8. Active multispectral near-IR detection of small surface targets

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.; Winkel, Hans; Roos, Marco J. J.

    2001-10-01

    The detection and identification of small surface targets with Electro-Optical sensors is seriously hampered by ground clutter, leading to false alarms and reduced detection probabilities. Active ground illumination can improve the detection performance of EO sensors compared to passive skylight illumination because of the knowledge of the illumination level and of its temporal stability. Sun and sky cannot provide this due to the weather variability. In addition multispectral sensors with carefully chosen spectral bands ranging from the visual into the near IR from 400-2500 nm wavelength can take benefit of a variety of cheap active light sources, ranging from lasers to Xenon or halogen lamps. Results are presented, obtained with a two- color laser scanner with one wavelength in the chlorophyll absorption dip. Another active scanner is described operating at 4 wavebands between 1400 and 2300 nm, using tungsten halogen lamps. Finally a simple TV camera was used with either a ste of narrow band spectral filters or polarization filters in front of the lamps. The targets consisted of an array of mixed objects, most of them real mines. The results how great promise in enhancing the detection and identification probabilities of EO sensors against small surface targets.

  9. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  10. Activity Profile In Vitro of Micafungin against Spanish Clinical Isolates of Common and Emerging Species of Yeasts and Molds▿

    PubMed Central

    Cuenca-Estrella, Manuel; Gomez-Lopez, Alicia; Mellado, Emilia; Monzon, Araceli; Buitrago, Maria J.; Rodriguez-Tudela, Juan L.

    2009-01-01

    A collection of 2,278 isolates belonging to 86 different fungal species was tested with micafungin and eight other drugs using the EUCAST procedures. Micafungin was active against species of Candida and Aspergillus (even azole-resistant species) as well as Penicillium spp., Scedosporium apiospermum, and Acremonium spp. It was inactive for species of Basidiomycota and Mucorales and for multiresistant species such as those of Fusarium. PMID:19223630

  11. Cholinesterase activity per unit surface area of conducting membranes.

    PubMed

    Brzin, M; Dettbarn, W D; Rosenberg, P; Nachmansohn, D

    1965-08-01

    According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm(2) surface of sensory axons of the walking leg of lobster is 1.2 x 10(-3) microM/hr. (sigma = +/- 0.3 x 10(-3); SE = 0.17 x 10(-3)); the corresponding value for the motor axons isslightly higher: 1.93 x 10(-3) microM/hr. (sigma = +/- 0.41 x 10(-3); SE = +/- 0.14 x 10(-3)). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 microM/hr. (sigma = +/- 73.5; SE = +/- 32.6) versus 111.6 microM/hr. (sigma = +/- 28.3; SE = +/- 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10(-4) microM/mm(2)/hr. (sigma = +/- 0.96 x 10(-4); SE = +/- 0.4 x 10(-4)). (3) The Ch-esterase activity per mm(2) surface of squid giant axon is 9.5 x 10(-5) microM/hr. (sigma = +/- 1.55 x 10(-5); SE = +/- 0.38 x 10(-5)). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10(-5) microM/mm(2)/hr. (sigma = +/- 3.24 x 10(-5); SE = +/- 0.93 x 10(-5)). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm(2) per impulse. PMID:5865929

  12. Quantification of Microbial Activities in Near-Surface Soils

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Nauer, P.; Zeyer, J.

    2007-12-01

    Microbial processes in near-surface soils play an important role in carbon and nutrient cycling, and specifically in the turnover of greenhouse gases such as CO2 and CH4. We modified a recently developed technique, the gas push-pull test (GPPT), to allow for the in-situ quantification of microbial activities in near-surface soils. A GPPT consists of the controlled injection of a gas mixture containing reactive gases (e.g., CH4, O2, CO2) and nonreactive tracer gases (e.g., Ar, Ne) into the soil, followed by the extraction of the gas mixture/soil-air blend from the same location. Rates of microbial activities are computed from the gases" breakthrough curves obtained during the GPPT's extraction phase. For a GPPT to be applied successfully, it is important that sufficient mass of the injected gases can be recovered during the test, even after prolonged incubation in soil. But this may be difficult to achieve during GPPTs performed in near- surface soils, where gas loss to the atmosphere can be substantial. Our modification consisted of performing GPPTs within a steel cylinder (8.4-cm radius), which was previously driven into the soil to a depth of 50 cm. During the GPPTs, the cylinder was temporarily closed with a removable lid to minimize gas loss to the atmosphere. We performed a series of numerical simulations as well as laboratory experiments to test the usefulness of this modification. Numerical simulations confirmed that without use of the cylinder, typical near- surface GPPTs (e.g., injection/extraction depth 20 cm below soil surface) are subject to extensive gas loss to the atmosphere (mass recovery < 20% for most gases), whereas mass recovery of injected gases increased dramatically when the cylinder was employed (mass recovery > 90% for most gases). Results from laboratory experiments confirmed this observation. We will also present results of a first field application, in which a near- surface GPPT was successfully conducted in a sandy soil to quantify in

  13. Cytotoxic activities of ethyl acetate extract and a metabolite from a Monocillium species.

    PubMed

    Khondkar, Proma; Rahman, M Mukhlesur; Islam, Anwarul

    2005-09-01

    The ethyl acetate soluble fraction of a cultural broth of a Monocillium species afforded the isolation of 5-hydroxymethylfurfural. Both the extract and 5-hydroxymethylfurfural showed significant cytotoxic activities in a brine shrimp bioassay and the LC(50) values were found to be 14.96 microg/mL and 23.71 microg/mL, respectively. PMID:16220580

  14. Rare & Endangered Species: Understanding Our Disappearing Plants and Animals. Activities Guide.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    About 464 plants and animals found in the United States and its territories are listed by the U.S. Fish and Wildlife Service as threatened or endangered. Another 3900 are candidates for protection. The activities in this guide are designed to help teachers and students understand the issue of endangered species. It includes ideas for several…

  15. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage and turf grasses are utilized in diverse environments which exposes them to a variety of abiotic stresses, however very little is known concerning the perception or molecular responses to these various stresses. In the model grass species Lolium temulentum (Lt), a 46 kDa mitogen-activated pro...

  16. Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity.

    PubMed

    DeFrank, J J; Beaudry, W T; Cheng, T C; Harvey, S P; Stroup, A N; Szafraniec, L L

    1993-06-01

    Previously, a G-type nerve agent degrading enzyme activity was found in a halophilic bacterial isolate designated JD6.5. This organism was tentatively identified as an unknown species of the genus Alteromonas. In order to determine whether this type of enzyme activity was common in other species of Alteromonas, a screening program was initiated. A number of Alteromonas species and five halophilic bacterial isolates were cultured and their crude cell extracts screened for hydrolytic activity against several organophosphorus chemical agents and other related compounds. The samples were also screened for cross-reactivity with a monoclonal antibody raised against the purified enzyme from JD6.5 and for hybridization with a DNA probe based on its N-terminal amino acid sequence A wide spectrum of activities and reactivities were seen, suggesting a significant heterogeneity between the functionally similar enzymes that are present in these bacterial species. Enzymes of the type described here have considerable potential for the decontamination and demilitarization of chemical warfare agents. PMID:8393735

  17. Activated wetting dynamics in the presence of mesoscopic surface disorder

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina; Pettersen, Michael; Rolley, Etienne

    2012-02-01

    Although disorder is commonly used to explain contact angle hysteresis, it is often neglected when considering wetting dynamics. When viscous forces are negligible, contact-line velocity is modelled by the Molecular Kinetic Theory [1], which predicts an activated motion driven by molecular jumps on preferential adsorption sites. We believe that in the presence of mesoscopic disorder, this model can be reinterpreted and that the activation length is no longer molecular-sized but is related to depinning events on the surface. This hypothesis is supported by a study of the wetting of cesium by liquid hydrogen in which it was shown that the activation length is of the order of the expected roughness [2]. However, no systematic study between the activation area and the length scale of the disorder has previously been made. We study wetting dynamics on metal films evaporated under different conditions, allowing us to obtain films with lateral grain sizes ranging from 10 to 200 nm. We find that the activation area deduced from wetting experiments is coherent with these sizes; however, its precise relation to the scale of disorder is not clear.[1] T.D. Blake and J.M. Haynes, J. Colloid Interface Sci. 30, 421 (1969)[2] E. Rolley and C. Guthmann, PRL 98, 166105 (2007)

  18. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  19. Perspective of surface active agents in baking industry: an overview.

    PubMed

    Ahmad, Asif; Arshad, Nazish; Ahmed, Zaheer; Bhatti, Muhammad Shahbaz; Zahoor, Tahir; Anjum, Nomana; Ahmad, Hajra; Afreen, Asma

    2014-01-01

    Different researchers have previously used surfactants for improving bread qualities and revealed that these compounds result in improving the quality of dough and bread by influencing dough strength, tolerance, uniform crumb cell size, and improve slicing characteristics and gas retention. The objective of this review is to highlight the areas where surfactants are most widely used particularly in the bread industries, their role and mechanism of interaction and their contribution to the quality characteristics of the dough and bread. This review reveals some aspects of surface-active agents regarding its role physiochemical properties of dough that in turn affect the bread characteristics by improving its sensory quality and storage stability. PMID:24188269

  20. Oxygen species on the silver surface oxidized by MW-discharge: Study by photoelectron spectroscopy and DFT model calculations

    NASA Astrophysics Data System (ADS)

    Kibis, Lidiya S.; Avdeev, Vasilii I.; Koscheev, Sergei V.; Boronin, Andrei I.

    2010-07-01

    A polycrystalline silver surface has been studied by synchrotron radiation photoelectron spectroscopy after deep oxidation by microwave discharge in an O 2 atmosphere. Oxidized structures with high oxygen content, AgO x with x > 1, have been found on the silver surface after oxidation at 300-400 K. The line shapes observed in the O1s spectra were decomposed into five components and indicated that complex oxidized species were formed. An analysis of the oxidized structures with binding energies, Еb(O1s), greater than 530 eV pointed to the presence of both Ag-O and O-O bonds. We have carried out a detailed experimental study of the valence band spectra in a wide spectral range (up to 35 eV), which has allowed us to register the multicomponent structure of spectra below Ag4d band. These features were assigned to the formation of Ag-O and O-O bonds composed of molecular (associative) oxygen species. DFT model calculations showed that saturation of the defect oxidized silver surface with oxygen leads to the formation of associative oxygen species, such as superoxides, with electrophilic properties and covalent bonding. The high stability of oxygen-rich silver structures, AgO x, can be explained by the formation of small silver particles during the intensive MW oxidation, which can stabilize such oxygen species.

  1. Surface photochemistry of adsorbed nitrate: the role of adsorbed water in the formation of reduced nitrogen species on α-Fe2O3 particle surfaces.

    PubMed

    Nanayakkara, Charith E; Jayaweera, Pradeep M; Rubasinghege, Gayan; Baltrusaitis, Jonas; Grassian, Vicki H

    2014-01-01

    The surface photochemistry of nitrate, formed from nitric acid adsorption, on hematite (α-Fe2O3) particle surfaces under different environmental conditions is investigated using X-ray photoelectron spectroscopy (XPS). Following exposure of α-Fe2O3 particle surfaces to gas-phase nitric acid, a peak in the N1s region is seen at 407.4 eV; this binding energy is indicative of adsorbed nitrate. Upon broadband irradiation with light (λ > 300 nm), the nitrate peak decreases in intensity as a result of a decrease in adsorbed nitrate on the surface. Concomitant with this decrease in the nitrate coverage, there is the appearance of two lower binding energy peaks in the N1s region at 401.7 and 400.3 eV, due to reduced nitrogen species. The formation as well as the stability of these reduced nitrogen species, identified as NO(-) and N(-), are further investigated as a function of water vapor pressure. Additionally, irradiation of adsorbed nitrate on α-Fe2O3 generates three nitrogen gas-phase products including NO2, NO, and N2O. As shown here, different environmental conditions of water vapor pressure and the presence of molecular oxygen greatly influence the relative photoproduct distribution from nitrate surface photochemistry. The atmospheric implications of these results are discussed. PMID:24299394

  2. Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering.

    SciTech Connect

    Baca, A. J.; Truong, T. T.; Cambrea, L. R.; Montgomery, J. M.; Abdula, D.; Banks, T. R.; Yao, J.; Nuzzo, R. G.; Gray, S. K.; Rogers, J. A.

    2009-06-24

    This report introduces a type of plasmonic crystal that consists of metal coated nanostructures of relief molded on a polymer film as a substrate for surface-enhanced Raman scattering (SERS). Such crystals exhibit SERS enhancement factors of {approx} 10{sup 5}, over large areas and with sufficiently high levels of uniformity for precise two-dimensional Raman mapping of surface bound monolayers. The ease of fabrication together with the high sensitivities and spatial resolution that can be achieved suggests an attractive route to SERS substrates for portable chemical warfare agent detection, environmental monitors, noninvasive imaging of biomolecules, and other applications.

  3. Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Baca, Alfred J.; Truong, Tu T.; Cambrea, Lee R.; Montgomery, Jason M.; Gray, Stephen K.; Abdula, Daner; Banks, Tony R.; Yao, Jimin; Nuzzo, Ralph G.; Rogers, John A.

    2009-06-01

    This report introduces a type of plasmonic crystal that consists of metal coated nanostructures of relief molded on a polymer film as a substrate for surface-enhanced Raman scattering (SERS). Such crystals exhibit SERS enhancement factors of ˜105, over large areas and with sufficiently high levels of uniformity for precise two-dimensional Raman mapping of surface bound monolayers. The ease of fabrication together with the high sensitivities and spatial resolution that can be achieved suggests an attractive route to SERS substrates for portable chemical warfare agent detection, environmental monitors, noninvasive imaging of biomolecules, and other applications.

  4. Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species.

    PubMed

    Conway, Jonathan M; Pierce, William S; Le, Jaycee H; Harper, George W; Wright, John H; Tucker, Allyson L; Zurawski, Jeffrey V; Lee, Laura L; Blumer-Schuette, Sara E; Kelly, Robert M

    2016-03-25

    The genome of the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensisencodes 19 surface layer (S-layer) homology (SLH) domain-containing proteins, the most in any Caldicellulosiruptorspecies genome sequenced to date. These SLH proteins include five glycoside hydrolases (GHs) and one polysaccharide lyase, the genes for which were transcribed at high levels during growth on plant biomass. The largest GH identified so far in this genus, Calkro_0111 (2,435 amino acids), is completely unique toC. kronotskyensisand contains SLH domains. Calkro_0111 was produced recombinantly inEscherichia colias two pieces, containing the GH16 and GH55 domains, respectively, as well as putative binding and spacer domains. These displayed endo- and exoglucanase activity on the β-1,3-1,6-glucan laminarin. A series of additional truncation mutants of Calkro_0111 revealed the essential architectural features required for catalytic function. Calkro_0402, another of the SLH domain GHs inC. kronotskyensis, when produced inE. coli, was active on a variety of xylans and β-glucans. Unlike Calkro_0111, Calkro_0402 is highly conserved in the genus Caldicellulosiruptorand among other biomass-degrading Firmicutes but missing from Caldicellulosiruptor bescii As such, the gene encoding Calkro_0402 was inserted into the C. besciigenome, creating a mutant strain with its S-layer extensively decorated with Calkro_0402. This strain consequently degraded xylans more extensively than wild-typeC. bescii The results here provide new insights into the architecture and role of SLH domain GHs and demonstrate that hemicellulose degradation can be enhanced through non-native SLH domain GHs engineered into the genomes of Caldicellulosiruptorspecies. PMID:26814128

  5. Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species

    NASA Astrophysics Data System (ADS)

    Douglas, J. O.; Bagot, P. A. J.; Johnson, B. C.; Jamieson, D. N.; Moody, M. P.

    2016-08-01

    The practicalities for atom probe tomography (APT) analysis of near-surface chemistry, particularly the distribution of low concentration elements, are presented in detail. Specifically, the challenges of surface analysis using APT are described through the characterisation of near-surface implantation profiles of low concentration phosphorus into single crystal silicon. This material system was chosen to illustrate this surface specific approach as low concentration phosphorus has significant mass spectra overlaps with silicon species and the near surface location requires particular attention to focused ion beam specimen preparation and deposition of various capping layers. Required changes to standard sample preparation procedure are described and the effects of changes in APT analysis parameters are discussed with regards to this specific material system. Implantation profiles of 14 kV phosphorus ions with a predicted peak concentration of 0.2 at .% were successfully analysed using APT using pulsed laser assisted evaporation. It is demonstrated that the most important factor in obtaining the most accurate implantation profile was to ensure all phosphorus mass peaks were as free of background noise as possible, with thermal tails from the Si2+ ions obscuring the P2+ ions being the major overlap in the mass spectrum. The false positive contribution to the phosphorus profiles from hydride species appears minimal at the capping layer/substrate interface. The initial capping layer selection of nickel was successful in allowing the analysis of the majority of the phosphorus profile but nickel and phosphorus mass spectra overlaps prevent optimum quantification of phosphorus at the surface.

  6. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  7. Surface Nanostructures Composed of Thiolated Cyclodextrin/Au and Fe Species: Gas- and Liquid-Phase Preparation.

