Science.gov

Sample records for active switching elements

  1. Sun-tracking optical element realized using thermally activated transparency-switching material.

    PubMed

    Apostoleris, Harry; Stefancich, Marco; Lilliu, Samuele; Chiesa, Matteo

    2015-07-27

    We present a proof of concept demonstration of a novel optical element: a light-responsive aperture that can track a moving light beam. The element is created using a thermally-activated transparency-switching material composed of paraffin wax and polydimethylsiloxane (PDMS). Illumination of the material with a focused beam causes the formation of a localized transparency at the focal spot location, due to local heating caused by absorption of a portion of the incident light. An application is proposed in a new design for a self-tracking solar collector. PMID:26367692

  2. Developmental Switch in the Transcriptional Activity of a Long-Range Regulatory Element

    PubMed Central

    Braikia, Fatima-Zohra; Conte, Caroline; Moutahir, Mohamed; Denizot, Yves; Cogné, Michel

    2015-01-01

    Eukaryotic gene expression is often controlled by distant regulatory elements. In developing B lymphocytes, transcription is associated with V(D)J recombination at immunoglobulin loci. This process is regulated by remote cis-acting elements. At the immunoglobulin heavy chain (IgH) locus, the 3′ regulatory region (3′RR) promotes transcription in mature B cells. This led to the notion that the 3′RR orchestrates the IgH locus activity at late stages of B cell maturation only. However, long-range interactions involving the 3′RR were detected in early B cells, but the functional consequences of these interactions were unknown. Here we show that not only does the 3′RR affect transcription at distant sites within the IgH variable region but also it conveys a transcriptional silencing activity on both sense and antisense transcription. The 3′RR-mediated silencing activity is switched off upon completion of VH-DJH recombination. Our findings reveal a developmentally controlled, stage-dependent shift in the transcriptional activity of a master regulatory element. PMID:26195822

  3. Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements

    PubMed Central

    Erokhin, Maksim; Elizar’ev, Pavel; Parshikov, Aleksander; Schedl, Paul; Georgiev, Pavel; Chetverina, Darya

    2015-01-01

    In Drosophila, Polycomb (PcG) and Trithorax (TrxG) group proteins are assembled on Polycomb response elements (PREs) to maintain tissue and stage-specific patterns of gene expression. Critical to coordinating gene expression with the process of differentiation, the activity of PREs can be switched “on” and “off.” When on, the PRE imposes a silenced state on the genes in the same domain that is stably inherited through multiple rounds of cell division. When the PRE is switched off, the domain is in a state permissive for gene expression that can be stably inherited. Previous studies have suggested that a burst of transcription through a PRE sequence displaces PcG proteins and provides a universal mechanism for inducing a heritable switch in PRE activity from on to off; however, the evidence favoring this model is indirect. Here, we have directly tested the transcriptional read-through mechanism. Contrary to previous suggestions, we show that transcription through the PRE is not sufficient for inducing an epigenetic switch in PRE activity. In fact, even high levels of continuous transcription through a PRE fails to dislodge the PcG proteins, nor does it remove repressive histone marks. Our results indicate that other mechanisms involving adjacent DNA regulatory elements must be implicated in heritable switch of PRE activity. PMID:26504232

  4. Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity.

    PubMed

    Weigand, Julia E; Schmidtke, Sina R; Will, Tristan J; Duchardt-Ferner, Elke; Hammann, Christian; Wöhnert, Jens; Suess, Beatrix

    2011-04-01

    While many different RNA aptamers have been identified that bind to a plethora of small molecules only very few are capable of acting as engineered riboswitches. Even for aptamers binding the same ligand large differences in their regulatory potential were observed. We address here the molecular basis for these differences by using a set of unrelated neomycin-binding aptamers. UV melting analyses showed that regulating aptamers are thermally stabilized to a significantly higher degree upon ligand binding than inactive ones. Regulating aptamers show high ligand-binding affinity in the low nanomolar range which is necessary but not sufficient for regulation. NMR data showed that a destabilized, open ground state accompanied by extensive structural changes upon ligand binding is important for regulation. In contrast, inactive aptamers are already pre-formed in the absence of the ligand. By a combination of genetic, biochemical and structural analyses, we identified a switching element responsible for destabilizing the ligand free state without compromising the bound form. Our results explain for the first time the molecular mechanism of an engineered riboswitch. PMID:21149263

  5. A CW Gunn Diode Switching Element.

    ERIC Educational Resources Information Center

    Hurtado, Marco; Rosenbaum, Fred J.

    As part of a study of the application of communication satellites to educational development, certain technical aspects of such a system were examined. A current controlled bistable switching element using a CW Gunn diode is reported on here. With modest circuits switching rates of the order of 10 MHz have been obtained. Switching is initiated by…

  6. Granular acoustic switches and logic elements

    NASA Astrophysics Data System (ADS)

    Li, Feng; Anzel, Paul; Yang, Jinkyu; Kevrekidis, Panayotis G.; Daraio, Chiara

    2014-10-01

    Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

  7. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase.

    PubMed

    Wuerffel, Robert; Wang, Lili; Grigera, Fernando; Manis, John; Selsing, Erik; Perlot, Thomas; Alt, Frederick W; Cogne, Michel; Pinaud, Eric; Kenter, Amy L

    2007-11-01

    Molecular mechanisms underlying synapsis of activation-induced deaminase (AID)-targeted S regions during class switch recombination (CSR) are poorly understood. By using chromosome conformation capture techniques, we found that in B cells, the Emicro and 3'Ealpha enhancers were in close spatial proximity, forming a unique chromosomal loop configuration. B cell activation led to recruitment of the germline transcript (GLT) promoters to the Emicro:3'Ealpha complex in a cytokine-dependent fashion. This structure facilitated S-S synapsis because Smicro was proximal to Emicro and a downstream S region was corecruited with the targeted GLT promoter to Emicro:3'Ealpha. We propose that GLT promoter association with the Emicro:3'Ealpha complex creates an architectural scaffolding that promotes S-S synapsis during CSR and that these interactions are stabilized by AID. Thus, the S-S synaptosome is formed as a result of the self-organizing transcription system that regulates GLT expression and may serve to guard against spurious chromosomal translocations.

  8. Sub-terahertz microsecond optically controlled switch with GaAs active element beyond the photoelectric threshold

    NASA Astrophysics Data System (ADS)

    Kulygin, M.; Denisov, G.; Vlasova, K.; Andreev, N.; Shubin, S.; Salahetdinov, S.

    2016-01-01

    We study an unusual working regime of a recently developed sub-terahertz microwave cavity-based switch. The resonator cavity includes a semiconductor plate which is illuminated by laser emission beyond the photoelectric threshold. Despite a significant change to the conventional process of photoelectric effect we have found that the switch works. Typical switching performance rate is about 1 μs for the regime. A process of carrier density relaxation beyond the photoelectric threshold is discussed. An idea of diagnostic method for the semiconductor's quality is proposed.

  9. Sub-terahertz microsecond optically controlled switch with GaAs active element beyond the photoelectric threshold.

    PubMed

    Kulygin, M; Denisov, G; Vlasova, K; Andreev, N; Shubin, S; Salahetdinov, S

    2016-01-01

    We study an unusual working regime of a recently developed sub-terahertz microwave cavity-based switch. The resonator cavity includes a semiconductor plate which is illuminated by laser emission beyond the photoelectric threshold. Despite a significant change to the conventional process of photoelectric effect we have found that the switch works. Typical switching performance rate is about 1 μs for the regime. A process of carrier density relaxation beyond the photoelectric threshold is discussed. An idea of diagnostic method for the semiconductor's quality is proposed.

  10. Sub-terahertz microsecond optically controlled switch with GaAs active element beyond the photoelectric threshold.

    PubMed

    Kulygin, M; Denisov, G; Vlasova, K; Andreev, N; Shubin, S; Salahetdinov, S

    2016-01-01

    We study an unusual working regime of a recently developed sub-terahertz microwave cavity-based switch. The resonator cavity includes a semiconductor plate which is illuminated by laser emission beyond the photoelectric threshold. Despite a significant change to the conventional process of photoelectric effect we have found that the switch works. Typical switching performance rate is about 1 μs for the regime. A process of carrier density relaxation beyond the photoelectric threshold is discussed. An idea of diagnostic method for the semiconductor's quality is proposed. PMID:26827338

  11. Neutron activated switch

    DOEpatents

    Barton, David M.

    1991-01-01

    A switch for reacting quickly to a neutron emission. A rod consisting of fissionable material is located inside a vacuum tight body. An adjustable contact is located coaxially at an adjustable distance from one end of the rod. Electrical leads are connected to the rod and to the adjustable contact. With a vacuum drawn inside the body, a neutron bombardment striking the rod causes it to heat and expand longitudinally until it comes into contact with the adjustable contact. This circuit closing occurs within a period of a few microseconds.

  12. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element

    PubMed Central

    Trupke, Johanna; Okulski, Helena; Altmutter, Christina; Ruge, Frank; Boidol, Bernd; Kubicek, Stefan; Schmauss, Gerald; Aumayr, Karin; Ruf, Marius; Pospisilik, Andrew; Dimond, Andrew; Senergin, Hasene Basak; Vargas, Marcus L.; Simon, Jeffrey A.; Ringrose, Leonie

    2014-01-01

    Polycomb/Trithorax response elements (PRE/TREs) can switch their function reversibly between silencing and activation, by mechanisms that are poorly understood. Here we show that a switch in forward and reverse noncoding transcription from the Drosophila vestigial (vg) PRE/TRE switches the status of the element between silencing (induced by the forward strand) and activation (induced by the reverse strand). In vitro, both ncRNAs inhibit PRC2 histone methyltransferase activity, but in vivo only the reverse strand binds PRC2. Over-expression of the reverse strand evicts PRC2 from chromatin and inhibits its enzymatic activity. We propose that interactions of RNAs with PRC2 are differentially regulated in vivo, allowing regulated inhibition of local PRC2 activity. Genome-wide analysis shows that strand switching of ncRNAs occurs at several hundred PcG binding sites in fly and vertebrate genomes. This work identifies a novel and potentially widespread class of PRE/TREs that switch function by switching the direction of ncRNA transcription. PMID:25108384

  13. Active element pattern

    NASA Astrophysics Data System (ADS)

    Pozar, D. M.

    1994-08-01

    This review article will discuss the use of the active element pattern for prediction of the scan performance of large phased array antennas. The introduction and application of the concept of the active element pattern goes back at least 30 years (1) -(6) , but the subject is generally not covered in modern antenna engineering textbooks or handbooks, and many contemporary workers are unfamiliar with this simple but powerful idea. In addition, early references on this subject do not provide a rigorous discussion or derivation of the active element pattern, relying instead on a more qualitative interpretation. The purpose of this communication is to make the technique of active element patterns more accessible to antenna engineers, and to provide a new derivation of the basic active element pattern relations in terms of scattering parameters.

  14. Electrochemical Activation of Engineered Protein Switches

    PubMed Central

    Choi, Jay H.; Zayats, Maya; Searson, Peter C.; Ostermeier, Marc

    2016-01-01

    Engineered protein switches have a large dynamic range, high specificity for the activating ligand, and a modular architecture, and have been explored for a wide range of applications including biosensors and therapeutics. The ability to externally control switch function is important in extending applications for protein switches. We recently demonstrated that the on/off state could be controlled by the redox state of disulfide bonds introduced into the switches at select locations. Here, we demonstrate that an electrochemical signal can be used as an exogenous input to control switch function via reduction of the engineered disulfide bonds. This study suggests that disulfide-containing protein switch is a potentially useful platform for bioelectronic sensors with remote control of the sensing ability. PMID:26241391

  15. Electron-beam activated GaAs-switches

    SciTech Connect

    Kirkman, G.; Hur, J.; Jiang, B.; Reinhardt, N.; Allen, R.J.; Schoenbach, K.H.

    1994-12-31

    Electron-beam excitation allows the authors to modulate the conductance of wide-gap semi-insulating semiconductors over a wide range and to use them as variable resistors and as high power switches. The penetration depth of electrons, the electron range, was computed by means of a Monte-Carlo code. For electron energies of 30 keV, it is approximately 2 micrometers. In order to activate the switch material over a larger depth, the switch material, semi-insulating GaAs, was doped over a thickness corresponding to the electron range with zinc, which form shallow acceptors in GaAs. The Zn layers serves as an efficient source of cathodoluminescence, transforming the electron energy into photon energy and therefore converting the electron-beam activated switch into a photoconductive one. Experiments with 2 mm semi-insulating GaAs-switches with p-doped cathode layer have been performed where the electron beam was injected through one of the metal contacts which were placed on either face of the GaAs wafer. The 500 ns electron beam has electron energies of up to 30 keV and current densities of several A/cm{sup 2}. The results show that electron-beam controlled GaAs switches can be safely operated at switch voltages of several kV`s and current densities of 50 A/cm{sup 2} with low energy electron-beams as control elements.

  16. Laser activated diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    The invention is a gas mixture for a diffuse discharge switch which is capable of changing from a conducting state to an insulating state in the presence of electrons upon the introduction of laser light. The mixture is composed of a buffer gas such as nitrogen or argon and an electron attaching gas such as C.sub.6 H.sub.5 SH, C.sub.6 H.sub.5 SCH.sub.3, CH.sub.3 CHO and CF.sub.3 CHO wherein the electron attachment is brought on by indirect excitation of molecules to long-lived states by exposure to laser light.

  17. Design of a 2*2 fault-tolerant switching element

    SciTech Connect

    Woei Lin; Chuan-lin Wu

    1982-01-01

    The architecture of a 2*2 fault-tolerant switching element which can be used to modularly construct interconnection networks for multiprocessing and local computer networking is described. The switching element uses distributed control and circuit switching. Its good gate-to-pin ratio can facilitate VLSI implementation. 18 references.

  18. Holographic perfect shuffle permutation element for a miniaturized switching network

    NASA Astrophysics Data System (ADS)

    Kobolla, H.; Schmidt, J.; Gluch, E.; Schwider, J.

    1995-06-01

    A holographic perfect shuffle element with 80 channels for a miniaturized switching network is reported. An array of vertical-cavity, surface-emitting lasers is used as a transmitter. The whole permutation is carried out totally in glass. The 80 channels are permuted within a rectangle with a volume of 3 mm \\times 4 mm \\times 2 mm. Four planes of stacked volume holograms recorded in dichromated gelatin form this perfect shuffle element with an angular spectrum between 7 deg and 35 deg. Changes in the wavelength of the diode lasers to Delta lambda = +/-10 nm can be compensated with this setup. The overall efficiency per channel lies between 40% and 60%. When Fresnel reflections and absorption are taken into account, a transmission per hologram between 78% and 90% is achieved.

  19. Active plasmonics in WDM traffic switching applications.

    PubMed

    Papaioannou, Sotirios; Kalavrouziotis, Dimitrios; Vyrsokinos, Konstantinos; Weeber, Jean-Claude; Hassan, Karim; Markey, Laurent; Dereux, Alain; Kumar, Ashwani; Bozhevolnyi, Sergey I; Baus, Matthias; Tekin, Tolga; Apostolopoulos, Dimitrios; Avramopoulos, Hercules; Pleros, Nikos

    2012-01-01

    With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4×10 Gb/s low-power and fast switching operation. The demonstration of the WDM-enabling characteristics of active plasmonic circuits with an ultra-low power × response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted.

  20. Active plasmonics in WDM traffic switching applications

    PubMed Central

    Papaioannou, Sotirios; Kalavrouziotis, Dimitrios; Vyrsokinos, Konstantinos; Weeber, Jean-Claude; Hassan, Karim; Markey, Laurent; Dereux, Alain; Kumar, Ashwani; Bozhevolnyi, Sergey I.; Baus, Matthias; Tekin, Tolga; Apostolopoulos, Dimitrios; Avramopoulos, Hercules; Pleros, Nikos

    2012-01-01

    With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a “naturally” energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4×10 Gb/s low-power and fast switching operation. The demonstration of the WDM-enabling characteristics of active plasmonic circuits with an ultra-low power × response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted. PMID:22973502

  1. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression.

    PubMed

    Jones, Bart G; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Neale, Geoff; Gearhart, Patricia J; Hurwitz, Julia L

    2016-09-01

    Females and males differ in antibody isotype expression patterns and in immune responses to foreign- and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of estrogen response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα-specific antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the JH cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3' regulatory region (3'RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may directly influence antibody expression and class switch recombination (CSR). Our hypothesis encourages the conduct of new experiments to evaluate the consequences of ER binding. A better understanding of ER:DNA interactions in the immunoglobulin heavy chain locus, and respective mechanisms, may ultimately translate to better control of antibody expression, better protection against pathogens, and prevention of pathologies caused by auto-immune disease. PMID:27494228

  2. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression.

    PubMed

    Jones, Bart G; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Neale, Geoff; Gearhart, Patricia J; Hurwitz, Julia L

    2016-09-01

    Females and males differ in antibody isotype expression patterns and in immune responses to foreign- and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of estrogen response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα-specific antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the JH cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3' regulatory region (3'RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may directly influence antibody expression and class switch recombination (CSR). Our hypothesis encourages the conduct of new experiments to evaluate the consequences of ER binding. A better understanding of ER:DNA interactions in the immunoglobulin heavy chain locus, and respective mechanisms, may ultimately translate to better control of antibody expression, better protection against pathogens, and prevention of pathologies caused by auto-immune disease.

  3. Visible-Light-Activated Molecular Switches.

    PubMed

    Bléger, David; Hecht, Stefan

    2015-09-21

    The ability to influence key properties of molecular systems by using light holds much promise for the fields of materials science and life sciences. The cornerstone of such systems is molecules that are able to reversibly photoisomerize between two states, commonly referred to as photoswitches. One serious restriction to the development of functional photodynamic systems is the necessity to trigger switching in at least one direction by UV light, which is often damaging and penetrates only partially through most media. This review provides a summary of the different conceptual strategies for addressing molecular switches in the visible and near-infrared regions of the optical spectrum. Such visible-light-activated molecular switches tremendously extend the scope of photoswitchable systems for future applications and technologies.

  4. Brain Activation of Identity Switching in Multiple Identity Tracking Task.

    PubMed

    Lyu, Chuang; Hu, Siyuan; Wei, Liuqing; Zhang, Xuemin; Talhelm, Thomas

    2015-01-01

    When different objects switch identities in the multiple identity tracking (MIT) task, viewers need to rebind objects' identity and location, which requires attention. This rebinding helps people identify the regions targets are in (where they need to focus their attention) and inhibit unimportant regions (where distractors are). This study investigated the processing of attentional tracking after identity switching in an adapted MIT task. This experiment used three identity-switching conditions: a target-switching condition (where the target objects switched identities), a distractor-switching condition (where the distractor objects switched identities), and a no-switching condition. Compared to the distractor-switching condition, the target-switching condition elicited greater activation in the frontal eye fields (FEF), intraparietal sulcus (IPS), and visual cortex. Compared to the no-switching condition, the target-switching condition elicited greater activation in the FEF, inferior frontal gyrus (pars orbitalis) (IFG-Orb), IPS, visual cortex, middle temporal lobule, and anterior cingulate cortex. Finally, the distractor-switching condition showed greater activation in the IFG-Orb compared to the no-switching condition. These results suggest that, in the target-switching condition, the FEF and IPS (the dorsal attention network) might be involved in goal-driven attention to targets during attentional tracking. In addition, in the distractor-switching condition, the activation of the IFG-Orb may indicate salient change that pulls attention away automatically.

  5. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch.

    PubMed

    Rank, Gerhard; Prestel, Matthias; Paro, Renato

    2002-11-01

    The proteins of the trithorax and Polycomb groups maintain the differential expression pattern of homeotic genes established by the early embryonic patterning system during development. These proteins generate stable and heritable chromatin structures by acting via particular chromosomal memory elements. We established a transgenic assay system showing that the Polycomb group response elements bxd and Mcp confer epigenetic inheritance throughout development. With previously published data for the Fab7 cellular memory module, we confirmed the cellular memory function of Polycomb group response elements. In Drosophila melanogaster, several of these memory elements are located in the large intergenic regulatory regions of the homeotic bithorax complex. Using a transgene assay, we showed that transcription through a memory element correlated with the relief of silencing imposed by the Polycomb group proteins and established an epigenetically heritable active chromatin mode. A memory element remodeled by the process of transcription was able to maintain active expression of a reporter gene throughout development. Thus, transcription appears to reset and change epigenetic marks at chromosomal memory elements regulated by the Polycomb and trithorax proteins. Interestingly, in the bithorax complex of D. melanogaster, the segment-specific expression of noncoding intergenic transcripts during embryogenesis seems to fulfill this switching role for memory elements regulating the homeotic genes. PMID:12391168

  6. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch.

    PubMed

    Rank, Gerhard; Prestel, Matthias; Paro, Renato

    2002-11-01

    The proteins of the trithorax and Polycomb groups maintain the differential expression pattern of homeotic genes established by the early embryonic patterning system during development. These proteins generate stable and heritable chromatin structures by acting via particular chromosomal memory elements. We established a transgenic assay system showing that the Polycomb group response elements bxd and Mcp confer epigenetic inheritance throughout development. With previously published data for the Fab7 cellular memory module, we confirmed the cellular memory function of Polycomb group response elements. In Drosophila melanogaster, several of these memory elements are located in the large intergenic regulatory regions of the homeotic bithorax complex. Using a transgene assay, we showed that transcription through a memory element correlated with the relief of silencing imposed by the Polycomb group proteins and established an epigenetically heritable active chromatin mode. A memory element remodeled by the process of transcription was able to maintain active expression of a reporter gene throughout development. Thus, transcription appears to reset and change epigenetic marks at chromosomal memory elements regulated by the Polycomb and trithorax proteins. Interestingly, in the bithorax complex of D. melanogaster, the segment-specific expression of noncoding intergenic transcripts during embryogenesis seems to fulfill this switching role for memory elements regulating the homeotic genes.

  7. Actively Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Podivilov, E. V.; Babin, S. A.

    2015-03-01

    A new scheme providing actively Q-switched operation of a Raman fiber laser (RFL) has been proposed and tested. The RFL consists of a 1 km single-mode fiber with a switchable loop mirror at one end and an angled cleaved output end. An 1080 nm pulse with microsecond duration is generated at the output by means of acousto-optic switching of the mirror at ~30 kHz in the presence of 6 W backward pumping at 1030 nm. In the proposed scheme, the generated pulse energy is defined by the pump energy distributed along the passive fiber, which amounts to 30 μJ in our case. The available pump energy may be increased by means of fiber lengthening. Pulse shortening is also expected.

  8. MEMS electrostatic vibration energy harvester without switches and inductive elements

    NASA Astrophysics Data System (ADS)

    Dorzhiev, V.; Karami, A.; Basset, P.; Dragunov, V.; Galayko, D.

    2014-11-01

    The paper is devoted to a novel study of monophase MEMS electrostatic Vibration Energy Harvester (e-VEH) with conditioning circuit based on Bennet's doubler. Unlike the majority of conditioning circuits that charge a power supply, the circuit based on Bennet's doubler is characterized by the absence of switches requiring additional control electronics, and is free from hardly compatible with batch fabrication process inductive elements. Our experiment with a 0.042 cm3 batch fabricated MEMS e-VEH shows that a pre-charged capacitor as a power supply causes a voltage increase, followed by a saturation which was not reported before. This saturation is due to the nonlinear dynamics of the system and the electromechanical damping that is typical for MEMS. It has been found that because of that coupled behavior there exists an optimal power supply voltage at which output power is maximum. At 187 Hz / 4 g external vibrations the system is shown to charge a 12 V supply with a output power of 1.8 μW.

  9. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  10. Plasma RF Switching Elements for Cell Phone Applications

    NASA Astrophysics Data System (ADS)

    Linardakis, Peter; Borg, Gerard G.; Harris, Jeffrey H.

    2002-10-01

    The functionality of modern multi-band, multi-system cell phones is provided by a large number of RF switches. Future phones will require an even greater number of these switches to implement hardware such as agile antennas. The ever increasing need for higher performance and lower power consumption have brought the RF PIN diode to the edge of its capabilities in these applications. RF micro-electromechanical (MEMS) switches can easily provide the required low insertion loss, low inter-modulation and low power consumption combination, but their reliability limits are not yet satisfactory to industry. In conjunction with Motorola Personal Communications Sector (PCS), PRL is undertaking a project to examine the possibility of using plasma in a completely novel type of RF switch. A basic concept of variable ``plasma capacitors'' constructed from DC commercial fluorescent tubes has been analyzed up to 1.3 GHz. The four different configurations tested show some consistent behavior and a definite impedance change between the on and off states. A simple model reliant on RF sheath theory also shows some agreement.

  11. X-Band Active-Passive Rf Pulse Compressor with Plasma Switches

    SciTech Connect

    Vikharev, A.L.; Ivanov, O.A.; Gorbachev, A.M.; Lobaev, M.A.; Isaev, V.A.; Tantawi, S.G.; Lewandowski, J.R.; Hirshfield, J.L.; /Omega-P, New Haven /Yale U.

    2012-04-27

    As proposed by SLAC, the efficiency of a pulse compressor of the SLED-II type could be increased by changing both the phase of the microwave source and the coupling coefficient of the delay line. In the existing SLED-II system at frequency 11.4 GHz, the resonant delay line is coupled with the source via an iris with a constant reflection coefficient. Replacement of the iris with an active component makes it possible to create an active SLED-II system. In this paper, the use of plasma switches as the active elements is discussed. Plasma switches have been developed and tested at a high-power level for production of flattop compressed pulses. Active switching of SLED-II has demonstrated a marked increase in efficiency (by 20%) and power gain (by 37%) as compared with passive switching. The active compressor has produced 173 ns rf flattop output pulses with a power of about 112 MW.

  12. An Element of Determinism in a Stochastic Flagellar Motor Switch

    PubMed Central

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements. PMID:26554590

  13. An Element of Determinism in a Stochastic Flagellar Motor Switch.

    PubMed

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements. PMID:26554590

  14. Get Current: Switch on Clean Energy Activity Book

    SciTech Connect

    2014-06-01

    Switching on clean energy technologies means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a variety of puzzles in an energy theme.

  15. Study on 12kV outdoor vacuum switch with replaceable HRC element drop out fuse

    SciTech Connect

    Wang Jiimei

    1996-12-31

    A new type of vacuum interrupter for 12kV outdoor vacuum switch was experimentally studied, the envelope of which was made of porcelain with petticoat flange for outdoor insulation. In order to produce an axial magnetic field and improve the capacity of transfer current in the vacuum interrupter, an iron plate of horse-shoe construction ingeniously designed was chosen as an electrode. The drop-out fuse with replaceable sand-filled HRC element in series with the vacuum switch is a new conception of design to increase breaking capacity. However, it is a vacuum switch of newly designed to form {open_quotes}a vacuum switch and drop-out type fuse combination{close_quotes}.

  16. Effect of platform switching on the peri-implant bone: A finite element study

    PubMed Central

    Martínez-González, Amparo; Peiró, Germán; Ródenas, Juan-José; López-Mollá, María-Victoria

    2015-01-01

    Background There exists a relation between the presence and location of the micro-gap and the loss of peri implant bone. Several authors have shown that the treatments based on the use of platform switching result in less peri-implant bone loss and an increased tissue stability. The purpose of this study was to analyse the effect of the platform switching on the distribution of stresses on the peri-implant bone using the finite element method. Material and Methods A realistic 3D full-mandible finite element model representing cortical bone and trabecular bone was used to study the distribution of the stress on the bone induced by an implant of diameter 4.1 mm. Two abutments were modelled. The first one, of diameter 4.1 mm, was used in the reference model to represent a conventional implant. The second one, of diameter 3.2 mm, was used to represent the implant with platform switching. Both models were subjected to axial and oblique masticatory loads. Results The analyses showed that, although no relevant differences can be found for the trabecular bone, the use of platform switching reduces the maximum stress level in the cortical bone by almost 36% with axial loads and by 40% with oblique loads. Conclusions The full 3D Finite Element model, that can be used to investigate the influence of other parameters (implant diameter, connexion type, …) on the biomechanical behaviour of the implant, showed that this stress reduction can be a biomechanical reasons to explain why the platform switching seems to reduce or eliminate crestal bone resorption after the prosthetic restoration. Key words:Dental implant, platform switching, finite element method. PMID:26535094

  17. Reduced Switching Frequency Active Harmonic Elimination for Multilevel Converters

    SciTech Connect

    Du, Zhong; Tolbert, Leon M; Chiasson, John N; Ozpineci, Burak

    2008-01-01

    This paper presents a reduced switching-frequency active-harmonic-elimination method (RAHEM) to eliminate any number of specific order harmonics of multilevel converters. First, resultant theory is applied to transcendental equations to eliminate low-order harmonics and to determine switching angles for a fundamental frequency-switching scheme. Next, based on the number of harmonics to be eliminated, Newton climbing method is applied to transcendental equations to eliminate high-order harmonics and to determine switching angles for the fundamental frequency-switching scheme. Third, the magnitudes and phases of the residual lower order harmonics are computed, generated, and subtracted from the original voltage waveform to eliminate these low-order harmonics. Compared to the active-harmonic-elimination method (AHEM), which generates square waves to cancel high-order harmonics, RAHEM has lower switching frequency. The simulation results show that the method can effectively eliminate all the specific harmonics, and a low total harmonic distortion (THD) near sine wave is produced. An experimental 11-level H-bridge multilevel converter with a field-programmable gate-array controller is employed to experimentally validate the method. The experimental results show that RAHEM does effectively eliminate any number of specific harmonics, and the output voltage waveform has low switching frequency and low THD.

  18. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    SciTech Connect

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  19. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    1990-03-01

    A Network of chaotic elements is investigated with the use of globally coupled maps. A simple coding of many attractors with clustering is shown. Through the coding, the attractors are organized so that their change exhibits bifurcation-like phenomena. A precision-dependent tree is constructed which leads to the similarity of our attractor with those of spin-glasses. Hierarchical dynamics is constructed on the tree, which leads to the dynamical change of trees and the temporal change of effective degrees of freedom. By a simple input on a site, we can switch among attractors and tune the strength of chaos. A threshold on a cluster size is found, beyond which a peculiar “posi-nega” switch occurs. Possible application to biological information processing is discussed with the emphasis on the fuzzy switch (chaotic search) and hierarchical code (categorization).

  20. Heat switches providing low-activation power and quick-switching time for use in cryogenic multi-stage refrigerators

    NASA Astrophysics Data System (ADS)

    Kimball, Mark Oliver; Shirron, P.

    2012-06-01

    An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency.We describe such a design here.

  1. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  2. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  3. Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.

    2011-04-01

    Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.

  4. AEA Cell-Bypass-Switch Activation: An Update

    NASA Technical Reports Server (NTRS)

    Keys, Denney; Rao, Gopalakrishna M.; Wannemacher, Harry

    2002-01-01

    The objectives of this project included the following: (1) verify the performance of AEA cell bypass protection device (CBPD) under simulated EOS-Aqua/Aura flight hardware configuration; (2) assess the safety of the hardware under an inadvertent firing of CBPD switch, as well as the closing of CBPD; and (3) confirm that the mode of operation of CBPD switch is the formation of a continuous low impedance path (a homogeneous low melting point alloy). The nominal performance of AEA CBPD under flight operating conditions (vacuum except zero-G, and high impedance cell) has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). The formation of a continuous low impedance path (a homogeneous low melting point alloy) has been confirmed.

  5. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  6. Near-infrared light activated azo-BF2 switches.

    PubMed

    Yang, Yin; Hughes, Russell P; Aprahamian, Ivan

    2014-09-24

    Increasing the electron density in BF2-coodinated azo compounds through para-substitution leads to a bathochromic shift in their activation wavelength. When the substituent is dimethyl amine, or the like, the trans/cis isomerization process can be efficiently modulated using near infrared light. The electron donating capability of the substituent also controls the hydrolysis half-life of the switch in aqueous solution, which is drastically longer for the cis isomer, while the BF2-coodination prevents reduction by glutathione.

  7. FERROELECTRIC SWITCH FOR A HIGH-POWER Ka-BAND ACTIVE PULSE COMPRESSOR

    SciTech Connect

    Hirshfield, Jay L.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  8. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  9. Transcriptional activity of transposable elements in maize

    PubMed Central

    2010-01-01

    Background Mobile genetic elements represent a high proportion of the Eukaryote genomes. In maize, 85% of genome is composed by transposable elements of several families. First step in transposable element life cycle is the synthesis of an RNA, but few is known about the regulation of transcription for most of the maize transposable element families. Maize is the plant from which more ESTs have been sequenced (more than two million) and the third species in total only after human and mice. This allowed us to analyze the transcriptional activity of the maize transposable elements based on EST databases. Results We have investigated the transcriptional activity of 56 families of transposable elements in different maize organs based on the systematic search of more than two million expressed sequence tags. At least 1.5% maize ESTs show sequence similarity with transposable elements. According to these data, the patterns of expression of each transposable element family is variable, even within the same class of elements. In general, transcriptional activity of the gypsy-like retrotransposons is higher compared to other classes. Transcriptional activity of several transposable elements is specially high in shoot apical meristem and sperm cells. Sequence comparisons between genomic and transcribed sequences suggest that only a few copies are transcriptionally active. Conclusions The use of powerful high-throughput sequencing methodologies allowed us to elucidate the extent and character of repetitive element transcription in maize cells. The finding that some families of transposable elements have a considerable transcriptional activity in some tissues suggests that, either transposition is more frequent than previously expected, or cells can control transposition at a post-transcriptional level. PMID:20973992

  10. The development of the electrically controlled high power RF switch and its application to active RF pulse compression systems

    NASA Astrophysics Data System (ADS)

    Guo, Jiquan

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system---an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width---is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  11. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    SciTech Connect

    Guo, Jiquan

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  12. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  13. Hotspots for Vitamin-Steroid-Thyroid Hormone Response Elements Within Switch Regions of Immunoglobulin Heavy Chain Loci Predict a Direct Influence of Vitamins and Hormones on B Cell Class Switch Recombination.

    PubMed

    Hurwitz, Julia L; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Partridge, Janet F; Maul, Robert W; Gearhart, Patricia J

    2016-03-01

    Vitamin A deficiencies are common throughout the world and have a significant negative influence on immune protection against viral infections. Mouse models demonstrate that the production of IgA, a first line of defense against viruses at mucosal sites, is inhibited in the context of vitamin A deficiency. In vitro, the addition of vitamin A to activated B cells can enhance IgA expression, but downregulate IgE. Previous reports have demonstrated that vitamin A modifies cytokine patterns, and in so doing may influence antibody isotype expression by an indirect mechanism. However, we have now discovered hundreds of potential response elements among Sμ, Sɛ, and Sα switch sites within immunoglobulin heavy chain loci. These hotspots appear in both mouse and human loci and include targets for vitamin receptors and related proteins (e.g., estrogen receptors) in the nuclear receptor superfamily. Full response elements with direct repeats are relatively infrequent or absent in Sγ regions although half-sites are present. Based on these results, we pose a hypothesis that nuclear receptors have a direct effect on the immunoglobulin heavy chain class switch recombination event. We propose that vitamin A may alter S site accessibility to activation-induced deaminase and nonhomologous end-joining machinery, thereby influencing the isotype switch, antibody production, and protection against viral infections at mucosal sites.

  14. Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID.

    PubMed

    Wakae, Koshou; Magor, Brad G; Saunders, Holly; Nagaoka, Hitoshi; Kawamura, Akemi; Kinoshita, Kazuo; Honjo, Tasuku; Muramatsu, Masamichi

    2006-01-01

    Following activation of mammalian B cells, class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig heavy chain (IgH) gene can improve the functions of the expressed antibodies. Activation-induced cytidine deaminase (AID) is the only known B cell-specific protein required for inducing CSR and SHM in mammals. Lower vertebrates have an AID homologue, and there is some evidence of SHM in vivo. However there is no evidence of CSR in the cartilaginous or bony fishes, and this may be due in part to a lack of cis-elements in the IgH gene that are the normal targets of AID-mediated recombination. We have tested whether bony fish (zebrafish and catfish) AID can mediate CSR and SHM in mammalian cells. As expected, ectopic expression of fish AID in mouse fibroblasts resulted in mutations in an introduced SHM reporter gene, indicating that fish AID can mediate SHM. Unexpectedly, expression of fish AID in mouse AID-/- B cells induced surface IgG expression as well as switched transcripts from Ig gene loci, clearly indicating that the fish AID protein can mediate CSR, at least in mouse cells. These results suggest that the AID protein acquired the ability to mediate CSR before the IgH locus evolved the additional exon clusters and switch regions that are the targets of recombination. We discuss how pleiotropic functions of specific domains within the AID protein may have facilitated the early evolution of CSR in lower vertebrates.

  15. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

    PubMed

    Dörrenbächer, Sandra; Müller, Philipp M; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions.

  16. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

    PubMed

    Dörrenbächer, Sandra; Müller, Philipp M; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  17. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood

    PubMed Central

    Dörrenbächer, Sandra; Müller, Philipp M.; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8–11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  18. Anti-tumor activity of splice-switching oligonucleotides

    PubMed Central

    Bauman, John A.; Li, Shyh-Dar; Yang, Angela; Huang, Leaf; Kole, Ryszard

    2010-01-01

    Alternative splicing has emerged as an important target for molecular therapies. Splice-switching oligonucleotides (SSOs) modulate alternative splicing by hybridizing to pre-mRNA sequences involved in splicing and blocking access to the transcript by splicing factors. Recently, the efficacy of SSOs has been established in various animal disease models; however, the application of SSOs against cancer targets has been hindered by poor in vivo delivery of antisense therapeutics to tumor cells. The apoptotic regulator Bcl-x is alternatively spliced to express anti-apoptotic Bcl-xL and pro-apoptotic Bcl-xS. Bcl-xL is upregulated in many cancers and is associated with chemoresistance, distinguishing it as an important target for cancer therapy. We previously showed that redirection of Bcl-x pre-mRNA splicing from Bcl-xL to -xS induced apoptosis in breast and prostate cancer cells. In this study, the effect of SSO-induced Bcl-x splice-switching on metastatic melanoma was assessed in cell culture and B16F10 tumor xenografts. SSOs were delivered in vivo using lipid nanoparticles. Administration of nanoparticle with Bcl-x SSO resulted in modification of Bcl-x pre-mRNA splicing in lung metastases and reduced tumor load, while nanoparticle alone or formulated with a control SSO had no effect. Our findings demonstrate in vivo anti-tumor activity of SSOs that modulate Bcl-x pre-mRNA splicing. PMID:20719743

  19. Transcriptional activity of transposable elements in coelacanth.

    PubMed

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity.

  20. Transcriptional activity of transposable elements in coelacanth.

    PubMed

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity. PMID:24038780

  1. Quitting activity and tobacco brand Switching: findings from the ITC-4 Country Survey

    PubMed Central

    Cowie, Genevieve A.; Swift, Elena; Partos, Timea; Borland, Ron

    2015-01-01

    Objective Among Australian smokers, to examine associations between cigarette brand switching, quitting activity and possible causal directions by lagging the relationships in different directions. Methods Current smokers from nine waves (2002 to early 2012) of the ITC-4 Country Survey Australian dataset were surveyed. Measures were brand switching, both brand family and product type (roll-your-own versus factory-made cigarettes) reported in adjacent waves, interest in quitting, recent quit attempts, and one month sustained abstinence. Results Switching at one interval was unrelated to concurrent quit interest. Quit interest predicted switching at the following interval, but the effect disappeared once subsequent quit attempts were controlled for. Recent quit attempts more strongly predicted switching at concurrent (OR 1.34, 95% CI=1.18–1.52, p<0.001) and subsequent intervals (OR 1.31, 95% CI= 1.12–1.53, p=0.001) than switching predicted quit attempts, with greater asymmetry when both types of switching were combined. One month sustained abstinence and switching were unrelated in the same interval; however after controlling for concurrent switching and excluding type switchers, sustained abstinence predicted lower chance of switching at the following interval (OR=0.66, 95% CI=0.47–0.93, p=0.016). Conclusions The asymmetry suggests brand switching does not affect subsequent quitting. Implications Brand switching does not appear to interfere with quitting. PMID:25827182

  2. SPICE macromodel for a 1-megawatt power MOSFET switch

    SciTech Connect

    Helms, C.; Ackermann, M.; Fischer, T.; Deveney, M.

    1993-08-01

    This paper presents a SPICE macromodel for a 1-megawatt high power electrical switch which uses power MOSFETs as the active switching elements. The model accurately predicts the time dependent switching current and provides a reasonable representation of the time dependent switch resistance and voltage drop across the switch. Techniques for extracting model parameters for commercial power MOSFETs are discussed along with suggestions for extending the model to spark gaps and other high power switches.

  3. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  4. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  5. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma.

    PubMed

    Lenz, Georg; Nagel, Inga; Siebert, Reiner; Roschke, Anna V; Sanger, Warren; Wright, George W; Dave, Sandeep S; Tan, Bruce; Zhao, Hong; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Gascoyne, Randy D; Campo, Elias; Jaffe, Elaine S; Smeland, Erlend B; Fisher, Richard I; Kuehl, W Michael; Chan, Wing C; Staudt, Louis M

    2007-03-19

    To elucidate the mechanisms underlying chromosomal translocations in diffuse large B cell lymphoma (DLBCL), we investigated the nature and extent of immunoglobulin class switch recombination (CSR) in these tumors. We used Southern blotting to detect legitimate and illegitimate CSR events in tumor samples of the activated B cell-like (ABC), germinal center B cell-like (GCB), and primary mediastinal B cell lymphoma (PMBL) subgroups of DLBCL. The frequency of legitimate CSR was lower in ABC DLBCL than in GCB DLBCL and PMBL. In contrast, ABC DLBCL had a higher frequency of internal deletions within the switch mu (Smu) region compared with GCB DLBCL and PMBL. ABC DLBCLs also had frequent deletions within Sgamma and other illegitimate switch recombinations. Sequence analysis revealed ongoing Smu deletions within ABC DLBCL tumor clones, which were accompanied by ongoing duplications and activation-induced cytidine deaminase-dependent somatic mutations. Unexpectedly, short fragments derived from multiple chromosomes were interspersed within Smu in one case. These findings suggest that ABC DLBCLs have abnormalities in the regulation of CSR that could predispose to chromosomal translocations. Accordingly, aberrant switch recombination was responsible for translocations in ABC DLBCLs involving BCL6, MYC, and a novel translocation partner, SPIB. PMID:17353367

  6. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell–like diffuse large B cell lymphoma

    PubMed Central

    Lenz, Georg; Nagel, Inga; Siebert, Reiner; Roschke, Anna V.; Sanger, Warren; Wright, George W.; Dave, Sandeep S.; Tan, Bruce; Zhao, Hong; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Gascoyne, Randy D.; Campo, Elias; Jaffe, Elaine S.; Smeland, Erlend B.; Fisher, Richard I.; Kuehl, W. Michael; Chan, Wing C.; Staudt, Louis M.

    2007-01-01

    To elucidate the mechanisms underlying chromosomal translocations in diffuse large B cell lymphoma (DLBCL), we investigated the nature and extent of immunoglobulin class switch recombination (CSR) in these tumors. We used Southern blotting to detect legitimate and illegitimate CSR events in tumor samples of the activated B cell–like (ABC), germinal center B cell–like (GCB), and primary mediastinal B cell lymphoma (PMBL) subgroups of DLBCL. The frequency of legitimate CSR was lower in ABC DLBCL than in GCB DLBCL and PMBL. In contrast, ABC DLBCL had a higher frequency of internal deletions within the switch μ (Sμ) region compared with GCB DLBCL and PMBL. ABC DLBCLs also had frequent deletions within Sγ and other illegitimate switch recombinations. Sequence analysis revealed ongoing Sμ deletions within ABC DLBCL tumor clones, which were accompanied by ongoing duplications and activation-induced cytidine deaminase–dependent somatic mutations. Unexpectedly, short fragments derived from multiple chromosomes were interspersed within Sμ in one case. These findings suggest that ABC DLBCLs have abnormalities in the regulation of CSR that could predispose to chromosomal translocations. Accordingly, aberrant switch recombination was responsible for translocations in ABC DLBCLs involving BCL6, MYC, and a novel translocation partner, SPIB. PMID:17353367

  7. Comparative efficacy of switching to natalizumab in active multiple sclerosis

    PubMed Central

    Spelman, Timothy; Kalincik, Tomas; Zhang, Annie; Pellegrini, Fabio; Wiendl, Heinz; Kappos, Ludwig; Tsvetkova, Larisa; Belachew, Shibeshih; Hyde, Robert; Verheul, Freek; Grand-Maison, Francois; Izquierdo, Guillermo; Grammond, Pierre; Duquette, Pierre; Lugaresi, Alessandra; Lechner-Scott, Jeannette; Oreja-Guevara, Celia; Hupperts, Raymond; Petersen, Thor; Barnett, Michael; Trojano, Maria; Butzkueven, Helmut

    2015-01-01

    Objective To compare treatment efficacy and persistence in patients who switched to natalizumab versus those who switched between glatiramer acetate (GA) and interferon-beta (IFNβ) after an on-treatment relapse on IFNβ or GA using propensity score matched real-world datasets. Methods Patients included were registered in MSBase or the TYSABRI Observational Program (TOP), had relapsed on IFNβ or GA within 12 months prior to switching to another therapy, and had initiated natalizumab or IFNβ/GA treatment ≤6 months after discontinuing prior therapy. Covariates were balanced across post switch treatment groups by propensity score matching at treatment initiation. Relapse, persistence, and disability measures were compared between matched treatment arms in the total population (n = 869/group) and in subgroups defined by prior treatment history (IFNβ only [n = 578/group], GA only [n = 165/group], or both IFNβ and GA [n = 176/group]). Results Compared to switching between IFNβ and GA, switching to natalizumab reduced annualized relapse rate in year one by 65–75%, the risk of first relapse by 53–82% (mean follow-up 1.7–2.2 years) and treatment discontinuation events by 48–65% (all P ≤ 0.001). In the total population, switching to natalizumab reduced the risk of confirmed disability progression by 26% (P = 0.036) and decreased the total disability burden by 1.54 EDSS-years (P < 0.0001) over the first 24 months post switch. Interpretation Using large, real-world, propensity-matched datasets we demonstrate that after a relapse on IFNβ or GA, switching to natalizumab (rather than between IFNβ and GA) led to superior outcomes for patients in all measures assessed. Results were consistent regardless of the prior treatment identity. PMID:25909083

  8. Stress analysis in platform-switching implants: a 3-dimensional finite element study.

    PubMed

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito

    2012-10-01

    The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

  9. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  10. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  11. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  12. Electronic switching circuit uses complementary non-linear components

    NASA Technical Reports Server (NTRS)

    Zucker, O. S.

    1972-01-01

    Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.

  13. Thermally activated switching of perpendicular magnet by spin-orbit spin torque

    SciTech Connect

    Lee, Ki-Seung; Lee, Seo-Won; Min, Byoung-Chul; Lee, Kyung-Jin

    2014-02-17

    We theoretically investigate the threshold current for thermally activated switching of a perpendicular magnet by spin-orbit spin torque. Based on the Fokker-Planck equation, we obtain an analytic expression of the switching current, in agreement with numerical result. We find that thermal energy barrier exhibits a quasi-linear dependence on the current, resulting in an almost linear dependence of switching current on the log-scaled current pulse-width even below 10 ns. This is in stark contrast to standard spin torque switching, where thermal energy barrier has a quadratic dependence on the current and the switching current rapidly increases at short pulses. Our results will serve as a guideline to design and interpret switching experiments based on spin-orbit spin torque.

  14. Perturbation of the switch-on of transcriptase activity in intermediate subviral particles from reovirus

    SciTech Connect

    Borsa, J.; Sargent, M.D.; Ewing, D.D.; Einspenner, M.

    1982-01-01

    Intermediate subviral particles (ISVP) derived from reovirus represent a simple model system for the switch-on of transcriptase function. In such particles the endogenous transcriptase is present in a switched-off form, one step removed from the switched-on state. Switch-on of transcriptase function is an active process in this system and can be triggered by K+ ions. A variety of agents which affect gene expression in cells were tested for an effect on switch-on in ISVP. Marked effects on switch-on in ISVP were observed with a diverse group of test agents, including DMSO and other solvents, BUdR, TdR, caffeine, theophylline, and temperature. The correlation in response between ISVP and cells suggests that the ISVP system may be useful as a model for studying the biochemical mechanisms underlying the perturbative effects of such agents on gene expression in cells.

  15. A new perspective on lysogeny: prophages as active regulatory switches of bacteria.

    PubMed

    Feiner, Ron; Argov, Tal; Rabinovich, Lev; Sigal, Nadejda; Borovok, Ilya; Herskovits, Anat A

    2015-10-01

    Unlike lytic phages, temperate phages that enter lysogeny maintain a long-term association with their bacterial host. In this context, mutually beneficial interactions can evolve that support efficient reproduction of both phages and bacteria. Temperate phages are integrated into the bacterial chromosome as large DNA insertions that can disrupt gene expression, and they may pose a fitness burden on the cell. However, they have also been shown to benefit their bacterial hosts by providing new functions in a bacterium-phage symbiotic interaction termed lysogenic conversion. In this Opinion article, we discuss another type of bacterium-phage interaction, active lysogeny, in which phages or phage-like elements are integrated into the bacterial chromosome within critical genes or operons and serve as switches that regulate bacterial genes via genome excision. PMID:26373372

  16. Photoconductive switch package

    DOEpatents

    Ca[rasp, George J

    2013-10-22

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  17. Photoconductive switch package

    SciTech Connect

    Caporaso, George J.

    2015-10-27

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  18. The Metabolic Core and Catalytic Switches Are Fundamental Elements in the Self-Regulation of the Systemic Metabolic Structure of Cells

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan

    2011-01-01

    Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic

  19. Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination.

    PubMed

    Li, Guideng; Pone, Egest J; Tran, Daniel C; Patel, Pina J; Dao, Lisa; Xu, Zhenming; Casali, Paolo

    2012-06-15

    Immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM) are critical for the maturation of the antibody response. Activation-induced cytidine deaminase (AID) initiates CSR and SHM by deaminating deoxycytidines (dCs) in switch (S) and V(D)J region DNA, respectively, to generate deoxyuracils (dUs). Processing of dUs by uracil DNA glycosylase (UNG) yields abasic sites, which are excised by apurinic/apyrimidinic endonucleases, eventually generating double strand DNA breaks, the obligatory intermediates of CSR. Here, we found that the bivalent iron ion (Fe(2+), ferrous) suppressed CSR, leading to decreased number of switched B cells, decreased postrecombination Iμ-C(H) transcripts, and reduced titers of secreted class-switched IgG1, IgG3, and IgA antibodies, without alterations in critical CSR factors, such as AID, 14-3-3γ, or PTIP, or in general germline I(H)-S-C(H) transcription. Fe(2+) did not affect B cell proliferation or plasmacytoid differentiation. Rather, it inhibited AID-mediated dC deamination in a dose-dependent fashion. The inhibition of intrinsic AID enzymatic activity by Fe(2+) was specific, as shown by lack of inhibition of AID-mediated dC deamination by other bivalent metal ions, such as Zn(2+), Mn(2+), Mg(2+), or Ni(2+), and the inability of Fe(2+) to inhibit UNG-mediated dU excision. Overall, our findings have outlined a novel role of iron in modulating a B cell differentiation process that is critical to the generation of effective antibody responses to microbial pathogens and tumoral cells. They also suggest a possible role of iron in dampening AID-dependent autoimmunity and neoplastic transformation.

  20. Reconfigurable Patch-Slot Reflectarray Elements using RF MEMS Switches: A Subreflector Wavefront Controller

    NASA Technical Reports Server (NTRS)

    Rajagopalan, Harish; Rahmat-Samii, Yahya; Imbriale, William A.

    2007-01-01

    The purpose of this paper is to investigate potential reflectarray elements by taking into consideration the eventual implementation of MEMS technology for this particular application and detailed characterization of one of the potential element designs.

  1. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  2. Comparative study of bolometric and non-bolometric switching elements for microwave phase shifters

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood; Bhasin, Kul B.; Romanofsky, Robert R.

    1991-01-01

    The performance of semiconductor and high critical temperature superconductor switches is compared as they are used in delay-line-type microwave and millimeter-wave phase shifters. Such factors as their ratios of the off-to-on resistances, parasitic reactances, power consumption, speed, input-to-output isolation, ease of fabrication, and physical dimensions are compared. Owing to their almost infinite off-to-on resistance ratio and excellent input-to-output isolation, bolometric superconducting switches appear to be quite suitable for use in microwave phase shifters; their only drawbacks are their speed and size. The SUPERFET, a novel device whose operation is based on the electric field effect in high critical temperature ceramic superconductors is also discussed. Preliminary results indicate that the SUPERFET is fast and that it can be scaled; therefore, it can be fabricated with dimensions comparable to semiconductor field-effect transistors.

  3. Large-scale IP router using a high-speed optical switch element [Invited

    NASA Astrophysics Data System (ADS)

    McDermott, Tom; Brewer, Tony

    2003-07-01

    The system design and architectural considerations for a large, high-performance IP packet router that uses a nonblocking optical switching fabric are presented. The objective of the router is to provide fully network-compatible routing of IP, multiprotocol label switching (MPLS), and Ethernet packets in a router with a very large number of high speed ports while maintaining the low-delay, low-jitter, low-packet-loss, and line-rate throughput characteristics of today's small port-count routers over a large scale. Such a large router is useful for the core of a packetized transport network capable of supporting various classes of real-time and best-effort service in a reliable and efficient manner.

  4. Age-related shifts in brain activity dynamics during task switching.

    PubMed

    Jimura, Koji; Braver, Todd S

    2010-06-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and sustained neural activity associated with cognitive control. Relative to young adults, older adults exhibited not only decreased sustained activity in the anterior prefrontal cortex (aPFC) during task-switching blocks but also increased transient activity on task-switch trials. Another pattern of age-related shift in dynamics was present in the lateral PFC (lPFC) and posterior parietal cortex (PPC), with younger adults showing a cue-related response during task-switch trials in lPFC and PPC, whereas older adults exhibited switch-related activation during the cue period in PPC only. In all 3 regions, these qualitatively distinct patterns of brain activity predicted qualitatively distinct patterns of behavioral performance across the 2 age groups. Together, these results suggest that older adults may shift from a proactive to reactive cognitive control strategy as a means of retaining relatively preserved behavioral performance in the face of age-related neurocognitive changes. PMID:19805420

  5. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades

    PubMed Central

    Fey, Dirk; Croucher, David R.; Kolch, Walter; Kholodenko, Boris N.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to

  6. Motivated cognitive control: Reward incentives modulate preparatory neural activity during task-switching

    PubMed Central

    Savine, Adam C.; Braver, Todd S.

    2010-01-01

    It is increasingly appreciated that executive control processes need to be understood in terms of motivational as well as cognitive mechanisms. The current study examined the impact of performance-contingent reward incentives (monetary bonuses) on neural activity dynamics during cued task-switching performance. Behavioral measures indicated that performance was improved and task-switch costs selectively reduced on incentive trials. Trial-by-trial fluctuations in incentive value were associated with activation in reward-related brain regions (dopaminergic midbrain, paracingulate cortex) and also modulated the dynamics of switch-selective activation in the brain cognitive control network in both an additive (posterior PFC) and interactive way (dorsolateral PFC, dorsomedial PFC, and inferior parietal cortex). In dorsolateral PFC, incentive-modulation of activation predicted task-switching behavioral performance effects in a hemispherically specialized manner. Further, in left dorsolateral PFC, incentive modulation specifically enhanced task-cue related activation, and this activation in turn predicted that the trial would be subsequently rewarded (due to optimal performance). The results suggest that motivational incentives have a selective effect on brain regions that subserve cognitive control processes during task-switching, and moreover, that one mechanism of effect might be the enhancement of cue-related task preparation within left dorsolateral PFC. PMID:20685974

  7. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  8. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers

    PubMed Central

    Sérandour, Aurélien A.; Avner, Stéphane; Percevault, Frédéric; Demay, Florence; Bizot, Maud; Lucchetti-Miganeh, Céline; Barloy-Hubler, Frédérique; Brown, Myles; Lupien, Mathieu; Métivier, Raphaël; Salbert, Gilles; Eeckhoute, Jérôme

    2011-01-01

    Transcription factors (TFs) bind specifically to discrete regions of mammalian genomes called cis-regulatory elements. Among those are enhancers, which play key roles in regulation of gene expression during development and differentiation. Despite the recognized central regulatory role exerted by chromatin in control of TF functions, much remains to be learned regarding the chromatin structure of enhancers and how it is established. Here, we have analyzed on a genomic-scale enhancers that recruit FOXA1, a pioneer transcription factor that triggers transcriptional competency of these cis-regulatory sites. Importantly, we found that FOXA1 binds to genomic regions showing local DNA hypomethylation and that its cell-type-specific recruitment to chromatin is linked to differential DNA methylation levels of its binding sites. Using neural differentiation as a model, we showed that induction of FOXA1 expression and its subsequent recruitment to enhancers is associated with DNA demethylation. Concomitantly, histone H3 lysine 4 methylation is induced at these enhancers. These epigenetic changes may both stabilize FOXA1 binding and allow for subsequent recruitment of transcriptional regulatory effectors. Interestingly, when cloned into reporter constructs, FOXA1-dependent enhancers were able to recapitulate their cell type specificity. However, their activities were inhibited by DNA methylation. Hence, these enhancers are intrinsic cell-type-specific regulatory regions of which activities have to be potentiated by FOXA1 through induction of an epigenetic switch that includes notably DNA demethylation. PMID:21233399

  9. Final report: Photochromism as a switching mechanism for electronically active organic materials

    SciTech Connect

    Pollagi, T.P.; Sinclair, M.B.; Jacobs, S.J.

    1997-07-01

    Recent discoveries in the field of conjugated polymers in environmental stability, regiochemical regularity, and electrical conductivity, particularly of polythiophene and polyaniline, have intensified interest in device applications. Present or anticipated applications include development of electrical circuitry on a molecular scale, as well as conducting and semiconducting materials for a variety of applications including thin film transistors and batteries. The authors have investigated a series of compounds comprising conjugated segments coupled to photochromic elements. The photochromic reaction in these compounds reversibly alters the conjugation length and provides a mechanism for switching both the electrical and optical properties of these materials. The authors are currently investigating the nature and scope of this switching mechanism and preparing extended materials that take advantage of this novel form of switching behavior. Preparation and photochromic behavior of several of these materials are described.

  10. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    PubMed Central

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  11. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.

    PubMed

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.

  12. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.

    PubMed

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  13. Doubly active Q switching and mode locking of an all-fiber laser.

    PubMed

    Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, Jose L; Andrés, Miguel V

    2009-09-15

    Simultaneous and independent active Q switching and active mode locking of an erbium-doped fiber laser is demonstrated using all-fiber modulation techniques. A magnetostrictive rod attached to the output fiber Bragg grating modulates the Q factor of the Fabry-Perot cavity, whereas active mode locking is achieved by amplitude modulation with a Bragg-grating-based acousto-optic device. Fully modulated Q-switched mode-locked trains of optical pulses were obtained for a wide range of pump powers and repetition rates. For a Q-switched repetition rate of 500 Hz and a pump power of 100 mW, the laser generates trains of 12-14 mode-locked pulses of about 1 ns each, within an envelope of 550 ns, an overall energy of 0.65 microJ, and a peak power higher than 250 W for the central pulses of the train.

  14. Characterization for the performance of capacitive switches activated by mechanical shock

    PubMed Central

    Younis, Mohammad I.; Alsaleem, Fadi M; Miles, Ronald; Su, Quang

    2009-01-01

    This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required. PMID:21720493

  15. Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes

    PubMed Central

    1996-01-01

    Upon activation, B lymphocytes can change the isotype of the antibody they express by immunoglobulin (Ig) isotype switch recombination. In previous studies on the regulation of human IgG expression, we demonstrated that interleukin 10 (IL-10) could stimulate IgG1 and IgG3 secretion by human CD40-activated naive (sIgD+) tonsillar B cells. To assess whether IL-10 actually promotes the DNA recombination underlying switching to these isotypes, we examined the effect of IL-10 on the generation of reciprocal products that form DNA circles as by-products of switch recombination. The content of reciprocal products characteristic of mu-gamma recombination was elevated after culture of CD40-activated tonsillar sIgD+ B cells with either IL-4 or IL-10, although high levels of IgG secretion were observed only with IL-10. Unlike IL-4, IL-10 did not induce reciprocal products of mu-epsilon and gamma-epsilon switch recombination. These results demonstrate that IL- 10 promotes both switching to gamma and IgG secretion. PMID:8642297

  16. Encoding Active Device Elements at Nanowire Tips.

    PubMed

    No, You-Shin; Gao, Ruixuan; Mankin, Max N; Day, Robert W; Park, Hong-Gyu; Lieber, Charles M

    2016-07-13

    Semiconductor nanowires and other one-dimensional materials are attractive for highly sensitive and spatially confined electrical and optical signal detection in biological and physical systems, although it has been difficult to localize active electronic or optoelectronic device function at one end of such one-dimensional structures. Here we report a new nanowire structure in which the material and dopant are modulated specifically at only one end of nanowires to encode an active two-terminal device element. We present a general bottom-up synthetic scheme for these tip-modulated nanowires and illustrate this with the synthesis of nanoscale p-n junctions. Electron microscopy imaging verifies the designed p-Si nanowire core with SiO2 insulating inner shell and n-Si outer shell with clean p-Si/n-Si tip junction. Electrical transport measurements with independent contacts to the p-Si core and n-Si shell exhibited a current rectification behavior through the tip and no detectable current through the SiO2 shell. Electrical measurements also exhibited an n-type response in conductance versus water-gate voltage with pulsed gate experiments yielding a temporal resolution of at least 0.1 ms and ∼90% device sensitivity localized to within 0.5 μm from the nanowire p-n tip. In addition, photocurrent experiments showed an open-circuit voltage of 0.75 V at illumination power of ∼28.1 μW, exhibited linear dependence of photocurrent with respect to incident illumination power with an estimated responsivity up to ∼0.22 A/W, and revealed localized photocurrent generation at the nanowire tip. The tip-modulated concept was further extended to a top-down/bottom-up hybrid approach that enabled large-scale production of vertical tip-modulated nanowires with a final synthetic yield of >75% with >4300 nanowires. Vertical tip-modulated nanowires were fabricated into >50 individually addressable nanowire device arrays showing diode-like current-voltage characteristics. These tip

  17. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches.

    PubMed

    Milić, Jovana; Zalibera, Michal; Pochorovski, Igor; Trapp, Nils; Nomrowski, Julia; Neshchadin, Dmytro; Ruhlmann, Laurent; Boudon, Corinne; Wenger, Oliver S; Savitsky, Anton; Lubitz, Wolfgang; Gescheidt, Georg; Diederich, François

    2016-07-01

    The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices. PMID:27300355

  18. Efficiency of Iepsilon promoter-directed switch recombination in GFP expression-based switch constructs works synergistically with other promoter and/or enhancer elements but is not tightly linked to the strength of transcription.

    PubMed

    Zhang, Ke; Zhang, Ling; Yamada, Takechiyo; Vu, Michael; Lee, Anna; Saxon, Andrew

    2002-02-01

    One key unresolved issue in immunoglobulin class switch recombination (CSR) is how the accessibility of the switch region for CSR is controlled. To better understand the nature of accessibility control for human Ig CSR, we developed a novel inducible switch recombination assay based on expression of green fluorescence protein (GFP) from switch constructs undergoing substrate switch recombination (SSR). Efficient SSR depends on the cytokine-inducible Iepsilon promoter and co-stimulation with IL-4+anti-CD40. Characterization of SSR reveals that both S-S deletional recombination and S-S inversion occur. We show that the IL-4-inducible Iepsilon promoter (pIepsilon) selectively determines the efficiency of the accessibility for SSR. However, the pIepsilon-induced transcription, by itself,is not sufficient to direct efficient SSR. For efficient SSR, both pIepsilon-driven transcriptional activity and an additional promoter/enhancer-derived activity are required. The efficiency of SSR is not tightly correlated with the strength of the combined transcriptional activity. Our results suggest that the mechanism(s) underlying the transcriptional activity, e.g. DNA modification is important for controlling the accessibility for efficient switch recombination.

  19. Optically-Activated GaAs Switches for Ground Penetrating Radar and Firing Set Applications

    SciTech Connect

    Aurand, J.; Brown, D.J.; Carin, L.; Denison, G.J.; Helgeson, W.D.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Rinehart, L.F.; Zutavern, F.J.

    1999-07-14

    Optically activated, high gain GaAs switches are being tested for many different applications. TWO such applications are ground penetrating radar (GPR) and firing set switches. The ability of high gain GaAs Photoconductive Semiconductor Switches (PCSs) to deliver fast risetime pulses makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for the detection of buried items because it can operate at low frequency, high average power, and close to the ground, greatly increasing power on target. We have demonstrated that a PCSs based system can be used to produce a bipolar waveform with a total duration of about 6 ns and with minimal ringing. Such a pulse is radiated and returns from a 55 gallon drum will be presented. For firing sets, the switch requirements include small size, high current, dc charging, radiation hardness and modest longevity. We have switched 1 kA at 1 kV and 2.8 kA at 3 kV dc charge.

  20. Tissue factor activation: is disulfide bond switching a regulatory mechanism?

    PubMed Central

    Ghosh, Samit; Mandal, Samir K.

    2007-01-01

    A majority of tissue factor (TF) on cell surfaces exists in a cryptic form (ie, coagulation function inactive) but retains its functionality in cell signaling. Recent studies have suggested that cryptic TF contains unpaired cysteine thiols and that activation involves the formation of the disulfide bond Cys186-Cys 209 and that protein disulfide isomerase (PDI) regulates TF coagulant and signaling activities by targeting this disulfide bond. This study was carried out to investigate the validity of this novel concept. Although treatment of MDA 231 tumor cells, fibroblasts, and stimulated endothelial cells with the oxidizing agent HgCl2 markedly increased the cell-surface TF coagulant activity, the increase is associated with increased anionic phospholipids at the cell surface. Annexin V, which binds to anionic phospholipids, attenuated the increased TF coagulant activity. It is noteworthy that treatment of cells with reducing agents also increased the cell surface TF activity. No evidence was found for either detectable expression of PDI at the cell surface or association of TF with PDI. Furthermore, reduction of PDI with the gene silencing had no effect on either TF coagulant or cell signaling functions. Overall, the present data undermine the recently proposed hypothesis that PDI-mediated disulfide exchange plays a role in regulating TF procoagulant and cell signaling functions. PMID:17726162

  1. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    PubMed

    Loo, Tip W; Clarke, David M

    2016-04-01

    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids. PMID:26944019

  2. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    PubMed

    Loo, Tip W; Clarke, David M

    2016-04-01

    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids.

  3. Switching on electrocatalytic activity in solid oxide cells

    NASA Astrophysics Data System (ADS)

    Myung, Jae-Ha; Neagu, Dragos; Miller, David N.; Irvine, John T. S.

    2016-09-01

    Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated, they are susceptible to many other forms of degradation. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of

  4. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    PubMed Central

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  5. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    PubMed

    Bridgham, Jamie T; Keay, June; Ortlund, Eric A; Thornton, Joseph W

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations to

  6. Cross-language Activation and the Phonetics of Code-switching

    NASA Astrophysics Data System (ADS)

    Piccinini, Page Elizabeth

    It is now well established that bilinguals have both languages activated to some degree at all times. This cross-language activation has been documented in several research paradigms, including picture naming, reading, and electrophysiological studies. What is less well understood is how the degree a language is activated can vary in different language environments or contexts. Furthermore, when investigating effects of order of acquisition and language dominance, past research has been mixed, as the two variables are often conflated. In this dissertation, I test how degree of cross-language activation can vary according to context by examining phonetic productions in code-switching speech. Both spontaneous speech and scripted speech are analyzed. Follow-up perception experiments are conducted to see if listeners are able to anticipate language switches, potentially due to the phonetic cues in the signal. Additionally, by focusing on early bilinguals who are L1 Spanish but English dominant, I am able to see what plays a greater role in cross-language activation, order of acquisition or language dominance. I find that speakers do have intermediate phonetic productions in code-switching contexts relative to monolingual contexts. Effects are larger and more consistent in English than Spanish. Similar effects are found in speech perception. Listeners are able to anticipate language switches from English to Spanish but not Spanish to English. Together these results suggest that language dominance is a more important factor than order of acquisition in cross-language activation for early bilinguals. Future models on bilingual language organization and access should take into account both context and language dominance when modeling degrees of cross-language activation.

  7. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  8. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  9. Heat Switches for ADRs

    NASA Technical Reports Server (NTRS)

    DiPirro, M. J.; Shirron, P. J.

    2014-01-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  10. Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears

    USGS Publications Warehouse

    Jasmine Ware,; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey; Charles T Robbins,; Joy Erlenbach,; Shannon Jensen,; Amy Cutting,; Nicole Nicassio-Hiskey,; Amy Hash,; Owen, Megan A.; Heiko Jansen,

    2015-01-01

    Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.

  11. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    PubMed

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  12. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  13. Design and development of a shape memory alloy activated heat pipe-based thermal switch

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Notardonato, W. U.; Meneghelli, B. J.; Vaidyanathan, R.

    2013-10-01

    This work reports on the design, fabrication and testing of a thermal switch wherein the open and closed states were actuated by shape memory alloy (SMA) elements while heat was transferred by a two-phase heat pipe. The motivation for such a switch comes from NASA’s need for thermal management in advanced spaceport applications associated with future lunar and Mars missions. As the temperature can approximately vary between -233 and 127 ° C during lunar day/night cycles, the switch was designed to reject heat from a cryogen tank into space during the night cycle while providing thermal isolation during the day cycle. A Ni47.1Ti49.6Fe3.3 (at.%) alloy that exhibited a reversible phase transformation between a trigonal R-phase and a cubic austenite phase was used as the sensing and actuating elements. Thermomechanical actuation, accomplished through an antagonistic spring system, resulted in strokes up to 7 mm against bias forces of up to 45 N. The actuation system was tested for more than thirty cycles, equivalent to one year of operation. The thermal performance, accomplished via a variable length, closed two-phase heat pipe, was evaluated, resulting in heat transfer rates of 13 W using pentane and 10 W using R-134a as working fluids. Experimental data were also compared to theoretical predictions where possible. Direct comparisons between different design approaches of SMA helical actuators, highlighting the effects of the helix angle, were carried out to give a layout of more accurate design methodologies.

  14. 50+ Activities for Early Childhood Essential Elements. Volume I.

    ERIC Educational Resources Information Center

    Education Service Center Region 6, Huntsville, TX.

    Written as a companion resource to "Early Childhood Essential Elements," a document developed by the Education Service Center, Region VI, Huntsville, Texas, this first volume of a two-volume activity guide provides activities enhancing children's cognitive, communication, and motor skills. Activities included in the guide are compiled from a…

  15. All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium

    SciTech Connect

    Hira, T.; Homma, T.; Uchiyama, T.; Kuwamura, K.; Kihara, Y.; Saiki, T.

    2015-01-19

    Localized surface plasmon resonance (LSPR) switching was investigated in a Au/GeSbTe/Au nanosandwich as a key active element for plasmonic integrated circuits and devices. Near-infrared single-particle spectroscopy was conducted to examine the interaction of a Au nanorod (AuNR) and Au film, between which a GeSbTe layer was incorporated as an active phase-change media. Numerical calculation revealed that hybridized modes of the AuNR and Au film exhibit a significant change of scattering intensity with the phase change. In particular, the antisymmetric (magnetic resonance) mode can be modulated effectively by the extinction coefficient of GST, as well as its refractive index. Experimental demonstration of the switching operation was performed by alternate irradiation with a picosecond pulsed laser for amorphization and a continuous wave laser for crystallization. Repeatable modulation was obtained by monitoring the scattering light around the LSPR peak at λ = 1070 nm.

  16. Prediction of switching time between movement preparation and execution by neural activity in monkey premotor cortex.

    PubMed

    Li, Hongbao; Liao, Yuxi; Wang, Yiwen; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-01-01

    Premotor cortex is a higher level cortex than primary motor cortex in movement controlling hierarchy, which contributes to the motor preparation and execution simultaneously during the planned movement. The mediation mechanism from movement preparation to execution has attracted many scientists' attention. Gateway hypothesis is one possible explanation that some neurons act as "gating" to release the movement intention at the "on-go" cue. We propose to utilize a local-learning based feature extraction method to target the neurons in premotor cortex, which functionally contribute mostly to the discrimination between motor preparation and execution without tuning information to either target or movement trajectory. Then the support vector machine is utilized to predict the single trial switching time. With top three functional "gating" neurons, the prediction accuracy rate of the switching time is above 90%, which indicates the potential of asynchronous BMI control using premotor cortical activity. PMID:26736827

  17. Identification of an active new mutator transposable element in maize.

    PubMed

    Tan, Bao-Cai; Chen, Zongliang; Shen, Yun; Zhang, Yafeng; Lai, Jinsheng; Sun, Samuel S M

    2011-09-01

    Robertson's Mutator (Mu) system has been used in large scale mutagenesis in maize, exploiting its high mutation frequency, controllability, preferential insertion in genes, and independence of donor location. Eight Mutator elements have been fully characterized (Mu1, Mu2 /Mu1.7, Mu3, Mu4, Mu5, Mu6/7, Mu8, MuDR), and three are defined by TIR (Mu10, Mu11 and Mu12). The genome sequencing revealed a complex family of Mu-like-elements (MULEs) in the B73 genome. In this article, we report the identification of a new Mu element, named Mu13. Mu13 showed typical Mu characteristics by having a ∼220 bp TIR, creating a 9 bp target site duplication upon insertion, yet the internal sequence is completely different from previously identified Mu elements. Mu13 is not present in the B73 genome or a Zea mays subsp. parviglumis accession, but in W22 and several inbreds that found the Robertson's Mutator line. Analysis of mutants isolated from the UniformMu mutagenic population indicated that the Mu13 element is active in transposition. Two novel insertions were found in expressed genes. To test other unknown Mu elements, we selected six new Mu elements from the B73 genome. Southern analysis indicated that most of these elements were present in the UniformMu lines. From these results, we conclude that Mu13 is a new and active Mu element that significantly contributed to the mutagenesis in the UniformMu population. The Robertson's Mutator line may harbor other unknown active Mu elements.

  18. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  19. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

    PubMed

    Hull, Michael J; Soffe, Stephen R; Willshaw, David J; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.

  20. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies.

    PubMed

    Rodgers, David T; Mazagova, Magdalena; Hampton, Eric N; Cao, Yu; Ramadoss, Nitya S; Hardy, Ian R; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K; Wright, Timothy M; Schultz, Peter G; Kim, Chan Hyuk; Young, Travis S

    2016-01-26

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR-T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  1. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

    PubMed Central

    Rodgers, David T.; Mazagova, Magdalena; Hampton, Eric N.; Cao, Yu; Ramadoss, Nitya S.; Hardy, Ian R.; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K.; Wright, Timothy M.; Schultz, Peter G.; Kim, Chan Hyuk; Young, Travis S.

    2016-01-01

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR–T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  2. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  3. Lag Synchronization of Switched Neural Networks via Neural Activation Function and Applications in Image Encryption.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Meng, Qinggang; Yao, Wei

    2015-07-01

    This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the output of the system in the case of packed circuits, since it is hard to measure the inner state of the circuits. Thus, it is critical to design the controller based on the neuron activation function. Comparing the results, in this paper, with the existing ones shows that we improve and generalize the results derived in the previous literature. Several examples are also given to illustrate the effectiveness and potential applications in image encryption.

  4. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

    PubMed

    Pandian, Ganesh N; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D; Sugiyama, Hiroshi

    2014-01-24

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.

  5. Conformal optical elements for correcting wavefront distortions in YAG : Nd{sup 3+} active elements

    SciTech Connect

    Korolkov, V P; Nasyrov, R K; Poleshchuk, A G; Arapov, Yu D; Ivanov, A F

    2013-02-28

    Correction of the wavefront is studied for the light beam passing wide-aperture YAG : Nd3+ single-crystal rods, which are used as active elements in high-power solid-state lasers. A nonideal character of the crystal structure is responsible for the deformation of the wavefront of passing radiation. By using the halftone technology we have developed conformal aberration correctors capable of compensating rod nonuniformities and reducing the laser radiation divergence by an order of magnitude. The results obtained make it possible to employ optically nonuniform active elements in laser constructions. (laser optics 2012)

  6. 50+ Activities for Early Childhood Essential Elements. Volume II.

    ERIC Educational Resources Information Center

    Education Service Center Region 6, Huntsville, TX.

    Written as a companion resource to "Early Childhood Essential Elements," a document developed by the Education Service Center, Region VI, Huntsville, Texas, this second volume of a two-volume activity guide provides activities enhancing children's self-help, social/emotional, and creative/expressive skills. The guide also provides a short…

  7. Semi-active vibration control based on unsymmetrical synchronized switch damping: Analysis and experimental validation of control performance

    NASA Astrophysics Data System (ADS)

    Ji, Hongli; Qiu, Jinhao; Cheng, Li; Nie, Hong

    2016-05-01

    In semi-active synchronized switch damping (SSD) approaches for structural vibration control, the damping effect is achieved by properly switching the voltage on the piezoelectric actuators. Unsymmetrical SSD switch circuit has been designed in the previous paper to increase the effective voltage range on the PZT actuator for improvement of the control performance. In this study, analysis and experimental validation of control performance of a synchronized switch damping system based on the unsymmetrical switch circuit are carried out. First the model of an unsymmetrical SSD system is presented and the working principle is introduced. The general expression of the switched voltage on the piezoelectric actuator is derived. Based on its periodicity in steady-state control, the harmonic components of the actuator voltage are derived using Fourier series expansion. Next, the displacement response of the system is derived under combined actions of the excitation and switched voltage. Finally, a setup of a flexible beam with unsymmetrical switch circuit is used to demonstrate the control performance under different voltage sources and to verify the theoretical results. The results show that the control performance mainly depends on the voltage range on the PZT. A higher effective voltage range can be generated in unsymmetrical SSDV than in symmetrical SSDV and better control performance can be achieved at the same negative actuator voltage. The unsymmetrical SSDV makes better utilization of the actuator capability.

  8. Communication over the Network of Binary Switches Regulates the Activation of A2A Adenosine Receptor

    PubMed Central

    Lee, Yoonji; Choi, Sun; Hyeon, Changbong

    2015-01-01

    Dynamics and functions of G-protein coupled receptors (GPCRs) are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total ~ 5 μsec molecular dynamics simulations of A2A adenosine receptor (A2AAR) in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs “binary switches” as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 210 microstates, we show that (i) the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii) among the three receptor states the apo state explores the broadest range of microstates; (iii) in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv) to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation. Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif. PMID:25664580

  9. A substrate-driven allosteric switch that enhances PDI catalytic activity

    PubMed Central

    Bekendam, Roelof H.; Bendapudi, Pavan K.; Lin, Lin; Nag, Partha P.; Pu, Jun; Kennedy, Daniel R.; Feldenzer, Alexandra; Chiu, Joyce; Cook, Kristina M.; Furie, Bruce; Huang, Mingdong; Hogg, Philip J.; Flaumenhaft, Robert

    2016-01-01

    Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a–b–b′–x–a′, wherein the thioredoxin-like a and a′ domains mediate disulfide bond shuffling and b and b′ domains are substrate binding. The b′ and a′ domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class of compounds, termed bepristats, that target the substrate-binding pocket of b′. Bepristats reversibly block substrate binding and inhibit platelet aggregation and thrombus formation in vivo. Ligation of the substrate-binding pocket by bepristats paradoxically enhances catalytic activity of a and a′ by displacing the x-linker, which acts as an allosteric switch to augment reductase activity in the catalytic domains. This substrate-driven allosteric switch is also activated by peptides and proteins and is present in other thiol isomerases. Our results demonstrate a mechanism whereby binding of a substrate to thiol isomerases enhances catalytic activity of remote domains. PMID:27573496

  10. A cell cycle-controlled redox switch regulates the topoisomerase IV activity

    PubMed Central

    Narayanan, Sharath; Janakiraman, Balaganesh; Kumar, Lokesh

    2015-01-01

    Topoisomerase IV (topo IV), an essential factor during chromosome segregation, resolves the catenated chromosomes at the end of each replication cycle. How the decatenating activity of the topo IV is regulated during the early stages of the chromosome cycle despite being in continuous association with the chromosome remains poorly understood. Here we report a novel cell cycle-regulated protein in Caulobacter crescentus, NstA (negative switch for topo IV decatenation activity), that inhibits the decatenation activity of the topo IV during early stages of the cell cycle. We demonstrate that in C. crescentus, NstA acts by binding to the ParC DNA-binding subunit of topo IV. Most importantly, we uncover a dynamic oscillation of the intracellular redox state during the cell cycle, which correlates with and controls NstA activity. Thus, we propose that predetermined dynamic intracellular redox fluctuations may act as a global regulatory switch to control cellular development and cell cycle progression and may help retain pathogens in a suitable cell cycle state when encountering redox stress from the host immune response. PMID:26063575

  11. Evolutionary active transposable elements in the genome of the coelacanth.

    PubMed

    Chalopin, Domitille; Fan, Shaohua; Simakov, Oleg; Meyer, Axel; Schartl, Manfred; Volff, Jean-Nicolas

    2014-09-01

    The apparent morphological stasis in the lineage of the coelacanth, which has been called a "living fossil" by many, has been suggested to be causally related to a slow evolution of its genome, with strongly reduced activity of transposable elements (TEs). Analysis of the African coelacanth showed that at least 25% of its genome is constituted of transposable elements including retrotransposons, endogenous retroviruses and DNA transposons, with a strong predominance of non-Long Terminal Repeat (non-LTR) retrotransposons. The coelacanth genome has been shaped by four major general bursts of transposition during evolution, with major contributions of LINE1, LINE2, CR1, and Deu non-LTR retrotransposons. Many transposable elements are expressed in different tissues and might be active. The number of TE families in coelacanth, but also in lungfish, is lower than in teleost fish, but is higher than in chicken and human. This observation is in agreement with the hypothesis of a sequential elimination of many TE families in the sarcopterygian lineage during evolution. Taken together, our analysis indicates that the coelacanth contains more TE families than birds and mammals, and that these elements have been active during the evolution of the coelacanth lineage. Hence, at the level of transposable element activity, the coelacanth genome does not appear to evolve particularly slowly.

  12. Evolutionary active transposable elements in the genome of the coelacanth.

    PubMed

    Chalopin, Domitille; Fan, Shaohua; Simakov, Oleg; Meyer, Axel; Schartl, Manfred; Volff, Jean-Nicolas

    2014-09-01

    The apparent morphological stasis in the lineage of the coelacanth, which has been called a "living fossil" by many, has been suggested to be causally related to a slow evolution of its genome, with strongly reduced activity of transposable elements (TEs). Analysis of the African coelacanth showed that at least 25% of its genome is constituted of transposable elements including retrotransposons, endogenous retroviruses and DNA transposons, with a strong predominance of non-Long Terminal Repeat (non-LTR) retrotransposons. The coelacanth genome has been shaped by four major general bursts of transposition during evolution, with major contributions of LINE1, LINE2, CR1, and Deu non-LTR retrotransposons. Many transposable elements are expressed in different tissues and might be active. The number of TE families in coelacanth, but also in lungfish, is lower than in teleost fish, but is higher than in chicken and human. This observation is in agreement with the hypothesis of a sequential elimination of many TE families in the sarcopterygian lineage during evolution. Taken together, our analysis indicates that the coelacanth contains more TE families than birds and mammals, and that these elements have been active during the evolution of the coelacanth lineage. Hence, at the level of transposable element activity, the coelacanth genome does not appear to evolve particularly slowly. PMID:23908136

  13. Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways

    PubMed Central

    Muthuramalingam, Meenakumari; White, John C.; Bourne, Christina R.

    2016-01-01

    Toxin-antitoxin (TA) modules are bacterial regulatory switches that facilitate conflicting outcomes for cells by promoting a pro-survival phenotypic adaptation and/or by directly mediating cell death, all through the toxin activity upon degradation of antitoxin. Intensive study has revealed specific details of TA module functions, but significant gaps remain about the molecular details of activation via antitoxin degradation used by different bacteria and in different environments. This review summarizes the current state of knowledge about the interaction of antitoxins with cellular proteases Lon and ClpP to mediate TA module activation. An understanding of these processes can answer long-standing questions regarding stochastic versus specific activation of TA modules and provide insight into the potential for manipulation of TA modules to alter bacterial growth. PMID:27409636

  14. Transform-limited pulses generated by an actively Q-switched distributed fiber laser.

    PubMed

    Cuadrado-Laborde, C; Pérez-Millán, P; Andrés, M V; Díez, A; Cruz, J L; Barmenkov, Yu O

    2008-11-15

    A single-mode, transform-limited, actively Q-switched distributed-feedback fiber laser is presented, based on a new in-line acoustic pulse generator. Our technique permits a continuous adjustment of the repetition rate that modulates the Q factor of the cavity. Optical pulses of 800 mW peak power, 32 ns temporal width, and up to 20 kHz repetition rates were obtained. The measured linewidth demonstrates that these pulses are transform limited: 6 MHz for a train of pulses of 10 kHz repetition rate, 80 ns temporal width, and 60 mW peak power. Efficient excitation of spontaneous Brillouin scattering is demonstrated.