    PubMed

    Halaszova, Sona; Jerigova, Monika; Lorenc, Dusan; Prochazka, Michal; Velic, Dusan

    2016-08-01

    Supramolecular surface nanostructures have application potential as functional devices. The complex combination of thiolated cyclodextrin, chemisorbed on an Au surface (Au-S-CD), with deposited Fe species is studied by secondary ion mass spectrometry. The Fe species are prepared by pulsed laser ablation in water and thermal effusion in vacuum. Using laser ablation in water, the solution of Fe species is dropped on Au-S-CD, where mass peaks at 1227 m/z, 1243 m/z, and 1260 m/z are observed and assigned to C42 H68 O34 SNa-Fe(+) , C42 H68 O34 SK-Fe(+) together with C42 H68 O34 SNa-FeO(+) , and C42 H68 O34 SK-FeO(+) , respectively. On the other hand, laser ablation directly linked to the Au-S-CD surface results in desorption of CD-S. Thermal effusion, even with a cooled surface, was negative with respect to the complex observation. Laser ablation results in the formation of a supramolecular host-guest complex of the form Au-S-CD-Fe, and in the formation of an adduct of the form Au-S-CD-FeO. PMID:27128204

  8. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species

    PubMed Central

    Nikolova, Milena

    2011-01-01

    Background: Discovery of new plant species with antioxidant properties is a priority of many research teams. Most of the species included in this study are unstudied for antioxidant properties, but they are taxonomically related to reference plants with well-documented antioxidant activity. Materials and Methods: Free radical scavenging activity of plant extracts was evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. An aluminum chloride colorimetric method was used for flavonoid determination. The amount of phenolic compounds in the extracts was estimated by using the Folin–Ciocalteu reagent. Results: As a result of screening, it was found that the significant antioxidant properties possess several unstudied until now plant species (Veronica bellidioides L., V. kellereri Deg. et Urm, V. vindobonensis (M. Fisher) M. Fisher, V. beccabunga L., V. rhodopaea L., V. austriaca (Velen.) Degen., Clinopodium vulgare L., Stachysrecta L., Clematis vitalba L., and Xeranthemum annum L.). The antioxidant potential of the new species is comparable to that of reference medicinal plants. Conclusions: The existing data presented here provide new information for antioxidant potential of plant species that have not been traditionally used as medicinal plants. PMID:22224049

  9. In vitro antimalarial activity of six Aspidosperma species from the state of Minas Gerais (Brazil).

    PubMed

    Dolabela, Maria Fâni; Oliveira, Salma G; Peres, José M; Nascimento, José M S; Póvoa, Marinete M; Oliveira, Alaide B

    2012-12-01

    Ethnomedicinal informations point to some Aspidosperma species (Apocynaceae) as antimalarial plants in Brazil and have motivated the evaluation of six species which were collected in the state of Minas Gerais: A. cylindrocarpon Müll. Arg., A. parvifolium A. DC., A. olivaceum Müll. Arg., A. ramiflorum Müll. Arg., A. spruceanum Benth. ex Müll. Arg. and A. tomentosum Mart.. A total of 23 extracts of different plant parts in different solvents were assayed in vitro against chloroquine-resistant (W2) and chloroquine-sensitive (3D7) strains of Plasmodium falciparum. All the extracts were shown to be active with IC50 values in the range of 5.0 ± 0 2.8 µg/mL to 65.0 ± 4.2 µg/mL. TLC profile of the extracts revealed the presence of alkaloids in the six species assayed. These results seem to confirm the popular use of Aspidosperma species to treat human malaria in Brazil and seem point to alkaloids as the putative active compounds of the assayed species. PMID:23207699

  10. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    PubMed

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-05-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time. PMID:26846304

  11. Rheology and structure of surface crosslinked surfactant-activated microgels.

    PubMed

    Li, Dongcui; Hsu, Raymond; Figura, Brian; Jacobs, Robert; Li, Sinan; Horvath, Steve; Clifford, Ted; Chari, Krishnan

    2016-09-14

    Nonionic surfactant-activated microgels (SAMs), composed of hydrophobic alkyl acrylates and hydrophilic hydroxyalkyl esters that utilize the effects of surfactant mediated swelling and interaction to provide pH-independent rheological properties, were previously reported as a new pathway to the rheology modification of surfactant solutions. Crosslinking was shown to play an important role in the properties of these soft microgel systems. To understand the impact of crosslinking chemistry on SAM polymers, we have compared two types of SAM polymers: a conventionally crosslinked SAM polymer via allyl pentaerythritol and a novel SAM polymer, where the surface is self-crosslinked via a reactive surfactant. We have systematically characterized the polymer's swelling, rheology and microstructure in a model system containing the polymer, sodium dodecyl sulfate (SDS) and water. Surface self-crosslinking is demonstrated to be a more effective crosslinking approach to create surfactant-mediated interactions between the microgel particles, resulting in more effective rheology modification. Internal crosslinking hinders both the full swelling of the SAM polymer as well as inter-particle bridging interactions, and is therefore less effective. To our best knowledge, this is the first report on creating a novel surface self-crosslinked microgel via a dual-functional reactive surfactant that interacts with a non-reactive surfactant to create a yield stress fluid. PMID:27470971

  12. Biological surface-active compounds from marine bacteria.

    PubMed

    Dang, Nga Phuong; Landfald, Bjarne; Willassen, Nils Peder

    2016-01-01

    Surface-active compounds (SACs) are widely used in different industries as well as in many daily consumption products. However, with the increasing concern for their environmental acceptability, attention has turned towards biological SACs which are biodegradable, less toxic and more environmentally friendly. In this work, 176 marine hydrocarbon-degrading bacterial isolates from petroleum-contaminated sites along the Norwegian coastline were isolated and screened for their capacity to produce biological SACs. Among them, 18 isolates were capable of reducing the surface tension of the culture medium by at least 20 mN m(-1) and/or capable of maintaining more than 40% of the emulsion volume after 24 h when growing on glucose or kerosene as carbon and energy source. These isolates were members of the genera Pseudomonas, Pseudoalteromonas, Rhodococcus, Catenovulum, Cobetia, Glaciecola, Serratia, Marinomonas and Psychromonas. Two isolates, Rhodococcus sp. LF-13 and Rhodococcus sp. LF-22, reduced surface tension of culture medium by more than 40 mN m(-1) when growing on kerosene, n-hexadecane or rapeseed oil. The biosurfactants were produced by resting cells of the two Rhodococcus strains suggesting the biosynthesis of the biosurfactants was not necessarily associated with their growth on hydrocarbons. PMID:26506920

  13. Pioneering Objectives and Activities on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    Human Mars missions have been a topic of sustained interest within NASA, which continues to use its resources to examine many different mission objectives, trajectories, vehicles, and technologies, the combinations of which are often referred to as reference missions or architectures. The current investigative effort, known as the Evolvable Mars Campaign (EMC), is examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. These alternatives involve combinations of all the factors just mentioned. This paper is focused on the subset of these factors involved with objectives and activities that take place on the surface of Mars. "Pioneering" is a useful phrase to encapsulate the current approach being used to address this situation - one of its primary definitions is "a person or group that originates or helps open up a new line of thought or activity or a new method or technical development". Thus, in this scenario, NASA would be embarking on a path to "pioneer" a suite of technologies and operations that will result in an Earth independent, extended stay capability for humans on Mars. This paper will describe (a) the concept of operation determined to be best suited for the initial emplacement, (b) the functional capabilities determined to be necessary for this emplacement, with representative examples of systems that could carry out these functional capabilities and one implementation example (i.e., delivery sequence) at a representative landing site, and will (c) discuss possible capabilities and operations during subsequent surface missions.

  14. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  15. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview

    PubMed Central

    Simlai, Aritra; Roy, Amit

    2013-01-01

    This review represents the studies performed on some beneficial mangrove plants such as Ceriops decandra, Xylocarpus granatum, Xylocarpus moluccensis, Excoecaria agallocha, Sarcolobus globosus, Sonneratia caseolaris and Acanthus ilicifolius from the Sundarban estuary spanning India and Bangladesh with regard to their biological activities and chemical investigations till date. Sundarban is the largest single chunk of mangrove forest in the world. The forest is a source of livelihood to numerous people of the region. Several of its plant species have very large applications in the traditional folk medicine; various parts of these plants are used by the local people as cure for various ailments. Despite such enormous potential, remarkably few reports are available on these species regarding their biological activities and the active principles responsible for such activities. Though some chemical studies have been made on the mangrove plants of this estuary, reports pertaining to their activity-structure relationship are few in number. An attempt has been made in this review to increase the awareness for the medicinal significance as well as conservation and utilization of these mangrove species as natural rich sources of novel bioactive agents. PMID:24347925

  16. Antioxidant activity and total phenolic content of 24 Lamiaceae species growing in Iran.

    PubMed

    Firuzi, Omidreza; Javidnia, Katayoun; Gholami, Maryam; Soltani, Mohammad; Miri, Ramin

    2010-02-01

    The antioxidant activities of the methanolic extracts of 9 Salvia species and 15 other Lamiaceae plants growing in Iran were evaluated using ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays. FRAP values ranged form 8.5 to 79.0 microM quercetin equivalents/g dry weight, and IC50 values in the DPPH assay from 115.7 to 1350.2 microg dry weight/mL. Salvia species showed the highest antioxidant activities. S. santolinifolia, S. eremophila and S. palestina, which have not been studied before, were the most active plants. These were more active than the previously studied species from this family, such as S. multicaulis and Marrubium vulgare. S. hydrangea and Gontscharovia popovii also showed high antioxidant activities. FRAP and DPPH assay results showed good correlations with the total phenolic contents of the plants, measured by the Folin-Ciocalteau assay (r2 = 0.925 and 0.799, respectively, p < 0.0001). In conclusion, our study shows that some Lamiaceae plants growing in Iran represent good potential sources of natural antioxidants useful for either prevention or treatment of oxidative stress-related diseases. PMID:20334140

  17. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview.

    PubMed

    Simlai, Aritra; Roy, Amit

    2013-07-01

    This review represents the studies performed on some beneficial mangrove plants such as Ceriops decandra, Xylocarpus granatum, Xylocarpus moluccensis, Excoecaria agallocha, Sarcolobus globosus, Sonneratia caseolaris and Acanthus ilicifolius from the Sundarban estuary spanning India and Bangladesh with regard to their biological activities and chemical investigations till date. Sundarban is the largest single chunk of mangrove forest in the world. The forest is a source of livelihood to numerous people of the region. Several of its plant species have very large applications in the traditional folk medicine; various parts of these plants are used by the local people as cure for various ailments. Despite such enormous potential, remarkably few reports are available on these species regarding their biological activities and the active principles responsible for such activities. Though some chemical studies have been made on the mangrove plants of this estuary, reports pertaining to their activity-structure relationship are few in number. An attempt has been made in this review to increase the awareness for the medicinal significance as well as conservation and utilization of these mangrove species as natural rich sources of novel bioactive agents. PMID:24347925

  18. In vitro antiplasmodial activity of benzophenones and xanthones from edible fruits of Garcinia species.

    PubMed

    Lyles, James T; Negrin, Adam; Khan, Shabana I; He, Kan; Kennelly, Edward J

    2014-06-01

    Species of Garcinia have been used to combat malaria in traditional African and Asian medicines, including Ayurveda. In the current study, we have identified antiplasmodial benzophenone and xanthone compounds from edible Garcinia species by testing for in vitro inhibitory activity against Plasmodium falciparum. Whole fruits of Garcinia xanthochymus, G. mangostana, G. spicata, and G. livingstonei were extracted and tested for antiplasmodial activity. Garcinia xanthochymus was subjected to bioactivity-guided fractionation to identify active partitions. Purified benzophenones (1-9) and xanthones (10-18) were then screened in the plasmodial lactate dehydrogenase assay and tested for cytotoxicity against mammalian (Vero) cells. The benzophenones guttiferone E (4), isoxanthochymol (5), and guttiferone H (6), isolated from G. xanthochymus, and the xanthones α-mangostin (15), β-mangostin (16), and 3-isomangostin (17), known from G. mangostana, showed antiplasmodial activity with IC50 values in the range of 4.71-11.40 µM. Artemisinin and chloroquine were used as positive controls and exhibited IC50 values in the range of 0.01-0.24 µM. The identification of antiplasmodial benzophenone and xanthone compounds from G. xanthochymus and G. mangostana provides evidence for the antiplasmodial activity of Garcinia species and warrants further investigation of these fruits as dietary sources of chemopreventive compounds. PMID:24963617

  19. The relationship between total cholinesterase activity and mortality in four butterfly species

    USGS Publications Warehouse

    Bargar, Timothy A.

    2012-01-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 μg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 μM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality.

  20. Chemical Constituents Analysis and Antidiabetic Activity Validation of Four Fern Species from Taiwan

    PubMed Central

    Chen, Chen-Yu; Chiu, Fu-Yu; Lin, Yenshou; Huang, Wei-Jan; Hsieh, Po-Shiuan; Hsu, Feng-Lin

    2015-01-01

    Pterosins are abundant in ferns, and pterosin A was considered a novel activator of adenosine monophosphate-activated protein kinase, which is crucial for regulating blood glucose homeostasis. However, the distribution of pterosins in different species of ferns from various places in Taiwan is currently unclear. To address this question, the distribution of pterosins, glucose-uptake efficiency, and protective effects of pterosin A on β-cells were examined. Our results showed that three novel compounds, 13-chloro-spelosin 3-O-β-d-glucopyranoside (1), (3R)-Pterosin D 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (2), and (2R,3R)-Pterosin L 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (3), were isolated for the first time from four fern species (Ceratopteris thalictroides, Hypolepis punctata, Nephrolepis multiflora, and Pteridium revolutum) along with 27 known compounds. We also examined the distribution of these pterosin compounds in the mentioned fern species (except N. multiflora). Although all pterosin analogs exhibited the same effects in glucose uptake assays, pterosin A prevented cell death and reduced reactive oxygen species (ROS) production. This paper is the first report to provide new insights into the distribution of pterosins in ferns from Taiwan. The potential anti-diabetic activity of these novel phytocompounds warrants further functional studies. PMID:25622260

  1. The relationship between total cholinesterase activity and mortality in four butterfly species.

    PubMed

    Bargar, Timothy A

    2012-09-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 µg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 µM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality. PMID:22740147

  2. Endogenous superoxide-like species and antioxidant activity in ocular tissues detected by luminol luminescence.

    PubMed

    Trevithick, J R; Dzialoszynski, T

    1997-04-01

    A new luminescent method was used to detect the reactive oxygen species in aqueous and vitreous humors and in homogenates of the lens and retina of laboratory rats. Superoxide-like activity per microgram protein increased in all tissues with weight of the rat, a good indicator of animal age. Superoxide dismutase, centrophenoxine, soluble vitamin E (D-alpha-Locopherol (polyethlyene glycol 1000) succinate, and N'-diphenyl-p-phenylenediamine (DPPD) reduced the luminescence. Catalase had no effect. These results are consistent with the detected species being superoxide-like. PMID:9111931

  3. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  4. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering.

    PubMed

    Zhang, Lifeng; Gong, Xiao; Bao, Ying; Zhao, Yong; Xi, Min; Jiang, Chaoyang; Fong, Hao

    2012-10-01

    The development of novel nanomaterials with well-controlled morphologies/structures to achieve excellent activities/sensitivities in surface-enhanced Raman scattering (SERS) is crucial in advancing the high-performance SERS detections of chemical and biological species. In this study, amidoxime surface-functionalized polyacrylonitrile (ASFPAN) nanofibrous membranes surface-decorated with silver nanoparticles (Ag NPs) were prepared via the technique of electrospinning followed by the method of seed-mediated electroless plating. High SERS activities/sensitivities were observed from the ASFPAN-Ag NPs nanofibrous membranes, while the density and size of Ag NPs had an important impact on the SERS activity/sensitivity. The results confirmed that the enhancement of Raman signals is due to the presence of hot spots between/among Ag NPs on the nanofiber surfaces. Electrospun nanofibrous membranes surface-decorated with Ag NPs were mechanical flexible/resilient and could be used as highly active/sensitive SERS substrates for a broad range of applications. PMID:22974488

  5. Surface Expression Models for Aqueous Oceanic Activity on Titan

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Drawing upon analogs from the rocky planets with geological features, subsurface acquifers and magmatism, the range of surface manifestations of a subsurface ocean on Titan comprise a series of models. Cryovolcanism of aqueous eutectics will produce flows which may be detectable as sporadic outcrops from the hydrocarbon-rich regolith, exhumed by aeolian and/or fluid processes. Solidification of extruded cryomagma, especially if containing a significant water component, should exhibit fractional crystallization of solutes in late-freeze ponds and flow fronts. Abundant higher- Z elements such as Si, S and Fe, as influenced by the Eh-pH field of the liquid phase, might be in evidence, demonstrating communication among the principal mantle components of such bodies. Consequent availability of potential nutrients and chemical energy sources would be a key indicator for habitability by chemoautolithotrophs on Titan. With near-surface mobility and sensing, LIBS as well as active and passive IR mapping spectrometry are all possible in the environment of Titan's lower atmosphere. Although some remote measurements are infeasible because of the atmosphere, near- surface naturally radioactive rock-forming elements such as K, U, and Th could be detected with gamma ray spectrometry. Touch-and-go techniques developed for small- body sampling can provide material for onboard GC, MS, XRD, microscopy and other miniaturized analytical techniques. Surface dwell times of minutes would enable contact XRF with detection of critical element ratio's such as S/Cl, K/Ca, and Mg/Si/Fe, and Raman spectroscopy for organic and mineralogical analysis, . Longer contact times would permit electromagnetic depth sounding. Many IR and particle- detection sensors operate ideally at or near the low temperatures intrinsic to the Titan atmosphere, simplifying those aspects of instrument development. Exploration of Titan by in situ and mobility techniques would capitalize on the investments and lessons

  6. 2,4,6-Trichlorophenol mediated increases in extracellular peroxidase activity in three species of Lemnaceae.

    PubMed

    Biswas, Dilip K; Scannell, Gillian; Akhmetov, Nurlan; Fitzpatrick, Dara; Jansen, Marcel A K

    2010-11-01

    Chlorinated phenols, or chlorophenols, are persistent priority pollutants that are widespread in the environment. Class III peroxidases are well-characterised plant enzymes that can catalyse the oxidative dechlorination of chlorophenols. Expression of these enzymes by plants is commonly associated with plant stress, therefore limiting scope for phytoremediation. In this study, we have quantitatively compared peroxidase activity and phytotoxicity as a function of 2,4,6-trichlorophenol (TCP) concentration in three species of Lemnaceae; Lemna minor, Lemna gibba and Landoltia punctata. Effects of TCP on the growth rates of the three species differed considerably with L. punctata being the most tolerant species. TCP also affected photosynthetic parameters, causing a decrease in open photosystem II reaction centres (qP) and, in L. punctata only, a decrease in non-photochemical quenching (qN). In parallel, TCP exposure resulted in increased peroxidase activity in all three species. Peroxidase activity in L. minor and L. gibba displayed an inverse relationship with biomass accumulation, i.e. the more growth reduction the more peroxidase activity. In contrast, induction of peroxidase activity in L. punctata was bi-phasic, with a TCP-induced activity peak at concentrations that had no major effect on growth, and further induction under phytotoxic concentrations. The mechanism by which L. punctata recognises and responds to low concentrations of an anthropogenic compound, in the absence of wide-ranging stress, remains enigmatic. However, we conclude that this "window" of peroxidase production in the absence of major growth inhibition offers potential for the development of sustainable, peroxidise-mediated phytoremediation systems. PMID:20810175

  7. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  8. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity.

    PubMed

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-08-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  9. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    PubMed

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. PMID:26912197

  10. Polymerization process for carboxyl containing polymers utilizing oil soluble ionic surface active agents

    SciTech Connect

    Uebele, C.E.; Ball, L.E.; Jorkasky, R.J. II; Wardlow, E. Jr.

    1987-09-08

    This patent describes a method for polymerizing olefinically unsaturated carboxylic acid monomers containing at least one activated carbon to carbon olefinic double bond and at least one carboxyl group. The monomers are polymerized in an organic media consisting essentially of organic liquids, in the presence of free radical forming catalysts and at least one oil soluble ionic surface active agent selected from the group consisting of: (a) anionic surface active agents; (b) cationic surface active agents; and (c) amphoteric surface active agents.

  11. Salinity effects on viability, metabolic activity and proliferation of three Perkinsus species.

    PubMed

    La Peyre, Megan; Casas, Sandra; La Peyre, Jerome

    2006-07-11

    Little is known regarding the range of conditions in which many Perkinsus species may proliferate, making it difficult to predict conditions favorable for their expansion, to identify conditions inducing mortality, or to identify instances of potential cross-infectivity among sympatric host species. In this study, the effects of salinity on viability, metabolic activity and proliferation of P. marinus, P. olseni and P. chesapeaki were determined. Specifically, this research examined the effects of 5 salinities (7, 11, 15, 25, 35 per thousand), (1) without acclimation, on the viability and metabolic activity of 2 isolates of each Perkinsus species, and (2) with acclimation, on the viability, metabolic activity, size and number of 1 isolate of each species. P. chesapeaki showed the widest range of salinity tolerance of the 3 species, with high viability and cell proliferation at all salinities tested. Although P. chesapeaki originated from low salinity areas (i.e. <15 per thousand), several measures (i.e. cell number and metabolic activity) indicated that higher salinities (15, 25 per thousand) were more favorable for its growth. P. olseni, originating from high salinity areas, had better viability and proliferation at the higher salinities (15, 25, 35 per thousand). Distinct differences in acute salinity response of the 2 P. olseni isolates at lower salinities (7, 11 per thousand), however, suggest the need for a more expansive comparison of isolates to better define the lower salinity tolerance. Lastly, P. marinus was more tolerant of the lower salinities (7 and 11 per thousand) than P. olseni, but exhibited reduced viability at 7 per thousand, even after acclimation. PMID:16922001

  12. Structural environment of uranium (VI) and europium (III) species sorbed onto phosphate surfaces: XPS and optical spectroscopy studies

    SciTech Connect

    Drot, R.; Simoni, E.; Alnot, M.; Ehrhardt, J.J.