  15. Cofactor binding triggers a molecular switch to allosterically activate human UDP-α-D-glucose 6-dehydrogenase.

    PubMed

    Sennett, Nicholas C; Kadirvelraj, Renuka; Wood, Zachary A

    2012-11-20

    Human UDP-α-D-glucose dehydrogenase (hUGDH) catalyzes the NAD(+)-dependent oxidation of UDP-α-D-glucose (UDG) to produce UDP-α-D-glucuronic acid. The oligomeric structure of hUGDH is dynamic and can form two distinct hexameric complexes in solution. The active form of hUGDH consists of dimers that undergo a concentration-dependent association to form a hexamer with 32 symmetry. In the presence of the allosteric feedback inhibitor UDP-α-D-xylose (UDX), hUGDH changes shape to form an inactive, horseshoe-shaped complex. Previous studies have identified the UDX-induced allosteric mechanism that changes the hexameric structure to inhibit the enzyme. Here, we investigate the role of the 32 symmetry hexamer in the catalytic cycle. We engineered a stable hUGDH dimer by introducing a charge-switch substitution (K94E) in the hexamer-building interface (hUGDH(K94E)). The k(cat) of hUGDH(K94E) is ~160-fold lower than that of the wild-type enzyme, suggesting that the hexamer is the catalytically relevant state. We also show that cofactor binding triggers the formation of the 32 symmetry hexamer, but UDG is needed for the stability of the complex. The hUGDH(K94E) crystal structure at 2.08 Å resolution identifies loop(88-110) as the cofactor-responsive allosteric switch that drives hexamer formation; loop(88-110) directly links cofactor binding to the stability of the hexamer-building interface. In the interface, loop(88-110) packs against the Thr131-loop/α6 helix, the allosteric switch that responds to the feedback inhibitor UDX. We also identify a structural element (the S-loop) that explains the indirect stabilization of the hexamer by substrate and supports a sequential, ordered binding of the substrate and cofactor. These observations support a model in which (i) UDG binds to the dimer and stabilizes the S-loop to promote cofactor binding and (ii) cofactor binding orders loop(88-110) to induce formation of the catalytically active hexamer.

  16. A new electrochemically active-inactive switching aptamer molecular beacon to detect thrombin directly in solution.

    PubMed

    Cheng, Guifang; Shen, Bijun; Zhang, Fan; Wu, Jikui; Xu, Ying; He, Pingang; Fang, Yuzhi

    2010-06-15

    A new electrochemical aptamer molecular beacon (MB) was designed by the carminic acid (CA) covalently linking at the each end of a special single-stranded stem-loop shaped oligonucleotide and named as CAs-MB. CA is an electrochemically active molecule and two CA molecules at the ends of molecular beacon stem were closed enough to associate each other to be as CA dimer. The dimer was electrochemically inactive. It separated into two CA monomers and produced the electrochemical signal while CAs-MB combined with target. In this protocol, the detection strategy of CAs-MB for thrombin is based on electrochemical active-inactive switching between monomer and dimer forms of CA. In order to enhance the electrochemical signal, magnetic nanobeads (MNB) was applied by connecting CAs-MB with MNB through a duplex of DNA. With the magnetic enrichment, the detection limit for thrombin reached to 42.4 pM. The experiment results showed that this type of electrochemical active-inactive switching aptamer molecular beacon allowed the direct detection of target proteins in the solution with no requirement of removing uncombined CAs-MB. Besides, CAs-MB/MNB can be easily regenerated by using 2M NaCl solution to cleave the thrombin from the aptasensor. PMID:20378327

  17. A new electrochemically active-inactive switching aptamer molecular beacon to detect thrombin directly in solution.

    PubMed

    Cheng, Guifang; Shen, Bijun; Zhang, Fan; Wu, Jikui; Xu, Ying; He, Pingang; Fang, Yuzhi

    2010-06-15

    A new electrochemical aptamer molecular beacon (MB) was designed by the carminic acid (CA) covalently linking at the each end of a special single-stranded stem-loop shaped oligonucleotide and named as CAs-MB. CA is an electrochemically active molecule and two CA molecules at the ends of molecular beacon stem were closed enough to associate each other to be as CA dimer. The dimer was electrochemically inactive. It separated into two CA monomers and produced the electrochemical signal while CAs-MB combined with target. In this protocol, the detection strategy of CAs-MB for thrombin is based on electrochemical active-inactive switching between monomer and dimer forms of CA. In order to enhance the electrochemical signal, magnetic nanobeads (MNB) was applied by connecting CAs-MB with MNB through a duplex of DNA. With the magnetic enrichment, the detection limit for thrombin reached to 42.4 pM. The experiment results showed that this type of electrochemical active-inactive switching aptamer molecular beacon allowed the direct detection of target proteins in the solution with no requirement of removing uncombined CAs-MB. Besides, CAs-MB/MNB can be easily regenerated by using 2M NaCl solution to cleave the thrombin from the aptasensor.

  18. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators

    PubMed Central

    Akam, Eman A.; Chang, Tsuhen M.; Astashkin, Andrei V.

    2014-01-01

    Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species. PMID:25100578

  19. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    SciTech Connect

    Chitnumsub, Penchit Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar; Amornwatcharapong, Watcharee; Pornthanakasem, Wichai; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2014-06-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.

  20. Microwave photonic bandgap devices with active plasma elements

    NASA Astrophysics Data System (ADS)

    Wang, Benjamin; Colon Quinones, Roberto; Biggs, David; Underwood, Thomas; Lucca Fabris, Andrea; Cappelli, Mark; Stanford Plasma Physics Laboratory Team

    2015-09-01

    A 3-D alumina rod based microwave photonic crystal device with integrated gaseous plasma elements is designed and characterized. Modulation of the plasma density of the active plasma elements is shown to allow for high fidelity modulation of the output signal of the photonic crystal device. Finite difference time domain (FDTD) simulations of the device are presented, and the functional effects of the plasma electron density, plasma collision frequency, and plasma dimensions are studied. Experimental characterization of the transmission of the device shows active tunability through adjustments of plasma parameters, including discharge current and plasma size. Additional photonic crystal structures with integrated plasma elements are explored. Sponsored by the AFSOR MURI and DOD NDSEG.

  1. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  2. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    PubMed Central

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  3. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    NASA Astrophysics Data System (ADS)

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-07-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  4. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  5. Charge Transport and Conductance Switching of Redox-Active Azulene Derivatives.

    PubMed

    Schwarz, Florian; Koch, Michael; Kastlunger, Georg; Berke, Heinz; Stadler, Robert; Venkatesan, Koushik; Lörtscher, Emanuel

    2016-09-19

    Azulene (Az) is a non-alternating, aromatic hydrocarbon composed of a five-membered, electron-rich and a seven-membered, electron-poor ring; an electron distribution that provides intrinsic redox activity. By varying the attachment points of the two electrode-bridging substituents to the Az center, the influence of the redox functionality on charge transport is evaluated. The conductance of the 1,3 Az derivative is at least one order of magnitude lower than those of the 2,6 Az and 4,7 Az derivatives, in agreement with density functional theory (DFT) calculations. In addition, only 1,3 Az exhibits pronounced nonlinear current-voltage characteristics with hysteresis, indicating a bias-dependent conductance switching. DFT identifies the LUMO to be nearest to the Fermi energy of the electrodes, but to be an active transport channel only in the case of the 2,6 and the 4,7 Az derivatives, whereas the 1,3 Az derivative uses the HOMO at low and the LUMO+1 at high bias. In return, the localized, weakly coupled LUMO of 1,3 Az creates a slow electron-hopping channel responsible for the voltage-induced switching due to the occupation of a single molecular orbital (MO).

  6. Charge Transport and Conductance Switching of Redox-Active Azulene Derivatives.

    PubMed

    Schwarz, Florian; Koch, Michael; Kastlunger, Georg; Berke, Heinz; Stadler, Robert; Venkatesan, Koushik; Lörtscher, Emanuel

    2016-09-19

    Azulene (Az) is a non-alternating, aromatic hydrocarbon composed of a five-membered, electron-rich and a seven-membered, electron-poor ring; an electron distribution that provides intrinsic redox activity. By varying the attachment points of the two electrode-bridging substituents to the Az center, the influence of the redox functionality on charge transport is evaluated. The conductance of the 1,3 Az derivative is at least one order of magnitude lower than those of the 2,6 Az and 4,7 Az derivatives, in agreement with density functional theory (DFT) calculations. In addition, only 1,3 Az exhibits pronounced nonlinear current-voltage characteristics with hysteresis, indicating a bias-dependent conductance switching. DFT identifies the LUMO to be nearest to the Fermi energy of the electrodes, but to be an active transport channel only in the case of the 2,6 and the 4,7 Az derivatives, whereas the 1,3 Az derivative uses the HOMO at low and the LUMO+1 at high bias. In return, the localized, weakly coupled LUMO of 1,3 Az creates a slow electron-hopping channel responsible for the voltage-induced switching due to the occupation of a single molecular orbital (MO). PMID:27553767

  7. Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception

    PubMed Central

    Brascamp, Jan; Blake, Randolph; Knapen, Tomas

    2015-01-01

    The human brain's executive systems play a vital role in deciding and selecting among actions. Selection among alternatives also occurs in the perceptual domain, for instance when perception switches between interpretations during perceptual bistability. Whether executive systems also underlie this functionality remains debated, with known fronto-parietal concomitants of perceptual switches being variously interpreted as reflecting the switches' cause, or as reflecting their consequences. We developed a paradigm where the two eyes receive different inputs and perception demonstrably switches between these inputs, yet where switches themselves are so inconspicuous as to become unreportable, minimizing their executive consequences. Fronto-parietal fMRI BOLD responses that accompany perceptual switches were similarly minimized in this paradigm, indicating that these reflect the switches' consequences rather than their cause. We conclude that perceptual switches do not always rely on executive brain areas, and that processes responsible for selection among alternatives may operate outside of the brain's executive systems. PMID:26436901

  8. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  9. Observation of power gain in an inductive pulsed power system with an optically activated semiconductor closing and opening switch

    NASA Astrophysics Data System (ADS)

    Kung, Chun C.; Funk, Eric E.; Chauchard, Eve A.; Rhee, M. J.; Lee, Chi H.; Yan, Li

    1991-03-01

    Peak power gain greater than 15 was obtained with a current charged transmission line and an optically activated semiconductor opening switch. The optical pulse used for activating the switch is generated by a Nd:glass laser emitting at 1. 054 pm. It has a slow rise-time (''--''2OO uS) and a fast fall-time (s1O uS). In the experiment a 2 kV output voltage pulse was achieved with a 5 mm cube GaAs p-i-n diode sitch at 500 V charging voltage.

  10. Development of Active Gas-Gap Heat Switch for Double-Stage Adiabatic Demagnetization Refrigerators

    NASA Astrophysics Data System (ADS)

    Ishisaki, Y.; Henmi, K.; Akamatsu, H.; Enoki, T.; Ohashi, T.; Hoshino, A.; Shinozaki, K.; Matsuo, H.; Okada, N.; Oshima, T.

    2012-06-01

    We designed and fabricated an active gas-gap heat switch (AGGHS), which ON/OFF the heat conduction between the 1st stage (0.05-2 K) and the 2nd stage (1-4 K) of a double-stage adiabatic demagnetization refrigerator (DADR). Our design geometrically separates two components which dominates the ON or OFF performance, and achieved heat conductivity of 6 mW/K (ON) or 4 μW/K (OFF) at 2 K. The ON/OFF is controlled by a heater attached to the charcoal box to adsorb/deadsorb 4He gas inside. We introduced the AGGHS to the DADR and successfully cooled the detector stage down to 60 mK, working properly more than a year.

  11. Transform-limited pulses generated by an actively Q-switched distributed fiber laser.

    PubMed

    Cuadrado-Laborde, C; Pérez-Millán, P; Andrés, M V; Díez, A; Cruz, J L; Barmenkov, Yu O

    2008-11-15

    A single-mode, transform-limited, actively Q-switched distributed-feedback fiber laser is presented, based on a new in-line acoustic pulse generator. Our technique permits a continuous adjustment of the repetition rate that modulates the Q factor of the cavity. Optical pulses of 800 mW peak power, 32 ns temporal width, and up to 20 kHz repetition rates were obtained. The measured linewidth demonstrates that these pulses are transform limited: 6 MHz for a train of pulses of 10 kHz repetition rate, 80 ns temporal width, and 60 mW peak power. Efficient excitation of spontaneous Brillouin scattering is demonstrated. PMID:19015677

  12. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  13. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    PubMed

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system. PMID:18404939

  14. Smectic-A-filled birefringent elements and fast switching twisted dual-frequency nematic cells used for digital light deflection

    NASA Astrophysics Data System (ADS)

    Pishnyak, Oleg P.; Golovin, Andrii B.; Kreminska, Liubov; Pouch, John J.; Miranda, Félix A.; Winker, Bruce K.; Lavrentovich, Oleg D.

    2006-04-01

    We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90-deg twisted nematic (TN) cell.

  15. Smectic A Filled Birefringent Elements and Fast Switching Twisted Dual Frequency Nematic Cells Used for Digital Light Deflection

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Golovin, Andrii; Kreminskia, Liubov; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.; Lavrentovich, Oleg D.

    2006-01-01

    We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90 twisted nematic (TN) cell.

  16. Finite element analysis of lightweight active primary mirror

    NASA Astrophysics Data System (ADS)

    Lu, Wei Xin; Guan, Chun Lin; Rao, Chang Hui

    2012-09-01

    With the increasing requirement on spatial resolution to achieve ideal performance in space-based optical imaging system, there is a need to enlarge primary apertures. However, primary mirrors of such systems cannot maintain its optical tolerances across the mirror surface after sending to space, because of gravity change and varying ambient temperature. It necessitates active optics technology of primary mirror surface correction. Since mass-to-orbit is expensive and limited, lightweight primary mirror is needed. The paper investigates a lightweight, active primary mirror. This primary mirror structure includes lightweight face sheet and substrate with surface-parallel actuators embedded in the recess of web support ribs. Finite element models of lightweight, active primary mirror structures with different structural parameters are established and simulated. Using the response function matrixes acquired from finite element analysis, the fitting errors for Zernike polynomials are computed by MATLAB. Correctability comparisons of lightweight, active primary mirror structures with different parameters are carried out. To get best correctability, the mirrors should have small recess depth, high and thin ribs, thick face sheets and long actuators. The structural analysis result will be valuable for the design of lightweight, active primary mirror.

  17. Improved complementary polymer pair system: switching for enzyme activity by PEGylated polymers.

    PubMed

    Kurinomaru, Takaaki; Tomita, Shunsuke; Kudo, Shinpei; Ganguli, Sumon; Nagasaki, Yukio; Shiraki, Kentaro

    2012-03-01

    The development of technology for on/off switching of enzyme activity is expected to expand the applications of enzyme in a wide range of research fields. We have previously developed a complementary polymer pair system (CPPS) that enables the activity of several enzymes to be controlled by a pair of oppositely charged polymers. However, it failed to control the activity of large and unstable α-amylase because the aggregation of the complex between anionic α-amylase and cationic poly(allylamine) (PAA) induced irreversible denaturation of the enzyme. To address this issue, we herein designed and synthesized a cationic copolymer with a poly(ethylene glycol) backbone, poly(N,N-diethylaminoethyl methacrylate)-block-poly(ethylene glycol) (PEAMA-b-PEG). In contrast to PAA, α-amylase and β-galactosidase were inactivated by PEAMA-b-PEG with the formation of soluble complexes. The enzyme/PEAMA-b-PEG complexes were then successfully recovered from the complex by the addition of anionic poly(acrylic acid) (PAAc). Thus, dispersion of the complex by PEG segment in PEAMA-b-PEG clearly plays a crucial role for regulating the activities of these enzymes, suggesting that PEGylated charged polymer is a new candidate for CPPS for large and unstable enzymes.

  18. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration

    PubMed Central

    Cao, Xuan; Kaneko, Tomonori; Li, Jenny S.; Liu, An-Dong; Voss, Courtney; Li, Shawn S. C.

    2015-01-01

    Although cell migration plays a central role in development and disease, the underlying molecular mechanism is not fully understood. Here we report that a phosphorylation-mediated molecular switch comprising deleted in liver cancer 1 (DLC1), tensin-3 (TNS3), phosphatase and tensin homologue (PTEN) and phosphoinositide-3-kinase (PI3K) controls the spatiotemporal activation of the small GTPases, Rac1 and RhoA, thereby initiating directional cell migration induced by growth factors. On epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) stimulation, TNS3 and PTEN are phosphorylated at specific Thr residues, which trigger the rearrangement of the TNS3–DLC1 and PTEN–PI3K complexes into the TNS3–PI3K and PTEN–DLC1 complexes. Subsequently, the TNS3–PI3K complex translocates to the leading edge of a migrating cell to promote Rac1 activation, whereas PTEN–DLC1 translocates to the posterior for localized RhoA activation. Our work identifies a core signalling mechanism by which an external motility stimulus is coupled to the spatiotemporal activation of Rac1 and RhoA to drive directional cell migration. PMID:26166433

  19. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  20. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor.

    PubMed

    Urizar, Eneko; Claeysen, Sylvie; Deupí, Xavier; Govaerts, Cedric; Costagliola, Sabine; Vassart, Gilbert; Pardo, Leonardo

    2005-04-29

    We aimed at understanding molecular events involved in the activation of a member of the G protein-coupled receptor family, the thyrotropin receptor. We have focused on the transmembrane region and in particular on a network of polar interactions between highly conserved residues. Using molecular dynamics simulations and site-directed mutagenesis techniques we have identified residue Asn-7.49, of the NPxxY motif of TM 7, as a molecular switch in the mechanism of thyrotropin receptor (TSHr) activation. Asn-7.49 appears to adopt two different conformations in the inactive and active states. These two states are characterized by specific interactions between this Asn and polar residues in the transmembrane domain. The inactive gauche+ conformation is maintained by interactions with residues Thr-6.43 and Asp-6.44. Mutation of these residues into Ala increases the constitutive activity of the receptor by factors of approximately 14 and approximately 10 relative to wild type TSHr, respectively. Upon receptor activation Asn-7.49 adopts the trans conformation to interact with Asp-2.50 and a putatively charged residue that remains to be identified. In addition, the conserved Leu-2.46 of the (N/S)LxxxD motif also plays a significant role in restraining the receptor in the inactive state because the L2.46A mutation increases constitutive activity by a factor of approximately 13 relative to wild type TSHr. As residues Leu-2.46, Asp-2.50, and Asn-7.49 are strongly conserved, this molecular mechanism of TSHr activation can be extended to other members of the rhodopsin-like family of G protein-coupled receptors.

  1. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  2. Effect of Retrieval Effort and Switching Demand on fMRI Activation During Semantic Word Generation in Schizophrenia

    PubMed Central

    Ragland, JD; Moelter, ST; Bhati, MT; Valdez, JN; Kohler, CG; Siegel, SJ; Gur, RC; Gur, RE

    2008-01-01

    Verbal fluency deficits in schizophrenia are difficult to interpret because the tasks are multi-factorial and groups differ in total words generated. We manipulated retrieval and switching demands by requiring alternation between over-learned sequences in which retrieval is relatively automatic (OS) and semantic categories requiring increased retrieval effort (SC). Controlled processing was also manipulated by including switching and non-switching conditions, and formal thought disorder (FTD) was assessed with the communication disorders index (CDI). The OS/SC semantic fluency paradigm was administered during fMRI to 13 patients with schizophrenia and 14 matched controls. Images were acquired on a 3 Tesla Siemens scanner using compressed image acquisition to allow for cued overt word production. Subjects alternated between OS, SC, OS-switch, SC-switch, and baseline blocks. Images were pre-processed in SPM-2, and a two-stage random effects analysis tested within and between group contrasts. There were no group performance differences. fMRI analysis did not reveal any group differences during the OS non-switching condition. Both groups produced expected activation in bilateral prefrontal and inferior parietal regions. However, during the SC condition patients had greater activation than controls in left prefrontal, right anterior cingulate, right superior temporal, bilateral thalamus, and left parietal regions. There was also evidence of patient over-activation in prefrontal, superior temporal, superior parietal, and visual association areas when a switching component was added. FTD was negatively correlated with BOLD response in the right anterior cingulate, cuneus and superior frontal gyrus during increased retrieval demand, and positively correlated with fMRI activation in the left lingual gyrus, right fusiform gyrus and left superior parietal lobule during increased switching demand. These results indicate that patients are able to successfully perform effortful

  3. A genomic screen for activators of the antioxidant response element

    PubMed Central

    Liu, Yanxia; Kern, Jonathan T.; Walker, John R.; Johnson, Jeffrey A.; Schultz, Peter G.; Luesch, Hendrik

    2007-01-01

    The antioxidant response element (ARE) is a cis-acting regulatory enhancer element found in the 5′ flanking region of many phase II detoxification enzymes. Up-regulation of ARE-dependent target genes is known to have neuroprotective effects; yet, the mechanism of activation is largely unknown. By screening an arrayed collection of ≈15,000 full-length expression cDNAs in the human neuroblastoma cell line IMR-32 with an ARE-luciferase reporter, we have identified several cDNAs not previously associated with ARE activation. A subset of cDNAs, encoding sequestosome 1 (SQSTM1) and dipeptidylpeptidase 3 (DPP3), activated the ARE in primary mouse-derived cortical neurons. Overexpression of SQSTM1 and DPP3 in IMR-32 cells stimulated NF-E2-related factor 2 (NRF2) nuclear translocation and led to increased levels of NAD(P)H:quinone oxidoreductase 1, a protein which is transcriptionally regulated by the ARE. When transfected into IMR-32 neuroblastoma cells that were depleted of transcription factor NRF2 by RNA interference, SQSTM1 and DPP3 were unable to activate the ARE or induce NAD(P)H:quinone oxidoreductase 1 expression, indicating that the ARE activation upon ectopic expression of these cDNAs is mediated by NRF2. Studies with pharmacological inhibitors indicated that 1-phosphatidylinositol 3-kinase and protein kinase C signaling are essential for activity. Overexpression of these cDNAs conferred partial resistance to hydrogen peroxide or rotenone-induced toxicity, consistent with the induction of antioxidant and phase II detoxification enzymes, which can protect from oxidative stress. This work and other such studies may provide mechanisms for activating the ARE in the absence of general oxidative stress and a yet-unexploited therapeutic approach to degenerative diseases and aging. PMID:17360324

  4. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    ERIC Educational Resources Information Center

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  5. Solid-state active switch matrix for high energy, moderate power battery systems

    DOEpatents

    Deal, Larry; Paris, Peter; Ye, Changqing

    2016-06-07

    A battery management system employs electronic switches and capacitors. No traditional cell-balancing resistors are used. The BMS electronically switches individual cells into and out of a module of cells in order to use the maximum amount of energy available in each cell and to completely charge and discharge each cell without overcharging or under-discharging.

  6. Geometric Nonlinear Finite Element Analysis of Active Fibre Composite Bimorphs

    NASA Astrophysics Data System (ADS)

    Kernaghan, Robert

    Active fibre composite-actuated bimorphic actuators were studied in order to measure deflection performance. The deflection of the actuators was a function of the actuating electric potential applied to the active material as well as the magnitude of the axial preload applied to the bimorphic structure. This problem required the use of geometric nonlinear modeling techniques. Geometric nonlinear finite element analysis was undertaken to determine the deflection performance of Macro Fibre Composite (MFC)- and Hollow Active Fibre (HAFC)-actuated bimorphic structures. A physical prototype MFC-actuated bimorphic structure was manufactured in order to verify the results obtained by the finite element analysis. Theses analyses determined that the bimorphic actuators were capable of significant deflection. The analyses determined that the axial preload of the bimorphic actuators significantly amplified the deflection performance of the bimorphic actuators. The deflection performance of the bimorphic actuators suggest that they could be candidates to act as actuators for the morphing wing of a micro unmanned air vehicle.

  7. Photopatterning and electro-optical switching of redox active fluorescent polymers

    NASA Astrophysics Data System (ADS)

    Seo, Seogjae; Kim, Yuna; You, Jungmok; Park, Teahoon; Kim, Eunkyoung

    2011-02-01

    The fluorescent poly(1,3,4-oxadiazole)s (POD) and polypyrene (PPy) were examined for electro-optic device. The fluorescence switching device prepared using poly(1,3,4-oxadiazole)s showed molecular structure-dependent switching properties depending on the para- or meta-linkage. Thin films of POD and PPy were prepared by solution process to give highly fluorescent film, of which emission intensity was switched on and off upon application of step potentials. Using a photochemical reaction, the thin films of POD and PPy were directly patterned to give a fluorescent pattern. An all solid state device containing the patterned films of POD and PPy was prepared using a solid polymer electrolyte layer. The device showed reversible fluorescence switching in response to external voltage applications. Patterning of the switching device in different dimension and scale will be demonstrated.

  8. Active control of multi-element rotor blade airfoils

    NASA Technical Reports Server (NTRS)

    Torok, Michael S. (Inventor); Moffitt, Robert C. (Inventor); Bagai, Ashish (Inventor)

    2005-01-01

    A multi-element rotor blade includes an individually controllable main element and fixed aerodynamic surface in an aerodynamically efficient location relative to the main element. The main element is controlled to locate the fixed aerodynamic surface in a position to increase lift and/or reduce drag upon the main element at various azimuthal positions during rotation.

  9. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  10. The modality-switch effect: visually and aurally presented prime sentences activate our senses.

    PubMed

    Scerrati, Elisa; Baroni, Giulia; Borghi, Anna M; Galatolo, Renata; Lugli, Luisa; Nicoletti, Roberto

    2015-01-01

    Verifying different sensory modality properties for concepts results in a processing cost known as the modality-switch effect. It has been argued that this cognitive cost is the result of a perceptual simulation. This paper extends this argument and reports an experiment investigating whether the effect is the result of an activation of sensory information which can also be triggered by perceptual linguistically described stimuli. Participants were first exposed to a prime sentence describing a light or a sound's perceptual property (e.g., "The light is flickering", "The sound is echoing"), then required to perform a property-verification task on a target sentence (e.g., "Butter is yellowish", "Leaves rustle"). The content modalities of the prime and target sentences could be compatible (i.e., in the same modality: e.g., visual-visual) or not (i.e., in different modalities). Crucially, we manipulated the stimuli's presentation modality such that half of the participants was faced with written sentences while the other half was faced with aurally presented sentences. Results show a cost when two different modalities alternate, compared to when the same modality is repeated with both visual and aural stimuli presentations. This result supports the embodied and grounded cognition view which claims that conceptual knowledge is grounded into the perceptual system. Specifically, this evidence suggests that sensory modalities can be pre-activated through the simulation of either read or listened linguistic stimuli describing visual or acoustic perceptual properties.

  11. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  12. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation

    PubMed Central

    Lee, Tai-Sung; Radak, Brian K.; Harris, Michael E.; York, Darrin M.

    2016-01-01

    RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested. PMID:27774349

  13. Selective inhibition of class switching to IgG and IgE by recruitment of the HoxC4 and Oct-1 homeodomain proteins and Ku70/Ku86 to newly identified ATTT cis-elements.

    PubMed

    Schaffer, András; Kim, Edmund C; Wu, Xiaoping; Zan, Hong; Testoni, Lucia; Salamon, Szilvia; Cerutti, Andrea; Casali, Paolo

    2003-06-20

    Immunoglobulin (Ig) class switching is central to the maturation of the antibody response as IgG, IgA, and IgE are endowed with more diverse biological effector functions than IgM. It is induced upon engagement of CD40 on B lymphocytes by CD40L expressed by activated CD4+ T cells and exposure of B cells to T cell-secreted cytokines including interleukin-4 and transforming growth factor-beta. It begins with germ line IH-CH transcription and unfolds through class switch DNA recombination (CSR). We show here that the HoxC4 and Oct-1 homeodomain proteins together with the Ku70/Ku86 heterodimer bind as a complex to newly identified switch (S) regulatory ATTT elements (SREs) in the Igamma and Iepsilon promoters and downstream regions to dampen basal germ line Igamma-Cgamma and Iepsilon-Cepsilon transcriptions and repress CSR to Cgamma and Cepsilon. This mechanism is inactive in the Calpha1/Calpha2 loci because of the lack of SREs in the Ialpha1/Ialpha2 promoters. Accordingly, in resting human IgM+IgD+ B cells, HoxC4, Oct-1, and Ku70/Ku86 can be readily identified as bound to the Igamma and Iepsilon promoters but not the Ialpha1/Ialpha2 promoters. CD40 signaling dissociates the HoxC4.Oct-1. Ku complex from the Igamma and Iepsilon promoter SREs, thereby relieving the IH-CH transcriptional repression and allowing CSR to unfold. Dissociation of HoxC4.Oct-1. Ku from DNA is hampered by CD153 engagement, a CD40-signaling inhibitor. Thus, these findings outline a HoxC4.Oct-1. Ku-dependent mechanism of selective regulation of class switching to IgG and IgE and further suggest distinct co-evolution and shared CSR activation pathways in the Cgamma and Cepsilon as opposed to the Calpha1/Calpha2 loci.

  14. Nanoscale memory elements based on the superconductor-ferromagnet proximity effect and spin-transfer torque magnetization switching

    NASA Astrophysics Data System (ADS)

    Baek, Burm

    Superconducting-ferromagnetic hybrid devices have potential for a practical memory technology compatible with superconducting logic circuits and may help realize energy-efficient, high-performance superconducting computers. We have developed Josephson junction devices with pseudo-spin-valve barriers. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. This effect persists to nanoscale devices in contrast to the remanent field effect. In nanopillar devices, the magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents at 4 K, which is consistent with the spin-transfer torque effect in analogous room-temperature spin valve devices. These results demonstrate devices that combine major superconducting and spintronic effects for scalable read and write of memory states, respectively. Further challenges and proposals towards practical devices will also be discussed.In collaboration with: William Rippard, NIST - Boulder, Matthew Pufall, NIST - Boulder, Stephen Russek, NIST-Boulder, Michael Schneider, NIST - Boulder, Samuel Benz, NIST - Boulder, Horst Rogalla, NIST-Boulder, Paul Dresselhaus, NIST - Boulder

  15. Real-time transposable element activity in individual live cells.

    PubMed

    Kim, Neil H; Lee, Gloria; Sherer, Nicholas A; Martini, K Michael; Goldenfeld, Nigel; Kuhlman, Thomas E

    2016-06-28

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE's orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  16. Real-time transposable element activity in individual live cells

    PubMed Central

    Lee, Gloria; Martini, K. Michael

    2016-01-01

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE’s orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  17. Illuminated push-button switch

    NASA Technical Reports Server (NTRS)

    Iwagiri, T.

    1983-01-01

    An illuminated push-button switch is described. It is characterized by the fact that is consists of a switch group, an operator button opening and closing the switch group, and a light-emitting element which illuminates the face of the operator button.

  18. DNA-bend modulation in a repressor-to-activator switching mechanism

    NASA Astrophysics Data System (ADS)

    Ansari, Aseem Z.; Bradner, James E.; O'Halloran, Thomas V.

    1995-03-01

    RECENT discoveries of activator proteins that distort DNA but bear no obvious activation domains have focused attention on the role of DNA structure in transcriptional regulation1. Here we describe how the transcription factor MerR can mediate repression as well as activation through stereospecific modulation of DNA structure. The represser form of MerR binds between the -10 and -35 promoter elements of the bacterial mercury-detoxification genes, PT, allowing RNA polymerase to form an inactive complex with PT and MerR at this stress-inducible promoter2,3. Upon mercuric ion binding, Hg-MerR converts this polymerase complex into the transcriptionally active or 'open' form2-4. We show here that MerR bends DNA towards itself in a manner similar to the bacterial catabolite-activator protein CAP, namely at two loci demarked by DNase I sensitivity, and that the activator conformation, Hg-MerR, relaxes these bends. This activator-induced unbending, when coupled with the previously described untwisting of the operator5, remodels the promoter and makes it a better template for the poised polymerase.

  19. Piezoelectric MEMS switch to activate event-driven wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Nogami, H.; Kobayashi, T.; Okada, H.; Makimoto, N.; Maeda, R.; Itoh, T.

    2013-09-01

    We have developed piezoelectric microelectromechanical systems (MEMS) switches and applied them to ultra-low power wireless sensor nodes, to monitor the health condition of chickens. The piezoelectric switches have ‘S’-shaped piezoelectric cantilevers with a proof mass. Since the resonant frequency of the piezoelectric switches is around 24 Hz, we have utilized their superharmonic resonance to detect chicken movements as low as 5-15 Hz. When the vibration frequency is 4, 6 and 12 Hz, the piezoelectric switches vibrate at 0.5 m s-2 and generate 3-5 mV output voltages with superharmonic resonance. In order to detect such small piezoelectric output voltages, we employ comparator circuits that can be driven at low voltages, which can set the threshold voltage (Vth) from 1 to 31 mV with a 1 mV increment. When we set Vth at 4 mV, the output voltages of the piezoelectric MEMS switches vibrate below 15 Hz with amplitudes above 0.3 m s-2 and turn on the comparator circuits. Similarly, by setting Vth at 5 mV, the output voltages turn on the comparator circuits with vibrations above 0.4 m s-2. Furthermore, setting Vth at 10 mV causes vibrations above 0.5 m s-2 that turn on the comparator circuits. These results suggest that we can select small or fast chicken movements to utilize piezoelectric MEMS switches with comparator circuits.

  20. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process. PMID:26351196

  1. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  2. The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity.

    PubMed

    Steffener, Jason; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can

  3. The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity

    PubMed Central

    Steffener, Jason; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can

  4. The modality-switch effect: visually and aurally presented prime sentences activate our senses

    PubMed Central

    Scerrati, Elisa; Baroni, Giulia; Borghi, Anna M.; Galatolo, Renata; Lugli, Luisa; Nicoletti, Roberto

    2015-01-01

    Verifying different sensory modality properties for concepts results in a processing cost known as the modality-switch effect. It has been argued that this cognitive cost is the result of a perceptual simulation. This paper extends this argument and reports an experiment investigating whether the effect is the result of an activation of sensory information which can also be triggered by perceptual linguistically described stimuli. Participants were first exposed to a prime sentence describing a light or a sound’s perceptual property (e.g., “The light is flickering”, “The sound is echoing”), then required to perform a property-verification task on a target sentence (e.g., “Butter is yellowish”, “Leaves rustle”). The content modalities of the prime and target sentences could be compatible (i.e., in the same modality: e.g., visual–visual) or not (i.e., in different modalities). Crucially, we manipulated the stimuli’s presentation modality such that half of the participants was faced with written sentences while the other half was faced with aurally presented sentences. Results show a cost when two different modalities alternate, compared to when the same modality is repeated with both visual and aural stimuli presentations. This result supports the embodied and grounded cognition view which claims that conceptual knowledge is grounded into the perceptual system. Specifically, this evidence suggests that sensory modalities can be pre-activated through the simulation of either read or listened linguistic stimuli describing visual or acoustic perceptual properties. PMID:26579049

  5. Neutron activation analysis; A sensitive test for trace elements

    SciTech Connect

    Hossain, T.Z. . Ward Lab.)

    1992-01-01

    This paper discusses neutron activation analysis (NAA), an extremely sensitive technique for determining the elemental constituents of an unknown specimen. Currently, there are some twenty-five moderate-power TRIGA reactors scattered across the United States (fourteen of them at universities), and one of their principal uses is for NAA. NAA is procedurally simple. A small amount of the material to be tested (typically between one and one hundred milligrams) is irradiated for a period that varies from a few minutes to several hours in a neutron flux of around 10{sup 12} neutrons per square centimeter per second. A tiny fraction of the nuclei present (about 10{sup {minus}8}) is transmuted by nuclear reactions into radioactive forms. Subsequently, the nuclei decay, and the energy and intensity of the gamma rays that they emit can be measured in a gamma-ray spectrometer.

  6. Rare earth elements activate endocytosis in plant cells

    PubMed Central

    Wang, Lihong; Li, Jigang; Zhou, Qing; Yang, Guangmei; Ding, Xiao Lan; Li, Xiaodong; Cai, Chen Xin; Zhang, Zhao; Wei, Hai Yan; Lu, Tian Hong; Deng, Xing Wang; Huang, Xiao Hua

    2014-01-01

    It has long been observed that rare earth elements (REEs) regulate multiple facets of plant growth and development. However, the underlying mechanisms remain largely unclear. Here, using electron microscopic autoradiography, we show the life cycle of a light REE (lanthanum) and a heavy REE (terbium) in horseradish leaf cells. Our data indicate that REEs were first anchored on the plasma membrane in the form of nanoscale particles, and then entered the cells by endocytosis. Consistently, REEs activated endocytosis in plant cells, which may be the cellular basis of REE actions in plants. Moreover, we discovered that a portion of REEs was successively released into the cytoplasm, self-assembled to form nanoscale clusters, and finally deposited in horseradish leaf cells. Taken together, our data reveal the life cycle of REEs and their cellular behaviors in plant cells, which shed light on the cellular mechanisms of REE actions in living organisms. PMID:25114214

  7. Rare earth elements activate endocytosis in plant cells.

    PubMed

    Wang, Lihong; Li, Jigang; Zhou, Qing; Yang, Guangmei; Ding, Xiao Lan; Li, Xiaodong; Cai, Chen Xin; Zhang, Zhao; Wei, Hai Yan; Lu, Tian Hong; Deng, Xing Wang; Huang, Xiao Hua

    2014-09-01

    It has long been observed that rare earth elements (REEs) regulate multiple facets of plant growth and development. However, the underlying mechanisms remain largely unclear. Here, using electron microscopic autoradiography, we show the life cycle of a light REE (lanthanum) and a heavy REE (terbium) in horseradish leaf cells. Our data indicate that REEs were first anchored on the plasma membrane in the form of nanoscale particles, and then entered the cells by endocytosis. Consistently, REEs activated endocytosis in plant cells, which may be the cellular basis of REE actions in plants. Moreover, we discovered that a portion of REEs was successively released into the cytoplasm, self-assembled to form nanoscale clusters, and finally deposited in horseradish leaf cells. Taken together, our data reveal the life cycle of REEs and their cellular behaviors in plant cells, which shed light on the cellular mechanisms of REE actions in living organisms.

  8. Finding a stabilising switching law for switching nonlinear models

    NASA Astrophysics Data System (ADS)

    Lendek, Zs.; Raica, P.; Lauber, J.; Guerra, T. M.

    2016-09-01

    This paper considers the stabilisation of switching nonlinear models by switching between the subsystems. We assume that arbitrary switching between two subsystems is possible once a subsystem has been active for a predefined number of samples. We use a Takagi-Sugeno representation of the models and a switching Lyapunov function is employed to develop sufficient stability conditions. If the conditions are satisfied, we construct a switching law that stabilises the system. The application of the conditions is illustrated in several examples.

  9. Dendritic Slow Dynamics Enables Localized Cortical Activity to Switch between Mobile and Immobile Modes with Noisy Background Input

    PubMed Central

    Kurashige, Hiroki; Câteau, Hideyuki

    2011-01-01

    Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability. PMID:21931635

  10. A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism.

    PubMed

    Patel, Mainak

    2016-04-01

    Infant rats switch randomly between the sleeping and waking states; during early infancy (up to postnatal day 8), sleep and wake bouts are random, brief (with means on the order of several seconds) and exponentially distributed, with the length of a particular bout independent of the length of prior bouts. As the rat ages during this early period, mean sleep and wake bout lengths gradually increase, though sleep and wake bouts remain exponentially distributed. Additionally, sleep and wake bouts are regulated independently of each other - alterations in the development of sleep (wake) bouts has no impact on the regulation wake (sleep) bouts. Sleep and wake bout behavior is associated with the activity of mutually inhibitory sleep-active and wake-active brainstem populations. In this work, I employ a simplified biophysical model of two mutually inhibitory populations consisting of ten integrate-and-fire neurons each and a noise-based switching mechanism. I show that such a noise-based switching mechanism naturally accounts for the experimentally observed features of sleep-wake switching during early infancy - random alternating activity bouts occur as a consequence of noise (provided inhibition is strong relative to excitation), bout durations are exponential (due to a lack of memory within the system), and cross-population inhibition or intrapopulation excitatory coupling provide mechanisms for changing and independently regulated sleep and wake bout means. PMID:26802484

  11. A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism.

    PubMed

    Patel, Mainak

    2016-04-01

    Infant rats switch randomly between the sleeping and waking states; during early infancy (up to postnatal day 8), sleep and wake bouts are random, brief (with means on the order of several seconds) and exponentially distributed, with the length of a particular bout independent of the length of prior bouts. As the rat ages during this early period, mean sleep and wake bout lengths gradually increase, though sleep and wake bouts remain exponentially distributed. Additionally, sleep and wake bouts are regulated independently of each other - alterations in the development of sleep (wake) bouts has no impact on the regulation wake (sleep) bouts. Sleep and wake bout behavior is associated with the activity of mutually inhibitory sleep-active and wake-active brainstem populations. In this work, I employ a simplified biophysical model of two mutually inhibitory populations consisting of ten integrate-and-fire neurons each and a noise-based switching mechanism. I show that such a noise-based switching mechanism naturally accounts for the experimentally observed features of sleep-wake switching during early infancy - random alternating activity bouts occur as a consequence of noise (provided inhibition is strong relative to excitation), bout durations are exponential (due to a lack of memory within the system), and cross-population inhibition or intrapopulation excitatory coupling provide mechanisms for changing and independently regulated sleep and wake bout means.

  12. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  13. Changes in amino acid and nucleotide pools of Rhodospirillum rubrum during switch-off of nitrogenase activity initiated by NH4+ or darkness.

    PubMed Central

    Li, J D; Hu, C Z; Yoch, D C

    1987-01-01

    Amino acid and nucleotide pools were measured in nitrogenase-containing Rhodospirillum rubrum cultures during NH4+- or dark-induced inactivation (switch-off) of the Fe protein. A big increase in the glutamine pool size preceded NH4+ switch-off of nitrogenase activity, but the glutamine pool remained unchanged during dark switch-off. Furthermore, methionine sulfoximine had no effect on the rate of dark switch-off, suggesting that glutamine plays no role in this process. In the absence of NH4+ azaserine, an inhibitor of glutamate synthate, raised glutamine pool levels sufficiently to initiate switch-off in vivo. While added NH4+ substantially increased the size of the nucleotide pools in N-limited cells, the kinetics of nucleotide synthesis were all similar and followed (rather than preceded) Fe protein inactivation. Darkness had little effect on nucleotide pool sizes. Glutamate pool sizes were also found to be important in NH4+ switch-off because of the role of this molecule as a glutamine precursor. Much of the diversity reported in the observations on NH4+ switch-off appears to be due to variations in glutamate pool sizes prior to the NH4+ shock. The nitrogen nutritional background is an important factor in determining whether darkness initiates nitrogenase switch-off; however, no link has yet been established between this and NH4+ (glutamine) switch-off. Images PMID:2878918

  14. Melanopsin Variants as Intrinsic Optogenetic On and Off Switches for Transient versus Sustained Activation of G Protein Pathways.