    1998-09-15

    In order to characterize the structure of the surface complexes formed by interaction between uranyl and europium (III) ions and the surface of solid matrices, optical and X-ray photoelectron spectroscopies experiments on uranyl/europium loaded phosphate solids have been performed. The use of complimentary spectroscopic techniques allows an identification of the sorption mechanism and a structural characterization of the sorption sites and the sorbed species on phosphate surfaces. The samples were prepared from aqueous uranyl or europium solutions in the pH range from 1.5 to 6.0. The surface coverage was varied from 1 to 40% of a monolayer. The differences between the emission spectra of europium ions either sorbed on the surface of phosphate samples or doped inside the solid unambiguously indicates that these sorbed ions are exclusively located on the surface and that they do not migrate inside the matrix, which shows clearly that surface complexation is involved during the sorption process. The XPS spectrum of uranyl ions sorbed on zirconium diphosphate exhibits only one component, while the spectrum corresponding to uranium on thorium matrix shows two different unresolved peaks attributed to two different chemical environments. These results, corroborated by the uranyl emission spectra and the associated decay times and those obtained by optical spectroscopy of europium sorbed on the same solids, have been interpreted in terms of two sorption sites probably formed by the oxygens of the PO{sub 4} and P{sub 2}O{sub 7} surface groups.

  13. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    NASA Technical Reports Server (NTRS)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  14. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface.

    PubMed

    Yao, Hongbin; Zheng, Guangyuan; Hsu, Po-Chun; Kong, Desheng; Cha, Judy J; Li, Weiyang; Seh, Zhi Wei; McDowell, Matthew T; Yan, Kai; Liang, Zheng; Narasimhan, Vijay Kris; Cui, Yi

    2014-01-01

    Lithium-sulphur batteries are attractive owing to their high theoretical energy density and reasonable kinetics. Despite the success of trapping soluble polysulphides in a matrix with high surface area, spatial control of solid-state sulphur and lithium sulphide species deposition as a critical aspect has not been demonstrated. Herein, we show a clear visual evidence that these solid species deposit preferentially onto tin-doped indium oxide instead of carbon during electrochemical charge/discharge of soluble polysuphides. To incorporate this concept of spatial control into more practical battery electrodes, we further prepare carbon nanofibers with tin-doped indium oxide nanoparticles decorating the surface as hybrid three-dimensional electrodes to maximize the number of deposition sites. With 12.5 μl of 5 M Li2S8 as the catholyte and a rate of C/5, we can reach the theoretical limit of Li2S8 capacity ~\

  15. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  16. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE PAGESBeta

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  17. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  18. Antioxidant activities and phytochemical study of leaf extracts from 18 indigenous tree species in taiwan.

    PubMed

    Ho, Shang-Tse; Tung, Yu-Tang; Chen, Yong-Long; Zhao, Ying-Ying; Chung, Min-Jay; Wu, Jyh-Horng

    2012-01-01

    The objective of this study is to assess antioxidant activities of methanolic extracts from the leaves of 18 indigenous tree species in Taiwan. Results revealed that, among 18 species, Acer oliverianum exhibited the best free radical scavenging activities. The IC(50) values were 5.8 and 11.8 μg/mL on DPPH radical and superoxide radical scavenging activities, respectively. In addition, A. oliverianum also exhibited the strongest ferrous ion chelating activity. Based on a bioactivity-guided isolation principle, the resulting methanolic crude extracts of A. oliverianum leaves were fractionated to yield soluble fractions of hexane, EtOAc, BuOH, and water. Of these, the EtOAc fraction had the best antioxidant activity. Furthermore, 8 specific phytochemicals were isolated and identified from the EtOAc fraction. Among them, 1,2,3,4,6-O-penta-galloyl-β-D-glucopyranose had the best free radical scavenging activity. These results demonstrate that methanolic extracts and their derived phytochemicals of A. oliverianum leaves have excellent antioxidant activities and thus they have great potential as sources for natural health products. PMID:22454657

  19. Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen.

    PubMed Central

    Lewis, D F; Ioannides, C; Parke, D V

    1998-01-01

    The importance of cytochrome P450 isoforms to species differences in the metabolism of foreign compounds and activation of procarcinogens has been identified. The possible range of P450 isozymes in significant variations in toxicity exhibited by experimental rodent species may have a relevance to chemical risk assessment, especially as human P450s are likely to show changes in the way they metabolize xenobiotics. Consequently, in the safety evaluation of chemicals, we should be cautious in extrapolating results from experimental animal models to humans. This paper focuses on examples in which species differences in P450s lead to significant alterations in carcinogenic response, and includes a discussion of the current procedures for toxicity screening, with an emphasis on short-term tests. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9755138

  20. ModuleBlast: identifying activated sub-networks within and across species

    PubMed Central

    Zinman, Guy E.; Naiman, Shoshana; O'Dee, Dawn M.; Kumar, Nishant; Nau, Gerard J.; Cohen, Haim Y.; Bar-Joseph, Ziv

    2015-01-01

    Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein. PMID:25428368

  1. ModuleBlast: identifying activated sub-networks within and across species.

    PubMed

    Zinman, Guy E; Naiman, Shoshana; O'Dee, Dawn M; Kumar, Nishant; Nau, Gerard J; Cohen, Haim Y; Bar-Joseph, Ziv

    2015-02-18

    Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein. PMID:25428368

  2. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  3. Early Activity of Cometary Species from ROSINA/DFMS at 67P/ Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hässig, Myrtha; Fuselier, Stephen A.; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; Dhooghe, Frederik; Fiethe, Björn; Gasc, Sébastien; Gombosi, Tamas I.; Jäckel, Annette; Korth, Axel; Le Roy, Léna; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu; Wurz, Peter

    2014-11-01

    The European Space Agency’s Rosetta spacecraft arrived after a journey of more than 10 years at comet 67P/Churyumov-Gerasimenko. ROSINA is an instrument package on board Rosetta. It consists of two mass spectrometers and a COmetary Pressure Sensor (COPS). The two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time of Flight (RTOF) complement each other with high mass resolution (e.g to resolve 13C from CH), high dynamic range (to detect low abundant isotopes and species), high mass range (to detect organics), and high time resolution. ROSINA is designed to measure the neutral gas and plasma composition in the coma of 67P/Churyumov-Gerasimenko in addition to the physical properties of the neutral component of the coma. For the first time, a comet can be observed in situ from its early activity towards and after perihelion. Little is known about what drives initial cometary activity very far from the Sun. Remote sensing observations to date are highly constrained to a limited number of a few bright comets (e.g. Hale-Bopp) and a limited number of species. Rosetta provides the first measurements of the early activity of a comet in situ and detected the first cometary molecules early August. We will focus on early activity of cometary species from the high resolution mass spectrometer ROSINA/DFMS.

  4. Subalpine Species Response to Past Climate Change and Fire Activity: Are We Underestimating the Biotic Resilience?

    NASA Astrophysics Data System (ADS)

    Whitlock, C. L.; Iglesias, V.; Krause, T.

    2014-12-01

    Climate-change impacts on species distributions will be especially complex in mountain systems with steep environmental gradients and heterogeneous landscapes. In the western US, projected climate conditions include rising temperatures, decreased snowpack, and increased moisture deficits, all of which will impact species distributions at high elevations. Whitebark pine (Pinus albicaulis; WBP) is a keystone species in subalpine environments and one that is highly vulnerable to projected climate trends. In the past two decades, WBP populations dramatically declined as a result of bark beetle infestation, blister rust, high-severity fires, and drought. Species-niche modeling used to map future WPB distributions is based on the relation between present-day occurrence and bioclimatic parameters. While these models capture the realized niche, the full niche space inferred from paleo-observations appears to be much larger. To assess a broad range of bioclimatic conditions for WPB, we examined its response to past changes in climate, fire activity, and species competition. General additive modeling of pollen/charcoal data from the Greater Yellowstone area indicate that WBP reached maximum population size and distribution ~12,000 -7500 years ago and declined thereafter. Population dynamics tracked variations in summer insolation, such that WBP was most abundant when summer temperatures and fire frequency were higher than at present. Competition from lodgepole pine after ~10,000 years ago limited WBP at middle elevations. Paleoecological data indicate that the fundamental WBP niche is considerably larger than assumed, and simulations that project the demise of WBP in the next 50 years are probably too dramatic given WPB's ability to thrive under warm conditions and high fire activity in the past. Management strategies that reduce biotic competition and nonnative pathogens should help increase the future resilience of WBP and other subalpine species.

  5. Photochemistry of pyrene on unactivated and activated silica surfaces

    SciTech Connect

    Reyes, C.A.; Medina, M.; Crespo-Hernandez, C.

    2000-02-01

    Photolysis of pyrene at the solid/air interface of unactivated and activated silica gel proceeds slowly to give mainly oxidized pyrene products. The authors have identified 1-hydroxypyrene, 1,6-pyrenedione, and 1,8-pyrenedione among the main reaction products. The remaining minor products show molecular weights and spectral properties consistent with oxygenated pyrenes. Furthermore, small amounts of 1,1{prime}-bipyrene dimer are also formed at higher surface coverages (2 x 10{sup {minus}5} mol/g). When photolysis is carried out at 5 x 10{sup {minus}5} mol/g pyrene, photodegradation rate drops sharply and pyrene loss becomes insignificant. No significant change in the product distribution is observed when the photolysis is carried out on unactivated or activated silica. Photodegradation rate is slightly faster on activated silica compared to unactivated silica. Mechanistic studies indicate that the precursor to photoproduct formation is pyrene cation radical which is postulated to be formed by electron transfer from pyrene excited state to oxygen (type 1) or by photoionization of pyrene. The cation radical reacts with physisorbed water on silica to give the observed oxidation products.

  6. Three-dimensional surface topography of the needle stomatal complexes of Pinus rigida and its hybrid species by complementary microscopy.

    PubMed

    Kim, Ki Woo; Kim, Du-Hyun; Han, Sim-Hee; Lee, Jae-Cheon; Kim, Pan-Gi

    2010-08-01

    Three-dimensional surface topography of needle stomatal complexes was investigated in Pinus rigida, Pinus taeda, and their interspecific hybrid Pinus rigitaeda. The stomatal complexes of P. rigida appeared to be sunken and ca. 15 microm deep by white light scanning interferometry. Stomatal grooves were evident in P. taeda along the stomata and amounted to ca. 5 microm deep. The centers of stomata maintained the similar height to the stomatal apertures. Meanwhile, the stomatal complexes of P. rigitaeda (ca. 15 microm deep) were characterized by distinct stomatal grooves and sunken stomatal chambers. In addition, field emission scanning electron microscopy revealed the stomatal complexes of P. rigida partially filled with epicuticular waxes. It was common to observe distinct stomatal grooves and chamber-filled stomata on P. taeda needles. The stomatal complexes of P. rigitaeda had the distinct stomatal grooves and were partially filled with wax tubules and rodlets. Surface roughness measurements of stomatal complexes showed higher levels of roughness from P. rigida and P. rigitaeda than that from P. taeda. These results indicate that the hybrid species P. rigitaeda showed intermediacy in surface characteristics between the parent species, suggesting the genetic control of needle stomatal complexes in the hybrid species. PMID:20452778

  7. Eriosema (Fabaceae) Species Represent a Rich Source of Flavonoids with Interesting Pharmacological Activities.

    PubMed

    Awouafack, Maurice Ducret; Tane, Pierre; Spiteller, Michael; Eloff, Jacobus Nicolaas

    2015-07-01

    Many flavonoids have so far been isolated as main secondary metabolites in plant species of the genus Eriosema (Fabaceae), which contains approximately 160 species. A total of 52 flavonoids including isoflavones, dihydroflavonols, flavonols, flavanones, dihydrochalcones, isoflavanone and their pyrano or glucoside derivatives were isolated and characterized from the five species of this genus investigated to date. Total synthesis and semi-synthesis (acetylation, methylation, hydrogenation, and cyclization) of some isolated flavonoids were reported. Due to several significant pharmacological properties (antimicrobial, cytotoxicity, anti-mycobacterial, antioxidant, antiviral, erectile-dysfunction, vasodilatory and hypoglycemic) of the isolated flavonoids and derivatives, more scientists should be interested in investigating Eriosema species. The present review is the first to document all flavonoids that have been reported from the genus Eriosema to date together with their synthetic and semi-synthetic derivatives, and their pharmacological properties. Dihydrochalcones, which are precursors of other classes of flavonoids, are very rare in natural sources and their isolation from Eriosema species may explain the large number of flavonoids found in this genus. It appears that isoflavone could be a marker for species in this genus. The 83 flavonoids (1-83) documented include 52 isolates, 31 semi-synthetic and 3 totally synthetic derivatives. Data were obtained from Google scholar, Pubmed, Scifinder, Sciencedirect, and Scopus. With 52 different flavonoids isolated from only 5 of the approximately 160 species it shows the remarkable chemical diversity of this genus. This compilation of the biological activities and chemical composition may renew the interest of pharmacologists and phytochemists in this genus. PMID:26411043

  8. Occurrence and molecular characterization of free-living amoeba species (Acanthamoeba, Hartmannella, and Saccamoeba limax) in various surface water resources of Iran.

    PubMed

    Mahmoudi, Mohammad Reza; Rahmati, Behnaz; Seyedpour, Seyed Hosssen; Karanis, Panagiotis

    2015-12-01

    This study was conducted to determine the presence and molecular identity of Acanthamoeba species in the surface water resources of four provinces in Iran, namely Guilan, Mazandaran (North of Iran), Alborz, and Tehran (capital city), using culture- and molecular-based methods. During March to November 2014, 49 surface water samples were collected from environmental water sources-the distinct surface waters of Guilan, Mazandaran, Alborz, and Tehran provinces, in Iran. For the isolation of Acanthamoeba species, approximately 500 ml of the water samples were filtered through a cellulose nitrate membrane with a pore size of 0.45 μ. The filter was transferred onto non-nutrient agar plates seeded with Gram-negative bacteria (Escherichia coli) as a food source. The presence of Acanthamoeba was confirmed by the genus-specific primer pair JDP1 and 2, and/or NA primers were used to identify Acanthamoeba and certain other free-living amoebae. In total, 38 out of 49 samples were positive by culture and/or PCR for Acanthamoeba and other free-living amoebae from all three provinces. By sequencing the positive isolates, the strains were shown to belong to Acanthamoeba (16 isolates belonged to T4 and 2 isolates belonged to T5), Hartmannella vermiformis (3/24), and Saccamoeba limax (2/24). The T4 and T5 genotypes were detected in Guilan and Mazandaran provinces. Two isolates from Guilan and Tehran provinces belonged to S. limax, and H. vermiformis was detected in Guilan province. The results of this study highlight the need to pay more attention to free-living amoebae, as human activity was observed in all of the localities from which these samples were taken. These surface waters can be potential sources for the distribution and transmission of pathogenic Acanthamoeba in the study areas, and free-living amoebas (FLA) (particularly the Acanthamoeba species) can serve as hosts for and vehicles of various microorganisms. PMID:26346454

  9. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  10. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    PubMed

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules. PMID:22163924

  11. Evidence that reactive oxygen species do not mediate NF-κB activation

    PubMed Central

    Hayakawa, Makio; Miyashita, Hiroshi; Sakamoto, Isao; Kitagawa, Masatoshi; Tanaka, Hirofumi; Yasuda, Hideyo; Karin, Michael; Kikugawa, Kiyomi

    2003-01-01

    It has been postulated that reactive oxygen species (ROS) may act as second messengers leading to nuclear factor (NF)-κB activation. This hypothesis is mainly based on the findings that N-acetyl-l-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), compounds recognized as potential antioxidants, can inhibit NF-κB activation in a wide variety of cell types. Here we reveal that both NAC and PDTC inhibit NF-κB activation independently of antioxidative function. NAC selectively blocks tumor necrosis factor (TNF)-induced signaling by lowering the affinity of receptor to TNF. PDTC inhibits the IκB–ubiquitin ligase activity in the cell-free system where extracellular stimuli-regulated ROS production does not occur. Furthermore, we present evidence that endogenous ROS produced through Rac/NADPH oxidase do not mediate NF-κB signaling, but instead lower the magnitude of its activation. PMID:12839997

  12. The effect of five Taraxacum species on in vitro and in vivo antioxidant and antiproliferative activity.

    PubMed

    Mingarro, D Muñoz; Plaza, A; Galán, A; Vicente, J A; Martínez, M P; Acero, N

    2015-08-01

    Plants belonging to the genus Taraxacum are considered a nutritious food, being consumed raw or cooked. Additionally, these plants have long been used in folk medicine due to their choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. This genus, with its complex taxonomy, includes several species that are difficult to distinguish. Its traditional use must be related not only to T. officinale F.H. Wigg., the most studied species, but also to others. The aim of this work is to compare five different common South European species of Taraxacum (T. obovatum (Willd.) DC., T. marginellum H. Lindb., T. hispanicum H. Lindb., T. lambinonii Soest and T. lacistrum Sahlin), in order to find differences between antioxidant and cytotoxic activities among them. Dissimilarities between species in LC/MS patterns, in in vitro and intracellular antioxidant activity and also in the cytotoxicity assay were found. T. marginellum was the most efficient extract reducing intracellular ROS levels although in in vitro assays, T. obovatum was the best free radical scavenger. A relevant cytotoxic effect was found in T. lacistrum extract over HeLa and HepG2 cell lines. PMID:26158347

  13. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation

    PubMed Central

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B.; Miguel, Célia; Santos, Cláudia N.

    2013-01-01

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum’s potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits. PMID:26784465

  14. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation.