    PubMed

    Spoida, Katharina; Eickelbeck, Dennis; Karapinar, Raziye; Eckhardt, Tobias; Mark, Melanie D; Jancke, Dirk; Ehinger, Benedikt Valerian; König, Peter; Dalkara, Deniz; Herlitze, Stefan; Masseck, Olivia A

    2016-05-01

    G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing. We compared the biophysical properties and optogenetic application of a human and a mouse melanopsin variant (hOpn4L and mOpn4L) on the control of Gi/o and Gq pathways in heterologous expression systems and mouse brain. We found that GPCR pathways can be switched on/off by blue/yellow light. The proteins differ in their kinetics and wavelength dependence to activate and deactivate G protein pathways. Whereas mOpn4L is maximally activated by very short light pulses, leading to sustained G protein activation, G protein responses of hOpn4L need longer light pulses to be activated and decline in amplitude. Based on the different biophysical properties, brief light activation of mOpn4L is sufficient to induce sustained neuronal firing in cerebellar Purkinje cells (PC), whereas brief light activation of hOpn4L induces AP firing, which declines in frequency over time. Most importantly, mOpn4L-induced sustained firing can be switched off by yellow light. Based on the biophysical properties, hOpn4L and mOpn4L represent the first GPCR optogenetic tools, which can be used to switch GPCR pathways/neuronal firing on an off with temporal precision and limited phototoxicity. We suggest to name these tools moMo and huMo for future optogenetic applications. PMID:27068418

  15. Melanopsin Variants as Intrinsic Optogenetic On and Off Switches for Transient versus Sustained Activation of G Protein Pathways.

    PubMed

    Spoida, Katharina; Eickelbeck, Dennis; Karapinar, Raziye; Eckhardt, Tobias; Mark, Melanie D; Jancke, Dirk; Ehinger, Benedikt Valerian; König, Peter; Dalkara, Deniz; Herlitze, Stefan; Masseck, Olivia A

    2016-05-01

    G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing. We compared the biophysical properties and optogenetic application of a human and a mouse melanopsin variant (hOpn4L and mOpn4L) on the control of Gi/o and Gq pathways in heterologous expression systems and mouse brain. We found that GPCR pathways can be switched on/off by blue/yellow light. The proteins differ in their kinetics and wavelength dependence to activate and deactivate G protein pathways. Whereas mOpn4L is maximally activated by very short light pulses, leading to sustained G protein activation, G protein responses of hOpn4L need longer light pulses to be activated and decline in amplitude. Based on the different biophysical properties, brief light activation of mOpn4L is sufficient to induce sustained neuronal firing in cerebellar Purkinje cells (PC), whereas brief light activation of hOpn4L induces AP firing, which declines in frequency over time. Most importantly, mOpn4L-induced sustained firing can be switched off by yellow light. Based on the biophysical properties, hOpn4L and mOpn4L represent the first GPCR optogenetic tools, which can be used to switch GPCR pathways/neuronal firing on an off with temporal precision and limited phototoxicity. We suggest to name these tools moMo and huMo for future optogenetic applications.

  16. LRE2, an active human L1 element, has low level transcriptional activity and extremely low reverse transcriptase activity

    SciTech Connect

    Holmes, S.E.; Dombroski, B.A.; Sassaman, D.M.

    1994-09-01

    Previously, we found a 2 kb insertion containing a rearranged L1 element plus a unique sequence component (USC) within exon 48 of the dystrophin gene of a patient with muscular dystrophy. We used the USC to clone the precursor of this insertion, the second known {open_quotes}active{close_quotes} human L1 element. The locus LRE2 (L1 Retrotransposable Element 2) has an allele derived from the patient which matches the insertion sequence exactly. LRE2 has a perfect 13-15 bp target site duplication, 2 open reading frames (ORFs), and an unusual 21 bp truncation of the 5{prime} end in a region known to be important for L1 transcription. The truncated LRE2 promoter has about 20% of the transcriptional activity of a previously studied L1 promoter after transfection into NTera2D1 cells of a construct in which the L1 promoter drives the expression of a lacZ gene. In addition, the reverse transcriptase (RT) encoded by LRE2 is active in an in vivo pseudogene assay in yeast and an in vitro assay. However, in both assays the RT of LRE2 is 1-5% as active as that of LRE1. These data demonstrate that multiple {open_quotes}active{close_quotes} L1 elements exist in the human genome, and that active elements can have highly variable rates of transcription and reverse transcriptase activity. That the RT of LRE2 has extremely low activity suggests the possibility that retrotransposition of an L1 element may in some cases involve an RT encoded by another L1 element.

  17. Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.

    2000-03-02

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

  18. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.; THORNTON,R.L.; DONALDSON,R.D.

    1999-12-17

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible with virtually infinite expected lifetime at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approx}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs, unlike a switch with conventional contacts. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  19. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    Baca, A.G.; Brown, D.J.; Donaldson, R.D.; Helgeson, W.D.; Hjalmarson, H.P.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Thornton, R.L.; Zutavern, F.J.

    1999-08-05

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  20. A fail safe laser activated switch used as an emergency control link at the Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Kassel, P. C., Jr.

    1978-01-01

    A fail safe light activated switch was used as an emergency control link at the Langley Vortex Research Facility. In this facility aircraft models were towed through a still air test chamber by a gasoline powered vehicle which was launched from one end of a 427-meter track and attained velocities to 31 m/sec in the test chamber. A 5 mW HeNe laser with a mechanical copper provided a connecting link with the moving tow vehicle on which a silicon photodiode receiver with a specially designed amplifier provided a fail safe switching action. This system provided an emergency means of stopping the vehicle by turning off the laser to interrupt the power to the vehicle ignition and brake release systems.

  1. Influence of fine threads and platform-switching on crestal bone stress around implant-a three-dimensional finite element analysis.

    PubMed

    Khurana, Pardeep; Sharma, Arun; Sodhi, Kiranmeet Kaur

    2013-12-01

    The aims of this study were to investigate the effect of implant fine threads on crestal bone stress compared to a standard smooth implant collar and to analyze how different abutment diameters influenced the crestal bone stress level. Three-dimensional finite element imaging was used to create a cross-sectional model in SolidWorks 2007 software of an implant (5-mm platform and 10 mm in length) placed in the premolar region of the mandible. The implant model was created to resemble a commercially available fine thread implant. Abutments of different diameters (5.0 mm: standard, 4.5 mm, 4.0 mm, and 3.5 mm) were loaded with a force of 100 N at 90° vertical and 40° oblique angles. Finite element analysis was done in COSMOSWorks software, which was used to analyze the stress patterns in bone, especially in the crestal region. Upon loading, the fine thread implant model had greater stress at the crestal bone adjacent to the implant than the smooth neck implant in both vertical and oblique loading. When the abutment diameter decreased progressively from 5.0 mm to 4.5 mm to 4 mm and to 3.5 mm the thread model showed a reduction of stress at the crestal bone level from 23.2 MPa to 15.02 MPa for fine thread and from 22.7 to 13.5 MPa for smooth collar implant group after vertical loading and from 43.7 MPa to 33.1 MPa in fine thread model and from 36.9 to 20.5 MPa in smooth collar implant model after oblique loading. Fine threads increase crestal stress upon loading. Reduced abutment diameter that is platform switching resulted in less stress translated to the crestal bone in the fine thread and smooth neck.

  2. Emergy of the Global Biogeochemical Cycles of Biologically Active Elements

    EPA Science Inventory

    Accurate estimates of the emergy of elemental flows are needed to accurately evaluate the far field effects of anthropogenic wastes. The transformity and specific emergy of the elements and of their different chemical species is also needed to quantify the inputs to many producti...

  3. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  4. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  5. Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Wang, Mingjian; Zhu, Liang; Zhou, Jun; Chen, Weibiao; Fan, Dianyuan

    2013-08-01

    We report, for the first time to our knowledge, an acousto-optic Q-switched Er3+:Yb3+:YVO4 laser end-pumped by a fiber-coupled diode laser at 976 nm. A maximum continuous wave output power of 230 mW at 1602.6 nm was obtained with an output coupler of 2% transmission under an absorbed pump power of 7.2 W. In Q-switched operation, a wide range of repetition rates from 500 Hz to 50 kHz was demonstrated. 0.19 mJ maximum pulse energy with 130 ns pulse duration was obtained at a repetition rate of 500 Hz. A reduced storage time of the upper laser level was discovered, which was suggested to be a result of up-conversion loss.

  6. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif.

    PubMed

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  7. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif

    PubMed Central

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d’Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  8. Alarm toe switch

    DOEpatents

    Ganyard, Floyd P.

    1982-01-01

    An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.

  9. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis

    PubMed Central

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-01-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ70-dependent and the contrasting σ54-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ54-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ70-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ54-regulated promoters. Strikingly, removal of the σ54 Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. PMID:26365052

  10. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.

    PubMed

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-11-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ(70)-dependent and the contrasting σ(54)-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ(54)-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ(70)-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ(54)-regulated promoters. Strikingly, removal of the σ(54) Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator.

  11. Dectin-1 agonist selectively induces IgG1 class switching by LPS-activated mouse B cells.

    PubMed

    Seo, Beom-Seok; Park, Ha-Yan; Yoon, Hee-Kyung; Yoo, Yung-Choon; Lee, Junglim; Park, Seok-Rae

    2016-10-01

    Heat-killed Saccharomyces cerevisiae (HKSC) is an agonist for Dectin-1, a major fungal cell wall β-glucan receptor. We previously reported that HKSC selectively enhances IgG1 production by LPS-activated mouse B cells. To determine if this IgG1 selectivity is caused by selective IgG1 class switching, we performed RT-PCRs for measuring germline transcripts (GLTs), flow cytometric analyses for detecting Ig-expressing cells, and ELISPOT assays for measuring the number of Ig-secreting cells in HKSC/LPS-stimulated mouse B cell cultures. HKSC selectively enhanced expression of GLTγ1, the number of IgG1-expressing cells, and the number of IgG1-secreting B cells in the presence of LPS stimulation. In addition, HKSC induced the expression of CD69, an activation marker for B lymphocytes, and the expression of surface Dectin-1. Two Dectin-1 antagonists, laminarin and a neutralizing Dectin-1 antibody, selectively diminished HKSC-reinforced IgG1 production by LPS-stimulated B cells. Furthermore, depleted zymosan (dzn), a Dectin-1 agonist with increased selectivity, also selectively enhanced GLTγ1 transcription. The Dectin-1 antagonists blocked dzn-induced IgG1 production by LPS-activated B cells. Collectively, these results suggest that Dectin-1 agonists selectively induce IgG1 class switching by direct stimulation of Dectin-1 on LPS-activated B cells resulting in selective production of IgG1. PMID:27568820

  12. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.

    PubMed

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-11-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ(70)-dependent and the contrasting σ(54)-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ(54)-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ(70)-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ(54)-regulated promoters. Strikingly, removal of the σ(54) Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. PMID:26365052

  13. Dectin-1 agonist selectively induces IgG1 class switching by LPS-activated mouse B cells.

    PubMed

    Seo, Beom-Seok; Park, Ha-Yan; Yoon, Hee-Kyung; Yoo, Yung-Choon; Lee, Junglim; Park, Seok-Rae

    2016-10-01

    Heat-killed Saccharomyces cerevisiae (HKSC) is an agonist for Dectin-1, a major fungal cell wall β-glucan receptor. We previously reported that HKSC selectively enhances IgG1 production by LPS-activated mouse B cells. To determine if this IgG1 selectivity is caused by selective IgG1 class switching, we performed RT-PCRs for measuring germline transcripts (GLTs), flow cytometric analyses for detecting Ig-expressing cells, and ELISPOT assays for measuring the number of Ig-secreting cells in HKSC/LPS-stimulated mouse B cell cultures. HKSC selectively enhanced expression of GLTγ1, the number of IgG1-expressing cells, and the number of IgG1-secreting B cells in the presence of LPS stimulation. In addition, HKSC induced the expression of CD69, an activation marker for B lymphocytes, and the expression of surface Dectin-1. Two Dectin-1 antagonists, laminarin and a neutralizing Dectin-1 antibody, selectively diminished HKSC-reinforced IgG1 production by LPS-stimulated B cells. Furthermore, depleted zymosan (dzn), a Dectin-1 agonist with increased selectivity, also selectively enhanced GLTγ1 transcription. The Dectin-1 antagonists blocked dzn-induced IgG1 production by LPS-activated B cells. Collectively, these results suggest that Dectin-1 agonists selectively induce IgG1 class switching by direct stimulation of Dectin-1 on LPS-activated B cells resulting in selective production of IgG1.

  14. Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster.

    PubMed

    Woodruff, R C; Thompson, J N; Barker, J S; Huai, H

    1999-01-01

    Some transposable DNA elements in higher organisms are active in somatic cells, as well as in germinal cells. What effect does the movement of DNA elements in somatic cells have on life history traits? It has previously been reported that somatically active P and mariner elements in Drosophila induce genetic damage and significantly reduce lifespan. In this study, we report that the movement of P elements in somatic cells also significantly reduces fitness, mating activity, and locomotion of Drosophila melanogaster. If other elements cause similar changes in life history traits, it is doubtful if transposable DNA elements remain active for long in somatic cells in natural populations.

  15. Active Q-switching of a fiber laser using a modulated fiber Fabry-Perot filter and a fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Martínez Manuel, Rodolfo; Kaboko, J. J. M.; Shlyagin, M. G.

    2016-02-01

    We propose and demonstrate a simple and robust actively Q-switched erbium-doped fiber ring cavity laser. The Q-switching is based on dynamic spectral overlapping of two filters, namely a fiber Bragg grating-based filter and a fiber Fabry-Perot tunable filter. Using 3.5 m of erbium-doped fiber and a pump power of only 60 mW, Q-switched pulses with a peak power of 9.7 W and a pulse duration of 500 ns were obtained. A pulse repetition rate can be continuously varied from a single shot to a few KHz.

  16. A redox-dependent dimerization switch regulates activity and tolerance for reactive oxygen species of barley seed glutathione peroxidase.

    PubMed

    Navrot, Nicolas; Skjoldager, Nicklas; Bunkenborg, Jakob; Svensson, Birte; Hägglund, Per

    2015-05-01

    Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert-butyl hydroperoxide, but is more sensitive to inactivation by hydrogen peroxide. Treatment of the monomer with hydrogen peroxide results in dimer formation. This observed new behavior of a plant glutathione peroxidase suggests a mechanism involving a switch from a highly catalytically competent monomer to a less active, but more oxidation-resistant dimer. PMID:25796076

  17. High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength

    NASA Astrophysics Data System (ADS)

    Su, Fufang; Zhang, Xingyu; Wang, Weitao; Cong, Zhenhua; Shi, Men; Yang, Xiuqin; Kong, Weijin; Ma, Lili; Wu, Wendi

    2013-09-01

    With Nd:YAG as the gain medium and KTP crystal as the Raman medium, the characteristics of an LD pumped intracavity actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength were studied. The output characteristics of 1096 nm were investigated. At a pulse repetition rate of 30 kHz an average power up to 1.97 W was obtained with the incident pump power of 11.75 W, corresponding to a diode-to-Stokes conversion efficiency of 16.8%.

  18. How yawning switches the default-mode network to the attentional network by activating the cerebrospinal fluid flow.

    PubMed

    Walusinski, Olivier

    2014-03-01

    Yawning is a behavior to which little research has been devoted. However, its purpose has not yet been demonstrated and remains controversial. In this article, we propose a new theory involving the brain network that is functional during the resting state, that is, the default mode network. When this network is active, yawning manifests a process of switching to the attentional system through its capacity to increase circulation of cerebrospinal fluid (CSF), thereby increasing clearance of somnogenic factors (prostaglandin D(2), adenosine, and others) accumulating in the cerebrospinal fluid.

  19. The WEE1 regulators CPEB1 and miR-15b switch from inhibitor to activators at G2/M.

    PubMed

    Kratassiouk, Gueorgui; Pritchard, Linda L; Cuvellier, Sylvain; Vislovukh, Andrii; Meng, Qingwei; Groisman, Regina; Degerny, Cindy; Deforzh, Evgeny; Harel-Bellan, Annick; Groisman, Irina

    2016-01-01

    MicroRNAs (miRNAs) in the AGO-containing RISC complex control messenger RNA (mRNA) translation by binding to mRNA 3' untranslated region (3'UTR). The relationship between miRNAs and other regulatory factors that also bind to mRNA 3'UTR, such as CPEB1 (cytoplasmic polyadenylation element-binding protein), remains elusive. We found that both CPEB1 and miR-15b control the expression of WEE1, a key mammalian cell cycle regulator. Together, they repress WEE1 protein expression during G1 and S-phase. Interestingly, the 2 factors lose their inhibitory activity at the G2/M transition, at the time of the cell cycle when WEE1 expression is maximal, and, moreover, rather activate WEE1 translation in a synergistic manner. Our data show that translational regulation by RISC and CPEB1 is essential in cell cycle control and, most importantly, is coordinated, and can be switched from inhibition to activation during the cell cycle. PMID:27027998

  20. Trace elements by instrumental neutron activation analysis for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was plus or minus 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.

  1. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  2. Spatiotemporal Control of Vascular Endothelial Growth Factor Expression Using a Heat-Shock-Activated, Rapamycin-Dependent Gene Switch

    PubMed Central

    Martín-Saavedra, Francisco M.; Wilson, Christopher G.; Voellmy, Richard; Vilaboa, Nuria

    2013-01-01

    Abstract A major challenge in regenerative medicine is to develop methods for delivering growth and differentiation factors in specific spatial and temporal patterns, thereby mimicking the natural processes of development and tissue repair. Heat shock (HS)-inducible gene expression systems can respond to spatial information provided by localized heating, but are by themselves incapable of sustained expression. Conversely, gene switches activated by small molecules provide tight temporal control and sustained expression, but lack mechanisms for spatial targeting. Here we combine the advantages of HS and ligand-activated systems by developing a novel rapamycin-regulated, HS-inducible gene switch that provides spatial and temporal control and sustained expression of transgenes such as firefly luciferase and vascular endothelial growth factor (VEGF). This gene circuit exhibits very low background in the uninduced state and can be repeatedly activated up to 1 month. Furthermore, dual regulation of VEGF induction in vivo is shown to stimulate localized vascularization, thereby providing a route for temporal and spatial control of angiogenesis. PMID:23527589

  3. Switch wear leveling

    SciTech Connect

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  4. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  5. Finite Element Learning Modules as Active Learning Tools

    ERIC Educational Resources Information Center

    Brown, Ashland O.; Jensen, Daniel; Rencis, Joseph; Wood, Kristin; Wood, John; White, Christina; Raaberg, Kristen Kaufman; Coffman, Josh

    2012-01-01

    The purpose of active learning is to solicit participation by students beyond the passive mode of traditional classroom lectures. Reading, writing, participating in discussions, hands-on activities, engaging in active problem solving, and collaborative learning can all be involved. The skills acquired during active learning tend to go above and…

  6. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination.

    PubMed

    Zahn, Astrid; Eranki, Anil K; Patenaude, Anne-Marie; Methot, Stephen P; Fifield, Heather; Cortizas, Elena M; Foster, Paul; Imai, Kohsuke; Durandy, Anne; Larijani, Mani; Verdun, Ramiro E; Di Noia, Javier M

    2014-03-18

    Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR.

  7. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination.

    PubMed

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M; Reddy, Janardan K; Borggrefe, Tilman; Skok, Jane A; Reina-San-Martin, Bernardo

    2016-03-01

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.

  8. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination

    PubMed Central

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P.; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M.; Reddy, Janardan K.; Borggrefe, Tilman; Skok, Jane A.

    2016-01-01

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation. PMID:26903242

  9. Trace element analysis of K, U and Th in high purity materials by neutron activation analysis

    SciTech Connect

    Pillalamarri, Ila

    2005-09-08

    The concept and usage of 'high purity' are explained. Trace element analysis of K, U and Th by neutron activation analysis is described, the radio-isotopes and their corresponding gamma-rays used to identify the elements are listed. The interfering elements are described. The advantages and disadvantages of using neutron activation analysis are discussed. Some examples of trace impurity determinations in high purity materials are provided.

  10. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  11. A Novel Function for Hog1 Stress-Activated Protein Kinase in Controlling White-Opaque Switching and Mating in Candida albicans

    PubMed Central

    Liang, Shen-Huan; Cheng, Jen-Hua; Deng, Fu-Sheng; Tsai, Pei-An

    2014-01-01

    Candida albicans is a commensal in heathy people but has the potential to become an opportunistic pathogen and is responsible for half of all clinical infections in immunocompromised patients. Central to understanding C. albicans behavior is the white-opaque phenotypic switch, in which cells can undergo an epigenetic transition between the white state and the opaque state. The phenotypic switch regulates multiple properties, including biofilm formation, virulence, mating, and fungus-host interactions. Switching between the white and opaque states is associated with many external stimuli, such as oxidative stress, pH, and N-acetylglucosamine, and is directly regulated by the Wor1 transcriptional circuit. The Hog1 stress-activated protein kinase (SAPK) pathway is recognized as the main pathway for adapting to environmental stress in C. albicans. In this work, we first show that loss of the HOG1 gene in a/a and α/α cells, but not a/α cells, results in 100% white-to-opaque switching when cells are grown on synthetic medium, indicating that switching is repressed by the a1/α2 heterodimer that represses WOR1 gene expression. Indeed, switching in the hog1Δ strain was dependent on the presence of WOR1, as a hog1Δ wor1Δ strain did not show switching to the opaque state. Deletion of PBS2 and SSK2 also resulted in C. albicans cells switching from white to opaque with 100% efficiency, indicating that the entire Hog1 SAPK pathway is involved in regulating this unique phenotypic transition. Interestingly, all Hog1 pathway mutants also caused defects in shmoo formation and mating efficiencies. Overall, this work reveals a novel role for the Hog1 SAPK pathway in regulating white-opaque switching and sexual behavior in C. albicans. PMID:25344054

  12. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Chao-Wei; Chang, Hsiang-Yu; Chang, Jia-Yaw; Huang, Chih-Ching

    2012-10-01

    In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic activity to a catalase-like activity. Based on this phenomenon, we developed a new method for detecting mercury ions through their deposition on bimetallic Pt/Au NPs to switch the catalytic activity of Pt/Au NPs. Pt/Au NPs could be easily prepared through reduction of Au3+ and Pt4+ by sodium citrate in a one-pot synthesis. The peroxidase catalytic activity of the Pt/Au NPs was controlled by varying the ratios of Pt to Au. The Pt0.1/Au NPs (prepared with a [Au3+]/[Pt4+] molar ratio of 9.0/1.0) showed excellent oxidation catalysis for H2O2-mediated oxidation of Amplex® Red (AR) to resorufin. The oxidized product of AR, resorufin, fluoresces more strongly (excitation/emission wavelength maxima ca. 570/585 nm) than AR alone. The peroxidase catalytic activity of Pt0.1/Au NPs was switched to catalase-like activity in the presence of mercury ions in a 5.0 mM tris(hydroxymethyl)aminomethane (Tris)-borate solution (pH 7.0) through the deposition of Hg on the particle surfaces owing to the strong Hg-Au metallic bond. The catalytic activity of Hg-Pt0.1/Au NPs is superior (by at least 5-fold) to that of natural catalase (from bovine liver). Under optimal solution conditions [5.0 mM Tris-borate (pH 7.0), H2O2 (50 mM), and AR (10 μM)] and in the presence of the masking agents polyacrylic acid and tellurium nanowires, the Pt0.1/Au NPs allowed the selective detection of inorganic mercury (Hg2+) and methylmercury ions (MeHg+) at concentrations as low as several nanomolar. This simple, fast, and cost-effective system enabled selective determination of the spiked concentrations of Hg2+ and MeHg+ in tap, pond, and stream waters.In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic

  13. Flipping the switch on chloride concentrations with a light-active foldamer.

    PubMed

    Hua, Yuran; Flood, Amar H

    2010-09-22

    Here we demonstrate a bioinspired system where light stimulus is used to trigger the wavelength-dependent release and then reuptake of chloride ions in nonaqueous solutions. A chiral aryl-triazole foldamer with two azobenzene end groups has been synthesized to define a folded binding pocket for chloride ions that unfolds with UV light to liberate the chloride. The trans-dominated helical foldamer becomes less stable upon photoisomerization to the cis forms. Simultaneously, the observed binding affinity shows an ∼10-fold reduction from K = 3000 M(-1) (MeCN, 298 K). Control of chloride levels using light is demonstrated by switching the conductivity of an electrolyte solution up and down.

  14. Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch.

    PubMed

    Kelly, Bernard T; Graham, Stephen C; Liska, Nicole; Dannhauser, Philip N; Höning, Stefan; Ungewickell, Ernst J; Owen, David J

    2014-07-25

    Clathrin-mediated endocytosis (CME) is vital for the internalization of most cell-surface proteins. In CME, plasma membrane-binding clathrin adaptors recruit and polymerize clathrin to form clathrin-coated pits into which cargo is sorted. Assembly polypeptide 2 (AP2) is the most abundant adaptor and is pivotal to CME. Here, we determined a structure of AP2 that includes the clathrin-binding β2 hinge and developed an AP2-dependent budding assay. Our findings suggest that an autoinhibitory mechanism prevents clathrin recruitment by cytosolic AP2. A large-scale conformational change driven by the plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate and cargo relieves this autoinhibition, triggering clathrin recruitment and hence clathrin-coated bud formation. This molecular switching mechanism can couple AP2's membrane recruitment to its key functions of cargo and clathrin binding.

  15. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.

    PubMed

    Sun, Lu; June Liu, Siqiong

    2007-09-01

    The repetitive activation of synaptic glutamate receptors can induce a lasting change in the number or subunit composition of synaptic AMPA receptors (AMPARs). However, NMDA receptors that are present extrasynaptically can also be activated by a burst of presynaptic activity, and thus may be involved in the induction of synaptic plasticity. Here we show that the physiological-like activation of extrasynaptic NMDARs induces a lasting change in the synaptic current, by changing the subunit composition of AMPARs at the parallel fibre-to-cerebellar stellate cell synapse. This extrasynaptic NMDAR-induced switch in synaptic AMPARs from GluR2-lacking (Ca(2+)-permeable) to GluR2-containing (Ca(2+)-impermeable) receptors requires the activation of protein kinase C (PKC). These results indicate that the activation of extrasynaptic NMDARs by glutamate spillover is an important mechanism that detects the pattern of afferent activity and subsequently exerts a remote regulation of AMPAR subtypes at the synapse via a PKC-dependent pathway.

  16. Optical activity of catalytic elements of hetero-metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Apell, S. Peter; Wadell, Carl; Langhammer, Christoph

    2015-05-01

    Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

  17. Determination of elements in National Bureau of Standards' geological Standard Reference Materials by neutron activation analysis

    SciTech Connect

    Graham, C.C.; Glascock, M.D.; Carni, J.J.; Vogt, J.R.; Spalding, T.G.

    1982-08-01

    Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGNAA) have been used to determine elemental concentrations in two recently issued National Bureau of Standards (NBS) Standard Reference Materials (SRM's). The results obtained are in good agreement with the certified and information values reported by NBS for those elements in each material for which comparisons are available. Average concentrations of 35 elements in SRM 278 obsidian rock and 32 elements in SRM 688 basalt rock are reported for comparison with results that may be obtained by other laboratories.

  18. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation.

    PubMed

    Mai, Thach; Zan, Hong; Zhang, Jinsong; Hawkins, J Seth; Xu, Zhenming; Casali, Paolo

    2010-11-26

    Estrogen enhances antibody and autoantibody responses through yet to be defined mechanisms. It has been suggested that estrogen up-regulates the expression of activation-induced cytosine deaminase (AID), which is critical for antibody class switch DNA recombination (CSR) and somatic hypermutation (SHM), through direct activation of this gene. AID, as we have shown, is induced by the HoxC4 homeodomain transcription factor, which binds to a conserved HoxC4/Oct site in the AICDA/Aicda promoter. Here we show that estrogen-estrogen receptor (ER) complexes do not directly activate the AID gene promoter in B cells undergoing CSR. Rather, they bind to three evolutionarily conserved and cooperative estrogen response elements (EREs) we identified in the HOXC4/HoxC4 promoter. By binding to these EREs, ERs synergized with CD154 or LPS and IL-4 signaling to up-regulate HoxC4 expression, thereby inducing AID and CSR without affecting B cell proliferation or plasmacytoid differentiation. Estrogen administration in vivo significantly potentiated CSR and SHM in the specific antibody response to the 4-hydroxy-3-nitrophenylacetyl hapten conjugated with chicken γ-globulin. Ablation of HoxC4 (HoxC4(-/-)) abrogated the estrogen-mediated enhancement of AID gene expression and decreased CSR and SHM. Thus, estrogen enhances AID expression by activating the HOXC4/HoxC4 promoter and inducing the critical AID gene activator, HoxC4.

  19. Preconcentration and Speciation of Trace Elements and Trace-Element Analogues of Radionuclides by Neutron Activation Analysis

    SciTech Connect

    Chatt, A.

    1999-11-14

    We have developed a number of preconcentration neutron activation analysis (PNAA) methods in our laboratory for the determination of trace elements in a variety of complex sample matrices. We developed a number of cocrystallization and coprecipitation methods for the determination of trace elements in water samples. We developed several methods for the determination of I in foods and diets. We have developed a number of PNAA methods in our laboratory We determined As and Sb in geological materials and natural waters by coprecipitation with Se and Au in silicate rocks and ores by coprecipitation with Te followed by NAA. We developed an indirect NAA method for the determination of B in leachates of borosilicate glass. We have been interested in studying the speciation of Am, Tc, and Np in simulated vitrified groundwater leachates of high-level wastes under oxid and anoxic conditions using a number of techniques. We then used PNAA methods to study speciation of trace-element analogues of radionuclides. We have been able to apply biochemical techniques and NAA for the separation, preconcentration, and characterization of metalloprotein and protein-bound trace-element species in subcellular fractions of bovine kidneys. Lately, we have concentrated our efforts to develop chemical and biochemical methods in conjunction with NAA, NMR, and MS for the separation and identification of extractable organohalogens (EOX) in tissues of beluga whales, cod, and northern pink shrimp

  20. The energetics of the acetylation switch in p53-mediated transcriptional activation.

    PubMed

    Eichenbaum, Kenneth D; Rodríguez, Yoel; Mezei, Mihaly; Osman, Roman

    2010-02-01

    Targeted therapeutic intervention in receptor-ligand interactions of p53-mediated tumor suppression can impact progression of disease, aging, and variation in genetic expression. Here, we conducted a number of molecular simulations, based on structures of p53 in complex with its transcriptional coactivating CBP bromodomain, determined by NMR spectroscopy, to investigate the energetics of the binding complex. Building on the observation that acetylation of K382 in p53 serves as the essential triggering switch for a specific interaction with CBP, we assessed the differential effect of acetylation on binding from simulations of an octapeptide derived from p53 with acetylated and nonacetylated K382 (residues 379-386). Cluster analysis of the simulations shows that acetylation of the free peptide does not significantly change the population of the preferred conformation of the peptide in solution for binding to CBP. Conversion of the acetylated K382 to nonacetylated form with free energy perturbation (FEP) simulations of the p53 CBP complex and the free peptide showed that the relative contribution of the acetyl group to binding is 4.8 kcal/mol. An analysis of residue contributions to the binding energy using an MM-GBSA approach agrees with the FEP results and sheds additional light on the origin of selectivity in p53 binding to the CBP bromodomain.

  1. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching.

    PubMed

    Hu, Yi; Ericsson, Ida; Torseth, Kathrin; Methot, Stephen P; Sundheim, Ottar; Liabakk, Nina B; Slupphaug, Geir; Di Noia, Javier M; Krokan, Hans E; Kavli, Bodil

    2013-01-23

    Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants.

  2. Optical switches and switching methods

    SciTech Connect

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  3. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity.

    PubMed

    Nakanishi, Kotaro; Ascano, Manuel; Gogakos, Tasos; Ishibe-Murakami, Satoko; Serganov, Artem A; Briskin, Daniel; Morozov, Pavel; Tuschl, Thomas; Patel, Dinshaw J

    2013-06-27

    We have solved the crystal structure of human ARGONAUTE1 (hAGO1) bound to endogenous 5'-phosphorylated guide RNAs. To identify changes that evolutionarily rendered hAGO1 inactive, we compared our structure with guide-RNA-containing and cleavage-active hAGO2. Aside from mutation of a catalytic tetrad residue, proline residues at positions 670 and 675 in hAGO1 introduce a kink in the cS7 loop, forming a convex surface within the hAGO1 nucleic-acid-binding channel near the inactive catalytic site. We predicted that even upon restoration of the catalytic tetrad, hAGO1-cS7 sterically hinders the placement of a fully paired guide-target RNA duplex into the endonuclease active site. Consistent with this hypothesis, reconstitution of the catalytic tetrad with R805H led to low-level hAGO1 cleavage activity, whereas combining R805H with cS7 substitutions P670S and P675Q substantially augmented hAGO1 activity. Evolutionary amino acid changes to hAGO1 were readily reversible, suggesting that loading of guide RNA and pairing of seed-based miRNA and target RNA constrain its sequence drift.

  4. a New Concept for AN Active Element for the Large Cosmic Ray Calorimeter ANI

    NASA Astrophysics Data System (ADS)

    Steinbuegl, F.; Gebauer, J.; Lorenz, E.; Mirzoyan, R.; Chilingarian, A.; Ferenc, D.; Jokele, B.

    2002-11-01

    For the half completed ANI sampling calorimeter (1600 m2 detection area, 6 concrete absorber layers of 1 m thickness each) at Mount Aragats, Armenia, a cheap and efficient active detector element is needed. A new concept for such a detector element and first results from a reduced size prototype are presented.

  5. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    EPA Science Inventory

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  6. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity.

    PubMed

    Jia, Qingying; Ramaswamy, Nagappan; Hafiz, Hasnain; Tylus, Urszula; Strickland, Kara; Wu, Gang; Barbiellini, Bernardo; Bansil, Arun; Holby, Edward F; Zelenay, Piotr; Mukerjee, Sanjeev

    2015-12-22

    The commercialization of electrochemical energy conversion and storage devices relies largely upon the development of highly active catalysts based on abundant and inexpensive materials. Despite recent achievements in this respect, further progress is hindered by the poor understanding of the nature of active sites and reaction mechanisms. Herein, by characterizing representative iron-based catalysts under reactive conditions, we identify three Fe-N4-like catalytic centers with distinctly different Fe-N switching behaviors (Fe moving toward or away from the N4-plane) during the oxygen reduction reaction (ORR), and show that their ORR activities are essentially governed by the dynamic structure associated with the Fe(2+/3+) redox transition, rather than the static structure of the bare sites. Our findings reveal the structural origin of the enhanced catalytic activity of pyrolyzed Fe-based catalysts compared to nonpyrolyzed Fe-macrocycle compounds. More generally, the fundamental insights into the dynamic nature of transition-metal compounds during electron-transfer reactions will potentially guide rational design of these materials for broad applications.

  7. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2011-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  8. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2012-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  9. High gain GaAs photoconductive semiconductor switches: Switch longevity

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Mar, A.

    1998-07-01

    Optically activated, high gain GaAs switches are being tested for many different pulsed power applications that require long lifetime (longevity). The switches have p and n contact metallization (with intentional or unintentional dopants) configured in such a way as to produce p-i-n or n-i-n switches. The longevity of the switches is determined by circuit parameters and by the ability of the contacts to resist erosion. This paper will describe how the switches performed in test-beds designed to measure switch longevity. The best longevity was achieved with switches made with diffused contacts, achieving over 50 million pulses at 10 A and over 2 million pulses at 80 A.

  10. Os2 -Os4 Switch Controls DNA Knotting and Anticancer Activity.

    PubMed

    Fu, Ying; Romero, María J; Salassa, Luca; Cheng, Xi; Habtemariam, Abraha; Clarkson, Guy J; Prokes, Ivan; Rodger, Alison; Costantini, Giovanni; Sadler, Peter J

    2016-07-25

    Dinuclear trihydroxido-bridged osmium-arene complexes are inert and biologically inactive, but we show here that linking dihydroxido-bridged Os(II) -arene fragments by a bridging di-imine to form a metallacycle framework results in strong antiproliferative activity towards cancer cells and distinctive knotting of DNA. The shortened spacer length reduces biological activity and stability in solution towards decomposition to biologically inactive dimers. Significant differences in behavior toward plasmid DNA condensation are correlated with biological activity. PMID:27240103

  11. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge.

    PubMed

    Jain, Rohan; Seder-Colomina, Marina; Jordan, Norbert; Dessi, Paolo; Cosmidis, Julie; van Hullebusch, Eric D; Weiss, Stephan; Farges, François; Lens, Piet N L

    2015-09-15

    Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods. The entrapment of the elemental selenium nanoparticles in the selenium fed activated sludge flocs leads to faster settling rates, higher hydrophilicity and poorer dewaterability compared to the control activated sludge (i.e., not fed with selenite). The selenium fed activated sludge showed a less negative surface charge density as compared to the control activated sludge. The presence of trapped elemental selenium nanoparticles further affected the spatial distribution of Al and Mg in the activated sludge flocs. This study demonstrated that the formation and subsequent trapping of elemental selenium nanoparticles in the activated sludge flocs affects their physicochemical properties.

  12. Optimal placement of active elements in control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  13. neutron activation analysis using thermochromatography. II. thermochromatographic separation of elements in the analysis of geological samples

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of difficulty soluble samples with a strongly activating substrate is discussed. The effect of sample coarseness and ore type on the rate of extraction of gold and accompanying elements was studied. The limits of detection of 22 elements were compared using neutron activation analysis with GTC and INAA. The analytical parameters of the procedure were estimated.

  14. Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch.

    PubMed

    Román, Angel Carlos; González-Rico, Francisco J; Moltó, Eduardo; Hernando, Henar; Neto, Ana; Vicente-Garcia, Cristina; Ballestar, Esteban; Gómez-Skarmeta, José L; Vavrova-Anderson, Jana; White, Robert J; Montoliu, Lluís; Fernández-Salguero, Pedro M

    2011-03-01

    Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent intrinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE. Transcription of B1-X35S is required for insulation. While basal insulator activity is maintained by RNA polymerase (Pol) III transcription, AHR-induced insulation involves release of Pol III and engagement of Pol II transcription on the same strand. B1-X35S insulation is also associated with enrichment of heterochromatin marks H3K9me3 and H3K27me3 downstream of B1-X35S, an effect that varies with cell type. B1-X35S binds parylated CTCF and, consistent with a chromatin barrier activity, its positioning between two adjacent genes correlates with their differential expression in mouse tissues. Hence, B1 SINE retrotransposons represent genome-wide insulators activated by transcription factors that respond to developmental, oncogenic, or toxicological stimuli. PMID:21324874

  15. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  16. Prediction of the applicability of active damping elements in high-precision machines

    NASA Astrophysics Data System (ADS)

    Holterman, Jan; de Vries, Theo J. A.

    2004-07-01

    The Smart Disc project at the Drebbel Institute of the University of Twente is aimed at the development of active structural elements for high-precision machines. The active elements consist of a piezoelectric position actuator and a collocated piezoelectric force sensor. As the actuators and sensors are collocated, the elements are especially suited for implementing robust active damping. The decision whether or not to incorporate active damping elements in a high-precision machine should ideally be made in an early design stage, i.e., at a time at which only limited knowledge of the vibration problem is available. Despite the uncertainties that may exist at that stage, one would like to be able to roughly predict the amount of damping that could possibly be obtained. For that reason, the present paper is concerned with the development of an analysis tool that may help in predicting the applicability of active damping elements in a mechanical structure of which only a rough model is available. Based on extensive simulations, several practical rules of thumb are given for the requirements for the mechanical structure and the active elements, in order to enable the realisation of relative damping values as high as 10%.

  17. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated.

    PubMed

    Tognetti, Silvia; Riera, Alberto; Speck, Christian

    2015-03-01

    A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.

  18. Os2–Os4 Switch Controls DNA Knotting and Anticancer Activity

    PubMed Central

    Fu, Ying; Romero, María J.; Salassa, Luca; Cheng, Xi; Habtemariam, Abraha; Clarkson, Guy J.; Prokes, Ivan; Rodger, Alison; Costantini, Giovanni

    2016-01-01

    Abstract Dinuclear trihydroxido‐bridged osmium–arene complexes are inert and biologically inactive, but we show here that linking dihydroxido‐bridged OsII–arene fragments by a bridging di‐imine to form a metallacycle framework results in strong antiproliferative activity towards cancer cells and distinctive knotting of DNA. The shortened spacer length reduces biological activity and stability in solution towards decomposition to biologically inactive dimers. Significant differences in behavior toward plasmid DNA condensation are correlated with biological activity. PMID:27240103

  19. Binding among select episodic elements is altered via active short-term retrieval.

    PubMed

    Bridge, Donna J; Voss, Joel L

    2015-08-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated memory of associated objects, which was associated with unique patterns of viewing behavior during study and enhanced ERP correlates of retrieval during test, relative to other reminder cues that were not actively retrieved. Active short-term retrieval therefore enhanced binding of retrieved elements with others, thus creating powerful memory cues for entire episodes. PMID:26179229

  20. [Relationship between soil enzyme activities and trace element contents in Eucalyptus plantation soil].

    PubMed

    Li, Yuelin; Peng, Shaolin; Li, Zhihui; Ren, Hai; Li, Zhi'an

    2003-03-01

    Canonical correlation analysis on soil enzyme activities and trace element contents in Eucalyptus plantation soil showed that among the test elements, only Zn and Mn affected enzyme activity. Both Zn and Mn increased soil proteinase activity. Zn decreased the activities of soil urease and peroxidase, while Mn promoted them. "Integral soil enzyme factor" could be used as an index of soil fertility. Together with other growth factors, this index should be considered when evaluating soil fertility of Eucalyptus forest sites. It also had a definite significance on the division of Eucalyptus soil families. PMID:12836538

  1. Photoconductive semiconductor switches: Laser Q-switch trigger and switch-trigger laser integration

    SciTech Connect

    Loubriel, G.M.; Mar, A.; Hamil, R.A.; Zutavern, F.J.; Helgeson, W.D.