    PubMed

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B; Miguel, Célia; Santos, Cláudia N

    2013-01-01

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum's potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits. PMID:26784465

  15. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  16. Total Phenolic Content and Antioxidant Activity of Some Malvaceae Family Species

    PubMed Central

    de Oliveira, Adriana Maria Fernandes; Pinheiro, Lilian Sousa; Pereira, Charlane Kelly Souto; Matias, Wemerson Neves; Gomes, Roosevelt Albuquerque; Chaves, Otemberg Souza; de Souza, Maria de Fátima Vanderlei; de Almeida, Reinaldo Nóbrega; de Assis, Temilce Simões

    2012-01-01

    The antioxidant activity of four species of the Malvaceae family (Sidastrum micranthum (A. St.-Hil.) Fryxell, Wissadula periplocifolia (L.) C. Presl, Sida rhombifolia (L.) E. H. L and Herissantia crispa L. (Brizicky)) were studied using the total phenolic content, DPPH radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC) assays. The antioxidant activity of the crude extract, phases and two isolated flavonoids, kaempferol 3,7-di-O-α-L-rhamnopyranoside (lespedin) and kaempferol 3-O-β-D-(6''-E-p-coumaroil) glucopyranoside (tiliroside) was determined. The results showed that there is a strong correlation between total polyphenol contents and antioxidant activity of the crude extract of Sidastrum micranthum and Wissadula periplocifolia; however, this was not observed between Sida rhombifolia and Herissantia crispa. The ethyl acetate (EaF) phase showed the best antioxidant effect in the total phenolics, DPPH and TEAC assays, followed by the chloroform (CfF) phase, in most species tested. Lespedin, isolated from the EaF phase of W. periplocifolia and H. crispa may not be responsible for the antioxidant activity due to its low antioxidant activity (IC50: DPPH: 1,019.92 ± 68.99 mg/mL; TEAC: 52.70 ± 0.47 mg/mL); whereas tiliroside, isolated from W. periplocifolia, H. crispa and S. micrantum presented a low IC50 value (1.63 ± 0.86 mg/mL) compared to ascorbic acid in the TEAC assay. PMID:26787614

  17. Silicon carbide wafer bonding by modified surface activated bonding method

    NASA Astrophysics Data System (ADS)

    Suga, Tadatomo; Mu, Fengwen; Fujino, Masahisa; Takahashi, Yoshikazu; Nakazawa, Haruo; Iguchi, Kenichi

    2015-03-01

    4H-SiC wafer bonding has been achieved by the modified surface activated bonding (SAB) method without any chemical-clean treatment and high temperature annealing. Strong bonding between the SiC wafers with tensile strength greater than 32 MPa was demonstrated at room temperature under 5 kN force for 300 s. Almost the entire wafer has been bonded very well except a small peripheral region and few voids. The interface structure was analyzed to verify the bonding mechanism. It was found an amorphous layer existed as an intermediate layer at the interface. After annealing at 1273 K in vacuum for 1 h, the bonding tensile strength was still higher than 32 MPa. The interface changes after annealing were also studied. The results show that the thickness of the amorphous layer was reduced to half after annealing.

  18. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-02-01

    The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation-deprotonation behavior was determined by continuous acid-base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m2/g and large numbers of surface hydroxyl functional groups (i.e. tbnd Si-OH, tbnd Fe-OH, and tbnd Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K1, log K2) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation-deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.

  19. Influence of Reactive Oxygen Species on the Enzyme Stability and Activity in the Presence of Ionic Liquids

    PubMed Central

    Attri, Pankaj; Choi, Eun Ha

    2013-01-01

    In this paper, we have examined the effect of ammonium and imidazolium based ionic liquids (ILs) on the stability and activity of proteolytic enzyme α-chymotrypsin (CT) in the presence of cold atmospheric pressure plasma jet (APPJ). The present work aims to illustrate the state of art implementing the combined action of ILs and APPJ on the enzyme stability and activity. Our circular dichroism (CD), fluorescence and enzyme activity results of CT have revealed that buffer and all studied ILs {triethylammonium hydrogen sulphate (TEAS) from ammonium family and 1-butyl-3-methyl imidazolium chloride ([Bmim][Cl]), 1-methylimidazolium chloride ([Mim][Cl]) from imidazolium family} are notable to act as protective agents against the deleterious action of the APPJ, except triethylammonium dihydrogen phosphate (TEAP) ammonium IL. However, TEAP attenuates strongly the deleterious action of reactive oxygen species (ROS) created by APPJ on native structure of CT. Further, TEAP is able to retain the enzymatic activity after APPJ exposure which is absent in all the other systems.This study provides the first combined effect of APPJ and ILs on biomolecules that may generate many theoretical and experimental opportunities. Through this methodology, we can utilise both enzyme and plasma simultaneously without affecting the enzyme structure and activity on the material surface; which can prove to be applicable in various fields. PMID:24066167

  20. Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution.

    PubMed

    Liu, Guigao; Li, Peng; Zhao, Guixia; Wang, Xin; Kong, Jintao; Liu, Huimin; Zhang, Huabin; Chang, Kun; Meng, Xianguang; Kako, Tetsuya; Ye, Jinhua

    2016-07-27

    Water splitting represents a promising technology for renewable energy conversion and storage, but it is greatly hindered by the kinetically sluggish oxygen evolution reaction (OER). Here, using Au-nanoparticle-decorated Ni(OH)2 nanosheets [Ni(OH)2-Au] as catalysts, we demonstrate that the photon-induced surface plasmon resonance (SPR) excitation on Au nanoparticles could significantly activate the OER catalysis, specifically achieving a more than 4-fold enhanced activity and meanwhile affording a markedly decreased overpotential of 270 mV at the current density of 10 mA cm(-2) and a small Tafel slope of 35 mV dec(-1) (no iR-correction), which is much better than those of the benchmark IrO2 and RuO2, as well as most Ni-based OER catalysts reported to date. The synergy of the enhanced generation of Ni(III/IV) active species and the improved charge transfer, both induced by hot-electron excitation on Au nanoparticles, is proposed to account for such a markedly increased activity. The SPR-enhanced OER catalysis could also be observed over cobalt oxide (CoO)-Au and iron oxy-hydroxide (FeOOH)-Au catalysts, suggesting the generality of this strategy. These findings highlight the possibility of activating OER catalysis by plasmonic excitation and could open new avenues toward the design of more-energy-efficient catalytic water oxidation systems with the assistance of light energy. PMID:27380539

  1. Antifungal Activity of Plant Extracts against Candida Species from Oral Lesions

    PubMed Central

    Prabhakar, K.; Kumar, L. Sathish; Rajendran, S.; Chandrasekaran, M.; Bhaskar, K.; Sajit Khan, A. K.

    2008-01-01

    Seventy five patients with oral lesions attending the different departments of Rajah Muthiah Medical College and Hospital, Annamalai University were screened for Candida. Forty six (61.3%) Candida strains were isolated from the oral lesions. Of the 46 Candida strains, Candida albicans accounted for 35 (76.08%), Candida glabrata for 5 (10.86%), Candida tropicalis and Candida krusei for 2 (4.34%) each and Candida parapsilosis and Candida guilliermondii for one (2.17%) each. Antifungal activity of ethanol extracts of five plant species that included Syzygium jambolanum, Cassia siamea, Odina wodier, Momordica charantia and Melia azedarach and two algal species, Sargassum wightii and Caulerpa scalpelliformis were tested against 25 isolated strains by disc diffusion method. Antifungal activity was observed at 100 mg/ml for Syzygium jambolanum, Cassia siamea and Caulerpa scalpelliformis and at 10 mg/ml for Sargassum wightii. PMID:21369447

  2. Assessment of antiproliferative and antiplasmodial activities of five selected Apocynaceae species

    PubMed Central

    2011-01-01

    Background Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids. Methods APF and APM activities were assessed using the sulphorhodamine B and lactate dehydrogenase assays, respectively. TAC, TPC and RSA were analysed using Dragendorff precipitation, Folin-Ciocalteu and DPPH assays, respectively. Screening for saponins, tannins, cardenolides and terpenoids were conducted using the frothing, ferric chloride, Kedde and vanillin-H2SO4 tests, respectively. Results Leaf extracts of A. angustiloba, C. gigantea and V. glabra displayed positive APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activity against all six human cancer cell lines tested. DCM extract of A. angustiloba was effective against three cancer cell lines. Against MCF-7 and MDA-MB-231 cell lines, DCM extract of C. gigantea was stronger than standard drugs of xanthorrhizol, curcumin and tamoxifen. All five species were effective against K1 strain of Plasmodium falciparum and three species (C. gigantea, D. costulata and K. fruticosa) were effective against 3D7 strain. Against K1 strain, all four extracts of V. glabra displayed effective APM activity. Extracts of D. costulata were effective against 3D7 strain. Selectivity index values of extracts of A. angustiloba, C. gigantea and V. glabra suggested that they are potentially safe for use to

  3. Surface-confined activation of ultra low-k dielectrics in CO2 plasma

    NASA Astrophysics Data System (ADS)

    Sun, Yiting; Krishtab, Mikhail; Mankelevich, Yuri; Zhang, Liping; De Feyter, Steven; Baklanov, Mikhail; Armini, Silvia

    2016-06-01

    An approach allowing surface-confined activation of porous organosilicate based low-k dielectrics is proposed and studied. By examining the plasma damage mechanism of low-k, we came up with an initial idea that the main requirements for the surface-confined modification would be the high reactivity and high recombination rate of the plasma species. Based on this concept, CO2 plasma was selected and benchmarked with several other plasmas. It is demonstrated that a short exposure of organosilicate low-k films to CO2 plasma enables high surface hydrophilicity with limited bulk modification. CO2+ ions predominantly formed in this plasma have high oxidation potential and efficiently remove surface -CH3 groups from low-k. At the same time, the CO2+ ions get easily discharged (deactivated) during their collisions with pore walls and therefore have very limited probability of penetration into the low-k bulk. Low concentration of oxygen radicals is another factor avoiding the bulk damage. The chemical reactions describing the interactions between CO2 plasma and low-k dielectrics are proposed.

  4. Differential Water Mite Parasitism, Phenoloxidase Activity, and Resistance to Mites Are Unrelated across Pairs of Related Damselfly Species

    PubMed Central

    Mlynarek, Julia J.; Iserbyt, Arne; Nagel, Laura; Forbes, Mark R.

    2015-01-01

    Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five “species pairs”), or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity). Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species’ relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity. PMID:25658982

  5. Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities.

    PubMed

    Figueiredo, A C; Barroso, J G; Pedro, L G; Salgueiro, L; Miguel, M G; Faleiro, M L

    2008-01-01

    Thymbra capitata and Thymus species are commonly known in Portugal as thyme and they are currently used as culinary herbs, as well as for ornamental, aromatizing and traditional medicinal purposes. The present work reports on the state of the art on the information available on the taxonomy, ethnobotany, cell and molecular biology of the Portuguese representatives of these genera and on the chemotaxonomy and antibacterial, antifungal and antioxidant activities of their essential oils and other volatile-containing extracts. PMID:19075695

  6. Seasonal brain acetylcholinesterase activity in three species of shorebirds overwintering in Texas

    USGS Publications Warehouse

    Mitchell, C.A.; White, D.H.

    1982-01-01

    There was no seasonal variation in average brain AChE activity for the 3 species of wild birds collected between October and February. Further work needs to be done, however, covering an even broader time frame which includes the reproductive cycle. It appears that some birds feeding at the mouth of an agricultural drain, at some distance from the nearest pesticide applications, were affected by AChE inhibitors.

  7. Highly Heterogeneous Probiotic Lactobacillus Species in Healthy Iranians with Low Functional Activities

    PubMed Central

    Rohani, Mahdi; Noohi, Nasrin; Talebi, Malihe; Katouli, Mohammad; Pourshafie, Mohammad R.

    2015-01-01

    Background Lactic acid bacteria (LAB) have been considered as potentially probiotic organisms due to their potential human health properties. This study aimed to evaluate both in vitro and in vivo, the potential probiotic properties of Lactobacillus species isolated from fecal samples of healthy humans in Iran. Methods and Results A total of 470 LAB were initially isolated from 53 healthy individual and characterized to species level. Of these, 88 (86%) were Lactobacillus species. Biochemical and genetic fingerprinting with Phene-Plate system (PhP-LB) and RAPD-PCR showed that the isolates were highly diverse consisted of 67(76.1%) and 75 (85.2%) single types (STs) and a diversity indices of 0.994 and 0.997, respectively. These strains were tested for production of adhesion to Caco-2 cells, antibacterial activity, production of B12, anti-proliferative effect and interleukin-8 induction on gut epithelial cell lines and antibiotic resistance against 9 commonly used antibiotics. Strains showing the characteristics consistent with probiotic strains, were further tested for their anti-inflammatory effect in mouse colitis model. Only one L. brevis; one L. rhamnosus and two L. plantarum were shown to have significant probiotic properties. These strains showed shortening the length of colon compared to dextran sulfate sodium and disease activity index (DAI) was also significantly reduced in mouse. Conclusion Low number of LAB with potential probiotic activity as well as high diversity of lactobacilli species was evident in Iranian population. It also suggest that specific strains of L. plantarum, L. brevis and L. rhamnosus with anti-inflammatory effect in mouse model of colitis could be used as a potential probiotic candidate in inflammatory bowel disease to decrease the disease activity index. PMID:26645292

  8. In vitro antioxidant activity of species collected in Paraná.

    PubMed

    Menezes, P R; Schwarz, E A; Santos, C A M

    2004-06-01

    Hydroalcoholic extracts of 10 medicinally used species collected from the area covered by a reservoir due to a dam built for the Salto Caxias Hydro-electric power plant in the State of Paraná, Southern Brazil, and Casearia sylvestris, were investigated for their potential antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) free radicals and by the phosphomolybdenum method. The extract of Bauhinia microstachya was found to be the most potent in both models. PMID:15159006

  9. Phenolic Profile and In vitro Antioxidant Activity of Endemic Bulgarian Carduus Species

    PubMed Central

    Dimitrova-Dyulgerova, Ivanka; Zhelev, Iliya; Mihaylova, Dasha

    2015-01-01

    Background: Plant species from genus Carduus are widely distributed in the world and represented in Bulgaria by 14 species. Previous investigations on this genus demonstrated a strong antioxidant potential of extract from some Bulgarian Carduus species. Objective: The present study investigates the phenolic profile and the antioxidant potential of different extracts obtained from four endemic Compositae herbs, growing wild in Bulgaria: Carduus armatus Boiss and Heldr., Carduus candicans Waldst. et Kit ssp. globifer (Velen.) Kazmi., Carduus rhodopaeus Velen. and Carduus thracicus (Velen.) Hayek. Materials and Methods: Antioxidant capacity of the obtained extracts was estimated with 2,2-diphenyl-1-picrylhydrazyl, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), and ferric reducing antioxidant power and copper reduction antioxidant assays. Phenolic profile was estimated by high performance liquid chromatography. Results: Eleven phenolic acids and eight flavonoids were quantified in the inflorescences. Sinapic (2760.72 ± 15.68 μg/g dry weight [dw]), chlorogenic (2564.50 ± 19.73 μg/g dw) and ferulic acids (1648.71 ± 19.57 μg/g dw), as well as luteolin (2345.45 ± 18.61 μg/g dw) and apigenin (1332.75 ± 12.05 μg/g dw) were found to be the predominant compounds. The above contents are the highest values found in C. candicans ssp. globifer. The highest established antioxidant activity (AOA) was in favor of the ethanolic extracts, and the extract of C. rhodopaeus affirmed with the highest AOA among the investigated plant species. Conclusion: All identified phenolic compounds were reported for the 1st time in the studied endemic Carduus species, as well as their antioxidant capacities. The present study revealed that these plant species could be used as sources of antioxidants with potential medicinal properties. SUMMARY Phenolic acids and flavonoid profiles of four endemic compositae herbs, growing wild in Bulgaria: Carduus armatus, Carduus candicans ssp

  10. DIVERSITY SURFACES AND SPECIES WAVE FRONTS IN A SOIL MICROARTHROPOD ASSEMBLAGE: ADDING THE DIMENSION OF TIME

    EPA Science Inventory

    As a general rule, animal species of intermediate size within a given taxonomic group are most abundant in nature. It is not known if these patterns occur in small-bodied taxa, such as soil microarthropods, or how these patterns change through time. Here I show that Oribatida (Ac...

  11. Influence of particle surfaces on the bioavailability to different species of 2,4-dichlorophenol and pentachlorophenol

    SciTech Connect

    Davies, N.A.; Edwards, P.A.; Lawrence, M.A.M.; Taylor, M.G.; Simkiss, K. . School of Animal and Microbial Sciences)

    1999-07-15

    Studies on the bioavailability of contaminants that accumulate in sediments have been complicated by the chemical and structural variability of substrates and by the different biological properties of test organisms that are used by regulators. The purpose of this work was to overcome some of these difficulties by devising a test system that used artificial particles with known chemical surfaces. These were coated with 2,4-dichlorophenol or pentachlorophenol and fed to oligochete worms (Lumbriculus variegatus) and midge larvae (Chironimus riparius). The adsorption coefficient (K[sub d]) of the particle surface was compared with the concentration of contaminant accumulated by the test organisms. There were major differences in bioaccumulation between the two species used despite identical particles and pollutants. This clearly reflects differences in the uptake and detoxification pathways between species. The particle surface and its interaction with the chlorophenols was a major factor in the accumulation of the contaminants in an organism. The techniques that are described provide a way of standardizing results between different natural sediments and different test organisms and provide some insights into the processes involved in bioaccumulation from particle surfaces.

  12. Effect of active species on animal cells in culture media induced by DBD Plasma irradiation using air

    NASA Astrophysics Data System (ADS)

    Ohtsubo, Tetsuya; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Little has been reported on action mechanism of active species produced by plasmas affecting living cells. In this study, active species in culture medium generated by torch type DBD and variations of animal cells are attempted to be clarified. Animal cells are irradiated by DBD plasma through various media such as DMEM, PBS and distilled water. Irradiation period is 1 to 15 min. The distance between the lower tip of plasma touch and the surface of the medium is 10 mm. Concentrations of NO2 -, O2 in liquid are measured. After the irradiation, the cells were cultivated in culture medium and their modifications are observed by microscope and some chemical reagents. Concentration of NO2 - and H2 O2 in all media increased with discharge period. Increase rate of NO2 -concentration is much higher than that of hydrogen peroxide. After plasma irradiation for 15 min, concentrations of NO2 were 80 mg/L in DMEM, 30 mg/L in PBS and 15 mg/L in distilled water. Also, the concentration of H2 O2 became 3mg/L in DMEM, 6.5 mg/L in PBS and 6.5mg/L in distilled water. The significant inactivation of cells was observed in the PBS. Above results indicate that, in this experiment, H2 O2 or OH radicals would affect animal cells in culture media.

  13. Borreria and Spermacoce species (Rubiaceae): A review of their ethnomedicinal properties, chemical constituents, and biological activities

    PubMed Central

    Conserva, Lucia Maria; Ferreira, Jesu Costa

    2012-01-01

    Borreira and Spermacoce are genera of Rubiaceae widespread in tropical and subtropical America, Africa, Asia, and Europe. Based on its fruits morphology they are considered by many authors to be distinct genera and most others, however, prefer to combine the two taxa under the generic name Spermacoce. Whereas the discussion is still unclear, in this work they were considered as synonyms. Some species of these genera play an important role in traditional medicine in Africa, Asia, Europe, and South America. Some of these uses include the treatment of malaria, diarrheal and other digestive problems, skin diseases, fever, hemorrhage, urinary and respiratory infections, headache, inflammation of eye, and gums. To date, more than 60 compounds have been reported from Borreria and Spermacoce species including alkaloids, iridoids, flavonoids, terpenoids, and other compounds. Studies have confirmed that extracts from Borreria and Spermacoce species as well as their isolated compounds possess diverse biological activities, including anti-inflammatory, antitumor, antimicrobial, larvicidal, antioxidant, gastrointestinal, anti-ulcer, and hepatoprotective, with alkaloids and iridoids as the major active principles. This paper briefly reviews the ethnomedicinal uses, phytochemistry, and biological activities of some isolated compounds and extracts of both genera. PMID:22654404

  14. Local and Landscape Correlates of Spider Activity Density and Species Richness in Urban Gardens.

    PubMed

    Otoshi, Michelle D; Bichier, Peter; Philpott, Stacy M

    2015-08-01

    Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments. PMID:26314049

  15. Antifungal activity of methanol and n-hexane extracts of three Chenopodium species against Macrophomina phaseolina.

    PubMed

    Javaid, Arshad; Amin, Muhammad

    2009-01-01

    Antifungal activity of methanol and n-hexane leaf, stem, root and inflorescence extracts (1, 2, 3 and 4% w/v) of three Chenopodium species (family Chenopodiaceae) namely Chenopodium album L., Chenopodium murale L. and Chenopodium ambrosioides L. was investigated against Macrophomina phaseolina (Tassi) G. Goid., a soil-borne fungal plant pathogen that has a broad host range and wide geographical distribution. All the extracts of the three Chenopodium species significantly suppressed the test fungal growth. However, there was marked variation among the various extract treatments. Methanol inflorescence extract of C. album exhibited highest antifungal activity resulting in up to 96% reduction in fungal biomass production. By contrast, methanol leaf extract of the same species exhibited least antifungal activity where 21-44% reduction in fungal biomass was recorded due to various employed extract concentrations. The various methanol extracts of C. murale and C. ambrosioides decreased fungal biomass by 62-90 and 50-84%, respectively. Similarly, various n-hexane extracts of C. album, C. murale and C. ambrosioides reduced fungal biomass by 60-94, 43-90 and 49-86%, respectively. PMID:19662577

  16. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties

    PubMed Central

    2013-01-01

    The resinous metabolites commonly known as frankincense or olibanum are produced by trees of the genus Boswellia and have attracted increasing popularity in Western countries in the last decade for their various pharmacological activities. This review described the pharmacological specific details mainly on anti-inflammatory, anti-carcinogenic, anti-bacterial and apoptosis-regulating activities of individual triterpenoid together with the relevant mechanism. In addition, species-characterizing triterpenic markers with the methods for their detection, bioavailability, safety and other significant properties were reviewed for further research. PMID:24028654

  17. Occurrence of Surface Active Agents in the Environment

    PubMed Central

    Olkowska, Ewa; Ruman, Marek; Polkowska, Żaneta

    2014-01-01

    Due to the specific structure of surfactants molecules they are applied in different areas of human activity (industry, household). After using and discharging from wastewater treatment plants as effluent stream, surface active agents (SAAs) are emitted to various elements of the environment (atmosphere, waters, and solid phases), where they can undergo numerous physic-chemical processes (e.g., sorption, degradation) and freely migrate. Additionally, SAAs present in the environment can be accumulated in living organisms (bioaccumulation), what can have a negative effect on biotic elements of ecosystems (e.g., toxicity, disturbance of endocrine equilibrium). They also cause increaseing solubility of organic pollutants in aqueous phase, their migration, and accumulation in different environmental compartments. Moreover, surfactants found in aerosols can affect formation and development of clouds, which is associated with cooling effect in the atmosphere and climate changes. The environmental fate of SAAs is still unknown and recognition of this problem will contribute to protection of living organisms as well as preservation of quality and balance of various ecosystems. This work contains basic information about surfactants and overview of pollution of different ecosystems caused by them (their classification and properties, areas of use, their presence, and behavior in the environment). PMID:24527257

  18. Passive and active EO sensing of small surface vessels

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Berglund, Folke; Allard, Lars; Öhgren, Johan; Larsson, Hâkan; Amselem, Elias; Gustafsson, Frank; Repasi, Endre; Lutzmann, Peter; Göhler, Benjamin; Hammer, Marcus; McEwen, Kennedy; McEwan, Ken

    2015-10-01

    The detection and classification of small surface targets at long ranges is a growing need for naval security. This paper will present an overview of a measurement campaign which took place in the Baltic Sea in November 2014. The purpose was to test active and passive EO sensors (10 different types) for the detection, tracking and identification of small sea targets. The passive sensors were covering the visual, SWIR, MWIR and LWIR regions. Active sensors operating at 1.5 μm collected data in 1D, 2D and 3D modes. Supplementary sensors included a weather station, a scintillometer, as well as sensors for positioning and attitude determination of the boats. Three boats in the class 4-9 meters were used as targets. After registration of the boats at close range they were sent out to 5-7 km distance from the sensor site. At the different ranges the target boats were directed to have different aspect angles relative to the direction of observation. Staff from IOSB Fraunhofer in Germany and from Selex (through DSTL) in UK took part in the tests beside FOI who was arranging the trials. A summary of the trial and examples of data and imagery will be presented.

  19. Khat (Catha edulis) generates reactive oxygen species and promotes hepatic cell apoptosis via MAPK activation.

    PubMed

    Abid, Morad Dirhem Naji; Chen, Juan; Xiang, Min; Zhou, Jie; Chen, Xiaoping; Gong, Feili

    2013-08-01

    A number of studies have suggested an association between khat (Catha edulis) chewing and acute liver lesions or chronic liver disease. However, little is known about the effects of khat on hepatic cells. In the current study, we investigated the mechanism behind khat-induced apoptosis in the L02 human hepatic cell line. We used cell growth inhibition assay, flow cytometry and Hoechst 33258 staining to measure hepatocyte apoptosis induced by khat. Western blot analysis was used to detect the expression levels of caspase-8 and -9, as well as those of Bax and Bcl-2. We also measured reactive oxygen species production. The results indicated that khat induced significant hepatocyte apoptosis in L02 cells. We found that khat activated caspase-8 and -9, upregulated Bax protein expression and downregulated Bcl-2 expression levels, which resulted in the coordination of apoptotic signals. Khat-induced hepatocyte apoptosis is primarily regulated through the sustained activation of the c-Jun NH2-terminal kinase (JNK) pathway and only partially via the extracellular signal-regulated kinase (ERK) cascade. Furthermore, the khat-induced reactive oxygen species (ROS) production and the activation of the ROS scavenger, N-acetyl-L-cysteine (NAC), attenuated the khat-induced activation of JNK and ERK. Our results demonstrate that khat triggers the generation of intracellular ROS and sequentially induces the sustainable activation of JNK, which in turn results in a decrease in cell viability and an increase in cell apoptosis. PMID:23708648

  20. N2O decomposition over Fe/ZSM-5: reversible generation of highly active cationic Fe species.

    PubMed

    Zhu, Q; Hensen, E J M; Mojet, B L; van Wolput, J H M C; van Santen, R A

    2002-06-01

    Fe-oxide species in Fe/ZSM-5 (prepared by chemical vapor deposition of FeCl3)--active in N2O decomposition--react with zeolite protons during high temperature calcination to give highly active cationic Fe species, this transformation being reversible upon exposure to water vapor at lower temperature. PMID:12109097

  1. In Vitro Evaluation of Antiprotozoal and Antiviral Activities of Extracts from Argentinean Mikania Species

    PubMed Central

    Laurella, Laura C.; Frank, Fernanda M.; Sarquiz, Andrea; Alonso, María R.; Giberti, Gustavo; Cavallaro, Lucia; Catalán, Cesar A.; Cazorla, Silvia I.; Malchiodi, Emilio; Martino, Virginia S.; Sülsen, Valeria P.

    2012-01-01

    The aim of this study was to investigate the antiprotozoal and antiviral activities of four Argentinean Mikania species. The organic and aqueous extracts of Mikania micrantha, M. parodii, M. periplocifolia, and M. cordifolia were tested on Trypanosoma cruzi epimastigotes, Leishmania braziliensis promastigotes, and dengue virus type 2. The organic extract of M. micrantha was the most active against T. cruzi and L. braziliensis exhibiting a growth inhibition of 77.6 ± 4.5% and 84.9 ± 6.1%, respectively, at a concentration of 10 μg/ml. The bioguided fractionation of M. micrantha organic extract led to the identification of two active fractions. The chromatographic profile and infrared analysis of these fractions revealed the presence of sesquiterpene lactones. None of the tested extracts were active against dengue virus type 2. PMID:22919289

  2. Reaction pathways for bio-active species in a He/H2O atmospheric pressure capacitive discharge

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Lieberman, M. A.

    2015-01-01

    Helium/trace gas atmospheric pressure radio-frequency (rf) capacitive discharges have increasing biomedical applications. We have performed a principal pathway analysis for a chemically complex, bounded He/H2O atmospheric pressure, planar capacitive discharge, with a discharge gap of 0.5 mm and a power of 0.85 W cm-2 at 13.56 MHz (ne ≈ 1.6 × 1017 m-3). The discharge is embedded in a larger volume in which the H2O fraction is controlled to be 0.001. The generation and loss pathways for eleven species of interest for discharge maintenance and biomedical applications have been determined. The production and consumption pathways of He*, H2O, {{\\text{H}}11}\\text{O}5+ and electrons are found to be tightly coupled. The metastable He* generated by electron impact excitation of He is mostly consumed by Penning reactions with H2O, followed by subsequent three-body association reactions with H2O, to form the dominant positive ion, {{\\text{H}}11}\\text{O}5+ . The main loss pathways for {{\\text{H}}11}\\text{O}5+ are ion cluster fragmentations at the wall, which are important generation pathways for H2O. The generation and loss pathways for electrons are almost the same as for {{\\text{H}}11}\\text{O}5+ . OH and H2O2 generation and loss are strongly coupled, and they are important intermediate species in the generation pathways for the purely O-containing bio-active species: O2(a), O, O3 and O*. The generation and loss pathways for the latter four species were found to be strongly coupled by volume and surface processes, with O2 as an important precursor. The generation of O2 from H2O involves H2O2 as a key long-lived intermediate.

  3. Theoretical modeling of photocatalytic active species on illuminated TiO 2

    NASA Astrophysics Data System (ADS)

    Belelli, Patricia G.; Ferullo, Ricardo M.; Branda, María M.; Castellani, Norberto J.

    2007-10-01

    A theoretical study of the H 2O and O 2 adsorption on an illuminated TiO 2 anatase surface is presented. The electronic structure and the spin distribution were examined by employing the DFT formalism and the BHandHLYP functional. The adsorbates geometries were fully optimized, including the cluster relaxation. Our results show the dissociative adsorption of the H 2O molecule on the photoactivated TiO 2 (0 0 1) surface. This reaction produces one hydroxyl group with radical character (OH rad ) and an unpaired electron localized in the 5c-Ti atom. In case of the O 2 molecule, the non-dissociative chemisorption was obtained. This molecule shows one unpaired electron and a negative charge. In these sense, the adsorbed O 2 acts as a superoxide species (O 2rad -).

  4. Revisiting the correlation between stellar activity and planetary surface gravity

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Oshagh, M.; Adibekyan, V. Zh.; Santos, N. C.

    2014-12-01

    Aims: We re-evaluate the correlation between planetary surface gravity and stellar host activity as measured by the index log (R'HK). This correlation, previously identified by Hartman (2010, ApJ, 717, L138), is now analyzed in light of an extended measurement dataset, roughly three times larger than the original one. Methods: We calculated the Spearman rank correlation coefficient between the two quantities and its associated p-value. The correlation coefficient was calculated for both the full dataset and the star-planet pairs that follow the conditions proposed by Hartman (2010). To do so, we considered effective temperatures both as collected from the literature and from the SWEET-Cat catalog, which provides a more homogeneous and accurate effective temperature determination. Results: The analysis delivers significant correlation coefficients, but with a lower value than those obtained by Hartman (2010). The two datasets are compatible, and we show that a correlation coefficient as high as previously published can arise naturally from a small-number statistics analysis of the current dataset. The correlation is recovered for star-planet pairs selected using the different conditions proposed by Hartman (2010). Remarkably, the usage of SWEET-Cat temperatures led to higher correlation coefficient values. We highlight and discuss the role of the correlation betwen different parameters such as effective temperature and activity index. Several additional effects on top of those discussed previously were considered, but none fully explains the detected correlation. In light of the complex issue discussed here, we encourage the different follow-up teams to publish their activity index values in the form of a log (R'HK) index so that a comparison across stars and instruments can be pursued. Appendix A is available in electronic form at http://www.aanda.org

  5. Green synthesis of nickel species in situ modified hollow microsphere TiO2 with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qin, Zenan; Chen, Jie; Ren, Baosheng; Chen, Qifeng; Guo, Yanchuan; Cao, Xiaofeng

    2016-02-01

    A green template-free solvothermal approach was developed to synthesize hollow microsphere TiO2-modified in situ with nickel species (Ni2+/Ni3+). Oxalic acid played a pivotal role in the formation of hollow architecture, acting as chelating agent, structure-directing reagent, and acidity-modulation reagent, while isopropyl alcohol ensured the formation of spherical structure. The microstructure and composition of the products were characterized with various techniques, and the results showed that the products exhibited not only highly crystallized anatase phase, large specific surface areas, and the mesoporous shell and hollow architecture, but also the coexistence of Ni2+/Ni3+. The unique structure and composition of the photocatalysts resulted in improved UV and visible photocatalytic activity for degradation of Rhodamine-B and 2,4-dichlorophenol.

  6. Activity of Heat Shock Genes’ Promoters in Thermally Contrasting Animal Species

    PubMed Central

    Astakhova, Lyubov N.; Zatsepina, Olga G.; Funikov, Sergei Yu.; Zelentsova, Elena S.; Schostak, Natalia G.; Orishchenko, Konstantin E.; Evgen’ev, Michael B.; Garbuz, David G.

    2015-01-01

    Heat shock gene promoters represent a highly conserved and universal system for the rapid induction of transcription after various stressful stimuli. We chose pairs of mammalian and insect species that significantly differ in their thermoresistance and constitutive levels of Hsp70 to compare hsp promoter strength under normal conditions and after heat shock (HS). The first pair includes the HSPA1 gene promoter of camel (Camelus dromedarius) and humans. It was demonstrated that the camel HSPA1A and HSPA1L promoters function normally in vitro in human cell cultures and exceed the strength of orthologous human promoters under basal conditions. We used the same in vitro assay for Drosophila melanogaster Schneider-2 (S2) cells to compare the activity of the hsp70 and hsp83 promoters of the second species pair represented by Diptera, i.e., Stratiomys singularior and D. melanogaster, which dramatically differ in thermoresistance and the pattern of Hsp70 accumulation. Promoter strength was also monitored in vivo in D. melanogaster strains transformed with constructs containing the S. singularior hsp70 ORF driven either by its own promoter or an orthologous promoter from the D. melanogaster hsp70Aa gene. Analysis revealed low S. singularior hsp70 promoter activity in vitro and in vivo under basal conditions and after HS in comparison with the endogenous promoter in D. melanogaster cells, which correlates with the absence of canonical GAGA elements in the promoters of the former species. Indeed, the insertion of GAGA elements into the S. singularior hsp70 regulatory region resulted in a dramatic increase in promoter activity in vitro but only modestly enhanced the promoter strength in the larvae of the transformed strains. In contrast with hsp70 promoters, hsp83 promoters from both of the studied Diptera species demonstrated high conservation and universality. PMID:25700087

  7. Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species.

    PubMed

    Uzun, Ergin; Sariyar, Günay; Adsersen, Anne; Karakoc, Berna; Otük, Gülten; Oktayoglu, Ercan; Pirildar, Sevda

    2004-12-01

    Traditional medicine in North-West of Turkey (Sakarya province) were studied during a 2 months field study by interviewing local informants from several villages. Plant species used to treat infections were tested for antimicrobial activity. Information was collected for 46 plant species from 30 families and for 5 animal species. Twenty four of the plant species were cultivated. Most used families were Asteraceae, Cucurbitaceae, Lamiaceae and Rosaceae and the most used plants were Artemisia absinthium, Equisetum telmateia, Lavandula stoechas, Melissa officinalis, Tussilago farfara and Urtica dioica. A total of 139 medicinal uses were obtained. Plants are used mainly for infectious diseases (18%), for neurological and psychological disorders (13.7%), cardiovascular disorders (13%), skin disorders (12.2%) and respiratory disorders (10.1%). Extracts were tested in vitro for antimicrobial activity against Staphylococcus aureus ATCC 65538, Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 8739, Klebsiella pneumonia ATCC 4352, Pseudomonas aeruginosa ATCC 1539, Salmonella typhi, Shigella flexneri, Proteus mirabilis and Candida albicans ATCC 10231, using microbroth dilution technique according to National Committee for Clinical Laboratory Standards (NCCLS). This research showed that Arum maculatum, Datura stramonium, Geranium asphodeloides and Equisetum telmateia petroleum ether extracts had MIC values of 39.1 microg/ml, 78.1 microg/ml, 78.1 microg/ml and 39.1 microg/ml, respectively against Staphylococcus epidermidis. Datura stramonium petroleum ether extract had a MIC value of 39.1 microg/ml against Escherichia coli and Trachystemon orientalis ethanol extract had a MIC value of 39.1 microg/ml against Escherichia coli. The antimicrobial activity of Arum maculatum, Equisetum telmateia, Geranium asphodeloides, Plantago intermedia, Senecio vulgaris and Trachystemon orientalis has been reported here for the first time. PMID:15507351

  8. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    PubMed

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella. PMID:26528838

  9. Streptococcal Surface Proteins Activate the Contact System and Control Its Antibacterial Activity*

    PubMed Central

    Wollein Waldetoft, Kristofer; Svensson, Lisbeth; Mörgelin, Matthias; Olin, Anders I.; Nitsche-Schmitz, D. Patric; Björck, Lars; Frick, Inga-Maria

    2012-01-01

    Group G streptococci (GGS) are important bacterial pathogens in humans. Here, we investigated the interactions between GGS and the contact system, a procoagulant and proinflammatory proteolytic cascade that, upon activation, also generates antibacterial peptides. Two surface proteins of GGS, protein FOG and protein G (PG), were found to bind contact system proteins. Experiments utilizing contact protein-deficient human plasma and isogenic GGS mutant strains lacking FOG or PG showed that FOG and PG both activate the procoagulant branch of the contact system. In contrast, only FOG induced cleavage of high molecular weight kininogen, generating the proinflammatory bradykinin peptide and additional high molecular weight kininogen fragments containing the antimicrobial peptide NAT-26. On the other hand, PG protected the bacteria against the antibacterial effect of NAT-26. These findings underline the significance of the contact system in innate immunity and demonstrate that GGS have evolved surface proteins to exploit and modulate its effects. PMID:22648411

  10. C-H Bond Activation by Pd-substituted CeO2: Substituted Ions versus Reduced Species

    SciTech Connect

    Misch, Lauren M; Kurzman, Joshua A; Derk, Alan R; Kim, Young-Il; Seshadri, Ram; Metiu, Horia; McFarland, Eric W; Stucky, Galen D

    2012-02-07

    Substituted metal oxides containing ionic species have been attracting a great deal of attention because of their potential ability to reduce the usage of precious metals in heterogeneous catalysts. We investigate Pd-substituted CeO2 for C-H bond activation reactions including the partial oxidation and dry reforming of CH4. This catalyst has been previously studied for CO oxidation, NOx reduction, and the water-gas shift reaction. Pd-substituted CeO2, Ce1-xPdxO2-δ, was prepared as a powder with high surface area and a hollow sphere morphology using ultrasonic spray pyrolysis. The catalysts were extensively characterized using synchrotron X-ray diffraction and other techniques, confirming phase pure samples up to 10 mol % Pd substitution. Ce0.95Pd0.05O2-δ was found to be active for partial oxidation of CH4 around 500 °C and higher. Our studies, including postcatalytic synchrotron diffraction, suggest that the single-phase Ce1-xPdxO2-δ material is not the active species and that catalysis occurs instead over the reduced two-phase Pd0/CeO2. This observation has been further confirmed by verifying the activity of the reduced Pd0/CeO2 catalysts for ethylene hydrogenation, a reaction that is known to require Pd0.

  11. Fraction of platinum surface covered with carbonaceous species following hydrogenolysis of hexane on platinum alumina catalysts

    SciTech Connect

    Rivera Latas, F.J.