    1997-12-01

    This report provides a summary of the Pulser In a Chip 9000-Discretionary LDRD. The program began in January of 1997 and concluded in September of 1997. The over-arching goal of this LDRD is to study whether laser diode triggered photoconductive semiconductor switches (PCSS) can be used to activate electro-optic devices such as Q-switches and Pockels cells and to study possible laser diode/switch integration. The PCSS switches we used were high gain GaAs switches because they can be triggered with small amounts of laser light. The specific goals of the LDRD were to demonstrate: (1) that small laser diode arrays that are potential candidates for laser-switch integration will indeed trigger the PCSS switch, and (2) that high gain GaAs switches can be used to trigger optical Q-switches in lasers such as the lasers to be used in the X-1 Advanced Radiation Source and the laser used for direct optical initiation (DOI) of explosives. The technology developed with this LDRD is now the prime candidate for triggering the Q switch in the multiple lasers in the laser trigger system of the X-1 Advanced Radiation Source and may be utilized in other accelerators. As part of the LDRD we developed a commercial supplier. To study laser/switch integration we tested triggering the high gain GaAs switches with: edge emitting laser diodes, vertical cavity surface emitting lasers (VCSELs), and transverse junction stripe (TJS) lasers. The first two types of lasers (edge emitting and VCSELs) did activate the PCSS but are harder to integrate with the PCSS for a compact package. The US lasers, while easier to integrate with the switch, did not trigger the PCSS at the US laser power levels we used. The PCSS was used to activate the Q-switch of the compact laser to be used in the X-1 Advanced Radiation Source.

  2. Design and application of gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Chan, C. K.; Ross, R. G., Jr.

    1990-01-01

    Gas-gap heat switches can serve as an effective means of thermally disconnecting a standby cryocooler when the primary (operating) cooler is connected and vice versa. The final phase of the development and test of a cryogenic heat switch designed for loads ranging from 2 watts at 8 K, to 100 watts at 80 K are described. Achieved heat-switch on/off conductance ratio ranged from 11,000 at 8 K to 2200 at 80 K. A particularly challenging element of heat-switch design is achieving satisfactory operation when large temperatures differentials exist across the switch. A special series of tests and analyses was conducted and used in this Phase-2 activity to evaluate the developed switches for temperature differentials ranging up to 200 K. Problems encountered at the maximum levels are described and analyzed, and means of avoiding the problems in the future are presented. A comprehensive summary of the overall heat-switch design methodology is also presented with special emphasis on lessons learned over the course of the 4-year development effort.

  3. Electromechanical switch

    NASA Astrophysics Data System (ADS)

    Antonuzzi, Anthony P.; Carignan, Donald J.

    1986-06-01

    A hardened electromechanical switch is disclosed. When appropriate electrical contacts and pick-offs are aligned, four switches close. The possible number of switch combinations selectable are 4095 based upon a base eight counting system. The switch has a counter section and a memory section. The counter section uses an odometer like device based upon octal. Each counter wheel of the counter section has an electrical pick-off that interacts with the memory section. In the memory section, a plurality of octal numbers, four, are entered into and locked thereon such that each counter set disk, four, therein has one octal number thereon. Electrical contacts are placed on the counter set disks of the memory section and these touch the pick-offs of the counter wheels which will simultaneously close on the four contacts of the counter set disk in only one of the 4095 combinations noted above.

  4. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  6. Activation of enhancer elements by the homeobox gene Cdx2 is cell line specific.

    PubMed Central

    Taylor, J K; Levy, T; Suh, E R; Traber, P G

    1997-01-01

    Cdx2 is a caudal-related homeodomain transcription factor that is expressed in complex patterns during mouse development and at high levels in the intestinal epithelium of adult mice. Cdx2 activates transcription of intestinal gene promoters containing specific binding sites. Moreover, Cdx2 has been shown to induce intestinal differentiation in cell lines. In this study, we show that Cdx2 is able to bind to two well defined enhancer elements in the HoxC8 gene. We then demonstrate that Cdx2 is able to activate transcription of heterologous promoters when its DNA binding element is placed in an enhancer context. Furthermore, the ability to activate enhancer elements is cell-line dependent. When the Cdx2 activation domain was linked to the Gal4 DNA binding domain, the chimeric protein was able to activate Gal4 enhancer constructs in an intestinal cell line, but was unable to activate transcription in NIH3T3 cells. These data suggest that there are cell-specific factors that allow the Cdx2 activation domain to function in the activation of enhancer elements. We hypothesize that either a co-activator protein or differential phosphorylation of the activation domain may be the mechanism for intestinal cell line-specific function of Cdx2 and possibly in other tissues in early development. PMID:9171078

  7. Comparison of actively Q-switched laser performance of disordered Yb:Ca3La2(BO3)4 crystals cut along the crystallographic axes.

    PubMed

    Wang, Yeqing; Chen, Aixi; Tu, Chaoyang

    2015-03-10

    In this paper, actively Q-switched laser operation with an acousto-optic switch has been demonstrated by using Yb:Ca3La2(BO3)4 crystals cut along the a, b, and c crystallographic axes. The most efficient Q-switched laser operation was obtained by using b-cut Yb:Ca3La2(BO3)4 crystal with 1 kHz pulse repetition frequency, generating laser pulses of 0.5 mJ, 42.56 KW peak power and 9 ns pulse width, when the output couplings were 3%, 5%, and 5%, respectively. Pulse performances and output laser spectra of the a-, b-, and c-cut Yb:Ca3La2(BO3)4 crystals were compared under similar experimental conditions. PMID:25968384

  8. The effect of an elemental diet with and without gluten on disease activity in dermatitis herpetiformis.

    PubMed

    Kadunce, D P; McMurry, M P; Avots-Avotins, A; Chandler, J P; Meyer, L J; Zone, J J

    1991-08-01

    Elemental diets are reported to decrease activity of patients with dermatitis herpetiformis. We tested the hypothesis that gluten, given in addition to an elemental diet, is responsible for the intestinal abnormalities, cutaneous immunoreactant deposition, and skin disease activity in dermatitis herpetiformis. At entry eight patients with dermatitis herpetiformis, who were consuming unrestricted diets, were stabilized on their suppressive medications at dosage levels that allowed individual lesions to erupt. Six patients were then given an elemental diet plus 30 of gluten for 2 weeks, followed by the elemental diet alone for 2 weeks. Conversely, two patients received an elemental diet alone for 2 weeks followed by an elemental diet plus gluten during the final 2 weeks. Small bowel biopsies, skin biopsies, and clinical assessments were done at 0, 2, and 4 weeks. Suppressive medication dose requirement decreased over the 4 weeks by a mean of 66%. Six of eight subjects significantly improved clinically during the gluten-challenge phase of the elemental diet and all were improved at the end of the study. The amount of IgA in perilesional skin did not change significantly, but the amount of C3 increased in five of seven evaluable subjects after gluten challenge. Circulating anti-gluten and anti-endomysial antibodies were not significantly affected by the diets. All subjects completing evaluable small bowel biopsies (seven of seven) demonstrated worsening of their villus architecture (by scanning electron microscopy and intraepithelial lymphocyte counts) during gluten challenge and improvement (six of six subjects) after 2 weeks of elemental dietary intake. We conclude that 1) there is a significant improvement in clinical disease activity on an elemental diet, independent of gluten administration, 2) small bowel morphology improves rapidly on an elemental diet, and 3) complement deposition but neither IgA deposition nor circulating antibody levels correlate with gluten

  9. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates.

    PubMed

    Woznica, Arielle; Cantley, Alexandra M; Beemelmanns, Christine; Freinkman, Elizaveta; Clardy, Jon; King, Nicole

    2016-07-12

    In choanoflagellates, the closest living relatives of animals, multicellular rosette development is regulated by environmental bacteria. The simplicity of this evolutionarily relevant interaction provides an opportunity to identify the molecules and regulatory logic underpinning bacterial regulation of development. We find that the rosette-inducing bacterium Algoriphagus machipongonensis produces three structurally divergent classes of bioactive lipids that, together, activate, enhance, and inhibit rosette development in the choanoflagellate Salpingoeca rosetta. One class of molecules, the lysophosphatidylethanolamines (LPEs), elicits no response on its own but synergizes with activating sulfonolipid rosette-inducing factors (RIFs) to recapitulate the full bioactivity of live Algoriphagus. LPEs, although ubiquitous in bacteria and eukaryotes, have not previously been implicated in the regulation of a host-microbe interaction. This study reveals that multiple bacterially produced lipids converge to activate, enhance, and inhibit multicellular development in a choanoflagellate. PMID:27354530

  10. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates

    PubMed Central

    Woznica, Arielle; Cantley, Alexandra M.; Beemelmanns, Christine; Freinkman, Elizaveta; Clardy, Jon; King, Nicole

    2016-01-01

    In choanoflagellates, the closest living relatives of animals, multicellular rosette development is regulated by environmental bacteria. The simplicity of this evolutionarily relevant interaction provides an opportunity to identify the molecules and regulatory logic underpinning bacterial regulation of development. We find that the rosette-inducing bacterium Algoriphagus machipongonensis produces three structurally divergent classes of bioactive lipids that, together, activate, enhance, and inhibit rosette development in the choanoflagellate Salpingoeca rosetta. One class of molecules, the lysophosphatidylethanolamines (LPEs), elicits no response on its own but synergizes with activating sulfonolipid rosette-inducing factors (RIFs) to recapitulate the full bioactivity of live Algoriphagus. LPEs, although ubiquitous in bacteria and eukaryotes, have not previously been implicated in the regulation of a host–microbe interaction. This study reveals that multiple bacterially produced lipids converge to activate, enhance, and inhibit multicellular development in a choanoflagellate. PMID:27354530

  11. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed.

  12. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed. PMID:10376325

  13. Homologous Elements hs3a and hs3b in the 3′ Regulatory Region of the Murine Immunoglobulin Heavy Chain (Igh) Locus Are Both Dispensable for Class-switch Recombination*

    PubMed Central

    Yan, Yi; Pieretti, Joyce; Ju, Zhongliang; Wei, Shiniu; Christin, John R.; Bah, Fatmata; Birshtein, Barbara K.; Eckhardt, Laurel A.

    2011-01-01

    Immunoglobulin heavy chain (IgH) genes are formed, tested, and modified to yield diverse, specific, and high affinity antibody responses to antigen. The processes involved must be regulated, however, to avoid unintended damage to chromosomes. The 3′ regulatory region of the Igh locus plays a major role in regulating class-switch recombination (CSR), the process by which antibody effector functions are modified during an immune response. Loss of all known enhancer-like elements in this region dramatically impairs CSR, but individual element deletions have no effect on this process. In the present study, we explored the hypothesis that an underlying functional redundancy in the homologous elements hs3a and hs3b was masking the importance of either element to CSR. Several transgenic mouse lines were generated, each carrying a bacterial artificial chromosome transgene that mimicked Igh locus structure but in which hs3a was missing and hs3b was flanked by loxP sites. Matings to Cyclization Recombination Enzyme-expressing mice established “pairs” of lines that differed only in the presence or absence of hs3b. Remarkably, CSR remained robust in the absence of both hs3a and hs3b, suggesting that the remaining two elements of the 3′ regulatory region, hs1.2 and hs4, although individually dispensable for CSR, are, together, sufficient to support CSR. PMID:21673112

  14. Homologous elements hs3a and hs3b in the 3' regulatory region of the murine immunoglobulin heavy chain (Igh) locus are both dispensable for class-switch recombination.

    PubMed

    Yan, Yi; Pieretti, Joyce; Ju, Zhongliang; Wei, Shiniu; Christin, John R; Bah, Fatmata; Birshtein, Barbara K; Eckhardt, Laurel A

    2011-08-01

    Immunoglobulin heavy chain (IgH) genes are formed, tested, and modified to yield diverse, specific, and high affinity antibody responses to antigen. The processes involved must be regulated, however, to avoid unintended damage to chromosomes. The 3' regulatory region of the Igh locus plays a major role in regulating class-switch recombination (CSR), the process by which antibody effector functions are modified during an immune response. Loss of all known enhancer-like elements in this region dramatically impairs CSR, but individual element deletions have no effect on this process. In the present study, we explored the hypothesis that an underlying functional redundancy in the homologous elements hs3a and hs3b was masking the importance of either element to CSR. Several transgenic mouse lines were generated, each carrying a bacterial artificial chromosome transgene that mimicked Igh locus structure but in which hs3a was missing and hs3b was flanked by loxP sites. Matings to Cyclization Recombination Enzyme-expressing mice established "pairs" of lines that differed only in the presence or absence of hs3b. Remarkably, CSR remained robust in the absence of both hs3a and hs3b, suggesting that the remaining two elements of the 3' regulatory region, hs1.2 and hs4, although individually dispensable for CSR, are, together, sufficient to support CSR. PMID:21673112

  15. Homologous elements hs3a and hs3b in the 3' regulatory region of the murine immunoglobulin heavy chain (Igh) locus are both dispensable for class-switch recombination.

    PubMed

    Yan, Yi; Pieretti, Joyce; Ju, Zhongliang; Wei, Shiniu; Christin, John R; Bah, Fatmata; Birshtein, Barbara K; Eckhardt, Laurel A

    2011-08-01

    Immunoglobulin heavy chain (IgH) genes are formed, tested, and modified to yield diverse, specific, and high affinity antibody responses to antigen. The processes involved must be regulated, however, to avoid unintended damage to chromosomes. The 3' regulatory region of the Igh locus plays a major role in regulating class-switch recombination (CSR), the process by which antibody effector functions are modified during an immune response. Loss of all known enhancer-like elements in this region dramatically impairs CSR, but individual element deletions have no effect on this process. In the present study, we explored the hypothesis that an underlying functional redundancy in the homologous elements hs3a and hs3b was masking the importance of either element to CSR. Several transgenic mouse lines were generated, each carrying a bacterial artificial chromosome transgene that mimicked Igh locus structure but in which hs3a was missing and hs3b was flanked by loxP sites. Matings to Cyclization Recombination Enzyme-expressing mice established "pairs" of lines that differed only in the presence or absence of hs3b. Remarkably, CSR remained robust in the absence of both hs3a and hs3b, suggesting that the remaining two elements of the 3' regulatory region, hs1.2 and hs4, although individually dispensable for CSR, are, together, sufficient to support CSR.

  16. Dlx-2 is implicated in TGF-β- and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation.

    PubMed

    Lee, Su Yeon; Jeon, Hyun Min; Ju, Min Kyung; Jeong, Eui Kyong; Kim, Cho Hee; Yoo, Mi-Ae; Park, Hye Gyeong; Han, Song Iy; Kang, Ho Sung

    2015-04-01

    Epithelial-mesenchymal transition (EMT) and oncogenic metabolism (including glycolytic switch) are important for tumor development and progression. Here, we show that Dlx-2, one of distal-less (Dlx) homeobox genes, induces EMT and glycolytic switch by activation of Snail. In addition, it was induced by TGF-β and Wnt and regulates TGF-β- and Wnt-induced EMT and glycolytic switch by activating Snail. We also found that TGF-β/Wnt suppressed cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, in a Dlx-2/Snail-dependent manner. TGF-β/Wnt appeared to downregulate the expression of various COX subunits including COXVIc, COXVIIa and COXVIIc; among these COX subunits, COXVIc was a common target of TGF-β, Wnt, Dlx-2 and Snail, indicating that COXVIc downregulation plays an important role(s) in TGF-β/Wnt-induced COX inhibition. Taken together, our results showed that Dlx-2 is involved in TGF-β- and Wnt-induced EMT, glycolytic switch, and mitochondrial repression by Snail activation. PMID:25651912

  17. An Electrically Driven and Readable Molecular Monolayer Switch Based on a Solid Electrolyte.

    PubMed

    Marchante, Elena; Crivillers, Núria; Buhl, Moritz; Veciana, Jaume; Mas-Torrent, Marta

    2016-01-01

    The potential application of molecular switches as active elements in information storage has been demonstrated through numerous works. Importantly, such switching capabilities have also been reported for self-assembled monolayers (SAMs). SAMs of electroactive molecules have recently been exploited as electrochemical switches. Typically, the state of these switches could be read out through their optical and/or magnetic response. These output reading processes are difficult to integrate into devices, and furthermore, there is a need to use liquid environments for switching the redox-active molecular systems. In this work, both of these challenges were overcome by using an ionic gel as the electrolyte medium, which led to an unprecedented solid-state device based on a single molecular layer. Moreover, electrochemical impedance has been successfully exploited as the output of the system.

  18. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch*

    PubMed Central

    Dehorter, Nathalie; Ciceri, Gabriele; Bartolini, Giorgia; Lim, Lynette; del Pino, Isabel; Marín, Oscar

    2015-01-01

    The function of neural circuits depends on the generation of specific classes of neurons. Neural identity is typically established near the time when neurons exit the cell cycle to become postmitotic cells, and it is generally accepted that, once the identity of a neuron has been established, its fate is maintained throughout life. Here, we show that network activity dynamically modulates the properties of fast-spiking (FS) interneurons through the postmitotic expression of the transcriptional regulator Er81. In the adult cortex, Er81 protein levels define a spectrum of FS basket cells with different properties, whose relative proportions are, however, continuously adjusted in response to neuronal activity. Our findings therefore suggest that interneuron properties are malleable in the adult cortex, at least to a certain extent. PMID:26359400

  19. Switch Using Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor)

    2015-01-01

    Disclosed is an apparatus for use as a switch. In one embodiment, the switch comprises at least one RFID tag, each RFID tag comprising an antenna element and an RFID integrated circuit, at least one source element, and at least one lever arm. Each lever arm is connected to one of the RFID tags, and each lever arm is capable of two positions. One of the positions places the lever arm and the RFID tag connected thereto into alignment with the source element. Other embodiments are also described.

  20. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor.

    PubMed

    Tao, Li; Fasulo, Barbara; Warecki, Brandt; Sullivan, William

    2016-01-01

    Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. PMID:27091402

  1. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor

    PubMed Central

    Tao, Li; Fasulo, Barbara; Warecki, Brandt; Sullivan, William

    2016-01-01

    Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. PMID:27091402

  2. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    ERIC Educational Resources Information Center

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  3. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  4. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  5. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  6. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  7. DEVELOPMENT OF A CL-IMPREGNATED ACTIVATED CARBON FOR ENTRAINED-FLOW CAPTURE OF ELEMENTAL MERCURY

    EPA Science Inventory

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury [Hg(0)] and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to incre...

  8. IGH switch breakpoints in Burkitt lymphoma: exclusive involvement of noncanonical class switch recombination.

    PubMed

    Guikema, Jeroen E J; de Boer, Conny; Haralambieva, Eugenia; Smit, Laura A; van Noesel, Carel J M; Schuuring, Ed; Kluin, Philip M

    2006-09-01

    Most chromosomal t(8;14) translocations in sporadic Burkitt lymphomas (BL) are mediated by immunoglobulin class switch recombination (CSR), yet all tumors express IgM, suggesting an incomplete or exclusively monoallelic CSR event. We studied the exact configuration of both the nontranslocated IGH allele and the MYC/IGH breakpoint by applying a combination of low- and high-resolution methods (interphase FISH, DNA fiber FISH, long-distance PCR, and Southern blotting) on 16 BL. IGH class switch events involving the nontranslocated IGH allele were not observed. Thirteen cases had MYC/IGH breakpoints in or nearby IGH switch (S) sites, including five at Smu, three at Sgamma and five at Salpha. All eight translocations with a breakpoint at Sgamma or Salpha were perfectly reciprocal, without deletion of Cmu-Cdelta or other CH elements. Internal Smu deletions claimed to be a marker for CSR activity and implicated in stabilization of IgM expression were found in BL but did not correlate with downstream translocation events. This study shows that switch breakpoints in sporadic BL are exclusively resolved by a noncanonical recombination mechanism involving only one switch region.

  9. Parylene-based active micro space radiator with thermal contact switch

    NASA Astrophysics Data System (ADS)

    Ueno, Ai; Suzuki, Yuji

    2014-03-01

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  10. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect

    Ueno, Ai; Suzuki, Yuji

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  11. Isomorphisms between psychological processes and neural mechanisms: from stimulus elements to genetic markers of activity.

    PubMed

    Fanselow, Michael S; Zelikowsky, Moriel; Perusini, Jennifer; Barrera, Vanessa Rodriguez; Hersman, Sarah

    2014-02-01

    Traditional learning theory has developed models that can accurately predict and describe the course of learned behavior. These "psychological process" models rely on hypothetical constructs that are usually thought to be not directly measurable or manipulable. Recently, and mostly in parallel, the neural mechanisms underlying learning have been fairly well elucidated. The argument in this essay is that we can successfully uncover isomorphisms between process and mechanism and that this effort will help advance our theories about both processes and mechanisms. We start with a brief review of error-correction circuits as a successful example. Then we turn to the concept of stimulus elements, where the conditional stimulus is hypothesized to be constructed of a multitude of elements only some of which are sampled during any given experience. We discuss such elements with respect to how they explain acquisition of associative strength as an incremental process. Then we propose that for fear conditioning, stimulus elements and basolateral amygdala projection neurons are isomorphic and that the activational state of these "elements" can be monitored by the expression of the mRNA for activity-regulated cytoskeletal protein (ARC). Finally we apply these ideas to analyze recent data examining ARC expression during contextual fear conditioning and find that there are indeed many similarities between stimulus elements and amygdala neurons. The data also suggest some revisions in the conceptualization of how the population of stimulus elements is sampled from.

  12. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  13. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method. PMID:11077961

  14. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    USGS Publications Warehouse

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis (INAA) and other analytical methods as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurrence of various elements in the coal matrix itself. ?? 1977 Akade??miai Kiado??.

  15. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition.

    PubMed

    Takayama, Yuriko; Kato, Norihiro

    2016-09-01

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. PMID:27387237

  16. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition.

    PubMed

    Takayama, Yuriko; Kato, Norihiro

    2016-09-01

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS.

  17. Identification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation.

    PubMed

    Taoka, K; Kaya, H; Nakayama, T; Araki, T; Meshi, T; Iwabuchi, M

    1999-06-01

    Conservation of the Oct motif (CGCGGATC) is a remarkable feature of plant histone gene promoters. Many of the Oct motifs are paired with a distinct motif, Hex, TCA or CCAAT-box, constituting the type I element (CCACGTCANCGATCCGCG), type II element (TCACGCGGATC) and type III element (GATCCGCG-N14-ACCAATCA). To clarify the roles of these Oct-containing composite elements (OCEs) in cell cycle-dependent and tissue-specific expression, we performed gain-of-function experiments with transgenic tobacco cell lines and plants harboring a derivative of the 35S core promoter/beta-glucuronidase fusion gene in which three or four copies of an OCE had been placed upstream. Although their activities were slightly different, results showed that each of the three types of OCEs could confer the ability to direct S phase-specific expression on a heterologous promoter. In transgenic plants, the type I and III elements exhibited a similar activity, directing expression in meristematic tissues, whereas the activity of the type II element appeared to be restricted to young cotyledons and maturating guard cells. Mutational analyses demonstrated that the co-operation of Oct with another module (Hex, TCA or CCAAT-box) was absolutely required for both temporal and spatial regulation. Thus, OCEs play a pivotal role in regulation of the expression of plant histone genes.

  18. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    PubMed Central

    Capannesi, Geraldo; Lopez, Francesco

    2013-01-01

    Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard. PMID:23878525

  19. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli.

    PubMed

    Arbel-Goren, Rinat; Tal, Asaf; Parasar, Bibudha; Dym, Alvah; Costantino, Nina; Muñoz-García, Javier; Court, Donald L; Stavans, Joel

    2016-08-19

    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts' threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation. PMID:27085802

  20. Switching of chemoattractant receptors programs development and morphogenesis in Dictyostelium: receptor subtypes activate common responses at different agonist concentrations.

    PubMed

    Kim, J Y; Borleis, J A; Devreotes, P N

    1998-05-01

    One of the common functional features among G-protein coupled receptors is the occurrence of multiple subtypes involved in similar signal transduction events. The cAMP chemoattractant receptor family of Dictyostelium discoideum is composed of four receptors (cAR1-cAR4), which are expressed sequentially throughout the developmental transition from a unicellular to a multicellular organism. The receptors differ in affinity for cAMP and in the sequences of their C-terminal domains. In this study, we constitutively expressed cAR1, cAR2, and cAR3 as well as a series of chimeric and mutant receptors and assessed the capacity of each to mediate chemotaxis, activation of adenylyl cyclase and actin polymerization, and rescue the developmental defect of car1-/car3- cells. We found that various receptors and mutants sense different concentration ranges of cAMP but all can mediate identical responses during the aggregation stage of development. The responses displayed very similar kinetics, suggesting no major differences in regulatory properties attributable to the C-terminal domains. We speculate that switching of receptor subtypes during development enables the organism to respond to the changing concentrations of the chemoattractant and thereby program morphogenesis appropriately. PMID:9578623

  1. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli.

    PubMed

    Arbel-Goren, Rinat; Tal, Asaf; Parasar, Bibudha; Dym, Alvah; Costantino, Nina; Muñoz-García, Javier; Court, Donald L; Stavans, Joel

    2016-08-19

    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts' threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation.

  2. An internal disulfide bond acts as a switch for intein activity

    PubMed Central

    Nicastri, Michael C.; Xega, Kristina; Li, Lingyun; Xie, Jian; Wang, Chunyu; Linhardt, Robert J.; Reitter, Julie N.; Mills, Kenneth V.

    2013-01-01

    Inteins are intervening polypeptides that catalyze their own removal from flanking exteins, concomitant to the ligation of the exteins. The intein that interrupts the DP2 (large) subunit of DNA Polymerase II from Methanoculleus marisnigri (Mma) can promote protein splicing. However, protein splicing can be prevented or reduced by over-expression under non-reducing conditions, due to the formation of a disulfide bond between two internal intein Cys residues. This redox sensitivity leads to differential activity in different strains of E. coli as well as in different cell compartments. The redox-dependent control of in vivo protein splicing in an intein derived from an anaerobe that can occupy multiple environments hints at a possible physiological role for protein splicing. PMID:23906287

  3. Src activation by β-adrenoreceptors is a key switch for tumour metastasis.

    PubMed

    Armaiz-Pena, Guillermo N; Allen, Julie K; Cruz, Anthony; Stone, Rebecca L; Nick, Alpa M; Lin, Yvonne G; Han, Liz Y; Mangala, Lingegowda S; Villares, Gabriel J; Vivas-Mejia, Pablo; Rodriguez-Aguayo, Cristian; Nagaraja, Archana S; Gharpure, Kshipra M; Wu, Zheng; English, Robert D; Soman, Kizhake V; Shahzad, Mian M K; Shazhad, Mian M K; Zigler, Maya; Deavers, Michael T; Zien, Alexander; Soldatos, Theodoros G; Jackson, David B; Wiktorowicz, John E; Torres-Lugo, Madeline; Young, Tom; De Geest, Koen; Gallick, Gary E; Bar-Eli, Menashe; Lopez-Berestein, Gabriel; Cole, Steve W; Lopez, Gustavo E; Lutgendorf, Susan K; Sood, Anil K

    2013-01-01

    Noradrenaline can modulate multiple cellular functions important for cancer progression; however, how this single extracellular signal regulates such a broad array of cellular processes is unknown. Here we identify Src as a key regulator of phosphoproteomic signalling networks activated in response to beta-adrenergic signalling in cancer cells. These results also identify a new mechanism of Src phosphorylation that mediates beta-adrenergic/PKA regulation of downstream networks, thereby enhancing tumour cell migration, invasion and growth. In human ovarian cancer samples, high tumoural noradrenaline levels were correlated with high pSrc(Y419) levels. Moreover, among cancer patients, the use of beta blockers was significantly associated with reduced cancer-related mortality. Collectively, these data provide a pivotal molecular target for disrupting neural signalling in the tumour microenvironment.

  4. Reduction of a Redox-Active Ligand Drives Switching in a Cu(I) Pseudorotaxane by a Bimolecular Mechanism

    SciTech Connect

    McNitt, Kristy A.; Parimal, Kumar; Share, Andrew I.; Fahrenbach, Albert C.; Witlicki, Edward H.; Pink, Maren; Bediako, D. Kwabena; Plaisier, Christina L.; Le, Nga; Heeringa, Lee P.; Vander Griend, Douglas A.; Flood, Amar H.

    2009-04-02

    The reduction of a redox-active ligand is shown to drive reversible switching of a Cu(I) [2]pseudorotaxane ([2]PR{sup 2+}) into the reduced [3]pseudorotaxane ([3]PR{sup 2+}) by a bimolecular mechanism. The unreduced pseudorotaxanes [2]PR{sup 2+} and [3]PR{sup 2+} are initially self-assembled from the binucleating ligand, 3,6-bis(5-methyl-2-pyridine)-1,2,4,5-tetrazine (Me2BPTZ), and a preformed copper-macrocycle moiety (Cu-M{sup 2+}) based on 1,10-phenanthroline. X-ray crystallography revealed a syn geometry of the [3]PR{sup 2+}. The UV-vis-NIR spectra show low-energy metal-to-ligand charge-transfer transitions that red shift from 808 nm for [2]PR{sup 2+} to 1088 nm for [3]PR{sup 2+}. Quantitative analysis of the UV-vis-NIR titration shows the stepwise formation constants to be K{sub 1} = 8.9 x 10{sup 8} M{sup -1} and K{sub 2} = 3.1 x 10{sup 6} M{sup -1}, indicative of negative cooperativity. The cyclic voltammetry (CV) and coulometry of Me{sub 2}BPTZ, [2]PR{sup 2+}, and [3]PR{sup 2+} shows the one-electron reductions at E{sub 1/2} = -0.96, -0.65, and -0.285 V, respectively, to be stabilized in a stepwise manner by each Cu{sup 2+} ion. CVs of [2]PR{sup 2+} show changes with scan rate consistent with an EC mechanism of supramolecular disproportionation after reduction: [2]PR{sup 0} + [2]PR{sup 2+} = [3]PR{sup 2+} + Me{sub 2}BPTZ{sup 0} (K*{sub D}, k{sub d}). UV-vis-NIR spectroelectrochemistry was used to confirm the 1:1 product stoichiometry for [3]PR{sup 2+}:Me{sub 2}BPTZ. The driving force ({Delta}G*{sub D} = -5.1 kcal mol{sup -1}) for the reaction is based on the enhanced stability of the reduced [3]PR{sup 2+} over reduced [2]PR{sup 0} by 365 mV (8.4 kcal mol{sup -1}). Digital simulations of the CVs are consistent with a bimolecular pathway (k{sub d} = 12,000 s{sup -1} M{sup -1}). Confirmation of the mechanism provides a basis to extend this new switching modality to molecular machines.

  5. Effect of microbial activity on trace element release from sewage sludge.

    PubMed

    Qureshi, Shabnam; Richards, Brian K; Hay, Anthony G; Tsai, Christine C; McBride, Murray B; Baveye, Philippe; Steenhuis, Tammo S

    2003-08-01

    The microbial role in mobilization of trace elements from land-applied wastewater sludge is not well-defined. Our study examined the leachability of trace elements (Cd, Cr, Cu, Mo, Ni, P, Pb, S, and Zn) from dewatered sludge as affected by treatments designed to alter microbial activity. Different levels of microbial activity were achieved by incubating sludge columns at 4, 16, 28, and 37 degrees C and by the addition of AgNO3 biocide at each temperature. Columns (with inert glass bead support beds) were subjected to six consecutive incubation-leaching cycles, each consisting of 7.3-d incubation followed by 16-h leaching with synthetic acid rain. Glucose mineralization tests were used to assess overall microbial activity. Significant acidification and trace element leaching occurred when conditions favored microbial activity (16 and 28 degrees C). Extent of mobilization was element-specific with Zn, Ni, and Cu showing the greatest mobilization (99, 67, and 57%, respectively). Mobilization was reduced but still substantial at 4 degrees C. Conditions that best inhibited microbial activity (37 degrees C or biocide at any temperature) resulted in the least mobilization. Characterization of enrichments performed using thiosulfate as the sole energy source revealed the presence of both known and putative S-oxidizing bacteria in the sludge. The results suggest that microbial acidification via S oxidation can mobilize trace elements from sludge. Elemental mobility in field situations would also be governed by other factors, including the capacity of soil to buffer acidification and to adsorb mobilized elements.

  6. Sequential Effects in Deduction: Cost of Inference Switch

    ERIC Educational Resources Information Center

    Milan, Emilio G.; Moreno-Rios, Sergio; Espino, Orlando; Santamaria, Carlos; Gonzalez-Hernandez, Antonio

    2010-01-01

    The task-switch paradigm has helped psychologists gain insight into the processes involved in changing from one activity to another. The literature has yielded consistent results about switch cost reconfiguration (abrupt offset in regular task-switch vs. gradual reduction in random task-switch; endogenous and exogenous components of switch cost;…

  7. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  8. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  9. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  10. Variable transposition of eight maize activator (ac) elements located on the short arm of chromosome 1.

    PubMed

    Sheridan, William F

    2011-09-01

    Eight Activator (Ac) transposable elements mapped to the maize chromosome arm 1S were assessed for Ac transposition rates. For each of the Ac stocks, plants homozygous for the single Ac element and the Ds reporter r1-sc:m3 on chromosome 10 were crossed as females by a homozygous r1-sc:m3 tester color-converted W22 line. The resulting ears produced mostly coarsely spotted kernels and a low frequency of either near-colorless fine-spotted kernels or nonspotted kernels. The relative frequency of these two types of near-colorless kernels differed among the eight Ac stocks. The extent to which increased Ac dosage results in nonspotted kernels may be Ac-specific. Although all of the Ac elements are in near-isogenic inbred W22 lines, they varied to a large extent in their transposition frequency. These differences might possibly result from structural differences among the Ac elements. Because one pair of Ac elements derived from Ac33 on chromosome arm 5S differed about 13-fold in transposition frequency and a second pair of Ac elements derived from Ac12 on chromosome arm 1S differed about 3-fold in transposition frequency, this is not a likely explanation for all eight Ac elements. The data presented here support the notion that the differences in transposition frequency of the eight Ac elements may be a reflection of variability in Ac transcription or accessibility of the transposase to the Ac element, resulting from differences in the chromatin environments wherein the Ac elements are located. This is the first report of variability in transposition rates among different Ac donor lines.

  11. Erk/Src Phosphorylation of Cortactin Acts as a Switch On-Switch Off Mechanism That Controls Its Ability To Activate N-WASP

    PubMed Central

    Martinez-Quiles, Narcisa; Ho, Hsin-Yi Henry; Kirschner, Marc W.; Ramesh, Narayanaswamy; Geha, Raif S.

    2004-01-01

    The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y→D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP. PMID:15169891

  12. Thermally activated switching at long time scales in exchange-coupled magnetic grains

    NASA Astrophysics Data System (ADS)

    Almudallal, Ahmad M.; Mercer, J. I.; Whitehead, J. P.; Plumer, M. L.; van Ek, J.; Fal, T. J.

    2015-10-01

    Rate coefficients of the Arrhenius-Néel form are calculated for thermally activated magnetic moment reversal for dual layer exchange-coupled composite (ECC) media based on the Langer formalism and are applied to study the sweep rate dependence of M H hysteresis loops as a function of the exchange coupling I between the layers. The individual grains are modeled as two exchange-coupled Stoner-Wohlfarth particles from which the minimum energy paths connecting the minimum energy states are calculated using a variant of the string method and the energy barriers and attempt frequencies calculated as a function of the applied field. The resultant rate equations describing the evolution of an ensemble of noninteracting ECC grains are then integrated numerically in an applied field with constant sweep rate R =-d H /d t and the magnetization calculated as a function of the applied field H . M H hysteresis loops are presented for a range of values I for sweep rates 105Oe /s ≤R ≤1010Oe /s and a figure of merit that quantifies the advantages of ECC media is proposed. M H hysteresis loops are also calculated based on the stochastic Landau-Lifshitz-Gilbert equations for 108Oe /s ≤R ≤1010Oe /s and are shown to be in good agreement with those obtained from the direct integration of rate equations. The results are also used to examine the accuracy of certain approximate models that reduce the complexity associated with the Langer-based formalism and which provide some useful insight into the reversal process and its dependence on the coupling strength and sweep rate. Of particular interest is the clustering of minimum energy states that are separated by relatively low-energy barriers into "metastates." It is shown that while approximating the reversal process in terms of "metastates" results in little loss of accuracy, it can reduce the run time of a kinetic Monte Carlo (KMC) simulation of the magnetic decay of an ensemble of dual layer ECC media by 2 -3 orders of magnitude

  13. Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster.

    PubMed

    Kehayova, Polina; Monahan, Kevin; Chen, Weisheng; Maniatis, Tom

    2011-10-11

    The mouse protocadherin (Pcdh) -α, -β, and -γ gene clusters encode more than 50 protein isoforms, the combinatorial expression of which generates vast single-cell diversity in the brain. At present, the mechanisms by which this diversity is expressed are not understood. Here we show that two transcriptional enhancer elements, HS5-1 and HS7, play a critical role in Pcdhα gene expression in mice. We show that the HS5-1 element functions as an enhancer in neurons and a silencer in nonneuronal cells. The enhancer activity correlates with the binding of zinc finger DNA binding protein CTCF to the target promoters, and the silencer activity requires the binding of the REST/NRSF repressor complex in nonneuronal cells. Thus, the HS5-1 element functions as a neuron-specific enhancer and nonneuronal cell repressor. In contrast, the HS7 element functions as a Pcdhα cluster-wide transcription enhancer element. These studies reveal a complex organization of regulatory elements required for generating single cell Pcdh diversity. PMID:21949399

  14. Integrator element as a promoter of active learning in engineering teaching

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-03-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator element, called the physics elevator project. This integrator element allows us to use, in a single project, all the content taught in the course and uses several active learning strategies. In this paper, we analyse this project as: (i) a clarifying element of the contents covered in the course; (ii) a promoter element of motivation and active participation in class and finally and (iii) a link between the contents covered in the course and the 'real world'. The data were collected by a questionnaire and interviews to students. From the data collected, it seems that the integrator element improves students' motivation towards physics and develops several skills that they consider to be important to their professional future. It also acts as a clarifying element and makes the connection between the physics that is taught and the 'real world'.

  15. Studies of generalized elemental imbalances in neurological disease patients using INAA (instrumental neutron activation analysis)

    SciTech Connect

    Ehmann, W.D.; Vance, D.E.; Khare, S.S.; Kasarskis, E.J.; Markesbery, W.R.

    1988-01-01

    Evidence has been presented in the literature to implicate trace elements in the etiology of several age-related neurological diseases. Most of these studies are based on brain analyses. Using instrumental neutron activation analysis (INAA), we have observed trace element imbalances in brains of patients with Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Picks's disease. The most prevalent elemental imbalances found in the brain were for bromine, mercury, and the alkali metals. In this study the authors report INAA studies of trace elements in nonneural tissues from Alzheimer's disease and ALS patients. Samples from household relatives were collected for use as controls wherever possible. Hair samples were washed according to the International Atomic Energy Agency recommended procedure. Fingernail samples were scraped with a quartz knife prior to washing by the same procedure. For ALS patients, blood samples were also collected. These data indicate that elemental imbalances in Alzheimer's disease and ALS are not restricted to the brain. Many elements perturbed in the brain are also altered in the several nonneural tissues examined to date. The imbalances in different tissues, however, are not always in the same direction. The changes observed may represent causes, effects, or simply epiphenomena. Longitudinal studies of nonneural tissues and blood, as well as tissue microprobe analyses at the cellular and subcellular level, will be required in order to better assess the role of trace elements in the etiology of these diseases.

  16. Trace element water improves the antioxidant activity of buckwheat (Fagopyrum esculentum Moench) sprouts.

    PubMed

    Liu, Chia-Ling; Chen, Yih-Shyuan; Yang, Joan-Hwa; Chiang, Been-Huang; Hsu, Cheng-Kuang

    2007-10-31

    Buckwheat (Fagopyrum esculentum Moench) was grown in trace element water (TEW) (100, 200, 300, 400, and 500 ppm) and deionized water (DIW) to evaluate whether the beneficial effects of trace elements on the antioxidant activity could be accomplished with the supplement of TEW. At 300 ppm, TEW significantly increased the Cu, Zn, Mn, and Fe contents in buckwheat sprout but not the Se content. However, the levels of rutin, isoorientin, vitexin, and isovitexin did not differ between buckwheat sprouts grown in TEW and DIW. The ethanolic extract from buckwheat sprout grown in 300 ppm of TEW showed higher ferrous ion chelating activity and inhibitory activity toward lipid peroxidation than that grown in DIW. The extract in the TEW group also enhanced intracellular superoxide dismutase activity and lowered reactive oxygen species and superoxide anion in the human Hep G2 cell. It was concluded that TEW could increase the antioxidant activities of buckwheat sprouts.

  17. Which Socio-Ecological Factors Associate with a Switch to or Maintenance of Active and Passive Transport during the Transition from Primary to Secondary School?

    PubMed Central

    Vanwolleghem, Griet; Van Dyck, Delfien; De Meester, Femke; De Bourdeaudhuij, Ilse; Cardon, Greet; Gheysen, Freja

    2016-01-01

    Objectives The aim was to investigate which individual, psychosocial and physical neighborhood environmental factors associate with children’s switch to or maintenance of active/passive transport to school and to leisure time destinations during the transition from primary to secondary school. Methods Children (n = 313) filled out a questionnaire in the last year of primary school and 2 years later to assess socio-demographic characteristics and self-reported transport. One of their parents completed a questionnaire to assess parental perceptions of psychosocial and physical neighborhood environmental factors. Results The increase of the home-school distance was significantly associated with children’s switch to or maintenance of passive transport to school compared to a switch to (OR = 0.81; p = 0.03) and maintenance (OR = 0.87; p = 0.03) of active transport to school. Low SES was associated with children’s switch to active transport to school compared to maintenance of active transport (OR = 3.67; p = 0.07). For transport to leisure time destinations, other factors such as parental perceived neighborhood safety from traffic and crime (OR = 2.78; p = 0.004), a positive social norm (OR = 1.49; p = 0.08), positive attitudes (OR = 1.39; p = 0.08) (i.e. more benefits, less barriers) towards their children’s physical activity and poor walking/cycling facilities in the neighborhood (OR = 0.70; p = 0.06) were associated with children’s maintenance of active transport to leisure time destinations compared to a switch to or maintenance of passive transport. Conclusions This longitudinal study can give directions for interventions promoting children’s active transport during the transition to secondary school. It is necessary to promote different possibilities at primary school for children to use active transport when going to secondary school. Walking/cycling a part of the home-school trip can be a possible solution for children who will be living at non

  18. Electrically active light-element complexes in silicon crystals grown by cast method

    NASA Astrophysics Data System (ADS)

    Sato, Kuniyuki; Ogura, Atsushi; Ono, Haruhiko

    2016-09-01

    Electrically active light-element complexes called thermal donors and shallow thermal donors in silicon crystals grown by the cast method were studied by low-temperature far-infrared absorption spectroscopy. The relationship between these complexes and either crystal defects or light-element impurities was investigated by comparing different types of silicon crystals, that is, conventional cast-grown multicrystalline Si, seed-cast monolike-Si, and Czochralski-grown Si. The dependence of thermal and the shallow thermal donors on the light-element impurity concentration and their annealing behaviors were examined to compare the crystals. It was found that crystal defects such as dislocations and grain boundaries did not affect the formation of thermal or shallow thermal donors. The formation of these complexes was dominantly affected by the concentration of light-element impurities, O and C, independent of the existence of crystal defects.