    1986-01-01

    Catalytic naphtha reforming plays a major role in satisfying the demand for unleaded, high octane gasoline. Hydrogen containing carbonaceous deposits (coke) accumulation on the surface of the catalysts during reforming operation. This study investigated the following question: what is the fraction of the platinum surface covered with the deposits following a typical reforming reaction. These observations prompted us to prepare a platinum-alumina catalyst with a high metal content (5%) to enhance the sensitivity of experiments designed to examine the platinum surface following hexane hydrogenolysis. The reaction was selected because it is a good model reaction for catalytic reforming and it was also studied by the Somorjai group in the higher temperature range of their work. Hydrogenolysis of hexane was carried out in a flow system for 3 h at 713 K, at atmospheric pressure, and around 0.1 total conversion. The catalyst was cooled down to room temperature in the reactant mixture, and the fraction of surface platinum atoms exposed was measured in situ by four independent methods: titration of adsorbed oxygen by dihydrogen, chemisorption of carbon monoxide, infra-red spectroscopy of carbon monoxide bonded to platinum, and rate of ethylene hydrogenation. Independent gravimetric studies showed that coke deposits of around 1% by weight were formed on the same catalyst during hydrogenolysis of hexane under similar conditions. Each of the four methods indicate that approximately 50% of the platinum surface remains exposed under the conditions.

  12. Hurricane activity and the large-scale pattern of spread of an invasive plant species.

    PubMed

    Bhattarai, Ganesh P; Cronin, James T

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6-35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  13. Scavenging activity of "beta catechin" on reactive oxygen species generated by photosensitization of riboflavin.

    PubMed

    Kumari, M V; Yoneda, T; Hiramatsu, M

    1996-05-01

    "beta CATECHIN", a preparation containing green tea extract, ascorbic acid, sunflower seed extract, dunaliella carotene and natural vitamin E, has been designed as a model "universal antioxidant" that offers protection via its scavenging action on a wide range of free radicals, both water-soluble and fat-soluble. Reactive oxygen species like singlet oxygen, hydroxyl and superoxide radicals, are often generated in biological systems during photosensitized oxidation reactions. We report on the simultaneous effect of "beta CATECHIN" on active oxygen species generated during the photosensitized oxidation of riboflavin using 2,2,6,6-tetramethyl-4-piperidone (TMPD) as a "spin-trapping" agent. The intensities of the resulting stable nitroxide radical adduct, 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (TEMPONE), were detected by electron spin resonance (ESR) spectroscopy. Results show simultaneous, nonspecific and complete scavenging action of reactive oxygen species generated in our in vitro model system by "beta CATECHIN". It is therefore suggested that "beta CATECHIN" could offer protection against free radical insult and in preventing cancer and other diseases that are mediated by reactive oxygen species. PMID:8739038

  14. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    PubMed Central

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  15. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity

    USGS Publications Warehouse

    Fernandes, E.K.K.; Keyser, C.A.; Chong, J.P.; Rangel, D.E.N.; Miller, M.P.; Roberts, D.W.

    2010-01-01

    Aims: The genetic relationships and conidial tolerances to high and low temperatures were determined for isolates of several Metarhizium species and varieties. Methods and Results: Molecular-based techniques [AFLP and rDNA (ITS1, ITS2 and 5??8S) gene sequencing] were used to characterize morphologically identified Metarhizium spp. isolates from a wide range of sources. Conidial suspensions of isolates were exposed to wet heat (45 ?? 0??2??C) and plated on potato dextrose agar plus yeast extract (PDAY) medium. After 8-h exposure, the isolates divided clearly into two groups: (i) all isolates of Metarhizium anisopliae var. anisopliae (Ma-an) and Metarhizium from the flavoviride complex (Mf) had virtually zero conidial relative germination (RG), (ii) Metarhizium anisopliae var. acridum (Ma-ac) isolates demonstrated high heat tolerance (c. 70-100% RG). Conidial suspensions also were plated on PDAY and incubated at 5??C for 15 days, during which time RGs for Ma-an and Ma-ac isolates were virtually zero, whereas the two Mf were highly cold active (100% RG). Conclusions: Heat and cold exposures can be used as rapid tools to tentatively identify some important Metarhizium species and varieties. Significance and Impact of the Study: Identification of Metarhizium spp. currently relies primarily on DNA-based methods; we suggest a simple temperature-based screen to quickly obtain tentative identification of isolates as to species or species complexes. ?? 2009 The Society for Applied Microbiology.

  16. Hepatic 5'-monodeiodinase activity in teleosts in vitro: A survey of thirty-three species.

    PubMed

    Leatherland, J F; Reddy, P K; Yong, A N; Leatherland, A; Lam, T J

    1990-01-01

    The in vitro hepatic 5'-monodeiodination of thyroxine (T4) to triiodothyronine (T3) in Oreochromis mossambicus, Channa striata, Clarias batrachus, Cyprinus carpio and Oxyeleotris marmorata was found to be time, pH and temperature dependent, and related to the amount of substrate (T4) and homogenate introduced into the reaction vessel, in a manner which was consistent with Menton-Michaelis kinetics, and thus indicative of an enzyme-regulated process. Dithiothreitol introduced into the reaction vessel stimulated T3 production in a dose-related manner.Hepatic 5'-monodeiodinase activity was also detected in a further 28 species of teleosts suggesting that the peripheral monodeiodination of T4, which is well-documented in salmonids, is also widespread amongst other teleost fishes. All species examined exhibited evidence of enzymatic deiodination, but there were marked differences in Km and Vmax values between the species. There was no apparent phylogenetic or environmental relationships to explain the widely divergent Km and/or Vmax values, nor was there a correlation between Km and Vmax when the species were considered together. PMID:24221892

  17. Evaluation of surface composition of surface active water-alcohol type mixtures: a comparison of semiempirical models.

    PubMed

    Salonen, Martta; Malila, Jussi; Napari, Ismo; Laaksonen, Ari

    2005-03-01

    We study adsorption at planar liquid-vapor interface of surface active binary mixtures and test three well-known models for the composition of surface phase. The models were originally presented by Guggenheim. These are compared to results for model fluids from density functional theory (DFT). The model of Laaksonen and Kulmala is in best agreement with DFT calculations. Surface mole fraction of the solute component from the Guggenheim model exceeds one for a mixture with high surface activity. The failure of the Guggenheim model is also evident in our calculations for water-methanol, water-ethanol, and water-n-propanol mixtures. PMID:16851381

  18. Ethylene and oxygen species adsorbed on a defect oxidized surface Ag(1 1 1) . Theoretical analysis by DFT method

    NASA Astrophysics Data System (ADS)

    Avdeev, Vasilii I.; Zhidomirov, Georgii M.

    2001-10-01

    We suggest a cluster model AS v→Ag12-3O of the oxidized surface Ag(1 1 1) with a defect. The defect is simulated by cationic vacancy V. Density functional theory (B3LYP/LANL1MB approximation) is used to calculate ethylene and oxygen adsorption on the regular (AS r) and defect (AS d) sites on the Ag(1 1 1). Oxygen interaction with site AS r produces atomic oxygen species (AS r-O). Oxygen adsorption on site AS d is accompanied by its association with subsurface oxygen atoms to form a quasimolecular structure of metal ozonide type -Ag-O-O ep-O-Ag-, containing electrophilic oxygen O ep. Energies of atomic oxygen binding to the regular and defect surfaces are found to be approximately equal. On the regular surface, ethylene forms a π-complex with binding energy Eπ(Ag-C 2H 4)=14.2 kcal/mol. On the defect surface, ethylene produces a metal-ethylene-peroxide cycle such as Ag-O-O-C 2H 4-Ag. Determined are the frequencies of normal vibration for ethylene and oxygen species, adsorbed on the regular and defect surfaces. In the case of associative oxygen species and complete isotope replacement 16O→ 18O, the main frequency at 1000 cm -1 shifts by Δν=57-61 cm -1, but this shift decreases to Δν=25-30 cm -1 for isotope mixtures 16O/ 18O. For the adsorbed species of ethylene-oxygen mixtures, IR spectra show the frequencies within which 170-180 cm -1 are associated with stretching of bond Ag-C. Frequencies at 300-490 cm -1 are assigned to mode ν(Ag-O) of the functional group Ag-O-O ep-O-Ag. The most intensive modes at 950 and 600 cm -1 are likely to stretching and bending of the functional groups containing the O-O-O and O-O-C bonds.

  19. Subpicosecond surface dynamics in genomic DNA from in vitro-grown plant species: a SERS assessment.

    PubMed

    Muntean, Cristina M; Bratu, Ioan; Leopold, Nicolae; Morari, Cristian; Buimaga-Iarinca, Luiza; Purcaru, Monica A P

    2015-09-01

    In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface. PMID:25687823

  20. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction.

    PubMed

    Sanchez Casalongue, Hernan G; Ng, May Ling; Kaya, Sarp; Friebel, Daniel; Ogasawara, Hirohito; Nilsson, Anders

    2014-07-01

    An iridium oxide nanoparticle electrocatalyst under oxygen evolution reaction conditions was probed in situ by ambient-pressure X-ray photoelectron spectroscopy. Under OER conditions, iridium undergoes a change in oxidation state from Ir(IV) to Ir(V) that takes place predominantly at the surface of the catalyst. The chemical change in iridium is coupled to a decrease in surface hydroxide, providing experimental evidence which strongly suggests that the oxygen evolution reaction on iridium oxide occurs through an OOH-mediated deprotonation mechanism. PMID:24889896

  1. Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity During Metabolic Syndrome

    PubMed Central

    Cruz, Josiane C.; Flôr, Atalia F. L.; França-Silva, Maria S.; Balarini, Camille M.; Braga, Valdir A.

    2015-01-01

    The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin, and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS. PMID:26779026

  2. Lipoxygenase activity in different species of sweet lupin (Lupinus L.) seeds and flakes.

    PubMed

    Stephany, Michael; Bader-Mittermaier, Stephanie; Schweiggert-Weisz, Ute; Carle, Reinhold

    2015-05-01

    Lipoxygenase (LOX)-catalysed degradation of polyunsaturated fatty acids is supposed to be a major cause of undesirable off-flavour development in legumes. In the present study, a photometric LOX assay including adequate sample workup was adapted to lupin seeds, kernels and flakes, respectively. Optimum reaction conditions were at pH 7.5 using a phosphate buffer concentration of 150 mmol l(-1) without the addition of sodium chloride. The LOX activities of different lupin species and varieties were compared. Significant variations among the species and varieties ranging from 50 to 1004 units mg(-1) protein were determined, being significantly lower than soybean LOX activity. Hulling and flaking of the seeds resulted in a 15% increase of LOX activity. In contrast to soy and other legumes, LOX from lupin only converted free fatty acids, whereas trilinolein and β-carotene were not oxidised. Consequently, according to the established classification, lupin LOX activity may be assigned to the LOX type-1, which, to the best of our knowledge, was demonstrated for the first time. PMID:25529698

  3. Influence of cryopreservation on the antioxidative activity of in vitro cultivated Hypericum species

    PubMed Central

    Georgieva, Elena; Petrova, Detelina; Yordanova, Zhenya; Kapchina-Toteva, Veneta; Cellarova, Eva; Chaneva, Ganka

    2014-01-01

    Antioxidative activity of two in vitro cultivated Hypericum species – H. rumeliacum Boiss. and H. tetrapterum Fr. – was estimated after cryopreservation. Both species were successfully regenerated after a cryopreservation procedure performed by the vitrification method. H. tetrapterum did not manifest any significant oxidative stress-induced changes caused by low-temperature treatment. Conversely, a decrease in green pigments' content of H. rumeliacum was measured, particularly pronounced in chlorophyll b, which was accompanied by an increase of carotenoids in the regenerated plants. A strong increase of malone dialdehyde and H2O2 levels in H. rumeliacum tissues was detected. Superoxide dismutase activity was enhanced by 170%, as well as the catalase activity, which was 220% above the control. The same trend was observed in H. tetrapterum, although less pronounced – 143% increase of superoxide dismutase and 112% of catalase. Cryopreservation did not influence the phenol content in the examined plants, but it led to an increase of flavonoid content, especially in H. tetrapterum, by 237%. Total antioxidant activity in regenerated H. tetrapterum varied around the control level, but it was increased in H. rumeliacum. The free proline content in H. tetrapterum remained almost unaffected after freezing, as opposed to H. rumeliacum, where a strong increase of proline content (208% above the control) occurred. An electrolyte leakage from the cells of H. rumeliacum regenerated after cryopreservation was also registered, albeit not significant. PMID:26740777

  4. Mutagenicity and chemopreventive activities of Astronium species assessed by Ames test.

    PubMed

    Resende, Flávia Aparecida; Campos, Debora Leite; da Silva, Viviane Cândida; De Grandis, Rone Aparecido; Souza, Leonardo Perez; Leonardo Junior, Carlos Sérgio; da Rocha, Cláudia Quintino; dos Santos, Lourdes Campaner; Vilegas, Wagner; Varanda, Eliana Aparecida

    2015-08-01

    In the neotropical savannah, Astronium species are used in popular medicine to treat allergies, inflammation, diarrhea and ulcers. Given that natural products are promising starting points for the discovery of novel potentially therapeutic agents, the aim of the present study was to investigate the mutagenic and antimutagenic activities of hydroalcoholic extracts of Astronium spp. The mutagenicity was determined by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102. The antimutagenicity was tested against the direct-acting and indirect-acting mutagens. The results showed that none of the extracts induce any increase in the number of revertants, demonstrating the absence of mutagenic activity. On the other hand, the results on the antimutagenic potential showed a moderate inhibitory effect against NPD and a strong protective effect against B[a]P and AFB1. This study highlights the importance of screening species of Astronium for new medicinal compounds. The promising results obtained open up new avenues for further study and provide a better understanding the mechanisms by which these species act in protecting DNA from damage. However, further pharmacological and toxicological investigations of crude extracts of Astronium spp., as well as of its secondary metabolites, are necessary to determine the mechanism(s) of action to guarantee their safer and more effective application to human health. PMID:26002624

  5. Variation in total polyphenolics contents of aerial parts of Potentilla species and their anticariogenic activity.

    PubMed

    Tomczyk, Michał; Pleszczyńska, Małgorzata; Wiater, Adrian

    2010-07-01

    The aerial parts of selected Potentilla species (P. anserina, P. argentea, P. erecta, P. fruticosa, P. grandiflora, P. nepalensis, P. norvegica, P. pensylvanica, P. crantzii and P. thuringiaca) were investigated in order to determine their contents of polyphenolic compounds. The results showed that P. fruticosa has relatively high concentrations of tannins (167.3 +/- 2.0 mg/g dw), proanthocyanidins (4.6 +/- 0.2 mg/g dw) and phenolic acids (16.4 +/- 0.8 mg/g dw), as well as flavonoids (7.0 +/- 1.1 mg/g dw), calculated as quercetin. Furthermore, we investigated the in vitro inhibitory effects of aqueous extracts from these species against cariogenic Streptococcus spp. strains. It was found that the tested samples moderately inhibit the growth of oral streptococci. However, all the preparations exhibited inhibitory effects on water-insoluble alpha-(1-->3)-, alpha-(1-->6)-linked glucan (mutan) and artificial dental plaque formation. The extract from P. fruticosa showed the highest anti-biofilm activities, with minimum mutan and biofilm inhibition concentrations of 6.25-25 and 50-100 microg/mL, respectively. The results indicate that the studied Potentilla species could be a potential plant material for extracting biologically active compounds, and could become a useful supplement for pharmaceutical products as a new anticariogenic agent in a wide range of oral care products. PMID:20657382

  6. Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae)

    NASA Astrophysics Data System (ADS)

    Nenadić, Marija; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Perić-Mataruga, Vesna; Ilijin, Larisa; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Ćurčić, Srećko

    2016-04-01

    The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens—eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var . cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var . cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future.

  7. XANES studies of photocatalytic active species in nano TiO 2-SiO 2

    NASA Astrophysics Data System (ADS)

    Li Hsiung, Tung; Paul Wang, H.; Wang, H. C.

    2006-11-01

    Combined post-edge XANES (X-ray absorption near-edge structural) and 29Si magic angle spinning solid-state nuclear magnetic resonance (MAS SSNMR) observations show that Ti was dispersed in the frameworks of nano SiO 2 (synthesized with the sol-gel method). In addition, the nano TiO 2-SiO 2 photocatalyst have features such as A1 (4969 eV), A2 (4970.5 eV) and A3 (4972 eV) that can be attributed to 1s-to-3d transitions for four- (TiO 4), five- ((Ti=O)O 4), and six- (TiO 6) coordinated Ti species, respectively. The A2 ((Ti=O)O 4) in TiO 2-SiO 2 may be the main active species, for instance, in the photocatalytic decomposition of trace 2-chlorophenol in H 2O. This work exemplifies the utilization of XANES to reveal the active species in nano photocatalysts in detail.

  8. Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana.

    PubMed Central

    Rusterucci, C.; Stallaert, V.; Milat, M. L.; Pugin, A.; Ricci, P.; Blein, J. P.

    1996-01-01

    Excised leaves of Nicotiana tabacum var Xanthi and Nicotiana rustica were treated with cryptogein and capsicein, basic and acidic elicitins, respectively. Both compounds induced leaf necrosis, the intensity of which depended on concentration and duration of treatment. N. tabacum var Xanthi was the most sensitive species and cryptogein was the most active elicitin. Lipid peroxidation in elicitin-treated Nicotiana leaves was closely correlated with the appearance of necrosis. Elicitin treatments induced a rapid and transient burst of active oxygen species (AOS) in cell cultures of both Nicotiana species, with the production by Xanthi cells being 6-fold greater than that by N. rustica. Similar maximum AOS production levels were observed with both elicitins, but capsicein required 10-fold higher concentrations than those of cryptogein. Phytoalexin production was lower in response to both elicitins in N. tabacum var Xanthi cells than in N. rustica cells, and capsicein was the most efficient elicitor of this response. In cryptogein-treated cell suspensions, phytoalexin synthesis was unaffected by diphenyleneiodonium, which inhibited AOS generation, nor was it affected by tiron or catalase, which suppressed AOS accumulation in the extracellular medium. These results suggest that AOS production, lipid peroxidation, and necrosis are directly related, whereas phytoalexin production depends on neither the presence nor the intensity of these responses. PMID:12226334

  9. Probe molecule studies: Active species in alcohol synthesis. Tenth quarterly report, January 1993--March 1993

    SciTech Connect

    Blackmond, D.G.; Wender, I.; Oukaci, R.; Wang, Jian

    1993-03-01

    The goal of this research is to develop a better understanding of the mechanisms of formation of alcohols and other oxygenates from syngas over supported catalysts. Probe molecules are added in situ during the reaction to help delineate reaction pathways and identify reaction intermediate species. The key of our study is to investigate how the species generated by these probe molecules interact with surface species present during oxygenate formation. The catalysts chosen for this investigation is Co/Cu/ZnO/Al{sub 2}O{sub 3}. Detailed motivations for studying this system as well as using CH{sub 3}NO{sub 2} as the probe molecule were given in a previous report. X-ray photoelectron spectroscopy (XPS) experiments were carried out on calcined and reduced samples of Co(0%)/Cu/ZnO and Co(10%)/Cu/ZnO catalysts. The extent of reduction of the copper and cobalt phases in the Co(0,5 and l0%)/Cu/ZnO catalysts was estimated from XPS, TPR, and XRD results. (C) A Co(5%) /Al/{sub 2}O{sub 3} catalyst was prepared to be used as a base catalyst for the study of probe molecule addition. CO hydrogenation under the same conditions used before was conducted over the Co(5%)/Al{sub 2}O{sub 3} catalyst as well as a Co/Cu/ZnO/Al{sub 2}O{sub 3} catalyst (ZC45) prepared by coprecipitation method.