  19. Switching Transistor

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Westinghouse Electric Corporation's D60T transistors are used primarily as switching devices for controlling high power in electrical circuits. It enables reduction in the number and size of circuit components and promotes more efficient use of energy. Wide range of application from a popcorn popper to a radio frequency generator for solar cell production.

  20. Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 micron for optically controlled phased array antennas

    NASA Astrophysics Data System (ADS)

    Sullivan, C. T.; Mukherjee, S. D.; Hibbs-Brenner, M. K.; Gopinath, A.; Kalweit, E.; Marta, T.; Goldberg, W.; Walterson, R.

    1992-12-01

    Integrated optical time-shift networks consisting of cascaded pairs of 2 x 2 linear electrooptic switches and optical delay lines in GaAs waveguides at 1.32 micron are investigated for true-time optical beam forming in phased array antennas. We report new state-of-the-art results in curved waveguide and corner bend insertion loss, and preliminary results from 2-bit time delay generators (TDGs) constructed in the form of GaAs-based photonic integrated circuits utilizing these components. These results represent significant progress in our longer-term goal of demonstrating a 7-bit TDG with a loss matching monolithic microwave integrated circuit (MMIC) delay line techniques, while providing very wide bandwidth unmatched by MMIC technology.

  1. Elemental characterization of Hazm El-Jalamid phosphorite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A; Khater, Ashraf E M

    2016-08-01

    Instrumental neutron activation analyses (INAA) have been used to achieve accurate knowledge about the elemental analysis of phosphate ore deposits collected from Hazm El-Jalamid Northeast of Saudi Arabia. The samples were prepared for irradiation by thermal neutrons using a thermal neutron flux of 7×10(12)ncm(-2)s(-1) at ACT Lab Canada. The concentrations of 19 elements were determined. These included 12 major, minor and trace elements (Au, As, Ba, Br, Cr, Mo, Sb, Sc, Sr, Th, U and Zn) and 7 rare earth elements (REEs) (La, Ce, Nd, Sm, Eu, Yb and Lu). Major elements (Si, Al, Fe, Ca, Mg, Na, K, Cr, Ti, Mn, P, Sr and Ba) were determined using an inductively coupled plasma-mass spectrometer (ICP-MS). The comparison of the concentration of U and the REEs in the Hazm El-Jalamid phosphate samples with those of the Umm Wu'al phosphate from Saudi Arabia and El-Sibayia and El Hamrawein phosphate from Egypt shows that the contents of U and REEs are clearly higher in the Umm Wu'al, El-Sibayia and El Hamrawein phosphates than in the Hazm El-Jalamid phosphate samples. The results of major, trace elements, uranium and rare earth elements (REE) from El Jalamid phosphate have been compared with the global values of these elements. The concentrations for most of the elements studied are lower than the concentrations reported in the literature. The acquired data will serve as a reference for the follow-up studies to assess the agronomic effectiveness of the Hazm El-Jalamid phosphate rocks. PMID:27235886

  2. Capillary micro-switches

    NASA Astrophysics Data System (ADS)

    Steen, Paul; Matalanis, Claude; Hirsa, Amir; Cox, Christhopher

    2002-11-01

    A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. Capillary surfaces occur when the capillary length is large compared to the container scale, as happens for typical liquids against gas on the sub-millimeter scale on Earth and on the meter scale in the micro-gravity environment of space vehicles. Manipulating capillary surfaces has emerged as a leading strategy for moving liquids on the micro-scale [1]. Practitioners have yet to take advantage of capillary instability in their design of devices, though. We illustrate how the response diagram of a single switch (bi-stable device) can be constructed from that of two capillary elements, how that of a system of switches (a pair) can be built from that of a single switch and finally how understanding the response of the system guides us to observations of new behavior in the laboratory. Experiments on capillary surfaces use either a soap-film analog (10 centimeter scale) or a liquid/gas (millimeter scale) apparatus. Progress is reported on the application of an array of micro-switches to make a controllable adhesion device, with the aim of effecting droplet transport. 1. Cho, Fan, Moon and Kim, "Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation." Proc. 15th IEEE Int'l Conf. on MEMS, January 2002.

  3. Toggle switch: noise determines the winning gene

    NASA Astrophysics Data System (ADS)

    Jaruszewicz, Joanna; Lipniacki, Tomasz

    2013-06-01

    Bistable regulatory elements enhance heterogeneity in cell populations and, in multicellular organisms, allow cells to specialize and specify their fate. Our study demonstrates that in a system of bistable genetic switch, the noise characteristics control in which of the two epigenetic attractors the cell population will settle. We focus on two types of noise: the gene switching noise and protein dimerization noise. We found that the change of magnitudes of these noise components for one of the two competing genes introduces a large asymmetry of the protein stationary probability distribution and changes the relative probability of individual gene activation. Interestingly, an increase of noise associated with a given gene can either promote or suppress the activation of the gene, depending on the type of noise. Namely, each gene is repressed by an increase of its gene switching noise and activated by an increase of its protein-product dimerization noise. The observed effect was found robust to the large, up to fivefold deviations of the model parameters. In summary, we demonstrated that noise itself may determine the relative strength of the epigenetic attractors, which may provide a unique mode of control of cell fate decisions.

  4. Base excision repair in early zebrafish development: evidence for DNA polymerase switching and standby AP endonuclease activity.

    PubMed

    Fortier, Sean; Yang, Xiaojie; Wang, Yi; Bennett, Richard A O; Strauss, Phyllis R

    2009-06-16

    The base excision repair (BER) pathway recognizes and repairs most nonbulky lesions, uracil and abasic (AP) sites in DNA. Several participants are embryonic lethals in knockout mice. Since the pathway has never been investigated during embryogenesis, we characterized the first three steps of BER in zebrafish extracts from unfertilized eggs, embryos at different developmental stages, and adults. Using a 45-mer double-stranded substrate with a U/G mispair at position 21, we showed that extracts from all stages are capable of performing BER. Before 3 days postfertilization (dpf), aphidicolin-sensitive polymerases perform most nucleotide insertion. In fact, eggs and early stage embryos lack DNA polymerase-beta protein. After the eggs have hatched at 3 dpf, an aphidicolin-resistant polymerase, probably DNA polymerase-beta, becomes the primary polymerase. Previously, we showed that when the zebrafish AP endonuclease protein (ZAP1) level is knocked down, embryos cease dividing after the initial phase of rapid proliferation and die without apoptosis shortly thereafter. Nevertheless, extracts from embryos in which ZAP1 has been largely depleted process substrate as well as extracts from control embryos. Since apex1 and apex2 are both strongly expressed in early embryos relative to adults, these data indicate that both may play important roles in DNA repair in early development. In brief, the major differences in BER performed by early stage embryos and adults are the absence of DNA polymerase-beta, leading to predominance of replicative polymerases, and the presence of backup Mg(2+)-dependent endonuclease activity in early stage embryos. The switch to normal, adult BER occurs fully when the embryos hatch from the chorionic membrane and encounter normal oxidative stress.

  5. Repeat-element driven activation of proto-oncogenes in human malignancies.

    PubMed

    Lamprecht, Björn; Bonifer, Constanze; Mathas, Stephan

    2010-11-01

    Recent data demonstrated that the aberrant activity of endogenous repetitive elements of the DNA in humans can drive the expression of proto-oncogenes. This article summarizes these results and gives an outlook on the impact of these findings on the pathogenesis and therapy of human cancer.

  6. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.

    PubMed

    Wakabayashi, Aoi; Ulirsch, Jacob C; Ludwig, Leif S; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I; Sankaran, Vijay G

    2016-04-19

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders.

  7. Rare-earth elements in Egyptian granite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2007-04-01

    The mobilization of rare-earth elements (REEs) in the environment requires monitoring of these elements in environmental matrices, in which they are mainly present at trace levels. The similarity in REEs chemical behavior makes the separate determination of each element by chemical methods difficult; instrumental neutron activation analysis (INAA), based on nuclear properties of the elements to be determined, is a method of choice in trace analysis of REEs and related elements. Therefore, INAA was applied as a sensitive nondestructive analytical tool for the determination of REEs to find out what information could be obtained about the REEs of some Egyptian granite collected from four locations in Aswan area in south Egypt as follows wadi El-Allaqi, El-Shelal, Gabel Ibrahim Pasha and from Sehyel Island and to estimate the accuracy, reproducibility and detection limit of NAA method in case of the given samples. The samples were properly prepared together with standards and simultaneously irradiated in a neutron flux of 7 x 10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The following elements have been determined: La, Ce, Nd, Sm, Eu, Yb and Lu. The gamma spectra was collected by HPGe detector and the analysis was done by means of computerized multichannel analyzer. The X-ray fluorescence (XRF) was also used.

  8. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.

    PubMed

    Wakabayashi, Aoi; Ulirsch, Jacob C; Ludwig, Leif S; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I; Sankaran, Vijay G

    2016-04-19

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  9. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders

    PubMed Central

    Wakabayashi, Aoi; Ulirsch, Jacob C.; Ludwig, Leif S.; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I.; Sankaran, Vijay G.

    2016-01-01

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptional cis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  10. A pH Switch Regulates the Inverse Relationship between Membranolytic and Chaperone-like Activities of HSP-1/2, a Major Protein of Horse Seminal Plasma.

    PubMed

    Kumar, C Sudheer; Swamy, Musti J

    2016-07-01

    HSP-1/2, a major protein of horse seminal plasma binds to choline phospholipids present on the sperm plasma membrane and perturbs its structure by intercalating into the hydrophobic core, which results in an efflux of choline phospholipids and cholesterol, an important event in sperm capacitation. HSP-1/2 also exhibits chaperone-like activity (CLA) in vitro and protects target proteins against various kinds of stress. In the present study we show that HSP-1/2 exhibits destabilizing activity toward model supported and cell membranes. The membranolytic activity of HSP-1/2 is found to be pH dependent, with lytic activity being high at mildly acidic pH (6.0-6.5) and low at mildly basic pH (8.0-8.5). Interestingly, the CLA is also found to be pH dependent, with high activity at mildly basic pH and low activity at mildly acidic pH. Taken together the present studies demonstrate that the membranolytic and chaperone-like activities of HSP-1/2 have an inverse relationship and are regulated via a pH switch, which is reversible. The higher CLA observed at mildly basic pH could be correlated to an increase in surface hydrophobicity of the protein. To the best of our knowledge, this is the first study reporting regulation of two different activities of a chaperone protein by a pH switch. PMID:27292547

  11. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease.

    PubMed

    Palacios, Florencia; Moreno, Pilar; Morande, Pablo; Abreu, Cecilia; Correa, Agustín; Porro, Valentina; Landoni, Ana Ines; Gabus, Raul; Giordano, Mirta; Dighiero, Guillermo; Pritsch, Otto; Oppezzo, Pablo

    2010-06-01

    Interaction of chronic lymphocytic leukemia (CLL) B cells with tissue microenvironment has been suggested to favor disease progression by promoting malignant B-cell growth. Previous work has shown expression in peripheral blood (PB) of CLL B cells of activation-induced cytidine deaminase (AID) among CLL patients with an unmutated (UM) profile of immunoglobulin genes and with ongoing class switch recombination (CSR) process. Because AID expression results from interaction with activated tissue microenvironment, we speculated whether the small subset with ongoing CSR is responsible for high levels of AID expression and could be derived from this particular microenvironment. In this work, we quantified AID expression and ongoing CSR in PB of 50 CLL patients and characterized the expression of different molecules related to microenvironment interaction. Our results show that among UM patients (1) high AID expression is restricted to the subpopulation of tumoral cells ongoing CSR; (2) this small subset expresses high levels of proliferation, antiapoptotic and progression markers (Ki-67, c-myc, Bcl-2, CD49d, and CCL3/4 chemokines). Overall, this work outlines the importance of a cellular subset in PB of UM CLL patients with a poor clinical outcome, high AID levels, and ongoing CSR, whose presence might be a hallmark of a recent contact with the microenvironment. PMID:20233972

  12. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which

  13. Switched matrix accelerator

    SciTech Connect

    Whittum, David H.; Tantawi, Sami G.

    2001-01-01

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  14. Switched Matrix Accelerator

    SciTech Connect

    Whittum, David H

    2000-10-04

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  15. Transient conduction-radiation analysis of an absolute active cavity radiometer using finite elements

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Kowsary, F.; Tira, N.; Gardiner, B. D.

    1987-01-01

    A NASA-developed finite element-based model of a generic active cavity radiometer (ACR) has been developed in order to study the dependence on operating temperature of the closed-loop and open-loop transient response of the instrument. Transient conduction within the sensing element is explored, and the transient temperature distribution resulting from the application of a time-varying radiative boundary condition is calculated. The results verify the prediction that operation of an ACR at cryogenic temperatures results in large gains in frequency response.

  16. Task switching and the measurement of "switch costs".

    PubMed

    Wylie, G; Allport, A

    2000-01-01

    The measurement of "switch costs" is held to be of interest because, as is widely believed, they may reflect the control processes that are engaged when subjects switch between two (or more) competing tasks. [In task-switching experiments, the reaction time (RT) switch cost is typically measured as the difference in RT between switch and non-switch (repeat) trials.] In this report we focus on the RT switch costs that remain even after the subject has had some time to prepare for the shift of task, when the switch cost may be approximately asymptotic (so-called residual switch costs). Three experiments are presented. All three experiments used Stroop colour/word, and neutral stimuli. Participants performed the two tasks of word-reading and colour-naming in a regular, double alternation, using the "alternating runs" paradigm (R. D. Rogers & S. Monsell, 1995). The experiments were designed to test the hypothesis that RT switch costs depend on a form of proactive interference (PI) arising from the performance of a prior, competing task. A. Allport, E. A. Styles and S. Hsieh (1994) suggested that these PI effects resulted from "task-set inertia", that is, the persisting activation-suppression of competing task-sets, or competing task-processing pathways. The results confirmed the existence of long-lasting PI from the competing task as a major contributor to switch costs. Non-switch trials, used as the baseline in the measurement of switch costs, were also shown to be strongly affected by similar PI effects. However, task-set inertia was not sufficient to account for these results. The results appeared inconsistent also with all other previous models of task switching. A new hypothesis to explain these between-task interference effects was developed, based on the stimulus-triggered retrieval of competing stimulus-response (S-R) associations, acquired (or strengthened) in earlier trials. Consistent with this retrieval hypothesis, switch costs were shown to depend

  17. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.

    PubMed

    De Cecco, Marco; Criscione, Steven W; Peterson, Abigail L; Neretti, Nicola; Sedivy, John M; Kreiling, Jill A

    2013-12-01

    Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells. PMID:24323947

  18. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.

  19. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.

    PubMed

    De Cecco, Marco; Criscione, Steven W; Peterson, Abigail L; Neretti, Nicola; Sedivy, John M; Kreiling, Jill A

    2013-12-01

    Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells.

  20. Activation of Opioid μ-Receptors, but not δ- or κ-Receptors, Switches Pulmonary C-Fiber-Mediated Rapid Shallow Breathing into An Apnea in Anesthetized Rats

    PubMed Central

    Zhang, Zhenxiong; Zhang, Cancan; Zhou, Moxi; Xu, Fadi

    2012-01-01

    Rapid shallow breathing (RSB) is mainly mediated by bronchopulmonary C-fibers (PCFs). We asked whether this RSB could be modulated by opioid. In anesthetized rats right atrial bolus injection of phenylbiguanide (PBG) to evoke RSB was repeated after: 1) intravenously giving fentanyl (μ-receptor agonist), DPDPE (δ-receptor agonist), or U-50488H (κ-receptor agonist); 2) fentanyl (iv) following naloxone methiodide, a peripheral opioid receptor antagonist; 3) bilateral microinjection of fentanyl into the nodose ganglia; 4) fentanyl (iv) with pre-blocking histamine H1 and H2 receptors by diphenhydramine and ranitidine. Systemic fentanyl challenge, but not DPDPE or U-50488H, switched the PBG-induced RSB to a long lasting apnea. This switch was blocked by naloxone methiodide rather than diphenhydramine and ranitidine. After microinjecting fentanyl into the nodose ganglia, PBG also produced an apnea. Our results suggest that activating μ-receptors is capable of turning the PCF-mediated RSB into an apnea, at least partly, via facilitating PCFs’ activity and this switching effect appears independent of the released histamine. PMID:22796630

  1. An AIE-active luminophore with tunable and remarkable fluorescence switching based on the piezo and protonation-deprotonation control.

    PubMed

    Ma, Chunping; Xu, Bingjia; Xie, Gaoyi; He, Jiajun; Zhou, Xie; Peng, Bangyin; Jiang, Long; Xu, Bin; Tian, Wenjing; Chi, Zhenguo; Liu, Siwei; Zhang, Yi; Xu, Jiarui

    2014-07-14

    A novel luminophore TPENSOH was facilely synthesized from the building blocks of tetraphenylethylene and 6-hydroxylbenzothiazole and exhibited unique AIE properties. This new dye was found to show a remarkable and reversible four-color switching based on a single molecule in the solid state. PMID:24872230

  2. An AIE-active luminophore with tunable and remarkable fluorescence switching based on the piezo and protonation-deprotonation control.

    PubMed

    Ma, Chunping; Xu, Bingjia; Xie, Gaoyi; He, Jiajun; Zhou, Xie; Peng, Bangyin; Jiang, Long; Xu, Bin; Tian, Wenjing; Chi, Zhenguo; Liu, Siwei; Zhang, Yi; Xu, Jiarui

    2014-07-14

    A novel luminophore TPENSOH was facilely synthesized from the building blocks of tetraphenylethylene and 6-hydroxylbenzothiazole and exhibited unique AIE properties. This new dye was found to show a remarkable and reversible four-color switching based on a single molecule in the solid state.

  3. Temperature-driven switching of the catalytic activity of artificial glutathione peroxidase by the shape transition between the nanotubes and vesicle-like structures.

    PubMed

    Wang, Liang; Zou, Huixin; Dong, Zeyuan; Zhou, Lipeng; Li, Jiaxi; Luo, Quan; Zhu, Junyan; Xu, Jiayun; Liu, Junqiu

    2014-04-15

    Smart supramolecular nanoenzymes with temperature-driven switching property have been successfully constructed by the self-assembly of supra-amphiphiles formed by the cyclodextrin-based host-guest chemistry. The self-assembled nanostructures were catalyst-functionalized and thermosensitively-functionalized through conveniently linking the catalytic center of glutathione peroxidase and thermosensitive polymer to the host cyclodextrin molecules.The ON-OFF switches for the peroxidase activity by reversible transformation of nanostructures from tube to sphere have been achieved through changing the temperature. We anticipate that such intelligent enzyme mimics could be developed to use in an antioxidant medicine with controlled catalytic efficiency according to the needs of the human body in the future. PMID:24654792

  4. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer.

    PubMed

    Marino, A; Cammarata, M; Matar, S F; Létard, J-F; Chastanet, G; Chollet, M; Glownia, J M; Lemke, H T; Collet, E

    2016-03-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  5. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    PubMed Central

    Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.

    2015-01-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  6. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer.

    PubMed

    Marino, A; Cammarata, M; Matar, S F; Létard, J-F; Chastanet, G; Chollet, M; Glownia, J M; Lemke, H T; Collet, E

    2016-03-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules.

  7. Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    D'Agostino, G.; Bergamaschi, L.; Giordani, L.; Mana, G.; Massa, E.; Oddone, M.

    2012-12-01

    Impurity measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or underestimated uncertainties. A review of the existing data confirmed the high purity of silicon with respect to a large number of elements. In order to obtain direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro natural silicon crystal WASO 04. The investigation concerned 29 elements. The mass fraction of Au was quantified to be (1.03 ± 0.18) × 10-12. For the remaining 28 elements, the mass fractions were below the detection limits, which ranged between 1 × 10-12 and 1 × 10-5.

  8. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  9. Temperature and microbial activity effects on trace element leaching from metalliferous peats.

    PubMed

    Qureshi, Shabnam; Richards, Brian K; McBride, Murray B; Baveye, Philippe; Steenhuis, Tammo S

    2003-01-01

    Due to geochemical processes, peat soils often have elevated concentrations of trace elements, which are gradually released following drainage for agriculture. Our objectives were to use incubation temperatures to vary microbial activity in two metalliferous peats (M7 acidic peat and M3 neutral peat) from the Elba, New York region, and to use periodic leaching to assess the extent of trace element release from these soils. Dried soils were mixed with glass beads to maintain aeration, moistened, and incubated at 4, 16, 28, and 37 degrees C in 10-cm-diameter x 8-cm-tall columns. Five incubation-leaching cycles were performed, each consisting of 7.3 d of incubation (28 d for the final cycle) followed by 16 h of leaching with synthetic acid rain at 2.5 mm h(-1). Microbial activity was determined initially and after the final leaching by measuring C mineralization following glucose stimulation. Cumulative respiration results were ranked 28 > 16 > 4 > 37 degrees C, with M7 acidic peat respiration values greater than M3 neutral peat at each temperature. Initial leachate pH levels were between 2 and 4, with acidification less pronounced and shorter-lived for the M3 peat. Leachate S, dissolved organic carbon (DOC), NO3-N, and trace elements declined with successive leachings (rebounding slightly in the final M3 leachate), with concentrations typically greater in the M7 leachate. Elemental losses followed the same general ranking (28 > 16 > 4 > 37 degrees C); losses at 28 degrees C were 15 to 22% for As, Cd, Ni, and Zn from the M7 peat; losses from M3 were comparable only for Cu (1%) and Ni (19%). The correlation of respiration with S, DOC, and trace elements losses indicates that microbial processes mediated the release of trace elements in both peat soils. Neutral M3 peat pH levels limited losses of most analytes.

  10. Amidase activity in soils. IV. Effects of trace elements and pesticides

    SciTech Connect

    Frankenberger, W.T., Jr.; Tabatabai, M.A.

    1981-11-01

    Amidase was recently detected in soils, and this study was carried out to assess the effects of 21 trace elements, 12 herbicides, 2 fungicides, and 2 insecticides on the activity of this enzyme. Results showed that most of the trace elements and pesticides studied inhibited amidase activity in soils. The degree of inhibition varied among the soils used. When the trace elements were compared by using 5 ..mu..mol/g of soil, the average inhibition of amidase in three soils showed that Ag(I), Hg(I), As(III), and Se(IV) were the most effective inhibitors, but only Ag(I) and As(III) showed average inhibition > 50%. The least effective inhibitors (average inhibition < 3%) included Cu(I), Ba(II), Cu(II), Fe(II), Ni(II), Al(III), Fe(III), Ti(IV), V(IV), As(V), Mo(VI), and W(VI). Other elements that inhibited amidase activity in soils were Cd(II), Co(II), Mn(II), Pb(II), Sn(II), Zn(II), B(III), and Cr(III). Enzyme kinetic studies showed that As(III) was a competitive inhibitor of amidase, whereas Ag(I), Hg(II), and Se(IV) were noncompetitive inhibitors. When the pesticides studied were compared by using 10 ..mu..g of active ingredient per gram of soil, the average inhibition of amidase in three soils ranged from 2% with dinitroamine, EPTC plus R-25788, and captan to 10% with butylate. Other pesticides that inhibited amidase activity in soils were atrazine, naptalam, chloramben, dicamba, cyanazine, 2,4-D, alachlor, paraquat, trifluralin, maneb, diazinon, and malathion. The inhibition of amidase by diazinon, alachlor, and butylate followed noncompetitive kinetics.

  11. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.

    PubMed

    Pundhir, Sachin; Bagger, Frederik O; Lauridsen, Felicia B; Rapin, Nicolas; Porse, Bo T

    2016-05-19

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  12. Finite element formulation and analysis for an arterial wall with residual and active stresses.

    PubMed

    Kida, Naoki; Adachi, Taiji

    2015-08-01

    In this study, for predicting arterial function and pathogenesis from a mechanical viewpoint, we develop a continuum mechanical model of an arterial wall that embodies residual and active stresses following a traditional anisotropic passive constitutive law. The residual and active stresses are incorporated into finite element methods based on a two-field variational principle described in the Lagrangian form. The linearisation of nonlinear weak-form equations derived from this variational principle is then described for developing an original finite element algorithm. Numerical simulations reveal the following: (i) residual stresses lead to a reduction in stress gradient regardless of the magnitude of external load; (ii) active stresses help homogenise stress distribution under physiological external load, but this homogeneity collapses under pathological external load; (iii) when residual and active stresses act together, the effect of the residual stresses is relatively obscured by that of the active stresses. We conclude that residual stresses have minor but persistent mechanical effects on the arterial wall under both physiological and pathological external loads; active stresses play an important role in the physiological functions and pathogenesis of arteries, and the mechanical effect of residual stresses is dependent on the presence/absence of active stresses.

  13. Perivascular adipose tissue-derived leptin promotes vascular smooth muscle cell phenotypic switching via p38 mitogen-activated protein kinase in metabolic syndrome rats.

    PubMed

    Li, Hao; Wang, Ya-Ping; Zhang, Li-Na; Tian, Gang

    2014-04-01

    Perivascular adipose tissue (PVAT)-derived leptin is a detrimental adipocytokine and plays a critical role in the development of cardiovascular diseases in metabolic syndrome (MetS). During vascular remodeling, vascular smooth muscle cells (VSMCs) undergo phenotypic switching into a synthetic phenotype characterized by decreased expression of differentiation markers (smooth muscle myosin heavy chain, α-smooth muscle actin, and calponin) and increased proliferation. We aimed to determine whether PVAT-derived leptin influences VSMC phenotypic switching and to explore the underlying mechanisms in MetS rats. In vivo, 32 Wistar rats were divided into two groups that received either a normal diet (control rat) or a high-fat diet (MetS rats). After 16 weeks, rat aortas were stained using hematoxylin-eosin and imaged. VSMC differentiation markers and proliferating cell nuclear antigen (PCNA), PVAT-derived leptin, aortic leptin receptor (ObR), and p38 mitogen-activated protein kinase (MAPK) expression were detected. In vitro, aortic VSMCs were incubated with MetS rat PVAT conditioned medium (PVAT-CM) to mimic in vivo conditions and were pretreated with a p38 MAPK inhibitor (SB 203580) or leptin antagonist. Differentiation marker expression, including PCNA and p38 MAPK, was detected. MetS rats exhibited pronounced insulin resistance, hyperglycemia, hyperlipidemia, hypertension, obesity, and an associated increase in PVAT weight. VSMCs underwent phenotypic switching in MetS rat aorta and contributed to vascular remodeling. PVAT-derived leptin expression was higher in MetS rats than in control rats (P < 0.01). ObRa expression and p38 MAPK phosphorylation were upregulated in MetS rat aorta. In vitro, VSMCs incubated with MetS rat PVAT-CM underwent phenotypic switching, associated with increased p38 MAPK phosphorylation. This VSMC phenotypic switching was inhibited by pretreatment with SB 203580 or a leptin antagonist. These results suggest that in MetS rats, PVAT

  14. Ca2+ switches the effect of PS-containing membranes on Factor Xa from activating to inhibiting: implications for initiation of blood coagulation.

    PubMed

    Koklic, Tilen; Majumder, Rinku; Lentz, Barry R

    2014-09-15

    Calcium (Ca2+) plays a pivotal role in cellular and organismal physiology. The Ca2+ ion has an intermediate protein-binding affinity and thus it can serve as an on/off switch in the regulation of different biochemical processes. The serum level of ionized Ca2+ is regulated with normal ionized Ca2+ being in the range 1.10-1.3 mM. Hypocalcaemia (free Ca2+<1.1 mM) in critically ill patients is commonly accompanied by haemostatic abnormalities, ranging from isolated thrombocytopenia to complex defects such as disseminated intravascular coagulation, commonly thought to be due to insufficient functioning of anticoagulation pathways. A small amount of fXa (Factor Xa) produced by Factor VIIa and exposed tissue factor is key to initiating blood coagulation by producing enough thrombin to induce the later stages of coagulation. fXa must bind to PS (phosphatidylserine)-containing membranes to produce thrombin at a physiologically significant rate. In the present study, we show that overall fXa activity on PS-containing membranes is sharply regulated by a 'Ca2+ switch' centred at 1.16 mM, below which fXa is active and above which fXa forms inactive dimers on PS-exposing membranes. Our data lead to a mathematical model that predicts the variation of fXa activity as a function of both Ca2+ and membrane concentrations. Because the critical Ca2+ concentration is at the lower end of the normal plasma ionized Ca2+ concentration range, we propose a new regulatory mechanism by which local Ca2+ concentration switches fXa from an intrinsically active form to a form requiring its cofactor [fVa (Factor Va)] to achieve significant activity.

  15. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    NASA Astrophysics Data System (ADS)

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-08-01

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. A method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  16. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE PAGES

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-05-07

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  17. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Technical Reports Server (NTRS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-01-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  18. Development of multi-element active aerodynamics for the formula sae car

    NASA Astrophysics Data System (ADS)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  19. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration.

    PubMed

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M; Yeo, Gene W; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2012-09-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration.

  20. Electromagnetic and structural coupled finite element analysis of active control in an anti-vibration device

    SciTech Connect

    Nakamoto, Eiji; Chen, Q.M.; Takeuchi, Hitoshi; Brauer, J.R.

    1997-03-01

    An active control model of an anti-vibration device is analyzed using a coupled electromagnetic and structural finite element technique. The model consists of two parallel conducting wires moving in a uniform magnetic field. Displacement and velocity of the wires are detected and transformed into voltages. Those voltages are fed back to each wire to control the motion by Lorentz force. Calculated response of the motion is shown to agree with the theory of the equivalent mechanical model.

  1. Determination of selected trace elements in foodstuffs and biological materials by destructive neutron activation analysis.

    PubMed

    Bayat, I; Etehadiyan, M; Ansar, M

    1995-01-01

    Concentration of trace elements in Nescafé, Fariman sugar, and Sadaf turmeric and mercury content in cancerous blood were determined by radiochemical, neutron activation analysis. By this separation method levels of 110mAg, 198Au, 203Hg, 76Se, 51Cr, 24Na, 42K, 99Mo, 122Sb, 82Br, 59Fe, 60Co were measured without interference in the gamma spectroscopy. A nondestructive method has also been used for the analysis of sodium, potassium, and bromine. PMID:8748216

  2. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE PAGES

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. Furthermore, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  3. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    DOEpatents

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  4. Native Thrombocidin-1 and Unfolded Thrombocidin-1 Exert Antimicrobial Activity via Distinct Structural Elements

    PubMed Central

    Kwakman, Paulus H. S.; Krijgsveld, Jeroen; de Boer, Leonie; Nguyen, Leonard T.; Boszhard, Laura; Vreede, Jocelyne; Dekker, Henk L.; Speijer, Dave; Drijfhout, Jan W.; te Velde, Anje A.; Crielaard, Wim; Vogel, Hans J.; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2011-01-01

    Chemokines (chemotactic cytokines) can have direct antimicrobial activity, which is apparently related to the presence of a distinct positively charged patch on the surface. However, chemokines can retain antimicrobial activity upon linearization despite the loss of their positive patch, thus questioning the importance of this patch for activity. Thrombocidin-1 (TC-1) is a microbicidal protein isolated from human blood platelets. TC-1 only differs from the chemokine NAP-2/CXCL7 by a two-amino acid C-terminal deletion, but this truncation is crucial for antimicrobial activity. We assessed the structure-activity relationship for antimicrobial activity of TC-1. Reduction of the charge of the TC-1-positive patch by replacing lysine 17 with alanine reduced the activity against bacteria and almost abolished activity against the yeast Candida albicans. Conversely, augmentation of the positive patch by increasing charge density or size resulted in a 2–3-fold increased activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis but did not substantially affect activity against C. albicans. Reduction of TC-1 resulted in loss of the folded conformation, but this disruption of the positive patch did not affect antimicrobial activity. Using overlapping 15-mer synthetic peptides, we demonstrate peptides corresponding to the N-terminal part of TC-1 to have similar antimicrobial activity as intact TC-1. Although we demonstrate that the positive patch is essential for activity of folded TC-1, unfolded TC-1 retained antimicrobial activity despite the absence of a positive patch. This activity is probably exerted by a linear peptide stretch in the N-terminal part of the molecule. We conclude that intact TC-1 and unfolded TC-1 exert antimicrobial activity via distinct structural elements. PMID:22025617

  5. Effects of rare earth elements on telomerase activity and apoptosis of human peripheral blood mononuclear cells.

    PubMed

    Yu, Li; Dai, Yucheng; Yuan, Zhaokang; Li, Jie

    2007-04-01

    To study the effects of rare earth exposure on human telomerase and apoptosis of mononuclear cells from human peripheral blood (PBMNCs). The blood contents of 15 rare earth elements, including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, were measured by inductively coupled plasma-mass spectrometry. Telomeric repeat amplification protocol assay and flow cytometer analysis were carried out to analyze the telomerase activity and apoptosis of PBMNCs, respectively. The total content of rare earth elements in the blood showed significant differences between the exposed group and the control group. The rare earth exposure increased the telomerase activity and the percentages of cells in the S-phase and the G2/M phase in PBMNCs, but it had no effect on the apoptotic rate of PBMNCs. Under the exposure to lower concentrations of rare earth elements, the telomerase activity of PBMNCs in the exposed group was higher than that of the control group, and there was no effect on the apoptotic rate of PBMNCs, but promoted the diploid DNA replication and increased the percentages of G2/M- and S-phase cells.

  6. Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications

    SciTech Connect

    SAVAGE,MARK E.; MENDEL,C.W.; SEIDEL,DAVID B.

    1999-10-29

    Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown.

  7. P element temperature-specific transposition: a model for possible regulation of mobile elements activity by pre-mRNA secondary structure.

    PubMed

    Gultyaev, A; Redchuk, T; Korolova, A; Kozeretska, I

    2014-01-01

    P element is a DNA transposon, known to spread in genome using transposase activity. Its activity is tissue-specific and normally observed at high temperatures within 24 degrees C to 29 degrees C. Here, we present a predicted RNA secondary structure domain of P element pre-mRNA which could potentially regulate the temperature sensitivity of the P element activity. In canonical P elements, the structure is a small hairpin with double-helical part interrupted by a symmetric loop and a mismatch. In M type P elements, the A.A mismatch is substituted by an A-U base pair, stabilizing the structure. The hairpin structure covers the region involving the IVS-3 5' splice site and both pseudo-splice sites F1 and F2. While the IVS-3 and F1 binding sites of U1 snRNA are located in the double-stranded part of the structure, the F2 site is exposed in the hairpin loop. The formation of this structure may interfere with landing of U1 snRNA on IVS-3 site, while F2 is positioned for the interaction. Alignment of P element sequences supports the proposed existence of the hairpin, showing high similarity for this region. The hairpin structure, stable at low temperatures, may prevent correct IVS-3 splicing. Conversely, temperature-induced destabilization of the hairpin structure may result in the splicing at the proper IVS-3 splice site. Taking into account the increasing amount of data demonstrating the important influence of RNA folding on phenotypes determined by alternative splicing a model for possible regulation of the activity of mobile elements by pre-mRNA secondary structure seems intriguing.

  8. Trace element and magnesium levels and superoxide dismutase activity in rheumatoid arthritis.

    PubMed

    Tuncer, S; Kamanli, A; Akçil, E; Kavas, G O; Seçkin, B; Atay, M B

    1999-05-01

    It has been suggested that reactive oxygen metabolites and trace elements play some role in the etiology and pathogenesis of rheumatoid arthritis (RA). Superoxide dismutase (SOD) is believed to exert an important protective role against oxygen toxicity. The aim of the study was to investigate the probable changes in the levels of trace elements and SOD activity in RA. Plasma and erythrocyte copper, zinc, and magnesium levels and erythrocyte SOD activity were measured in groups of controls and RA cases. Significantly increased erythrocyte SOD activity was found in RA patients in comparison with controls (p < 0.0001). A rise in erythrocyte Zn level (p < 0.0001) and plasma Cu level (p < 0.0001) and a decrease in erythrocyte Cu level (p < 0.05) and plasma Zn level (p < 0.05) were obtained in RA patients when compared to controls. Plasma and erythrocyte Mg levels of the RA patients showed slight and statistically insignificant reductions when compared to controls (p > 0.05). In RA patients, there were positive correlations between erythrocyte SOD activity and Mg level (r = 0.4345, p < 0.01) and between erythrocyte Zn level and plasma Cu level (r = 0.4132, p < 0.01). There were negative correlations between erythrocyte SOD activity and plasma Zn level (r = -0.3605, p < 0.05) and between plasma Zn level and erythrocyte Cu level (r = -0.4578, p < 0.01) in RA patients.

  9. Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements.

    PubMed

    Clark, Nina A; Teschke, Kay; Rideout, Karen; Copes, Ray

    2007-11-01

    The purpose of this study was to assess trace element levels in whole blood, serum and urine of 61 non-smoking adults living on the west coast of Canada and to determine their association with the following variables: age, gender, diet, participation in certain hobby and/or occupational activities, and levels of other trace elements. Participants or their spouses were employed as oyster growers and were originally recruited to study the absorption of cadmium from oyster consumption. Trace elements were measured using inductively-coupled plasma mass spectrometry. A telephone interview was used to assess participant's intake of selected foods and the amount of time they have spent on certain activities over the lifetime. Comparison of results to previous studies revealed that blood lead, blood mercury, serum nickel, serum selenium and urine molybdenum levels were generally higher in this study than have previously been measured, possibly due to higher consumption of seafood in this sample. Men had statistically higher levels of serum iron, blood lead, and serum selenium, while women had statistically higher levels of serum copper and blood manganese. Blood lead levels increased with age. Diet had a statistically significant association with several elements. Consumption of spinach, seaweed, organ meats, and shellfish tended to be positively correlated with trace element concentrations and consumption of various forms of potatoes tended to be negatively correlated. Several statistically significant correlations were also observed between trace elements.

  10. Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation

    PubMed Central

    1996-01-01

    Immunoglobulin (Ig) class switch recombination is associated with the production and splicing of germline IgCH messenger RNA transcripts. Levels of gamma 1 transcripts in mouse spleen sections were assessed by semiquantitative analysis of reverse transcriptase polymerase chain reaction (PCR) products during primary and secondary antibody responses to chicken gamma globulin (CGG). This was correlated with the appearance of CGG-specific B cells and their growth and differentiation to plasma cells. After primary immunization with CGG, gamma 1 switch transcripts appeared after 4 d, peaked at a median of six times starting levels between 10 and 18 d after immunization, and returned to background levels before secondary immunization at 5 wk. By contrast, after secondary challenge with CGG, a sevenfold increase in transcripts occurs during the first d. The level again doubles by day 3, when it is six times that which is seen at the peak of the primary response. After day 4, there was a gradual decline over the next 2-3 wk. Within 12 h of secondary immunization, antigen-specific memory B cells appeared in the outer I zone and by 24 h entered S phase, presumably as a result of cognate interaction with primed T cells. Over the next few hours, they migrated to the edge of the red pulp, where they grew exponentially until the fourth day, when they synchronously differentiated to become plasma cells. The same pattern was seen for the migration, growth, and differentiation of virgin hapten-specific B cells when CGG-primed mice were challenged with hapten protein. The continued production of transcripts after day 3 indicates that switching also occurs in germinal centers, but in a relatively small proportion of their B cells. The impressive early production of switch transcripts during T cell-dependent antibody responses occurs in cells that are about to undergo massive clonal expansion. It is argued that Ig class switching at this time, which is associated with cognate T cell

  11. The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator-like elements

    PubMed Central

    Lopes, Fabrício R; Silva, Joana C; Benchimol, Marlene; Costa, Gustavo GL; Pereira, Gonçalo AG; Carareto, Claudia MA

    2009-01-01

    Background For three decades the Mutator system was thought to be exclusive of plants, until the first homolog representatives were characterized in fungi and in early-diverging amoebas earlier in this decade. Results Here, we describe and characterize four families of Mutator-like elements in a new eukaryotic group, the Parabasalids. These Trichomonas vaginalis Mutator- like elements, or TvMULEs, are active in T. vaginalis and patchily distributed among 12 trichomonad species and isolates. Despite their relatively distinctive amino acid composition, the inclusion of the repeats TvMULE1, TvMULE2, TvMULE3 and TvMULE4 into the Mutator superfamily is justified by sequence, structural and phylogenetic analyses. In addition, we identified three new TvMULE-related sequences in the genome sequence of Candida albicans. While TvMULE1 is a member of the MuDR clade, predominantly from plants, the other three TvMULEs, together with the C. albicans elements, represent a new and quite distinct Mutator lineage, which we named TvCaMULEs. The finding of TvMULE1 sequence inserted into other putative repeat suggests the occurrence a novel TE family not yet described. Conclusion These findings expand the taxonomic distribution and the range of functional motif of MULEs among eukaryotes. The characterization of the dynamics of TvMULEs and other transposons in this organism is of particular interest because it is atypical for an asexual species to have such an extreme level of TE activity; this genetic landscape makes an interesting case study for causes and consequences of such activity. Finally, the extreme repetitiveness of the T. vaginalis genome and the remarkable degree of sequence identity within its repeat families highlights this species as an ideal system to characterize new transposable elements. PMID:19622157

  12. The coelacanth: Can a “living fossil” have active transposable elements in its genome?

    PubMed Central

    Naville, Magali; Chalopin, Domitille; Casane, Didier; Laurenti, Patrick; Volff, Jean-Nicolas

    2015-01-01

    The coelacanth has long been regarded as a “living fossil,” with extant specimens looking very similar to fossils dating back to the Cretaceous period. The hypothesis of a slowly or even not evolving genome has been proposed to account for this apparent morphological stasis. While this assumption seems to be sustained by different evolutionary analyses on protein-coding genes, recent studies on transposable elements have provided more conflicting results. Indeed, the coelacanth genome contains many transposable elements and has been shaped by several major bursts of transposition during evolution. In addition, comparison of orthologous genomic regions from the genomes of the 2 extant coelacanth species L. chalumnae and L. menadoensis revealed multiple species-specific insertions, indicating transposable element recent activity and contribution to post-speciation genome divergence. These observations, which do not support the genome stasis hypothesis, challenge either the impact of transposable elements on organismal evolution or the status of the coelacanth as a “living fossil.” Closer inspection of fossil and molecular data indicate that, even if coelacanths might evolve more slowly than some other lineages due to demographic and/or ecological factors, this variation is still in the range of a “non-fossil” vertebrate species. PMID:26442185

  13. Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating.

    PubMed

    Pérez-Millán, P; Díez, A; Andrés, M; Zalvidea, D; Duchowicz, R

    2005-06-27

    We report an actively Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating. The laser employs a pair of Bragg gratings as reflective mirrors, one of which is bonded to a magnetostrictive element. Lengthening of the magnetostrictive element when a magnetic field is applied shifts the Bragg wavelength of the grating, allowing control of the Q-factor of the cavity and, thus, performing active Q-switching. The magnetostrictive modulator is small, compact and requires less than 300 mW electrical drive power. Using erbium-doped fiber and a maximum pump power of 120 mW, Q-switch pulses of more than 1 W peak power were obtained, with a pulse repetition rate that can be continuously varied from 1 Hz to 125 kHz. PMID:19498492

  14. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas

    PubMed Central

    Heim, Olga; Treitler, Julia T.; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  15. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    PubMed

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  16. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    PubMed

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  17. Alarm toe switch. [Patent application

    DOEpatents

    Ganyard, F.P.