  10. A surface-associated activity trap for capturing water surface and aquatic invertebrates in wetlands

    USGS Publications Warehouse

    Hanson, M.A.; Roy, C.C.; Euliss, N.H., Jr.; Zimmer, K.D.; Riggs, M.R.; Butler, Malcolm G.

    2000-01-01

    We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.

  11. A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands

    USGS Publications Warehouse

    Hanson, M.A.; Roy, C.C.; Euliss, N.H., Jr.; Zimmer, K.D.; Riggs, M.R.; Butler, Malcolm G.

    2000-01-01

    We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.

  12. Aqueous Extracts of Selected Potentilla Species Modulate Biological Activity of Human Normal Colon Cells.

    PubMed

    Paduch, Roman; Wiater, Adrian; Locatelli, Marcello; Pleszczyńska, Malgorzata; Tomczyk, Michal

    2015-01-01

    Potentilla L. (Rosaceae) species have been used in traditional and in folk medicine for many years. This study characterized the activity of extracts from aerial parts of selected Potentilla species: P. argentea, P. anserina, P. grandiflora and P. erecta as well as one species of closely related to the genus Potentilla, Drymocallis rupestris (syn. P. rupestris). The biological activities were analyzed using MTT, NR and DPPH assays on CCD 841 CoTr and CCD-18Co cells. Moreover, cell morphology and cytoskeletal actin F-filaments organization and IL-6 and IL-10 levels by ELISA were analyzed after 24 h of incubation. Potentilla extracts at dose levels between 25 and 250 µg/mL were analyzed. For ELISA, 15 µg/mL and 30 μg/mL were chosen. When mitochondrial succinyl dehydrogenase activity was tested (MTT assay) only extract obtained from P. erecta at lower concentrations (up to 125 µg/mL) suppressed metabolism of myofibroblasts, while epithelial cells mitochondrial enzyme activity increased after incubation with all extracts. In Neutral Red (NR) method cellular membrane disturbance of both cell cultures was found after D. rupestris and P. grandiflora addition. Moreover, strong influence on epithelial cells was also found for P. anserina. All extracts showed similar, concentration-dependent free radical scavenging (DPPH) effect. Potentilla extracts, especially at lower concentration, decreased IL-6 production in myofibroblasts but the level of the cytokine was found to be stable in epithelial cells. IL-10 analysis revealed that P. argentea, D. rupestris, P. erecta extracts decrease cytokine level in myofibroblasts, while only when higher concentration were applied, decreased cytokine level produced by epithelial cells was found. F-actin filaments staining revealed that Potentilla extracts significantly influence on cellular cytoskeleton organization. Potentilla extracts influence on cells of human colon wall lining modulating the main features of them (viability

  13. [Comparison of expression and antibacterial activities of recombinant porcine lactoferrin expressed in four Lactobacillus species].

    PubMed

    Yu, Hui; Jiang, Yanping; Cui, Wen; Wu, Xiao; He, Jia; Qiao, Xinyuan; Li, Yijing; Tang, Lijie

    2014-09-01

    The coding sequence for the mature peptide of porcine lactoferrin (Plf) was synthesized according to the codon usage of lactobacillus, to establish optimized porcine lactoferrin Lactobacillus expression system. The gene was ligated into the Xho I/BamH I site of Lactobacillus expression vector pPG612.1 and the recombinant plasmid pPG612.1-plf was transformed individually into Lactobacillus casei ATCC393, Lactobacillus pentosus KLDS1.0413, Lactobacillus plantarum KLDS1.0344 or Lactobacillus paracasei KLDS1.0652 by electroporation. After induction with xylose, expression of the recombinant proteins was detected by Western blotting and confocal laser scanning microscopy. Secretion of recombinant Plf proteins from four recombinant species was determined quantitatively by ELISA. The antibacterial activities of recombinant proteins were measured by agar diffusion method. The result shows that Plf was correctly expressed in four species of recombinant lactobacillus, with molecular weight of about 73 kDa. The expression levels in recombinant Lactobacillus casei, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus paracasei were 9.6 μg/mL, 10.8 μg/mL, 12.5 μg/mL and 9.9 μg/mL, respectively. Antimicrobial activity experiment shows that the recombinant proteins were active against E. coli, Staphylococcus aureus, Salmonella typhimurium, Listeria, Pasteurella. The recombinant Plf expressed by recombinant Lactobacillus plantarum showed the best antibacterial activity among all recombinant lactobacillus species. These data represent a basis for the development and application of porcine lactoferrin from recombinant lactobacillus. PMID:25720152

  14. Eley-Rideal surface chemistry: Direct reactivity of gas phase atomic hydrogen with adsorbed species

    SciTech Connect

    Weinberg, W.H.

    1996-10-01

    Selected examples of Eley-Rideal surface chemistry are presented in order to review this field. Reactions on Ru(100) only are considered. The specific examples employed are: (i) hydrogenation of oxygen atoms, (ii) hydrogenation of CO, (iii) formation of dihydrogen, and (iv) hydrogenation of formate. 80 refs., 8 figs.

  15. Emotions and BIS/BAS components affect brain activity (ERPs and fNIRS) in observing intra-species and inter-species interactions.

    PubMed

    Balconi, Michela; Vanutelli, Maria Elide

    2016-09-01

    Affective response to observation of intra-species and inter-species interactions was considered in the present research. The brain activity (optical imaging: functional Near-Infrared Spectroscopy, fNIRS; and event-related potentials, ERPs, N200) was monitored when subjects observed interactive situations (human-human, HH; human-animal, HA) with a positive (cooperative), negative (uncooperative) or neutral (no emotional) content. In addition, cortical lateralization (more left or right prefrontal activity) and personality component (Behavioral Activation System, BAS; Behavioral Inhibition System, BIS) effects were explored. Both ERP and fNIRS showed significant brain activity increasing in response to positive and negative compared with neutral interactions for HH and HA. However, some differences were found between HH (more "negative valence" effect) and HA (more "positive valence" effect). Finally BAS and BIS were related respectively to more left (positive conditions) or right (negative conditions) hemispheric activity. These results supported the significance of affective behavior differentiating the species-specific and species-aspecific relationships. PMID:26319406

  16. Acaricidal activity of five essential oils of Ocimum species on Rhipicephalus (Boophilus) microplus larvae.

    PubMed

    Hüe, T; Cauquil, L; Fokou, J B Hzounda; Dongmo, P M Jazet; Bakarnga-Via, I; Menut, C

    2015-01-01

    The aim of this study was to evaluate the acaricidal activity on the cattle tick Rhipicephalus (Boophilus) microplus of essential oils from three Ocimum species. Acaricidal activity of five essential oils extracted from Ocimum gratissimum L. (three samples), O. urticaefolium Roth, and O. canum Sims was evaluated on 14- to 21-day-old Rhipicephalus microplus tick larvae using larval packet test bioassay. These essential oils were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS) showing great variations of their chemical compositions according to the botanical species and even within the O. gratissimum species; the acaricidal activity of their main compounds was also evaluated. The essential oils of O. urticaefolium and O. gratissimum collected in Cameroon were the most efficient with respective LC50 values of 0.90 and 0.98%. The two essential oils obtained from O. gratissimum collected in New Caledonia were partially active at a dilution of 5% while the essential oil of O. canum collected in Cameroon showed no acaricidal activity. The chemical analysis shows five different profiles. Whereas the essential oils of O. urticaefolium from Cameroon and O. gratissimum from New Caledonia contain high amounts of eugenol (33.0 and 22.3-61.0%, respectively), 1,8-cineole was the main component of the oil of an O. canum sample from Cameroon (70.2%); the samples of O. gratissimum oils from New Caledonia are also characterized by their high content of (Z)-β-ocimene (17.1-49.8%) while the essential oil of O. gratissimum collected in Cameroon is mainly constituted by two p-menthane derivatives: thymol (30.5%) and γ-terpinene (33.0%). Moreover, the essential oil of O. urticaefolium showed the presence of elemicin (18.1%) as original compound. The tests achieved with the main compounds confirmed the acaricidal activity of eugenol and thymol with residual activity until 0.50 and 1%, respectively, and revealed the acaricidal property of elemicin

  17. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species.

    PubMed

    Cheng, Sen-Sung; Huang, Chin-Gi; Chen, Ying-Ju; Yu, Jane-Jane; Chen, Wei-June; Chang, Shang-Tzen

    2009-01-01

    In the current study, the mosquito larvicidal activity of leaf essential oils and their constituents from two eucalyptus species (Eucalyptus camaldulensis and Eucalyptus urophylla) against two mosquito species, Aedes aegypti and Aedes albopictus, was investigated. In addition, the chemical compositions of the leaf essential oils were analyzed using gas chromatography-mass spectrometry. Results from the larvicidal tests revealed that essential oil from the leaves of E. camaldulensis had an excellent inhibitory effect against both A. aegypti and A. albopictus larvae. The 12 pure constituents extracted from the two eucalyptus leaf essential oils were also tested individually against two mosquito larvae. Among the six effective constituents, alpha-terpinene exhibits the best larvicidal effect against both A. aegypti and A. albopictus larvae. Results of this study show that the leaf essential oil of E. camaldulensis and its effective constituents might be considered as a potent source for the production of fine natural larvicides. PMID:18396398

  18. Comparison of the Essential Oil Composition of Selected Impatiens Species and Its Antioxidant Activities.

    PubMed

    Szewczyk, Katarzyna; Kalemba, Danuta; Komsta, Łukasz; Nowak, Renata

    2016-01-01

    The present paper describes the chemical composition of the essential oils obtained by hydrodistillation from four Impatiens species, Impatiens glandulifera Royle, I. parviflora DC., I. balsamina L. and I. noli-tangere L. The GC and GC-MS methods resulted in identification of 226 volatile compounds comprising from 61.7%-88.2% of the total amount. The essential oils differed significantly in their composition. Fifteen compounds were shared among the essential oils of all investigated Impatiens species. The majority of these constituents was linalool (0.7%-15.1%), hexanal (0.2%-5.3%) and benzaldehyde (0.1%-10.2%). Moreover, the antioxidant activity of the essential oils was investigated using different methods. The chemical composition of the essential oils and its antioxidant evaluation are reported for the first time from the investigated taxon. PMID:27598111

  19. Interrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media.

    PubMed

    Rodríguez-López, Joaquín; Alpuche-Avilés, Mario A; Bard, Allen J

    2008-12-17

    We introduce a new in situ electrochemical technique based on the scanning electrochemical microscope (SECM) operating in a transient feedback mode for the detection and direct quantification of adsorbed species on the surface of electrodes. A SECM tip generates a titrant from a reversible redox mediator that reacts chemically with an electrogenerated or chemically adsorbed species at a substrate of about the same size as the tip, which is positioned at a short distance from it (ca.1 microm). The reaction between the titrant and the adsorbate provides a transient positive feedback loop until the adsorbate is consumed completely. The sensing mechanism is provided by the contrast between positive and negative feedback, which allows a direct quantification of the charge neutralized at the substrate. The proposed technique allows quantification of the adsorbed species generated at the substrate at a given potential under open circuit conditions, a feature not attainable with conventional electrochemical methods. Moreover, the feedback mode allows the tip to be both the titrant generator and detector, simplifying notably the experimental setup. The surface interrogation technique we introduce was tested for the quantification of electrogenerated oxides (adsorbed oxygen species) on gold and platinum electrodes at neutral pH in phosphate and TRIS buffers and with two different mediator systems. Good agreement is found with cyclic voltammetry at the substrate and with previous results in the literature, but we also find evidence for the formation of "incipient oxides" which are not revealed by conventional voltammetry. The mode of operation of the technique is supported by digital simulations, which show good agreement with the experimental results. PMID:19053403

  20. The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots

    PubMed Central

    Gomes, Bruno Ribeiro; Siqueira-Soares, Rita de Cássia; dos Santos, Wanderley Dantas; Marchiosi, Rogério; Soares, Anderson Ricardo; Ferrarese-Filho, Osvaldo

    2014-01-01

    In the current work, we investigated the effects of dopamine, an neurotransmitter found in several plant species on antioxidant enzyme activities and ROS in soybean (Glycine max L. Merrill) roots. The effects of dopamine on SOD, CAT and POD activities, as well as H2O2, O2•−, melanin contents and lipid peroxidation were evaluated. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM dopamine, in a growth chamber (25°C, 12 h photoperiod, irradiance of 280 μmol m−2 s−1) for 24 h. Significant increases in melanin content were observed. The levels of ROS and lipid peroxidation decreased at all concentrations of dopamine tested. The SOD activity increased significantly under the action of dopamine, while CT activity was inhibited and POD activity was unaffected. The results suggest a close relationship between a possible antioxidant activity of dopamine and melanin and activation of SOD, reducing the levels of ROS and damage on membranes of soybean roots. PMID:25482756

  1. NF-kappaB activation by reactive oxygen species: fifteen years later.

    PubMed

    Gloire, Geoffrey; Legrand-Poels, Sylvie; Piette, Jacques

    2006-11-30

    The transcription factor NF-kappaB plays a major role in coordinating innate and adaptative immunity, cellular proliferation, apoptosis and development. Since the discovery in 1991 that NF-kappaB may be activated by H(2)O(2), several laboratories have put a considerable effort into dissecting the molecular mechanisms underlying this activation. Whereas early studies revealed an atypical mechanism of activation, leading to IkappaBalpha Y42 phosphorylation independently of IkappaB kinase (IKK), recent findings suggest that H(2)O(2) activates NF-kappaB mainly through the classical IKK-dependent pathway. The molecular mechanisms leading to IKK activation are, however, cell-type specific and will be presented here. In this review, we also describe the effect of other ROS (HOCl and (1)O(2)) and reactive nitrogen species on NF-kappaB activation. Finally, we critically review the recent data highlighting the role of ROS in NF-kappaB activation by proinflammatory cytokines (TNF-alpha and IL-1beta) and lipopolysaccharide (LPS), two major components of innate immunity. PMID:16723122

  2. Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species

    PubMed Central

    Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

    2014-01-01

    The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph–mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

  3. Phytotoxic activity and chemical composition of aqueous volatile fractions from Eucalyptus species.

    PubMed

    Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

    2014-01-01

    The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph-mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

  4. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Arenas-Ríos, Edith; Rosado García, Adolfo; Cortés-Barberena, Edith; Königsberg, Mina; Arteaga-Silva, Marcela; Rodríguez-Tobón, Ahiezer; Fuentes-Mascorro, Gisela; León-Galván, Miguel Angel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage. PMID:26952757

  5. In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi.

    PubMed

    Kumar, Vinod; Mathela, C S; Tewari, A K; Bisht, K S

    2014-09-01

    Natural products have been in focus as alternative, effective and safe materials against the phytopathogens. Investigations show Nepeta oils as effective in controlling the food crops decay. The inhibitory effects of essential oils derived from Nepeta leucophylla, Nepeta ciliaris, Nepeta clarkei and Calamintha umbrosa against five phytopthogenic fungi have been determined. In vitro antifungal activity varied with their constituents and target species. More active being the oils containing oxygenated terpenoids. Helminthosporium maydis was sensitive to the all oils, IC50 values have 43.6-109.3 μg mL(-1). The N. leucophylla oil possessing oxygenated iridoids was more effective against H. maydis (IC50 value of 43.6 μg mL(-1)) while N. ciliaris was more active against Fusarium oxysporum (IC50 value of 219.2 μg mL(-1)). The oils were effective against the spore germination of all the tested plant pathogens. PMID:25175652

  6. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan

    NASA Astrophysics Data System (ADS)

    Haddadi, Azita; Hamdy, Samar; Ghotbi, Zahra; Samuel, John; Lavasanifar, Afsaneh

    2014-09-01

    Mannan (MN) is the natural ligand for mannose receptors, which are widely expressed on dendritic cells (DCs). The purpose of this study was to assess the effect of formulation parameters on the immunogenicity of MN-decorated poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to stimulate DC phenotypic as well as functional maturation. For this purpose, NPs were formulated from either ester-terminated or COOH-terminated PLGA. Incorporation of MN in NPs was achieved through encapsulation, physical adsorption or chemical conjugation. Murine bone marrow derived DCs (BMDCs) were treated with various NP formulations and assessed for their ability to up-regulate DC cell surface markers, secrete immunostimulatory cytokines and to activate allogenic T cell responses. DCs treated with COOH-terminated PLGA-NPs containing chemically conjugated MN (MN-Cov-COOH) have shown superior performance in improving DC biological functions, compared to the rest of the formulations tested. This may be attributed to the higher level of MN incorporation in the former formulation. Incorporation of MN in PLGA NPs through chemical conjugation can lead to enhanced DC maturation and stimulatory function. This strategy may be used to develop more effective PLGA-based vaccine formulations.