    1980-11-18

    An alarm toe switch inserted within a shoe for energizing an alarm circuit in a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch.

  18. Observation of new spontaneous fission activities from elements 100 to 105

    SciTech Connect

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include /sup 257/Rf(3.8 s, 14% SF), /sup 258/Rf(13 ms), /sup 259/Rf(approx. 3 s, 8% SF), /sup 260/Rf(approx. 20 ms), and /sup 262/Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (/sup 260/104) was not observed. A difficulty exists in the interpretation that /sup 260/Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV /sup 18/O + /sup 248/Cm, 88- to 100-MeV /sup 15/N + /sup 249/Bk, and 96-MeV /sup 18/O + /sup 249/Cf must be other nuclides due to their large production cross sections, or the cross sections for production of /sup 260/Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in /sup 258/Lr(4.5 s) to the SF emitter /sup 258/No(1.2 ms) and an upper limit of 0.05% for SF branching in /sup 254/No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s (/sup 18/O + /sup 248/CM), indications of a approx. 47-s SF activity (75-MeV /sup 12/C + /sup 249/Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s (/sup 18/O + /sup 249/Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier.

  19. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and

  20. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  1. Automatic thermal switch

    NASA Technical Reports Server (NTRS)

    Wing, L. D.; Cunningham, J. W. (Inventor)

    1981-01-01

    An automatic thermal switch to control heat flow includes a first thermally conductive plate, a second thermally conductive plate and a thermal transfer plate pivotally mounted between the first and second plates. A phase change power unit, including a plunger connected to the transfer plate, is in thermal contact with the first thermally conductive plate. A biasing element, connected to the transfer plate, biases the transfer plate in a predetermined position with respect to the first and second plates. When the phase change power unit is actuated by an increase in heat transmitted through the first plate, the plunger extends and pivots the transfer plate to vary the thermal conduction between the first and second plates through the transfer plate. The biasing element, transfer plate and piston can be arranged to provide either a normally closed or normally open thermally conductive path between the first and second plates.

  2. Organic non-volatile resistive photo-switches for flexible image detector arrays.

    PubMed

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W

    2015-02-01

    A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information.

  3. THYRATRON SWITCH

    DOEpatents

    Creveling, R.; Bourgeois, N.A. Jr.

    1959-04-21

    An arrangement for utilizing a thyratron as a noise free switch is described. It has been discovered that the voltage between plate and cathode of a thyratron will oscillate, producing voltage spikes, if the tube carries only a fraction of its maximum rated current. These voltage spikes can produce detrimental effects where the thyratron is used in critical timing circuits. To alleviate this problem the disclosed circuit provides a charged capacitor and a resistor in parallel with the tube and of such value that the maximum current will flow from the capacitor through the thyratron when it is triggered. During this time the signal current is conducted through the tube, before the thyratron voltage starts to oscillate, and the signal current output is free of noise spikes.

  4. Association between serum trace element concentrations and the disease activity of systemic lupus erythematosus.

    PubMed

    Sahebari, M; Abrishami-Moghaddam, M; Moezzi, A; Ghayour-Mobarhan, M; Mirfeizi, Z; Esmaily, H; Ferns, G

    2014-07-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with a complex, incompletely understood, etiology. Several genetic and environmental factors are suspected to be involved in its aetiology. Oxidative stress may be implicated in the pathogenesis of SLE and may be affected by trace element status. Zinc (Zn), copper (Cu) and selenium (Se) are essential components of several anti-oxidative enzymes and are also involved in several immune functions. The current study aimed to assess the relationship between serum concentrations of these trace elements and the clinical disease activity of SLE assessed using the SLE disease activity index (SLEDAI). Serum concentrations of albumin (Alb) (p = 0.001), Se (p = 0.001), Zn (p = 0.001) and the Zn to Cu ratio (Zn/Cu R) (p = 0.001) were lower in patients with SLE than the age- and sex-matched healthy controls. However, only Alb (p = 0.001) and Cu (p = 0.03) were negatively correlated with disease activity, which was supported by regression analysis. In summary, lower serum values of Alb, Zn, Se and Zn/Cu R were found in SLE patients compared with healthy controls; however, in addition to serum Alb concentrations, serum Cu concentrations were also negatively correlated with lupus disease activity.

  5. Speed of sound estimation with active PZT element for thermal monitoring during ablation therapy: feasibility study

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Guo, Xiaoyu; Cheng, Alexis; Boctor, Emad M.

    2016-04-01

    Controlling the thermal dose during ablation therapy is instrumental to successfully removing the tumor while preserving the surrounding healthy tissue. In the practical scenario, surgeons must be able to determine the ablation completeness in the tumor region. Various methods have been proposed to monitor it, one of which uses ultrasound since it is a common intraoperative imaging modality due to its non-invasive, cost-effective, and convenient natures. In our approach, we propose to use time of flight (ToF) information to estimate speed of sound changes. Accurate speed of sound estimation is crucial because it is directly correlated with temperature change and subsequent determination of ablation completeness. We divide the region of interest in a circular fashion with a variable radius from the ablator tip. We introduce the concept of effective speed of sound in each of the sub-regions. Our active PZT element control system facilitates this unique approach by allowing us to acquire one-way ToF information between the PZT element and each of the ultrasound elements. We performed a simulation and an experiment to verify feasibility of this method. The simulation result showed that we could compute the effective speed of sound within 0.02m/s error in our discrete model. We also perform a sensitivity analysis for this model. Most of the experimental results had less than 1% error. Simulation using a Gaussian continuous model with multiple PZT elements is also demonstrated. We simulate the effect of the element location one the optimization result.

  6. Finite element simulation of rate-dependent magneto-active polymer response

    NASA Astrophysics Data System (ADS)

    Haldar, K.; Kiefer, B.; Menzel, A.

    2016-10-01

    This contribution is concerned with the embedding of constitutive relations for magneto-active polymers (MAP) into finite element simulations. To this end, a recently suggested, calibrated, and validated material model for magneto-mechanically coupled and rate-dependent MAP response is briefly summarized in its continuous and algorithmic settings. Moreover, the strongly coupled field equations of finite deformation magneto-mechanics are reviewed. For the purpose of numerical simulation, a finite element model is then established based on the usual steps of weak form representation, discretization and consistent linearization. Two verifying inhomogeneous numerical examples are presented in which a classical ‘plate with a hole’ geometry is equipped with MAP properties and subjected to different types of time-varying mechanical and magnetic loading.

  7. Closing photoconductive semiconductor switches

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Hjalmarson, H.P.; O'Malley, M.W.

    1989-01-01

    One of the most important limitations of Photoconductive Semiconductor Switches (PCSS) for pulsed power applications is the high laser powers required to activate the switches. In this paper, we discuss recent developments on two different aspects of GaAs PCSS that result in reductions in laser power by a factor of nearly 1000. The advantages of using GaAs over Si are many. First of all, the resistivity of GaAs can be orders of magnitude higher than that of the highest resistivity Si material, thus allowing GaAs switches to withstand dc voltages without thermal runaway. Secondly, GaAs has a higher carrier mobility than Si and, thus, is more efficient (per carrier). Finally, GaAs switches can have naturally fast (ns) opening times at room temperature and low fields, microsecond opening times at liquid nitrogen temperature of 77 K, or, on demand, closing and opening at high fields and room temperature by a mechanism called lock-on (see Ref. 1). By contrast, Si switches typically opening times of milliseconds. The amount of laser light required to trigger GaAs for lock-on, or at 77 K, is about three orders of magnitude lower than at room temperature. In this paper we describe the study of lock-on in GaAs and InP, as well as switching of GaAs at 77 K. We shall show that when GaAs is switched at 77 K, the carrier lifetime is about three orders of magnitude longer than it is at room temperature. We shall explain the change in lifetime in terms of the change in electron capture cross section of the deep levels in GaAs (these are defect or impurity levels in the band gap). In the second section, we describe the lock-on effect, now seen in GaAs and InP, and at fields as high as 70 kV/cm. We show how lock-on can be tailored by changing the GaAs temperature or by neutron bombardment. In the third section, we discuss possible lock-on mechanisms. 5 refs., 5 figs.

  8. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  9. Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity.

    PubMed

    Chen, Wei-Chung; Pauls, Stefan; Bacha, Jamil; Elgar, Greg; Loose, Matthew; Shimeld, Sebastian M

    2014-06-15

    Vertebrate genomes share numerous conserved non-coding elements, many of which function as enhancer elements and are hypothesised to be under evolutionary constraint due to a need to be bound by combinations of sequence-specific transcription factors. In contrast, few such conserved elements can be detected between vertebrates and their closest invertebrate relatives. Despite this lack of sequence identity, cross-species transgenesis has identified some cases where non-coding DNA from invertebrates drives reporter gene expression in transgenic vertebrates in patterns reminiscent of the expression of vertebrate orthologues. Such instances are presumed to reflect the presence of conserved suites of binding sites in the regulatory regions of invertebrate and vertebrate orthologues, such that both regulatory elements can correctly interpret the trans-activating environment. Shuffling of binding sites has been suggested to lie behind loss of sequence conservation; however this has not been experimentally tested. Here we examine the underlying basis of enhancer activity for the Ciona intestinalis βγ-crystallin gene, which drives expression in the lens of transgenic vertebrates despite the Ciona lineage predating the evolution of the lens. We construct an interactive gene regulatory network (GRN) for vertebrate lens development, allowing network interactions to be robustly catalogued and conserved network components and features to be identified. We show that a small number of binding motifs are necessary for Ciona βγ-crystallin expression, and narrow down the likely factors that bind to these motifs. Several of these overlap with the conserved core of the vertebrate lens GRN, implicating these sites in cross species function. However when we test these motifs in a transgenic vertebrate they prove to be dispensable for reporter expression in the lens. These results show that current models depicting cross species enhancer function as dependent on conserved binding

  10. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  11. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  12. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-28

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  13. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  14. Interspecies insertion polymorphism analysis reveals recent activity of transposable elements in extant coelacanths.

    PubMed

    Naville, Magali; Chalopin, Domitille; Volff, Jean-Nicolas

    2014-01-01

    Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.

  15. What automaticity deficit? Activation of lexical information by readers with dyslexia in a rapid automatized naming Stroop-switch task.

    PubMed

    Jones, Manon W; Snowling, Margaret J; Moll, Kristina

    2016-03-01

    Reading fluency is often predicted by rapid automatized naming (RAN) speed, which as the name implies, measures the automaticity with which familiar stimuli (e.g., letters) can be retrieved and named. Readers with dyslexia are considered to have less "automatized" access to lexical information, reflected in longer RAN times compared with nondyslexic readers. We combined the RAN task with a Stroop-switch manipulation to test the automaticity of dyslexic and nondyslexic readers' lexical access directly within a fluency task. Participants named letters in 10 × 4 arrays while eye movements and speech responses were recorded. Upon fixation, specific letter font colors changed from black to a different color, whereupon the participant was required to rapidly switch from naming the letter to naming the letter color. We could therefore measure reading group differences on "automatic" lexical processing, insofar as it was task-irrelevant. Readers with dyslexia showed obligatory lexical processing and a timeline for recognition that was overall similar to typical readers, but a delay emerged in the output (naming) phase. Further delay was caused by visual-orthographic competition between neighboring stimuli. Our findings outline the specific processes involved when researchers speak of "impaired automaticity" in dyslexic readers' fluency, and are discussed in the context of the broader literature in this field. PMID:26414305

  16. A biomimetic molecular switch at work: coupling photoisomerization dynamics to peptide structural rearrangement.

    PubMed

    García-Iriepa, Cristina; Gueye, Moussa; Léonard, Jérémie; Martínez-López, David; Campos, Pedro J; Frutos, Luis Manuel; Sampedro, Diego; Marazzi, Marco

    2016-03-01

    In spite of considerable interest in the design of molecular switches towards photo-controllable (bio)materials, few studies focused on the major influence of the surrounding environment on the switch photoreactivities. We present a combined experimental and computational study of a retinal-like molecular switch linked to a peptide, elucidating the effects on the photoreactivity and on the α-helix secondary structure. Temperature-dependent, femtosecond UV-vis transient absorption spectroscopy and high-level hybrid quantum mechanics/molecular mechanics methods were applied to describe the photoisomerization process and the subsequent peptide rearrangement. It was found that the conformational heterogeneity of the ground state peptide controls the excited state potential energy surface and the thermally activated population decay. Still, a reversible α-helix to α-hairpin conformational change is predicted, paving the way for a fine photocontrol of different secondary structure elements, hence (bio)molecular functions, using retinal-inspired molecular switches. PMID:26876376

  17. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    PubMed

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction. PMID:27144291

  18. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    PubMed

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction.

  19. Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements.

    PubMed

    De, Supriyo; Wurster, Andrea L; Precht, Patricia; Wood, William H; Becker, Kevin G; Pazin, Michael J

    2011-04-01

    T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes.

  20. Switching on the Aire conditioner.

    PubMed

    Matsumoto, Mitsuru

    2015-12-01

    Aire has been cloned as the gene responsible for a hereditary type of organ-specific autoimmune disease. Aire controls the expression of a wide array of tissue-restricted Ags by medullary thymic epithelial cells (mTECs), thereby leading to clonal deletion and Treg-cell production, and ultimately to the establishment of self-tolerance. However, relatively little is known about the mechanism responsible for the control of Aire expression itself. In this issue of the European Journal of Immunology, Haljasorg et al. [Eur. J. Immunol. 2015. 45: 3246-3256] have reported the presence of an enhancer element for Aire that binds with NF-κB components downstream of the TNF receptor family member, RANK (receptor activator of NF-κB). The results suggest that RANK has a dual mode of action in Aire expression: one involving the promotion of mTEC differentiation and the other involving activation of the molecular switch for Aire within mature mTECs. PMID:26643138

  1. Switching on the Aire conditioner.

    PubMed

    Matsumoto, Mitsuru

    2015-12-01

    Aire has been cloned as the gene responsible for a hereditary type of organ-specific autoimmune disease. Aire controls the expression of a wide array of tissue-restricted Ags by medullary thymic epithelial cells (mTECs), thereby leading to clonal deletion and Treg-cell production, and ultimately to the establishment of self-tolerance. However, relatively little is known about the mechanism responsible for the control of Aire expression itself. In this issue of the European Journal of Immunology, Haljasorg et al. [Eur. J. Immunol. 2015. 45: 3246-3256] have reported the presence of an enhancer element for Aire that binds with NF-κB components downstream of the TNF receptor family member, RANK (receptor activator of NF-κB). The results suggest that RANK has a dual mode of action in Aire expression: one involving the promotion of mTEC differentiation and the other involving activation of the molecular switch for Aire within mature mTECs.

  2. Evidence That Sisterless-a and Sisterless-B Are Two of Several Discrete ``numerator Elements'' of the X/a Sex Determination Signal in Drosophila That Switch Sxl between Two Alternative Stable Expression States

    PubMed Central

    Cline, T. W.

    1988-01-01

    The primary signal for Drosophila sex determination is the number of X chromosomes relative to the number of sets of autosomes. The present report shows that the numerator of this X/A signal appears to be determined by the cumulative dose of a relatively limited number of discrete X-linked genetic elements, two of which are sisterless-a and sisterless-b. This discovery regarding the nature of the sex determination signal grew out of previous studies of both the likely X/A signal target (the feminizing switch gene, Sex-lethal) and two positive regulators of that target gene (sis-a and daughterless). Combinations of genetic perturbations in these three genes had been shown to have synergistic effects. A model proposed in part to account for these interactions generated a large variety of strong predictions for sex-specific synergistic interactions that would be diagnostic for X/A numerator elements and could distinguish them from other components of the sex determination system. All these predictions, as well as other predictions for X/A numerator elements, are shown here to be fulfilled. The most compelling observations involve sexually reciprocal viability effects of duplications of wild-type genes: combinations of sis-a(+), sis-b(+) and/or Sxl(+) duplications are lethal to males but rescue females from the otherwise lethal effects of changes in other components of the sex determination machinery. The many interactions described here illustrate an important principle that may seem counter-intuitive: perturbations of the sex determination signal for Drosophila generally will not appear to affect adult sexual phenotype. This principle follows from the fact that Sxl is involved in dosage compensation as well as sex determination, and from important aspects of the nature and timing of Sxl's regulation both by the X/A signal and by Sxl's own products (positive autoregulation). These factors mask potential effects on adult sexual differentiation by causing the premature

  3. Ca2+ Switches the Effect of PS-containing Membranes on Factor Xa from Activating to Inhibiting: Implications for Initiation of Blood Coagulation

    PubMed Central

    Koklic, Tilen; Majumder, Rinku; Lentz, Barry R.

    2014-01-01

    Calcium (Ca2+) plays a pivotal role in cellular and organismal physiology. The Ca2+ ion has an intermediate protein-binding affinity, thus it can serve as an on/off switch in regulation of different biochemical processes. The serum level of ionized Ca2+ is regulated with normal ionized Ca2+ being in the range from 1.10 to 1.29 mM. Hypocalcaemia (free Ca2+ < 1.1mM) in critically ill patients is commonly accompanied by hemostatic abnormalities, ranging from isolated thrombocytopenia to complex defects such as disseminated intravascular coagulation, commonly thought to be due to insufficient functioning of anticoagulation pathways. A small amount of Factor Xa (fXa) produced by Factor VIIa and exposed tissue factor is key to initiating blood coagulation by producing enough thrombin to induce later stages of coagulation. FXa must bind to phosphatidylserine (PS)-containing membranes to produce thrombin at a physiologically significant rate. In this work, we show that overall fXa activity on PS-containing membranes is sharply regulated by a “Ca2+ switch” centered at 1.16 mM, below which fXa is active and above which fXa forms inactive dimers on PS-exposing membranes. Our data lead to a mathematical model that predicts the variation of fXa activity as a function of both calcium and membrane concentrations. Because the critical Ca2+ concentration is at the lower end of the normal plasma ionized Ca2+ concentration range, we propose a new regulatory mechanism by which local Ca2+ concentration switches fXa from an intrinsically active form to a form requiring its cofactor (fVa) to achieve significant activity. PMID:24920080

  4. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  5. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  6. A new concept for an active element for the large cosmic ray calorimeter ani

    NASA Astrophysics Data System (ADS)

    Lorenz, E.; Borngrebe, S.; Chilingarian, A.; Ferenc, D.; Mirzoyan, R.; Schwarz, R.

    . For the ANI calorimeter (40 x 40 m¡ , 6 concrete absorber layers of 1 m thickness each) at mount Aragatz, Armenia, a cheap and efficient active detector element is needed. One solution is to use long, square tubes (20 x 0.3 x 0.3 m¢ ) filled with wavelength shifter dye doped water. Two PMTs at the ends serve to read out the Cherenkov light generated by fast charged particles. For the crucial light transport along the tubes the walls are lined by a new superreflector foil from 3M (dielectric reflector foil with R £ 98%). From test measurements, a light attenuation of a factor 10-15 over the full length is expected. Due to the high active material fraction of the calorimeter of nearly 15% a good energy and spatial resolution is expected. Prototype results will be presented.

  7. The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer

    PubMed Central

    Ellis, J. G.; Llewellyn, D. J.; Walker, J. C.; Dennis, E. S.; Peacock, W. J.

    1987-01-01

    A 176 bp DNA sequence lying upstream of the octopine synthase (ocs) promoter, previously shown to have enhancer-like properties in transgenic tobacco [Ellis et al. (1987) EMBO J., 6, 11-16], functions as an enhancer in protoplasts of Zea mays (a monocot plant) and Nicotiana plumbaginifolia (a dicotplant). We have characterized this element by transient expression assays using a linked alcohol dehydrogenase (Adh1) promoter from Z. mays and the chloramphenicol acetyltransferase coding sequences. The ocs sequence functions in both orientations but its enhancing activity is dependent upon its distance from the Adh1 promoter. Transient expression assays using deletion mutants and synthetic oligonucleotides show that a 16 bp palindrome ACGTAAGCGCTTACGT, contained within the 176 bp fragment, is essential and sufficient for enhancing activity in transient expression assays. ImagesFig. 2.Fig. 4.Fig. 5. PMID:16453801

  8. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms.

    PubMed

    Stilinović, Nebojša; Škrbić, Biljana; Živančev, Jelena; Mrmoš, Nataša; Pavlović, Nebojša; Vukmirović, Saša

    2014-12-01

    Commercial preparations of Cordyceps sinensis, Ganoderma lucidum and Coprinus comatus mushroom marketed as healthy food supplements in Serbia were analyzed by atomic absorption spectrometry with a graphite furnace (GFAAS) for their element content. Antioxidant activity potential and total phenolics of the same mushrooms were determined. The element content of mushroom samples was in the range of 0.130-0.360 mg kg(-1) for lead (Pb), <0.03-0.46 mg kg(-1) for arsenic (As), 0.09-0.39 mg kg(-1) for cadmium (Cd), 98.14-989.18 mg kg(-1) for iron (Fe), 0.10-101.32 mg kg(-1) for nickel (Ni), 5.06-26.50 mg kg(-1) for copper (Cu), 0.20-0.70 mg kg(-1) for cobalt (Co), 1.74-136.33 mg kg(-1) for chromium (Cr) and 2.19-21.54 mg kg(-1) for manganese (Mn). In the tests for measuring the antioxidant activity, the methanolic extract of C. sinensis showed the best properties. The same was seen for the analysis of selected phenolic compounds; C. sinensis was found to have the highest content. Commercial preparations of C. sinensis and C. comatus can be considered to be safe and suitable food supplements included in well-balanced diets.

  9. Three-element trap filter radiometer based on large active area silicon photodiodes.

    PubMed

    Salim, S G R; Anhalt, K; Taubert, D R; Hollandt, J

    2016-05-20

    This paper shows the opto-mechanical design of a new filter radiometer built at the Physikalisch-Technische Bundesanstalt, Germany, for the accurate determination of the thermodynamic temperature of high-temperature blackbodies. The filter radiometer is based on a three-element reflection-type trap detector that uses three large active area silicon photodiodes. Its spectral coverage and field of view are defined by a detachable narrow-band filter and a diamond-turned precision aperture, respectively. The temperature of the filter radiometer is stabilized using a water-streamed housing and is measured using a thin-film platinum thermometer placed onto the first photodiode element. The trap "mount" has been made as compact as possible, which, together with the large active area of the chosen photodiodes, allows a wide field of view. This work presents the design of the filter radiometer and discusses the criteria that have been considered in order for the filter radiometer to suit the application.

  10. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms.

    PubMed

    Stilinović, Nebojša; Škrbić, Biljana; Živančev, Jelena; Mrmoš, Nataša; Pavlović, Nebojša; Vukmirović, Saša

    2014-12-01

    Commercial preparations of Cordyceps sinensis, Ganoderma lucidum and Coprinus comatus mushroom marketed as healthy food supplements in Serbia were analyzed by atomic absorption spectrometry with a graphite furnace (GFAAS) for their element content. Antioxidant activity potential and total phenolics of the same mushrooms were determined. The element content of mushroom samples was in the range of 0.130-0.360 mg kg(-1) for lead (Pb), <0.03-0.46 mg kg(-1) for arsenic (As), 0.09-0.39 mg kg(-1) for cadmium (Cd), 98.14-989.18 mg kg(-1) for iron (Fe), 0.10-101.32 mg kg(-1) for nickel (Ni), 5.06-26.50 mg kg(-1) for copper (Cu), 0.20-0.70 mg kg(-1) for cobalt (Co), 1.74-136.33 mg kg(-1) for chromium (Cr) and 2.19-21.54 mg kg(-1) for manganese (Mn). In the tests for measuring the antioxidant activity, the methanolic extract of C. sinensis showed the best properties. The same was seen for the analysis of selected phenolic compounds; C. sinensis was found to have the highest content. Commercial preparations of C. sinensis and C. comatus can be considered to be safe and suitable food supplements included in well-balanced diets. PMID:25294630

  11. Three-element trap filter radiometer based on large active area silicon photodiodes.

    PubMed

    Salim, S G R; Anhalt, K; Taubert, D R; Hollandt, J

    2016-05-20

    This paper shows the opto-mechanical design of a new filter radiometer built at the Physikalisch-Technische Bundesanstalt, Germany, for the accurate determination of the thermodynamic temperature of high-temperature blackbodies. The filter radiometer is based on a three-element reflection-type trap detector that uses three large active area silicon photodiodes. Its spectral coverage and field of view are defined by a detachable narrow-band filter and a diamond-turned precision aperture, respectively. The temperature of the filter radiometer is stabilized using a water-streamed housing and is measured using a thin-film platinum thermometer placed onto the first photodiode element. The trap "mount" has been made as compact as possible, which, together with the large active area of the chosen photodiodes, allows a wide field of view. This work presents the design of the filter radiometer and discusses the criteria that have been considered in order for the filter radiometer to suit the application. PMID:27411121

  12. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  13. Quantitative comparison of cis-regulatory element (CRE) activities in transgenic Drosophila melanogaster.

    PubMed

    Rogers, William A; Williams, Thomas M

    2011-01-01

    Gene expression patterns are specified by cis-regulatory element (CRE) sequences, which are also called enhancers or cis-regulatory modules. A typical CRE possesses an arrangement of binding sites for several transcription factor proteins that confer a regulatory logic specifying when, where, and at what level the regulated gene(s) is expressed. The full set of CREs within an animal genome encodes the organism's program for development, and empirical as well as theoretical studies indicate that mutations in CREs played a prominent role in morphological evolution. Moreover, human genome wide association studies indicate that genetic variation in CREs contribute substantially to phenotypic variation. Thus, understanding regulatory logic and how mutations affect such logic is a central goal of genetics. Reporter transgenes provide a powerful method to study the in vivo function of CREs. Here a known or suspected CRE sequence is coupled to heterologous promoter and coding sequences for a reporter gene encoding an easily observable protein product. When a reporter transgene is inserted into a host organism, the CRE's activity becomes visible in the form of the encoded reporter protein. P-element mediated transgenesis in the fruit fly species Drosophila (D.) melanogaster has been used for decades to introduce reporter transgenes into this model organism, though the genomic placement of transgenes is random. Hence, reporter gene activity is strongly influenced by the local chromatin and gene environment, limiting CRE comparisons to being qualitative. In recent years, the phiC31 based integration system was adapted for use in D. melanogaster to insert transgenes into specific genome landing sites. This capability has made the quantitative measurement of gene and, relevant here, CRE activity feasible. The production of transgenic fruit flies can be outsourced, including phiC31-based integration, eliminating the need to purchase expensive equipment and/or have proficiency at

  14. Observation of new spontaneous fission activities from elements 100 to 105

    SciTech Connect

    Somerville, L.P.

    1982-01-01

    Several new Spontaneous Fission (SF) activities have been found. Their half-lives and production cross sections in several reactions have been measured by collecting and transporting recoils at known speed past mica track detectors. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include /sup 257/Rf(3.8s, 14% SF), /sup 258/Rf(13 ms), /sup 259/Rf(approx.3s, 8% SF), /sup 260/Rf(approx.20 ms), and /sup 262/Rf(approx.50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (/sup 260/104) was not observed. A difficulty exists in the interpretation that /sup 260/Rf is a approx.20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV /sup 18/O + /sup 248/Cm, 88- to 100-MeV /sup 15/N + /sup 249/Bk, and 96-MeV /sup 18/O + /sup 249/Cf must be other nuclides due to their large production cross sections, or the cross sections for production of /sup 268/Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx.1% electron-capture branch in /sup 258/Lr(4.5 s) to the SF emitter /sup 258/No(1.2 ms) and an upper limit of 0.05% for SF branching in /sup 254/No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s (/sup 18/O + /sup 248/Cm), indications of a approx.47-s SF activity (75-MeV /sup 12/C + /sup 249/Cf), and two or more SF activities with 3 s less than or equal to T/sub (1/2)/ less than or equal to 60 s (/sup 18/O + /sup 249/Bk).

  15. Ferroelectric switching of elastin

    PubMed Central

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  16. Photoresistance Switching of Plasmonic Nanopores

    PubMed Central

    2015-01-01

    Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (∼1–2 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification. PMID:25514824

  17. Predicting competitive adsorption behavior of major toxic anionic elements onto activated alumina: a speciation-based approach.

    PubMed

    Su, Tingzhi; Guan, Xiaohong; Tang, Yulin; Gu, Guowei; Wang, Jianmin

    2010-04-15

    Toxic anionic elements such as arsenic, selenium, and vanadium often co-exist in groundwater. These elements may impact each other when adsorption methods are used to remove them. In this study, we investigated the competitive adsorption behavior of As(V), Se(IV), and V(V) onto activated alumina under different pH and surface loading conditions. Results indicated that these anionic elements interfered with each other during adsorption. A speciation-based model was developed to quantify the competitive adsorption behavior of these elements. This model could predict the adsorption data well over the pH range of 1.5-12 for various surface loading conditions, using the same set of adsorption constants obtained from single-sorbate systems. This model has great implications in accurately predicting the field capacity of activated alumina under various local water quality conditions when multiple competitive anionic elements are present.

  18. Effects of heavy metal and other elemental additives to activated sludge on growth of Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Narahara, A.

    1981-09-01

    The approximate level at which added concentrations of certain elements would cause an activated sludge to induce a toxic effect upon the growth of Eisenia foetida was determined. During 43 trials on sludge samples obtained throughout 1 year of study, earthworms grew from 3 to 10 mg live wt at hatching to 792 mg +- 18% (mean +- C.V.) in 8 weeks, when sludge was 24/sup 0/C and contained no additives. None of several elements commonly used in microbial growth media enhanced the growth rate of the earthworm. At salt concentrations up to about 6.6% on a dry wt basis, none of six anions tested was in and of itself toxic, while five of 15 cations - Co, Hg, Cu, Ni, and Cd - appeared specifically to inhibit growth rate or cause death. Manganese, Cr, and Pb were innocuous even at the highest levels of application - 22,000, 46,000, and 52,000 mg/kg, respectively. Neither the anionic nor cationic component of certain salts, such as NaCl or NH/sub 4/Cl, could be said to inhibit growth, which occurred only at high concentrations of these salts (about 3.3 and/or 6.6%). Below 7 mmho/cm, toxicity could not be correlated with electrolytic conductance, though higher values may help to explain the nonspecific growth inhibitory effects of salts like NaCl and KCl. Nor could toxicity ever be ascribed to hydrogen ion activity, since sludge pH was not altered even at the highest salt dose. It is concluded that except under very extreme conditions, the levels of heavy metals and salts generally found in activated sludges will not have an adverse affect on the growth of E. foetida.

  19. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    PubMed

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  20. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death.

    PubMed

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  1. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death

    PubMed Central

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  2. Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy).

    PubMed

    Varrica, D; Tamburo, E; Dongarrà, G; Sposito, F

    2014-02-01

    The aim of this survey was to use scalp hair as a biomonitor to evaluate the environmental exposure to metals and metalloids of schoolchildren living around the Mt. Etna area, and to verify whether the degree of human exposure to trace elements is subject to changes in local environmental factors. Twenty trace elements were determined in 376 samples of scalp hair from schoolboys (11-13 years old) of both genders, living in ten towns located around the volcanic area of Mt. Etna (Sicily). The results were compared with those (215 samples) from children living in areas of Sicily characterized by a different geological setting (reference site). As, U and V showed much higher concentrations at the volcanic site whereas Sr was particularly more abundant at the reference site. Linear Discriminant Analysis (LDA) indicated an Etna factor, made up of V, U and Mn, and a second factor, concerning the reference site, characterized by Ni and Sr, and to a lesser extent by Mo and Cd. Significant differences in element concentrations were also observed among three different sectors of Mt. Etna area. Young people living in the Mt. Etna area are naturally exposed to enhanced intakes of some metals (V, U, Mn) and non-metals (e.g., As) than individuals of the same age residing in other areas of Sicily, characterized by different lithologies and not influenced by volcanic activity. The petrographic nature of local rocks and the dispersion of the volcanic plume explain the differences, with ingestion of water and local food as the most probable exposure pathways.

  3. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge... on the prior year's annual use. Tandem-switched transport transmission charges that are not presumed... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport...

  4. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge... on the prior year's annual use. Tandem-switched transport transmission charges that are not presumed... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport...

  5. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge... on the prior year's annual use. Tandem-switched transport transmission charges that are not presumed... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport...

  6. REDISTRIBUTION OF ALKALINE ELEMENTS IN ASSOCIATION WITH AQUEOUS ACTIVITY IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Hidaka, Hiroshi; Higuchi, Takuya; Yoneda, Shigekazu E-mail: s-yoneda@kahaku.go.jp

    2015-12-10

    It is known that the Sayama meteorite (CM2) shows an extensive signature for aqueous alteration on the meteorite parent body, and that most of the primary minerals in the chondrules are replaced with phyllosilicates as the result of the aqueous alteration. In this paper, it is confirmed from the observation of two-dimensional Raman spectra that a part of olivine in a chondrule collected from the Sayama chondrite is serperntinized. Ion microprobe analysis of the chondrule showed that alkaline elements such as Rb and Cs are heterogeneously redistributed in the chondrule. The result of higher Rb and Cs contents in serpentinized phases in the chondrule rather than in other parts suggested the selective adsorption of alkaline elements into the serpentine in association with early aqueous activity on the meteorite parent body. Furthermore Ba isotopic analysis provided variations of {sup 135}Ba/{sup 138}Ba and {sup 137}Ba/{sup 138}Ba in the chondrule. This result was consistent with our previous isotopic data suggesting isotopic evidence for the existence of the presently extinct nuclide {sup 135}Cs in the Sayama meteorite, but the abundance of {sup 135}Cs in the solar system remains unclear because of large analytical uncertainties.

  7. Determination of trace elements by instrumental neutron activation analysis in Anatolian bentonitic clays

    NASA Astrophysics Data System (ADS)

    Güngör, N.; Tulun, T.; Alemdar, A.

    1998-08-01

    Instrumental Neutron Activation Analysis (INAA) was carried out for the determination of trace elements in non-swelling type bentonitic clays. Samples were irradiated in Triga Mark II type of reactor at the Nuclear Institute of Technical University of Istanbul. Irradiation was performed in two steps for "short and long lived" isotopes. The γ spectra of short lived isotopes were interpreted with respect to Al, Ca, Mg, Na, K, Ti, Mn, V qualitatively and that of long lived isotopes with respect to Sc, Cr, Br, Sb, Cs, La, Ce, Sm, Yb, Hf quantitatively. The relative richness of the trace elements (Al, Ti, Ca, Mg, Na, K) observed in the Sampo 90 program was obtained using Atomic Absorption technique by normalizing its value to that of sodium. The silicon content of samples was determined by gravimetry. The results indicated that Sample I contained relatively higher amount of REE, Sb, Ca and Na than Sample II. The amount of Sc, Cr and Br were about similar in both samples. Concentrations of La, Ce, Sm and Yb are higher than REE abundances found in all natural waters. These results suggest that Ca-bentonite samples are representative of primary deposition environment. In addition, the Sc content of both the samples indicates that Ca-bentonite deposits originated from continental crust. The relatively high amount of REE might bring about porosity problems in the use of Ca-bentonite in cement and concrete production.

  8. Optical Fibre Switch

    NASA Astrophysics Data System (ADS)

    Markatos, S.; Ayres, S.; Kreit, D.; Kerr, A.; Youngquist, R. C.; Giles, I. P.

    1987-10-01

    The design construction and operation of a thermally controlled optical fibre switch, based upon the lap/polish technique, is described in this paper. The lap/polish method allows access to the evanescent field in an optical fibre and coupling between two fibres can be controlled from zero to total power transfer by changing the refractive index of the oil in the coupling region. Such refractive index changes can be induced thermally by directly heating the matching oil at the interaction area, with forming heating elements close to the fibre core. Power coupling is then proportional to the current supplied to the electrodes. Results are presented showing the frequency response of tlio device.

  9. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    NASA Astrophysics Data System (ADS)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  10. Lability of potentially toxic elements in soils affected by smelting activities.

    PubMed

    Popescu, I; Biasioli, M; Ajmone-Marsan, F; Stănescu, R

    2013-01-01

    Determination of total concentration of potentially toxic elements (PTEs) in soil is not a reliable tool for evaluating potential exposure risk for humans. PTE lability (EDTA, SBET and solution extraction) and chemical speciation (BCR sequential extraction) were investigated for Pb, Cd, Cu, and Zn, as well as how these could be affected by flooding in soils polluted by smelting activities. The flooding experiment was performed in pots from which soil solution was extracted at different time intervals using Rhizon Moisture Samplers. After experiments, the soil was again subjected to the previous extractions (EDTA, SBET, and BCR) in order to reveal the changes which occurred during anoxia. From the results we can conclude that PTE lability is very high and flooding caused the increase in their mobility up to 100% (for bioaccessible Pb). The experiment demonstrated that temporary reducing conditions can increase the risk of contaminants passing to other environmental compartments and the food chain.

  11. Linear Closed-form Solution and Finite-element Analysis of an Active Tensegrity Unit

    NASA Astrophysics Data System (ADS)

    Kmeť, Stanislav; Platko, Peter

    2012-11-01

    Results of the linear closed form solution of an active or adaptive tensegrity unit, as well as its numerical analysis using finite element method are presented in the paper. The shape of the unit is an octahedral cell with a square base and it is formed by thirteen members (four bottom and four top cables, four edge struts and one central strut). The central strut is designed as an actuator that allows for an adjustment of the shape of the unit which leads to changes of tensile forces in the cables. Due to the diagonal symmetry of the 3D tensegrity unit the closed-form analysis is based on the 2D solution of the equivalent planar biconvex cable system with one central strut under a vertical point load.

  12. Lability of potentially toxic elements in soils affected by smelting activities.

    PubMed

    Popescu, I; Biasioli, M; Ajmone-Marsan, F; Stănescu, R

    2013-01-01

    Determination of total concentration of potentially toxic elements (PTEs) in soil is not a reliable tool for evaluating potential exposure risk for humans. PTE lability (EDTA, SBET and solution extraction) and chemical speciation (BCR sequential extraction) were investigated for Pb, Cd, Cu, and Zn, as well as how these could be affected by flooding in soils polluted by smelting activities. The flooding experiment was performed in pots from which soil solution was extracted at different time intervals using Rhizon Moisture Samplers. After experiments, the soil was again subjected to the previous extractions (EDTA, SBET, and BCR) in order to reveal the changes which occurred during anoxia. From the results we can conclude that PTE lability is very high and flooding caused the increase in their mobility up to 100% (for bioaccessible Pb). The experiment demonstrated that temporary reducing conditions can increase the risk of contaminants passing to other environmental compartments and the food chain. PMID:23127724

  13. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  14. Human GLI-2 Is a Tat Activation Response Element-Independent Tat Cofactor

    PubMed Central

    Browning, Catherine M.; Smith, Michael J.; Clark, Nina M.; Lane, Brian R.; Parada, Camilo; Montano, Monty; KewalRamani, Vineet N.; Littman, Dan R.; Essex, Max; Roeder, Robert G.; Markovitz, David M.

    2001-01-01

    Zinc finger-containing GLI proteins are involved in the development of Caenorhabditis elegans, Xenopus, Drosophila, zebrafish, mice, and humans. In this study, we show that an isoform of human GLI-2 strongly synergizes with the Tat transactivating proteins of human immunodeficiency virus types 1 and 2 (HIV-1 and -2) and markedly stimulates viral replication. GLI-2 also synergizes with the previously described Tat cofactor cyclin T1 to stimulate Tat function. Surprisingly, GLI-2/Tat synergy is not dependent on either a typical GLI DNA binding site or an intact Tat activation response element but does require an intact TATA box. Thus, GLI-2/Tat synergy results from a mechanism of action which is novel both for a GLI protein and for a Tat cofactor. These findings link the GLI family of transcriptional and developmental regulatory proteins to Tat function and HIV replication. PMID:11160734

  15. Identification of a peroxisome proliferator responsive element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 gene promoter

    SciTech Connect

    Chen Jiegen; Li Xi; Huang Haiyan; Liu Honglei; Liu Deguo; Song Tanjing; Ma Chungu; Ma Duan; Song Houyan; Tang Qiqun . E-mail: qqtang@shmu.edu.cn

    2006-09-01

    PAI-1 is expressed and secreted by adipose tissue which may mediate the pathogenesis of obesity-associated cardiovascular complications. Evidence is presented in this report that PAI-1 is not expressed by preadipocyte, but significantly induced during 3T3-L1 adipocyte differentiation and the PAI-1 expression correlates with the induction of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}). A peroxisome proliferator responsive element (PPRE)-like cis-element (-206TCCCCCATGCCCT-194) is identified in the mouse PAI-1 gene promoter by electrophoretic mobility shift assay (EMSA) combined with transient transfection experiments; the PPRE-like cis-element forms a specific DNA-protein complex only with adipocyte nuclear extracts, not with preadipocyte nuclear extracts; the DNA-protein complex can be totally competed away by non-labeled consensus PPRE, and can be supershifted with PPAR{gamma} antibody. Mutation of this PPRE-like cis-element can abolish the transactivation of mouse PAI-1 promoter mediated by PPAR{gamma}. Specific PPAR{gamma} ligand Pioglitazone can significantly induce the PAI-1 expression, and stimulate the secretion of PAI-1 into medium.

  16. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold

    PubMed Central

    Wan, Zhengpeng; Chen, Xiangjun; Chen, Haodong; Ji, Qinghua; Chen, Yingjia; Wang, Jing; Cao, Yiyun; Wang, Fei; Lou, Jizhong; Tang, Zhuo; Liu, Wanli

    2015-01-01

    B lymphocytes use B cell receptors (BCRs) to sense the physical features of the antigens. However, the sensitivity and threshold for the activation of BCRs resulting from the stimulation by mechanical forces are unknown. Here, we addressed this question using a double-stranded DNA-based tension gauge tether system serving as a predefined mechanical force gauge ranging from 12 to 56 pN. We observed that IgM-BCR activation is dependent on mechanical forces and exhibits a multi-threshold effect. In contrast, the activation of isotype-switched IgG- or IgE-BCR only requires a low threshold of less than 12 pN, providing an explanation for their rapid activation in response to antigen stimulation. Mechanistically, we found that the cytoplasmic tail of the IgG-BCR heavy chain is both required and sufficient to account for the low mechanical force threshold. These results defined the mechanical force sensitivity and threshold that are required to activate different isotyped BCRs. DOI: http://dx.doi.org/10.7554/eLife.06925.001 PMID:26258882

  17. Opposing effect of EGFRwt on EGFRvIII-mediated NF-κB activation with RIP1 as a cell death switch

    PubMed Central

    Puliyappadamba, Vineshkumar Thidil; Chakraborty, Sharmistha; Chauncey, Sandili S.; Li, Li; Hatanpaa, Kimmo J.; Mickey, Bruce; Noorani, Shayan; Shu, Hui-Kuo G.; Burma, Sandeep; Boothman, David A.; Habib, Amyn A.