  7. Oxygen reduction reaction activity on Pt{111} surface alloys.

    PubMed

    Attard, Gary A; Brew, Ashley; Ye, Jin-Yu; Morgan, David; Sun, Shi-Gang

    2014-07-21

    PtM overlayers (where M=Fe, Co or Ni) supported on Pt{111} are prepared via thermal annealing in either a nitrogen/water or hydrogen ambient of dilute aqueous droplets containing M(Z+) cations directly attached to the electrode. Two different PtM phases are detected depending on the nature of the post-annealing cooling environment. The first of these consists of small (<20 nm), closely packed microcrystals comprised of a central metallic core and a shell (several monolayers thick) of mixed metal oxides/hydroxides. The second type of PtM phase is prepared by cooling in a stream of hydrogen gas. Although this second phase also consists of numerous microcrystals covering the Pt{111} electrode surface, these are both flatter than before and moreover are entirely metallic in character. A positive shift in the onset of PtM oxide formation correlates with increased activity towards the oxygen reduction reaction (ORR), which we ascribe to the greater availability of platinum metallic sites under ORR conditions. PMID:24986646

  8. Photoresponsive Self-Assembly of Surface Active Ionic Liquid.

    PubMed

    Wu, Aoli; Lu, Fei; Sun, Panpan; Gao, Xinpei; Shi, Lijuan; Zheng, Liqiang

    2016-08-16

    A novel photoresponsive surface active ionic liquid (SAIL) 1-(4-methyl azobenzene)-3-tetradecylimidazolium bromide ([C14mimAzo]Br) with azobenzene located in the headgroup was designed. Reversible vesicle formation and rupture can be finely controlled by photostimuli without any additives in the aqueous solution of the single-tailed ionic liquid. The photoisomerization of the azobenzene derivative was investigated by (1)H NMR and UV-vis spectroscopy. Density functional theory (DFT) calculations further demonstrate that trans-[C14mimAzo]Br has less negative interaction energy, which is beneficial to aggregate formation in water. The incorporation of trans-azobenzene group increases the hydrophobicity of the headgroup and reduces the electrostatic repulsion by delocalization of charge, which are beneficial to the formation of vesicles. However, the bend of cis-azobenzene makes the cis-isomers have no ability to accumulate tightly, which induces the rupture of vesicles. Our work paves a convenient way to achieve controlled topologies and self-assembly of single SAIL. PMID:27445115

  9. Phytochemical Composition, Antioxidant Activity and HPLC Fingerprinting Profiles of Three Pyrola Species from Different Regions

    PubMed Central

    Wang, Dongmei; He, Fengyuan; Lv, Zhenjiang; Li, Dengwu

    2014-01-01

    The present study was performed to investigate the variation of phytochemical composition, antioxidant activity and High Performance Liquid Chromatography (HPLC) fingerprinting profiles of three Pyrola species. Thirteen samples (eight P. decorata, three P. calliantha and two P. renifolia) were collected from different regions in China. The tannin, hyperoside and quercetin contents of all samples were determined by reverse-phase HPLC and varied within the range 9.77–34.75, 0.34–2.16 and 0.062–0.147 mg/g dry weigh, respectively. Total flavonoid content was evaluated and varied within the range 16.22–37.82 mg/g dry weight. Antioxidant activity was determined by DPPH assay, with IC50 ranging from 7.96 to 50.33 µg/ml, ABTS•+ and FRAP assay, within the range 612.66–1021.05 and 219.64–398.12 µmol equiv. Trolox/g, respectively. These results revealed that there were significant variations in phytochemical profiles and antioxidant activity among all samples. Due to the higher phytochemical content and significant antioxidant activity, P. calliantha was selected as the most valuable species, and the P. calliantha sample from Left banner of Alxa even possessed the strongest antioxidant activity among all the thirteen samples. Futhermore, Emei Mountain was proved to be the most suitable region for producing P. decorata. Moreover, in order to further evaluate the diversities and quality of Pyrola, HPLC fingerprint analysis coupled with hierarchical cluster and discrimination analyses were introduced to establish a simple, rapid and effective method for accurate identification, classification and quality assessment of Pyrola. Thirteen samples were divided into three groups consistent with their morphological classification. Two types of discriminant functions were generated and the ratio of discrimination was 100%. This method can identify different species of Pyrola and the same species from different regions of origin. Also, it can be used to compare and

  10. The role of beaded activated carbon's surface oxygen groups on irreversible adsorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-11-01

    The objective of this study is to determine the contribution of surface oxygen groups to irreversible adsorption (aka heel formation) during cyclic adsorption/regeneration of organic vapors commonly found in industrial systems, including vehicle-painting operations. For this purpose, three chemically modified activated carbon samples, including two oxygen-deficient (hydrogen-treated and heat-treated) and one oxygen-rich sample (nitric acid-treated) were prepared. The samples were tested for 5 adsorption/regeneration cycles using a mixture of nine organic compounds. For the different samples, mass balance cumulative heel was 14 and 20% higher for oxygen functionalized and hydrogen-treated samples, respectively, relative to heat-treated sample. Thermal analysis results showed heel formation due to physisorption for the oxygen-deficient samples, and weakened physisorption combined with chemisorption for the oxygen-rich sample. Chemisorption was attributed to consumption of surface oxygen groups by adsorbed species, resulting in formation of high boiling point oxidation byproducts or bonding between the adsorbates and the surface groups. Pore size distributions indicated that different pore sizes contributed to heel formation - narrow micropores (<7Å) in the oxygen-deficient samples and midsize micropores (7-12Å) in the oxygen-rich sample. The results from this study help explain the heel formation mechanism and how it relates to chemically tailored adsorbent materials. PMID:27295065

  11. Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species.

    PubMed

    Mothana, Ramzi A; Al-Rehaily, Adnan J; Schultze, Wulf

    2010-02-01

    The barks of two endemic Commiphora species namely, Commiphora ornifolia (Balf.f.) Gillett and Commiphora parvifolia Engl., were collected from Soqotra Island in Yemen and their essential oils were obtained by hydrodistillation. The chemical composition of both oils was investigated by GC and GC-MS. Moreover, the essential oils were evaluated for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and one yeast species by using a broth micro-dilution assay for minimum inhibitory concentrations (MIC) and for their antioxidant activity by measuring the DPPH radical scavenging activity. A total of 45 constituents of C. ornifolia (85.6%) and 44 constituents of C. parvifolia (87.1%) were identified. The oil of C. ornifolia was characterized by a high content of oxygenated monoterpenes (56.3%), of which camphor (27.3%), alpha-fenchol (15.5%), fenchone (4.4%) and borneol (2.9%) were identified as the main components. High contents of oxygenated sesquiterpenes (36.1%) and aliphatic acids (22.8%) were found in C. parvifolia oil, in which caryophyllene oxide (14.2%), beta-eudesmol (7.7%), bulnesol (5.7%), T-cadinol (3.7%) and hexadecanoic acid (18.4%) predominated. The results of the antimicrobial assay showed that both oils exhibited moderate to high antibacterial activity especially against Gram-positive bacteria. C. ornifolia oil was the most active. In addition, the DPPH-radical scavenging assay exhibited only weak antioxidant activities for both oils at the high concentration tested. PMID:20335939

  12. [Species-specific sera against surface antigens of Bacillus anthracis strains].

    PubMed

    Barkova, I A; Barkov, A M; Alekseev, V V; Lipnitskiĭ, A V

    2010-11-01

    The species-related specificity of sera against 94-KD proteins isolated from culture filtrates of B. anthracis strains with different levels of virulence plasmids was studied to determine whether they might be used to identify the pathogen of anthrax. Sera against fractions 1 of culture filtrates of B. anthracis strains CTI (pXO1+ pXO2-), 81/1TR (pXO1- pXO2-), Davies (pXO1- pXO) separated by gel chromatography on Sephacryl S-300 were examined. In the gel immunodiffusion test with growing cultures, the sera exhibited non-identical antigens and differed in the presence of antibodies to antigens of related bacilli. The sera against fractions 1 of culture filtrates of toxin-producing and plasmidless strains displayed antigens produced only by B. anthracis strains into nutrient agar. Electroimmunotransblotting revealed that they contained antibodies mainly to 94-kD proteins and failed to react with B. cereus proteins with a molecular weight of 94 kD and with B. thuringiensis proteins with a molecular weight of 97 kD, which were extracted from autonomous cells. In the immunofluorescence test, immunoglobulins of sera against fractions 1 of culture filtrates of three strains stained autonomous cells and spores of 23 B. anthracis strains with different levels of virulence plasmids. In working dilutions, they did not react with antigens of 18 strains of related bacilli, which presents a possibility of using them for species identification of B. anthracis. PMID:21319392

  13. Post-Spaceflight (STS-135) Mouse Splenocytes Demonstrate Altered Activation Properties and Surface Molecule Expression

    PubMed Central

    Crucian, Brian; Sams, Clarence

    2015-01-01

    Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135). Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes) had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under culture

  14. Surface Activation of Pt Nanoparticles Synthesised by “Hot Injection” in the Presence of Oleylamine

    PubMed Central

    Humphrey, Jo J L; Sadasivan, Sajanikumari; Plana, Daniela; Celorrio, Verónica; Tooze, Robert A; Fermín, David J

    2015-01-01

    Oleylamine (OA) based “hot injection” colloidal synthesis offers a versatile approach to the synthesis of highly monodisperse metallic and multi-metallic alloyed nanostructures in the absence of potentially toxic and unstable phosphine compounds. For application in heterogeneous catalysis and electrocatalysis, the adsorbed OA species at the metal surfaces should be effectively removed without compromising the structure and composition of the nanostructures. Herein, we investigate the removal of OA from colloidal Pt nanoparticles through 1) “chemical methods” such as washing in acetic acid or ethanol, and ligand exchange with pyridine; and 2) thermal pre-treatment between 185 and 400 °C in air, H2 or Ar atmospheres. The electrochemical reactivity of Pt nanoparticles is acutely affected by the presence of surface organic impurities, making this material ideal for monitoring the effectiveness of OA removal. The results showed that thermal treatment in Ar at temperatures above 400 °C provides highly active particles, with reactivity comparable to the benchmark commercial catalyst, Pt/ETEK. The mechanism involved in thermal desorption of OA was also investigated by thermogravimetric analysis coupled to mass spectrometry (TGA-MS). Oxidation of HCOOH and adsorbed CO in acidic solution were used as test reactions to assess the Pt electrocatalytic activity. PMID:26201954

  15. Analysis of the relationship between H{sub 2}S removal capacity and surface properties of unimpregnated activated carbons

    SciTech Connect

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    2000-02-15

    The H{sub 2}S breakthrough capacity was measured on two series of activated carbons of a coconut shell and a bituminous coal origins. To broaden the spectrum of surface features the samples were oxidized using nitric acid or ammonium persulfate under conditions chosen to preserve their pore structures. Then the carbons were characterized using Boehm titration, potentiometric titration, thermal analysis, temperature programmed desorption, sorption of nitrogen, and sorption of water. It was found that the choice of unimpregnated carbon for application as H{sub 2}S adsorbent should be made based on parameters of its acidity such as number of acidic groups, pH of surface, amount of surface groups oxygen, or weight loss associated to decomposition of surface oxygen species. The results obtained from the analyses of six unimpregnated carbon samples suggest that there are certain threshold values of these quantities which, when exceeded, have a dramatic effect on the H{sub 2}S breakthrough capacity.

  16. A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi.

    PubMed

    Lu, Xiuhua; Zhou, Bin; Xu, Lili; Liu, Lin; Wang, Gangyuan; Liu, Xiaodong; Tang, Xuexi

    2016-06-01

    The aim of the present study was to obtain a marine bacterium active against Karenia mikimotoi from the East China Sea and to characterize its extracellular algicidal substances. Using preparative high-performance liquid chromatography (prep-HPLC) and electrospray ionization/quadrupole-time of flight mass spectrometer coupled with a high-performance liquid chromatography (LC/MS-Q-TOF) system, we purified the alga-lysing substance produced by strain ZR-2 and determined its molecular structure. Based on morphology and l6S ribosomal DNA (rDNA) sequence analysis, the ZR-2 strain was highly homologous to Thalassospira species. Algicidal activity against K. mikimotoi was detected in the cell-free filtrate but not in bacterial cells. The alga-lysing substance produced by ZR-2 was ethanol-soluble and thermostable, with a retention time of 6.3 min and a measured elemental composition of C7H5O2 ([M-H](-) ion at m/z 121.0295). The alga-lysing substance produced by ZR-2 was determined to be benzoic acid. Compared with the negative control, both purified ZR-2 bacteria-free filtrate and standard benzoic acid promoted K. mikimotoi cell disruption and induced K. mikimotoi cell content leakage. Our study is the first to report benzoic acid activity against K. mikimotoi as well as production of benzoic acid by a Thalassospira species. PMID:26846742

  17. Polyphenol contents and antioxidant activities of five Indigofera species (Fabaceae) from Burkina Faso.

    PubMed

    Bakasso, S; Lamien-Meda, A; Lamien, C E; Kiendrebeogo, M; Millogo, J; Ouedraogo, A G; Nacoulma, O G

    2008-06-01

    Aqueous acetone extracts prepared from five Indigofera species of Burkina Faso, namely Indigofera colutea (Burm.) Murril., I. macrocalyx Guilld et Perr., I. nigritana Hook f., I. pulchra willd. and I. tinctoria L., were investigated for their phytochemical composition and their antioxidant activities. Standard methods and TLC were used to screen the phytochemical composition. The total phenolic and flavonoid content of extracts were assessed by Folin-Ciocalteu and AlCl3 methods, respectively. These extracts were also evaluated for their antioxidant potentials using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) assays. Flavonoids, saponins, quinones, sterols/triterpenes and tannins were present in all these species except for I. pulchra where quinones were not found. Gallic acid, caffeic acid, rutin and myricetin in I. colutea; gallic acid, quercitrin, myricetin in I. tinctoria; galangin and myricetin in I. macrocalyx were identified by thin layer chromatography. Among these, I. colutea, I. tinctoria, I. nigritana and I. macrocalyx, which had the highest phenolic content, were also found to possess the best antioxidant activities. The results indicated a good correlation between antioxidant activities and total phenolic content (p<0.05 for FRAP/DPPH and DPPH/ABTS and p<0.01 for FRAP/ABTS). These plants represent promising sources of natural antioxidants and these findings give scientific bases to their ethnopharmacological uses. PMID:18817242

  18. Cytotoxic activity of Alpinia murdochii Ridl.: A mountain ginger species from Peninsular Malaysia

    PubMed Central

    Sim, Kae Shin; Ibrahim, Halijah; Malek, Sri Nurestri Abdul; Syamsir, Devi Rosmy; Awang, Khalijah

    2014-01-01

    Background: Alpinia murdochii (Zingiberaceae) is a wild ginger species restricted to mountain areas of Peninsular Malaysia. Due to rapid development and deforestation activities, this species is becoming rare. This is the first report of the cytotoxic activity of A. murdochii. Objective: The present study aimed to investigate the cytotoxic effect of leaves and rhizomes of A. murdochii against selected human cancer cell lines by using in vitro cytotoxicity assay. Materials and Methods: The leaves and rhizomes of A. murdochii were extracted in hexane, dichloromethane (CH2Cl2), and methanol (MeOH) prior to cytotoxic activity assessment against selected human cancer cell lines, namely MCF7 (hormone dependent breast carcinoma cell line), HT29 (colon carcinoma cell line), and SKOV-3 (ovarian cancer cell line) by using in vitro neutral red cytotoxicity assay. Results: The hexane and CH2Cl2 extracts of both leaves and rhizomes exhibited remarkable cytotoxic effect against SKOV-3 cells with the IC50 values in the range of 5.2-16.7 μg/ml. Conclusion: Based on the preliminary data obtained in the present study, the leaves and rhizomes of A. murdochii may be viable therapeutic or preventive candidates for the treatment of ovarian cancer. PMID:24695515

  19. Anti-Candida activity of Quercus infectoria gall extracts against Candida species

    PubMed Central

    Baharuddin, Nur Saeida; Abdullah, Hasmah; Abdul Wahab, Wan Nor Amilah Wan

    2015-01-01

    Background: Galls of Quercus infectoria have been traditionally used to treat common ailments, including yeast infections caused by Candida species. Objective: This study aimed to evaluate the in vitro anti-Candida activity of Q. infectoria gall extracts against selected Candida species. Materials and Methods: Methanol and aqueous extracts of Q. infectoria galls were tested for anti-Candida activity against Candida albicans, Candida krusei, Candida glabrata, Candida parapsilosis and Candida tropicalis. The minimum inhibitory concentrations were determined using the two-fold serial dilution technique of concentrations ranging from 16 mg/ml to 0.03 mg/ml. After 24 h, the minimum fungicidal concentrations were determined by subculturing the wells, which showed no turbidity on the agar plate. Potential phytochemical group in the crude extracts was screened by phytochemical qualitative tests and subsequently subjected to the gas chromatography-mass spectrometry analysis. Results: Both methanol and aqueous extracts displayed substantial anti-Candida activity and pyrogallol was the major component of both crude extracts. Conclusions: Data from current study suggested that Q. infectoria gall extracts are a potential source to be developed as anti-candidiasis. PMID:25709331

  20. Studies on the inactivation of medically important Candida species on agar surfaces using pulsed light.

    PubMed

    Farrell, Hugh; Garvey, Mary; Rowan, Neil

    2009-09-01

    Development of a pulsed-light (PL) approach to inanimate surface decontamination is timely, as the incidence of yeast-related infections in healthcare remains unacceptably high. Critical electrical and biological factors governing the efficacy of PL for the in vitro inactivation of medically important yeast were established in this study. Predetermined cell numbers of yeast were inoculated separately on agar plates and were flashed with < or =90 pulses of broad-spectrum light under varying operating conditions, and their inactivation was measured. Significant differences in inactivation among different yeasts occurred depending on the intensity of the applied lamp discharge energy and the amount of pulsing applied. Levels of yeast sensitivity also varied depending on the distance between the light source and the treatment surface used, and the population size, type and age of cultures treated. Yeast strains were shown to be significantly more resistant to PL irradiation compared with similarly treated bacterial control cultures. A clear relationship was observed between the concentration of eluted proteins from treated yeast and the severity of PL conditions, with scanning electron micrographs showing irreversible cellular damage. Therefore, the findings from this study will enable further development and optimization of PL as a method of decontaminating surfaces in healthcare setting. PMID:19624750

  1. Elevated Nitrogen Deposition from Alberta Oil Sands Development Stimulates Phosphatase Activity in Dominant Sphagnum Moss Species

    NASA Astrophysics Data System (ADS)

    Kashi, N. N.; Wieder, R.; Vile, M. A.

    2013-12-01

    Emissions of NOx associated with Alberta oil sands (AOS) development are leading to locally elevated atmospheric N deposition, in a region where background N deposition has been historically quite low (< 1 kg/ha/yr). This elevated N deposition has the potential to alter the ecosystem structure and function of nutrient-poor boreal peatlands. Nitrogen enrichment may alter soil microbial activity, which could be manifested in changes in extracellular enzyme activities. Since 2011, we have been experimentally adding N as NH4NO3 in simulated precipitation at 0, 5, 10, 15, 20, and 25 kg N ha/yr/ plus no-water controls to a boreal bog and a poor fen (3 replicate plots per treatment). In 2013, acid phosphatase activities in living plant capitulum of Sphagnum angustifolium, Sphagnum fuscum, and Sphagnum magellanicum were quantified in June and July using 4-methyumbelliferylphosphate and fluorescence detection of the enzymatically released methylumbelliferone (MUF). Phosphatase activities did not differ with N treatment for S. angustifolium in the bog (p=0.3409) or the poor fen (p=0.0629), or for S. fuscum in the bog (p=0.1950), averaging 35.0 × 0.7, 61.6 × 1.2, and 41.6 × 0.9 μmol MUF/g DWT/hr, respectively. For S. fuscum in the poor fen, phosphatase activities differed between N treatments (p=0.0275), ranging 40.6 × 1.1 μmol MUF/g DWT/hr in the control plots to 73.7 × 2.0 μmol MUF/g DWT/hr in the 5 kg/ha/yr N treatment plots; increasing N deposition did not result in a gradual change in enzyme activity. On the other hand, S. magellanicum phosphatase activities differed between N treatments (p=0.0189) and showed a pattern of generally increasing activity with increasing N deposition (37.4 × 0.5 μmol MUF/g DWT/hr in control plots; 97.9 × 4.5 μmol MUF/g DWT/hr in the 25 kg/ha/yr N treatment plots). The differing phosphatase responses between these dominant Sphagnum species suggest unique differences in nutrient balance and/or microbial activity. Combining the

  2. The influence of subgrid surface-layer variability on vertical transport of a chemical species in a convective environment

    NASA Astrophysics Data System (ADS)

    Devine, G. M.; Carslaw, K. S.; Parker, D. J.; Petch, J. C.

    2006-08-01

    We use a 2-D cloud-resolving model over a 256 km domain to examine the influence of subgrid-scale processes on the concentration and vertical transport of a chemical species (dimethyl sulphide, or DMS) in a deep convective marine environment. Two issues are highlighted. Firstly, deriving fluxes using a spatially averaged surface wind representative of a global model reduces the domain-mean DMS concentration by approximately 50%. Emission of DMS from the surface is greater in the CRM because it resolves the localized intense winds embedded in the dynamical structure of convective systems. Secondly, we find that the spatial pattern of DMS concentration in the boundary layer is positively correlated with the pattern of convective updraughts. Using a mean concentration field reduces transport to the upper troposphere by more than 50%. The explanation is that secondary convection occurs preferentially on the edges of cold pools, where DMS concentrations are higher than the domain mean.