    2013-01-01

    Summary RIP1 is a central mediator of cell death in cell stress, but can also mediate cell survival by activating NF-κB. Here, we show that RIP1 is a switch in EGFR signaling. EGFRvIII is an oncogenic mutant that does not bind ligand and is co-expressed with EGFRwt in glioblastoma (GBM). EGFRvIII recruits ubiquitin ligases to RIP1 resulting in K63-linked ubiquitination of RIP1. RIP1 binds to TAK1 and NEMO forming a EGFRvIII-RIP1 signalosome that activates NF-κB. RIP1 is essential for EGFRvIII-mediated oncogenicity and correlates with NF-κB activation in GBM. Surprisingly, activation of EGFRwt with EGF results in a novel negative regulation of EGFRvIII with dissociation of the EGFRvIII-RIP1 signalosome, loss of RIP1 ubiquitination, NF-κB activation, and association of RIP1 with FADD and Caspase-8. If EGFRwt is overexpressed with EGFRvIII, adding EGF leads to a RIP1 kinase dependent cell death. The EGFRwt-EGFRvIII-RIP1 interplay may regulate oncogenicity and vulnerability to targeted treatment in GBM. PMID:23972990

  18. Glucocorticoid activation of chromogranin A gene expression. Identification and characterization of a novel glucocorticoid response element.

    PubMed Central

    Rozansky, D J; Wu, H; Tang, K; Parmer, R J; O'Connor, D T

    1994-01-01

    Glucocorticoids regulate catecholamine biosynthesis and storage at several sites. Chromogranin A, an abundant protein complexed with catecholamines in secretory vesicles of chromaffin cells and sympathetic axons, is also augmented by glucocorticoids. This study reports isolation of the rat chromogranin A promoter to elucidate transcriptional regulation of chromogranin A biosynthesis by glucocorticoids in neuroendocrine cells. Endogenous chromogranin A gene expression was activated up to 3.5-fold in chromaffin cells by glucocorticoid, in time-dependent fashion. Inhibition of new protein synthesis by cycloheximide did not alter the rise in chromogranin A mRNA, suggesting that glucocorticoids directly activate the chromogranin A promoter; nuclear runoff assays confirmed a 3.3-fold increased rate of initiation of new chromogranin A transcripts after glucocorticoid. Transfected rat chromogranin A promoter/luciferase reporter constructs were activated 2.6-3.1-fold by glucocorticoid, and selective agonist/antagonist studies determined that dexamethasone effects were mediated by glucocorticoid receptors. Both rat and mouse chromogranin A promoter/luciferase reporter constructs were activated by glucocorticoid. A series of promoter deletions narrowed the region of glucocorticoid action to a 93-bp section of the promoter, from position -526 to -619 bp upstream of the cap site. A 15-bp sequence ([-583 bp] 5'-ACATGAGTGTGTCCT-3' [-597 bp]) within this region showed partial homology to a glucocorticoid response element (GRE; half-site in italics) consensus sequence, and several lines of experimental evidence confirmed its function as a GRE: (a) site-directed mutation of this GRE prevented glucocorticoid activation of a chromogranin A promoter/reporter; (b) transfer of this GRE to a heterologous (thymidine kinase) promoter/reporter conferred activation by glucocorticoid, in copy number-dependent and orientation-independent fashion; and (c) electrophoretic gel mobility shifts

  19. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression.

    PubMed

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-10-27

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  20. Temporal switching jitter in photoconductive switches

    SciTech Connect

    GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.; AHERN,SEAN M.; MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; ROMERO,SAMUEL P.

    2000-04-13

    This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

  1. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy.

    PubMed

    Li, Shuo; Liu, Lei; Chen, Rongzhang; Nelsen, Bryan; Huang, Xi; Lu, Yongfeng; Chen, Kevin

    2016-03-01

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications. PMID:27036765

  2. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Chen, Rongzhang; Nelsen, Bryan; Huang, Xi; Lu, Yongfeng; Chen, Kevin

    2016-03-01

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  3. Sustained impact of community-based physical activity interventions: key elements for success

    PubMed Central

    2013-01-01

    Background Compelling evidence supports the cost effectiveness and potential impact of physical activity on chronic disease prevention and health promotion. Quality of evidence is one piece, but certainly not the sole determinant of whether public health interventions, physical activity focused or otherwise, achieve their full potential for impact. Health promotion at both population and community levels must progress beyond health intervention models that isolate individuals from social, environmental, and political systems of influence. We offer a critical evaluation of lessons learned from two successful research initiatives to provide insights as to how health promotion research contributes to sustained impact. We highlight factors key to success including the theoretical and methodological integration of: i) a social ecological approach; ii) participatory action research (PAR) methods; and iii) an interdisciplinary team. Methods To identify and illustrate the key elements of our success we layered an evaluation of steps taken atop a review of relevant literature. Results In the school-based case study (Action Schools! BC), the success of our approach included early and sustained engagement with a broad cross-section of stakeholders, establishing partnerships across sectors and at different levels of government, and team members across multiple disciplines. In the neighbourhood built environment case study, the three domains guided our approach through study design and team development, and the integration of older adults’ perspectives into greenway design plans. In each case study we describe how elements of the domains serve as a guide for our work. Conclusion To sustain and maximize the impact of community-based public health interventions we propose the integration of elements from three domains of research that acknowledge the interplay between social, environmental and poilitical systems of influence. We emphasize that a number of key factors determine

  4. C-terminal region of activation-induced cytidine deaminase (AID) is required for efficient class switch recombination and gene conversion.

    PubMed

    Sabouri, Somayeh; Kobayashi, Maki; Begum, Nasim A; Xu, Jianliang; Hirota, Kouji; Honjo, Tasuku

    2014-02-11

    Activation-induced cytidine deaminase (AID) introduces single-strand breaks (SSBs) to initiate class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM). CSR is mediated by double-strand breaks (DSBs) at donor and acceptor switch (S) regions, followed by pairing of DSB ends in two S regions and their joining. Because AID mutations at its C-terminal region drastically impair CSR but retain its DNA cleavage and SHM activity, the C-terminal region of AID likely is required for the recombination step after the DNA cleavage. To test this hypothesis, we analyzed the recombination junctions generated by AID C-terminal mutants and found that 0- to 3-bp microhomology junctions are relatively less abundant, possibly reflecting the defects of the classical nonhomologous end joining (C-NHEJ). Consistently, the accumulation of C-NHEJ factors such as Ku80 and XRCC4 was decreased at the cleaved S region. In contrast, an SSB-binding protein, poly (ADP)-ribose polymerase1, was recruited more abundantly, suggesting a defect in conversion from SSB to DSB. In addition, recruitment of critical DNA synapse factors such as 53BP1, DNA PKcs, and UNG at the S region was reduced during CSR. Furthermore, the chromosome conformation capture assay revealed that DNA synapse formation is impaired drastically in the AID C-terminal mutants. Interestingly, these mutants showed relative reduction in GC compared with SHM in chicken DT40 cells. Collectively, our data indicate that the C-terminal region of AID is required for efficient generation of DSB in CSR and GC and thus for the subsequent pairing of cleaved DNA ends during recombination in CSR.

  5. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  6. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  7. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    SciTech Connect

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  8. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements.

    PubMed

    Schlesinger, Felix; Smith, Andrew D; Gingeras, Thomas R; Hannon, Gregory J; Hodges, Emily

    2013-10-01

    Deep sequencing of mammalian DNA methylomes has uncovered a previously unpredicted number of discrete hypomethylated regions in intergenic space (iHMRs). Here, we combined whole-genome bisulfite sequencing data with extensive gene expression and chromatin-state data to define functional classes of iHMRs, and to reconstruct the dynamics of their establishment in a developmental setting. Comparing HMR profiles in embryonic stem and primary blood cells, we show that iHMRs mark an exclusive subset of active DNase hypersensitive sites (DHS), and that both developmentally constitutive and cell-type-specific iHMRs display chromatin states typical of distinct regulatory elements. We also observe that iHMR changes are more predictive of nearby gene activity than the promoter HMR itself, and that expression of noncoding RNAs within the iHMR accompanies full activation and complete demethylation of mature B cell enhancers. Conserved sequence features corresponding to iHMR transcript start sites, including a discernible TATA motif, suggest a conserved, functional role for transcription in these regions. Similarly, we explored both primate-specific and human population variation at iHMRs, finding that while enhancer iHMRs are more variable in sequence and methylation status than any other functional class, conservation of the TATA box is highly predictive of iHMR maintenance, reflecting the impact of sequence plasticity and transcriptional signals on iHMR establishment. Overall, our analysis allowed us to construct a three-step timeline in which (1) intergenic DHS are pre-established in the stem cell, (2) partial demethylation of blood-specific intergenic DHSs occurs in blood progenitors, and (3) complete iHMR formation and transcription coincide with enhancer activation in lymphoid-specified cells.

  9. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  10. Activation of p38 Mitogen-Activated Protein Kinase by Clotrimazole Induces Multidrug Resistance-Associated Protein 3 Activation through a Novel Transcriptional Element.

    PubMed

    Sasaki, Takamitsu; Inami, Keita; Numata, Yoshihiro; Funakoshi, Kodai; Yoshida, Midori; Kumagai, Takeshi; Kanno, Shuichi; Matsui, Satomi; Toriyabe, Takayoshi; Yamazoe, Yasushi; Yoshinari, Kouichi; Nagata, Kiyoshi

    2016-10-01

    Multidrug resistance-associated protein 3 (MRP3) is a basolaterally localized transporter in the liver and contributes to the transport of various metabolites such as conjugates of endogenous compounds and drugs from hepatocytes. MRP3 expression in the human liver is low under normal physiologic conditions but is induced by drug treatment. Although several studies have identified a region necessary for the basal transcription of MRP3, no region that responds to drugs has been reported. To identify the xenobiotic-responsive elements of MRP3, we constructed a luciferase reporter plasmid containing the MRP3 5'-flanking region up to -10 kb upstream from the transcription start site. Among typical nuclear receptor ligands, clotrimazole dramatically enhanced MRP3 reporter activity in HepG2 cells, whereas rifampicin had no effect. We then conducted MRP3 reporter assays with deletion or mutation constructs to identify a clotrimazole-responsive element. The element was located approximately -6.8 kb upstream from the MRP3 transcription start site. Overexpression of the pregnane X receptor did not enhance clotrimazole-mediated transcription. We found that clotrimazole was toxic to HepG2 cells and we therefore investigated whether mitogen-activated protein kinase (MAPK) activation is involved in the transactivation of MRP3 by clotrimazole. p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] suppressed MRP3 mRNA expression induced by clotrimazole, whereas c-Jun N-terminal kinase inhibitor SP600125 (1,9-pyrazoloanthrone) and extracellular signal-regulated kinase inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] did not. Phosphorylated p38 MAPK was detected in HepG2 cells treated with clotrimazole. These results suggest that activation of the p38 MAPK pathway induces the transcriptional activation of MRP3. PMID:27507784

  11. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.

    PubMed

    Zhang, Tong; Zhang, Xu-Xiang; Ye, Lin

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.

  12. Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation.

    PubMed

    Jeong, Kwang Won; Kim, Kyunghwan; Situ, Alan Jialun; Ulmer, Tobias S; An, Woojin; Stallcup, Michael R

    2011-12-01

    Many co-regulator proteins are recruited by DNA-bound transcription factors to remodel chromatin and activate transcription. However, mechanisms for coordinating actions of multiple co-regulator proteins are poorly understood. We demonstrate that multiple protein-protein interactions by the protein acetyltransferase TIP60 are required for estrogen-induced transcription of a subset of estrogen receptor alpha (ERα) target genes in human cells. Estrogen-induced recruitment of TIP60 requires direct binding of TIP60 to ERα and the action of chromatin-remodeling ATPase BRG1, leading to increased recruitment of histone methyltransferase MLL1 and increased monomethylation of histone H3 at Lys4. TIP60 recruitment also requires preferential binding of the TIP60 chromodomain to histone H3 containing monomethylated Lys4, which marks active and poised enhancer elements. After recruitment, TIP60 increases acetylation of histone H2A at Lys5. Thus, complex cooperation of TIP60 with ERα and other chromatin-remodeling enzymes is required for estrogen-induced transcription. PMID:22081016

  13. A boundary element approach to optimization of active noise control sources on three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cunefare, K. A.; Koopmann, G. H.

    1991-01-01

    This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.

  14. Modeling and analysis of the Rimfire gas switch.

    SciTech Connect

    Gahl, John M.; Kemp, Mark A.; Struve, Kenneth William; Curry, Randy D.; McDonald, Ken F.

    2005-01-01

    Many accelerators at Sandia National Laboratories utilize the Rimfire gas switch for high-voltage, high-power switching. Future accelerators will have increased performance requirements for switching elements. When designing improved versions of the Rimfire switch, there is a need for quick and accurate simulation of the electrical effects of geometry changes. This paper presents an advanced circuit model of the Rimfire switch that can be used for these simulations. The development of the model is shown along with comparisons to past models and experimental results.

  15. Controlled Photon Switch Assisted by Coupled Quantum Dots.

    PubMed

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication.

  16. Controlled Photon Switch Assisted by Coupled Quantum Dots.

    PubMed

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  17. [Hygienic study of an activated fibrous charcoal material as a sorbing filtering element for drinking water afterpurification].

    PubMed

    Prokopov, V A; Mironets, N V; Gakal, R K; Maktaz, E D; Dugan, A M; Teteneva, I A; Tarabarova, S B; Martyshchenko, N V; Nadvornaia, Zh D

    1993-01-01

    The results of complex toxicological and hygienic study showed that the quality of pipe water filtered through the activated carbonic fibrous material (ACFM) "Dnepr-F" forming a part of absorptive filtering element improved markedly. The content of organic substances decreased drastically as well as that of nitrates and iron. Microbiological indices did not suffer appreciable changes and were within permissible limits. The water filtered through the absorptive element with ACFM had no adverse influence on the organisms of warm-blooded animals. Proceeding from foregoing one can conclude that the "Dnepr-F" may be recommended as a part of absorptive filtering element for the final refinement of drinking water.

  18. Study of the generation characteristics of laser converters with dye-based wide-aperture solid--liquid active elements

    SciTech Connect

    Eremenko, A.S.; Zemskii, V.I.; Kolesnikov, Y.L.; Malinin, B.G.; Meshkovsky, I.K.; Savkin, N.P.; Stepanov, V.E.; Shildyaev, V.S.

    1986-11-01

    The lasing characteristics of an active element, consisting of a fine porous silicate matrix, has been studied. Molecules of a dye (rhodamine 6G) and an ethanol solution of the same dye were introduced into the cells. It has been shown that under conditions of large heat release (when thermooptical distortions begin to appear in the dye solutions), the solid--liquid element preserves the stability of its own lasing characteristics.

  19. Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity

    USGS Publications Warehouse

    Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.

    1993-01-01

    Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.

  20. Control of electro-rheological fluid based resistive torque elements for use in active rehabilitation devices

    NASA Astrophysics Data System (ADS)

    Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos

    2007-04-01

    In this paper we present control algorithms for novel electro-rheological fluid based resistive torque generation elements that will be used to drive the joint of a new type of portable and controllable active knee rehabilitation orthotic device (AKROD) for iso-inertial, isokinetic, and isometric exercising as well as gait retraining. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on-board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques are developed. In this project, a prototype for the AKROD has been developed and tested. The AKROD's ERF resistive actuator was tested in laboratory experiments using a custom-made ERF testing apparatus (ETA). ETA provides a computer-controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and the AKROD's ERF actuators/brakes. The AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) proportional-integral (PI) torque controller was implemented to achieve this goal.

  1. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation. PMID:27044293

  2. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  3. Unraveling the Switch from Subduction to Exhumation within a Collisional Orogen: Split-stream U-Pb and Trace-element Results from the Western Gneiss Region, Norway (Invited)

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Whitney, D. L.; Teyssier, C. P.; Fossen, H.; Desormeau, J. W.; Jessen, B.

    2013-12-01

    During continental collision, crustal material may be subducted to great depths and subsequently exhumed. Ultrahigh-pressure (UHP) terranes preserve a record of the subduction of crustal material during suturing of colliding continents and the exhumation of this material during extension and, in some cases, collapse of the orogen. The UHP rocks of the Western Gneiss Region (WGR), Norway, resulted from the collision of Baltica with Laurentia during the final stages of the Caledonian orogeny. The WGR represents one of the two largest UHP terranes on Earth and consists of a UHP eclogite-bearing domain south of the Møre-Trøndelag strike-slip fault and a HP mafic granulite-bearing domain north of the fault. At least some of the HP granulite is overprinted eclogite. To evaluate the metamorphic and structural relationship of mafic rocks and associated migmatite in both regions, we obtained LA-ICP-MS U-Pb dates and trace-element analyses for zircon from a variety of textural types of leucosome associated with mafic layers and lenses. Five leucosomes within highly deformed migmatite in the HP granulite complex on the Roan Peninsula reveal U-Pb lower-intercept ages from ca. 405 to 409 Ma and upper-intercept Proterozoic dates. These zircons have distinct trace-elements patterns: all of the zircons that yield Proterozoic dates have overall much higher REE concentrations, a more significant negative Eu anomaly (-0.3 to -0.7) and steeper HREE patterns (Lu/Dy = 5-12). In comparison, the Caledonian zircons reveal flatter Eu anomalies (-0.3 to 0.2) and less steep HREE patterns (Lu/Dy = 2-7), although the individual patterns do not seem to correlate with age. The Caledonian zircon patterns suggest crystallization at high-pressures and are distinct from the inherited Proterozoic grains. Similar results were obtained from zircon rims extracted from layer-parallel to crosscutting leucosomes from the UHP domain. Trace elements in zircon in these samples record the transition from high

  4. A cis-regulatory module activating transcription in the suspensor contains five cis-regulatory elements.

    PubMed

    Henry, Kelli F; Kawashima, Tomokazu; Goldberg, Robert B

    2015-06-01

    Little is known about the molecular mechanisms by which the embryo proper and suspensor of plant embryos activate specific gene sets shortly after fertilization. We analyzed the upstream region of the Scarlet Runner Bean (Phaseolus coccineus) G564 gene in order to understand how genes are activated specifically in the suspensor during early embryo development. Previously, we showed that a 54-bp fragment of the G564 upstream region is sufficient for suspensor transcription and contains at least three required cis-regulatory sequences, including the 10-bp motif (5'-GAAAAGCGAA-3'), the 10 bp-like motif (5'-GAAAAACGAA-3'), and Region 2 motif (partial sequence 5'-TTGGT-3'). Here, we use site-directed mutagenesis experiments in transgenic tobacco globular-stage embryos to identify two additional cis-regulatory elements within the 54-bp cis-regulatory module that are required for G564 suspensor transcription: the Fifth motif (5'-GAGTTA-3') and a third 10-bp-related sequence (5'-GAAAACCACA-3'). Further deletion of the 54-bp fragment revealed that a 47-bp fragment containing the five motifs (the 10-bp, 10-bp-like, 10-bp-related, Region 2 and Fifth motifs) is sufficient for suspensor transcription, and represents a cis-regulatory module. A consensus sequence for each type of motif was determined by comparing motif sequences shown to activate suspensor transcription. Phylogenetic analyses suggest that the regulation of G564 is evolutionarily conserved. A homologous cis-regulatory module was found upstream of the G564 ortholog in the Common Bean (Phaseolus vulgaris), indicating that the regulation of G564 is evolutionarily conserved in closely related bean species.

  5. Exosomes Derived from HIV-1-infected Cells Contain Trans-activation Response Element RNA*

    PubMed Central

    Narayanan, Aarthi; Iordanskiy, Sergey; Das, Ravi; Van Duyne, Rachel; Santos, Steven; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Dalby, Elizabeth; Iglesias-Ussel, Maria; Popratiloff, Anastas; Hakami, Ramin; Kehn-Hall, Kylene; Young, Mary; Subra, Caroline; Gilbert, Caroline; Bailey, Charles; Romerio, Fabio; Kashanchi, Fatah

    2013-01-01

    Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS. PMID:23661700

  6. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish.

    PubMed

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  7. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

    PubMed Central

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  8. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish.

    PubMed

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  9. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b

    PubMed Central

    Du, Jin; Zhao, Tao-Lan; Wang, Peng-Fei; Zhao, Ping-Xia; Xie, Qi; Cao, Xiao-Feng; Xiang, Cheng-Bin

    2016-01-01

    Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance. PMID:27676073

  10. Electronic Switch Arrays for Managing Microbattery Arrays

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  11. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice.

    PubMed

    Tsugane, Kazuo; Maekawa, Masahiko; Takagi, Kyoko; Takahara, Hiroyuki; Qian, Qian; Eun, Chang-Ho; Iida, Shigeru

    2006-01-01

    While characterized mutable alleles caused by DNA transposons have been abundant in maize since the discovery of Dissociation conferring variegation by Barbara McClintock, only a few mutable alleles have been described in rice even though the rice genome contains various transposons. Here, we show that a spontaneous mutable virescent allele, pyl-v, is caused by the disruption of the nuclear-coded essential chloroplast protease gene, OsClpP5, due to insertion of a 607-bp non-autonomous DNA transposon, non-autonomous DNA-based active rice transposon one (nDart1), belonging to the hAT superfamily. The transposition of nDart1 can be induced by crossing with a line containing an autonomous element, aDart, and stabilized by segregating out of aDart. We also identified a novel mutable dwarf allele thl-m caused by an insertion of nDart1. The japonica cultivar Nipponbare carries no aDart, although it contains epigenetically silenced Dart element(s), which can be activated by 5-azacytidine. Nipponbare bears four subgroups of about 3.6-kb Dart-like sequences, three of which contain potential transposase genes, and around 3.6-kb elements without an apparent transposase gene, as well as three subgroups of about 0.6-kb nDart1-related elements that are all internal deletions of the Dart-like sequences. Both nDart1 and 3.6-kb Dart-like elements were also present in indica varieties 93-11 and Kasalath. nDart1 appears to be the most active mutagen among nDart1-related elements contributing to generating natural variations. A candidate for an autonomous element, aDart, and a possible application of nDart1 for transposon tagging are discussed. PMID:16367953

  12. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice.

    PubMed

    Tsugane, Kazuo; Maekawa, Masahiko; Takagi, Kyoko; Takahara, Hiroyuki; Qian, Qian; Eun, Chang-Ho; Iida, Shigeru

    2006-01-01

    While characterized mutable alleles caused by DNA transposons have been abundant in maize since the discovery of Dissociation conferring variegation by Barbara McClintock, only a few mutable alleles have been described in rice even though the rice genome contains various transposons. Here, we show that a spontaneous mutable virescent allele, pyl-v, is caused by the disruption of the nuclear-coded essential chloroplast protease gene, OsClpP5, due to insertion of a 607-bp non-autonomous DNA transposon, non-autonomous DNA-based active rice transposon one (nDart1), belonging to the hAT superfamily. The transposition of nDart1 can be induced by crossing with a line containing an autonomous element, aDart, and stabilized by segregating out of aDart. We also identified a novel mutable dwarf allele thl-m caused by an insertion of nDart1. The japonica cultivar Nipponbare carries no aDart, although it contains epigenetically silenced Dart element(s), which can be activated by 5-azacytidine. Nipponbare bears four subgroups of about 3.6-kb Dart-like sequences, three of which contain potential transposase genes, and around 3.6-kb elements without an apparent transposase gene, as well as three subgroups of about 0.6-kb nDart1-related elements that are all internal deletions of the Dart-like sequences. Both nDart1 and 3.6-kb Dart-like elements were also present in indica varieties 93-11 and Kasalath. nDart1 appears to be the most active mutagen among nDart1-related elements contributing to generating natural variations. A candidate for an autonomous element, aDart, and a possible application of nDart1 for transposon tagging are discussed.

  13. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  14. Apollo Ring Optical Switch

    SciTech Connect

    Maestas, J.H.

    1987-03-01

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  15. Triggered plasma opening switch

    SciTech Connect

    Mendel, C W

    1988-02-23

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  16. A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors.

    PubMed

    Simboeck, Elisabeth; Sawicka, Anna; Zupkovitz, Gordin; Senese, Silvia; Winter, Stefan; Dequiedt, Franck; Ogris, Egon; Di Croce, Luciano; Chiocca, Susanna; Seiser, Christian

    2010-12-24

    Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells.

  17. Non-volatile, solid state bistable electrical switch

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1994-01-01

    A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.

  18. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses.

    PubMed

    Pone, Egest J; Lam, Tonika; Lou, Zheng; Wang, Rui; Chen, Yuhui; Liu, Dongfang; Edinger, Aimee L; Xu, Zhenming; Casali, Paolo

    2015-04-01

    Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.

  19. Bioaugmentation of activated sludge with elemental sulfur producing strain Thiopseudomonas denitrificans X2 against nitrate shock load.

    PubMed

    Tan, Wenbo; Huang, Cong; Chen, Chuan; Liang, Bin; Wang, Aijie

    2016-11-01

    The sulfide and nitrogen compounds in wastewaters are toxic and cause a serious environmental problem. Thiopseudomonas denitrificans X2, which is the type species of a novel genus Thiopseudomonas was used for bioaugmentation. It oxidized sulfide and acetate with nitrate, and generated elemental sulfur that could be recovered as resource. The generation rate of elemental sulfur was enhanced significantly by the bioaugmentation under the condition of excessive nitrate feeding. The inoculums survived and worked actively in the activated sludge system as the dominant population. Thiopseudomonas denitrificans X2 could be applied to wastewater treatment and resource recovery simultaneously. PMID:27590576

  20. Transcriptional activity of the transposable element Tn10 in the Salmonella typhimurium ilvGEDA operon.

    PubMed Central

    Blazey, D L; Burns, R O

    1982-01-01

    Polarity of Tn10 insertion mutations in the Salmonella typhimurium ilvGEDA operon depends on both the location and the orientation of the Tn10 element. One orientation of Tn10 insertions in ilvG and ilvE permits low-level expression of the downstream ilvEDA and ilvDA genes, respectively. Our analysis of Salmonella ilv recombinant plasmids shows that this residual ilv expression must result from Tn10-directed transcription and does not reflect the presence of internal promoters in the ilvGEDA operon, as was previously suggested. The opposite orientation of Tn10 insertion in ilvE prevents ilvDA expression, indicating that only one end of Tn10 is normally active in transcribing adjacent genes. Both orientations of Tn10 insertion in ilvD exert absolute polarity on ilvA expression. Expression of ilvA is known to be dependent on effective translation of ilvD, perhaps reflecting the lack of a ribosome binding site proximal to the ilvA sequence. Therefore, recognition of the ability of Tn10 to promote transcription of contiguous genes in the ilvGEDA operon apparently requires the presence of associated ribosome binding sites. PMID:6289328

  1. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    SciTech Connect

    Tkach, N. V. Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperature shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.

  2. Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model.

    PubMed

    Bernoux, Maud; Burdett, Hayden; Williams, Simon J; Zhang, Xiaoxiao; Chen, Chunhong; Newell, Kim; Lawrence, Gregory J; Kobe, Bostjan; Ellis, Jeffrey G; Anderson, Peter A; Dodds, Peter N

    2016-01-01

    NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling. PMID:26744216

  3. Magnetohydrodynamic simulation of current switching by explosive opening switches of different types

    NASA Astrophysics Data System (ADS)

    Vlasov, Yu. V.

    2015-01-01

    The MEG-2D two-dimensional Eulerian design procedure was used for magnetohydrodynamic simulation of the megaampere current switching process by an explosive opening switch. This paper presents simulation results for the current switching of a helical magnetocumulative generator (MCG) by explosive opening switches of different types at the same parameters of the switching scheme, thickness of the breaking conductor made of copper foil, the breaking current, and the number of opening switch elements. Simulation results for current switching by an explosive opening switch with a ribbed barrier for different thickness of the broken copper foil conductor are also presented. In the case of using a foil 0.3 mm thick, a ribbed barrier with steel inserts on the ribs with optimal parameters was investigated. It is shown that at a foil thickness less than 0.2 mm, decreasing the depth of the groove in the barrier does not lead to an increases in the time of triggering of the opening switch.

  4. Viral Double-Stranded RNA Triggers Ig Class Switching by Activating Upper Respiratory Mucosa B Cells through an Innate TLR3 Pathway Involving BAFF1

    PubMed Central

    Xu, Weifeng; Santini, Paul A.; Matthews, Allysia J.; Chiu, April; Plebani, Alessandro; He, Bing; Chen, Kang; Cerutti, Andrea

    2011-01-01

    Class switch DNA recombination (CSR) from IgM to IgG and IgA is crucial for antiviral immunity. Follicular B cells undergo CSR upon engagement of CD40 by CD40 ligand on CD4+ T cells. This T cell-dependent pathway requires 5–7 days, which is too much of a delay to block quickly replicating pathogens. To compensate for this limitation, extrafollicular B cells rapidly undergo CSR through a T cell-independent pathway that involves innate Ag receptors of the TLR family. We found that a subset of upper respiratory mucosa B cells expressed TLR3 and responded to viral dsRNA, a cognate TLR3 ligand. In the presence of dsRNA, mucosal B cells activated NF-κB, a transcription factor critical for CSR. Activation of NF-κB required TRIF (Toll/IL-1R domain-containing protein inducing IFN-β), a canonical TLR3 adapter protein, and caused germline transcription of downstream CH genes as well as expression of AID (activation-induced cytidine deaminase), a DNA-editing enzyme essential for CSR. Subsequent IgG and IgA production was enhanced by BAFF (B cell-activating factor of the TNF family), an innate mediator released by TLR3-expressing mucosal dendritic cells. Indeed, these innate immune cells triggered IgG and IgA responses upon exposure to dsRNA. By showing active TLR3 signaling and ongoing CSR in upper respiratory mucosa B cells from patients with CD40 signaling defects, our findings indicate that viral dsRNA may initiate frontline IgG and IgA responses through an innate TLR3-dependent pathway involving BAFF. PMID:18566393

  5. Manganese Catalysts for C–H activation: An Experimental/Theoretical Study Identifies the Stereoelectronic Factor that Controls the Switch between Hydroxylation and Desaturation Pathways

    PubMed Central

    Hull, Jonathan F.; Balcells, David; Sauer, Effiette L. O.; Raynaud, Christophe; Brudvig, Gary W.; Crabtree, Robert H.; Eisenstein, Odile

    2010-01-01

    We describe competitive C–H activation chemistry of two types, desaturation and hydroxylation, using synthetic manganese catalysts with several substrates. 9,10-dihydrophenanthrene (DHP) gives the highest desaturation activity, the final products being phenanthrene (P1) and phenanthrene-9,10-oxide (P3), the latter being thought to arise from epoxidation of some of the phenanthrene. The hydroxylase pathway also occurs as suggested by the presence of the dione product, phenanthrene-9,10-dione (P2), thought to arise from further oxidation of hydroxylation intermediate 9-hydroxy-9,10-dihydrophenanthrene. The experimental work together with the DFT calculations shows that the postulated Mn oxo active species, [Mn(O)(tpp)(Cl)] (tpp = tetraphenyl porphyrin), can promote the oxidation of dihydrophenanthrene by either desaturation or hydroxylation pathways. The calculations show that these two competing reactions have a common initial step – radical H abstraction from one of the DHP sp3 C–H bonds. The resulting Mn hydroxo intermediate is capable of promoting not only OH rebound (hydroxylation) but also a second H abstraction adjacent to the first (desaturation). Like the active MnV=O species, this MnIV-OH species also has radical character on oxygen and can thus give H abstraction. Both steps have very low and therefore very similar energy barriers, leading to a product mixture. Since the radical character of the catalyst is located on the oxygen p orbital perpendicular to the MnIV-OH plane, the orientation of the organic radical with respect to this plane determines which reaction, desaturation or hydroxylation, will occur. Stereoelectronic factors such as the rotational orientation of the OH in the enzyme active site is thus likely to constitute the switch between hydroxylation and desaturation behavior. PMID:20481432

  6. Elements of M-I Coupling in Repetitive Substorm Activity Driven by Interplanetary CMEs

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.

    2014-12-01

    By means of case studies we explore key elements of the magnetosphere-ionosphere current system associated with repetitive substorm activity during persistent strong forcing by ICMEs. Our approach consists of a combination of the magnetospheric and ionospheric perspectives on the substorm activity. The first aspect is the near-Earth plasma sheet with its repetitive excitations of the substorm current wedge, as monitored by spacecraft GOES-10 when it traversed the 2100-0300 MLT sector, and its coupling to the westward auroral electrojet (WEJ) centered near midnight during the stable interplanetary (IP) conditions. The second aspect is the excitation of Bostrom type II currents maximizing at dusk and dawn and their associated ionospheric Pedersen current closure giving rise to EEJ (WEJ) events at dusk (dawn). As documented in our study, this aspect is related to the braking phase of Earthward-moving dipolarization fronts-bursty bulk flows. We follow the magnetospheric flow/field events from spacecraft Geotail in the midtail (X = - 11 Re) lobe to geostationary altitude at pre-dawn MLTs (GOES 10). The associated M-I coupling is obtained from ground-satellite conjunctions across the double auroral oval configuration along the meridian at dusk. By this technique we distinguish between ionospheric manifestations in three latitude regimes: (i) auroral oval south, (ii) auroral oval north, and (iii) polar cap. Regime (iii) is characterized by events of enhanced antisunward convection near the polar cap boundary (flow channel events) and in the central polar cap (PCN-index events). The repetitive substorm activity is discussed in the context of the level of IP driving as given by the geoeffective IP electric field (E_KL), magnetotail reconnection (inferred from the PCN-index and spacecraft Wind at X = - 77 Re) and the storm SYM-H index. We distinguish between different variants of the repetitive substorm activity, giving rise to electrojet (AL)-plasma convection (PCN) events

  7. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

    PubMed

    Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2015-03-18

    Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, p<0.001). Nevertheless, SED gradients in the marrow were shown to be the best predictor of osteoblastic and osteoclastic activity (R(2)=0.83 and 0.60, respectively, p<0.001). These data suggest that the mechanical environment of the bone marrow plays a significant role in determining osteoblast and osteoclast activity.

  8. Transcriptional Activity, Chromosomal Distribution and Expression Effects of Transposable Elements in Coffea Genomes

    PubMed Central

    da Silva, Carlos R. M.; Andrade, Alan C.; Marraccini, Pierre; Teixeira, João B.; Carazzolle, Marcelo F.; Pereira, Gonçalo A. G.; Pereira, Luiz Filipe P.; Vanzela, André L. L.; Wang, Lu; Jordan, I. King; Carareto, Claudia M. A.

    2013-01-01

    Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences. PMID:24244387

  9. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  10. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3'-hydroxylase gene.

    PubMed

    Momose, Masaki; Nakayama, Masayoshi; Itoh, Yoshio; Umemoto, Naoyuki; Toguri, Toshihiro; Ozeki, Yoshihiro

    2013-04-01

    The molecular mechanisms underlying spontaneous bud mutations, which provide an important breeding tool in carnation, are poorly understood. Here we describe a new active hAT type transposable element, designated Tdic101, the movement of which caused a bud mutation in carnation that led to a change of flower color from purple to deep pink. The color change was attributed to Tdic101 insertion into the second intron of F3'H, the gene for flavonoid 3'-hydroxylase responsible for purple pigment production. Regions on the deep pink flowers of the mutant can revert to purple, a visible phenotype of, as we show, excision of the transposable element. Sequence analysis revealed that Tdic101 has the characteristics of an autonomous element encoding a transposase. A related, but non-autonomous element dTdic102 was found to move in the genome of the bud mutant as well. Its mobilization might be the result of transposase activities provided by other elements such as Tdic101. In carnation, therefore, the movement of transposable elements plays an important role in the emergence of a bud mutation.

  11. Composite Thermal Switch

    NASA Technical Reports Server (NTRS)

    McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael

    2011-01-01

    switch (CTS(TradeMark)) coating can be incorporated in either the anode or cathode or both. The coating can be applied in a variety of different processes that permits incorporation in the cell and electrode manufacturing processes. The CTS responds quickly and halts current flow in the hottest parts of the cell first. The coating can be applied to metal foil and supplied as a cell component onto which the active electrode materials are coated.

  12. A Priori Method of Using Photon Activation Analysis to Determine Unknown Trace Element Concentrations in NIST Standards

    SciTech Connect

    Green, Jaromy; Sun Zaijing; Wells, Doug; Benson, Buck; Maschner, Herb

    2009-03-10

    Photon activation analysis detected elements in two NIST standards that did not have reported concentration values. A method is currently being developed to infer these concentrations by using scaling parameters and the appropriate known quantities within the NIST standard itself. Scaling parameters include: threshold, peak and endpoint energies; photo-nuclear cross sections for specific isotopes; Bremstrahlung spectrum; target thickness; and photon flux. Photo-nuclear cross sections and energies from the unknown elements must also be known. With these quantities, the same integral was performed for both the known and unknown elements resulting in an inference of the concentration of the un-reported element based on the reported value. Since Rb and Mn were elements that were reported in the standards, and because they had well-identified peaks, they were used as the standards of inference to determine concentrations of the unreported elements of As, I, Nb, Y, and Zr. This method was tested by choosing other known elements within the standards and inferring a value based on the stated procedure. The reported value of Mn in the first NIST standard was 403{+-}15 ppm and the reported value of Ca in the second NIST standard was 87000 ppm (no reported uncertainty). The inferred concentrations were 370{+-}23 ppm and 80200{+-}8700 ppm respectively.

  13. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    SciTech Connect

    Dahing, Lahasen Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  14. Resistive switching behavior of photochemical activation solution-processed thin films at low temperatures for flexible memristor applications

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Xu, Zhimou; Yu, Zhiqiang; Zhang, Tao; Zhao, Fei; Sun, Tangyou; Ma, Zhichao; Li, Zeping; Wang, Shuangbao

    2015-03-01

    This study explores deep ultraviolet photochemically activated solution-processed metal-oxide thin films at room temperature for fabrication of flexible memristor active resistive layers. An annealing treatment was not required during the process. Solution processed undoped and Mn-doped ZnO thin films served as active layers in the resistive random access memory structure, prepared at 145 °C. The carrier transports in high and low electrical fields were dominated by Frenkel-Poole emission and thermionic emission, respectively. The trap energy level, which originated primarily from Vo or the singly charged oxygen vacancy, was calculated at 0.49 eV. A flexible structure consisting of Ag/DUV-ZnO/indium tin oxide/polyethylene terephthalate was fabricated successfully and its mechanical performance was investigated.

  15. Alternator-driven, magnetically switched modulator

    NASA Astrophysics Data System (ADS)

    Kihara, R.; Kirbie, H. C.

    The technique of magnetically switching high-power pulses was recently revitalized with the development of amorphous magnetic alloys and the new power conditioning requirements of pulsed lasers and high-brightness particle accelerators. The most common magnetic switching technique for generating high-repetition-rate pulses consists of a dc power supply, a triggered switch (thyratron or solid-state), and a repeated network of magnetic switches and capacitors. The life of this type of pulser is limited by the aging of liquid and solid dielectric materials and by the reliability of the triggered switch. An alternator-driven, magnetically switched modulator differs from the conventional magnetic modulator in the replacement of the dc power supply and triggered switch with a high-frequency motor-generator set and an all-magnetic circuit. The power conditioning network converts each cycle of the applied ac power into a single, compressed, unipolar pulse. Consequently, the modulator produces a train of pulses with an interpulse separation equal to the period of the alternator. Additional compression can be attained by the addition of successive stages of magnetic switching. The absence of active switches within the network improves the system reliability and extends the service life of the modulator to the limits of component insulation fatigue and alternator bearing wear. This style of magnetic pulse compression was first described by Melville and reproduced at LLNL in order to quantify the network efficiency, jitter and reliability when modern magnetic materials are employed.

  16. Switching on the Metathesis Activity of Re Oxo Alkylidene Surface Sites through a Tailor-Made Silica-Alumina Support.

    PubMed

    Valla, Maxence; Stadler, David; Mougel, Victor; Copéret, Christophe

    2016-01-18

    Re oxo alkylidene surface species are putative active sites in classical heterogeneous Re-based alkene-metathesis catalysts. However, the lack of evidence for such species questions their existence and/or relevance as reaction intermediates. Using Re(O)(=CH-CH=CPh2)(OtBuF6)3(THF), the corresponding well-defined Re oxo alkylidene surface species can be generated on both silica and silica-alumina supports. While inactive on the silica support, it displays very good activity, even for functionalized olefins, on the silica-alumina support. PMID:26756446

  17. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet.

    PubMed

    Rocchi, Anna; Milioto, Carmelo; Parodi, Sara; Armirotti, Andrea; Borgia, Doriana; Pellegrini, Matteo; Urciuolo, Anna; Molon, Sibilla; Morbidoni, Valeria; Marabita, Manuela; Romanello, Vanina; Gatto, Pamela; Blaauw, Bert; Bonaldo, Paolo; Sambataro, Fabio; Robins, Diane M; Lieberman, Andrew P; Sorarù, Gianni; Vergani, Lodovica; Sandri, Marco; Pennuto, Maria

    2016-07-01

    Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients. PMID:26971100

  18. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota.

    PubMed Central

    Van Sluys, M A; Tempé, J; Fedoroff, N

    1987-01-01

    We have co-transformed carrot (Daucus carota) and Arabidopsis thaliana with an Agrobacterium tumefaciens non-tumorigenic T-DNA carrying the maize transposable element Activator (Ac) and an Agrobacterium rhizogenes Ri T-DNA. We present evidence that the Ac element transposes in transformed root or root-derived callus cultures of both species. We show that fertile plants can be regenerated from transformed, root-derived callus cultures of Arabidopsis, demonstrating the utility of the Ri plasmid for introducing the maize Ac element into plants. We also present evidence that Ac elements that excise from the transforming T-DNA early after transformation continue to be mobile in carrot root cultures. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2832144

  19. Interaction of Rio1 Kinase with Toyocamycin Reveals a Conformational Switch That Controls Oligomeric State and Catalytic Activity

    PubMed Central

    Kiburu, Irene N.; LaRonde-LeBlanc, Nicole

    2012-01-01

    Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 Å and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity. PMID:22629386

  20. Hydrofluoroalkane mandate in effect January 1, 2009: Switch from chlorofluorocarbon- to hydrofluoroalkane-propelled inhalers requires active transition.

    PubMed

    Peters, Stephen

    2009-01-01

    The manufacture, sale, and distribution of chlorofluorocarbon-propelled albuterol metered-dose inhalers ceased as of December 31, 2008. Clinicians should actively transition patients to currently available hydrofluoroalkane-propelled devices, providing concise education and instruction for using the newer devices.